

#1: Data Abstraction (1)

#2: Polymorphism (3)

#3: Design Patterns (7)

#4: The Standard Template
Library (11)

#5: References Are Aliases,
Not Pointers (13)

#6: Array Formal Arguments (17)

#7: Const Pointers and Pointers
to Const (21)

#8: Pointers to Pointers (25)

#9: New Cast Operators (29)

#10: Meaning of a Const
Member Function (33)

#11: The Compiler Puts
Stuff in Classes (37)

#12: Assignment and Initialization
Are Different (41)

#13: Copy Operations (45)

#14: Function Pointers (49)

#15: Pointers to Class Members
Are Not Pointers (53)

#16: Pointers to Member Functions
Are Not Pointers (57)

#17: Dealing with Function and
Array Declarators (61)

#18: Function Objects (63)

#19: Commands and
Hollywood (67)

#20: STL Function Objects (71)

#21: Overloading and Overriding
Are Different (75)

#22: Template Method (77)

#23: Namespaces (81)

#24: Member Function
Lookup (87)

#25: Argument Dependent
Lookup (89)

#26: Operator Function Lookup
(91)

#27: Capability Queries (93)

#28: Meaning of Pointer
Comparison (97)

#29: Virtual Constructors
and Prototype (99)

#30: Factory Method (103)

#31: Covariant Return Types (107)

#32: Preventing Copying (111)

C++ Common Knowledge

(continued inside the back cover)

Praise for C++ Common Knowledge

“We live in a time when, perhaps surprisingly, the best printed works on C++ are

just now emerging. This is one of those works. Although C++ has been at the

forefront of innovation and productivity in software development for more than

two decades, it is only now being fully understood and utilized. This book is one

of those rare contributions that can bear repeated study by practitioners and

experts alike. It is not a treatise on the arcane or academic—rather it completes

your understanding of things you think you know but will bite you sooner or later

until you really learn them. Few people have mastered C++ and software design

as well as Steve has; almost no one has such a level head as he when it comes to

software development. He knows what you need to know, believe me. When he

speaks, I always listen—closely. I invite you to do the same. You (and your cus-

tomers) will be glad you did.”

—Chuck Allison, editor, The C++ Source

“Steve taught me C++. This was back in 1982 or 1983, I think—he had just returned

from an internship sitting with Bjarne Stroustrup [inventor of C++] at Bell Labs.

Steve is one of the unsung heroes of the early days, and anything Steve writes is

on my A-list of things to read. This book is an easy read and collects a great deal

of Steve’s extensive knowledge and experience. It is highly recommended.“

—Stan Lippman, coauthor of C++ Primer, Fourth Edition

“I welcome the self-consciously non-Dummies approach of a short, smart book.“

—Matthew P. Johnson, Columbia University

“I agree with [the author’s] assessment of the types of programmers. I have encoun-

tered the same types in my experience as a developer and a book like this will go

far to help bridge their knowledge gap.... I think this book complements other

books, like Effective C++ by Scott Meyers. It presents everything in a concise and

easy-to-read style.“

—Moataz Kamel, senior software designer, Motorola Canada

“Dewhurst has written yet another very good book. This book should be required

reading for people who are using C++ (and think that they already know every-

thing in C++).“

—Clovis Tondo, coauthor of C++ Primer Answer Book

This page intentionally left blank

C++ Common Knowledge

This page intentionally left blank

C++ Common
Knowledge
Essential Intermediate Programming

Stephen C. Dewhurst

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:
Dewhurst, Stephen C.

C++ common knowledge : essential intermediate programming / Stephen C. Dewhurst.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-32192-8 (pbk. : alk. paper)
1. C++ (Computer program language) I. Title.

QA76.73.C153D48797 2005
005.13'3—dc22

2004029089

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-321-32192-8

Printing5th July 2009

Text printed in the United States at Demand Print Center in Old Tappan, New Jersey.

www.awprofessional.com

Contents

Preface . xi

Acknowledgments . xvii

A Note on Typographical Conventions . xix

Item 1 Data Abstraction . 1

Item 2 Polymorphism . 3

Item 3 Design Patterns . 7

Item 4 The Standard Template Library 11

Item 5 References Are Aliases, Not Pointers 13

Item 6 Array Formal Arguments . 17

Item 7 Const Pointers and Pointers to Const 21

Item 8 Pointers to Pointers . 25

Item 9 New Cast Operators . 29

Item 10 Meaning of a Const Member Function 33

Item 11 The Compiler Puts Stuff in Classes 37

Item 12 Assignment and Initialization Are Different 41

Item 13 Copy Operations . 45

Item 14 Function Pointers . 49

Item 15 Pointers to Class Members Are Not Pointers 53

Item 16 Pointers to Member Functions Are Not Pointers 57

Item 17 Dealing with Function and Array Declarators 61

Item 18 Function Objects . 63

Item 19 Commands and Hollywood . 67

Item 20 STL Function Objects . 71

vii

Item 21 Overloading and Overriding Are Different 75

Item 22 Template Method . 77

Item 23 Namespaces . 81

Item 24 Member Function Lookup . 87

Item 25 Argument Dependent Lookup . 89

Item 26 Operator Function Lookup . 91

Item 27 Capability Queries . 93

Item 28 Meaning of Pointer Comparison 97

Item 29 Virtual Constructors and Prototype 99

Item 30 Factory Method . 103

Item 31 Covariant Return Types . 107

Item 32 Preventing Copying . 111

Item 33 Manufacturing Abstract Bases 113

Item 34 Restricting Heap Allocation . 117

Item 35 Placement New . 119

Item 36 Class-Specific Memory Management 123

Item 37 Array Allocation . 127

Item 38 Exception Safety Axioms . 131

Item 39 Exception Safe Functions . 135

Item 40 RAII . 139

Item 41 New, Constructors, and Exceptions 143

Item 42 Smart Pointers . 145

Item 43 auto_ptr Is Unusual . 147

Item 44 Pointer Arithmetic . 149

Item 45 Template Terminology . 153

Item 46 Class Template Explicit Specialization 155

Item 47 Template Partial Specialization 161

Item 48 Class Template Member Specialization 165

Item 49 Disambiguating with Typename 169

Item 50 Member Templates . 173

viii ❘ Contents

Item 51 Disambiguating with Template 179

Item 52 Specializing for Type Information 183

Item 53 Embedded Type Information . 189

Item 54 Traits . 193

Item 55 Template Template Parameters 199

Item 56 Policies . 205

Item 57 Template Argument Deduction 209

Item 58 Overloading Function Templates 213

Item 59 SFINAE . 217

Item 60 Generic Algorithms . 221

Item 61 You Instantiate What You Use 225

Item 62 Include Guards . 229

Item 63 Optional Keywords . 231

Bibliography . 235

Index . 237

Index of Code Examples . 245

Contents ❘ ix

This page intentionally left blank

Preface

A successful book is not made of what is in it, but what is left out of it.

—Mark Twain

…as simple as possible, but no simpler.

—Albert Einstein

…a writer who questions the capacity of the person at the other end of the
line is not a writer at all, merely a schemer.

—E.B. White

When he took over the editorship of the late C++ Report, the quick Herb
Sutter asked me to write a column on a topic of my choosing. I agreed,
and I chose to call the column “Common Knowledge.” It was supposed to
be, in Herb’s words, “a regular summary of basic lore that every working
C++ programmer should know—but can’t always.” After a couple of
columns in that vein, however, I became interested in template metapro-
gramming techniques, and the topics treated in “Common Knowledge”
from that point on were far from common.

However, the problem in the C++ programming industry that motivated
my original choice of column remains. I commonly encounter the follow-
ing types of individuals in my training and consulting work:

■ Domain experts who are expert C programmers but who have only
basic knowledge of (and perhaps some animosity toward) C++

■ Talented new hires direct from university who have an academic
appreciation for the C++ language but little production C++
experience

xi

■ Expert Java programmers who have little C++ experience and who
have a tendency to program in C++ the way one would program
in Java

■ C++ programmers with several years of experience maintaining
existing C++ applications but who have not been challenged to learn
anything beyond the basics required for maintenance

I want to be immediately productive, but many of the people with whom
I’m working or who I’m training require preliminary education in vari-
ous C++ language features, patterns, and coding techniques before we
can get down to business. Worse, I suspect that most C++ code is written
in ignorance of at least some of these basics and is therefore not what
most C++ experts would consider to be production quality.

This book addresses this pervasive problem by providing essential, com-
mon knowledge that every professional C++ programmer needs to know,
in a form that is pared to its essentials and that can be efficiently and
accurately absorbed. Much of the information is already available from
other sources or is part of that compendium of unwritten information
that all expert C++ programmers know. The advantage is that this mate-
rial resides in one place and was selected according to what my training
and consulting experience over many years has shown are the most com-
monly misunderstood and most useful language features, concepts, and
techniques.

Perhaps the most important aspect of the sixty-three short items that
make up this book is what they leave out, rather than what they contain.
Many of these topics have the potential to become complex. An author’s
ignorance of these complexities could result in an uninformed descrip-
tion that could mislead the reader, but an expert discussion of a topic in
its full complexity could inundate the reader. The approach used here is
to filter out needless complexity in the discussion of each topic. What
remains, I hope, is a clear distillation of the essentials required for pro-
duction C++ programming. C++ language wonks will recognize, there-
fore, that I’ve left out discussion of some issues that are interesting and
even important from a theoretical perspective, but the ignorance of
which does not commonly affect one’s ability to read and write produc-
tion C++ code.

Another motivation for this book came as I was engaged in conversation
with a group of well-known C++ experts at a conference. There was a

xii ❘ Preface

general pall or depression among these experts that modern C++ is so
complex that the “average” programmer can no longer understand it.
(The specific issue was name binding in the context of templates and
namespaces. Yes, getting worked up about such a topic does imply the
need for more play with normal children.) On reflection, I’d have to say
our attitude was pretentious and our gloom unwarranted. We “experts”
have no such problems, and it’s as easy to program in C++ as it is to speak
a (vastly more complex) natural language, even if you can’t diagram the
deep structure of your every utterance. A recurring theme of this book is
that while the full description of the minutia of a particular language fea-
ture may be daunting, day-to-day use of the feature is straightforward
and natural.

Consider function overloading. A full description occupies a large chunk
of the standard and whole or multiple chapters in many C++ texts. And
yet, when faced with

void f(int);

void f(const char *);

//…

f("Hello");

not a single practicing C++ programmer will be unable to determine
which f is called. Full knowledge of the rules by which a call to an over-
loaded function is resolved is useful but only rarely necessary. The same
applies to many other ostensibly complex areas of C++ language and
idiom.

This is not to say that all the material presented here is easy; it’s “as simple
as possible, but no simpler.” In C++ programming, as in any other worth-
while intellectual activity, many important details can’t be written on an
index card. Moreover, this is not a book for “dummies.” I feel a great deal
of responsibility to those who grant a portion of their valuable time to
reading my books. I respect these readers and try to communicate with
them as I would in person to any of my colleagues. Writing at an eighth-
grade level to a professional isn’t writing. It’s pandering.

Many of the book’s items treat simple misunderstandings that I’ve seen
over and over again, which just need to be pointed out (for example,
scope order for member function lookup and the difference between
overriding and overloading). Others deal with topics that are in the
process of becoming essential knowledge for C++ professionals but are

Preface ❘ xiii

often incorrectly assumed to be difficult and are avoided (for example,
class template partial specialization and template template parameters).
I’ve received some criticism from the expert reviewers of the manuscript
that I’ve spent too much space (approximately one third of the book) on
template issues that are not really common knowledge. However, each of
these experts pointed out one, two, or several of the template topics they
thought did belong in the book. The telling observation is, I think, that
there was little overlap among these suggestions, and every template-
related item had at least one supporter.

This is the crux of the issue with the items that make up this book. I don’t
expect any reader to be ignorant of every item’s topic, and it’s likely that
some readers will be familiar with all of them. Obviously, if a reader is not
familiar with a particular topic, there would be (I presume) some benefit
in reading about it. However, even if a reader is already familiar with a
topic, I’d hope that reading about it from a new perspective might clear
up a slight misunderstanding or lead to a deeper understanding. This
book may also have a role in saving the more experienced C++ program-
mer precious time. Competent C++ programmers often find themselves
(as described previously) answering the same questions over and over
again to the detriment of their own work. I’d suggest that the approach of
“read this first, and then let’s talk” would save these C++ gurus countless
hours and direct their expertise instead to the complex problems for
which it’s really needed.

I initially tried to group these sixty-three items into neat chapters, but the
items had other ideas. They instead tended to clump themselves together
in ways that ranged from the obvious to the unexpected. For example, the
items related to exceptions and resource management form a rather natu-
ral group. Less obviously, the items Capability Queries, Meaning of Pointer
Comparison, Virtual Constructors and Prototype, Factory Method, and
Covariant Return Types are strongly and somewhat surprisingly interre-
lated and are best grouped in close proximity to each other. Pointer Arith-
metic decided to hang with Smart Pointers rather than with the pointer
and array material earlier in the book. Rather than attempt to impose an
arbitrary chapter structure on these natural groupings, I decided to grant
the individual items freedom of association. Of course, many other inter-
relationships exist among the topics treated by the items than can be
represented in a simple linear ordering, so the items make frequent inter-
nal references among themselves. It’s a clumped but connected community.

xiv ❘ Preface

While the main idea is to be brief, discussion of a topic sometimes
includes ancillary details that are not directly related to the subject at
hand. These details are never necessary to follow the discussion, but the
reader is put on notice that a particular facility or technique exists. For
instance, the Heap template example that appears in several items informs
the reader in passing about the existence of the useful but rarely discussed
STL heap algorithms, and the discussion of placement new outlines the
technical basis of the sophisticated buffer management techniques
employed by much of the standard library. I also try to take the opportu-
nity, whenever it seems natural to do so, to fold the discussion of sub-
sidiary topics into the discussion of a particular, named item. Therefore,
RAII contains a short discussion of the order of constructor and destruc-
tor activation, Template Argument Deduction discusses the use of helper
functions for specializing class templates, and Assignment and Initializa-
tion Are Different folds in a discussion of computational constructors.
This book could easily have twice the number of items, but, like the
clumping of the items themselves, correlation of a subsidiary topic with a
specific item puts the topic in context and helps the reader to absorb the
material efficiently and accurately.

I’ve reluctantly included several topics that cannot reasonably be treated
in this book’s format of short items. In particular, the items on design pat-
terns and the design of the standard template library are laughably short
and incomplete. Yet they make an appearance simply to put some com-
mon misconceptions to rest, emphasize the importance of the topics, and
encourage the reader to learn more.

Stock examples are part of our programming culture, like the stories that
families swap when they gather for holidays. Therefore, Shape, String,
Stack, and many of the other usual suspects put in an appearance. The
common appreciation of these baseline examples confers the same effi-
ciencies as design patterns in communication, as in “Suppose I want to
rotate a Shape, except…” or “When you concatenate two Strings…”
Simply mentioning a common example orients the conversation and
avoids the need for time-consuming background discussion. “You know
how your brother acts whenever he’s arrested? Well, the other day…”

Unlike my previous books, this one tries to avoid passing judgment on
certain poor programming practices and misuses of C++ language fea-
tures; that’s a goal for other books, the best of which I list in the bibliogra-
phy. (I was, however, not entirely successful in avoiding the tendency to

Preface ❘ xv

preach; some bad programming practices just have to be mentioned, even
if only in passing.) The goal of this book is to inform the reader of the
technical essentials of production-level C++ programming in as efficient
a manner as possible.

.

—Stephen C. Dewhurst
Carver, Massachusetts
January 2005

xvi ❘ Preface

Acknowledgments

Peter Gordon, editor on ne peut plus extraordinaire, withstood my kvetch-
ing about the state of education in the C++ community for an admirably
long time before suggesting that I do something about it. This book is the
result. Kim Boedigheimer somehow managed to keep the entire project
on track without even once making violent threats to the author.

The expert technical reviewers—Matthew Johnson, Moataz Kamel, Dan
Saks, Clovis Tondo, and Matthew Wilson—pointed out several errors and
many infelicities of language in the manuscript, helping to make this a
better book. A stubborn individual, I haven’t followed all their recom-
mendations, so any errors or infelicities that remain are entirely my fault.

Some of the material in this book appeared, in slightly different form, in
my “Common Knowledge” column for C/C++ Users Journal, and much
of the material appeared in the “Once, Weakly” Web column on seman-
tics.org. I received many insightful comments on both print and Web
articles from Chuck Allison, Attila Fehér, Kevlin Henney, Thorsten
Ottosen, Dan Saks, Terje Slettebø, Herb Sutter, and Leor Zolman. Several
in-depth discussions with Dan Saks improved my understanding of the
difference between template specialization and instantiation and helped
me clarify the distinction between overloading and the appearance of
overloading under ADL and infix operator lookup.

This book relies on less direct contributions as well. I’m indebted to
Brandon Goldfedder for the algorithm analogy to patterns that appears
in the item on design patterns and to Clovis Tondo both for motivation
and for his assistance in finding qualified reviewers. I’ve had the good
fortune over the years to teach courses based on Scott Meyers’s Effective
C++, More Effective C++, and Effective STL books. This has allowed me
to observe firsthand what background information was commonly miss-
ing from students who wanted to profit from these industry-standard,
intermediate-level C++ books, and those observations have helped to

xvii

shape the set of topics treated in this book. Andrei Alexandrescu’s work
inspired me to experiment with template metaprogramming rather than
do what I was supposed to be doing, and both Herb Sutter’s and Jack
Reeves’s work with exceptions has helped me to understand better how
exceptions should be employed.

I’d also like to thank my neighbors and good friends Dick and Judy Ward,
who periodically ordered me away from my computer to work the local
cranberry harvest. For one whose professional work deals primarily in
simplified abstractions of reality, it’s intellectually healthful to be shown
that the complexity involved in convincing a cranberry vine to bear fruit
is a match for anything a C++ programmer may attempt with template
partial specialization.

Sarah G. Hewins and David R. Dewhurst provided, as always, both valu-
able assistance and important impediments to this project.

I like to think of myself as a quiet person of steady habits, given more to
calm reflection than strident demand. However, like those who undergo
a personality transformation once they’re behind the wheel of an auto-
mobile, when I get behind a manuscript I become a different person
altogether. Addison-Wesley’s terrific team of behavior modification
professionals saw me through these personality issues. Chanda Leary-
Coutu worked with Peter Gordon and Kim Boedigheimer to translate
my rantings into rational business proposals and shepherd them
through the powers-that-be. Molly Sharp and Julie Nahil not only
turned an awkward word document into the graceful pages you see
before you, they managed to correct many flaws in the manuscript while
allowing me to retain my archaic sentence structure, unusual diction,
and idiosyncratic hyphenation. In spite of my constantly changing
requests, Richard Evans managed to stick to the schedule and produce
not one, but two separate indexes. Chuti Prasertsith designed a gorgeous,
cranberry-themed cover. Many thanks to all.

xviii ❘ Acknowledgments

A Note on Typographical
Conventions

As mentioned in the preface, these items frequently reference one
another. Rather than simply mention the item number, which would
force an examination of the table of contents to determine just what was
being referenced, the title of the item is italicized and rendered in full.
To permit easy reference to the item, the item number and page on which
it appears are appended as subscripts. For example, the item referenced
Eat Your Vegetables [64, 256] tells us that the item entitled “Eat Your Veg-
etables” is item 64, which can be found on page 256.

Code examples appear in fixed-width font to better distinguish them
from the running text. Incorrect or inadvisable code examples appear
with a gray background, and correct and proper code appears with no
background.

xix

This page intentionally left blank

Item 1 ❘ Data Abstraction

A “type” is a set of operations, and an “abstract data type” is a set of oper-
ations with an implementation. When we identify objects in a problem
domain, the first question we should ask about them is, “What can I do
with this object?” not “How is this object implemented?” Therefore, if a
natural description of a problem involves employees, contracts, and pay-
roll records, then the programming language used to solve the problem
should contain Employee, Contract, and PayrollRecord types. This
allows an efficient, two-way translation between the problem domain and
the solution domain, and software written this way has less “translation
noise” and is simpler and more correct.

In a general-purpose programming language like C++, we don’t have
application-specific types like Employee. Instead, we have something bet-
ter: the language facilities to create sophisticated abstract data types. The
purpose of an abstract data type is, essentially, to extend the program-
ming language into a particular problem domain.

No universally accepted procedure exists for designing abstract data types
in C++. This aspect of programming still has its share of inspiration and
artistry, but most successful approaches follow a set of similar steps.

1. Choose a descriptive name for the type. If you have trouble choos-
ing a name for the type, you don’t know enough about what you
want to implement. Go think some more. An abstract data type
should represent a single, well-defined concept, and the name for
that concept should be obvious.

2. List the operations that the type can perform. An abstract data type
is defined by what you can do with it. Remember initialization
(constructors), cleanup (destructor), copying (copy operations),
and conversions (nonexplicit single-argument constructors and
conversion operators). Never, ever, simply provide a bunch of
get/set operations on the data members of the implementation.
That’s not data abstraction; that’s laziness and lack of imagination.

3. Design an interface for the type. The type should be, as Scott Meyers
tells us, “easy to use correctly and hard to use incorrectly.” An

1

abstract data type extends the language; do proper language design.
Put yourself in the place of the user of your type, and write some
code with your interface. Proper interface design is as much a ques-
tion of psychology and empathy as technical prowess.

4. Implement the type. Don’t let the implementation affect the inter-
face of the type. Implement the contract promised by the type’s
interface. Remember that the implementations of most abstract
data types will change much more frequently than their interfaces.

2 ❘ Item 1 Data Abstraction

Item 2 ❘ Polymorphism

The topic of polymorphism is given mystical status in some program-
ming texts and is ignored in others, but it’s a simple, useful concept that
the C++ language supports. According to the standard, a “polymorphic
type” is a class type that has a virtual function. From the design perspec-
tive, a “polymorphic object” is an object with more than one type, and a
“polymorphic base class” is a base class that is designed for use by poly-
morphic objects.

Consider a type of financial option, AmOption, as shown in Figure 1.

An AmOption object has four types: It is simultaneously an AmOption, an
Option, a Deal, and a Priceable. Because a type is a set of operations
(see Data Abstraction [1, 1] and Capability Queries [27, 93]), an AmOption
object can be manipulated through any one of its four interfaces. This
means that an AmOption object can be manipulated by code that is written
to the Deal, Priceable, and Option interfaces, thereby allowing the
implementation of AmOption to leverage and reuse all that code. For a
polymorphic type such as AmOption, the most important things inherited
from its base classes are their interfaces, not their implementations. In

Figure 1 ❘ Polymorphic leveraging in a financial option hierarchy. An American option
has four types.

Option

AmOption EurOption

Deal Priceable

3

fact, it’s not uncommon, and is often desirable, for a base class to consist
of nothing but interface (see Capability Queries [27, 93]).

Of course, there’s a catch. For this leveraging to work, a properly designed
polymorphic class must be substitutable for each of its base classes. In
other words, if generic code written to the Option interface gets an
AmOption object, that object had better behave like an Option!

This is not to say that an AmOption should behave identically to an
Option. (For one thing, it may be the case that many of the Option base
class’s operations are pure virtual functions with no implementation.)
Rather, it’s profitable to think of a polymorphic base class like Option as a
contract. The base class makes certain promises to users of its interface;
these include firm syntactic promises that certain member functions can
be called with certain types of arguments and less easily verifiable seman-
tic promises concerning what will actually occur when a particular mem-
ber function is called. Concrete derived classes like AmOption and
EurOption are subcontractors that implement the contract Option has
established with its clients, as shown in Figure 2.

For example, if Option has a pure virtual price member function that
gives the present value of the Option, both AmOption and EurOption
must implement this function. It obviously won’t implement identical
behavior for these two types of Option, but it should calculate and return
a price, not make a telephone call or print a file.

Figure 2 ❘ A polymorphic contractor and its subcontractors. The Option base class
specifies a contract.

Option

price()

update()

EurOption

price()

AmOption

price()

code
written to
Option
interface

4 ❘ Item 2 Polymorphism

On the other hand, if I were to call the price function of two different
interfaces to the same object, I’d better get the same result. Essentially,
either call should bind to the same function:

AmOption *d = new AmOption;

Option *b = d;

d->price(); // if this calls AmOption::price...

b->price(); // ...so should this!

This makes sense. (It’s surprising how much of advanced object-oriented
programming is basic common sense surrounded by impenetrable syntax.)
If I were to ask you, “What’s the present value of that American option?”
I’d expect to receive the same answer if I’d phrased my question as,
“What’s the present value of that option?”

The same reasoning applies, of course, to an object’s nonvirtual functions:

b->update(); // if this calls Option::update...

d->update(); // ...so should this!

The contract provided by the base class is what allows the “polymorphic”
code written to the base class interface to work with specific options while
promoting healthful ignorance of their existence. In other words, the
polymorphic code may be manipulating AmOption and EurOption
objects, but as far as it’s concerned they’re all just Options.Various concrete
Option types can be added and removed without affecting the generic
code that is aware only of the Option base class. If an AsianOption
shows up at some point, the polymorphic code that knows only about
Options will be able to manipulate it in blissful ignorance of its specific
type, and if it should later disappear, it won’t be missed.

By the same token, concrete option types such as AmOption and EurOption
need to be aware only of the base classes whose contracts they implement
and are independent of changes to the generic code. In principle, the base
class can be ignorant of everything but itself. From a practical perspec-
tive, the design of its interface will take into account the requirements of
its anticipated users, and it should be designed in such a way that derived
classes can easily deduce and implement its contract (see Template
Method [22, 77]). However, a base class should have no specific knowledge
of any of the classes derived from it, because such knowledge inevitably
makes it difficult to add or remove derived classes in the hierarchy.

In object-oriented design, as in life, ignorance is bliss (see also Virtual
Constructors and Prototype [29, 99] and Factory Method [30, 103]).

Item 2 Polymorphism ❘ 5

This page intentionally left blank

Item 3 ❘ Design Patterns

Anyone who is not already familiar with design patterns may, after a brief
survey of the field, come away with the impression that design patterns
are a lot of marketing hype, are just some simple coding techniques, or are
the playthings of computer scientists who really should get out more.
While each of these impressions carries a grain of truth, design patterns
are an essential component of the professional C++ programmer’s
toolkit.

A “design pattern” is a recurring architectural theme that provides a
solution to a common design problem within a particular context and
describes the consequences of this solution. A design pattern is more than
a simple description of a technique; it’s a named capsule of design wis-
dom gleaned from successful existing practice, written in such a way that
it can be easily communicated and reused. Patterns are about program-
mer to programmer communication.

From a practical perspective, design patterns have two important proper-
ties. First, they describe proven, successful design techniques that can be
customized in a context-dependent way to new design situations. Second,
and perhaps more important, mentioning the application of a particular
pattern serves to document not only the technique that is applied but also
the reasons for its application and the effect of having applied it.

This sort of thing is nothing new. Consider an analogy from the field of
algorithms. (Algorithms are not design patterns, and they’re not “code
patterns.” They’re algorithms, and this is an analogy.) Consider the fol-
lowing statement that I might make to a colleague: “I have an unsorted
sequence that I have to search a number of times. Therefore, I’m going to
quick sort it and use binary search to perform each lookup.” The ability to
use the terms “quick sort” and “binary search” is of inestimable value not
only in design but also in communicating that design to an educated col-
league. When I say “quick sort,” my colleague knows that the sequence I’m
sorting is in a random access structure, that it will probably be sorted
within O(nlg2n) time, and that the elements in the sequence may be
compared with a less-than-like operator. When I say “binary search,” my

7

colleague knows (even if I hadn’t earlier mentioned “quick sort”) that the
sequence is sorted, that I will locate the item of interest within O(lg2n)
comparisons, and that an appropriate operation is available to compare
sequence elements. Shared knowledge of, and a standard vocabulary for,
standard algorithms permits not only efficient documentation but also
efficient criticism. For example, if I planned to perform this search and
sort procedure on a singly linked list structure, my colleague would
immediately smirk and point out that I couldn’t use quick sort and prob-
ably wouldn’t want to use binary search.

Until the advent of design patterns, we missed these advantages in docu-
mentation, communication, and efficient smirking with our object-
oriented designs. We were forced into low-level descriptions of our
designs, with all the inefficiency and imprecision that entails. It’s not that
techniques for sophisticated object-oriented design didn’t exist; it’s that
the techniques were not readily available to the entire programming com-
munity under a shared, common terminology. Design patterns address
that problem, and we can now describe object-oriented designs as effi-
ciently and unambiguously as algorithmic designs.

For example, when we see that the Bridge pattern has been applied to a
design, we know that at a simple mechanical level an abstract data type
implementation has been separated into an interface class and an imple-
mentation class. Additionally, we know that the reason this was done was
to separate strongly the interface from the implementation so that
changes to the implementation would not affect users of the interface. We
also know a runtime cost exists for this separation, how the source code
for the abstract data type should be arranged, and many other details. A
pattern name is an efficient, unambiguous handle to a wealth of informa-
tion and experience about a technique, and careful, accurate use of pat-
terns and pattern terminology in design and documentation clarifies
code and designs.

Patterns wonks sometimes describe design patterns as a form of literature
(they really do) that follows a certain formal structure. Several common
variants are in use, but all forms contain four essential parts.

First, a design pattern must have an unambiguous name. For example, the
term “wrapper” is useless for a design pattern, because it is already in
common use and has dozens of meanings. Using a term like “Wrapper” as
a pattern name would lead only to confusion and misunderstanding.

8 ❘ Item 3 Design Patterns

Instead, the different design techniques that formerly went under the
name “wrapper” are now designated by the pattern names “Bridge,”
“Strategy,”“Façade,”“Object Adapter,” and probably several others. Use of
a precise pattern name has a clear advantage over using a less precise
term, in the same way that “binary search” is a more precise and useful
term than “lookup.”

Second, the pattern description must define the problem addressed by the
pattern. This description may be relatively broad or narrow.

Third, the pattern description describes the problem’s solution. Depend-
ing on the statement of the problem, the solution may be rather high level
or relatively low level, but it should still be general enough to customize
according to the various contexts in which the problem may occur.

Fourth, the pattern description describes the consequences of applying
the pattern to the context. How has the context changed for better or
worse after application of the pattern?

Will knowledge of patterns make a bad designer a good designer? Time
for another analogy: Consider one of those painful mathematics courses
you may have been forced to undergo, in which the final examination is to
prove a number of theorems in a certain area of mathematics. How do
you get out of such a course alive? One obvious way is to be a genius.
Starting from first principles, you develop the underpinnings of an entire
branch of mathematics and eventually prove the theorems. A more prac-
tical approach would be to memorize and internalize a large number of
theorems in that area of mathematics and use whatever native mathemat-
ical ability, inspiration, or good luck you have at your disposal to select
the appropriate subsidiary theorems and combine them with some logical
glue to prove the new theorems. This approach is advantageous even for
our fictitious genius, because a proof built upon established theorems is
more efficient to construct and easier to communicate to mere mortals.
Familiarity with subsidiary theorems does not, of course, guarantee that a
poor mathematician will be able to pass the test, but such knowledge will at
least enable that person to understand the proof once it has been produced.

In a similar vein, developing a complex object-oriented design from first
principles is probably going to be tedious, and communication of the even-
tual design difficult. Composition of design patterns to produce an object-
oriented design is similar to use of subsidiary theorems in mathematics to

Item 3 Design Patterns ❘ 9

prove a new theorem. Design patterns are often described as “micro-
architectures” that can be composed with other patterns to produce a new
architecture. Of course, selecting appropriate patterns and composing
them effectively requires design expertise and native ability. However,
even your manager will be able to understand the completed design if he
or she has the requisite knowledge of patterns.

10 ❘ Item 3 Design Patterns

Item 4 ❘ The Standard Template Library

A short description of the standard template library (STL) cannot do its
design justice. What follows is an appetizer to encourage you to study the
STL in depth.

The STL isn’t really a library. It’s an inspired idea and a set of conventions.

The STL consists of three major kinds of components: containers,
algorithms, and iterators. Containers contain and organize elements.
Algorithms perform operations. Iterators are used to access the elements
of a container. This is nothing new, as many traditional libraries have
these components, and many traditional libraries are implemented with
templates. The STL’s inspired idea is that containers and the algorithms
that operate on them need no knowledge of each other. This sleight of
hand is accomplished with iterators.

An iterator is like a pointer. (In fact, pointers are one kind of STL iterator.)
Like a pointer, an iterator can refer to an element of a sequence, can be
dereferenced to get the value of the object to which it refers, and can be
manipulated like a pointer to refer to different elements of a sequence.
STL iterators may be predefined pointers, or they may be user-defined
class types that overload the appropriate operators to have the same syn-
tax of use as a predefined pointer (see Smart Pointers [42, 145]).

An STL container is an abstraction of a data structure, implemented as a
class template. As with different data structures, different containers
organize their elements in different ways to optimize access or manipula-
tion. The STL defines seven (or, if you count string, eight) standard con-
tainers, and several widely accepted nonstandard containers are available.

An STL algorithm is an abstraction of a function, implemented as a func-
tion template (see Generic Algorithms [60, 221]). Most STL algorithms
work with one or more sequences of values, where a sequence is defined
by an ordered pair of iterators. The first iterator refers to the first ele-
ment of the sequence, and the second iterator refers to one past the last
element of the sequence (not to the last element). If the iterators refer to
the same location, they define an empty sequence.

11

Iterators are the mechanism by which containers and algorithms work
together. A container can produce a pair of iterators that indicates a
sequence of its elements (either all its elements or a subrange), and an
algorithm operates on that sequence. In this way, containers and algo-
rithms can work closely together while remaining ignorant of each other.
(The beneficial effect of ignorance is a recurring theme in advanced
C++ programming. See Polymorphism [2, 3], Factory Method [30, 103],
Commands and Hollywood [19, 67], and Generic Algorithms [60, 221].)

In addition to containers, algorithms, and iterators, the STL defines a
number of ancillary capabilities. Algorithms and containers may be cus-
tomized with function pointers and function objects (see STL Function
Objects [20, 71]), and these function objects may be adapted and com-
bined with various function object adapters.

Containers may also be adapted with container adapters that modify the
interface of the container to be that of a stack, queue, or priority queue.

The STL relies heavily on convention. Containers and function objects
must describe themselves through a standard set of nested type names
(see Embedded Type Information [53, 189], Traits [54, 193], and STL Func-
tion Objects [20, 71]). Both container and function object adapters require
that member functions have specific names and contain specific type
information. Algorithms require that iterators passed to them be able to
support certain operations and be able to identify what these operations
are. If you abandon convention when using or extending the STL, aban-
don all hope as well. If you adhere to convention when using the STL,
you’ll have an easy life.

The STL conventions do not specify implementation details, but they
do specify efficiency constraints on the implementation. In addition,
because the STL is a template library, much optimization and tuning can
take place at compile time. Many of the naming and information con-
ventions mentioned previously are there precisely to allow significant
compile-time optimization. Use of the STL generally rivals the efficiency
of hand-coding by an expert, and it beats hand-coding by the average
nonexpert or by any team of programmers hands down. The result is also
generally clearer and more maintainable.

Learn the STL, and use it extensively.

12 ❘ Item 4 The Standard Template Library

Item 5 ❘ References Are Aliases,
Not Pointers

A reference is another name for an existing object. Once a reference is ini-
tialized with an object, either the object name or the reference name may
be used to refer to the object.

int a = 12;

int &ra = a; // ra is another name for a

--ra; // a == 11

a = 10; // ra == 10

int *ip = &ra; // ip points to a

References are often confused with pointers, perhaps because C++ com-
pilers often implement references as pointers, but they are not pointers
and do not behave like pointers.

Three major differences between references and pointers are that there
are no null references, all references require initialization, and a reference
always refers to the object with which it is initialized. In the previous
example, the reference ra will refer to a for its entire lifetime. Most erro-
neous uses of references stem from misunderstanding these differences.

Some compilers may catch an obvious attempt to create a null reference:

Employee &anEmployee = *static_cast<Employee*>(0); // error!

However, the compiler may not detect less obvious attempts to create a
null reference, which will cause undefined behavior at runtime:

Employee *getAnEmployee();

//...

Employee &anEmployee = *getAnEmployee(); // probably bad code

if(&anEmployee == 0) // undefined behavior

13

If getAnEmployee returns a null pointer, then the behavior of this code is
undefined. In this case, it’s better to use a pointer to hold the result of
getAnEmployee.

Employee *employee = getAnEmployee();

if(employee) //...

The requirement that a reference must be initialized implies that the
object to which it refers must be in existence when the reference is initial-
ized. This is important, so I’ll say it again: A reference is an alias for an
object that already exists prior to the initialization of the reference. Once
a reference is initialized to refer to a particular object, it cannot later be
made to refer to a different object; a reference is bound to its initializer for
its whole lifetime. In effect, after initialization a reference disappears and
is simply another name for its initializer thereafter. This aliasing property
is why references are often a good choice for function formal arguments;
in the following swap template function, the formal arguments a and b
become aliases for the actual arguments to the call:

template <typename T>

void swap(T &a, T &b) {

T temp(a);

a = b;

b = temp;

}

//...

int x = 1, y = 2;

swap(x, y); // x == 2, y == 1

In the call to swap above, a aliases x, and b aliases y, for the duration of
the call. Note that the object to which a reference refers needn’t have a
name, so a reference may be used to give a convenient name to an
unnamed object:

int grades[MAX];

//...

swap(grades[i], grades[j]);

After the formal arguments a and b of swap are initialized with the actual
arguments grades[i] and grades[j], respectively, those two nameless
array elements can be manipulated through the aliases a and b. This
property may be used more directly in order to simplify and optimize.

14 ❘ Item 5 References Are Aliases, Not Pointers

Consider the following function that sets a particular element of a two-
dimensional array:

inline void set_2d(float *a, int m, int i, int j) {

a[i*m+j] = a[i*m+j] * a[i*m+i] + a[i*m+j]; // oops!

}

We can replace the line commented “oops!” with a simpler version that
employs a reference and that has the additional advantage of being correct.
(Did you catch the error? I didn’t the first time around.)

inline void set_2d(float *a, int m, int i, int j) {

float &r = a[i*m+j];

r = r * r + r;

}

A reference to a non-const cannot be initialized with a literal or tempo-
rary value.

double &d = 12.3; // error!

swap(std::string("Hello"), std::string(", World")); // errors!

However, a reference to const can:

const double &cd = 12.3; // OK

template <typename T>

T add(const T &a, const T &b) {

return a + b;

}

//...

const std::string &greeting

= add(std::string("Hello"),std::string(", World")); // OK

When a reference to const is initialized with a literal, the reference is set to
refer to a temporary location that is initialized with the literal. Therefore,
cd does not actually refer to the literal 12.3 but to a temporary of type
double that has been initialized with 12.3. The reference greeting
refers to the unnamed temporary string return value of the call to add.
Ordinarily, such temporaries are destroyed (that is, go out of scope and
have their destructors called) at the end of the expression in which they’re
created. However, when such a temporary is used to initialize a reference
to const, the temporary will exist as long as the reference that refers to it.

Item 5 References Are Aliases, Not Pointers ❘ 15

This page intentionally left blank

Item 6 ❘ Array Formal Arguments

Array formal arguments are problematic. The major surprise in store for
the C/C++ novice is that there are no array formal arguments, because an
array is passed as a pointer to its first element.

void average(int ary[12]); // formal arg is int *

//...

int anArray[] = { 1, 2, 3 }; // three-element array

const int anArraySize =

sizeof(anArray)/sizeof(anArray[0]); // == 3

average(anArray); // legal!

This automatic transformation from array to pointer is given the charming
technical term “decay”; an array decays to a pointer to its first element.
The same thing happens to functions, by the way. A function argument
decays to a pointer to a function, but, unlike an array that loses its bound, a
decaying function has the good sense to hold onto its argument and return
types. (Note also the proper compile-time calculation of anArraySize that
can withstand changes both to the set of initializers of the array and to the
array’s element type.)

Because the array bound is ignored in an array formal argument, it’s
usually best to omit it. However, if the function is expecting a pointer to
a sequence of elements (that is, an array) as an argument, rather than a
pointer to a single object, then it’s probably best to say so:

void average(int ary[]); // formal arg is still int *

If, on the other hand, the precise value of the array bound is important,
and you want the function to accept only arrays with a particular number
of elements, you may consider a reference formal argument:

void average(int (&ary)[12]);

17

Now our function will accept only integer arrays of size 12.

average(anArray); // error! anArray is int [3]!

Templates can help to generalize somewhat,

template <int n>

void average(int (&ary)[n]); // let compiler deduce n for us

but a more traditional solution is to pass the size of the array explicitly.

void average_n(int ary[], int size);

Of course, we can combine the two approaches:

template <int n>

inline void average(int (&ary)[n])

{ average_n(ary, n); }

It should be clear from this discussion that one of the major problems
with using arrays as function arguments is that the size of the array must
be encoded explicitly in the type of the formal argument, passed as a sep-
arate argument, or indicated by a “terminator” value within the array
itself (such as the '\0' that is used to indicate the end of a character
array used as a string). Another difficulty is that—no matter how it is
declared—an array is often manipulated through a pointer to its first ele-
ment. If that pointer is passed as the actual argument to a function, our
previous trick of declaring a reference formal argument will not help us.

int *anArray2 = new int[anArraySize];

//...

average(anArray2); // error! can't init int(&)[n] with int *

average_n(anArray, anArraySize); // OK...

For these reasons, one of the standard containers (typically vector or
string) is often a good substitute for most traditional uses of arrays and
should generally be considered first. See also the Array class template in
You Instantiate What You Use [61, 225].

Multidimensional array formal arguments are not essentially more diffi-
cult than simple arrays, but they look more challenging:

void process(int ary[10][20]);

18 ❘ Item 6 Array Formal Arguments

As in the single-dimensional case, the formal argument is not an array
but a pointer to the array’s first element. However, a multidimensional
array is an array of arrays, so the formal argument is a pointer to an array
(see Dealing with Function and Array Declarators [17, 61] and Pointer
Arithmetic [44, 149]).

void process(int (*ary)[20]); // ptr to array of 20 ints

Note that the second (and subsequent) bounds are not decayed, because
otherwise it would not be possible to perform pointer arithmetic with the
formal argument (see Pointer Arithmetic [44, 149]). As noted previously,
it’s often a good idea to let your reader know you expect the actual argu-
ment to be an array:

void process(int ary[][20]); // still a pointer, but clearer

Effective processing of multidimensional array arguments often decays
into an exercise in low-level coding, with the programmer taking the
compiler’s place in performing index calculations:

void process_2d(int *a, int n, int m) { // a is an n by m array

for(int i = 0; i < n; ++i)

for(int j = 0; j < m; ++j)

a[i*m+j] = 0; // calculate index "by hand"!

}

As usual, a template can sometimes help to clean things up.

template <int n, int m>

inline void process(int (&ary)[n][m])

{ process_2d(&ary[0][0], n, m); }

Simply put, array formal arguments are a pain in the neck. Approach
with caution.

Item 6 Array Formal Arguments ❘ 19

This page intentionally left blank

Item 7 ❘ Const Pointers and
Pointers to Const

In casual conversation, C++ programmers will often say “const pointer”
when they really mean “pointer to const.” That’s unfortunate, because
these are two different concepts.

T *pt = new T; // ptr to T

const T *pct = pt; // ptr to const T

T *const cpt = pt; // const ptr to T

Before you start tossing const qualifiers into your pointer declarations,
you first have to decide what it is that you want to be const: the pointer,
the object to which you’re pointing, or both. In the declaration of pct, the
pointer is not const, but the object it points to is considered to be const;
that is, the const qualifier modifies the T base type, not the * pointer
modifier. In the case of cpt, we’re declaring a constant pointer to a non-
constant object; the const qualifier modifies the * pointer modifier, not
the T base type.

To further confuse the syntactic issues surrounding pointers and const,
the order of the declaration specifiers (that is, everything in the pointer
declaration that occurs before the first * modifier) is immaterial. For
instance, the following two declarations declare variables of exactly the
same type:

const T *p1; // ptr to const T

T const *p2; // also ptr to const T

The first form is more traditional, but many C++ experts now recom-
mend the second form. The reasoning is that the second form is less
prone to misunderstanding because the declaration can be read back-
ward, as in “pointer to constant T.” It doesn’t really matter which form we

21

use as long as we’re consistent. Be careful, however, of the common error
of confusing a declaration of a const pointer with that of a pointer to const.

T const *p3; // ptr to const

T *const p4 = pt; // const ptr to non-const

It’s possible, of course, to declare a const pointer to a const.

const T *const cpct1 = pt; // everything is const

T const *const cpct2 = cpct1; // same type

Note that it’s often simpler to use a reference in preference to a const
pointer:

const T &rct = *pt; // rather than const T *const

T &rt = *pt; // rather than T *const

Notice in some of the previous examples that we were able to convert a
pointer to non-const into a pointer to const. For example, we were able to
initialize pct (of type const T *) with the value of pt (of type T *). The
reason this is legal is that, speaking nontechnically, nothing bad can
happen. Consider what happens when the address of a non-const object
is copied to a pointer to const, as shown in Figure 3.

The pointer to const pct is pointing to a non-const T, but that won’t
cause any harm. In fact, it’s common to refer to non-constant objects with
pointers (or references) to const:

void aFunc(const T *arg1, const T &arg2);

//...

T *a = new T;

T b;

aFunc(a, b);

Figure 3 ❘ A pointer to const may refer to a non-const object.

const *pct

T atT *pt

22 ❘ Item 7 Const Pointers and Pointers to Const

When we call aFunc, we initialize arg1 with a and arg2 with b. We are
not claiming thereby that a points to a const object or that b is a const; we
are claiming that they will be treated as if they were const within aFunc,
whether or not they actually are. Very useful.

The reverse conversion, from pointer to const to pointer to non-const, is
not legal because it would be dangerous, as illustrated in Figure 4.

In this case, pct may actually be pointing to an object that was defined to
be const. If we could convert a pointer to const to a pointer to non-const,
then pt could be used to change the value of acT.

const T acT;

pct = &acT;

pt = pct; // error, fortunately

*pt = aT; // attempt to change const object!

The C++ standard tells us that such an assignment will have undefined
results; we don’t know precisely what will happen, but whatever it is won’t
be good. Of course, we can use a cast to perform the conversion explicitly.

pt = const_cast<T *>(pct); // not an error, but inadvisable

*pt = aT; // attempt to change const object!

However, the behavior of the assignment is still undefined if pt refers to
an object that, like acT, was declared to be const (see New Cast Operators
[9, 29]).

Figure 4 ❘ A pointer to non-const may not refer to a const object.

T *pt

const T *pct const T acT

Item 7 Const Pointers and Pointers to Const ❘ 23

This page intentionally left blank

Item 8 ❘ Pointers to Pointers

It’s legal to declare a pointer to a pointer. This is what the C++ standard
calls a “multilevel” pointer.

int *pi; // a ptr

int **ppi; // a two-level multilevel ptr

int ***pppi; // a three-level multilevel ptr

Although it’s rare to encounter multilevel pointers with more than two
levels, we do see pointers to pointers in two common situations. The first
is when we declare an array of pointers.

Shape *picture[MAX]; // array of ptr to Shape

Because an array name decays into a pointer to its first element (see Array
Formal Arguments [6, 17]), the name of an array of pointers is also a
pointer to a pointer.

Shape **pic1 = picture;

We most often see this usage in the implementation of a class that man-
ages a buffer of pointers:

template <typename T>

class PtrVector {

public:

explicit PtrVector(size_t capacity)

: buf_(new T *[capacity]), cap_(capacity), size_(0) {}

//...

private:

T **buf_; // ptr to array of ptr to T

size_t cap_; // capacity

size_t size_; // size

};

//...

PtrVector<Shape> pic2(MAX);

25

As the implementation of PtrVector implies, pointers to pointers can be
complex and are best kept hidden.

The second common use of multilevel pointers occurs when a function
needs to change the value of a pointer that is passed to it. Consider the
following function that moves a pointer to refer to the next occurrence of
a character in a string:

void scanTo(const char **p, char c) {

while(**p && **p != c)

++*p;

}

The first argument to scanTo is a pointer to the pointer whose value we
want to change. That means we have to pass the address of the pointer:

char s[] = "Hello, World!";

const char *cp = s;

scanTo(&cp, ','); // move cp to first comma

This usage is reasonable in C, but in C++ it is more conventional, simpler,
and safer to use a reference to a pointer as a function argument rather
than a pointer to a pointer.

void scanTo(const char *&p, char c) {

while(*p && *p != c)

++p;

}

//...

char s[] = "Hello, World!";

const char *cp = s;

scanTo(cp, ',');

In C++, using a reference to pointer function argument should nearly
always be preferred to a pointer to pointer argument.

A common misconception is that conversions that apply to pointers also
apply to pointers to pointers. This is not the case. For instance, we know
that a pointer to a derived class can be converted to a pointer to its public
base class:

Circle *c = new Circle;

Shape *s = c; // fine...

26 ❘ Item 8 Pointers to Pointers

Because a Circle is-a Shape, it follows that a pointer to a Circle is also
a pointer to a Shape. However, a pointer to a pointer to a Circle is not a
pointer to a pointer to a Shape:

Circle **cc = &c;

Shape **ss = cc; // error!

The same confusion often occurs when const is involved. We know that
it’s legal to convert a pointer to non-const to a pointer to const (see Const
Pointers and Pointers to Const [7, 21]), but we may not convert a pointer to
pointer to non-const to a pointer to pointer to const:

char *s1 = 0;

const char *s2 = s1; // OK...

char *a[MAX]; // aka char **

const char **ps = a; // error!

Item 8 Pointers to Pointers ❘ 27

This page intentionally left blank

Item 9 ❘ New Cast Operators

There’s something sneaky and underhanded about old-style casts. Their
syntax is such that they can often pass unnoticed in a section of code, but
they can do terrible damage, like an unexpected sucker punch from a
bully. Let’s clarify what we mean by “old-style” cast. Obviously, the origi-
nal C syntax consisting of a parenthesized type applied to an expression is
an old-style cast:

char *hopeItWorks = (char *)0x00ff0000; // old-style cast

C++ introduced another way of saying the same thing with the function-
style cast syntax:

typedef char *PChar;

hopeItWorks =

PChar(0x00ff0000); // function-style/old-style cast

A function-style cast may look more civilized than its dread forebear, but
it’s just as nasty; avoid both of them like the plague.

Honest programmers use the new cast operators because they allow you
to say more precisely what you mean, and mean more accurately what
you say. There are four of them, and each has a specific purpose.

The const_cast operator allows you to add or remove const and
volatile type qualifiers in an expression’s type:

const Person *getEmployee() { ... }

//...

Person *anEmployee = const_cast<Person *>(getEmployee());

In this code, we’ve used const_cast to strip a const type qualifier from
the return type of getEmployee. We could have used an old-style cast to
achieve the same result,

anEmployee = (Person *)getEmployee();

29

but the const_cast is superior for a couple of reasons. First, it’s obvious
and hideous. It sticks out of the code like a sore thumb, and that’s a good
thing, because casts in any form are dangerous. They should be painful to
write, because you should use them only if you have to use them. They
should be easy to find, because casts are the “usual suspects” one exam-
ines first whenever a bug appears. Second, a const_cast is less powerful
than an old-style cast because it will affect only type qualifiers. This
restriction is a good thing as well, because it allows us to say more pre-
cisely what our intent is. Using an old-style cast tells the compiler to shut
up because you intend that the return type of getEmployee be converted
to Person *. Use of a const_cast tells the compiler to shut up because
you intend to strip a const from the return type of getEmployee. There
is not a big difference in these two statements (although they’re both pretty
disrespectful, really) unless some maintenance occurs to the getEmployee
function:

const Employee *getEmployee(); // big change!

The gag rule enforced by the old-style cast is still in effect; the improper
conversion of const Employee * to Person * will not be flagged by the
compiler, but the compiler will complain about the const_cast, because
that drastic a conversion is beyond its capabilities. In short, the
const_cast is preferred to the old-style cast because it’s more hideous,
harder to use, and less powerful.

The static_cast operator is used for casts that are relatively portable
across platforms. Most commonly, it is used to cast “down” an inheritance
hierarchy from a base class pointer or reference toward a derived class
pointer or reference (see also Capability Queries [27, 93]):

Shape *sp = new Circle;

Circle *cp = static_cast<Circle *>(sp); // downcast

In this case, the static_cast will result in correct code, because sp actu-
ally does refer to a Circle object. However, if sp had pointed instead to
some other type of Shape, we would have likely gotten a runtime error of
some sort when we used cp. To reiterate, these new cast operators are
safer than old-style casts, but they’re not necessarily safe.

Note that a static_cast may not change type qualifiers the way a
const_cast can. This implies that it is sometimes necessary to use

30 ❘ Item 9 New Cast Operators

a sequence of two new cast operators to achieve what a single old-style
cast could do:

const Shape *getNextShape() { ... }

//...

Circle *cp =

static_cast<Circle *>(const_cast<Shape *>(getNextShape()));

The standard doesn’t guarantee much about the behavior of
reinterpret_cast, but it generally does just what its name says; it
looks at the bits of an object and lets you pretend they represent some-
thing else entirely:

hopeItWorks = // pretend int is pointer

reinterpret_cast<char *>(0x00ff0000);

int *hopeless = // pretend char * is int *

reinterpret_cast<int *>(hopeItWorks);

This sort of thing is occasionally necessary in low-level code, but it’s
not likely to be portable. Proceed with caution. Note the difference
between reinterpret_cast and static_cast when down casting
from a pointer to a base class to a pointer to a derived class. A
reinterpret_cast will typically just pretend the base class pointer is a
derived class pointer without changing its value whereas a static_cast
(and an old style cast, for that matter) will perform the correct address
manipulation (see Meaning of Pointer Comparison [28, 97]).

Speaking of casting within a hierarchy brings us to dynamic_cast. A
dynamic_cast is used typically to perform a safe down cast from a
pointer to a base to a derived class (but see Capability Queries [27, 93]).
The difference from static_cast is that a dynamic_cast used as a
down cast may be performed only on a polymorphic type (that is, the
type of the expression being cast has to be a pointer to class type with
a virtual function), and the cast actually performs a runtime check to
see that the cast is correct. This safety comes at a cost, though; a
static_cast typically has no or minimal runtime cost whereas using
a dynamic_cast implies significant runtime overhead.

const Circle *cp =

dynamic_cast<const Circle *>(getNextShape());

if(cp) { ... }

Item 9 New Cast Operators ❘ 31

If getNextShape returns a pointer to a Circle (or something publicly
derived from Circle, that is, something that is-a Circle; see Polymorphism
[2, 3]), the cast will succeed and cp will point to a Circle. Otherwise cp
will be null. Note that we can combine the declaration and test in the
same expression:

if(const Circle *cp

= dynamic_cast<const Circle *>(getNextShape())) { ... }

This is advantageous because it restricts the scope of the variable cp to the
if-statement, so cp will just go out of scope when we no longer need it.

A less common use of dynamic_cast is to perform a down cast to a refer-
ence type:

const Circle &rc = dynamic_cast<const Circle &>(*getNextShape());

The operation is similar to that of a dynamic_cast to a pointer type, but
if the cast fails, the operator throws a std::bad_cast exception rather
than simply returning a null pointer. (Remember, there are no null refer-
ences; see References Are Aliases, Not Pointers [5, 13].) Idiomatically, a
dynamic_cast to a pointer is asking a question (“Is this Shape pointer
actually pointing to a Circle? If not, I can deal with it.”), whereas a
dynamic_cast to a reference is stating an invariant (“This Shape is sup-
posed to be a Circle. If it’s not, something is seriously wrong!”).

As with the other new cast operators, use of dynamic_cast is occasionally
necessary, but it is often overused because of its reputation for being a
“safe” cast. See Factory Method [30, 103] for an example of such overuse.

32 ❘ Item 9 New Cast Operators

Item 10 ❘ Meaning of a Const
Member Function

Technically, const member functions are trivial. Socially, they can be
complex.

The type of the this pointer in a non-const member function of a class X
is X*const. That is, it’s a constant pointer to a non-constant X (see Const
Pointers and Pointers to Const [7, 21]). Because the object to which this
refers is not const, it can be modified. The type of this in a const mem-
ber function of a class X is constX*const. That is, it’s a constant pointer
to a constant X. Because the object to which this refers is const, it cannot
be modified. That’s the difference between const and non-const member
functions.

This is why it’s possible to change the logical state of an object with a
const member function even if the physical state of the object does not
change. Consider the following somewhat uninspired implementation
of a class X that uses a pointer to an allocated buffer to hold some portion
of its state:

class X {

public:

X() : buffer_(0), isComputed_(false) {}

//...

void setBuffer() {

int *tmp = new int[MAX];

delete [] buffer_;

buffer_ = tmp;

}

void modifyBuffer(int index, int value) const // immoral!

{ buffer_[index] = value; }

int getValue() const {

if(!isComputed_) {

computedValue_ = expensiveOperation(); // error!

33

isComputed_ = true; // error!

}

return computedValue_;

}

private:

static int expensiveOperation();

int *buffer_;

bool isComputed_;

int computedValue_;

};

The setBuffer member function must be non-const because it’s modi-
fying a data member of its X object. However, modifyBuffer can legally
be const because it’s not changing the X object; it’s changing only some
data to which the buffer_ member of X refers.

That’s legal, but it’s not moral. Like a shyster lawyer who follows the letter
of the law while violating its intent, a C++ programmer who writes a
const member function that changes the logical state of its object will be
judged guilty by his or her peers, if not by the compiler. It’s just wrong.

Conversely, sometimes a member function that really should be declared
to be const must modify its object. This is a common situation where a
value is computed by “lazy evaluation.” That is, the value is not computed
until the first request for it in order to speed things up in the event that
the request isn’t made at all. The function X::getValue is attempting to
perform a lazy evaluation of an expensive computation, but, because it is
declared to be a const member function, it is not allowed to set the values
of the isComputed_ and computedValue_ data members of its X object.
There is a temptation in cases like this to commit the crime of casting in
order to promote the greater good of being able to declare the member
function to be const:

int getValue() const {

if(!isComputed_) {

X *const aThis = const_cast<X *const>(this); // bad idea!

aThis->computedValue_ = expensiveOperation();

aThis->isComputed_ = true;

}

return computedValue_;

}

34 ❘ Item 10 Meaning of a Const Member Function

Resist the temptation. The proper way to handle this situation is to
declare the relevant data members to be mutable:

class X {

public:

//...

int getValue() const {

if(!isComputed_) {

computedValue_ = expensiveOperation(); // fine...

isComputed_ = true; // also fine...

}

return computedValue_;

}

private:

//...

mutable bool isComputed_; // can now be modified

mutable int computedValue_; // can now be modified

};

Non-static data members of a class may be declared to be mutable, which
will allow their values to be modified by const member functions of the
class (as well as by non-const member functions). This in turn allows a
“logically const” member function to be declared to be const even though
its implementation requires modification of its object.

The effect of const on the type of a member function’s this pointer also
explains how function overload resolution can distinguish between const
and non-const versions of a member function. Consider the following
omnipresent example of an overloaded index operator:

class X {

public:

//...

int &operator [](int index);

const int &operator [](int index) const;

//...

};

Item 10 Meaning of a Const Member Function ❘ 35

Recall that the left argument of a binary overloaded member operator is
passed as the this pointer. Therefore, in indexing an X object, the address
of the X object is passed as the this pointer:

int i = 12;

X a;

a[7] = i; // this is X *const because a is non-const

const X b;

i = b[i]; // this is const X *const because b is const

Overload resolution will match the address of a const object with a this
pointer that points to a const. As another example, consider the following
non-member binary operator with two const arguments:

X operator +(const X &, const X &);

If we decide to declare a member analog to this overloaded operator, we
should declare it to be a const member function in order to preserve the
constness of the left argument:

class X {

public:

//...

X operator +(const X &rightArg); // left arg is non-const!

X operator +(const X &rightArg) const; // left arg is const

//...

};

Like many areas of social life, proper programming with const in C++ is
technically simple but morally challenging.

36 ❘ Item 10 Meaning of a Const Member Function

Item 11 ❘ The Compiler Puts
Stuff in Classes

C programmers are used to knowing everything there is to know about
the internal structure and layout of their structs, and they have a habit of
writing code that depends on a particular layout. Java programmers are
used to programming in ignorance of the structural layout of their
objects and sometimes assume their days of ignorance are over when they
start programming in C++. In fact, safe and portable coding practices in
C++ do require a certain level of healthful agnosticism about the structure
and layout of class objects.

With a class, it’s not always “what you see is what you get.” For example,
most C++ programmers know that if a class declares one or more virtual
functions, then the compiler will insert in each object of that class a
pointer to a virtual function table. (Actually, we are guaranteed no such
thing by the standard, but that’s the way all existing C++ compilers
implement virtual functions.) However, C++ programmers on that dan-
gerous verge between competence and expertise often assume that the
location of the virtual function table pointer is the same from platform to
platform and write code based on that assumption—a deadly error. Some
compilers will place the pointer at the start of the object, some will place
it at the end of the object, and, if multiple inheritance is involved, several
virtual function table pointers may be scattered throughout an object.
Never ass|u|me.

That’s not the end of it, either. If you use virtual inheritance, your objects
may keep track of the locations of their virtual base subobjects with
embedded pointers, embedded offsets, or nonembedded information.
You might end up with a virtual function table pointer even if your class
has no virtual functions! Did I mention that the compiler is also allowed
to rearrange your data members in limited ways, no matter the order in
which they were declared? Is there no end to this madness?

37

There is. If it’s important to have a class type that is guaranteed to be like a
C struct, you can define a POD (standardese for “plain old data”). Certainly,
built-in types such as int, double, and the like are PODs, but a C struct
or union-like declaration is also a POD.

struct S { // a POD-struct

int a;

double b;

};

Such PODs can be as safely manipulated as the corresponding C con-
structs (how safe that is is as questionable in C++ as it is in C). However, if
you plan to get low level with your POD, it’s important that it remain a
POD under maintenance, or all bets are off:

struct S { // no longer a POD-struct!

int a;

double b;

private:

std::string c; // some maintenance

};

If you’re not willing to deal only with PODs, what does all this meddling
by the compiler imply about how you should manipulate class objects? It
implies that you should manipulate class objects at a high level rather
than as collections of bits. A higher-level operation will do “the same
thing” from platform to platform, but it may accomplish it differently.

For example, if you want to copy a class object, never use a block copy
such as the standard memcpy function or the hand-coded equivalent,
because that’s for copying storage, not objects (Placement New [35, 119]
discusses this difference). Rather, you should use the object’s own initial-
ization or assignment operations. An object’s constructor is where the
compiler sets up the hidden mechanism that implements the object’s vir-
tual functions, and the like. Simply blasting a bunch of bits into uninitial-
ized storage may not do the right thing. Similarly, a copy of one object to
another must take care not to overwrite these internal class mechanisms.
For example, assignment never changes the value of an object’s virtual
function table pointers; they’re set by the constructor and never changed
for the life of the object. A bit blast may well destroy that delicate internal
structure. (See also Copy Operations [13, 45].)

38 ❘ Item 11 The Compiler Puts Stuff in Classes

Another common problem is the assumption that a particular member of
a class is resident at a given offset within an object. In particular, it’s not
uncommon for overly clever code to assume either that the virtual function
table pointer is at offset zero (that is, it’s the first thing in the class) or that
the first declared data member is at offset zero. Neither of these assump-
tions is correct more than about half the time, and both are (of course)
never correct simultaneously.

struct T { // not a POD

int a_; // offset of a_ unknown

virtual void f(); // offset of vptr unknown

};

I’m not going to continue in this vein, because such a list of no-no’s
would be long, tedious, and possibly tasteless. But the next time you find
yourself making low-level assumptions about the internal structure of
your classes, pause, reflect, and get your mind out of the gutter!

Item 11 The Compiler Puts Stuff in Classes ❘ 39

This page intentionally left blank

Item 12 ❘ Assignment and Initialization
Are Different

Initialization and assignment are different operations, with different uses
and different implementations.

Let’s get it absolutely straight. Assignment occurs when you assign. All the
other copying you run into is initialization, including initialization in a
declaration, function return, argument passing, and catching exceptions.

Assignment and initialization are essentially different operations not only
because they’re used in different contexts but also because they do differ-
ent things. This difference in operation is not so obvious in the built-in
types such as int or double, because, in that case, both assignment and
initialization consist simply of copying some bits (but see also References
Are Aliases, Not Pointers [5, 13]):

int a = 12; // initialization, copy 0X000C to a

a = 12; // assignment, copy 0X000C to a

However, things can be quite different for user-defined types. Consider
the following simple, nonstandard string class:

class String {

public:

String(const char *init); // intentionally not explicit!

~String();

String(const String &that);

String &operator =(const String &that);

String &operator =(const char *str);

void swap(String &that);

friend const String // concatenate

operator +(const String &, const String &);

friend bool operator <(const String &, const String &);

//...

private:

String(const char *, const char *); // computational

41

char *s_;

};

Initializing a String object with a character string is straightforward. We
allocate a buffer big enough to hold a copy of the character string and
then copy.

String::String(const char *init) {

if(!init) init = "";

s_ = new char[strlen(init)+1];

strcpy(s_, init);

}

The destructor does what it does:

String::~String() { delete [] s_; }

Assignment is a somewhat more difficult job than construction:

String &String::operator =(const char *str) {

if(!str) str = "";

char *tmp = strcpy(new char[strlen(str)+1], str);

delete [] s_;

s_ = tmp;

return *this;

}

An assignment is somewhat like destruction followed by a construction.
For a complex user-defined type, the target (left side, or this) must be
cleaned up before it is reinitialized with the source (right side, or str). In
the case of our String type, the String’s existing character buffer must
be freed before a new character buffer is attached. See Exception Safe
Functions [39, 135] for an explanation of the ordering of the statements.
(By the way, just about every week somebody reinvents the bright idea of
implementing assignment with an explicit destructor call and using
placement new to call a constructor. It doesn’t always work, and it’s not
exception safe. Don’t do it.)

Because a proper assignment operation cleans up its left argument, one
should never perform a user-defined assignment on uninitialized storage:

String *names = static_cast<String *>(::operator new(BUFSIZ));

names[0] = "Sakamoto"; // oops! delete [] uninitialized pointer!

42 ❘ Item 12 Assignment and Initialization Are Different

In this case, names refers to uninitialized storage because we called
operator new directly, avoiding implicit initialization by String’s
default constructor; names refers to a hunk of memory filled with random
bits. When the String assignment operator is called in the second line, it
will attempt to perform an array delete on an uninitialized pointer. (See
Placement New [35, 119] for a safe way to perform an operation similar to
such an assignment.)

Because a constructor has less work to do than an assignment operator
(in that a constructor can assume it’s working with uninitialized storage),
an implementation will sometimes employ what’s known as a “computa-
tional constructor” for efficiency:

const String operator +(const String &a, const String &b)

{ return String(a.s_, b.s_); }

The two-argument computational constructor is not intended to be part
of the interface of the String class, so it’s declared to be private.

String::String(const char *a, const char *b) {

s_ = new char[strlen(a)+strlen(b)+1];

strcat(strcpy(s_, a), b);

}

Item 12 Assignment and Initialization Are Different ❘ 43

This page intentionally left blank

Item 13 ❘ Copy Operations

Copy construction and copy assignment are different operations. Techni-
cally, they have nothing to do with each other, but socially they hang out
together and must be compatible.

class Impl;

class Handle {

public:

//...

Handle(const Handle &); // copy constructor

Handle &operator =(const Handle &); // copy assignment

void swap(Handle &);

//...

private:

Impl *impl_; // pointer to implementation of Handle

};

Copying is such a pervasive operation that it’s even more important than
usual to follow convention. These operations are always declared as a pair,
with the signatures above (but see auto_ptr Is Unusual [43, 147] and Pre-
venting Copying [32, 111]). That is, for a class X, the copy constructor
should be declared X(const X &), and the copy assignment operator
should be declared X &operator =(const X &). It’s common and often a
good idea to define a member swap function if a member implemen-
tation of swap has a performance or exception safety advantage over a
traditional non-member swap. An implementation of a typical non-
member swap is straightforward:

template <typename T>

void swap(T &a, T &b) {

T temp(a); // T's copy ctor

a = b; // T's copy assignment

b = temp; // T's copy assignment

}

45

This swap (identical to the standard library swap) is defined in terms of
the type T’s copy operations, and it works well if T’s implementation is
small and simple but may be expensive otherwise. We can do better for a
class such as Handle by just swapping the pointer to its implementation.

inline void Handle::swap(Handle &that)

{ std::swap(impl_, that.impl_); }

Remember the old comedy routine in which we’re told how to get a mil-
lion dollars and never pay any taxes on it? First, you get a million dol-
lars.… In a similar vein, we can show how to write an exception safe copy
assignment operation. First, you get an exception safe copy constructor
and an exception safe swap operation. The rest is easy:

Handle &Handle::operator =(const Handle &that) {

Handle temp(that); // exception safe copy construction

swap(temp); // exception safe swap

return *this; // we assume temp's destruction won't throw

}

This technique works particularly well for “handle” classes, that is, classes
that consist mostly or entirely of a pointer to their implementations. As
we saw in an earlier example in this item, writing exception safe swaps for
such classes is both trivial and efficient.

The subtle point of this implementation of copy assignment is that the
behavior of copy construction must be compatible with that of copy
assignment; they’re different operations, but there is a pervasive,
idiomatic assumption that they will produce indistinguishable results.
That is, whether one writes

Handle a = ...

Handle b;

b = a; // assign a to b

or

Handle a = ...

Handle b(a); // initialize b with a

the resulting value and future behavior of b should be indistinguishable
whether it received that value through an assignment or an initialization.

46 ❘ Item 13 Copy Operations

This compatibility is particularly important when using the standard
containers, because their implementations will often substitute copy con-
struction for copy assignment, with the expectation that either operation
will produce identical results (see Placement New [35, 119]).

A perhaps more common implementation of copy assignment has the
following structure:

Handle &Handle::operator =(const Handle &that) {

if(this != &that) {

// do assignment...

}

return *this;

}

It’s often necessary for correctness, and occasionally more efficient, to
perform a check for assignment to self, that is, ensure the left side (this)
and right side (that) of the assignment have different addresses.

At one time or another in their careers, most C++ programmers toy with
the idea of implementing virtual copy assignment. It’s legal but subtly
complex, so don’t do it. Clone instead (see Virtual Constructors and Proto-
type [29, 99]).

Item 13 Copy Operations ❘ 47

This page intentionally left blank

Item 14 ❘ Function Pointers

It’s possible to declare a pointer to a function of a particular type.

void (*fp)(int); // ptr to function

Note the required use of parentheses to indicate that fp is a pointer to a
function that returns void, not a function that returns void * (see Deal-
ing with Function and Array Declarators [17, 61]). Like a pointer to data, a
pointer to function may be null, or it may refer to a function of the appro-
priate type.

extern int f(int);

extern void g(long);

extern void h(int);

//...

fp = f; // error! &f is of type int(*)(int), not void(*)(int)

fp = g; // error! &g is of type void(*)(long), not void(*)(int)

fp = 0; // OK, set to null

fp = h; // OK, point to h

fp = &h; // OK, take address explicitly

Note that it is not necessary to take the address of a function explicitly
when initializing or assigning its address to a pointer to function; the
compiler knows implicitly to take the function’s address, so using the &
operator is optional in this case and is usually omitted.

In a similar fashion, it is not necessary to dereference a function pointer
to call the function to which it refers, because the compiler will derefer-
ence it for you:

(*fp)(12); // explicit dereference

fp(12); // implicit dereference, same result

Note that no “generic” pointer exists that can point to any type of func-
tion the way a void * pointer can refer to any kind of data. Also note that
the address of a non-static member function is not a pointer, so we can’t

49

point to a non-static member function with a function pointer (see Point-
ers to Member Functions Are Not Pointers [16, 57]).

One traditional use of function pointers is to implement callbacks (but
see Function Objects [18, 63] and Commands and Hollywood [19, 67] for
generally more effective callback techniques). A “callback” is a potential
action that is set up in an initialization stage to be invoked in response to
a future event. For example, if one were to catch on fire, it’s best if one has
planned out in advance how one should react:

extern void stopDropRoll();

inline void jumpIn() { ... }

//...

void (*fireAction)() = 0;

//...

if(!fatalist) { // if you care that you're on fire...

// then set an appropriate action, just in the event!

if(nearWater)

fireAction = jumpIn;

else

fireAction = stopDropRoll;

}

Once we’ve determined our course of action, a different part of our code
can focus on if and when to execute the action, without being concerned
with what the action is:

if(ftemp >= 451) { // if there's a fire...

if(fireAction) // ...and an action to execute...

fireAction(); // ...execute it!

}

Note that it is legal to point to an inline function. However, calling an
inline function through a function pointer will not result in an inline
function call, because the compiler will not be able, in general, to deter-
mine at compile time precisely what function will be called. In our previ-
ous example, fireAction may point to either of two functions (or
neither), so at the point of call the compiler has no choice but to generate
code for an indirect, non-inline function call.

50 ❘ Item 14 Function Pointers

It’s also legal to take the address of an overloaded function:

void jumpIn();

void jumpIn(bool canSwim);

//...

fireAction = jumpIn;

The type of the pointer is used to select among the various candidate
functions. In this case, fireAction has type void(*)(), so the first
jumpIn is selected.

Function pointers are used as callbacks in several places in the standard
library, most notably by the standard set_new_handler function that
sets a callback to be invoked if the global operatornew function is unable
to fulfill a memory request.

void begForgiveness() {

logError("Sorry!");

throw std::bad_alloc();

}

//...

std::new_handler oldHandler =

std::set_new_handler(begForgiveness);

The standard typename new_handler is a typedef:

typedef void (*new_handler)();

The callback, therefore, must be a function that takes no argument and
returns void. The set_new_handler function sets the callback to its
argument and returns the previous callback; no separate functions exist
for getting and setting. Simply getting the current callback requires some
idiomatic gyrations:

std::new_handler current

= std::set_new_handler(0); // get...

std::set_new_handler(current); // ...and restore!

The standard set_terminate and set_unexpected functions also use
this combined get/set callback idiom.

Item 14 Function Pointers ❘ 51

This page intentionally left blank

Item 15 ❘ Pointers to Class Members
Are Not Pointers

It’s unfortunate that pointers to class members have the term “pointer” in
their descriptions, because they don’t contain addresses and don’t behave
like pointers.

The syntax for declaring a pointer to member is really not too horrible (if
you’re already resigned to the declarator syntax for regular pointers):

int *ip; // pointer to an int

int C::*pimC; // pointer to an int member of C

All you have to do is use classname::* rather than a plain * to indicate
you’re referring to a member of classname. Otherwise, the syntax is the
same as for a regular pointer declarator.

void * * *const* weird1;

void *A::*B::*const* weird2;

The name weird1 has the type pointer to const pointer to pointer to
pointer to void. The name weird2 has the type pointer to const pointer
to a member of B to a pointer to a member of A, which is a pointer to
void. (This is just an example, and you wouldn’t normally expect to see a
declaration this complex or this silly.)

A regular pointer contains an address. If you dereference a pointer, you
get the object at that address:

int a = 12;

ip = &a;

*ip = 0;

a = *ip;

A pointer to member, unlike a regular pointer, does not refer to a specific
memory location. Rather, it refers to a particular member of a class but
not to a particular member of a particular object. Mechanically, it’s usually

53

clearest to consider a pointer to data member to be an offset. This is not
necessarily the case, because the C++ standard says nothing about how a
pointer to data member should be implemented; it says only what its syn-
tax and behavior must be. However, most compilers implement pointers
to data members as integers that contain the offset of the member
referred to, plus one. (The offset is incremented so that the value 0 can
represent a null pointer to data member.) The offset tells you how many
bytes from the start of an object a particular member is located.

class C {

public:

//...

int a_;

};

int C::*pimC; // pointer to an int member of C

C aC;

C *pC = &aC;

pimC = &C::a_;

aC.*pimC = 0;

int b = pC->*pimC;

When we set the value of pimC to &C::a_, we’re effectively setting pimC
with the offset of a_ within C. Let’s be clear: Unless a_ is a static member,
using & in the expression &C::a_ does not give us an address; it gives us
an offset. Note that this offset applies to any object of type C; that is, if the
member a_ can be found 12 bytes from the start of one C object, it will be
found 12 bytes from the start of any other C object.

Given an offset of a member within a class, we need the address of an
object of that class in order to get to the data member at that offset. That’s
where the unusual-looking .* and ->* operators enter. When we write
pC->*pimC, we are requesting that the address in pC be augmented by the
offset in pimC in order to access the appropriate data member in the C
object referred to by pC. When we write aC.*pimC, we are requesting that
the address of aC be augmented by the offset in pimC in order to access the
appropriate data member in the C object referred to by pC.

Pointers to data members are not as commonly used as pointers to member
functions, but they are handy for illustrating the concept of contravariance.

54 ❘ Item 15 Pointers to Class Members Are Not Pointers

There is a predefined conversion from a pointer to a derived class to a
pointer to any of its public base classes. We often say that there is an
is-a relationship from the derived class to its public base classes, and this
relationship often arises naturally from an analysis of the problem
domain (see Polymorphism [2, 3]). Therefore, we can state (for example)
that a Circle is-a Shape through public inheritance, and C++ backs us
up by providing an implicit conversion from Circle * to Shape *. No
implicit conversion exists from a Shape * to a Circle * because such a
conversion would not make sense; many different types of Shape may
exist, and not all of them are Circles. (It also just sounds silly to say, “A
Shape is a Circle.”)

In the case of pointers to class members, the opposite situation holds:
There is an implicit conversion from a pointer to a member of a base class
to a pointer to a member of a publicly derived class, but there is no con-
version from a pointer to a member of a derived class to a pointer to a
member of any of its bases. This concept of contravariance seems coun-
terintuitive until we remember that a pointer to data member is not a
pointer to an object; it’s an offset into an object.

class Shape {

//...

Point center_;

//...

};

class Circle : public Shape {

//...

double radius_;

//...

};

A Circle is-a Shape, so a Circle object contains a Shape subobject.
Therefore, any offset within Shape is also a valid offset within Circle.

Point Circle::*loc = &Shape::center_; // OK, base to derived

However, a Shape is not (necessarily) a Circle, so the offset of a member
of Circle is not (necessarily) a valid offset within a Shape.

double Shape::*extent =

&Circle::radius_; // error! derived to base

Item 15 Pointers to Class Members Are Not Pointers ❘ 55

It makes sense to say that a Circle contains all the data members of its
Shape base class (that is, it inherits those members from Shape), and
C++ backs us up with an implicit conversion from a pointer to member
of a Shape to a pointer to member of a Circle. It doesn’t make sense to
say that a Shape contains all the data members of a Circle (Shape doesn’t
inherit anything fromCircle), and C++ reminds us of that by disallowing
the conversion from pointer to member of Circle to pointer to member
of Shape.

56 ❘ Item 15 Pointers to Class Members Are Not Pointers

Item 16 ❘ Pointers to Member Functions
Are Not Pointers

When you take the address of a non-static member function, you don’t
get an address; you get a pointer to member function.

class Shape {

public:

//...

void moveTo(Point newLocation);

bool validate() const;

virtual bool draw() const = 0;

//...

};

class Circle : public Shape {

//...

bool draw() const;

//...

};

//...

void (Shape::*mf1)(Point) = &Shape::moveTo; // not a pointer

The declaration syntax of a pointer to member function is really no more
difficult than that of a pointer to a regular function (which, admittedly,
is bad enough as it is; see Dealing with Function and Array Declarators
[17, 61]). As with pointers to data members, all that’s necessary is to use
classname::* rather than * to indicate that the function referred to is a
member of classname. Unlike a regular pointer to function, though, a
pointer to member function can refer to a const member function:

bool (Shape::*mf2)() const = &Shape::validate;

As with a pointer to data member, we need an object or pointer to an
object in order to dereference a pointer to member function. In the case
of a pointer to data member, we need to add the object’s address to the

57

member’s offset (contained in the pointer to data member) in order to
access the member. In the case of a pointer to member function, we need
the object’s address to use as (or to calculate; see Meaning of Pointer
Comparison [28, 97]) the value of the this pointer for the function call
and possibly for other reasons as well.

Circle circ;

Shape *pShape = ˆ

(pShape->*mf2)(); // call Shape::validate

(circ.*mf2)(); // call Shape::validate

The ->* and .* operators must be parenthesized because they have lower
precedence than the () operator, and we have to first find out what func-
tion to call before we call it! This is entirely analogous to the use of paren-
theses in an expression such as (a+b)*c, where we want to ensure that the
lower-precedence addition is carried out before the higher-precedence
multiplication.

Note that there is no such thing as a “virtual” pointer to member func-
tion. Virtualness is a property of the member function itself, not the
pointer that refers to it.

mf2 = &Shape::draw; // draw is virtual

(pShape->*mf2)(); // call Circle::draw

This is one reason why a pointer to member function cannot be imple-
mented, in general, as a simple pointer to function. The implementation
of the pointer to member function must store within itself information as
to whether the member function to which it refers is virtual or nonvir-
tual, information about where to find the appropriate virtual function
table pointer (see The Compiler Puts Stuff in Classes [11, 37]), an offset to
be added to or subtracted from the function’s this pointer (see Meaning
of Pointer Comparison [28, 97]), and possibly other information. A pointer
to member function is commonly implemented as a small structure that
contains this information, although many other implementations are also
in use. Dereferencing and calling a pointer to member function usually
involves examining the stored information and conditionally executing
the appropriate virtual or nonvirtual function calling sequence.

As with pointers to data members, pointers to member functions exhibit
contravariance: there is a predefined conversion from a pointer to a mem-
ber function of a base class to a pointer to a member function of a derived

58 ❘ Item 16 Pointers to Member Functions Are Not Pointers

class, not the reverse. This makes sense if you consider that a base class
member function will attempt to access only base class members through
its this pointer whereas a derived class function may attempt to access
members that are not present in the base class.

class B {

public:

void bset(int val) { bval_ = val; }

private

int bval_;

};

class D : public B {

public:

void dset(int val) { dval_ = val; }

private:

int dval_;

};

B b;

D d;

void (B::*f1)(int) = &D::dset; // error! derived func in base ptr

(b.*f1)(12); // oops! access nonexistent dval member!

void (D::*f2)(int) = &B::bset; // OK, base func in derived ptr

(d.*f2)(11); // OK, set inherited bval data member

Item 16 Pointers to Members Functions Are Not Pointers ❘ 59

This page intentionally left blank

Item 17 ❘ Dealing with Function
and Array Declarators

The main confusion with pointer to function and pointer to array decla-
rations arises because the function and array modifiers have higher prece-
dence than the pointer modifier, so parentheses are often required.

int *f1(); // function that returns int *

int (*fp1)(); // ptr to function that returns int

The same problem obtains with the high-precedence array modifier:

const int N = 12;

int *a1[N]; // array of N int *

int (*ap1)[N]; // ptr to array of N ints

Of course, once one can have a pointer to a function or to an array, one
can have a pointer to such a pointer:

int (**ap2)[N]; // ptr to ptr to array of N ints

int *(*ap3)[N]; // ptr to array of N int *

int (**const fp2)() = 0; // const ptr to ptr to func

int *(*fp3)(); // ptr to func that returns int *

Note that both the argument and return types contribute to the type of a
function or function pointer.

char *(*fp4)(int,int);

char *(*fp5)(short,short) = 0;

fp4 = fp5; // error! type mismatch

Things can become immeasurably more complex when function and
array modifiers appear in the same declaration. Consider the following
common, incorrect attempt to declare an array of function pointers:

int (*)()afp1[N]; // syntax error!

61

In the (erroneous) declaration above, the appearance of the function
modifier () signaled the end of the declaration, and the appended name
afp1 signaled the start of a syntax error. It’s analogous to writing an array
declaration

int[N] a2; // syntax error!

that works just fine in Java but is not legal C++. The correct declaration of
an array of function pointers puts the name being declared in the same
location that it appears in a simple pointer to function. Then we say we
want an array of those things:

int (*afp2[N])(); // array of N ptr to func that returns int

Things are starting to get unwieldy here, so it’s time to reach for typedef.

typedef int (*FP)(); // ptr to func that returns int

FP afp3[N]; // array of N FP, same type as afp2

The use of typedef to simplify the syntax of complex declarations is a
sign of caring for those poor maintainers who come after you. Using
typedef, even the declaration of the standard set_new_handler func-
tion becomes simple:

typedef void (*new_handler)();

new_handler set_new_handler(new_handler);

So, a new_handler (see Function Pointers [14, 49]) is a pointer to a func-
tion that takes no argument and returns void, and set_new_handler is a
function that takes a new_handler as an argument and returns a
new_handler as a result. Simple. If you try it without typedef, your pop-
ularity with those who maintain your code will plummet:

void (*set_new_handler(void (*)()))(); // correct, but evil

It’s also possible to declare a reference to a function.

int aFunc(double); // func

int (&rFunc)(double) = aFunc; // ref to func

References to functions are rarely used and fill pretty much the same
niche as constant pointers to functions:

int (*const pFunc)(double) = aFunc; // const ptr to func

References to arrays do provide some additional capability not provided
by pointers to arrays and are discussed in Array Formal Arguments [6, 17].

62 ❘ Item 17 Dealing with Function and Array Declarators

Item 18 ❘ Function Objects

Often you’ll need something that behaves like a function pointer, but
function pointers tend to be unwieldy, dangerous, and (let’s admit it)
passé. Often the best approach is to use a function object instead of a
function pointer.

A function object, like a smart pointer (see Smart Pointers [42, 145]) is an
ordinary class object. Whereas a smart pointer type overloads the -> and
* (and possibly ->*) operators to mimic a “pointer on steroids,” a func-
tion object type overloads the function call operator, (), to create a
“function pointer on steroids.” Consider the following function object
that computes the next element in the well-known Fibonacci series (1, 1,
2, 3, 5, 8, 13, …) with each call:

class Fib {

public:

Fib() : a0_(1), a1_(1) {}

int operator ();

private:

int a0_, a1_;

};

int Fib::operator () {

int temp = a0_;

a0_ = a1_;

a1_ = temp + a0_;

return temp;

}

A function object is just a regular class object, but you can call its operator
()member (or members, if there is more than one) with standard function
call syntax.

Fib fib;

//...

cout << "next two in series: " << fib()

<< ' ' << fib() << endl;

63

The syntax fib() is recognized by the compiler as a member func-
tion call to the operator () member of fib, identical in meaning to
fib.operator() but presumably easier on the eye. The advantage in this
case of using a function object in preference to a function or a pointer to a
function is that the state required to compute the next number in the
Fibonacci series is stored within the Fib object itself. A function imple-
mentation would have to resort to global or local static variables or some
other base trickery to retain state between invocations of the function, or
the information would have to be passed to the function explicitly. Also
note that unlike a function that uses static data, we can have multiple,
simultaneous Fib objects whose calculations do not interfere with each
other.

int fibonacci () {

static int a0 = 0, a1 = 1; // problematic...

int temp = a0;

a0 = a1;

a1 = temp + a0;

return temp;

}

It’s also possible and common to create the effect of a virtual function
pointer by creating a function object hierarchy with a virtual operator().
Consider a numeric integration facility that calculates an approximation
of the area under a curve, as shown in Figure 5.

Figure 5 ❘ Numeric integration by summing areas of rectangles (simplified)

highlow

64 ❘ Item 18 Function Objects

Our integration function will iteratively call a function for values between
low and high in order to approximate the area under the curve as a sum
of the areas of rectangles (or some similar mechanism).

typedef double (*F)(double);

double integrate(F f, double low, double high) {

const int numsteps = 8;

double step = (high-low)/numSteps;

double area = 0.0;

while(low < high) {

area += f(low) * step;

low += step;

}

return area;

}

In this version, we pass a pointer to the function over which we want to
integrate.

double aFunc(double x) { ... }

//...

double area = integrate(aFunc, 0.0, 2.71828);

This works, but it’s inflexible because it uses a function pointer to indicate
the function to be integrated; it can’t handle functions that require state
or pointers to member functions. An alternative is to create a function
object hierarchy. The base of the hierarchy is a simple interface class that
declares a pure virtual operator().

class Func {

public:

virtual ~Func();

virtual double operator ()(double) = 0;

};

double integrate(Func &f, double low, double high);

Now integrate is capable of integrating any type of function object that
is-a Func (see Polymorphism [2, 3]). It’s also interesting to note that the
body of integrate does not have to change at all (though it does require
recompilation), because we use the same syntax to call a function object

Item 18 Function Objects ❘ 65

as we do for a pointer to function. For example, we can derive a type of
Func that can handle non-member functions:

class NMFunc : public Func {

public:

NMFunc(double (*f)(double)) : f_(f) {}

double operator ()(double d) { return f_(d); }

private:

double (*f_)(double);

};

This allows us to integrate all the functions of our original version:

double aFunc(double x) { ... }

//...

NMFunc g(aFunc);

double area = integrate(g, 0.0, 2.71828);

We can also integrate member functions by wrapping an appropriate
interface around a pointer to member function and a class object (see
Pointers to Member Functions Are Not Pointers [16, 57]):

template <class C>

class MFunc : public Func {

public:

MFunc(C &obj, double (C::*f)(double))

: obj_(obj), f_(f) {}

double operator ()(double d)

{ return (obj_.*f_)(d); }

private:

C &obj_;

double (C::*f_)(double);

};

//...

AClass anObj;

MFunc<AClass> f(anObj, &AClass::aFunc);

double area = integrate(f, 0.0, 2.71828);

66 ❘ Item 18 Function Objects

Item 19 ❘ Commands and Hollywood

When a function object is used as a callback, that’s an instance of the
Command pattern.

What’s a callback? Suppose you’re taking a long trip, and I lend you my
car for the purpose. Given the condition of my car, I’ll probably also hand
you a sealed envelope with a telephone number in it, along with instruc-
tions to call the number in the envelope if you experience any engine
problems. That’s a callback. You do not have to know the number in
advance (it may be the number of a good repair shop, a bus line, or the
city dump), and in fact you may never have to call the number. In effect,
the task of handling the “engine trouble” event has been partitioned
between you (also known as the “framework”) and me (also known as the
“client of the framework”). You know when it’s time to do something but
not what to do. I know what to do if a particular event occurs but not
when to do it. Together we make a complete application.

Callbacks are a common programming technique and have traditionally
been implemented as simple pointers to functions (see Function Pointers
[14, 49]). For example, consider an interactive button type that displays a
labeled button on the screen and executes an action if it’s clicked.

class Button {

public:

Button(const string &label)

: label_(label), action_(0) {}

void setAction(void (*newAction)())

{ action_ = newAction; }

void onClick() const

{ if(action_) action_(); }

private:

string label_;

void (*action_)();

67

//...

};

A user of a Buttonwould set a callback function and then hand the Button
over to framework code that could detect when the Button is clicked and
execute the action.

extern void playMusic();

//...

Button *b = new Button("Anoko no namaewa");

b->setAction(playMusic);

registerButtonWithFramework(b);

This partitioning of responsibility is often called the “Hollywood Princi-
ple,” as in “Don’t call us; we’ll call you.” We set up the button to perform
the correct action if it should ever be clicked, and the framework code
knows to invoke that action if the button is clicked.

However, using a simple function pointer as a callback has severe limita-
tions. Functions often need data with which to work, but a function
pointer has no associated data. In the example above, how does the
playMusic function know what song to play? The usual quick fix is either
to severely limit the scope of the function

extern void playAnokoNoNamaewa();

//...

b->setAction(playAnokoNoNamaewa);

or to resort to disreputable and dangerous coding practices, such as the
use of a global variable:

extern const MP3 *theCurrentSong = 0;

//...

const MP3 anokoNoNamaewa ("AnokoNoNamaewa.mp3");

theCurrentSong = &anokoNoNamaewa;

b->setAction(playMusic);

A better approach is typically to use a function object rather than a func-
tion pointer. Use of a function object—or more typically a function
object hierarchy—in conjunction with the Hollywood Principle is an
instance of the Command pattern.

68 ❘ Item 19 Commands and Hollywood

One obvious benefit of the object-oriented approach is that a function
object can have encapsulated data. Another advantage is that a func-
tion object can have dynamic behavior though virtual members; that is,
we can have a hierarchy of related function objects (see Function Objects
[18, 63]). We gain a third advantage as well, but we’ll get to that later.
First let’s redesign our Button to employ the Command pattern:

class Action { // Command

public:

virtual ~Action();

virtual void operator ()() = 0;

virtual Action *clone() const = 0; // Prototype

};

class Button {

public:

Button(const std::string &label)

: label_(label), action_(0) {}

void setAction(const Action *newAction) {

Action *temp = newAction->clone();

delete action_;

action_ = temp;

}

void onClick() const

{ if(action_) (*action_)(); }

private:

std::string label_;

Action *action_; // Command

//...

};

A Button can now work with any function object that is-a Action, like
this one:

class PlayMusic : public Action {

public:

PlayMusic(const string &songFile)

: song_(songFile) {}

void operator ()(); // plays the song

//...

private:

MP3 song_;

};

Item 19 Commands and Hollywood ❘ 69

The encapsulated data (in this case, the song to play) preserves both the
flexibility and safety of the PlayMusic function object.

Button *b = new Button("Anoko no namaewa");

auto_ptr<PlayMusic>

song(new PlayMusic("AnokoNoNamaewa.mp3"));

b->setAction(song.get());

So what’s the mysterious third advantage of Command to which we
referred earlier? Simply that it’s advantageous to work with a class hierarchy
rather than a more primitive, less flexible structure like a function
pointer. Because of the presence of a Command hierarchy, we’ve already
been able to compose the Prototype pattern with Command in order to
produce clonable commands (see Virtual Constructors and Prototype
[29, 99]). We can continue in this vein and compose additional patterns
with Command and Prototype for additional flexibility.

70 ❘ Item 19 Commands and Hollywood

Item 20 ❘ STL Function Objects

How did we ever get by without the STL? Not only is it easier and faster to
write complex code, but that code is both standard and highly optimized.

std::vector<std::string> names;

//...

std::sort(names.begin(), names.end());

Another nice thing about the STL is that it’s highly configurable. In the
code above, we used string’s less-than operator to sort a vector of
strings, but we don’t always have a less-than operator to work with, or we
may not want to sort in ascending order.

class State {

public:

//...

int population() const;

float aveTempF() const;

//...

};

The State class (which represents a state of the union) doesn’t have a
less-than operator, and we probably don’t want to implement one
because it’s not clear what it would mean for one state to be less than
another (do we compare names, population, percentage of elected offi-
cials under indictment, …?). Fortunately, the STL generally allows us to
specify an alternate less-than-like operation in situations like this. Such
an operation is called a “comparator,” because it compares two values:

inline bool popLess(const State &a, const State &b)

{ return a.population() < b.population(); }

71

Once we have a comparator for States, we can use it to sort them:

State states[50];

//...

std::sort(states, states+50, popLess); // by population

Here we’ve passed a pointer to the popLess function as the comparator
(recall that a function name “decays” into a pointer to function when
passed as an argument, just as the array name states decays into a pointer
to its first element). Because popLess is passed as a function pointer, it
will not be inlined in sort, which is unfortunate if we want a fast sort
operation (see Function Pointers [14, 49]).

We can do better if we use a function object as a comparator:

struct PopLess : public std::binary_function<State,State,bool> {

bool operator ()(const State &a, const State &b) const

{ return popLess(a, b); }

};

The PopLess type is a typical example of a properly constructed STL
function object. First, it’s a function object. It overloads the function call
operator so that it may be called with the usual function call syntax. This
is important, because STL generic algorithms like sort are written in
such a way that either a function pointer or function object may be used
to instantiate them, provided that they may be called with the typical
function call syntax; a function object with an overloaded operator ()
satisfies this syntactic requirement.

Second, it’s derived from the standard binary_function base class. This
is a mechanism that allows other parts of the STL implementation to ask
compile-time questions of the function object (see Embedded Type
Information [53, 189]). In this case, deriving from binary_function
allows one to find out the argument and return types of the function
object. We’re not using that capability here, but you can bet that some-
body else will, and we want our PopLess type to be used by others.

Third, the function object has no data members, no virtual functions, and
no explicitly declared constructors or destructor, and the implementation
of operator () is inline. Function objects used as STL comparators are
assumed to be small, simple, and fast. It’s possible to design STL function

72 ❘ Item 20 STL Function Objects

objects with significant implementations, but it’s rarely advisable.
Another reason to avoid or minimize the use of data members in a func-
tion object to be used with the STL is that STL implementations may
make several copies of a function object and may assume that all the
copies are identical. One easy way to ensure that all copies of an object are
identical is for the object to have no data at all.

Now we can sort this country out by using a function object:

sort(states, states+50, PopLess());

Note the parentheses that follow PopLess in this call to sort. PopLess is
a type, but we have to pass an object of that type as a function argument.
By appending parentheses to the PopLess type name, we create an
unnamed temporary PopLess object that exists for the duration of the
function call. (These nameless objects are known as “anonymous tempo-
raries,” a term I’ve always enjoyed because it sounds vaguely racy.) We
could have declared and passed a named object:

PopLess comp;

sort(states, states+50, comp);

However, it’s more conventional, and less typing, simply to pass an
anonymous temporary object.

A beneficial side effect of using a function object as our comparator is
that the comparison will be inlined whereas use of a function pointer did
not permit inlining. The reason the call is inlined is that the compiler
knows that the type of the comparator is PopLesswhen the sort function
template is instantiated, which in turn allows it to know that
PopLess::operator () will be called, which in turn allows it to inline
that function, which in turn allows it to inline the nested call to popLess.

Another common use of a function object in the STL is as a predicate. A
predicate is an operation that asks a true/false question about a single
object. (You can think of a comparator as a kind of binary predicate.)

struct IsWarm : public std::unary_function<State,bool> {

bool operator ()(const State &a) const

{ return a.aveTempF() > 60; }

};

Item 20 STL Function Objects ❘ 73

The design guidelines for STL predicates are identical to those for STL
comparators with the exception, of course, that they’re unary rather than
binary functions. Starting with our previous sorted State results, the
appropriate predicate makes it trivial to find a warm place without too
many dang people:

State *warmandsparse = find_if(states, states+50, IsWarm());

74 ❘ Item 20 STL Function Objects

Item 21 ❘ Overloading and Overriding
Are Different

Overloading and overriding have nothing whatsoever to do with each
other. Nothing. They are entirely different concepts. Ignorance of this dif-
ference, or simply sloppy use of terminology, has caused untold confusion
and given rise to countless bugs.

Overloading occurs when two or more functions in the same scope have
the same name and different signatures. A function’s signature consists of
the number and type of its declared arguments (otherwise known as “for-
mal” arguments). When the compiler looks up a function name and finds
more than one function with that name in a scope, it selects among the
available candidates in that scope for the one whose formal arguments
best match the actual arguments of the function call (see also Member
Function Lookup [24, 87] and Argument Dependent Lookup [25, 89]).
That’s overloading.

Overriding occurs when a derived class function has the same name and
signature as a base class virtual function. In that case, the implementation
of the derived class function will replace that of the inherited base class
function for virtual calls to a derived object. Overriding changes the
behavior of a class but not its interface (but see Covariant Return Types
[31, 107]).

Consider the following simple base class:

class B {

public:

//...

virtual int f(int);

void f(B *);

//...

};

75

The name f is overloaded in B because two different functions named f
are in the same scope. (The overloading is highlighted as bad code for two
reasons. You probably don’t want to overload a virtual function, and you
probably don’t want to overload on both an integral and a pointer type.
See C++ Gotchas and Effective C++, respectively, to see why.)

class D : public B {

public:

int f(int);

int f(B *);

};

The member function D::f(int) overrides the base class virtual function
B::f(int). The member function D::f(B *) doesn’t override anything,
because B::f(B *) is not virtual. It does, however, overload D::f(int).
Note that it does not overload the base class members B::f, because it’s in
a different scope (see also Optional Keywords [63, 231]).

Overloading and overriding are different concepts, and a technical under-
standing of their differences is essential if you want to grok advice on
advanced base class interface design.

76 ❘ Item 21 Overloading and Overriding Are Different

Item 22 ❘ Template Method

The Template Method pattern has nothing whatsoever to do with C++
templates. Rather, it’s a way for a base class designer to give clear instruc-
tions to derived class designers concerning how the base class contract
may be implemented (see Polymorphism [2, 3]). However, even if you
think this pattern should go by a different name, please continue to use
the standard name “Template Method.” Much of the benefit of using pat-
terns derives from the standard technical vocabulary they establish (see
Design Patterns [3, 7]).

A base class specifies its contract to the world at large through its public
member functions and specifies additional details for classes derived
from it through its protected member functions. Private member func-
tions may also be used as part of the implementation of a class (see
Assignment and Initialization Are Different [12, 41]). Data members
should be private, so we’ll leave them out of this discussion.

The decision as to whether a base class’s member function should be non-
virtual, virtual, or pure virtual is driven primarily by considering how the
behavior of that function is to be customized by derived classes. After all,
code that uses a base class’s interface doesn’t really care how a particular
operation is implemented by the object; it wants to perform an operation
on the object, and it’s up to the object to implement that operation
appropriately.

If a base class member function is nonvirtual, the base class designer is
specifying an invariant over the hierarchy rooted at the base class. Derived
classes should not hide a base class nonvirtual function with a derived
class member of the same name (see Member Function Lookup [24, 87]). If
you don’t like the contract specified by the base class, find a different base
class. Don’t attempt to rewrite its contract.

Virtual and pure virtual functions specify operations whose implementa-
tions can be customized by derived classes through overriding. A non-
pure virtual function provides a default implementation and does not

77

require overriding whereas a pure virtual function must be overridden in
a concrete (that is, nonabstract) derived class. Either kind of virtual func-
tion allows a derived class to plug replace its entire implementation while
preserving its interface.

Use of a Template Method gives the base class designer an intermediate
level of control between the “take it or leave it” nonvirtual function and
the “if you don’t like it, replace the whole thing” approach of a virtual
function. A Template Method fixes the overall structure of its implemen-
tation but defers some portion of its implementation to derived classes.
Typically, a Template Method is implemented as a public, nonvirtual
function that calls protected virtual functions. The derived classes must
accept the overall implementation specified in the inherited, nonvirtual
base class function but may customize its behavior in limited ways by
overriding the protected virtual functions it invokes.

class App {

public:

virtual ~App();

//...

void startup() { // Template Method

initialize();

if(!validate())

altInit();

}

protected:

virtual bool validate() const = 0;

virtual void altInit();

//...

private:

void initialize();

//...

};

The nonvirtual startup Template Method calls down to customizations
provided by derived classes:

class MyApp : public App {

public:

//...

private:

78 ❘ Item 22 Template Method

bool validate() const;

void altInit();

//...

};

Template Method is an example of the Hollywood Principle at work; that
is, “Don’t call us; we’ll call you” (see Commands and Hollywood [19, 67]).
The overall flow of the startup function is determined by the base class,
and startup is invoked by clients of the base class’s interface, so derived
class designers don’t know when validate or altInit will be called. But
they do know what validate and altInit should do when they are
called, and together the base and derived classes cooperate to produce a
complete function implementation.

Item 22 Template Method ❘ 79

This page intentionally left blank

Item 23 ❘ Namespaces

Global scope was getting overly crowded. Everybody and his brother
implemented libraries that reused the same names for different classes
and functions. For example, many libraries wanted to include a class
named String, but if you used two different libraries that defined a
String type, you’d get a multiple definition error or worse. Various extra-
language approaches used to address this problem (naming conventions,
the preprocessor, …) only made things worse. Namespaces to the rescue.

In some ways, namespaces introduce complexity (see Argument Dependent
Lookup [25, 89]), but most uses of namespaces are simple and simplifying.
A namespace is a subdivision of global scope:

namespace org_semantics {

class String { ... };

String operator +(const String &, const String &);

// other classes, functions, typedefs, etc...

}

This code snippet opens a namespace called org_semantics, declares
some useful things, and then closes the namespace with a closing curly
brace. You can always add more to a namespace by just repeating the
process; namespaces are “open.”

Note that some of the names in the org_semantics namespace are
declared but not defined. To define these names, we can reopen the
namespace:

namespace org_semantics {

String operator +(const String &a, String &b) { // oops!

//...

}

}

81

Alternatively, we can simply qualify the definition with the namespace
name without reopening the namespace:

org_semantics::String

org_semantics::operator +(

const org_semantics::String &a,

const org_semantics::String &b) {

//...

}

This has the advantage of not allowing one to inadvertently declare a new
namespace name (as we did when we left out the const in the second
argument of our first definition of operator +) rather than define an
already declared one. Admittedly, the seemingly endless repetition of
org_semantics in this case can be tedious, but that’s the price of security!
We’ll discuss some approaches that can improve this situation.

If you want to use a name that’s defined in a particular namespace, you
have to tell the compiler in what namespace the name is to be found:

org_semantics::String s("Hello, World!");

Although some of the C++ standard library has remained in global scope
(the standard global operator news, operator deletes, array news, and
array deletes come to mind), the bulk of the standard library is now resi-
dent in the std (that is, “standard”) namespace, and most standard
library use requires qualification with the std namespace name:

#include <iostream>

#include <vector>

//...

void aFunc() {

vector<int> a; // error! I don't see a vector!

std::vector<int> b; // Oh, there it is!

cout << "Oops!" << endl; // errors!

std::cout << "Better!" << std::endl; // OK

//...

}

Clearly, continual explicit qualification can be tedious. One way to relieve
the tedium is to employ a “using directive.”

void aFunc() {

using namespace std; // using directive

82 ❘ Item 23 Namespaces

vector<int> a; // OK

cout << "Hello!" << endl; // OK

//...

}

A using directive essentially “imports” the names from the namespace,
making them accessible without qualification in the scope of the using
directive. In this case, the using directive is in force until the end of the
function body, and then you’re back to explicit qualification. For this rea-
son, many C++ programmers (even many who should know better) sug-
gest putting the using directive at global scope:

#include <iostream>

#include <vector>

using namespace std;

using namespace org_semantics;

That’s a bad idea. Now we’re back nearly to square one, with all the names
from a namespace available everywhere, sowing confusion and disarray.
This is a particularly bad idea in a header file, where you can leverage your
bad decision over any file that includes your header. In header files, we
usually prefer to stick with explicit qualification and reserve using direc-
tives for smaller scopes (such as function bodies or blocks within a func-
tion) where their effects are bounded and easier to control. Basically, you
have to be on your best behavior in header files and on pretty good behav-
ior in source files, but you can kick back and relax inside a function.

One interesting aspect of using directives is that they make the names of a
namespace available, but as if they were declared at global scope, not nec-
essarily at the scope in which the using directive occurs. Local names will
hide namespace names:

void aFunc() {

using namespace std; // using directive

//...

int vector = 12; // a poorly named local variable...

vector<int> a; // error! std::vector is hidden

std::vector<int> b; // OK, can use explicit qualification

//...

}

Item 23 Namespaces ❘ 83

An alternative is a “using declaration” that provides access to a namespace
name through an actual declaration:

void aFunc() {

using std::vector; // using declaration

//...

int vector = 12; // error! redeclaration of vector

vector<int> a; // OK

//...

}

Using declarations are often a good middle ground between tedious
explicit qualification and unrestrained use of using directives, particu-
larly if a given section of code uses only a few names from two or more
namespaces but uses them repeatedly:

void aFunc() {

using std::cout;

using std::endl;

using org_semantics::String;

String a, b, c;

//...

cout << a << b << c << endl;

// etc.

}

Another way to deal with long, tedious namespace names is to employ
an alias:

namespace S = org_semantics;

Now S may be used in place of org_semantics within the scope of
the alias. Like a using directive, a namespace alias is best avoided in a
header file. (S is likely to conflict with other names more often than
org_semantics, after all…)

Let’s finish up our quick tour of namespaces with a look at anonymous
namespaces:

namespace {

int anInt = 12;

int aFunc() { return anInt; }

}

84 ❘ Item 23 Namespaces

This anonymous namespace behaves identically to the following, where
__compiler_generated_name__ is unique for each anonymous
namespace:

namespace __compiler_generated_name__ {

int anInt = 12;

int aFunc() { return anInt; }

}

using namespace __compiler_generated_name__;

This is the trendy new way to avoid declaring functions and variables with
static linkage. In the anonymous namespace above, both anInt and
aFunc have external linkage, but they can be accessed only within the
translation unit (that is, preprocessed file) in which they occur, just like
a static.

Item 23 Namespaces ❘ 85

This page intentionally left blank

Item 24 ❘ Member Function Lookup

When you call a member function, there are three steps involved. First,
the compiler looks up the name of the function. Second, it chooses the
best matching function from the available candidates. Third, it checks
that you have access to the matched function. That’s it. Admittedly, each
of these steps (especially the first two; see Argument Dependent Lookup
[25, 89] and Operator Function Lookup [26, 91]) can be complex, but the
overall function matching mechanism is as simple as one, two, three.

Most errors related to function matching stem not from misunderstand-
ing the compiler’s complex name lookup and overloaded function
matching algorithms but from misunderstanding the simple, sequential
nature of these three steps. Consider the following:

class B {

public:

//...

void f(double);

};

class D : public B {

void f(int);

};

//...

D d;

d.f(12.3); // confusing

Which member f is called?

Step 1: Look up the name of the function. Because we’re calling a member
of a D object, we’ll start in the scope of D and immediately locate D::f.

Step 2: Choose the best matching function from the available candidates.
We have only one candidate D::f, so we attempt to match that one. We
can do this by converting the actual argument 12.3 from double to int.
(This is legal, but generally undesirable, because we’ll lose precision.)

87

Step 3: Check access. We (may) have an error, because D::f is private.

The existence of a better-matching, accessible function in the base class is
immaterial, because the compiler does not continue searching for a name
in outer scopes once it has found one in an inner scope. An inner scope
name hides the same name in an outer scope; it does not overload it as it
does in Java.

In fact, the name does not even have to be the name of a function:

class E : public D {

int f;

};

//...

E e;

e.f(12); // error!

In this case, we have a compile-time error because our lookup of the
name f in the scope of E netted us a data member, not a member func-
tion. This is, by the way, one of many reasons to establish and adhere to a
simple naming convention. If the data member E::f had been named
f_ or m_f, it would not have hidden the inherited base class function f.

88 ❘ Item 24 Member Function Lookup

Item 25 ❘ Argument Dependent Lookup

Namespaces have a pervasive influence on modern C++ programs and
designs (see Namespaces [23, 81]). Some of these influences are immediately
obvious, such as the presence of using declarations and directives and
qualification of names with namespace scope. However, namespaces have
less syntactically obvious influences that are nevertheless as basic and
important. Argument dependent lookup (ADL) is one of these. Like
many C++ features, ADL has the potential to be complex, but in common
use it is straightforward and solves many more problems than it introduces.

The idea behind ADL is simple. When looking up the name of a function
in a function call expression, the compiler will also examine namespaces
that contain the types of the function call’s arguments. For example, con-
sider the following:

namespace org_semantics {

class X { ... };

void f(const X &);

void g(X *);

X operator +(const X &, const X &);

class String { ... };

std::ostream operator <<(std::ostream &, const String &);

}

//...

int g(org_semantics::X *);

void aFunc() {

org_semantics::X a;

f(a); // call org_semantics::f

g(&a); // error! ambiguous...

a = a + a; // call org_semantics::operator +

}

89

Ordinary lookup would not find the function org_semantics::f,
because it is nested in a namespace and the use of f is not qualified with
the namespace. However, the type of the argument a is defined in the
org_semantics namespace, so the compiler also examines that name-
space for any candidate functions.

Of course, a complex rule such as ADL can also cause some head scratch-
ing. The call to g with a pointer to an org_semantics::X is a case in
point. In this case, it’s possible that the coder thought the compiler would
find the global g, but because the type of the actual argument was
org_semantics::X *, candidate g’s from that namespace were included,
and the call was ambiguous. On reflection, this ambiguity is actually a
good thing, because it’s just as likely that the coder intended to call the
function org_semantics::g rather than ::g. With the ambiguity made
clear, the coder can either disambiguate the call or rename one of the
functions.

Note that, even though the call to g resulted in two candidate functions
for overload resolution, ::g does not overload org_semantics::g
because they are not declared in the same scope (see Overloading and
Overriding Are Different [21, 75]). ADL is a property of how a function is
called, and overloading is a property of how a function is declared.

We can see the real utility of ADL with infix calls of overloaded operators,
such as the use of operator + in aFunc. Here the infix expression a+a is
equivalent to the call operator +(a,a), and ADL will find the over-
loaded operator + in the org_semantics namespace (see also Operator
Function Lookup [26, 91]).

In fact, most C++ programmers use ADL extensively without realizing it.
Consider the following common use of <iostream>:

org_semantics::String name("Qwan");

std::cout << "Hello, " << name;

In this case, the first (leftmost) use of operator<< is most probably a call
of a member function of the class template std::basic_ostream
whereas the second is a non-member function call of an overloaded
operator << function in the org_semantics namespace. These details
are really of no interest to the author of the greeting, and ADL sorts things
out rather nicely.

90 ❘ Item 25 Argument Dependent Lookup

Item 26 ❘ Operator Function Lookup

Sometimes it looks like a member operator function overloads a non-
member operator, but this is not the case. It’s not overloading; it’s just a
different lookup algorithm. Consider the following class that overloads
an operator as a member function:

class X {

public:

X operator %(const X &) const; // binary modulus

X memFunc1(const X &);

void memFunc2();

//...

};

We can call an overloaded operator function with either infix or function
call syntax:

X a, b, c;

a = b % c; // infix call to member operator %

a = b.operator %(c); // member function call

a = b.memFunc1(c); // another member function call

When we use the function call syntax, the usual lookup rules apply (see
Member Function Lookup [24, 87]), and the call b.operator %(c) is
treated in the same way as the similar call to memFunc1. However, an infix
call of an overloaded operator is handled differently:

X operator %(const X &, int); // non-member operator

//...

void X::memFunc2() {

*this % 12; // calls non-member operator %

operator %(*this, 12); // error! too many arguments

}

91

For an infix operator call, the compiler will consider both member and
non-member functions (see also Argument Dependent Lookup [25, 89]),
so the first, infix call to operator % will match the non-member. This is
not an instance of overloading; it’s a question of the compiler looking in
two different places for candidate functions. The second, non-infix call of
operator % follows the standard function lookup rules and finds the
member function. We have an error because we are attempting to pass
three arguments to a binary function. (Remember the implicit this argu-
ment for member functions!)

In effect, infix calls of overloaded operators implement a kind of “degen-
erate” ADL in which both the class of the left (or only) argument of the
infix operator and the global scope are considered when determining
what functions will be considered for overload resolution. ADL extends
this process to include candidate operator functions in other namespaces
brought in by the arguments of the operator. Note that this is not over-
loading. Overloading is a static property of a function declaration (see
Overloading and Overriding Are Different [21, 75]). Both ADL and infix
operator function lookup are properties of the arguments supplied to a
function call.

92 ❘ Item 26 Operator Function Lookup

Item 27 ❘ Capability Queries

Most times when an object shows up for work, it’s capable of performing
as required, because its capabilities are advertised explicitly in its inter-
face. In these cases, we don’t ask the object if it can do the job; we just tell
it to get to work:

class Shape {

public:

virtual ~Shape();

virtual void draw() const = 0;

//...

};

//...

Shape *s = getSomeShape(); // get a shape, and tell it to...

s->draw(); // ...get to work!

Even though we don’t know precisely what type of shape we’re dealing
with, we know that it is-a Shape and, therefore, can draw itself. This is a
simple and efficient—and therefore desirable—state of affairs.

However, life is not always that straightforward. Sometimes an object
shows up for work whose capabilities are not obvious. For example, we
may have a need for a shape that can be rolled:

class Rollable {

public:

virtual ~Rollable();

virtual void roll() = 0;

};

A class like Rollable is often called an “interface class” because it specifies
an interface only, similar to a Java interface. Typically, such a class has no
non-static data members, no declared constructor, a virtual destructor,
and a set of pure virtual functions that specify what a Rollable object is

93

capable of doing. In this case, we’re saying that anything that is-a Rollable
can roll. Some shapes can roll; others can’t:

class Circle : public Shape, public Rollable { // circles roll

//...

void draw() const;

void roll();

//...

};

class Square : public Shape { // squares don't

//...

void draw() const;

//...

};

Of course, other types of objects in addition to shapes may be rollable:

class Wheel : public Rollable { ... };

Ideally, our code should be partitioned in such a way that we always know
whether we are dealing with objects that are Rollable before we attempt
to roll them, just as we earlier knew we were dealing with Shapes before
we attempted to draw them.

vector<Rollable *> rollingStock;

//...

for(vector<Rollable *>::iterator i(rollingstock.begin());

i != rollingStock.end(); ++i)

(*i)->roll();

Unfortunately, we occasionally run up against situations where we simply
do not know if an object has a required capability. In such cases, we are
forced to perform a capability query. In C++, a capability query is typi-
cally expressed as a dynamic_cast between unrelated types (see New
Cast Operators [9, 29]).

Shape *s = getSomeShape();

Rollable *roller = dynamic_cast<Rollable *>(s);

This use of dynamic_cast is often called a “cross-cast,” because it
attempts a conversion across a hierarchy, rather than up or down a hierar-
chy, as shown in Figure 6.

94 ❘ Item 27 Capability Queries

Figure 6 ❘ A capability query: “May I tell this shape to roll?”

If s refers to a Square, the dynamic_cast will fail (result in a null pointer),
letting us know that the Shape to which s refers is not also Rollable. If s
refers to a Circle or to some other type of Shape that is also derived
from Rollable, then the cast will succeed, and we’ll know that we can
roll the shape.

Shape *s = getSomeShape();

if(Rollable *roller = dynamic_cast<Rollable *>(s))

roller->roll();

Capability queries are occasionally required, but they tend to be overused.
They are often an indicator of bad design, and it’s best to avoid making
runtime queries about an object’s capabilities unless no other reasonable
approach is available.

Is this Shape Rollable?

Shape Rollable

Square Circle

Item 27 Capability Queries ❘ 95

This page intentionally left blank

Item 28 ❘ Meaning of Pointer Comparison

In C++, an object can have multiple, valid addresses, and pointer com-
parison is not a question about addresses. It’s a question about object
identity.

class Shape { ... };

class Subject { ... };

class ObservedBlob : public Shape, public Subject { ... };

In this hierarchy, ObservedBlob is derived from both Shape and Subject,
and (because the derivation is public) there are predefined conversions
from an ObservedBlob to either of its base classes.

ObservedBlob *ob = new ObservedBlob;

Shape *s = ob; // predefined conversion

Subject *subj = ob; // predefined conversion

The availability of these conversions means that a pointer to an
ObservedBlob may be compared to a pointer to either of its base classes.

if(ob == s) ...

if(subj == ob) ...

In this case, both of these conditions will be true even if the addresses
contained in ob, s, and subj differ. Consider two possible memory lay-
outs for the ObservedBlob object to which these pointers refer, as shown
in Figure 7.

Under layout #1, s and subj refer to Shape and Subject subobjects
within the complete object that have different addresses from the com-
plete object to which ob refers. Under layout #2, the Shape subobject hap-
pens to have the same address as the ObservedBlob complete object, so
ob and s contain the same address.

97

Figure 7 ❘ Two possible layouts for an object under multiple inheritance. Under either
layout, the object has multiple addresses.

Under either layout, ob, s, and subj refer to the same ObservedBlob
object, so the compiler must ensure that ob compares equal to both s and
subj. (We can’t compare s with subj because they have no inheritance
relationship.) The compiler accomplishes this comparison by adjusting
the value of one of the pointers being compared by the appropriate offset.
For example, the expression

ob == subj

may be (loosely) translated as

ob ? (ob+delta == subj) : (subj == 0)

where delta is the offset of the Subject subobject in an ObservedBlob.
In other words, ob and subj are equal if they’re both null; otherwise, ob is
adjusted to refer to its Subject base class subobject and then compared
to subj.

One important lesson to be drawn from these observations is that we
must be careful to avoid losing type information when dealing with
pointers and references to objects (and in general). Pointers to void are
common culprits:

void *v = subj;

if(ob == v) // not equal!

Once we’ve stripped the address contained in subj of its type informa-
tion by copying it to a void *, the compiler has no choice but to fall back
on raw address comparison, and with pointers to class objects that’s rarely
appropriate.

ob

s

subj

Shape

Subject

delta Shape

Subject

delta

ObservedBlob
Layout #1

ObservedBlob
Layout #2

98 ❘ Item 28 Meaning of Pointer Comparison

Item 29 ❘ Virtual Constructors
and Prototype

Suppose you find yourself in a Swedish restaurant, and you’d like to order
a meal. Unfortunately, your knowledge of Swedish is limited to technical
correspondence, cursing, or (typically) a combination of the two. The
menu is in Swedish, and you can’t read Swedish, but you do notice a gen-
tleman on the other side of the room who is really enjoying his meal.
Therefore, you call over the waiter and say

If that gentleman is having fish, I’d like fish. If he’s having spaghetti, I’d
like spaghetti too. Otherwise, if he’s having eel, then eel it is. However, if
he has decided on the preserved kumquats, then I’ll have those.

Does this sound reasonable? Of course not. (For one thing, you probably
don’t want to order spaghetti in a Swedish restaurant.) This procedure
has two basic problems. First, it’s tedious and inefficient. Second, it can
fail. What would happen if you come to the end of your sequence of ques-
tions and you still haven’t been able to guess what the other diner is eating?
The waiter will walk off, leaving you stranded and hungry. Even if you
happen to know the entire content of the menu and are therefore guaran-
teed of (eventual) success, your list of questions may become invalid or
incomplete if the menu is modified between your visits to the restaurant.

The proper approach, of course, is simply to call the waiter over and say,
“I’d like what that gentleman is having.”

If the waiter is a literalist, he’ll snatch up the other diner’s half-finished
meal and bring it to your table. However, that sort of behavior can lead to
hurt feelings and even a food fight. This is the sort of unpleasantness that
can occur when two diners try to consume the same meal at the same
time. If he knows his business, the waiter will deliver an exact copy of
the other diner’s meal to you, without affecting the state of the meal that
is copied.

99

These are the two major reasons for cloning: You must (or you prefer to)
remain in ignorance about the precise type of object you’re dealing with,
and you don’t want to effect change or be affected by changes to the origi-
nal object.

A member function that provides the ability to clone an object is tradi-
tionally called a “virtual constructor” in C++. Of course, there are no vir-
tual constructors, but producing a copy of an object generally involves
indirect invocation of its class’s copy constructor through a virtual
function, giving the effect—if not the reality—of virtual construction.
More recently, this technique has been called an instance of the Proto-
type pattern.

Of course, we have to know something about the object to which we refer.
In our case, we know that what we want is-a meal.

class Meal {

public:

virtual ~Meal();

virtual void eat() = 0;

virtual Meal *clone() const = 0;

//...

};

The Meal type provides the ability to clone with the clone member func-
tion. The clone function is actually a specialized kind of Factory Method
(see Factory Method [30, 103]) that manufactures an appropriate product
while allowing the invoking code to remain in ignorance of the exact type
of context and product class. Concrete classes derived from Meal (that is,
those meals that actually exist and are listed on the menu) must provide
an implementation of the pure virtual clone operation.

class Spaghetti : public Meal {

public:

Spaghetti(const Spaghetti &); // copy ctor

void eat();

Spaghetti *clone() const

{ return new Spaghetti(*this); } // call copy ctor

//...

};

100 ❘ Item 29 Virtual Constructors and Prototype

(For an explanation as to why the return type of the overriding derived
class clone function differs from that of the base class function, see
Covariant Return Types [31, 107].)

With this simple framework in place, we have the ability to produce a
copy of any type of Meal without precise knowledge about the actual type
of the Meal we’re copying. Note that the following code has no mention
of concrete derived classes and therefore no coupling of the code to any
current or future types derived from Meal.

const Meal *m = thatGuysMeal(); // whatever he's having...

Meal *myMeal = m->clone(); // ...I want one too!

In fact, we could end up ordering something we’ve never even heard of. In
effect, with Prototype, ignorance of the existence of a type is no barrier to
creating an object of that type. The polymorphic code above can be com-
piled and distributed, and later augmented with new types of Meal with-
out the need for recompilation.

This example illustrates some of the advantages of ignorance in software
design, particularly in the design of software structured as a framework
that is designed for customization and extension: The less you know, the
better.

Item 29 Virtual Constructors and Prototype ❘ 101

This page intentionally left blank

Item 30 ❘ Factory Method

A high-level design often requires the creation of an object of the “appro-
priate” type, based on the type of an existing object. For example, we may
have a pointer or reference to an Employee object of some kind, and we
need to generate the appropriate kind of HRInfo object for that type of
Employee, as shown in Figure 8.

Here we have almost parallel Employee and HRInfo hierarchies. Salary
and Hourly employees require the generation of an StdInfo object
whereas a Temp requires a TempInfo object.

The high-level design is simple: “Create the appropriate type of record for
this employee.” Unfortunately, programmers often see such a require-
ment as an excuse to engage in runtime type queries. That is, the code that
implements this requirement simply asks a series of questions about the
exact type of Employee in order to determine the type of HRInfo object
to generate.

Figure 8 ❘ Pseudoparallel hierarchies. How should we map an employee to its
corresponding human resources information?

Employee HRInfo

Salary Hourly Temp StdInfo TempInfo

103

One common approach that is always wrong is to use a type code and a
switch-statement:

class Employee {

public:

enum Type { SALARY, HOURLY, TEMP };

Type type() const { return type_; }

//...

private:

Type type_;

//...

};

//...

HRInfo *genInfo(const Employee &e) {

switch(e.type()) {

case SALARY:

case HOURLY: return new StdInfo(e);

case TEMP:return new TempInfo(static_cast<const Temp*>(e));

default: return 0; // unknown type code!

}

}

Nearly as bad is the use of dynamic_cast to ask a series of personal ques-
tions of the Employee object:

HRInfo *genInfo(const Employee &e) {

if(const Salary *s = dynamic_cast<const Salary *>(&e))

return new StdInfo(s);

else if(const Hourly *h = dynamic_cast<const Hourly *>(&e))

return new StdInfo(h);

else if(const Temp *t = dynamic_cast<const Temp *>(&e))

return new TempInfo(t);

else

return 0; // unknown employee type!

}

The major flaw with both of these implementations of genInfo is that
they are coupled to all the concrete types derived from both Employee
and HRInfo, and they must be familiar with the mapping from each

104 ❘ Item 30 Factory Method

employee type to its appropriate HRInfo type. Any change in the set of
Employees, in the set of HRInfos, or in the mapping from one to the
other requires maintenance of the code. In the likely event that different
groups will be adding (and removing) new types from these hierarchies
on a continuing basis, it’s unlikely that this maintenance will always be
correctly performed. Another problem is that either approach can fail to
identify the exact type of the Employee argument, which will require the
code that calls genInfo to make provision to handle the error.

The correct approach is to consider where the mapping from each
Employee type to the appropriate HRInfo type should reside. Put another
way, who knows best what type of HRInfo object a Temp employee
requires? The Temp employee itself, of course:

class Temp : public Employee {

public:

//...

TempInfo *genInfo() const

{ return new TempInfo(*this); }

//...

};

We still have a problem in that we may not know that we are dealing with
a Temp employee rather than some other type of employee. But that’s easy
to fix with a virtual function:

class Employee {

public:

//...

virtual HRInfo *genInfo() const = 0; // Factory Method

//...

};

This is an instance of the Factory Method pattern. Rather than ask a series
of blunt personal questions of an employee, we are, in effect, saying,
“Whatever type of employee you are, generate the appropriate type of
information for yourself.”

Employee *e = getAnEmployee();

//...

HRInfo *info = e->genInfo(); // use Factory Method

Item 30 Factory Method ❘ 105

The essence of Factory Method is that the base class provides a virtual
function hook for generating an appropriate “product.” Each derived class
may override that inherited virtual function to generate an appropriate
product for itself. In effect, we have the ability to use an object of unknown
type (“some type of employee”) to generate an object of unknown type
(“the appropriate type of information”).

Use of a Factory Method is often indicated when a high-level design
requires generation of the “appropriate” object based on the exact type of
another object, in the case of parallel or almost parallel hierarchies, and is
often the cure for a series of runtime type queries.

106 ❘ Item 30 Factory Method

Item 31 ❘ Covariant Return Types

Generally, an overriding function must have the same return type as the
function it overrides:

class Shape {

public:

//...

virtual double area() const = 0;

//...

};

class Circle : public Shape {

public:

float area() const; // error! different return type

//...

};

However, this rule is relaxed for what are known as “covariant return
types.” If B is a class type, and a base class virtual function returns B *,
then an overriding derived class function may return D *, where D is pub-
licly derived from B. (That is, D is-a B.) If a base class virtual function
returns B &, then an overriding derived class function may return D &.
Consider the following clone operation on a shape hierarchy (see Virtual
Constructors and Prototype [29, 99]):

class Shape {

public:

//...

virtual Shape *clone() const = 0; // Prototype

//...

};

class Circle : public Shape {

public:

Circle *clone() const;

//...

};

107

The overriding derived class function is declared to return a Circle *
rather than a Shape *. This is legal because Circle is-a Shape. Note that
the Circle * return value from Circle::clone is automatically con-
verted to Shape * if the Circle is being manipulated as a Shape (see
Meaning of Pointer Comparison [28, 97]):

Shape *s1 = getACircleOrOtherShape();

Shape *s2 = s1->clone();

The advantage of using covariant return types comes when manipulating
derived types directly, rather than through their base class interfaces:

Circle *c1 = getACircle();

Circle *c2 = c1->clone();

Without a covariant return, Circle::clone would have to match exactly
the return type of Shape::clone and return a Shape*. We’d be forced to
cast the return result to Circle*.

Circle *c1 = getACircle();

Circle *c2 = static_cast<Circle *>(c1->clone());

As another example, consider the following Factory Method member of
Shape that returns a reference to an appropriate shape editor for the con-
crete shape (see Factory Method [30, 103]):

class ShapeEditor { ... };

class Shape {

public:

//...

virtual const ShapeEditor &

getEditor() const = 0; // Factory Method

//...

};

//...

class Circle;

class CircleEditor : public ShapeEditor { ... };

class Circle : public Shape {

public:

const CircleEditor &getEditor() const;

//...

};

108 ❘ Item 31 Covariant Return Types

In this case, note that CircleEditor had to be completely defined (not
simply declared) prior to the declaration of Circle::getEditor. The
compiler has to know the layout of the CircleEditor object so it can
perform the appropriate address manipulations to convert a CircleEditor
reference (or pointer) into a ShapeEditor reference (or pointer). See
Meaning of Pointer Comparison [28, 97].

The advantage of the covariant return is that we can always work at the
appropriate level of abstraction. If we’re working with Shapes, we’ll get an
abstract ShapeEditor; if we’re working with a specific type of shape,
such as Circle, we’ll be able to deal directly with CircleEditors. The
covariant return relieves us from having to use an error-prone cast to
resupply type information that we should not have lost in the first place:

Shape *s = getACircleOrOtherShape();

const ShapeEditor &sed = s->getEditor();

Circle *c = getACircle();

const CircleEditor &ced = c->getEditor();

Item 31 Covariant Return Types ❘ 109

This page intentionally left blank

Item 32 ❘ Preventing Copying

Access specifiers (public, protected, and private) can be used to
express and enforce higher-level constraints on how a type may be used.

The most common of these techniques is to disallow copying of an object
by declaring its copy operations to be private and not defining them:

class NoCopy {

public:

NoCopy(int);

//...

private:

NoCopy(const NoCopy &); // copy ctor

NoCopy &operator =(const NoCopy &); // copy assignment

};

It’s necessary to declare the copy constructor and copy assignment opera-
tor, since otherwise the compiler would declare them implicitly, as public
inline members. By declaring them to be private, we forestall the com-
piler’s meddling and ensure that any use of the operations—whether
explicit or implicit—will result in a compile-time error:

void aFunc(NoCopy);

void anotherFunc(const NoCopy &);

NoCopy a(12);

NoCopy b(a); // error! copy ctor

NoCopy c = 12; // error! implicit copy ctor

a = b; // error! copy assignment

aFunc(a); // error! pass by value with copy ctor

aFunc(12); // error! implicit copy ctor

anotherFunc(a); // OK, pass by reference

anotherFunc(12); // OK

111

This page intentionally left blank

Item 33 ❘ Manufacturing Abstract Bases

Abstract base classes typically represent abstract concepts from the
problem domain, and therefore it doesn’t make sense to declare objects of
those types. We make a base class abstract by declaring (or inheriting) at
least one pure virtual function, and the compiler will then ensure that no
objects of the abstract base class can be created.

class ABC {

public:

virtual ~ABC();

virtual void anOperation() = 0; // pure

//...

};

However, there may be cases where we have no reasonable candidate for a
pure virtual function but still want the class to act like an abstract base. In
those cases, we can approximate the nature of an abstract class by making
sure that there are no public constructors in the class. This invariably
means we must explicitly declare at least one constructor, since otherwise
the compiler will implicitly declare a public inline default constructor.
Since the compiler will also declare an implicit copy constructor if we
don’t declare one explicitly, we typically must declare two constructors.

class ABC {

public:

virtual ~ABC();

protected:

ABC();

ABC(const ABC &);

//...

};

class D : public ABC {

//...

};

113

The constructors are declared protected to allow their use by derived class
constructors, while preventing the creation of standalone ABC objects.

void func1(ABC);

void func2(ABC &);

ABC a; // error! protected default ctor

D d; // OK

func1(d); // error! protected copy ctor

func2(d); // OK, no copy ctor

Another way to coerce a class into being an abstract base class is to bite
the bullet and designate one of its virtual functions as pure. Often the
destructor is a good choice:

class ABC {

public:

virtual ~ABC() = 0;

//...

};

//...

ABC::~ABC() { ... }

Note that it is necessary, in this case, to provide an implementation of the
pure virtual function since derived class destructors will call their base
class destructors implicitly. (Note that this implicit call to a base class
destructor from within a derived class destructor is always a non-
vitual call.)

A third approach applies when a class has no virtual functions at all and
no need for explicitly declared constructors. In this case, a protected, non-
virtual destructor is a good approach.

class ABC {

protected:

~ABC();

public:

//...

};

114 ❘ Item 33 Manufacturing Abstract Bases

A protected destructor has basically the same effect as a protected con-
structor, but the error occurs when the object goes out of scope or is
explicitly destroyed rather than when it is created:

void someFunc() {

ABC a; // no error yet...

ABC *p = new ABC; // no error yet...

//...

delete p; // error! protected dtor

// error! implicit call to a's dtor

}

Item 33 Manufacturing Abstract Bases ❘ 115

This page intentionally left blank

Item 34 ❘ Restricting Heap Allocation

Sometimes it’s a good idea to indicate that objects of a particular class
should not be allocated on the heap. Often this is to ensure that the
object’s destructor is called, as in the case of a “handle” object that main-
tains a reference count for a “body” object. Local objects with automatic
storage class will have their destructors called automatically (except in the
case of abnormal program termination via an exit or abort), as will
objects with static storage class (except in the case of an abort), whereas
heap-allocated objects must be destroyed explicitly.

One way to indicate such a preference is by defining heap memory alloca-
tion to be illegal:

class NoHeap {

public:

//...

protected:

void *operator new(size_t) { return 0; }

void operator delete(void *) {}

};

Any conventional attempt to allocate a NoHeap object on the heap will
result in a compile-time error (see Class-Specific Memory Mangement
[36, 123]):

NoHeap *nh = new NoHeap; // error! protected NoHeap::operator new

//...

delete nh; // error! protected NoHeap::operator delete

The operator new and operator delete members are defined (as well
as declared) because they may be called implicitly from constructors and
destructors on some platforms. They are declared to be protected for the

117

same reason; they may be invoked implicitly from derived class construc-
tors and destructors. If NoHeap is not intended for use as a base class,
these functions may be declared to be private.

At the same time, we may also want to pay attention to allocation of
arrays of NoHeap objects (see Array Allocation [37, 127]). In this case, we
can simply declare array new and array delete to be private and unde-
fined, similar to the way we deny copy operations (see Preventing Copying
[32, 111]).

class NoHeap {

public:

//...

protected:

void *operator new(size_t) { return 0; }

void operator delete(void *) {}

private:

void *operator new[](size_t);

void operator delete[](void *);

};

It’s also possible to encourage, rather than discourage, heap allocation.
Just make the destructor private:

class OnHeap {

~OnHeap();

public:

void destroy()

{ delete this; }

//...

};

Any ordinary attempt to declare an automatic or static OnHeap object will
result in an implicit destructor call when the object’s name goes out of
scope.

OnHeap oh1; // error! implicit call of private dtor

void aFunc() {

OnHeap oh2;

//...

// error! implicit dtor call for oh2

}

118 ❘ Item 34 Restricting Heap Allocation

Item 35 ❘ Placement New

It’s impossible to call a constructor directly. However, we can trick the com-
piler into calling a constructor for us through the use of placement new.

void *operator new(size_t, void *p) throw()

{ return p; }

Placement new is a standard, global, overloaded version of operatornew
that cannot be replaced with a user-defined version (unlike the standard,
global, “usual” operator new and operator delete that can be replaced
but probably shouldn’t be). The implementation ignores the size argu-
ment and returns its second argument. This has the effect of allowing one
to “place” an object at a particular location, giving the effect of being able
to call a constructor.

class SPort { ... }; // represents a serial port

const int comLoc = 0x00400000; // location of a port

//...

void *comAddr = reinterpret_cast<void *>(comLoc);

SPort *com1 = new (comAddr) SPort; // create object at comLoc

It’s important to distinguish the new operator from functions that are
named operator new. The new operator can’t be overloaded and so
always behaves in the same way; it calls a function named operator new
and then initializes the returned storage. Any variation of behavior we
achieve with memory allocation has to do with different, overloaded ver-
sions of operator new, not with the new operator. The same applies to
the delete operator and operatordelete.

Placement new is a version of the function operator new that doesn’t
actually allocate any storage; it just returns a pointer to some storage that
(presumably) is already allocated. Because no storage is allocated by a call
to placement new, it’s important not to delete it.

delete com1; // oops!

119

However, even though we didn’t allocate any storage, we did create an
object, and that object should be destroyed at the end of its lifetime.
We avoid the delete operator and instead call the object’s destructor
directly:

com1->~SPort(); // call dtor but not operator delete

Designs that involve direct destructor invocation tend to be prone to
error, however, often resulting in multiple destruction of the same object
or no destruction of an object. We would typically prefer to employ such
designs only when necessary, in well-hidden and well-maintained areas of
our code.

We also have a placement array new that can be used to create an array of
objects at a given location:

const int numComs = 4;

//...

SPort *comPorts = new (comAddr) SPort[numComs]; // create array

Of course, these array elements must eventually be destroyed:

int i = numComs;

while(i)

comPorts[--i].~SPort();

One potential problem with arrays of class objects is that each element
must be initialized by a call to a default constructor when the array is allo-
cated. Consider a simple, fixed-size buffer to which one can append a new
value:

string *sbuf = new string[BUFSIZ]; // BUFSIZ default ctor calls!

int size = 0;

void append(string buf[], int &size, const string &val)

{ buf[size++] = val; } // wipe out default initialization!

If only a portion of the array is used, or if the elements are immediately
assigned, this is inefficient. Worse, if the element type of the array has no
default constructor, we’ll get a compile-time error.

Placement new is often used to address this buffer problem. With this
approach the storage for the buffer is allocated in such a way as to avoid
initialization by the default constructor (if any).

120 ❘ Item 35 Placement New

const size_t n = sizeof(string) * BUFSIZE;

string *sbuf = static_cast<string *>(::operator new(n));

int size = 0;

We can’t assign to an array element on its first access because it hasn’t
been initialized (see Assignment and Initialization Are Different [12, 41]).
Instead, we use placement new to initialize the element with the copy
constructor:

void append(string buf[], int &size, const string &val)

{ new (&buf[size++]) string(val); } // placement new

As usual, with placement new we are required to do our own cleanup:

void cleanupBuf(string buf[], int size) {

while(size)

buf[--size].~string(); // destroy initialized elements

::operator delete(buf); // free storage

}

This approach is fast, clever, and not intended for viewing by the general
public. This basic technique is used extensively (in a more sophisticated
form) in most implementations of the standard library containers.

Item 35 Placement New ❘ 121

This page intentionally left blank

Item 36 ❘ Class-Specific Memory
Management

If you don’t like the way standard operator new and operator delete
are treating one of your class types, you don’t have to stand for it. Instead,
your types can have their own operator new and operator delete cus-
tomized to their needs.

Note that we can’t do anything with the new operator or the delete
operator, since their behavior is fixed, but we can change which operator
new and operatordelete they invoke (see Placement New [35, 119]). The
best way to do this is to declare member operator new and operator
delete functions:

class Handle {

public:

//...

void *operator new(size_t);

void operator delete(void *);

//...

};

//...

Handle *h = new Handle; // uses Handle::operator new

//...

delete h; // uses Handle::operator delete

When we allocate an object of type Handle in a new expression, the
compiler will first look in the scope of Handle for an operator new. If it
doesn’t find one, then it will use an operator new from the global scope.
A similar situation holds for operator delete, so it generally makes
sense to define a member operator delete if you define a member
operatornew, and vice versa.

Member operator new and operator delete are static member func-
tions (see Optional Keywords [63, 231]), which makes sense. Recall that

123

static member functions have no this pointer, and these functions are
charged with simply getting and releasing the storage for an object, so
they have no use for a this pointer. Like other static member functions,
they are inherited by derived classes:

class MyHandle : public Handle {

//...

};

//...

MyHandle *mh = new MyHandle; // uses Handle::operator new

//...

delete mh; // uses Handle::operator delete

Of course, if MyHandle had declared its own operatornew and operator
delete, those would have been found first by the compiler during
lookup, and they would have been used instead of the inherited versions
from the Handle base class.

If you define member operator new and operator delete in a base
class, ensure that the base class destructor is virtual:

class Handle {

public:

//...

virtual ~Handle();

void *operator new(size_t);

void operator delete(void *);

//...

};

class MyHandle : public Handle {

//...

void *operator new(size_t);

void operator delete(void *, size_t); // note 2nd arg

//...

};

//...

Handle *h = new MyHandle; // uses MyHandle::operator new

//...

delete h; // uses MyHandle::operator delete

124 ❘ Item 36 Class-Specific Memory Management

Without a virtual destructor, the effect of deleting a derived class object
through a base class pointer is undefined! The implementation may simply
(and probably incorrectly) invoke Handle::operator delete rather
than MyHandle::operator delete, but anything at all could happen.
Notice also that we’ve employed a two-argument version of operator
delete rather than the usual one-argument version. This two-argument
version is another “usual” version of member operator delete often
employed by base classes that expect derived classes to inherit their
operator delete implementation. The second argument will contain
the size of the object being deleted—information that is often useful in
implementing custom memory management.

A common misconception is that use of the new and delete operators
implies use of the heap (or freestore) memory, but this is not the case. The
only implication in using the new operator is that a function called
operator new will be called and that function will return a pointer to
some memory. The standard, global operator new and operator
delete do indeed allocate memory from the heap, but member operator
new and operator delete can do whatever they like. There is no restric-
tion as to where that memory comes from; it may come from a special
heap, from a statically allocated block, from the guts of a standard con-
tainer, or from a block of storage local to a function. The only limit to
where the memory comes from is your creativity and common sense. For
example, Handle objects could be allocated from a static block like this:

struct rep {

enum { max = 1000 };

static rep *free; // head of freelist

static int num_used; // number of slots used

union {

char store[sizeof(Handle)];

rep *next;

};

};

static rep mem[rep::max]; // block of static storage

void *Handle::operator new(size_t) {

if(rep::free) { // if something on freelist

rep *tmp = rep::free; // take from freelist

rep::free = rep::free->next;

return tmp;

Item 36 Class-Specific Memory Management ❘ 125

}

else if(rep::num_used < rep::max) // if slots left

return &mem[rep::num_used++]; // return unused slot

else // otherwise, we're...

throw std::bad_alloc(); // ...out of memory!

}

void Handle::operator delete(void *p) { // add to freelist

static_cast<rep *>(p)->next = rep::free;

rep::free = static_cast<rep *>(p);

}

A production-quality version of this implementation would take care to
be more robust in out-of-memory conditions, deal with types derived
from Handle and arrays of Handles, and so on, but this simple code
nevertheless shows that new and delete don’t necessarily have to deal
with heap memory.

126 ❘ Item 36 Class-Specific Memory Management

Item 37 ❘ Array Allocation

Most C++ programmers know to keep the array and nonarray forms
straight when allocating and deallocating memory.

T *aT = new T; // non-array

T *aryT = new T[12]; // array

delete [] aryT; // array

delete aT; // non-array

aT = new T[1]; // array

delete aT; // error! should be array

The reason it’s important to keep these functions properly paired is that
array allocation and deallocation use different functions from nonarray
allocation and deallocation. A new expression does not use operatornew
to allocate storage for an array. It uses array new. Similarly, a delete
expression does not invoke operator delete to free an array’s storage; it
invokes array delete. To be precise, when you allocate an array, you’re
using a different operator (new[]) than you do when you allocate a
nonarray (new), and likewise for deallocation.

Array new and array delete are array analogs of operatornew and oper-
atordelete and are declared similarly:

void *operator new(size_t) throw(bad_alloc); // operator new

void *operator new[](size_t) throw(bad_alloc); // array new

void operator delete(void *) throw(); // operator delete

void operator delete[](void *) throw(); // array delete

The most common source of confusion with the array forms of these
functions occurs when a particular class or hierarchy defines its own
memory management with member operator new and operator
delete (see Class-Specific Memory Management [36, 123]).

class Handle {

public:

//...

127

void *operator new(size_t);

void operator delete(void *);

//...

};

The Handle class has defined nonarray memory management functions,
but these won’t be called for an array of Handles; the global array new
and array delete will:

Handle *handleSet = new Handle[MAX]; // calls ::operator new[]

//...

delete [] handleSet; // calls ::operator delete[]

Logically, it would seem to be a good idea always to declare the array
forms of these functions whenever the nonarray forms exist (though,
strangely, it doesn’t appear to be a common practice). If the intent is really
to invoke the global array allocation operations, it’s clearer if the local
forms just forward the call:

class Handle {

public:

//...

void *operator new(size_t);

void operator delete(void *);

void *operator new[](size_t n)

{ return ::operator new(n); }

void operator delete[](void *p)

{ ::operator delete(p); }

//...

};

If the intent is to discourage the allocation of arrays of Handles, then the
array forms can be declared to be private and left undefined (see Restricting
Heap Allocation [34, 117]).

A second source of confusion and error concerns the value of the size
argument that is passed to array new depending on how the function is
called. When operator new is called (implicitly) in a new expression, the
compiler determines how much memory is required and passes that

128 ❘ Item 37 Array Allocation

amount as the first argument to operatornew. That amount is the size of
the object being allocated:

aT = new T; // calls operator new(sizeof(T));

It’s also possible to call operator new directly, in which case we must
specify the number of bytes we want to allocate explicitly:

aT = static_cast<T *>(operator new(sizeof(T)));

We can also call array new directly:

aryT = static_cast<T *>(operator new[](5*sizeof(T)));

However, when we call array new implicitly through a new expression, the
compiler may, and often does, increase the memory request by a small
amount.

aryT = new T[5]; // request 5*sizeof(T) + delta bytes

The additional space is generally used by the runtime memory manager
to record information about the array that is necessary to later reclaim the
memory (the number of elements allocated, the size of each element, and
so on). To further complicate the situation, the compiler may or may not
request this additional space for every allocation, and the size of the
request may vary from allocation to allocation.

This difference in the amount requested is typically only a concern in very
low-level code, where storage for arrays is being handled directly. If you’re
going to be low level, it’s generally simplest to avoid direct calls to array
new and the associated meddling by the compiler and use plain old
operatornew instead (see Placement New [35, 119]).

Item 37 Array Allocation ❘ 129

This page intentionally left blank

Item 38 ❘ Exception Safety Axioms

Writing an exception safe program or library is a little like proving a the-
orem in Euclidean geometry. Starting with as minimal a set of axioms as
possible, we prove simple theorems. We then use these subsidiary theo-
rems to prove successively more complex and useful theorems. Exception
safety is similar, and we build our exception safe code from exception safe
components. (Although it’s interesting to note that simply composing a set
of exception safe components or function calls does not guarantee that the
result will be exception safe. That would be too easy, wouldn’t it?) As with
any proof system, however, we must eventually settle on a set of axioms
with which to build our exception safe structure. What are these axioms?

Axiom 1: Exceptions Are Synchronous

First, note that exceptions are synchronous and can occur only at the
boundary of a function call. Therefore, operations like arithmetic on pre-
defined types, assignment of predefined types (especially pointers), and
other low-level operations will not result in an exception. (They could
result in a signal or interrupt of some sort, but these are not exceptions.)

Operator overloading and templates complicate this situation, since it’s
often difficult to determine whether a given operation will result in a
function call and potential exception. For example, if I assign character
pointers, I know I won’t get an exception, whereas if I assign user-defined
Strings, I might:

const char *a, *b;

String c, d;

//...

a = b; // no function call, no exception

c = d; // function call, maybe an exception

131

With templates, things become less definite:

template <typename T>

void aTemplateContext() {

T e, f;

T *g, *h;

//...

e = f; // function call? exception?

g = h; // no function call, no exception

//...

}

Because of this uncertainty, all potential function calls within a template
must be assumed to be actual function calls, and this includes infix
operators, implicit conversions, and so on.

Axiom 2: It’s Safe to Destroy

This is a socially based, not technically based, axiom. Conventionally,
destructors, operator delete, and operator delete[] do not throw
exceptions. Consider an imaginary destructor that must delete two
pointer data members. We know that we’ll be criticized, ostracized, and
marginalized if we allow an exception to propagate from the destructor,
so we may be tempted to reach for a try block:

X::~X() {

try {

delete ptr1_;

delete ptr2_;

}

catch(...) {}

}

This is not necessary or advisable, since the fear of social ostracism also
(one hopes and assumes) affects the authors of the destructors and
operatordeletes of the objects to which ptr1_ and ptr2_ refer. We can
play on those fears to make our task easier:

X::~X() {

delete ptr1_;

delete ptr2_;

}

132 ❘ Item 38 Exception Safety Axioms

Axiom 3: Swap Doesn’t Throw

This is another socially based axiom, but it’s not as ingrained and univer-
sally recognized as the prohibition on destructors and deletions that
throw. Swapping would not seem to be a very common operation, but it is
used extensively “behind the scenes,” most particularly in STL implemen-
tations. Whenever you perform a sort, reverse, partition, or any of a
large number of other operations, you’re swapping, and an exception safe
swap goes a long way toward guaranteeing that these operations will be
exception safe as well. See also Copy Operations [13, 45].

Item 38 Exception Safety Axioms ❘ 133

This page intentionally left blank

Item 39 ❘ Exception Safe Functions

The hard part about writing exception safe code isn’t the throwing or
catching of exceptions; it’s everything in between. As a thrown exception
wends its way from the throw expression to the catch clause, every par-
tially executed function on that path must “clean up” any important
resources that it controls before its activation record is popped off the
execution stack. Generally (but not always), all that is required to write an
exception safe function is a moment’s reflection and some common
sense.

For example, consider the implementation of String assignment from
Assignment and Initialization Are Different [12, 41]:

String &String::operator =(const char *str) {

if(!str) str = "";

char *tmp = strcpy(new char[strlen(str)+1], str);

delete [] s_;

s_ = tmp;

return *this;

}

The implementation of this function may look superfluously ornate,
since we could have coded it with fewer lines and no temporary:

String &String::operator =(const char *str) {

delete [] s_;

if(!str) str = "";

s_ = strcpy(new char[strlen(str)+1], str);

return *this;

}

However, while the array delete comes with a social guarantee not to
throw an exception (see Exception Safety Axioms [38, 131]), the array new
a couple of lines later makes no such promise. If we delete the old buffer

135

before we know whether allocation of the new buffer will succeed, we’ll
leave the String object in a bad state. Herb Sutter summarizes the situa-
tion well in his Exceptional C++, which I’ll paraphrase as this: First do
anything that could cause an exception “off to the side” without changing
important state, and then use operations that can’t throw an exception
to finish up. That’s what we did in the first implementation of
String::operator = above. Let’s look at another example from
Commands and Hollywood [19, 67]:

void Button::setAction(const Action *newAction) {

Action *temp = newAction->clone(); // off to the side...

delete action_; // then change state!

action_ = temp;

}

Because it’s a virtual function, we really know nothing about the excep-
tion-related behavior of the call to clone, so we assume the worst. If the
clone operation succeeds, we continue with an exception safe deletion
and pointer assignment. Otherwise, a thrown exception from clone will
cause premature exit from Button::setAction with no harm done.
Newer C++ programmers have a tendency to “clean up” code like this in
such a way as to make it exception unsafe:

void Button::setAction(const Action *newAction) {

delete action_; // change state!

action_ = newAction->clone(); // then maybe throw?

}

Performing the deletion (which is assumed to be exception safe) before
the clone (which makes no such promise) will leave the Button object in
an inconsistent state if clone throws an exception.

Notice that properly written exception safe code employs relatively few
try blocks. A novice attempt to write exception safe code is often littered
with unnecessary and often damaging trys and catches:

void Button::setAction(const Action *newAction) {

delete action_;

try {

action_ = newAction->clone();

}

136 ❘ Item 39 Exception Safe Functions

catch(...) {

action_ = 0;

throw;

}

}

This version with its fussy try block and catch clause is exception safe in
the sense that the Button object is left in a consistent (but likely different)
state if clone throws an exception. However, our previous version was
shorter, simpler, and more exception safe because it left the Button object
not merely consistent but unchanged.

It’s a good idea to minimize the use of try blocks, where possible, and
employ them primarily in locations where you really want to examine the
type of a passing exception in order to do something with it. In practice,
these locations are often at module boundaries between your code and
third-party libraries and between your code and the operating system.

Item 39 Exception Safe Functions ❘ 137

This page intentionally left blank

Item 40 ❘ RAII

The C++ community has a long and proud tradition of inscrutable
abbreviations and odd names for techniques. RAII manages to attain
both oddness and inscrutability. RAII stands for “resource acquisition is
initialization.” (No, not “initialization is resource acquisition,” as some
would have it. If you’re going to be odd, you’ve got to go all the way or the
whole thing falls flat.)

RAII is a simple technique that harnesses C++’s notion of object lifetime
to control program resources like memory, file handles, network connec-
tions, audit trails, or whatever. The basic technique is simple. If you want
to keep track of an important resource, create an object and associate the
resource’s lifetime with the object’s lifetime. In that way, you can use
C++’s sophisticated object management facilities to manage resources. In
its simplest form, we create an object whose constructor seizes a resource
and whose destructor frees the resource.

class Resource { ... };

class ResourceHandle {

public:

explicit ResourceHandle(Resource *aResource)

: r_(aResource) {} // seize resource

~ResourceHandle()

{ delete r_; } // release resource

Resource *get()

{ return r_; } // access resource

private:

ResourceHandle(const ResourceHandle &);

ResourceHandle &operator =(const ResourceHandle &);

Resource *r_;

};

The nice thing about a ResourceHandle object is that, if it is declared as a
local member of a function, as a function argument, or as a static, we are
guaranteed to get a destructor call and recover the resource to which it

139

refers. This is an important property if we want to keep track of our
important resources in the face of slapdash maintenance or propagating
exceptions. Consider some simple code that doesn’t employ RAII:

void f() {

Resource *rh = new Resource;

//...

if(iFeelLikeIt()) // bad maintenance

return;

//...

g(); // exception?

delete rh; // do we always get here?

}

It may be that the original version of this function was safe, and the
resource to which rh referred was always recovered. However, over time
such code tends to break, as less experienced maintainers insert early
returns, call functions that can throw an exception, or otherwise avoid the
resource recovery code at the end of the function. Use of RAII results in a
function that is both simpler and more robust:

void f() {

ResourceHandle rh(new Resource);

//...

if(iFeelLikeIt()) // no problem!

return;

//...

g(); // exception? no problem!

// rh destructor performs deletion!

}

The only time you’re not guaranteed a destructor call when using RAII is
if the resource handle is allocated on the heap, since the destructor will be
called only if the object is deleted explicitly. (In the interests of full disclo-
sure, there are also edge cases where abort or exit is called and an iffy
situation that can occur if a thrown exception is never caught.)

ResourceHandle *rhp =

new ResourceHandle(new Resource); // bad idea!

140 ❘ Item 40 RAII

RAII is such a pervasive technique in C++ programming that it’s hard to
find a library component or significant block of code that does not
employ it in some fashion. Note that we have a very broad definition of
“resource” that can be controlled via RAII. In addition to resources that
are essentially hunks of memory (buffers, strings, container implementa-
tions, and the like), we can use RAII to control system resources like file
handles, semaphores, and network connections, as well as less glamorous
things like login sessions, graphical shapes, or zoo animals.

Consider the following class:

class Trace {

public:

Trace(const char *msg) : msg_(msg)

{ std::cout << "Entering " << msg_ << std::endl; }

~Trace()

{ std::cout << "Leaving " << msg_ << std::endl; }

private:

std::string msg_;

};

In the case of Trace, the resource we’re controlling is a message to be
printed when a scope is exited. It’s instructive to observe the behavior of a
variety of Trace objects (automatic, static, local, and global) by following
their lifetimes under various types of control flow.

void f() {

Trace tracer("f"); // print "entering" message

ResourceHandle rh(new Resource); // seize resource

//...

if(iFeelLikeIt()) // no problem!

return;

//...

g(); // exception? no problem!

// rh destructor performs deletion!

// tracer destructor prints exiting message!

}

The code above also illustrates an important invariant of constructor and
destructor structure activation: The activations form a stack. That is, we
declared and initialized tracer before rh, so we are guaranteed that rh

Item 40 RAII ❘ 141

will be destroyed before tracer (last initialized, first destroyed). More
generally, whenever we declare a sequence of objects, these objects will be
initialized at runtime in a specific order and eventually destroyed in the
inverse order. That order of destruction will not vary even in the event of
an impromptu return, a propagating exception, an unusual switch, or
an evil goto. (If you find this to be a dubious claim, I encourage you to
play with the Trace class. Very instructive.) This property is particularly
important for resource acquisition and release, since it is generally the
case that resources must be seized in a particular order and released in the
inverse order. For example, a network connection must be opened
before an audit message is sent, and a closing audit message must be
sent before the connection is closed.

This stack-based behavior extends even into the initialization and
destruction of individual objects. An object’s constructor initializes its
base class subobjects in the order they’re declared, followed by its data
members in the order that they’re declared. Then (and only then) is the
body of the constructor executed. Now we know how the object’s destruc-
tor will behave. Backward. First the destructor body is executed, then the
object’s data members are destroyed in the inverse order of their declara-
tion, and finally the object’s base class subobjects are destroyed in the
inverse order of their declaration. In case it’s not obvious by this point,
this stack-like behavior is really handy for seizing and releasing an object’s
required resources.

142 ❘ Item 40 RAII

Item 41 ❘ New, Constructors,
and Exceptions

To write perfectly exception safe code, it’s necessary to keep track of any
allocated resources and to be prepared to release them if an exception
occurs. This is often a straightforward process. We can either organize our
code in such a way that no resource recovery is necessary (see Exception
Safe Functions [39, 135]) or use resource handles to recover the resources
automatically (see RAII [40, 139]). In extreme situations, we can get down
and dirty with try blocks or even nested try blocks, but this should be an
exception, not the rule.

We do, however, have an apparent problem with the use of the new
operator. The new operator actually performs two separate operations
(see Placement New [35, 119]); first it calls a function named operator
new to allocate some storage, and then it may invoke a constructor to turn
that uninitialized storage into an object:

String *title = new String("Kicks");

The problem is that, if an exception occurs, we can’t tell whether it was
thrown by operator new or the String constructor. This matters,
because if operator new succeeds and the constructor throws an excep-
tion, we should probably call operator delete on the allocated (but
uninitialized) storage. If operator new was the function that threw the
exception, no memory was allocated and we should not call operator
delete.

One horrible approach is to handcraft the proper behavior by separating
the allocation and initialization behavior and tossing in a try block:

String *title // allocate raw storage

= static_cast<String *>(::operator new(sizeof(String));

try {

new(title) String("Kicks"); // placement new

143

}

catch(...) {

::operator delete(title); // clean up if ctor throws

}

Ouch. So many things are wrong with this code that the approach is not
worth considering. In addition to being more trouble for you, the over-
worked coder, it will not behave properly if String has a member
operator new and operator delete (see Class-Specific Memory Man-
agement [36, 123]). This is a perfect example of too-clever code that works
initially but fails subtly in the future because of a remote change (for
example, if someone adds String-specific memory management).

Fortunately, the compiler handles this situation for us and produces code
that performs in the same way as in our hand-coded approach above, but
with one exception. It will invoke the operatordelete that corresponds
to the operatornew used to perform the allocation.

String *title = new String("Kicks"); // use members if present

String *title = ::new String("Kicks"); // use global new/delete

In particular, if the allocation uses a member operatornew, then the cor-
responding member operator delete will be called to reclaim the stor-
age if the String constructor throws an exception. This is yet another
good reason to declare a member operator delete if you declare a
member operatornew.

Essentially the same situation applies to array allocation and allocations
that use overloaded versions of operator new[]; the compiler will
attempt to find and call the appropriate operatordelete[].

144 ❘ Item 41 New, Constructors, and Exceptions

Item 42 ❘ Smart Pointers

We C++ programmers are a loyal bunch. Whenever we’re faced with a
situation that requires a feature the language doesn’t support, we don’t
abandon C++ to flirt with some other language; we just extend C++ to
support the feature in which we’re interested.

For instance, it’s often the case that you’ll need something that behaves
like a pointer, but a built-in pointer type just doesn’t do the job. In those
cases, a C++ programmer will use a “smart pointer.” (See also Function
Objects [18, 63] for similar observations about function pointers.)

A smart pointer is a class type that is tricked up to look and act like a
pointer but that provides additional capability beyond that provided by a
built-in pointer. Generally, a smart pointer uses the capabilities provided
by a class’s constructors, destructor, and copy operations to control access
to or keep track of what it points to in a way that a built-in pointer cannot.

All smart pointers overload the -> and * operators so that they can be
used with standard pointer syntax. (Some rare specimens even go so far as
to overload the ->* operator; see Pointers to Class Members Are Not Point-
ers [15, 53].) Other smart pointers (in particular, smart pointers used as
STL iterators) overload other pointer operators, like ++, --, +, -, +=, -=,
and [](see Pointer Arithmetic [44, 149]). Smart pointers are often imple-
mented as class templates so that they may refer to different types of
objects. Here’s a very simple smart pointer template that performs a
check that it’s not null before use:

template <typename T>

class CheckedPtr {

public:

explicit CheckedPtr(T *p) : p_(p) {}

~CheckedPtr() { delete p_; }

T *operator ->() { return get(); }

T &operator *() { return *get(); }

private:

T *p_; // what we're pointing to

145

T *get() { // check ptr before returning it

if(!p_)

throw NullCheckedPointer();

return p_;

}

CheckedPtr(const CheckedPtr &);

CheckedPtr &operator =(const CheckedPtr &);

};

Use of a smart pointer should be straightforward, mimicking the use of a
built-in pointer:

CheckedPtr<Shape> s(new Circle);

s->draw(); // same as (s.operator ->())->draw()

The key to this façade is the overloaded operator ->. The -> operator
must be overloaded as a member and has a rather unusual property in
that it is not “consumed” when it is called. In other words, when we write
s->draw(), the compiler recognizes that s is not a pointer but a class
object with an overloaded operator-> (that is, that s is a smart pointer).
This results in a call to the member overloaded operator, which returns
(in this case) a Shape * built-in pointer. This pointer is then used to call
Shape’s draw function. If you write this out longhand, you’ll get the fol-
lowing challenging expression: (s.operator ->())->draw(), which
contains two uses of the ->operator, one overloaded, one built in.

Smart pointers also typically overload operator* as well as operator->
so that they may be used to refer to nonclass types.

CheckedPtr<int> ip = new int;

*ip = 12; // same as ip.operator *() = 12

(*s).draw(); // use on ptr to class, too

Smart pointers are used pervasively in C++ programming, from resource
handles (see RAII [40, 139] and auto_ptr Is Unusual [43, 147]) to STL itera-
tors, to reference counting pointers, to wrappers around pointers to
member functions, and on and on. Semper fidelis.

146 ❘ Item 42 Smart Pointers

Item 43 ❘ auto_ptr Is Unusual

Whenever one discusses RAII, it’s necessary to discuss auto_ptr. This is
always a task. It’s not that we’re ashamed of auto_ptr, mind you, but it’s
kind of like explaining your brother to strangers; he’s a superlative person,
but you have to be in the right frame of mind to appreciate that. And
there’s no denying that both your brother and auto_ptr have a different
worldview from the typical person or object, respectively.

As we discussed in RAII [40, 139], the use of resource handles is a perva-
sively employed technique in C++ programming, so the standard library
supplies a resource handle template that serves many resource handle
needs: auto_ptr. The auto_ptr class template is used to generate smart
pointers (see Smart Pointers [42, 145]) that know how to clean up after
themselves.

using std::auto_ptr; // see Namespaces [23, 81]

auto_ptr<Shape> aShape(new Circle);

aShape->draw(); // draw a circle

(*aShape).draw(); // draw it again

Like all well-designed smart pointers, auto_ptr overloads operator ->
and operator * so that you can usually pretend you’re dealing with a
built-in pointer. There are many nice things about auto_ptr. First, it’s
very efficient. You’re not likely to get better performance with a hand-
coded solution that uses a built-in pointer. Second, when an auto_ptr
goes out of scope, its destructor will free whatever it’s pointing to, just as
our hand-coded resource handle did. In the code fragment above, the
Circle object to which aShape refers will be (effectively) garbage collected.

A third nice thing about auto_ptr is that it behaves like a built-in pointer
with respect to conversions:

auto_ptr<Circle> aCircle(new Circle);

aShape = aCircle;

147

Through its clever use of template member functions (see Member Tem-
plates [50, 173]) one auto_ptr can be copied to another if the correspon-
ding built-in pointers could. In the code above, an auto_ptr<Circle> can
be assigned to an auto_ptr<Shape> because a Circle* can be assigned to
a Shape* (assuming that Shape is a public base class of Circle).

Where auto_ptr differs from the typical smart pointer (or typical object,
for that matter) is in its copy operations. For a typical class, the copy oper-
ations (see Copy Operations [13, 45]) will not affect the source of the copy.
In other words, if T is some type

T a;

T b(a); // copy construction of b with a

a = b; // assignment from b to a

then when b is initialized with a, the value of a is unaffected, and when b
is assigned to a, the value of b is unaffected. Not so with auto_ptr! When
we assigned aCircle to aShape above, both source and target of the
assignment were affected. If aShape was non-null, whatever it referred to
was deleted and replaced with what aCircle pointed to. In addition,
aCircle was set to null. Assignment and initialization of auto_ptrs are
not really copy operations; they are operations that transfer control of the
underlying object from one auto_ptr to another. One can think of the
right argument of an assignment or initialization as a “source” and the left
argument as a “sink.” Control of the underlying object is passed from
source to sink. This is a good property in a resource handle.

However, one should avoid the use of auto_ptrs in two common situa-
tions. First, they should never be used as container elements. Container
elements are often copied around within a container, and the container
will assume that its elements obey the usual, non-auto_ptr copy seman-
tics. Feel free to use a smart pointer as a container element, just as long as
it’s not an auto_ptr. Second, an auto_ptr should refer to a single ele-
ment, not an array. The reason is that when the object to which the
auto_ptr refers is deleted, it will be deleted using operator delete, not
array delete. If the auto_ptr refers to an array, the wrong deletion opera-
tor will be called (see Array Allocation [37, 127]).

vector< auto_ptr<Shape> > shapes; // likely error, bad idea

auto_ptr<int> ints(new int[32]); // bad idea, no error (yet)

Generally, a standard vector or string is a reasonable alternative to an
auto_ptr to an array.

148 ❘ Item 43 auto_ptr Is Unusual

Item 44 ❘ Pointer Arithmetic

Pointer arithmetic is straightforward. To understand the nature of
pointer arithmetic in C++, it’s best to consider a pointer into an array:

const int MAX = 10;

short points[MAX];

short *curPoint = points+4;

This gives us an array and a pointer to somewhere near the middle of the
array, as shown in Figure 9.

If we increment or decrement the pointer curPoint, we are requesting
that it point to the next or previous short in the points array. In other
words, pointer arithmetic is always scaled in the size of the object that is
being pointed to; incrementing curPoint by one does not add a one byte
to the address in the pointer—it adds sizeof(short) bytes. This is why
there is no pointer arithmetic available on void* pointers; we don’t know
what type of object the void * refers to, so we can’t scale the arithmetic
properly.

Figure 9 ❘ Effect of various arithmetic operations on the address contained in a pointer

curPoint-3
--curPoint

points+4

++curPoint

points:

curPoint-=2

curPoint:

curPoint+1 curPoint [4]

149

The only time this simple scheme seems to cause confusion is in the case
of multidimensional arrays, because novice C++ programmers tend to
forget that a multidimensional array is an array of arrays:

const int ROWS = 2;

const int COLS = 3;

int table[ROWS][COLS]; // array of ROWS arrays of COLS ints

int (*ptable)[COLS] = table; // ptr to array of COLS ints

It’s convenient to visualize the two-dimensional array shown in Figure 10
as a table even though it’s actually laid out in a linear fashion in memory,
as illustrated in Figure 11.

When we perform pointer arithmetic on ptable, the arithmetic is, as
always, scaled in the size of the object to which ptable points. But that
object is an array of COLS ints (which is sizeof(int)*COLS bytes), not
an int.

Figure 10 ❘ A two-dimensional array is conceptually a table.

Figure 11 ❘ A two-dimensional array is actually a linear sequence of one-dimensional
arrays.

ptable

table:

ptable[2]ptable+1

0,0

1,0

0,1

1,1

0,2

1,2

table: 0,0

1,0

0,1

1,1

0,2

1,2

150 ❘ Item 44 Pointer Arithmetic

Pointers of the same type may be subtracted. The result is the number of
objects (not the number of bytes) that lie between the two pointers. If
the first pointer is greater (refers to a higher memory location) than the
second pointer, the result is positive; otherwise it’s negative. If the two
pointers refer to the same object, or are both null, the result is zero. The
type of the result of subtracting two pointers is the standard typedef
ptrdiff_t, which is usually an alias for int. Two pointers may not be
added, multiplied, or divided, because these operations just don’t make
conventional sense for addresses. Pointers are not integers (but see Place-
ment New [35, 119]).

This commonly understood concept of pointer arithmetic is used as a
metaphor for the design of STL iterators (see The Standard Template
Library [4, 11] and Smart Pointers [42, 145]). STL iterators also permit
pointer-like arithmetic that employs the same syntax as built-in pointers.
In fact, built-in pointers are compliant STL iterators. Consider a possible
implementation of an STL list container, as shown in Figure 12:

This configuration could have come about by executing the following code:

int a[] = { 1, 2, 3, 4 };

std::list<int> lst(a, a+3);

std::list<int>::iterator iter = lst.begin();

++iter;

A list’s iterator cannot be a built-in pointer but is instead a smart pointer
with overloaded operators. The pointer arithmetic-like operation ++iter
does not increment iter the way it would increment a pointer; instead, it
follows a link from the current node of the list to the next. However, the
analogy with arithmetic on built-in pointers is exact; the increment opera-
tion moves the iterator to the next element in the list, the way increment-
ing a built-in pointer moves it to the next element of an array.

Figure 12 ❘ Possible implementation of a standard list. A list iterator isn’t a pointer,
but it is modeled on a pointer.

4321

iter

1st

Item 44 Pointer Arithmetic ❘ 151

This page intentionally left blank

Item 45 ❘ Template Terminology

Precise use of terminology is always important in any technical field, par-
ticularly in programming, most particularly in C++ programming, and
most definitely particularly in C++ template programming.

Figure 13 illustrates the most important aspects of C++ template
terminology.

Be particularly careful to distinguish between a template parameter,
which is used in the declaration of a template, and template argument,
which is used in the specialization of a template.

template <typename T> // T is a template parameter

class Heap { ... };

//...

Heap<double> dHeap; // double is a template argument

Figure 13 ❘ Template terminology. Precise use of terminology is essential to precise
communication of a template design.

template-id

template < typename T >

class Heap;

template < typename T >

class Heap<T *>;

template <>

class Heap < char *>;

//...

Heap<int > aHeap;

Heap<char *> aHeap2;

template < typename T >

void print (const T &x) { ...

template-parameter-list

template-argument-list

template-name

153

Also be careful to distinguish between a template-name, which is a simple
identifier, and a template-id, which is a template name with an appended
template argument list.

Most C++ programmers confuse the terms “instantiation” and “special-
ization.” A specialization of a template is what you get when you supply a
template with a set of template arguments. The specialization can be
implicit or explicit. For example, when we write Heap<int>, we are
explicitly specializing the Heap class template with an int argument.
When we write print(12.3), we are implicitly specializing the print
function template with a double argument. A specialization of a template
may or may not cause a template instantiation. For example, if there
is a customized version of Heap for int available, the specialization
Heap<int> will refer to that version and no instantiation will take place
(see Class Template Explicit Specialization [46, 155]). However, if the pri-
mary Heap template is used, or if a partial specialization is used (see Tem-
plate Partial Specialization [47, 161]), then an instantiation will take place.

154 ❘ Item 45 Template Terminology

Item 46 ❘ Class Template Explicit
Specialization

Class template explicit specialization is straightforward. First, you need a
general case to specialize. This general case is called the “primary” template.

template <typename T> class Heap;

The primary template has only to be declared to be specialized (as Heap is
above), but it is usually also defined (as Heap is below):

template <typename T>

class Heap {

public:

void push(const T &val);

T pop();

bool empty() const { return h_.empty(); }

private:

std::vector<T> h_;

};

Our primary template implements a heap data structure by putting an
easy-to-use interface around the somewhat challenging standard library
heap algorithms. A heap is a linearized tree structure that is optimized for
insertion and retrieval. Pushing a value into a heap inserts the value into
the tree structure, and popping a heap removes and returns the largest
value in the heap. For example, the push and pop operations can be
implemented using the standard push_heap and pop_heap algorithms:

template <typename T>

void Heap<T>::push(const T &val) {

h_.push_back(val);

std::push_heap(h_.begin(), h_.end());

}

template <typename T>

155

T Heap<T>::pop() {

std::pop_heap(h_.begin(), h_.end());

T tmp(h_.back());

h_.pop_back();

return tmp;

}

This implementation works well for many types of values but falls down
in the case of pointers to characters. By default, the standard heap algo-
rithms use the < operator to compare and organize the elements in the
heap. In the case of pointers to characters, however, this would result in
the heap’s being organized according to the addresses of the strings to
which the character pointers refer, not the values of the strings them-
selves. That is, the heap will be organized by the values of the pointers, not
the values of what they point to.

We can address this particular difficulty with an explicit specialization of
the primary Heap template for pointers to character:

template <>

class Heap<const char *> {

public:

void push(const char *pval);

const char *pop();

bool empty() const { return h_.empty(); }

private:

std::vector<const char *> h_;

};

The template-parameter-list is empty, but the template argument for
which we’re specializing is appended to the template-name. Curiously,
this class template explicit specialization is not a template, because there
is no template parameter left unspecified. For this reason, a class tem-
plate explicit specialization is commonly called a “complete specializa-
tion” to distinguish it from a partial specialization, which is a template
(see Template Partial Specialization [47, 161]).

The technical terminology in this area is tricky: A template specialization
is a template name with template arguments supplied (see Template Ter-
minology [45, 153]). The syntax Heap<constchar*> is a template special-
ization, as is Heap<int>. However, the first specialization of Heap will not

156 ❘ Item 46 Class Template Explicit Specialization

result in an instantiation of the Heap template (because the explicit spe-
cialization defined for constchar* will be used), but the second special-
ization will cause the primary Heap template to be instantiated.

The implementation of the specialization can be customized to the needs
of the const char * element type. For example, the push operation can
insert a new value into the heap based on the value of the string to which
the pointer refers, rather than the address contained in the pointer:

bool strLess(const char *a, const char *b)

{ return strcmp(a, b) < 0; }

void Heap<const char *>::push(const char *pval) {

h_.push_back(pval);

std::push_heap(h_.begin(), h_.end(), strLess);

}

Note the absence of the template keyword and parameter list in the defi-
nition of Heap<const char *>::push; this is not a function template
because, as we noted above, the explicit specialization Heap<constchar*>
is not a template.

With the availability of this complete specialization, we can distinguish
between Heaps of constchar*s and other Heaps:

Heap<int> h1; // use primary template

Heap<const char *> h2; // use explicit specialization

Heap<char *> h3; // use primary template!

The compiler checks a class template specialization against the declara-
tion of the primary template. If the template arguments match the pri-
mary template (in the case of Heap, if there is a single type name
argument) the compiler will look for an explicit specialization that
matches the template arguments exactly. If we want to special case for
Heaps of char * in addition to Heaps of const char *, we have to provide
an additional explicit specialization:

template <>

class Heap<char *> {

public:

void push(char *pval);

Item 46 Class Template Explicit Specialization ❘ 157

char *pop();

size_t size() const;

void capitalize();

// no empty!

private:

std::vector<char *> h_;

};

Notice that there is no requirement that an explicit specialization’s inter-
face match that of the primary template. For example, in the case of our
first explicit specialization of Heap for const char *, the formal argu-
ment type of the push function was declared to be const char * rather
than constchar*&. This is a reasonable optimization for a pointer argu-
ment. In the case of the specialization of Heap for char*, we’ve gone even
further in departing from the interface of the primary template.

We’ve added two new functions (size and capitalize), which is both
legal and sometimes useful, and not provided another (empty), which is
legal but generally inadvisable. When considering the interfaces of class
template explicit specializations, it’s helpful to make an analogy to the
relationship between base and derived classes (though class template
explicit specialization has absolutely no technical connection to class der-
ivation). Users of a class hierarchy often write polymorphic code to the
base class interface with the expectation that the derived class will imple-
ment that interface (see Polymorphism [2, 3]). Similarly, users will often
write generic code to the interface provided in the primary template (if
the primary is defined as well as declared) and will expect that any spe-
cialization will have at least those capabilities (though, as with a derived
class, it may have additional capabilities). Consider a simple function
template:

template <typename T, typename Out>

void extractHeap(Heap<T> &h, Out dest) {

while(!h.empty())

*dest++ = h.pop();

}

158 ❘ Item 46 Class Template Explicit Specialization

The author of this function template will have unkind thoughts about the
author of the char* explicit specialization of Heap if this code works:

Heap<const char *> heap1;

//...

vector<const char *> vec1;

extractHeap(heap1, back_inserter(vec1)); // fine...

and this code fails to compile:

Heap<char *> heap2;

//...

vector<char *> vec2;

extractHeap(heap2, back_inserter(vec2)); // error! no empty

Item 46 Class Template Explicit Specialization ❘ 159

This page intentionally left blank

Item 47 ❘ Template Partial Specialization

Let’s get it straight: you can’t partially specialize function templates. It’s
just not a part of the C++ language (although it may be some day). What
you probably want to do is overload them (see Overloading Function Tem-
plates [58, 213]). Accordingly, we are considering only class templates in
this item.

The way class template partial specialization works is straightforward. As
with complete specialization, you first need a general case—or primary
template—to specialize. Let’s use our Heap template from Class Template
Explicit Specialization [46, 155]:

template <typename T> class Heap;

Explicit specialization (also known colloquially as “complete” specializa-
tion) is used to customize a class template for a precise set of arguments.
In Class Template Explicit Specialization [46, 155], we used it to provide
customized implementations of Heap for constchar* and char*. How-
ever, we still have a problem with Heaps of other pointer types, in that
we’d like to order the Heap according to the values to which the pointer
elements refer, rather than the value of the pointers themselves.

Heap<double *> readings; // primary template, T is double *

Because the type (double *) does not match either of our character
pointer complete specializations, the compiler will instantiate the pri-
mary template. We could provide complete specializations for double *
and every other pointer type of interest, but this is onerous and ultimately
unmaintainable. This is a job for partial specialization:

template <typename T>

class Heap<T *> {

public:

void push(const T *val);

T *pop();

161

bool empty() const { return h_.empty(); }

private:

std::vector<T *> h_;

};

The syntax of a partial specialization is similar to that of a complete spe-
cialization, but the template parameter list is not empty. Like a complete
specialization, the class template name is a template-id and not a simple
template name (see Template Terminology [45, 153]).

This partial specialization for pointers allows us to modify the implemen-
tation appropriately. For example, insertions can be made based on the
value of the object pointed to, rather than the value of the pointer. First,
let’s whip up a comparator that compares two pointers by the values of
what they point to (see STL Function Objects [20, 71]):

template <typename T>

struct PtrCmp : public std::binary_function<T *, T *, bool> {

bool operator ()(const T *a, const T *b) const

{ return *a < *b; }

};

Now let’s use our comparator to implement a push operation with the
correct behavior:

template <typename T>

void Heap<T *>::push(T *pval) {

if(pval) {

h_.push_back(pval);

std::push_heap(h_.begin(), h_.end(), PtrCmp<T>());

}

}

Note that, unlike a complete specialization of a class template, a partial
specialization is a template, and the template keyword and parameter
list are required in definitions of its members.

Unlike our complete specializations, the parameter type of this version of
Heap is not completely determined; it’s only partially determined to be T
*, where T is an unspecified type. That’s what makes it a partial specializa-
tion. This partial specialization will be preferred to the primary template
when instantiating a Heap with any (unqualified) pointer type. Further,
the complete specializations of Heap for const char * and char * will be

162 ❘ Item 47 Template Partial Specialization

preferred to this partial specialization if the template argument type is
constchar* or char*.

Heap<std::string> h1; // primary, T is std::string

Heap<std::string *> h2; // partial spec, T is std::string

Heap<int **> h3; // partial spec, T is int *

Heap<char *> h4; // complete spec for char *

Heap<char **> h5; // partial spec, T is char *

Heap<const int *> h6; // partial spec, T is const int

Heap<int (*)()> h7; // partial spec, T is int ()

The complete set of rules for choosing among the various available partial
specializations is rather involved, but most cases are straightforward.
Generally, the most specific, most restricted candidate is chosen. The par-
tial specialization mechanism is precise and allows us to select among
candidates with high precision. For example, we could augment our set of
partial specializations with one for pointers to const:

template <typename T>

class Heap<const T *> {

//...

};

//...

Heap<const int *> h6; // different partial spec, now T is int

Note that, as we discussed in Class Template Explicit Specialization [46, 155],
the compiler checks a class template specialization against the declaration
of the primary template. If the template arguments match the primary
template (in the case of Heap, if there is a single type name argument) the
compiler will look for the complete or partial specialization that best
matches the template arguments.

Here’s a subtle and useful point: A complete or partial specialization of a
primary template must be instantiated with the same number and kind of
arguments as the primary, but its template parameter list does not have to
have the same form as that of the primary. In the case of Heap, the pri-
mary takes a single type name parameter, so any complete or partial
specialization of Heap must be instantiated with a single type name
argument:

template <typename T> class Heap;

Item 47 Template Partial Specialization ❘ 163

Therefore, a complete specialization of Heap still takes a single type name
template argument, but the template parameter list differs from that of
the primary because it is empty:

template <> class Heap<char *>;

A partial specialization of Heap must also take a single type name tem-
plate argument, and its template parameter list may have a single type
name parameter in its template header

template <typename T> class Heap<T *>;

but it doesn’t have to.

template <typename T, int n> class Heap<T [n]>;

This partial specialization will be selected for a specialization of Heap

with an array type. For example:

Heap<float *[6]> h8; // partial spec, T is float * and n is 6

Essentially, this partial specialization says, “This partial specialization
takes a single type parameter like the primary template, but that parame-
ter must have the form ‘array of T of size n.’” Consider some more
involved examples:

template <typename R, typename A1, typename A2>

class Heap<R (*)(A1,A2)>;

template <class C, typename T>

class Heap<T C::*>;

With the addition of these partial specializations, we can special case for
Heaps of pointers to non-member functions that take two arguments and
Heaps of pointers to data members (though why you’d want heaps of
these things is anybody’s guess):

Heap<char *(*)(int,int)> h9; // partial spec

// R is char *, A1 and A2 are int

Heap<std::string Name::*> h10; // partial spec

// T is string, C is Name

164 ❘ Item 47 Template Partial Specialization

Item 48 ❘ Class Template Member
Specialization

A common misconception about class template explicit specialization
and partial specialization is that a specialization somehow “inherits”
something from the primary template. This is not the case. A complete or
partial specialization of a class template is a totally separate entity from
the primary template and does not “inherit” either interface or imple-
mentation from the primary template. However, in a nontechnical sense,
specializations do inherit a set of expectations about their interfaces and
behaviors, in that users who write generic code to the interface of a primary
template generally expect that code to work with specializations as well.

This implies that a complete or partial specialization must generally
reimplement all the capabilities of the primary template, even if only a
portion of the implementation requires customization. An alternative is
often to specialize only a subset of the primary template’s member func-
tions. For example, consider the primary Heap template (see Class Tem-
plate Explicit Specialization [46, 155]):

template <typename T>

class Heap {

public:

void push(const T &val);

T pop();

bool empty() const { return h_.empty(); }

private:

std::vector<T> h_;

};

Our complete specialization of Heap for constchar* replaced the entire
implementation of the primary, even though its private implementation

165

and empty member function were perfectly adequate for a heap of char-
acter pointers. All we really had to do was specialize the push and pop
member functions:

template <>

void Heap<const char *>::push(const char *const &pval) {

h_.push_back(pval);

std::push_heap(h_.begin(), h_.end(), strLess);

}

template<>

const char *Heap<const char *>::pop() {

std::pop_heap(h_.begin(), h_.end(), strLess);

const char *tmp = h_.back(); h_.pop_back();

return tmp;

}

These functions are explicit specializations of the corresponding members
of the primary Heap template and will be used in place of the implicitly
instantiated versions for Heap<constchar*>.

Note that the interface of each of these functions must match exactly the
corresponding interface in the template whose members they’re specializ-
ing. For example, the primary template declared push to take an argument
of type const T &, so the explicit specialization of push for const char *
must have an argument type of constchar*const&. (That’s a reference
to a const pointer to a const char.) Note that we didn’t have this restric-
tion when providing a complete specialization of the Heap template as a
whole, where the argument to pushwas declared to be simply constchar*.

To increase the level of complexity (a common occurrence when pro-
gramming with templates), let’s consider what would happen if we had
available our partial specialization of Heap for pointers in general (see
Template Partial Specialization [47, 161]):

template <typename T>

class Heap<T *> {

//...

void push(T *pval);

//...

};

166 ❘ Item 48 Class Template Member Specialization

If this partial specialization of Heap is present, our explicit specialization
of push now must conform to the interface of the push member of the
partial specialization, since that’s the function that would otherwise be
instantiated for Heap<const char *>. The explicit specialization must
now be declared as follows:

template <>

void Heap<const char *>::push(const char *pval) {

h_.push_back(pval);

std::push_heap(h_.begin(), h_.end(), strLess);

}

Two final notes: First, other members of class templates may be explicitly
specialized in addition to member functions, including static members
and member templates.

Second, there is often confusion about the difference between explicit
specialization and explicit instantiation. As we’ve seen in this item,
explicit specialization is a means of providing a custom version of a tem-
plate or template member that differs from what one would have gotten
from an implicit instantiation. Explicit instantiation simply tells the com-
piler, explicitly, to instantiate a member that is identical to what one
would have gotten with an implicit instantiation.

template void Heap<double>::push(const double &);

See also You Instantiate What You Use [61, 225].

Item 48 Class Template Member Specialization ❘ 167

This page intentionally left blank

Item 49 ❘ Disambiguating with Typename

Even experienced C++ programmers are often put off by the rather
complex syntax required to program with templates. Of all the syntactic
gyrations one has to undertake, none is more initially confusing than the
occasional need to help the compiler disambiguate a parse.

As an example, let’s look at a portion of an implementation of a simple,
nonstandard container template.

template <typename T>

class PtrList {

public:

//...

typedef T *ElemT;

void insert(ElemT);

//...

};

It’s common practice for class templates to embed information about
themselves as nested type names. This allows us to access information
about the instantiated template through the appropriate nested name
(see Embedded Type Information [53, 189] and Traits [54, 193]).

typedef PtrList<State> StateList;

//...

StateList::ElemT currentState = 0;

The nested name ElemT allows us easy access to what the PtrList template
considers to be its element type. Even though we instantiated PtrListwith
the type name State, the element type is State*. In other circumstances,
PtrList could be implemented with a smart pointer element type, or a
very sophisticated implementation of PtrList might vary its implementa-
tion based on the properties of the type used to instantiate it (see Specializ-
ing for Type Information [52, 183]). Use of the nested type name helps to
insulate users of PtrList from these internal implementation decisions.

169

Here’s another nonstandard container:

template <typename Etype>

class SCollection {

public:

//...

typedef Etype ElemT;

void insert(const Etype &);

//...

};

It appears that SCollection is designed according to the same set of
naming standards as PtrList, in that it also defines a nested ElemT type
name. Adherence to an established convention is useful, because (among
other advantages) it allows us to write generic algorithms that work with
a range of different container types. For example, we could write a simple
utility algorithm that fills a conforming container with the content of an
array of the appropriate element type:

template <class Cont>

void fill(Cont &c, Cont::ElemT a[], int len) { // error!

for(int i = 0; i < len; ++i)

c.insert(a[i]);

}

Unfortunately, we have a syntax error. The nested name Cont::ElemT is
not recognized as a type name! The trouble is that, in the context of the
fill template, the compiler does not have enough information to deter-
mine whether the nested name ElemT is a type name or a nontype name.
The standard says that in such situations, the nested name is assumed to
be a nontype name.

If at first this makes no sense to you, you’re not alone. However, let’s see
what information is available to the compiler in different contexts. First,
let’s consider the situation in which we have a nontemplate class:

class MyContainer {

public:

typedef State ElemT;

//...

};

//...

MyContainer::ElemT *anElemPtr = 0;

170 ❘ Item 49 Disambiguating with Typename

There’s clearly no problem here, since the compiler can examine the con-
tent of the MyContainer class, verify that it has a member named ElemT,
and note that MyContainer::ElemT is indeed a type name. Things are
just as simple for a class that is generated from a class template.

typedef PtrList<State> StateList;

//...

StateList::ElemT aState = 0;

PtrList<State>::ElemT anotherState = 0;

To the compiler, an instantiated class template is just a class, and there is
no difference in the access of a nested name from the class type
PtrList<State> than there is from MyContainer. In either case, the
compiler just examines the content of the class to determine whether
ElemT is a type name.

However, once we enter the context of a template, things are different
because there is less precise information available. Consider the following
fragment:

template <typename T>

void aFuncTemplate(T &arg) {

...T::ElemT...

When the compiler encounters the qualified name T::ElemT, what does
it know? From the template parameter list it knows that T is a type name
of some sort. It can also determine that T is a class name because we’ve
employed the scope operator (::) to access a nested name of T. But that’s
all the compiler knows, because there is no information available about
the content of T. For instance, we could call aFuncTemplate with a
PtrList, in which case T::ElemT would be a type name.

PtrList<State> states;

//...

aFuncTemplate(states); // T::ElemT is PtrList<State>::ElemT

But what if we were to instantiate aFuncTemplate with a different type?

struct X {

enum Types { typeA, typeB, typeC } ElemT;

//...

};

X anX;

//...

Item 49 Disambiguating with Typename ❘ 171

aFuncTemplate(anX); // T::ElemT is X::ElemT

In this case, T::ElemT is the name of a data member—a nontype name.
What’s a compiler to do? The standard tossed a coin, and in cases where it
can’t determine the type of a nested name, the compiler will assume the
nested name is a nontype name. That is the cause of the syntax error in
the fill function template above.

To deal with this situation, we must sometimes explicitly inform the com-
piler when a nested name is a type name.

template <typename T>

void aFuncTemplate(T &arg) {

...typename T::ElemT...

Here we’ve used the typename keyword to tell the compiler explicitly that
the following qualified name is a type name. This allows the compiler to
parse the template correctly. Note that we are telling the compiler that
ElemT is a type name, not T. The compiler can already determine that T is
a type name. Similarly, if we were to write

typename A::B::C::D::E

we’d be telling the compiler that the (very) nested name E is a type name.

Of course, if aFuncTemplate is instantiated with a type that does not
satisfy the requirements of the parsed template, it will result in a compile-
time error.

struct Z {

// no member named ElemT...

};

Z aZ;

//...

aFuncTemplate(aZ); // error! no member Z::ElemT

aFuncTemplate(anX); // error! X::ElemT is not a type name

aFuncTemplate(states); // OK. nested ElemT is a type

Now we can rewrite the fill function template to parse correctly:

template <class Cont>

void fill(Cont &c, typename Cont::ElemT a[], int len) { // OK

for(int i = 0; i < len; ++i)

c.insert(a[i]);

}

172 ❘ Item 49 Disambiguating with Typename

Item 50 ❘ Member Templates

Class templates have members that are not themselves templates, and
many of these members can be defined outside the class. Let’s look at a
singly linked list container:

template <typename T>

class SList {

public:

SList() : head_(0) {}

//...

void push_front(const T &val);

void pop_front();

T front() const;

void reverse();

bool empty() const;

private:

struct Node {

Node *next_;

T el_;

};

Node *head_; // -> list

};

The member functions of a template, when defined outside the class tem-
plate, have a template header with the same structure as that used in the
class template definition:

template <typename T>

bool SList<T>::empty() const

{ return head_ == 0; }

We’ve decided to implement our singly linked list as a pointer to a
sequence of nodes, where each node contains a list element and a pointer
to the next node on the list. (A more sophisticated implementation might

173

embed a truncated Node in the SList, rather than a pointer to a Node, but
this is sufficient for our needs here.) Generally, such a nested class type is
defined within the template itself, but it needn’t be:

template <typename T>

class SList {

public:

//...

private:

struct Node; // incomplete class declaration

Node *head_; // -> list

//...

};

template <typename T> // definition outside template

struct SList<T>::Node {

Node *next_;

T el_;

};

The members empty and Node are examples of template members. But a
class template (or even a nontemplate class) can also have member tem-
plates. (Yes, we are witnessing yet another example of C++’s penchant
for defining easily confused technical terms. This little gem joins
with the new operator/operator new, covariance/contravariance, and
const_iterator/const iterator pairs to ensure that every design review
will be an adventure.) In the finest tautological tradition, a member tem-
plate is a member that is a template:

template <typename T>

class SList {

public:

//...

template <typename In> SList(In begin, In end);

//...

};

This SList constructor, unlike the default constructor, is a member tem-
plate, explicitly parameterized with the typename In. It’s also implicitly
parameterized by the type name used to instantiate the SList template of

174 ❘ Item 50 Member Templates

which it is a member. This explains the highly repetitious nature of its
definition when it’s defined outside its class template:

template <typename T> // this one's for SList

template <typename In> // this one's for the member

SList<T>::SList(In begin, In end) : head_(0) {

while(begin != end)

push_front(*begin++);

reverse();

}

As with other function templates, the compiler will perform argument
deduction and instantiate the constructor template as needed (see Tem-
plate Argument Deduction [57, 209]):

float rds[] = { ... };

const int size = sizeof(rds)/sizeof(rds[0]);

std::vector<double> rds2(rds, rds+size);

//...

SList<float> data(rds, rds+size); // In is float *

SList<double> data2(rds2.begin(), rds2.end()); // In is

// vector<double>::iterator

This is a common use of constructor templates in the STL to allow a con-
tainer to be initialized by a sequence of values drawn from an arbitrary
source. Another common use of member templates is to generate copy
operation–like constructors and assignment operators:

template <typename T>

class SList {

public:

//...

template <typename S>

SList(const SList<S> &that);

template <typename S>

SList &operator =(const SList<S> &rhs);

//...

};

These template members can be used for copy constructor–like and copy
assignment–like operations.

Item 50 Member Templates ❘ 175

SList<double> data3(data); // T is double, S is float

data = data3; // T is float, S is double

Notice the waffle words “copy constructor–like” and “copy assignment–
like” in the above description. This is because a template member is never
used to instantiate a copy operation; that is, if T and S are the same type
above, then the compiler will not instantiate the member template but
will instead write the copy operation itself. In such cases, it’s usually best
to define the copy operations explicitly in order to forestall officious and
often incorrect help from the compiler:

template <typename T>

class SList {

public:

//...

SList(const SList &that); // copy ctor

SList &operator =(const SList &rhs); // copy assignment

template <typename S> SList(const SList<S> &that);

template <typename S>

SList &operator =(const SList<S> &rhs);

//...

};

//...

SList<float> data4(data); // copy ctor

data3 = data2; // copy assignment

data3 = data4; // non-copy assignment from member template

Any nonvirtual member function may be a template (member templates
can’t be virtual because the combination of these features results in insur-
mountable technical problems in their implementation). For example, we
could implement a sort operation for our list:

template <typename T>

class SList {

public:

//...

template <typename Comp> void sort(Comp comp);

//...

};

176 ❘ Item 50 Member Templates

This sort member template allows its user to pass a function pointer or
function object that will be used to compare elements in the list (see STL
Function Objects [20, 71]).

data.sort(std::less<float>()); // sort ascending

data.sort(std::greater<float>()); // sort descending

Here, we’ve instantiated two different versions of the sort member using
the standard function object types less and greater.

Item 50 Member Templates ❘ 177

This page intentionally left blank

Item 51 ❘ Disambiguating with Template

In Disambiguating with Typename [49, 169], we saw how it is sometimes
necessary to tell the compiler explicitly that a nested name is a type name
so that the compiler can perform a correct parse. The same situation
arises with nested template names.

The canonical example is in the implementation of an STL allocator. If
you’re not familiar with STL allocators, don’t worry, be happy. Previous
familiarity with them is not necessary for following this discussion,
though a good deal of patience might be.

An allocator is a class type that is used to customize memory manage-
ment operations for STL containers. Allocators are typically implemented
as class templates:

template <class T>

class AnAlloc {

public:

//...

template <class Other>

class rebind {

public:

typedef AnAlloc<Other> other;

};

//...

};

The class template AnAlloc contains the nested name rebind, which is
itself a class template. It is used within the STL framework to create allo-
cators “just like” the allocator that was used to instantiate a container but
for a different element type. For example:

typedef AnAlloc<int> AI; // original allocator allocates ints

typedef AI::rebind<double>::other AD; // allocates doubles

typedef AnAlloc<double> AD; // legal! this is the same type

179

It may look a little odd, but using the rebind mechanism allows one to
create a version of an existing allocator for a different element type with-
out knowing the type of the allocator or the type of the element.

typedef SomeAlloc::rebind<Node>::other NodeAlloc;

If the type name SomeAlloc follows the STL convention for allocators,
then it will have a nested rebind class template. Essentially, we’ve said,
“I don’t know what kind of allocator this type is, and I don’t know what it
allocates, but I want an allocator just like it that allocates Nodes!”

This level of ignorance can occur only within a template, where precise
types and values are not known until much later, when the template is
instantiated. Consider an augmentation of our SList container of Mem-
ber Templates [50, 173] to include an allocator type (A) that can allocate
elements (of type T). Like the standard containers, SList will provide a
default allocator argument:

template < typename T, class A = std::allocator<T> >

class SList {

//...

struct Node {

//...

};

typedef A::rebind<Node>::other NodeAlloc; // syntax error!

//...

};

As is typical for lists and other node-based containers, our list-of-T does
not actually allocate and manipulate Ts. Rather, it allocates and manipulates
nodes that contain a member of type T. This is the situation we described
above. We have some sort of allocator that knows how to allocate objects
of type T, but we want to allocate objects of type Node. However, when we
attempt to rebind, we get a syntax error.

Once again, the problem is that the compiler has no information about the
type name A at this point other than that it is a type name. The compiler
has to make the assumption that the nested name rebind is a nontem-
plate name, and the angle bracket that follows is parsed as a less-than. But

180 ❘ Item 51 Disambiguating with Template

our troubles are just beginning. Even if the compiler were somehow able
to determine that rebind is a template name, when it reached the (doubly)
nested name other, it would have to assume that it’s a nontype name!
Time for some clarification. The typedef must be written as follows:

typedef typename A::template rebind<Node>::other NodeAlloc;

The use of template tells the compiler that rebind is a template name,
and the use of typename tells the compiler that the whole mess refers to a
type name. Simple, right?

Item 51 Disambiguating with Template ❘ 181

This page intentionally left blank

Item 52 ❘ Specializing for Type
Information

Class template explicit specialization and partial specialization are com-
monly used to produce versions of a primary class template that are cus-
tomized to specific template arguments or classes of template arguments
(see Class Template Explicit Specialization [46, 155] and Template Partial
Specialization [47, 161]).

However, these language features are also commonly used in an inverse
fashion: Rather than produce a specialization based on the properties of a
type, the properties of a type are deduced from a specialization. Let’s look
at a simple example:

template <typename T>

struct IsInt // T is not an int...

{ enum { result = false }; };

template <>

struct IsInt<int> // unless it's an int!

{ enum { result = true }; };

Before we go on, I’d like to point out how simple the above code is, once
you get past its convoluted syntax. This is a simple example of what’s
known as template metaprogramming, that is, performing some por-
tion of a computation at compile time rather than runtime through the
use of template instantiation. It sounds high falutin’, but it still boils
down to an observation that might have come from one of my plainspoken,
cranberry-farming neighbors: “It’s an int if it’s an int.” Most advanced
C++ template programming is no more difficult than this, just more
involved.

With the primary template and complete specialization above, we can ask
(at compile time) whether an unknown type is actually an int:

template <typename X>

void aFunc(X &arg) {

//...

183

...IsInt<X>::result...

//...

}

The ability to ask such questions about types at compile time is the basis
of a number of important optimization and error-checking techniques.
Of course, knowing whether a particular type is precisely an int is of
limited utility. Knowing whether a type is a pointer is probably more gen-
erally useful, since implementations often take different forms depending
on whether they are dealing with pointers to objects or with objects
directly:

struct Yes {}; // a type analog to true

struct No {}; // a type analog to false

template <typename T>

struct IsPtr // T is not a ptr...

{ enum { result = false }; typedef No Result; };

template <typename T>

struct IsPtr<T *> // unless it's an unqualified ptr,

{ enum { result = true }; typedef Yes Result; };

template <typename T>

struct IsPtr<T *const> // or a const ptr,

{ enum { result = true }; typedef Yes Result; };

template <typename T>

struct IsPtr<T *volatile> // or a volatile ptr,

{ enum { result = true }; typedef Yes Result; };

template <typename T>

struct IsPtr<T *const volatile> // or a const volatile ptr.

{ enum { result = true }; typedef Yes Result; };

We’re asking a more general question with IsPtr than we did with
IsInt, so we’re employing partial specialization to “capture” the vari-
ously qualified versions of the pointer modifier. As advertised above, this
IsPtr facility is really no more difficult to understand than the IsInt
facility; it’s just more syntactically challenging. (See also SFINAE [59, 217]
for a similar metaprogramming technique.)

184 ❘ Item 52 Specializing for Type Information

To see the utility of the ability to ask questions about a type at compile
time, consider this implementation of a simple stack template:

template <typename T>

class Stack {

public:

~Stack();

void push(const T &val);

T &top();

void pop();

bool empty() const;

private:

//...

typedef std::deque<T> C;

typedef typename C::iterator I;

C s_;

};

Our stack is simply a pleasant interface wrapped around a standard
deque, similar to what we could have achieved with a standard stack
container adapter. Most of the operations are straightforward and can be
implemented directly with the deque.

template <typename T>

void Stack<T>::push(const T &val)

{ s_.push_back(val); }

However, we may have a problem with the Stack’s destructor. When the
Stack is destroyed, its deque data member will be destroyed as well,
which in turn will destroy any elements left in the deque. If these ele-
ments are pointers, however, the objects to which they point will not be
deleted; that’s just the way the standard deque container behaves. There-
fore, we have to decide on a pointer element deletion policy for our
Stack, which I will imperiously declare is to delete! (But see Policies [56, 205]
for a more flexible approach.) We can’t simply have the destructor delete
the deque elements, however, because that would cause an error in those
cases where the elements are not pointers.

One solution would be to use partial specialization of the Stack (primary)
template to handle stacks of pointers (see Template Partial Specialization

Item 52 Specializing for Type Information ❘ 185

[47, 161]). However, that seems like an overreaction when only a small
portion of the Stack’s behavior must change. A different approach sim-
ply asks the obvious question (at compile time) and acts accordingly: “If
the element type of the Stack is a pointer, then delete any remaining ele-
ments. Otherwise don’t delete.”

template <typename T>

class Stack {

public:

~Stack()

{ cleanup(typename IsPtr<T>::Result()); }

//...

private:

void cleanup(Yes) {

for(I i(s_.begin()); i != s_.end(); ++i)

delete *i;

}

void cleanup(No)

{}

typedef std::deque<T> C;

typedef typename C::iterator I;

C s_;

};

Here we have two different cleanup member functions, one of which
takes an argument of type Yes, while the other takes an argument of type
No. The Yes version deletes; the No version does not. The destructor asks
the question “Is T a pointer type?” by instantiating IsPtr with T and
accessing the nested type name Result (see Disambiguating with Type-
name [49, 169]), which will be either Yes or No, and passing an object of
that type to cleanup. Only one of the two versions of cleanup will be
instantiated and called, and the other will not (see You Instantiate What
You Use [61, 225]).

Stack<Shape *> shapes; // will delete

Stack<std::string> names; // won't delete

186 ❘ Item 52 Specializing for Type Information

Class template specializations can be used to extract arbitrarily complex
information from types. For instance, we may want to know not only
whether a particular type is an array but, if it is an array, what it’s an array
of and what its bound is:

template <typename T>

struct IsArray { // T is not an array...

enum { result = false };

typedef No Result;

};

template <typename E, int b>

struct IsArray<E [b]> { // ...unless it's an array!

enum { result = true };

typedef Yes Result;

enum { bound = b }; // array bound

typedef E Etype; // array element type

};

We may want to know not only whether a particular type is a pointer to
data member, but, if it is, what its class and member types are:

template <typename T>

struct IsPCM { // T is not a pointer to data member

enum { result = false };

typedef No Result;

};

template <class C, typename T>

struct IsPCM<T C::*> { // ...unless it is!

enum { result = true };

typedef Yes Result;

typedef C ClassType; // the class type

typedef T MemberType; // the type of class member

};

These techniques are employed in a number of popular toolkits that
provide the ability to access type traits (see Traits [54, 193]) for compile-
time code customization.

Item 52 Specializing for Type Information ❘ 187

This page intentionally left blank

Item 53 ❘ Embedded Type Information

How do we know the type of a container’s elements?

template <typename T>

class Seq {

//...

};

At first, this may not seem to be a problem. The element type of
Seq<std::string> is std::string, right? Not necessarily. There’s
nothing to prevent the implementation of our (nonstandard) sequence
container from making the element type const T, T *, or a “smart
pointer” to a T. (A particularly weird container could simply ignore the
template parameter and always set the element type to void *!) But
vagary of implementation is not the only reason we may not be able to
determine the element type of our container. We often write generic code
in which that information is simply not available.

template <class Container>

Elem process(Container &c, int size) {

Temp temp = Elem();

for(int i = 0; i < size; ++i)

temp += c[i];

return temp;

}

In the process generic algorithm above, we need to know the element
type (Elem) of Container, as well as a type that could serve to declare a
temporary for holding objects of the element type (Temp), but that infor-
mation is not available until the process function template is instanti-
ated with a specific container.

A common way to handle this situation is to have a type provide “per-
sonal” information about itself. This information is often embedded in
the type itself, rather like embedding a microchip in a person that can be
queried for the person’s name, identifying number, blood type, and so on.

189

(This is an analogy, not an indication of approval for employment of such
a procedure.) We are not interested in our sequence container’s blood
type, but we do want to know the type of its elements.

template <class T>

class Seq {

public:

typedef T Elem; // element type

typedef T Temp; // temporary type

size_t size() const;

//...

};

This embedded information can be queried at compile time:

typedef Seq<std::string> Strings;

//...

Strings::Elem aString;

This approach is familiar to any user of the standard library containers.
For instance, to declare an iterator into a standard container, it’s advisable
to ask the container itself what its iterator type is:

vector<int> aVec;

//...

for(vector<int>::iterator i(aVec.begin());

i != aVec.end(); ++i)

//...

Here we’ve asked the vector<int> to tell us what its iterator type is,
rather than make the assumption that it is int * (as it often is for many
implementations). The iterator type for vector<int> could just as well
be some other type (like a user-defined safe pointer type), so the only
portable way to write the loop above is to get the type of the iterator from
the vector<int> itself.

A more important observation is that this approach allows us to write
generic code that makes the assumption that the required information is
present.

template <class Container>

typename Container::Elem process(Container &c, int size) {

190 ❘ Item 53 Embedded Type Information

typename Container::Temp temp

= typename Container::Elem();

for(int i = 0; i < size; ++i)

temp += c[i];

return temp;

}

This version of the process algorithm queries the Container type for its
personal information, and makes the assumption that Container defines
the nested type names Elem and Temp. (Note that we had to use the
typename keyword in three places to tell the compiler explicitly that the
nested names were type names and not some other kind of nested name.
See Disambiguating with Typename [49, 169].)

Strings strings;

aString = process(strings, strings.size()); // OK

The process algorithm works well with our Seq container and will also
work with any other container that follows our convention.

template <typename T>

class ReadonlySeq {

public:

typedef const T Elem;

typedef T Temp;

//...

};

We can process a ReadonlySeq container because it validates our
assumptions.

Item 53 Embedded Type Information ❘ 191

This page intentionally left blank

Item 54 ❘ Traits

Sometimes it’s not enough to know just an object’s type. Often, there is
information related to the object’s type that is essential to working with
the object. In Embedded Type Information [53, 189], we saw how complex
types like the standard containers often embed information about them-
selves within themselves:

Strings strings;

aString = process(strings, strings.size()); // OK

std::vector<std::string> strings2;

aString = process(strings2, strings2.size()); // error!

extern double readings[RSIZ];

double r = process(readings, RSIZ); // error!

The process algorithm works well with our Seq container but fails with
a standard vector container, because vector does not define the nested
type names that process assumes are present.

We can process a ReadonlySeq container because it validates our
assumptions, but we may also want to process containers that do not
follow our rather parochial convention, and we may want to process
container-like things that are not even classes. Traits classes are often used
to solve these problems.

A traits class is a collection of information about a type. Unlike our nested
container information, however, the traits class is independent of the type
it describes.

template <typename Cont>

struct ContainerTraits;

One common use of a traits class is to put a conventional layer between
our generic algorithms and types that don’t follow the algorithms’
expected convention. We write the algorithm in terms of the type’s traits.
The general case will often assume some sort of convention. In this case,
our ContainerTraits will assume the convention used by our Seq and
ReadonlySeq containers.

193

template <typename Cont>

struct ContainerTraits {

typedef typename Cont::Elem Elem;

typedef typename Cont::Temp Temp;

typedef typename Cont::Ptr Ptr;

};

With the addition of this traits class template, we have the choice of
referring to the nested Elem type of one of our container types either
through the container type or through the traits type instantiated with
the container type.

typedef Seq<int> Cont;

Cont::Elem e1;

ContainerTraits<Cont>::Elem e2; // same type as e1

We can rewrite our generic algorithm to employ traits in place of direct
access to the container’s nested type names:

template <typename Container>

typename ContainerTraits<Container>::Elem

process(Container &c, int size) {

typename ContainerTraits<Container>::Temp temp

= typename ContainerTraits<Container>::Elem();

for(int i = 0; i < size; ++i)

temp += c[i];

return temp;

}

It may seem that all we’ve managed to do is to make the syntax
of the generic process algorithm even more impenetrable! Previously,
to get the type of the container’s element, we wrote typename
Container::Elem. Put in plain language, we said, “Get Container’s
nested name Elem. By the way, it’s a type name.” With traits, we have to
write typename ContainerTraits<Container>::Elem. Essentially, we
say,“Instantiate the ContainerTraits class that corresponds to this con-
tainer, and get its nested name Elem. By the way, it’s a type name.” We’ve
taken a step back from getting the information directly from the con-
tainer type itself and are going through the intermediary of the traits
class. If accessing nested type information is like reading information
about a person from an embedded microchip, using a traits class is like
looking up someone’s information in a database, using the person’s name

194 ❘ Item 54 Traits

as a key. You’ll get the same information, but the database lookup
approach is certainly less invasive and more flexible.

For example, you can’t get information from someone’s microchip if he
doesn’t have one. (Perhaps the person comes from a region where
embedded microchips are not de rigeur.) However, you can always create
a new entry in a database for such a person without the necessity of even
informing the individual concerned. Similarly, we can specialize the traits
template to provide information about a particular nonconforming con-
tainer without affecting the container itself:

class ForeignContainer {

// no nested type information...

};

//...

template <>

struct ContainerTraits<ForeignContainer> {

typedef int Elem;

typedef Elem Temp;

typedef Elem *Ptr;

};

With this specialization of ContainerTraits available, we can process
a ForeignContainer as effectively as one that is written to our conven-
tion. The original implementation of process would have failed on a
ForeignContainer because it would have attempted to access nested
information that did not exist:

ForeignContainer::Elem x; // error, no such nested name!

ContainerTraits<ForeignContainer>::Elem y; // OK, using traits

It’s helpful to think of a traits template as a collection of information that
is indexed by a type, much as an associative container is indexed by a key.
But the “indexing” of traits happens at compile time, through template
specialization.

Another advantage of accessing information about a type through a traits
class is that the technique can be used to provide information about types
that are not classes and therefore can have no nested information. Even
though traits classes are classes, the types whose traits they encapsulate
don’t have to be. For example, an array is a kind of (mathematically and
morally) degenerate container that we might like to manipulate as a first
class container.

Item 54 Traits ❘ 195

template <>

struct ContainerTraits<const char *> {

typedef const char Elem;

typedef char Temp;

typedef const char *Ptr;

};

With this specialization in place for the “container” type constchar*, we
can process an array of characters.

const char *name = "Arsene Lupin";

const char *r = process(name, strlen(name));

We can continue in this fashion for other types of arrays, producing spe-
cializations for int *, const double *, and so on. However, it would be
more convenient to specify a single case for any type of pointer, since they
all will have similar properties. For this purpose, we employ partial spe-
cialization of the traits template for pointers:

template <typename T>

struct ContainerTraits<T *> {

typedef T Elem;

typedef T Temp;

typedef T *Ptr;

};

Specializing ContainerTraits with any pointer type, whether it be int
* or const float *(*const*)(int), will result in instantiation of this
partial specialization, unless there is an even more specialized version of
ContainerTraits available.

extern double readings[RSIZ];

double r = process(readings, RSIZ); // works!

We’re not quite there yet, however. Notice that using the partial special-
ization for a pointer to constant will not result in the correct type for use
as a “temporary.” That is, constant temporary values are not of much use
because we can’t assign to them. What we’d like is to have the non-constant
analog of the element type as our temporary type. In the case of const
char *, for instance, ContainerTraits<const char *>::Temp should

196 ❘ Item 54 Traits

be char, not const char. We can handle this case with an additional
partial specialization:

template <typename T>

struct ContainerTraits<const T *> {

typedef const T Elem;

typedef T Temp; // note: non-const analog of Elem

typedef const T *Ptr;

};

This more specific partial specialization will be selected in preference to
the previous one in those cases where the template argument is a pointer
to constant, rather than a pointer to non-constant.

Partial specialization can also help us to extend our traits mechanism to
convert a “foreign” convention to be in line with a local convention. For
example, the STL is very heavy on convention (see The Standard Template
Library [4, 11]), and the standard containers have concepts similar to
those encapsulated in our ContainerTraits but are expressed differ-
ently. For example, we earlier attempted to instantiate the process algo-
rithm with a standard vector but failed. Let’s fix that.

template <class T>

struct ContainerTraits< std::vector<T> > {

typedef typename std::vector<T>::value_type Elem;

typedef typename

std::iterator_traits<typename

std::vector<T>::iterator>

::value_type Temp;

typedef typename

std::iterator_traits<typename

std::vector<T>::iterator>

::pointer Ptr;

};

It’s not the most readable implementation one can imagine, but it’s hid-
den, and our users can now invoke our generic algorithm with a container
generated from a standard vector.

std::vector<std::string> strings2;

aString = process(strings2, strings2.size()); // works!

Item 54 Traits ❘ 197

This page intentionally left blank

Item 55 ❘ Template Template Parameters

Let’s pick up the Stack template we considered in Specializing for Type
Information [52, 183]. We decided to implement it with a standard deque,
which is a pretty good compromise choice of implementation, though in
many circumstances a different container would be more efficient or
appropriate. We can address this problem by adding an additional template
parameter to Stack for the container type used in its implementation.

template <typename T, class Cont>

class Stack;

For simplicity, let’s abandon the standard library (not usually a good idea,
by the way) and assume we have available a set of nonstandard container
templates: List, Vector, Deque, and perhaps others. Let’s also assume
these containers are similar to the standard containers but have only a
single template parameter for the element type of the container.

Recall that the standard containers actually have at least two parameters:
the element type and an allocator type. Containers use allocators to allocate
and free their working memory so that this behavior may be customized.
In effect, the allocator specifies a memory management policy for
the container (see Policies [56, 205]). The allocator has a default so it’s
easy to forget it’s there. However, when you instantiate a standard
container like vector<int>, you’re actually getting vector< int,

std::allocator<int> >.

For example, the declaration of our nonstandard List would be

template <typename> class List;

Notice that we’ve left out the name of template parameter in the declara-
tion of List, above. Just as with a formal argument name in a function dec-
laration, giving a name to a template parameter in a template declaration is
optional. As with a function definition, the name of a template parameter
is required only in a template definition and only if the parameter name is

199

used in the template. However, as with formal arguments in function dec-
larations, it’s common to give names to template parameters in template
declarations to help document the template.

template <typename T, class Cont>

class Stack {

public:

~Stack();

void push(const T &);

//...

private:

Cont s_;

};

A user of Stack now has to provide two template arguments, an element
type and a container type, and the container has to be able to hold objects
of the element type.

Stack<int, List<int> > aStack1; // OK

Stack<double, List<int> > aStack2; // legal, not OK

Stack<std::string, Deque<char *> > aStack3; // error!

The declarations of aStack2 and aStack3 show we have a potential
problem in coordination. If the user selects the incorrect type of con-
tainer for the element type, we’ll get a compile-time error (in the case of
aStack3, because of the inability to copy a string to a char *) or a sub-
tle bug (in the case of aStack2, because of loss of precision in copying a
double to an int). Additionally, most users of Stack don’t want to be
bothered with selection of its underlying implementation and will be sat-
isfied with a reasonable default. We can improve the situation by provid-
ing a default for the second template parameter.

template <typename T, class Cont = Deque<T> >

class Stack {

//...

};

This helps in cases where the user of a Stack is willing to accept a Deque
implementation or doesn’t particularly care about the implementation.

Stack<int> aStack1; // container is Deque<int>

Stack<double> aStack2; // container is Deque<double>

200 ❘ Item 55 Template Template Parameters

This is more or less the approach employed by the standard container
adapters stack, queue, and priority_queue.

std::stack<int> stds; // container is

// deque< int, allocator<int> >

This approach is a good compromise of convenience for the casual user of
the Stack facility and of flexibility for the experienced user to employ any
(legal and effective) kind of container to hold the Stack’s elements.

However, this flexibility comes at a cost in safety. It’s still necessary to
coordinate the types of element and container in other specializations,
and this requirement of coordination opens up the possibility of misco-
ordination.

Stack<int, List<int> > aStack3;

Stack<int, List<unsigned> > aStack4; // oops!

Let’s see if we can improve safety and still have reasonable flexibility. A tem-
plate can take a parameter that is itself the name of a template. These param-
eters have the pleasingly repetitious name of template template parameters.

template <typename T, template <typename> class Cont>

class Stack;

This new template parameter list for Stack looks unnerving, but it’s not
as bad as it appears. The first parameter, T, is old hat. It’s just the name of
a type. The second parameter, Cont, is a template template parameter. It’s
the name of a class template that has a single type name parameter. Note
that we didn’t give a name to the type name parameter of Cont, although
we could have:

template <typename T, template <typename ElementType> class Cont>

class Stack;

However, such a name (ElementType, above) can serve only as docu-
mentation, similar to a formal argument name in a function declaration.
These names are commonly omitted, but you should feel free to use them
where you think they improve readability. Conversely, we could take the
opportunity to reduce readability to a minimum by eliminating all tech-
nically unnecessary names in the declaration of Stack:

template <typename, template <typename> class>

class Stack;

Item 55 Template Template Parameters ❘ 201

But compassion for the readers of our code does impose constraints on
such practices, even if the C++ language does not.

The Stack template uses its type name parameter to instantiate its tem-
plate template parameter. The resulting container type is used to imple-
ment the Stack:

template <typename T, template <typename> class Cont>

class Stack {

//...

private:

Cont<T> s_;

};

This approach allows coordination between element and container to be
handled by the implementation of the Stack itself, rather than in all the
various code that specializes Stack. This single point of specialization
reduces the possibility of miscoordination between the element type and
the container used to hold the elements.

Stack<int,List> aStack1;

Stack<std::string,Deque> aStack2;

For additional convenience, we can employ a default for the template
template argument:

template <typename T, template <typename> class Cont = Deque>

class Stack {

//...

};

//...

Stack<int> aStack1; // use default: Cont is Deque

Stack<std::string,List> aStack2; // Cont is List

This is often a good approach for dealing with coordination of a set of
arguments to a template and a template that is to be instantiated with the
arguments.

It’s common to confuse template template parameters with type name
parameters that just happen to be generated from templates. For example,
consider the following class template declaration:

template <class Cont> class Wrapper1;

202 ❘ Item 55 Template Template Parameters

The Wrapper1 template needs a type name for its template argument.
(We used the keyword class instead of typename in the declaration of
the Cont parameter of Wrapper1 to tell the readers of our code that we’re
expecting a class or struct rather than an arbitrary type, but it’s all the
same to the compiler. In this context typename and class mean exactly
the same thing technically. See Optional Keywords [63, 231].) That type
name could be generated from a template, as in Wrapper1<List<int>>,
but List<int> is still just a class name, even though it was generated
from a template.

Wrapper1< List<int> > w1; // fine, List<int> is a type name

Wrapper1< std::list<int> > w2; // fine, list<int> is a type

Wrapper1<List> w3; // error! List is a template name

Alternatively, consider the following class template declaration:

template <template <typename> class Cont> class Wrapper2;

The Wrapper2 template needs a template name for its template argu-
ment, and not just any template name. The declaration says that the tem-
plate must take a single type argument.

Wrapper2<List> w4; // fine, List is a template one type

Wrapper2< List<int> > w5; // error! List<int> isn't a template

Wrapper2<std::list> w6; // error! std::list takes 2+ arguments

If we want to have a chance at being able to specialize with a standard
container, we have to do the following:

template <template <typename Element,

class Allocator> class Cont>

class Wrapper3;

or equivalently:

template <template <typename,typename> class Cont>

class Wrapper3;

Item 55 Template Template Parameters ❘ 203

This declaration says that the template must take two type name arguments:

Wrapper3<std::list> w7; // might work...

Wrapper3< std::list<int> > w8; // error! list<int> is a class

Wrapper3<List> w9; // error! List takes one type argument

However, the standard container templates (like list) may legally be
declared to take more than two parameters, so the declaration of w7 above
may not work on all platforms. Well, we all love and respect the STL, but
we never claimed it was perfect.

204 ❘ Item 55 Template Template Parameters

Item 56 ❘ Policies

In Specializing for Type Information [52, 183], we designed a stack template
that deleted any remaining elements left in the stack at the end of the
stack’s lifetime if the stack’s element type was a pointer.

template <typename T> class Stack;

This is not an unreasonable policy, but it is inflexible. There may be cases
where the user of our stack does not want to delete what the stack’s pointers
refer to. For instance, the pointers may refer to objects that are not on the
heap or that are shared with other containers. Additionally, it’s possible
that a pointer refers to an array of objects, rather than a single object. If
we have a stack of character pointers, this is almost certainly the case,
since character pointers usually refer to an NTCTS (standardese for a null
terminated array of characters):

Stack<const char *> names; // oops! undefined behavior

Our deletion policy assumes that a Stack’s pointers refer to a single
object, and therefore employs the nonarray form of delete, whereas for
an array we must use array delete (see Array Allocation [37, 127]).

Our goal is to be able to write the Stack template’s destructor in some-
thing like the following way:

template <typename T>

class Stack {

public:

~Stack() {

for(I i(s_.begin()); i != s_.end(); ++i)

doDeletionPolicy(*i);

}

//...

private:

typedef std::deque<T> C;

typedef typename C::iterator I;

205

C s_;

};

The destructor iterates over any remaining elements and executes the
appropriate deletion policy on each element. The doDeletionPolicy
could be implemented in a variety of ways. Typically, a policy is made
explicit when the Stack template is instantiated and is implemented with
a template template parameter (see Template Template Parameters [55, 199]).

template <typename T, template <typename> class DeletionPolicy>

class Stack {

public:

~Stack() {

for(I i(s_.begin()); i != s_.end(); ++i)

DeletionPolicy<T>::doDelete(*i); // exec policy

}

//...

private:

typedef std::deque<T> C;

typedef typename C::iterator I;

C s_;

};

By examining how the deletion policy is used in the Stack destructor, we
can determine that a Stack’s deletion policy is a class template that is
instantiated with the element type of the Stack. It has a static member
function called doDelete that performs the appropriate deletion action
on the Stack element. Now we can go about defining some appropriate
policies. One policy is to delete:

template <typename T>

struct PtrDeletePolicy {

static void doDelete(T ptr)

{ delete ptr; }

};

Of course, we could have designed a policy implementation with a different
interface. For example, rather than use a static member function, we
could have overloaded the function call operator

template <typename T>

struct PtrDeletePolicy {

206 ❘ Item 56 Policies

void operator ()(T ptr)

{ delete ptr; }

};

and modified the deletion operation in Stack’s destructor to read

DeletionPolicy<T>()(*i);

The important thing is to establish a convention, because every imple-
mentation of a particular policy will be accessed with the same syntax.

Other useful policies perform an array deletion or do nothing at all:

template <typename T>

struct ArrayDeletePolicy {

static void doDelete(T ptr)

{ delete [] ptr; }

};

template <typename T>

struct NoDeletePolicy {

static void doDelete(const T &)

{}

};

Now we can specify the appropriate deletion policy when we instantiate
Stack:

Stack<int, NoDeletePolicy> s1; // don't delete ints

Stack<std::string *, PtrDeletePolicy> s2; // delete string *'s

Stack<const char *, ArrayDeletePolicy> s3; // delete [] these

Stack<const char *, NoDeletePolicy> s4; // don't delete!

Stack<int, PtrDeletePolicy> s5; // error! can't delete int!

If one policy is more commonly used than others, it’s often a good idea to
make it the default:

template <typename T,

template <typename> class DeletionPolicy = NoDeletePolicy>

class Stack;

//...

Stack<int> s6; // don't delete

Item 56 Policies ❘ 207

Stack<const char *> s7; // don't delete

Stack<const char *, ArrayDeletePolicy> s8; // delete []

A template design often offers several opportunities for parameterization
by policies. For example, in Template Template Parameters [55, 199] we
gave the user the ability to specify how a Stack was implemented. That’s
an implementation policy:

template <typename T,

template <typename> class DeletionPolicy = NoDeletePolicy

template <typename> class Cont = Deque>

class Stack;

This gives the user of Stack additional flexibility:

Stack<double *, ArrayDeletePolicy, Vector> dailyReadings;

while allowing good general behavior in the default case.

Stack<double> moreReadings; // no deletion, use a Deque

In generic design, we frequently make policy decisions about implemen-
tation and behavior. Often, those decisions can be abstracted and repre-
sented as policies.

208 ❘ Item 56 Policies

Item 57 ❘ Template Argument Deduction

Class templates must be specialized explicitly. For example, if we want to
specialize the Heap container discussed in Class Template Explicit Special-
ization [46, 155], we have to provide a type name argument to the template:

Heap<int> aHeap;

Heap<const char *> anotherHeap;

Function templates may also be specialized explicitly. Suppose we have a
function template that performs a restricted old-style cast:

template <typename R, typename E>

R cast(const E &expr) {

// ...do some clever checking...

return R(expr); // ...and cast.

}

We may specialize the template explicitly when we call it, just as we must
specialize a class template:

int a = cast<int,double>(12.3);

However, it’s typical and more convenient to let the compiler deduce the
template arguments from the types of the actual arguments to the function
call. Not surprisingly, this process is called “template argument deduction.”
Careful! In the description below, pay attention to the difference between
the terms “template argument” and “function argument” (see Template
Terminology [45, 153]). Consider a template with a single template argu-
ment that finds the lesser of two function arguments.

template <typename T>

T min(const T &a, const T &b)

{ return a < b ? a : b; }

209

When we use min without supplying the template arguments explicitly,
the compiler examines the types of the function call arguments in order
to deduce the template argument:

int a = min(12, 13); // T is int

double d = min('\b', '\a'); // T is char

char c = min(12.3, 4); // error! T can't be both double and int

The erroneous line above is the result of the compiler’s not being able to
deduce a template argument in an ambiguous situation. In such cases, we
can always tell the compiler what a template argument is by being explicit:

d = min<double>(12.3, 4); // OK, T is double

A similar situation occurs with our cast template if we try to use tem-
plate argument deduction:

int a = cast(12.3); // error! E is double, but what's R?

As with overload resolution, the compiler examines the types of only
function arguments during template argument deduction, not potential
return types. The only way the compiler’s going to know the return type is
if we tell it:

int a = cast<int>(12.3); // E is double and

// R is (explicitly) int

Notice that any trailing template arguments may be left off the template
argument list if the compiler can deduce them on its own. In this case we
had only to supply the compiler with the return type and let it figure out
the expression type on its own. The order of the template parameters is
important for the template’s usability, since if the expression type had
preceded the return type, we would have had to specify both explicitly.

At this point, many people will notice the syntax of the call to cast
above and ask, “Are you implying that static_cast, dynamic_cast,
const_cast, and reinterpret_cast are function templates?” No, we’re
not implying that because these four cast operators are not templates,
they’re built-in operators (like the new operator or the + operator on
integers); but it sure looks like their syntax was inspired by something
similar to our cast function template. (See New Cast Operators [9, 29].)

210 ❘ Item 57 Template Argument Deduction

Note that template argument deduction works by examining the types of
the actual arguments to a call. This implies that any template argument of
a function template that cannot be deduced from the argument types has
to be supplied explicitly. For example, here’s an annoyingly repetitious
function template:

template <int n, typename T>

void repeat(const T &msg) {

for(int i = 0; i < n; ++i)

std::cout << msg << std::flush;

}

We were careful to put the integer template argument before the type
argument, so we could get by with specifying only the number of repeti-
tions of the message, and let template argument deduction determine the
type of the message:

repeat<12>(42); // n is 12, T is int

repeat<MAXINT>('\a'); // n is big, T is char

In the cast, min, and repeat templates, the compiler deduced a single
template argument from a single function argument. However, the
deduction mechanism is capable of deducing multiple template argu-
ments from the type of a single function argument:

template <int bound, typename T>

void zeroOut(T (&ary)[bound]) {

for(int i = 0; i < bound; ++i)

ary[i] = T();

}

//...

const int hrsinweek = 7*24;

float readings[hrsinweek];

zeroOut(readings); // bound == 168, T is float

In this case, zeroOut expects an array argument, and argument deduction
is capable of dissecting the argument type to determine its bound and ele-
ment type.

We noted at the start of this item that a class template must be specialized
explicitly. However, function template argument deduction can be used
to specialize a class template indirectly. Consider a class template that can

Item 57 Template Argument Deduction ❘ 211

be used to generate a function object from a function pointer (see STL
Function Objects [20, 71]):

template <typename A1, typename A2, typename R>

class PFun2 : public std::binary_function<A1,A2,R> {

public:

explicit PFun2(R (*fp)(A1,A2)) : fp_(fp) {}

R operator()(A1 a1, A2 a2) const

{ return fp_(a1, a2); }

private:

R (*fp_)(A1,A2);

};

(This is a simplified version of the standard pointer_to_binary_function
template and has been chosen specifically for the convoluted syntax
required to specialize it. It doesn’t get much worse than this.) Instantiating
the template directly is somewhat onerous:

bool isGreater(int, int);

std::sort(b, e, PFun2<int,int,bool>(isGreater)); // painful

It’s common in cases like this to provide a “helper function” whose only
purpose is to deduce the template arguments in order to specialize,
automagically, a class template:

template <typename R, typename A1, typename A2>

inline PFun2<A1,A2,R> makePFun(R (*pf)(A1,A2))

{ return PFun2<A1,A2,R>(pf); }

//...

std::sort(b, e, makePFun(isGreater)); // much better...

In this deduction tour de force, the compiler is able to deduce both
argument types and the return type from the type of a single function
argument. This technique is commonly used in the standard library for
utilities like ptr_fun, make_pair, mem_fun, back_inserter, and many
others that are simply helper functions that ease the task of complex and
error-prone class template specialization.

212 ❘ Item 57 Template Argument Deduction

Item 58 ❘ Overloading Function Templates

Function templates can be overloaded with other function templates and
with nontemplate functions. This capability is useful but easy to abuse.

One of the major differences between function templates and nontemplate
functions is the availability of implicit conversions of actual arguments.
Nontemplate functions allow a wide range of implicit conversions on
their arguments, from built-in conversions (like integral promotions) to
user-defined conversions (nonexplicit single argument constructors and
conversion operators). In the case of function templates, because the
compiler must perform argument deduction based on the types of the
arguments, only trivial implicit conversions will be performed, including
outer-level qualification (for example, T to const T or const T to T), ref-
erence (for example, T to T &), and array and function decay to a pointer
(for example, T[42] to T*).

The practical effect of this difference is that function templates require
much more exact matching than nontemplate functions do. This can be
good, bad, or merely surprising. For example, consider the following:

template <typename T>

void g(T a, T b) { ... } // this g is a template

void g(char a, char b) { ... } // this g is not

//...

g(12.3, 45.6); // template g

g(12.3, 45); // non-template g!

The first call with two double arguments could be made to match the
nontemplate g by converting the doubles to char implicitly (legal but
inadvisable), but an exact match is available by instantiating the template
g with T as double, so the template is chosen. The second call with double
and int arguments will not match the template g, because the compiler
will not attempt the predefined conversion from int to double on the
second argument (or from double to int on the first) so as to deduce T to

213

be double (or int). Therefore the non-member g is called, using the
unfortunate predefined conversions of double and int to char.

Selecting the right version of a function when faced with a variety of
template and nontemplate candidates is a complex process, and many
otherwise reliable C++ compilers will select the incorrect function or
issue an inappropriate error. This is also an indication that the maintainers
of our code may have similar difficulties in understanding what version of
an overloaded template we intended to call. For everybody’s sake, when
using function template overloading, keep things as simple as possible.

“Simple” doesn’t imply unsophisticated. In Template Argument Deduction
[57, 209], we considered a “helper” function that was used to circumvent
an onerous and error-prone specialization of a complex class template:

template <typename A1, typename A2, typename R>

class PFun2 : public std::binary_function<A1,A2,R> {

// see implementation in Template Argument

// Deduction [57, 209] ...

};

Rather than force users to specialize this monster directly, we provided a
helper function that performed template argument deduction and spe-
cialization:

template <typename R, typename A1, typename A2>

inline PFun2<A1,A2,R> makePFun(R (*pf)(A1,A2))

{ return PFun2<A1,A2,R>(pf); }

Syntactically, this is a fairly complex piece of code, but it simplifies things
for our users, allowing them to write makePFun(isGreater) rather than
PFun2<int,int,bool>(isGreater) for a function declared bool

isGreater(int,int).

Of course, we’ll want to provide facilities for unary functions as well:

template <typename A, typename R>

class PFun1 : public std::unary_function<A,R> {

public:

explicit PFun1(R (*fp)(A)) : fp_(fp) {}

R operator()(A a) const

{ return fp_(a); }

214 ❘ Item 58 Overloading Function Templates

private:

R (*fp_)(A);

};

And a helper function:

template <typename R, typename A>

inline PFun1<A,R> makePFun(R (*pf)(A))

{ return PFun1<A,R>(pf); }

Here is a perfect application of function template overloading. It’s simple,
in the sense that there is no possible confusion about which version of
makePFun will be called (one is for binary functions, one for unary func-
tions), but use of the same name for both functions makes the facility
easy to learn and use.

Item 58 Overloading Function Templates ❘ 215

This page intentionally left blank

Item 59 ❘ SFINAE

In attempting to use function template argument deduction to select
among a number of overloaded function templates and nontemplate
functions, the compiler may attempt a specialization that fails on one or
more of them.

template <typename T> void f(T);

template <typename T> void f(T *);

//...

f(1024); // instantiates first f

Even though substitution of the nonzero integer for T * in the second f
function template would have been incorrect, the attempted substitution
does not give rise to an error provided that a correct substitution is
found. In this case, the first f is instantiated, and there is no error. Thus,
we have the “substitution failure is not an error” concept, dubbed
SFINAE by Vandevoorde and Josuttis.

SFINAE is an important property in that, without it, it would be difficult
to overload function templates; the combination of argument deduction
and overloading would otherwise render many uses of a set of overloaded
function templates illegal. But SFINAE is also valuable as a metaprogram-
ming technique.

Recall the IsPtr facility we developed in Specializing for Type Information
[52, 183]. There we used template partial specialization in order to deter-
mine whether an unknown type was a pointer of some kind. We can use
SFINAE to achieve a similar result.

typedef True char; // sizeof(True) == 1

typedef struct { char a[2]; } False; // sizeof(False) > 1

//...

template <typename T> True isPtr(T *);

False isPtr(...);

#define is_ptr(e) (sizeof(isPtr(e))==sizeof(True))

217

Here, we can use is_ptr to determine whether the type of an expression
is a pointer through a combination of function template argument
deduction and SFINAE. If the expression e has pointer type, the compiler
will match the template function isPtr; otherwise it will match the non-
template isPtr function with the ellipsis formal argument. SFINAE
assures us that the attempt to match the template isPtr with a non-
pointer will not result in a compile-time error.

The second bit of magic is the use of sizeof in the is_ptr macro. Notice
that neither isPtr function is defined. This is correct, because they are
never actually called. The appearance of a function call in a sizeof
expression causes the compiler to perform argument deduction and
function matching, but it doesn’t actually call the function. The sizeof
operator is interested only in the size of the return type of the function
that would have been called. We can then check the size of the function’s
return type to determine which function was matched. If the compiler
selected the function template, then the expression e had pointer type.

We did not have to special case for const pointers, volatile pointers, and
const volatile pointers as we did for the IsPtr facility that we imple-
mented with class template partial specialization. As part of function
template argument deduction, the compiler will ignore “first level”
cv-qualifiers (const and volatile) as well as reference modifiers (see
Overloading Function Templates [58, 213]). Similarly, we do not have to be
concerned about incorrectly identifying as a pointer type a user-defined
type that has a conversion operator to a pointer type. The compiler
employs a very restricted list of conversions on the actual arguments dur-
ing function template argument deduction, and user-defined conversions
are not on the list.

Notice the similarity of this technique with our use of template partial spe-
cialization to uncover type information in Specializing for Type Informa-
tion [52, 183]. There we used the primary template as a “catchall” and used
complete or partial specialization to detect the cases of interest. Here, we’re
using a function with an ellipsis formal argument as the catchall and cap-
turing cases of interest with more precisely overloaded versions of the
catchall. In fact, class template partial specialization and function template
overloading are very closely related technically; the standard actually
defines the selection algorithm for one in terms of the other.

218 ❘ Item 59 SFINAE

After one gets used to the is_ptr example above, there really is nothing
more to the SFINAE technique from a technical perspective. However,
this simple technique can be employed in rather surprising ways to
uncover information about types and expressions at compile time. Let’s
look at some (not at all simple) examples.

Consider the problem of determining whether an unknown type is a
class:

template <typename T>

struct IsClass {

template <class C> static True isClass(int C::*);

template <typename C> static False isClass(...);

enum { r = sizeof(IsClass<T>::isClass<T>(0))

== sizeof(True) };

};

Neatness counts, so this time we’ve encapsulated the SFINAE mechanism
inside a class template, IsClass, and overloaded two function templates
as static members of IsClass. One of the functions takes a pointer to
member argument (see Pointers to Class Members Are Not Pointers [15, 53]).
A literal zero can be converted to a pointer to class member (even for a
function template), so if T is a class type, the first isClass will be
matched. If T is not a class, SFINAE will ignore the erroneous first matching
attempt and choose the version of isClass with the ellipsis argument
list. As with is_ptr, we can check the size of the function’s return type
to see which function was matched and, thereby, determine whether T is
a class.

This next example is abstracted from Vandevoorde and Josuttis: Suppose
you’d like to know whether a particular class type has a nested type name
spelled “iterator.” (Of course, this can be implemented to ask the question
of any nested type name, not just iterator.)

template <class C>

True hasIterator(typename C::iterator const *);

template <typename T>

False hasIterator(...);

#define has_iterator(C)\

(sizeof(hasIterator<C>(0))==sizeof(True))

Item 59 SFINAE ❘ 219

This has_iterator facility is mechanically identical to IsClass, but this
time we’re accessing a nested type name of an unknown type (see Disam-
biguating with Typename [49, 169]). If C has such a nested type, we’ll be
able to convert the literal zero to a pointer to such a type; otherwise we’ll
match the catchall.

Finally, let’s look at some trickery from Andrei Alexandrescu: Given two
unknown types T1 and T2, can we convert T1 to T2? Note that this mech-
anism will detect both predefined and user-defined conversions:

template <typename T1, typename T2>

struct CanConvert {

static True canConvert(T2);

static False canConvert(...);

static T1 makeT1();

enum { r = sizeof(canConvert(makeT1())) == sizeof(True) };

};

As we saw in our Heap implementation in Specializing for Type Informa-
tion [52, 183], there is often a great advantage in flexibility or efficiency in
being able to provide special-purpose implementations based on infor-
mation that can be statically determined at compile time. Through the
use of SFINAE and other metaprogramming techniques, we’re able to ask
questions like, “Is this unknown type a pointer to a class type that has a
nested iterator typename that can be converted to std::string?”

220 ❘ Item 59 SFINAE

Item 60 ❘ Generic Algorithms

A generic algorithm is a function template that is designed in such a way
that it can be easily and effectively customized at compile time according
to the context of its use. Let’s look at a function template that doesn’t meet
these exacting standards and is therefore not a proper generic algorithm:

template <typename T>

void slowSort(T a[], int len) {

for(int i = 0; i < len; ++i) // For each pair

for(int j = i; j < len; ++j)

if(a[j] < a[i]) { // ...if out of order...

T tmp(a[j]); // ...swap them.

a[j] = a[i];

a[i] = tmp;

}

}

This template can be used to sort an array of objects, provided that the
objects can be compared with a < operator and copied. For example, we
can sort an array of our String objects from Assignment and Initializa-
tion Are Different [12, 41]:

String names[] = { "my", "dog", "has", "fleece" };

const int namesLen = sizeof(names)/sizeof(names[0]);

slowSort(names, namesLen); // sorts...eventually!

The first complaint one might make concerning slowSort is that it can
be slow. That observation is correct, but let’s forgive slowSort its O(n2)
runtime and concentrate instead on aspects of its generic design.

The first observation we can make is that our implementation of swap in
slowSort is not ideal for the String type (or many other types, for that

221

matter). The String class has its own member swap that is both faster
and more exception safe than a swap that is accomplished by copying
through a temporary String. A better implementation approach is simply
to say what we mean:

template <typename T>

void slowSort(T a[], int len) {

for(int i = 0; i < len; ++i) // For each pair

for(int j = i; j < len; ++j)

if(a[j] < a[i]) // ...if out of order...

swap(a[j], a[i]); // ...swap them.

}

We’re still not calling String’s swap member function, but if the author
of the String class has it together, there will be a nonmember swap
available that will:

inline void swap(String &a, String &b)

{ a.swap(b); }

Suppose there is no such nonmember swap available? In that case, we’ll be
no worse off because one way or another we’ll end up calling the standard
library swap, which does precisely the same thing we hand-coded in the
original version of slowSort. Actually, we’re still much better off than we
were originally, because the new implementation of slowSort is shorter,
simpler, and easier to understand. More important, if someone should
eventually implement an efficient nonmember swap for String, we’ll
pick up the improvement automatically. That’s the kind of code mainte-
nance we can live with.

Now consider the use of < for comparing elements of the array. This is
probably the most common way one would like to sort an array (from
smallest to largest), but we may also want to sort in descending order or
in some idiosyncratic order. Further, there may be arrays of objects we’d
like to sort that either don’t support a < operator or have several distinct
candidates for a less-than-like operator. We’ve already seen such a type in
STL Function Objects [20, 71]: the State class:

class State {

public:

222 ❘ Item 60 Generic Algorithms

//...

int population() const;

float aveTempF() const;

//...

};

Our approach in STL Function Objects [20, 71] was to implement func-
tions and function objects that could be used in place of a < operator, but
this approach will work only if the generic algorithm has been designed
to accept such an argument:

template <typename T, typename Comp>

void slowSort(T a[], int len, Comp less) {

for(int i = 0; i < len; ++i) // For each pair

for(int j = i; j < len; ++j)

if(less(a[j], a[i])) // ...if out of order...

swap(a[j], a[i]); // ...swap them.

}

//...

State states[50];

//...

slowSort(states, 50, PopComp());

If slowSorting with < is a very common operation, it might be a good
idea to overload slowSort so that it can be called either with or without a
special purpose comparison operation.

Finally, it’s always a good idea to follow convention, and it’s a particularly
good idea in the case of generic algorithms. We can also justifiably criticize
slowSort for restricting the argument it sorts to be an array, since there
are many other kinds of containers or data structures that we might like
to sort. When in doubt, copy the standard:

template <typename For, typename Comp>

void slowSort(For b, For e, Comp less) {

for(For i(b); i != e; ++i) // For each pair

for(For j(i); j != e; ++j)

if(less(a[j], a[i])) // ...if out of order...

Item 60 Generic Algorithms ❘ 223

swap(a[j], a[i]); // ...swap them.

}

template <typename For>

void slowSort(For b, For e) {

for(For i(b); i != e; ++i) // For each pair

for(For j(i); j != e; ++j)

if(a[j] < a[i]) // ...if out of order...

swap(a[j], a[i]); // ...swap them.

}

//...

std::list<State> states;

//...

slowSort(states.begin(), states.end(), PopComp());

slowSort(names, names+namesLen);

Here we’ve replaced our clunky array interface with a more standard and
more flexible STL compliant iterator interface. Now we can feel comfort-
able calling slowSort a generic algorithm, rather than simply a function
template.

One important lesson of this example is that complex software design is
nearly always a group effort. As such, your code should be designed in
such a way as to leverage the expertise of your colleagues while remaining
as immune as possible to maintenance they perform on code that is not in
your control. Our improved slowSort algorithm is a good example of
such proper design. It performs a single, well-understood operation at as
high a conceptual level as possible. To be precise, slowSort handles the
sorting algorithm and subcontracts swapping and comparison to others
who will do a better job. This approach allows you, the (supposed) sort-
ing expert, to augment your sorting expertise with the swapping expertise
of whoever designed the element type that is being sorted. The two of you
may never meet, but through proper design you can work together as
closely as if you shared the same workstation. Moreover, if improved swap
functionality should appear in the future, slowSort will pick up the
improvement automatically and probably without your knowledge. As
ever, ignorance is strength. (This is similar in flavor to proper polymorphic
design; see Commands and Hollywood [19, 67].)

224 ❘ Item 60 Generic Algorithms

Item 61 ❘ You Instantiate What You Use

In both C and C++, if you don’t call a declared function (or take its
address), you don’t have to define it. An analogous situation occurs with
member functions of class templates; if you don’t actually call a template’s
member function, it’s not instantiated.

This is clearly a handy property for the purpose of reducing code size. If a
class template defines a large number of member functions, but you use
only two or three of them, you don’t pay the code space penalty for all
those unused functions.

An even more important result of this rule is that you can specialize class
templates with arguments that would be illegal if all the member functions
were instantiated. With this rule in place, it’s possible to write flexible
class templates that can work with a wide variety of arguments, even if
some arguments would result in erroneous instantiations of some member
functions; if you don’t actually call those erroneous functions, they’re not
instantiated, and you don’t get an error. This is consistent with many
areas of the C++ language, where potential problems are not flagged as
errors until they become actual problems. In C++, it’s OK to think illegal
thoughts as long as you don’t act on them!

Consider a simple, fixed-size array template:

template <typename T, int n>

class Array {

public:

Array() : a_(new T[n]) {}

~Array() { delete [] a_; }

Array(const Array &);

Array &operator =(const Array &);

void swap(Array &that) { std::swap(a_, that.a_); }

T &operator [](int i) { return a_[i]; }

const T &operator [](int i) const { return a_[i]; }

225

bool operator ==(const Array &rhs) const;

bool operator !=(const Array &rhs) const

{ return !(*this==rhs); }

private:

T *a_;

};

This container behaves pretty much like a predefined array, with the usual
operations for indexing, but it also provides some higher-level operations
that are not available on predefined arrays, like swapping and comparison
for equality (we’ve left out the relational operators for reasons of space).
Let’s look at an implementation of operator==:

template <typename T, int n>

bool Array<T,n>::operator ==(const Array &that) const {

for(int i = 0; i < n; ++i)

if(!(a_[i] == that.a_[i]))

return false;

return true;

}

We know that both arrays being compared have the same number of
elements, since they’re both the same type and the array size is one of the
template parameters, so we just have to perform a pairwise comparison
of each element. If any pair of elements differs, the Array objects are
not equal.

Array<int,12> a, b;

//...

if(a == b) // calls a.operator ==(b)

//...

When we use the == operation on our Array<int,12> objects, the
compiler instantiates Array<int,12>::operator ==, which compiles
correctly. If we hadn’t used == (or !=, which calls operator ==) on
objects of type Array<int,12>, then we would not have instantiated that
member function.

226 ❘ Item 61 You Instantiate What You Use

The interesting situation occurs when we instantiate Array with a type
that does not have an == operation defined. For instance, let’s assume that
our Circle type does not define or inherit an operator==:

Array<Circle,6> c, d; // no problem!

//...

c[3].draw(); // OK

So far, so good. We have not directly or indirectly used an == operation on
an Array<Circle,6> object, so the operator== function is not instanti-
ated, and there is no error.

if(c == d) // error!

Now we have a problem. The compiler will attempt to instantiate
Array<Circle,6>::operator==, but the function implementation will
attempt to compare two Circle objects with a nonexistent == operator.
Compile-time error.

This technique is commonly used in the design of class templates that are
as flexible as possible but no more so.

Note that this idyllic situation does not occur in the case of an explicit
instantiation of a class template:

template Array<Circle,7>; // error!

This explicit instantiation directive tells the compiler to instantiate Array
and all its members with the arguments Circle and 7, resulting in
a compile-time error in the instantiation of Array<Circle,7>::

operator==. Well, you asked for it….

Item 61 You Instantiate What You Use ❘ 227

This page intentionally left blank

Item 62 ❘ Include Guards

Production C++ applications tend to use a lot of header files, and many
header files include other header files. Under these circumstances, it’s
common for the same header file to be indirectly included more than
once in a compilation, and it’s not uncommon in large, complex applica-
tions for the same header file to occur hundreds of times in the same
compilation. Consider the simple case of a header file hdr2.h that
includes another header file, hdr1.h, and a header file hdr3.h that also
includes hdr1.h. If both hdr2.h and hdr3.h are included in the same
source file, hdr1.h will be included twice. Typically, such multiple inclu-
sions are undesirable and cause multiple definition errors.

For this reason, C++ header files almost universally employ a preprocessor
coding technique to prevent the content of the header from appearing
more than once in a compilation no matter how many times the header
file is actually #included. Consider the content of header file hdr1.h:

#ifndef HDR1_H

#define HDR1_H

// actual content of the header file...

#endif

The first time the header file hdr1.h is #included in a compilation, the
preprocessor symbol HDR1_H is undefined, so the #ifndef (“if not
defined”) preprocessor conditional allows preprocessing of the #define
directive and the rest of the header file’s content. The next time hdr1.h
appears in the same compilation, the symbol HDR1_H is defined, and the
#ifndef prevents repeated inclusion of the header file’s content.

This technique will work only if the preprocessor symbol for a header file
(in this case, HDR1_H) is associated with exactly one header file (in this
case, hdr1.h). It’s therefore important to establish a standard, simple
naming convention that allows the construction of the name of the pre-
processor symbol used in the include guard from the name of the header
file being guarded.

229

In addition to preventing error, include file guards also help to speed up
compilation by allowing the compiler to skip over the content of any
header files that have already been translated. Unfortunately, the very
process of opening a header file, evaluating the #ifndef, and scanning to
the terminating #endif can be time-consuming in complex situations
where many header files appear many times in a given compilation. In
some cases, redundant include guards can speed things up considerably:

#ifndef HDR1_H

#include "hdr1.h"

#endif

Rather than simply #include a header file, we guard the inclusion with a
test on the same guard symbol that is set within the header file. This is
redundant, because the first time a header file is included, the same con-
dition (in this case, #ifndefHDR1_H) will be tested twice, both before the
#include and within the header file itself. However, on subsequent inclu-
sions, the redundant guard will prevent the #include directive from
being executed, preventing the header file from being needlessly opened
and scanned. Use of redundant include guards is not as common as that
of simple include guards, but in some cases their use can improve compi-
lation times of large applications considerably.

230 ❘ Item 62 Include Guards

Item 63 ❘ Optional Keywords

Some keyword usage is strictly optional from the perspective of the C++
language, though other considerations may argue for their presence or
absence.

The most common source of confusion is the optional use of virtual in
a derived class member function that overrides a base class virtual mem-
ber function.

class Shape {

public:

virtual void draw() const = 0;

virtual void rotate(double degrees) = 0;

virtual void invert() = 0;

//...

};

class Blob : public Shape {

public:

virtual void draw() const;

void rotate(double);

void invert() = 0;

//...

};

The member function Blob::draw overrides the base class draw function
and so is virtual; the use of the keyword is completely optional and has no
effect on the meaning of the program. A common misassumption is that
omitting the virtual keyword will prevent further overriding in more
derived classes. This is not the case.

class SharpBlob : public Blob {

public:

void rotate(double); // overrides Blob::rotate

//...

};

231

Note that the appearance of the virtual keyword is also optional on
an overriding pure virtual function, as in Blob::invert. The presence
or absence of the virtual keyword in an overriding derived class func-
tion is completely optional and has no effect on the meaning of the pro-
gram. None.

Opinion is divided as to whether it is a good practice to omit the virtual
keyword in an overriding derived class function. Some authorities claim
that use of the nonessential virtual helps to document the nature of the
derived class function for the human reader. Others claim it’s a waste of
effort and may cause a nonoverriding derived class function to become
“accidentally” virtual. No matter which opinion you hold, it is best to be
consistent; either use the virtual keyword on every overriding derived
class function or omit its use entirely.

The static keyword is optional when declaring member operator new,
operatordelete, array new, and array delete (see Class-Specific Memory
Management [36, 123]), because these functions are implicitly static.

class Handle {

public:

void *operator new(size_t); // implicitly static

static void operator delete(void *);

static void *operator new[](size_t);

void operator delete[](void *); // implicitly static

};

Some authorities claim that it’s best to be specific and always declare these
functions to be explicitly static. Others think that if a user or maintainer
of a piece of C++ does not know these functions are implicitly static, they
should not be using or maintaining the code. The use of static here is a
waste of effort; a program is no place to put crib notes on language
semantics. As with the optional use of virtual, whatever your position
on optional static, it’s important to be consistent. Either all four of
these functions should be declared explicitly static or none of them
should.

In a template header, the keywords typename and class may be used
interchangeably to indicate that a template parameter is a type name;
there is no difference in meaning whatsoever. However, many expert C++
programmers use typename to indicate to the human reader that the

232 ❘ Item 63 Optional Keywords

template argument may be of any type and class to indicate that the
type argument must be a class type.

template <typename In, typename Out>

Out copy(In begin, In end, Out result);

template <class Container>

void resize(Container &container, int newSize);

In ancient times, the register keyword was used to “suggest” to the
compiler that a variable was (in the opinion of the programmer) going to
be heavily used and should be therefore be put in a register. It was also
illegal to take the address of a variable declared with the register stor-
age class. Early on, however, compiler writers learned that their program-
ming colleagues were absolutely clueless about what variables should be
stored in registers, and now compilers uniformly ignore programmers’
suggestions in that regard. In C++, use of register has no effect whatso-
ever on the meaning of the program and typically has no effect on the
efficiency of the program.

The auto keyword can be used to indicate that an automatic variable (a
function argument or a local variable) is automatic. Don’t bother with it.

To be perfectly honest, both register and auto can be used in obscure
circumstances to disambiguate the syntax of particularly poorly written
code. The proper approach in these cases is to write better code and avoid
use of these keywords.

Item 63 Optional Keywords ❘ 233

This page intentionally left blank

Bibliography

Alexandrescu, Andrei. Modern C++ Design. Addison-Wesley, 2001.

Dewhurst, Stephen C. C++ Gotchas. Addison-Wesley, 2003.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

Josuttis, Nicolai M. The C++ Standard Library. Addison-Wesley, 1999.

Meyers, Scott. Effective C++, Third Edition. Addison-Wesley, 2005.

———. Effective STL. Addison-Wesley, 2001.

———. More Effective C++. Addison-Wesley, 1996.

Sutter, Herb. Exceptional C++. Addison-Wesley, 2000.

———. More Exceptional C++. Addison-Wesley, 2002.

———. Exceptional C++Style. Addison-Wesley, 2005.

Sutter, Herb, and Andrei Alexandrescu. C++ Coding Standards. Addison-
Wesley, 2005.

Vandevoorde, David, and Nicolai M. Josuttis. C++ Templates. Addison-
Wesley, 2003.

Wilson, Matthew. Imperfect C++. Addison-Wesley, 2005.

235

This page intentionally left blank

Index
See also Index of Code Examples, page 245

237

->* (dash angle bracket
asterisk), pointer-to-
member operator, 58

-> operator, overloading,
145–146, 147–148

() (parentheses)
function call operator, 58
grouping in declarations, 61
grouping with pointer-to-

member operators, 58
* (asterisk) operator, overload-

ing, 145–146, 147–148
.* (dot asterisk), pointer-to-

member operator, 58
1984 (veiled reference), 224

A
ABC (abstract base class), 113
abort, 117, 140
Abstract data type. See data

abstraction.
Access protection, 88, 111,

113–115
Accessor functions. See get/set

interfaces.
Address arithmetic. See pointer

arithmetic.
ADL (argument dependent

lookup), 89–90
Alexandresu, Andrei, xviii
Aliases, 84. See also references.
Allison, Chuck, xvii
Allocating arrays, 127–129

Allocators, rebind convention,
180

Anonymous namespaces, 84–85
Argument dependent lookup

(ADL), 89–90
Arguments, templates, 153–154
Array declarators, pointers to,

61–62
Array formal arguments, 17–19
Array index calculation. See

pointer arithmetic.
Arrays

allocation/deallocation,
127–129

auto_ptr references, 148
of class objects, 120–121
decay, 17
as function arguments. See

array formal arguments.
memory management,

127–129
of pointers, 25
references to, 62
sorting, 221–222

Assignment. See also copying;
initialization.

computational constructor,
43

construction, 42
copying, 45–47
destruction, 42–43
exception safe copy, 46
versus initialization, 41–43
user-defined types, 41–43
virtual copy, 47

and virtual function table
pointers, 38

Asterisk (*) operator,
overloading, 145–146,
147–148

Audit trails, resource control.
See RAII.

auto keyword, 233
auto_ptr

array references, 148
as container elements, 148
conversions, 147–148
description, 147–148
operator overloading, 147
versus smart pointers, 148

B
Base classes

abstract bases,
manufacturing, 113–115

forcing to abstract base,
113–115

implementation
guidelines, 77–79

member function,
determining, 77–79

polymorphic, 3–5
Template Method, 77–79

Body objects, 117
Boedigheimer, Kim, xvii
Bradbury, Ray (veiled

reference), 50
The Brother, xv, 81, 147

C
Callbacks. See also Command

pattern.
definition, 67
“don’t call us,

we’ll call you,” 68
framework code, 68
function objects as, 67–70.

See also Command pattern.
function pointers, 50–51
Hollywood Principle, 68

Capability queries, 93–95
Cast operators

casting down
an inheritance
hierarchy, 30–31
from a pointer to a base
class, 31
to a reference type, 32

const qualifiers,
adding/removing, 29–30

const_cast, 29–30
conversion across

a hierarchy, 94–95
cross-cast, 94–95
dynamic_cast, 31–32
function style, 29
new style

description, 29–32
versus old-style, 29

old-style versus new style, 29
reinterpret_cast, 31
static_cast, 30–32
type qualifiers, changing,

29–30, 30–31
volatile qualifiers,

adding/removing, 29–30
Class layout

assignment, and virtual
function table pointers, 38

contravariance, 54–55
covariant return types, 109
member offsets, 39
pointer comparison, 97–98
virtual functions, 37

virtual inheritance, 37–38
what you see is

what you get, 37
Class members, pointers

to versus pointers, 53–56
Class objects. See objects.
Classes

handle, exception
safe swaps, 46

interface, 93–94
Cloning objects, 99–101. See

also assignment; copying;
initialization; Prototype.

Command pattern, 69. See also
callbacks.

Communication, with other
programmers

data abstraction, 2
design patterns, 7–8
identifiers in template

declarations, 201–202
versus ignorance, 224
overloading, 214–215
typedefs, 62

Comparator operations, 71
Comparators, STL function

objects as, 72–73
Complete specialization. See

explicit specialization.
Computational

constructor, 41, 43
Const member functions

lazy evaluation, 34
logically const, 35
meaning of, 33–36
modifying objects, 34
overloaded index

operator, 35–36
Const pointers, versus pointers

to const, 21–23
const qualifiers,

adding/removing, 29–30
const_cast operator, 29–30
Construction

assignment, 42

copying, 45–47
Construction order, 141–142
Constructors

calling, 119–121
description, 143–144
exception safety, 143–144
operator overloading, 143–144
placement new, 119–121
protected, 114–115
virtual, 99–101

Container elements,
auto_ptr as, 148

Contract, base class as, 4–5
Contravariance

class layout, 54–55
member templates, 174
pointers to data

members, 54–55
pointers to member

functions, 54–55, 58
Conventions. See also idioms.

anonymous temporary
function object, 73

class vs. typename, 232–233
copy operations, 45
exception safety axioms,

131–133
generic programming, 191,

193, 207, 223
in generic programming, 170
multilevel pointers, 26
naming conventions, 88, 229
placement of const

qualifier, 21–22
rebind convention for

allocators, 180
and the STL, 12
STL (standard template

library), 11
traits and promulgation, 193,

197
unnecessary static, 232
unnecessary virtual, 232

Conversions, auto_ptr,
147–148

238 ❘ Index

Copying. See also assignment;
cloning; initialization.

address of non-const to
pointer to const, 22

assignment, 45–47
class objects, 38
construction, 45–47
objects, 38

Covariance, 174
Cranberries, xviii, 183
Cross-cast, 94–95

D
Dash angle bracket asterisk

(->*), pointer-to-member
operator, 58

Data abstraction, 1–2
Data hiding. See access protec-

tion; data abstraction.
Deallocating arrays, 127–129
Decay

arrays, 17, 25
functions, 17, 72

Declaring function pointers, 49
Delta adjustment of class

pointer, 58, 98, 108
Design patterns

description, 7–10
essential parts, 8–10
Factory Method, 103–106,

108–109
microarchitectures, 10
Template Method

versus C++ templates, 77
description, 77–79

wrappers, 8
Destruction

assignment, 42–43
order, 141–142
RAII, 140
restricting heap allocation,

117
Dewhurst, David R., xviii

Disambiguation
auto keyword, 233
register keyword, 233
with template, 179–181
templates, 179–181
with typename, 169–172

“Don’t call us, we’ll call
you,” 68, 79

Dot asterisk (.*), pointer-to-
member operator, 58

Down casting. See also cast
operators.

runtime type information, 31
safe, 31

dynamic_cast operator, 31–32

E
e, 65, 66
Element type, determining,

189–191
Embedded type information,

189–191
Exception safety

axioms, 131–133
catching, 135–137
constructors, 143–144
copy assignment, 46
exceptions, 143–144
functions, 135–137
new operator, 143–144
safe destruction, 132
swap throwing, 133
synchronous exceptions,

131–132
throwing, 135–137

Exceptions, memory allocation,
143–144

exit and destruction, 117, 140
Explicit specialization, 155–159,

183–187
Expressions
const qualifiers,

adding/removing, 29–30

volatile qualifiers,
adding/removing, 29–30

F
Fahrenheit 451 (veiled

reference), 50
Fehér, Attila, xvii
File handles, resource control.

See RAII.
Fire safety advice, 50
Framework code, callbacks, 68
Function declarators, pointers

to, 61–62
Function objects. See also

function pointers;
smart pointers.

as callbacks, 67–70. See also
Command pattern.

description, 63–66
integrating with member

functions, 66
Function overloading. See also

operator overloading.
function templates, 213
generic algorithms, 223
infix calls, 90
overloaded index operator,

35–36
pointers to overloaded

functions, 51
required knowledge, xiii
scope, 88
SFINAE, 217
taking address of, 51

Function pointers. See also
function objects.

callbacks, 50–51
declaring, 49
description, 49–51
generic, 49–50
to inline functions, 50
to non-static member

functions, 50

Index ❘ 239

Function pointers, continued
to overloaded functions, 51
virtual, 64–66

Function style, 29
Function templates

generic algorithms, 221–224
versus nontemplate functions,

213
overloading, 213–215
template argument

deduction, 209–212
Functionoid. See function

objects.
Functions

arguments from arrays. See
array formal arguments.

decay, 17, 72
multilevel pointers, 25, 27
references to, 62
selecting right version, 214
static linkages, avoiding, 85

Functor. See function objects.

G
Generic function pointers,

49–50
Gentleman Cambrioleur, 196
get/set interfaces, 1
Global scope, namespaces,

81–85
Goldfedder, Brandon, xvii
Gordon, Peter, xvii
Graphical shapes, resource

control. See RAII.
Guarding against multiple

inclusions, 229–230

H
Handle/body idiom, 117
Handle classes

exception safe swaps, 46
RAII, 139

restricting heap allocation,
117

Header files, multiple inclusion,
229–230

Heap
algorithms, 155
allocation, restricting,

117–118
class template explicit

specialization, 155–159
Heinlein, Robert (veiled

reference), 76
Henney, Kevlin, xvii
Hewins, Sarah G., xviii
Hitchhiker’s Guide to the

Galaxy, (veiled reference),
211, 213

Hollywood principle, 68, 79,
224

I
Idioms

assumption of non-throwing
deletion, 136

checking for assignment to
self, 47

computational constructor,
43

to create abstract base class,
113–115

exception safety axioms,
131–133

function object, 63
getting current new_handler,

51
intent of dynamic_cast to ref-

erence, 32
meaning of assignment, 46
ordering code for exception

safety, 136
partitioning code to avoid

RTTI, 94
to prohibit copying, 111

RAII, 139–142
reference to pointer formal

argument, 26
resource acquisition is

initialization, 139–142
to restrict heap allocation,

117–118
result of assignment vs.

initialization, 46
robust computation of

array size, 17
smart pointer, 145–147
STL function object, 72–73
violation of copy operation

idioms, 148
virtual constructor, 100

Ids, templates, 154
Ignorance

callbacks, 67
healthful aspects, 5, 12, 224
Java programmers, 37
of object type, 100–101
pitfalls of, xii
and templates, 180

Initialization. See also
assignment; copying.

argument passing, 41
versus assignment, 41–43
catching exceptions, 41
declaration, 41
function return, 41

Initialization order. See
construction order.

Inline functions, pointers to, 50
Instantiation

template member functions,
225–227

templates, 154
Integers as pointers

new cast operators, 29, 31
placement new, 119
pointer arithmetic, 151

Interface class, 65, 93

240 ❘ Index

J
Java

versus C++, xii
function and array

declarators, 62
good natured poke at, 37
interface classes, 93
member function lookup, 88

Johnson, Matthew, xvii
Josuttis, Nicolai, 217–220

K
Kamel, Moataz, xvii
Keywords, optional, 231–233
Koenig lookup. See ADL (argu-

ment dependent lookup).
Kyu Sakamoto, reference to, 42,

68, 70

L
Lazy evaluation, 34
Lippman, Stan, 141
Logically const, 35
Login sessions, resource control.

See RAII.
Lupin, Arsene, 196

M
Managers, gratuitous swipe at,

10
Martin, Steve (veiled reference),

46
McFerrin, Bobby (veiled

reference), 179
Member functions

function matching errors,
87–88

integrating function objects,
66

lookup, 87–88
pointers to

contravariance, 54–55
declaration syntax, 57–58

integrating with function
objects, 66
operator precedence, 58, 61
versus pointers, 57–59
simple pointer to function,
58
virtualness, 58

roles, 77–78
templates, 173–177

Member object. See class layout.
Member offset. See class layout.
Member operator functions,

overloading non-member
operators, 91–92

Member specialization, 165
Member templates, 173–177
Memory

class-specific management,
123–126

heap allocation, restricting,
117–118

resource control. See RAII.
Memory management, arrays,

127–129
Meyers, Scott, xvii, 1
Multidimensional arrays

array formal arguments,
18–19

function and array
declarators, 61

pointer arithmetic, 150

N
Names, templates, 154
Namespaces

aliases, 84
anonymous, 84–85
continual explicit

qualification, 82–83
description, 81–85
names

declaring, 82
importing, 83

using declarations, 84
using directives, 82–83

Nested names, templates, 179
Network connections, resource

control. See RAII.
New cast operations. See cast

operators, new style.
new operator

description, 143–144
exception safety, 143–144
versus operator new, 119,

123, 143
operator overloading,

143–144
New style cast operators, versus

old-style, 29
1984 (veiled reference), 224
Non-static member functions,

pointers to, 50
Nontemplate functions versus

function templates, 213

O
Objects

alternate names for. See
aliases; references.

arrays of, 120–121
capability queries, 93–95
changing logical state, 33–36
cloning, 99–101
copying, 38
copying, prohibiting, 111
creating, based on existing

objects, 103–106
heap allocation, restricting,

117–118
integrating member

functions with function
objects, 66

lazy evaluation of values, 34
managing with RAII,

139–142
modifying, 34
with multiple addresses. See

pointer comparison.
with multiple types. See

polymorphism.

Index ❘ 241

Objects, continued
polymorphic, 3–5
structure and layout, 37–39
traits, 193–197
type constraints, 111
virtual constructors, 99–101

Offset. See delta adjustment of
class pointer; pointers to,
data members.

Old-style cast operators, versus
new style, 29

operator delete

class-specific memory
management, 123–126

usual version, 125
Operator function lookup,

91–92
operator new

class-specific memory
management, 123–126

versus new operator, 119, 123,
143

placement new, 119–121
usual version, 125

Operator overloading. See also
function overloading.

auto_ptr, 147
constructors, 143–144
exception safety, 131
exceptions, 143–144
function calls, 91–92
function objects, 63
infix calls, 90–92
new operator, 143–144
operator function lookup,

91–92
versus overriding, 75
placement new, 119
pointer arithmetic, 149–151
policies, 206
smart pointers, 145–146
STL function objects, 72
STL (standard template

library), 11

Operator precedence, pointers
to member functions, 58,
61

Orwell, George (veiled
reference), 224

Ottosen, Thorsten, xvii
Overloading

-> operator, 145–146,
147–148

* (asterisk) operator,
145–146, 147–148

as communication, with
other programmers,
214–215

function call operators, 63
function templates, 213–215,

217–220
functions. See function

overloading.
index operator, 35–36
operators. See operator

overloading.
operators, policies, 206
versus overriding, 75–76

Overriding
functions, covariant return

types, 107–109
versus overloading, 75–76

P
Parameters, templates, 153–154
Parentheses (())

function call operator, 58
grouping in declarations, 61
grouping with pointer-to-

member operators, 58
Partial specialization, 161,

183–187, 197
Patterns. See design patterns.
Paul Revere and the Raiders,

143
Pointer arithmetic, 19, 149–151
Pointer comparison, 97–98

Pointers. See also smart
pointers.

arrays of, 25
dereferencing, 53–54
integers as, 151
list iterators, 151
losing type information, 98
managing buffers of, 25
multilevel. See pointers to,

pointers.
versus references, 13
stacks of, 185–187
subtracting, 151

Pointers to
array declarators, 61–62
characters, 156
class members, versus

pointers, 53–56
const

versus const pointers,
21–23
converting to pointer to
non-const, 23

data members, 54–55
function declarators, 61–62
functions. See callbacks;

Command pattern;
function pointers.

member functions
contravariance, 54–55
declaration syntax, 57–58
integrating with function
objects, 66
operator precedence, 58, 61
versus pointers, 57–59
simple pointer to function,
58
virtualness, 58

non-const, converting to
pointer to const, 22–23

pointers
changing pointer values, 26
conversions, 26–27
converting to pointer to
const, 27

242 ❘ Index

converting to pointer to
non-const, 27
description, 25–27
managing buffers of
pointers, 25–26

void, 98
Policies, 205–208
Polymorphic base classes, 3–5
Polymorphism, 3–5
Predicates, STL function objects

as, 73–74
Primary templates. See also STL

(standard template
library); templates.

explicit specialization,
155–158, 183–187

instantiation, 154
member specialization, 165
partial specialization, 161,

183–187
SFINAE, 218
specialization, 154
specializing for type

information, 183
Promulgation, conventions,

193, 197
Prototype, 99–101

Q
QWAN (Quality Without A

Name), 90

R
RAII, 139–142. See also

auto_ptr.
Rebind convention for

allocators, 180
Reeves, Jack, xviii
References. See also aliases.

to arrays, 62
to const, 15
description, 13–15
to functions, 62

initialization, 14–15
to non-const, 15
null, 13–14
versus pointers, 13

register keyword, 233
reinterpret_cast operator,

31
Resource acquisition is

initialization. See RAII.
Resource control. See RAII.
RTTI (runtime type

information)
for capability query, 95
incorrect use of, 103
runtime cost of, 31
for safe down cast, 31

S
Sakamoto, Kyu (veiled

reference), 42, 68, 70
Saks, Dan, xvii
Semaphores, resource control.

See RAII.
SFINAE (substitution failure is

not an error), 217–220
Single-dimensional arrays, array

formal arguments, 17–18
Slettebø, Terje, xvii
Smart pointers. See also func-

tion objects; pointers.
versus auto_ptr, 148
list iterators, 11, 151
operator overloading,

145–146
templates, 145–146

Social commentary, xiii, 7, 10,
71, 190, 195

Specialization
explicit, 183–187
partial, 183–187
SFINAE, 218
templates. See templates,

specialization.
for type information, 183

Specializing for type
information, 183

Standard template library
(STL), 11–12. See also pri-
mary templates; templates.

Static linkages, avoiding, 85
static_cast operator, 30–32
STL function objects

as comparators, 72–73
description, 71–74
as predicates, 73–74
true/false questions, 73–74

STL (standard template
library), 11–12. See also
primary templates;
templates.

Subcontractor, derived class as,
4–5

Substitution failure is not an
error (SFINAE), 217–220

Sutter, Herb, xi, xvii, xviii, 136
Swedish, and technical

communication, 99

T
Template argument deduction,

18, 209–212
Template Method

versus C++ templates, 77
description, 77–79

Template template parameters,
199–204

Templates. See also primary
templates; STL (standard
template library).

arguments
customizing. See templates,
specialization.
description, 153–154

array formal arguments,
18–19

C++ versus Template
Method, 77

Index ❘ 243

Templates, continued
customizing. See templates,

specialization.
disambiguation, 169–172,

179–181
ids, 154
ignorance and, 180
instantiation, 154
member functions, 173–177
names, 154
nested names, 179
parameters, 153–154
smart pointers, 145–146
specialization

explicit, 155–159, 183–187,
209–212
partial, 161–164, 183–187
terminology, 153–154
traits, 197

traits, 195–197
Terminology

assignment versus
initialization, 41–43

const pointers versus pointers
to const, 21–23

member templates, 174
new operator versus opera-
tor new, 119, 123, 143

new style cast operators
versus old-style, 29

overloading versus
overriding, 75–76

pointers to class members
versus pointers, 53–56

pointers to const versus const
pointers, 21–23

pointers to member functions
versus pointers, 57–59

references versus pointers, 13
template argument

deduction, 209
Template Method versus C++

templates, 77
templates, 153–154
wrappers, 8

Tondo, Clovis, xvii
Traits

conventions, 193, 197
description, 193–197
specialization, 197
templates, 195–197

Traits class, 193–197
True/false questions, 73–74
Type

container elements,
determining, 189–191

information, embedded,
189–191

information about, 193–197
qualifiers, changing, 29–30,

30–31
traits, 193–197

Typename, disambiguation,
169–172

U
Unnecessary static conventions,

232
Unnecessary virtual

conventions, 232
User-defined types, assignment,

41–43

Using declarations, 84
Using directives, 82–83
Usual operator new and

operator delete, 125

V
Vandevoorde, David, 217–220
Variables, avoiding static

linkage, 85
Virtual constructors, 99–101
Virtual copy, assignment, 47
Virtual function pointers, 64–66
Virtual functions, class layout,

37
Virtual inheritance, class layout,

37–38
virtual keyword, 231–233
volatile qualifiers,

adding/removing, 29–30

W
Ward, Dick and Judy, xviii
What you see is what you get, 37
Wilson, Flip (veiled reference),

37
Wilson, Matthew, xvii

Z
Zolman, Leor, xvii
Zoo animals, resource control.

See RAII.

244 ❘ Index

Index of Code Examples
See also Index, page 237

245

A
ABC class, 113–114
Abstract base class
ABC class, 113–114
Action class, 69
Func class, 65
Rollable class, 93

Access games
aFunc function, 118
NoCopy class, 111
NoHeap class, 117–118
OnHeap class, 118

Action class, 69
aFunc function, 82–84, 89, 118
Allocator
AnAlloc class template, 179
AnAlloc::rebind member

template, 179
SList class template, 180

AnAlloc class template, 179
AnAlloc::rebind member

template, 179
App class, 78
append function, 120–121
App::startup member

function, 78
Argument dependent lookup,

89
Array class template, 225
Array<Circle,7> explicit

instantiation, 227
ArrayDeletePolicy class

template, 207

Array<T,n>::operator ==

template member function,
226

Assignment
SList<T>::operator =

member template, 175
String::operator =

member function, 42, 135
aTemplateContext function

template, 132

B
B class, 59, 75, 87
begForgiveness function, 51
Blob class, 231
Button class, 67, 69
Button::setAction member

function, 136

C
C class, 54
Callback
Action class, 69
begForgiveness function,

51
CanConvert class template,

220
Capability class, 93
cast function template, 209
CheckedPtr class template,

145

Circle class
capability queries, 94
covariant return types,

107–108
pointers to class members, 55
pointers to member

functions, 57
CircleEditor class, 108
Class templates
AnAlloc, 179
Array, 225
ArrayDeletePolicy, 207
CanConvert, 220
CheckedPtr, 145
ContainerTraits, 194
ContainerTraits<

vector<T> >, 197
ContainerTraits<const

T *>, 197
ContainerTraits<T *>,

196
Heap, 155, 165
Heap<T *>, 161
IsArray, 187
IsClass, 219
IsInt, 183
IsPCM, 187
IsPtr, 184
MFunc, 66
NoDeletePolicy, 207
PFun1, 215
PFun2, 212, 214
PtrCmp, 162

Class templates, continued
PtrDeletePolicy, 206–207
PtrList, 169
PtrVector, 25
ReadonlySeq, 191
SCollection, 170
Seq, 189–190
SList, 173, 180
Stack, 185–186, 200–202,

205–206
Wrapper1, 203
Wrapper2, 203
Wrapper3, 203–204

Classes
ABC, 113–114
Action, 69
App, 78
B, 59, 75, 87
Blob, 231
Button, 67, 69
C, 54
Circle

capability queries, 94
covariant return types,
107–108
pointers to class members,
55
pointers to member
functions, 57

CircleEditor, 108
ContainerTraits<const

char *>, 196
ContainerTraits

<ForeignContainer>,
195

D, 59, 76, 87
E, 88
Employee, 104–105
Fib, 63
ForeignContainer, 195
Func, 65
Handle

array allocation, 127–128
class-specific memory
management, 123–124

copy operations, 45
optional keywords, 232
restricting heap allocation,
118

Heap<char *>, 157–158
Heap<const char *>, 156
IsWarm, 73
Meal, 100
MyApp, 78–79
MyContainer, 170
MyHandle, 124
NMFunc, 66
NoCopy, 111
NoHeap, 117–118
ObservedBlob, 97
OnHeap, 118
PlayMusic, 69
PopLess, 72
rep, 125
ResourceHandle, 139
Rollable, 93
S, 38
Shape

capability queries, 93
covariant return types,
107–108
optional kwds, 231
pointer comparison, 97
pointers to class members,
55
pointers to member
functions, 57

ShapeEditor, 108
SharpBlob, 231
Spaghetti, 100
Square, 94
State, 71, 222–223
String, 41
Subject, 97
T, 39
Temp, 105
Trace, 141
Wheel, 94
X, 33–36, 91

cleanupBuf function, 121

Command pattern, 69
Comparator
PopLess class, 72
popLess function, 71
PtrCmp class template, 162
strLess function, 157

Computational constructor, 43
ContainerTraits class

template, 194
ContainerTraits

< vector<T> > class
template, 197

ContainerTraits<const

char *> class, 196
ContainerTraits<const T

*> class template, 197
ContainerTraits

<ForeignContainer>

class, 195
ContainerTraits<T *> class

template, 196
Copy assignment
Handle::operator =

member function, 46–47
Handle::swap member

function, 46
Covariant return, 107–108

D
D class, 59, 76, 87

E
E class, 88
Employee class, 104–105
Exceptions
aTemplateContext

function template, 132
Button::setAction

member function, 136
f function, 140–141
ResourceHandle class, 139
String::operator =

member function, 135

246 ❘ Index

Trace class, 141
X::X member function, 133

Explicit instantiation
Array<Circle,7>, 227
Heap<double>, 167

Explicit specialization
ContainerTraits<const

char *> class, 196
ContainerTraits

<ForeignContainer>

class, 195
Heap class template, 155
Heap<char *> class,

157–158
Heap<const char *> class,

156
IsInt class template, 183

extractHeap function
template, 158

F
f function, 140–141
Factory Method
Circle class, 108
Employee class, 104–105
Shape class, 108
Temp class, 105

Fib class, 63
fibonacci function, 64
Fib::operator () member

function, 63
fill function template, 170, 172
ForeignContainer class, 195
friend function, 43
Func class, 65
Function object
Action class, 69
Fib class, 63
Func class, 65
IsWarm class, 73
MFunc class template, 66
NMFunc class, 66
PFun1 class template, 215

PFun2 class template, 212,
214

PlayMusic class, 69
PopLess class, 72
PtrCmp class template, 162

Function template overloading
g function, 213
g function template, 213
makePFun function template,

215
Function templates
aTemplateContext, 132
cast, 209
extractHeap, 158
fill, 170, 172
g, 213
makePFun, 212, 214–215
min, 209
process, 19, 189, 191, 194
process_2d, 19
repeat, 211
set_2d, 15
slowSort, 221–224
swap, 14, 45
zeroOut, 211

Functions
aFunc, 82–84, 89, 118
append, 120–121
begForgiveness, 51
cleanupBuf, 121
f, 140–141
fibonacci, 64
g, 213
genInfo, 104
integrate, 65
operator new, 119
org_semantics::

operator +, 82
popLess, 71
scanTo, 26
someFunc, 115
String::operator +, 43
strLess, 157
swap, 222

G
g function, 213
g function template, 213
Generic algorithms, 221–224
genInfo function, 104

H
Handle class

array allocation, 127–128
class-specific memory

management, 123–124
copy operations, 45
optional keywords, 232
restricting heap allocation,

118
Handle::operator =

member function, 46–47
Handle::operator delete

member function, 126
Handle::operator new

member function, 125
Handle::swap member

function, 46
hasIterator preprocessor

macro, 219
Heap class template, 155, 165
Heap<char *> class, 157–158
Heap<const char *> class,

156
Heap<const char *>::pop

member function, 166
Heap<const char *>::push

member function, 157,
166–167

Heap<double> explicit
instantiation, 167

Heap<T *> class template, 161
Heap<T *>::push template

member function, 162
Heap<T>::pop template

member function, 156
Heap<T>::push template

member function, 155
Helper function, 212, 214

Index ❘ 247

I
integrate function, 65
Interface class
Action class, 69
Func class, 65
Rollable class, 93

IsArray class template, 187
IsClass class template, 219
IsInt class template, 183
IsPCM class template, 187
IsPtr class template, 184
is_ptr preprocessor macro,

217
IsWarm class, 73

M
makePFun function template,

212, 214–215
Meal class, 100
Member array new, 118, 128
Member delete, 126
Member functions
App::startup, 78
Button::setAction, 136
Fib::operator (), 63
Handle::operator =,

46–47
Handle::operator

delete, 126
Handle::operator new,

125
Handle::swap, 46
Heap<const char

*>::pop, 166
Heap<const char

*>::push, 157, 166–167
String::operator =, 42,

135
String::String, 42
String::String, 42–43
X::getValue, 34–35
X::memFunc2, 91
X::X, 133

Member new
Handle class, 123–124
Handle::operator new

member function, 125
MyHandle class, 124

Member specialization
Heap<const char

*>::pop member
function, 166

Heap<const char

*>::push member
function, 157, 166–167

Member templates
AnAlloc::rebind, 179
SList<T>::operator =,

175
SList<T>::SList, 174–175
SList<T>::sort, 176

MFunc class template, 66
minimum function template,

209
Multiple inheritance, 97
MyApp class, 78–79
MyContainer class, 170
MyHandle class, 124

N
Namespaces
aFunc function, 82–84
org_semantics, 81, 89
org_semantics namespace,

81
org_semantics::

operator + function, 82
NMFunc class, 66
NoCopy class, 111
NoDeletePolicy class

template, 207
NoHeap class, 117–118

O
ObservedBlob class, 97
OnHeap class, 118

operator new function, 119
org_semantics namespace,

81, 89
org_semantics::operator

+ function, 82

P
Partial specialization
ContainerTraits

< vector<T> > class
template, 197

ContainerTraits<const

T *> class template, 197
ContainerTraits<T *>

class template, 196
Heap<T *> class template,

161
Heap<T *>::push template

member function, 162
IsArray class template, 187
IsPCM class template, 187
IsPtr class template, 184

PFun1 class template, 215
PFun2 class template, 212, 214
Placement new
append function, 120–121
operator new function, 119

PlayMusic class, 69
POD, 38
Pointer arithmetic
process_2d function

template, 19
set_2d function template, 15

Policy
ArrayDeletePolicy class

template, 207
NoDeletePolicy class

template, 207
PtrDeletePolicy class

template, 206–207
Stack class template,

205–206
PopLess class, 72
popLess function, 71

248 ❘ Index

Predicate, 73
Preprocessor macro
hasIterator, 219
is_ptr, 217

process function template, 19,
189, 191, 194

process_2d function
template, 19

Prototype
Action class, 69
Circle class, 107
Meal class, 100
PlayMusic class, 69
Shape class, 107
Spaghetti class, 100

PtrCmp class template, 162
PtrDeletePolicy class

template, 206–207
PtrList class template, 169
PtrVector class template, 25

R
ReadonlySeq class template,

191
rep class, 125
repeat function template, 211
ResourceHandle class, 139
Rollable class, 93

S
S class, 38
scanTo function, 26
SCollection class template,

170
Seq class template, 189–190
set_2d function template, 15
SFINAE
CanConvert class template,

220
hasIterator preprocessor

macro, 219
IsClass class template, 219
is_ptr preprocessor macro,

217

Shape class
capability queries, 93
covariant return types,

107–108
optional kwds, 231
pointer comparison, 97
pointers to class members, 55
pointers to member

functions, 57
ShapeEditor class, 108
SharpBlob class, 231
SList class template, 173, 180
SList<T>::empty template

member function, 173
SList<T>::Node template

member class, 174
SList<T>::operator =

member template, 175
SList<T>::SList member

template, 174–175
SList<T>::sort member

template, 176
slowSort function template,

221–224
Smart pointer, 145
someFunc function, 115
Spaghetti class, 100
Square class, 94
Stack class template, 185–186,

200–202, 205–206
Stack<T>::push template

member function, 185
State class, 71, 222–223
String class, 41
String::operator +

function, 43
String::operator =

member function, 42, 135
String::String member

function, 42
String::String member

function, 42–43
strLess function, 157
Subject class, 97
swap function, 222
swap function template, 14, 45

T
T class, 39
Temp class, 105
Template argument deduction
cast function template, 209
makePFun function template,

212, 214
minimum function template,

209
repeat function template,

211
zeroOut function template,

211
Template member class, 174
Template member functions
Array<T,n>::operator

==, 226
Heap<T *>::push, 162
Heap<T>::pop, 156
Heap<T>::push, 155
SList<T>::empty, 173
Stack<T>::push, 185

Template Method
App class, 78
App::startup member

function, 78
MyApp class, 78–79

Trace class, 141
Traits
ContainerTraits class

template, 194
ContainerTraits

< vector<T> > class
template, 197

ContainerTraits<const

char *> class, 196
ContainerTraits<const

T *> class template, 197
ContainerTraits

<ForeignContainer>

class, 195
ContainerTraits<T *>

class template, 196

Index ❘ 249

W
Wheel class, 94
Wrapper1 class template, 203
Wrapper2 class template, 203
Wrapper3 class template,

203–204

X
X class, 33–36, 91
X::getValue member func-

tion, 34–35
X::memFunc2 member

function, 91
X::X member function, 133

Z
zeroOut function template,

211

250 ❘ Index

C++ Courses and Services

Steve Dewhurst, Semantics Consulting, Inc.

www.semantics.org

If you liked any of these books, consider on-site and public training offered
by the author. His popular courses include:

• Introductory through advanced C++ programming
• Design patterns in the C++ context
• The C++ Standard Template Library

Semantics also provides the following corporate university services:

• Custom course and curriculum development
• High-volume training
• Licensing
• Web casting
• Renovation of existing courses

Visit the Semantics web site for more information. You’ll also find Steve’s published
articles, “Once, Weakly” Web articles, research on C++ programming techniques,
and speaking schedule.

ISBN 0321125185 ISBN 0321321928 ISBN 0131827189

www.semantics.org

New and Classic C++ Books

0201704315

Visit us online for more books and more information, and to read sample chapters:
www.awprofessional.com

0201699710 0321227255

0201924889 0321125185 0201379260

0321228774

0201700735 020170353X

0201760428

This classic, tutorial introduction to standard C++
has been completely updated, reorganized, and
rewritten to help programmers learn the language
faster and use it in a more modern style.

ISBN 0201721481
912 pages • © 2005

Look
for new

edition in
2005

Whether you're working alone or with others, C++
Coding Standards will help you write cleaner code—
and write it faster, with fewer hassles and less
frustration.

ISBN 0321113586
240 pages • © 2005

www.awprofessional.com

#33: Manufacturing Abstract
Bases (113)

#34: Restricting Heap
Allocation (117)

#35: Placement New (119)

#36: Class-Specific Memory
Management (123)

#37: Array Allocation (127)

#38: Exception Safety Axioms (131)

#39: Exception Safe Functions (135)

#40: RAII (139)

#41: New, Constructors, and
Exceptions (143)

#42: Smart Pointers (145)

#43: auto_ptr Is Unusual (147)

#44: Pointer Arithmetic (149)

#45: Template Terminology (153)

#46: Class Template Explicit
Specialization (155)

#47: Template Partial
Specialization (161)

#48: Class Template Member
Specialization (165)

#49: Disambiguating with
Typename (169)

#50: Member Templates (173)

#51: Disambiguating with
Template (179)

#52: Specializing for Type
Information (183)

#53: Embedded Type
Information (189)

#54: Traits (193)

#55: Template Template
Parameters (199)

#56: Policies (205)

#57: Template Argument
Deduction (209)

#58: Overloading Function
Templates (213)

#59: SFINAE (217)

#60: Generic Algorithms (221)

#61: You Instantiate What
You Use (225)

#62: Include Guards (229)

#63: Optional Keywords (231)

C++ Common Knowledge

	Contents
	Preface
	Acknowledgments
	A Note on Typographical Conventions
	Item 1 Data Abstraction
	Item 2 Polymorphism
	Item 3 Design Patterns
	Item 4 The Standard Template Library
	Item 5 References Are Aliases, Not Pointers
	Item 6 Array Formal Arguments
	Item 7 Const Pointers and Pointers to Const
	Item 8 Pointers to Pointers
	Item 9 New Cast Operators
	Item 10 Meaning of a Const Member Function
	Item 11 The Compiler Puts Stuff in Classes
	Item 12 Assignment and Initialization Are Different
	Item 13 Copy Operations
	Item 14 Function Pointers
	Item 15 Pointers to Class Members Are Not Pointers
	Item 16 Pointers to Member Functions Are Not Pointers
	Item 17 Dealing with Function and Array Declarators
	Item 18 Function Objects
	Item 19 Commands and Hollywood
	Item 20 STL Function Objects
	Item 21 Overloading and Overriding Are Different
	Item 22 Template Method
	Item 23 Namespaces
	Item 24 Member Function Lookup
	Item 25 Argument Dependent Lookup
	Item 26 Operator Function Lookup
	Item 27 Capability Queries
	Item 28 Meaning of Pointer Comparison
	Item 29 Virtual Constructors and Prototype
	Item 30 Factory Method
	Item 31 Covariant Return Types
	Item 32 Preventing Copying
	Item 33 Manufacturing Abstract Bases
	Item 34 Restricting Heap Allocation
	Item 35 Placement New
	Item 36 Class-Specific Memory Management
	Item 37 Array Allocation
	Item 38 Exception Safety Axioms
	Item 39 Exception Safe Functions
	Item 40 RAII
	Item 41 New, Constructors, and Exceptions
	Item 42 Smart Pointers
	Item 43 auto_ptr Is Unusual
	Item 44 Pointer Arithmetic
	Item 45 Template Terminology
	Item 46 Class Template Explicit Specialization
	Item 47 Template Partial Specialization
	Item 48 Class Template Member Specialization
	Item 49 Disambiguating with Typename
	Item 50 Member Templates
	Item 51 Disambiguating with Template
	Item 52 Specializing for Type Information
	Item 53 Embedded Type Information
	Item 54 Traits
	Item 55 Template Template Parameters
	Item 56 Policies
	Item 57 Template Argument Deduction
	Item 58 Overloading Function Templates
	Item 59 SFINAE
	Item 60 Generic Algorithms
	Item 61 You Instantiate What You Use
	Item 62 Include Guards
	Item 63 Optional Keywords
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index of Code Examples
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	R
	S
	T
	W
	X
	Z

