

C++20

Rainer Grimm

This book is for sale at http://leanpub.com/c20

This version was published on 2021-06-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2020 - 2021 Rainer Grimm

http://leanpub.com/c20
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Reader Testimonials . i

Introduction . iii
Conventions . iv

Special Fonts . iv
Special Boxes . iv

Source Code . v
Compilation of the Programs . v

How should you read the Book? . vi
Personal Notes . vii

Acknowledgments . vii
About Me . viii

About C++ . 1

1. Historical Context . 2
1.1 C++98 . 2
1.2 C++03 . 3
1.3 TR1 . 3
1.4 C++11 . 3
1.5 C++14 . 3
1.6 C++17 . 4

2. Standardization . 5
2.1 Stage 3 . 6
2.2 Stage 2 . 6
2.3 Stage 1 . 6

CONTENTS

A Quick Overview of C++20 8

3. C++20 . 9
3.1 The Big Four . 10

3.1.1 Concepts . 10
3.1.2 Modules . 12
3.1.3 The Ranges Library . 13
3.1.4 Coroutines . 14

3.2 Core Language . 17
3.2.1 Three-Way Comparison Operator 17
3.2.2 Designated Initialization 18
3.2.3 consteval and constinit 21
3.2.4 Template Improvements 22
3.2.5 Lambda Improvements . 23
3.2.6 New Attributes . 24

3.3 The Standard Library . 25
3.3.1 std::span . 25
3.3.2 Container Improvements 26
3.3.3 Arithmetic Utilities . 26
3.3.4 Calendar and Time Zones 27
3.3.5 Formatting Library . 28

3.4 Concurrency . 30
3.4.1 Atomics . 30
3.4.2 Semaphores . 31
3.4.3 Latches and Barriers . 31
3.4.4 Cooperative Interruption 32
3.4.5 std::jthread . 34
3.4.6 Synchronized Outputstreams 36

The Details . 39

4. Core Language . 40
4.1 Concepts . 41

4.1.1 Two Wrong Approaches 41
4.1.2 Advantages of Concepts 48

CONTENTS

4.1.3 The long, long History . 49
4.1.4 Use of Concepts . 50
4.1.5 Constrained and Unconstrained Placeholders 64
4.1.6 Abbreviated Function Templates 67
4.1.7 Predefined Concepts . 73
4.1.8 Defining Concepts . 81
4.1.9 Application . 91

4.2 Modules . 107
4.2.1 Why do we need Modules? 107
4.2.2 Advantages . 116
4.2.3 A First Example . 117
4.2.4 Compilation and Use . 120
4.2.5 Export . 122
4.2.6 Guidelines for a Module Structure 124
4.2.7 Module Interface Unit and Module Implementation Unit 125
4.2.8 Submodules and Module Partitions 129
4.2.9 Templates in Modules . 135
4.2.10 Module Linkage . 138
4.2.11 Header Units . 141

4.3 Three-Way Comparison Operator . 143
4.3.1 Ordering before C++20 . 143
4.3.2 Ordering since C++20 . 145
4.3.3 Comparision Categories 149
4.3.4 The Compiler-Generated Spaceship Operator 152
4.3.5 Rewriting Expressions . 157
4.3.6 User-Defined and Auto-Generated Comparison Opera-

tors . 161
4.4 Designated Initialization . 165

4.4.1 Aggregate Initialization . 165
4.4.2 Named Initialization of Class Members 167

4.5 consteval and constinit . 173
4.5.1 consteval . 173
4.5.2 constinit . 175
4.5.3 Function Execution . 176
4.5.4 Variable Initialization . 178
4.5.5 Solving the Static Initialization Order Fiasco 180

CONTENTS

4.6 Template Improvements . 187
4.6.1 Conditionally Explicit Constructor 187
4.6.2 Non-Type Template Parameters 191

4.7 Lambda Improvements . 195
4.7.1 Template Parameter for Lambdas 195
4.7.2 Detection of the Implicit Copy of the this Pointer . . . 201
4.7.3 Lambdas in anUnevaluated Context and Stateless Lamb-

das can be Default-Constructed and Copy-Assigned . . 203
4.8 New Attributes . 209

4.8.1 [[nodiscard("reason")]] 210
4.8.2 [[likely]] and [[unlikely]] 216
4.8.3 [[no_unique_address]] 217

4.9 Further Improvements . 220
4.9.1 volatile . 220
4.9.2 Range-based for loop with Initializers 222
4.9.3 Virtual constexpr function 224
4.9.4 The new Character Type of UTF-8 Strings: char8_t . . 225
4.9.5 using enum in Local Scopes 227
4.9.6 Default Member Initializers for Bit Fields 229

5. The Standard Library . 231
5.1 The Ranges Library . 232

5.1.1 The Concepts Ranges and Views 233
5.1.2 Direct on the Container . 235
5.1.3 Function Composition . 241
5.1.4 Lazy Evaluation . 243
5.1.5 Define a View . 247
5.1.6 A Flavor of Python . 252

5.2 std::span . 260
5.2.1 Static versus Dynamic Extent 260
5.2.2 Automatically Deduces the Size of a Contiguous Se-

quence of Objects . 262
5.2.3 Create a std::span from a Pointer and a Size 264
5.2.4 Modifying the Referenced Objects 266
5.2.5 Addressing std::span Elements 267
5.2.6 A Constant Range of Modifiable Elements 270

CONTENTS

5.3 Container Improvements . 273
5.3.1 constexpr Containers and Algorithms 273
5.3.2 std::array . 275
5.3.3 Consistent Container Erasure 277
5.3.4 contains for Associative Containers 283
5.3.5 String prefix and suffix checking 286

5.4 Arithmetic Utilities . 290
5.4.1 Safe Comparison of Integers 290
5.4.2 Mathematical Constants 296
5.4.3 Midpoint and Linear Interpolation 299
5.4.4 Bit Manipulation . 301

5.5 Calendar and Time Zones . 309
5.5.1 Time of day . 311
5.5.2 Calendar Dates . 314
5.5.3 Time Zones . 335

5.6 Formatting Library . 346
5.6.1 Format String . 348
5.6.2 User-Defined Types . 359

5.7 Further Improvements . 367
5.7.1 std::bind_front . 367
5.7.2 std::is_constant_evaluated 370
5.7.3 std::source_location . 372

6. Concurrency . 375
6.1 Coroutines . 376

6.1.1 A Generator Function . 377
6.1.2 Characteristics . 380
6.1.3 The Framework . 384
6.1.4 Awaitables and Awaiters 387
6.1.5 The Workflows . 391
6.1.6 co_return . 395
6.1.7 co_yield . 398
6.1.8 co_await . 402

6.2 Atomics . 413
6.2.1 std::atomic_ref . 413
6.2.2 Atomic Smart Pointer . 423

CONTENTS

6.2.3 std::atomic_flag Extensions 429
6.2.4 std::atomic Extensions 439

6.3 Semaphores . 444
6.4 Latches and Barriers . 451

6.4.1 std::latch . 452
6.4.2 std::barrier . 458

6.5 Cooperative Interruption . 463
6.5.1 std::stop_source . 464
6.5.2 std::stop_token . 465
6.5.3 std::stop_callback . 466

6.6 std::jthread . 474
6.6.1 Automatically Joining . 476
6.6.2 Cooperative Interruption of a std::jthread 478

6.7 Synchronized Output Streams . 482

7. Case Studies . 492
7.1 Fast Synchronization of Threads . 493

7.1.1 Condition Variables . 494
7.1.2 std::atomic_flag . 496
7.1.3 std::atomic<bool> . 501
7.1.4 Semaphores . 504
7.1.5 All Numbers . 506

7.2 Variations of Futures . 507
7.2.1 A Lazy Future . 510
7.2.2 Execution on Another Thread 514

7.3 Modification and Generalization of a Generator 520
7.3.1 Modifications . 525
7.3.2 Generalization . 529

7.4 Various Job Workflows . 533
7.4.1 The Transparent Awaiter Workflow 533
7.4.2 Automatically Resuming the Awaiter 537
7.4.3 Automatically Resuming the Awaiter on a Separate

Thread . 540

CONTENTS

Epilogue . 545

Further Information . 547

8. C++23 and Beyond . 548
8.1 C++23 . 549

8.1.1 The Coroutines Library . 549
8.1.2 Modularized Standard Library for Modules 569
8.1.3 Executors . 572
8.1.4 The Network Library . 578

8.2 C++23 or Later . 580
8.2.1 Contracts . 580
8.2.2 Reflection . 586
8.2.3 Pattern Matching . 590

8.3 Further Information about C++23 . 593

9. Feature Testing . 595

10. Glossary . 611
10.1 Callable . 611
10.2 Callable Unit . 611
10.3 Concurrency . 611
10.4 Critical Section . 611
10.5 Data Race . 612
10.6 Deadlock . 612
10.7 Eager Evaluation . 612
10.8 Executor . 612
10.9 Function Objects . 613
10.10 Lambda Expressions . 613
10.11 Lazy Evaluation . 614
10.12 Lock-free . 614
10.13 Lost Wakeup . 614
10.14 Math Laws . 614
10.15 Memory Location . 615
10.16 Memory Model . 615

CONTENTS

10.17 Non-blocking . 615
10.18 Object . 615
10.19 Parallelism . 615
10.20 Predicate . 616
10.21 RAII . 616
10.22 Race Conditions . 616
10.23 Regular . 616
10.24 Scalar . 617
10.25 SemiRegular . 617
10.26 Spurious Wakeup . 617
10.27 The Big Four . 617
10.28 The Big Six . 618
10.29 Thread . 618
10.30 Time Complexity . 618
10.31 Translation Unit . 619
10.32 Undefined Behavior . 619

Index . 620

Reader Testimonials
Sandor Dargo

Senior Software Development Engineer at Amadeus

”’C++ 20: Get the details’ is exactly the book you need right now if you want to
immerse yourself in the latest version of C++. It’s a complete guide, Rainer doesn’t
only discuss the flagship features of C++20, but also every minor addition to the
language. Luckily, the book includes tons of example code, so even if you don’t have
direct access yet to the latest compilers, you will have a very good idea of what you
can expect from the different features. A highly recommended read!”

Adrian Tam

Director of Data Science, Synechron Inc.

Reader Testimonials ii

”C++ has evolved a lot from its birth. With C++20, it is like a new language now. Surely
this book is not a primer to teach you inheritance or overloading, but if you need to
bring your C++ knowledge up to date, this is the right book. You will be surprised about
the new features C++20 brought into C++. This book gives you clear explanations with
concise examples. Its organization allows you to use it as a reference later. It can help
you unleash the old language into its powerful future.”

Introduction
My book C++20 is both a tutorial and a reference. It teaches you C++20 and provides
you with the details of this new thrilling C++ standard. The thrill factor is mainly
due to the big four of C++20:

• Concepts change the way we think about and program with templates. They
are semantic categories for template parameters. They enable you to express
your intention directly in the type system. If something goes wrong, the
compiler gives you a clear error message.

• Modules overcome the restrictions of header files. They promise a lot. For
example, the separation of header and source files becomes as obsolete as the
preprocessor. In the end, we have faster build times and an easier way to build
packages.

• The new ranges library supports performing algorithms directly on the con-
tainers, composing algorithms with the pipe symbol, and applying algorithms
lazily on infinite data streams.

• Thanks to coroutines, asynchronous programming in C++ becomes main-
stream. Coroutines are the basis for cooperative tasks, event loops, infinite data
streams, or pipelines.

Of course, this is not the end of the story. Here are more C++20 features:

• Auto-generated comparison operators
• Calendar and time-zone libraries
• Format library
• Views on contiguous memory blocks
• Improved, interruptible threads
• Atomic smart pointers
• Semaphores
• Coordination primitives such as latches and barriers

Introduction iv

Conventions

Here are only a few conventions.

Special Fonts

Italic: I use Italic to emphasize a quote.

Bold: I use Bold to emphasize a name.

Monospace: I use Monospace for code, instructions, keywords, and names of types,
variables, functions, and classes.

Special Boxes

Boxes contain background tips, warnings, and distilled information.

Tip Headline
This box provides additional information about the presented material and
tips for compiling the programs.

Warning Headline
Warning boxes should help you to avoid pitfalls.

Distilled Information
This box summarizes at the end of each main section the important things
to remember.

Introduction v

Source Code

The source code examples–starting with the details part–shown in the book are
complete. That means, assuming you have a conforming compiler, you can compile
and run them. I put the name of the source file in the title of each source code example.
The source code uses four whitespaces for indentation. Only for layout reasons, I
sometimes use two whitespaces.

Furthermore, I’m not a fan of namespace directives such as using namespace std

because they make the code more difficult to read and can pollute namespaces.
Consequently, I use them only when it improves the code’s readability (e.g.: using
namespaces std::chrono_literals). When necessary for layout reasons, I apply a
using-declaration, such as using std::chrono::system_clock.

To summarize, I only use the following layout rules if necessary:

• I indent two characters instead of four.
• I apply the using namespace std directive.

Compilation of the Programs

As the C++20 standard is brand-new, many examples can only be compiled and
executed with a specific compiler. I use the newest GCC¹, Clang², and MSVC³
compilers. When you compile the program, you must specify the applied C++
standard. This means, with GCC or Clang you must provide the flag -std=c++20,
and with MSVC /std:c++latest. When using concurrency features, unlike with
MSVC, the GCC and Clang compilers require that you link the pthread library using
-pthread.

If you don’t have an appropriate C++ compiler at your disposal, use an online
compiler such asWandbox⁴ or Compiler Explorer⁵. When you use Compiler Explorer
with GCC or Clang, you can also execute the program. First, you have to enable Run
the compiled output (1) and, second, open the Output window (2).

¹https://gcc.gnu.org/
²https://clang.llvm.org/
³https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B
⁴https://wandbox.org/
⁵https://godbolt.org/

https://gcc.gnu.org/
https://clang.llvm.org/
https://en.wikipedia.org/wiki/Microsoft_Visual_C++
https://wandbox.org/
https://godbolt.org/
https://gcc.gnu.org/
https://clang.llvm.org/
https://en.wikipedia.org/wiki/Microsoft_Visual_C++
https://wandbox.org/
https://godbolt.org/

Introduction vi

Run code in the Compiler Explorer

You can get more details about the C++20 conformity of various C++ compilers at
cppreference.com⁶.

How should you read the Book?

If you are not familiar with C++20, start at the very beginning with a quick overview
to get the big picture.

Once you get the big picture, you can proceed with the core language. The pre-
sentation of each feature should be self-contained, but reading the book from the

⁶https://en.cppreference.com/w/cpp/compiler_support

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

Introduction vii

beginning to the end would be the preferable way. On first reading, you can skip the
features not mentioned in the quick overview chapter.

Personal Notes

Acknowledgments

I started a request for proofreading on my English blog: ModernesCpp Cpp⁷ and
received more responses than I expected. Special thanks to all of you. Here are the
names of the proofreaders in alphabetic order: Bob Bird, Nicola Bombace, Dave
Burchill, Sandor Dargo, James Drobina, Frank Grimm, Kilian Henneberger, Ivan
“espkk” Kondakov, Péter Kardos, Rakesh Mane, Jonathan O’Connor, John Plaice,
Iwan Smith, Paul Targosz, Steve Vinoski, and Greg Wagner.

Special thanks also to my daughter Juliette, and my wife Beatrix. Juliette improved
my wording and fixed many of my typos. Beatrix created Cippi and illustrated the
book.

Cippi

Let me introduce Cippi. Cippi will accompany you in this book. I hope, you like her.

⁷http://www.modernescpp.com

http://www.modernescpp.com/
http://www.modernescpp.com/

Introduction viii

I’m Cippi, the C ++ Pippi Longstocking: curious, clever and - yes - feminine!

About Me

I’ve worked as a software architect, team lead, and instructor since 1999. In 2002,
I created company-intern meetings for further education. I have given training
courses since 2002. My first tutorials were about proprietary management software,
but I began teaching Python and C++ soon after. In my spare time, I like to write
articles about C++, Python, and Haskell. I also like to speak at conferences. I publish
weekly on my English blog Modernes Cpp⁸ and the German blog⁹, hosted by Heise
Developer.

Since 2016, I have been an independent instructor giving seminars about modern C++
and Python. I have published several books in various languages about modern C++
and, in particular, about concurrency. Due to my profession, I always search for the
best way to teach modern C++.

⁸https://www.modernescpp.com/
⁹https://www.grimm-jaud.de/index.php/blog

https://www.modernescpp.com/
https://www.grimm-jaud.de/index.php/blog
https://www.modernescpp.com/
https://www.grimm-jaud.de/index.php/blog

Introduction ix

Rainer Grimm

About C++

1. Historical Context
C++20 is the next big C++ standard after C++11. Like C++11, C++20 changes the
way we program in modern C++. This change mainly results from the addition of
Concepts, Modules, Ranges, and Coroutines to the language. To understand this next
big step in the evolution of C++, let me write a fewwords about the historical context
of C++20.

C++ History

C++ is about 40 years old. Here is a brief overview of what has changed in the
previous years.

1.1 C++98

At the end of the 80’s, Bjarne Stroustrup and Margaret A. Ellis wrote their famous
book Annotated C++ Reference Manual ¹(ARM). This book served two purposes,
to define the functionality of C++ in a world with many implementations, and to
provide the basis for the first C++ standard C++98 (ISO/IEC 14882). Some of the

¹https://www.stroustrup.com/arm.html

https://www.stroustrup.com/arm.html
https://www.stroustrup.com/arm.html

Historical Context 3

essential features of C++98 were: templates, the Standard Template Library (STL)
with its containers, and algorithms, strings, and IO streams.

1.2 C++03

With C++03 (14882:2003), C++98 received a technical correction, so small that there
is no place on the timeline above. In the community, C++03, which includes C++98,
is called legacy C++.

1.3 TR1

In 2005, something exciting happened. The so-called Technical Teport 1 (TR1) was
published. TR1 was a big step toward C++11 and, therefore, towards Modern C++.
TR1 (TR 19768) is based on the Boost project², which was founded by members
of the C++ standardization committee. TR1 had 13 libraries that were destined to
become part of the C++11 standard. For example, the regular expression library, the
random number library, smart pointers and hashtables. Only the so-called special
mathematical functions had to wait until C++17.

1.4 C++11

We call the C++11 standard Modern C++. The name Modern C++ is also used for
C++14 and C++17. C++11 introduced many features that fundamentally changed the
waywe program in C++. For example, C++11 had the additions of TR1, but also move
semantics, perfect forwarding, variadic templates, and constexpr. But that was not
all. With C++11, we also got, for the first time, a memory model as the fundamental
basis of threading and the standardization of a threading API.

1.5 C++14

C++14 is a small C++ standard. It brought read-writer locks, generalized lambdas,
and extended constexpr functions.

²https://www.boost.org/

https://www.boost.org/
https://www.boost.org/

Historical Context 4

1.6 C++17

C++17 is neither a big nor a small C++ standard. It has two outstanding features:
the parallel STL and the standardized filesystem API. About 80 algorithms of the
Standard Template Library can be executed in parallel or vectorized. As with C++11,
the boost libraries were highly influential for C++17. Boost provided the filesystem
library and new data types: std::string_view, std::optional, std::variant, and
std::any.

2. Standardization
The C++ standardization process is democratic. The committee is called WG21
(Working Group 21) and was formed in 1990-91. The officers of WG 21 are:

• Convener: chairs the WG21, sets the meeting schedule, and appoints Study
Groups

• Project Editor: applies changes to the working draft of the C++ standard
• Secretary: assigns minutes of the WG21 meetings

The image shows you the various subgroups and Study Groups of the committee.

Study groups in the C++ standardization process

The committee is organized into a three-stage pipeline consisting of several sub-
groups. SG stands for Study Group.

Standardization 6

2.1 Stage 3

Stage 3 for the wording and the change proposal’s consistency have two groups: core
language wording (CWG) and library wording (LWG).

2.2 Stage 2

Stage 2 has two groups: core language evolution (EWG) and library evolution
(LEWG). EWG and LEWG are responsible for new features that involve language
and standard library extensions, respectively.

2.3 Stage 1

Stage 1 aims for domain-specific investigation and incubation. The study groups’
members meet in face-to-face meetings, between the meeting by telephone or video
conferences. Central groups may review the work of the study groups to ensure
consistency.

These are the domain-specific Study Groups:

• SG1, Concurrency: Concurrency and parallelism topics, including the memory
model

• SG2, Modules: Modules-related topics
• SG3, File System
• SG4, Networking: Networking library development
• SG5, Transactional Memory: Transactional memory constructs for future
addition

• SG6, Numerics: Numerics topics such as fixed-point numbers, floating-point
numbers, and fractions

• SG7, Compile time programming: compile time programming in general
• SG8, Concepts
• SG9, Ranges
• SG10, Feature Test: Portable checks to test whether a particular C++ supports
a specific feature

Standardization 7

• SG11, Databases: Database-related library interfaces
• SG12, UB & Vulnerabilities: Improvements against vulnerabilities and unde-
fined/unspecified behavior in the standard

• SG13, HMI & I/O (Human/Machine Interface): Support for output and input
devices

• SG14, Game Development & Low Latency: Game developers and (other) low-
latency programming requirements

• SG15, Tooling: Developer tools, including modules and packages
• SG16, Unicode: Unicode text processing in C++
• SG17, EWG Incubator: Early discussion about the core language evolution
• SG18, LEWG Incubator: Early discussions about the library language evolution
• SG19, Machine Learning: Artificial intelligence (AI) specific topics but also
linear algebra

• SG20, Education: Guidance for modern course materials for C++ education
• SG21, Contracts: Language support for Design by Contract
• SG22, C/C++ Liaison: Discussion of C and C++ coordination

This section provided you a concise overview of the standardization in C++ and, in
particular, the C++ committee. You can find more details about the standardization
on https://isocpp.org/std¹.

¹https://isocpp.org/std

https://isocpp.org/std
https://isocpp.org/std

A Quick Overview of C++20

3. C++20
Before I dive into the details of C++20, I want to give a quick overview of the features
in C++20. This overview should serve two purposes; to give a first impression, and
to provide links to the relevant sections you can use to dive directly into the details.
Consequently, this chapter has only code snippets, but no complete programs.

My book starts with a short historical detour into the previous C++ standards.
This detour provides context when comparing C++20 to previous revisions and
demonstrates the importance of C++20 by providing a historical context.

C++20 has four outstanding features: concepts, ranges, coroutines, andmodules. Each
deserves its own subsection.

C++20 10

3.1 The Big Four

Each feature of the Big Four changes the way we program in modern C++. Let me
start with concepts.

3.1.1 Concepts

Generic programmingwith templates enables it to define functions and classes which
can be used with various types. As a result, it is not uncommon that you instantiate a
templatewith thewrong type. The result can bemany pages of cryptic errormessages.
This problem ends with concepts. Concepts empower you to write requirements for
template parameters that are checked by the compiler, and revolutionize the way we
think about and write generic code. Here is why:

• Requirements for template parameters become part of their public interface.
• The overloading of functions or specializations of class templates can be based
on concepts.

• We get improved error messages because the compiler checks the defined
template parameter requirements against the given template arguments.

Additionally, this is not the end of the story.

• You can use predefined concepts or define your own.

C++20 11

• The usage of auto and concepts is unified. Instead of auto, you can use a
concept.

• If a function declaration uses a concept, it automatically becomes a function
template. Writing function templates is, therefore, as easy as writing a function.

The following code snippet demonstrates the definition and the use of the straight-
forward concept Integral:

Definition and use of the Integral concept

template <typename T>

concept Integral = std::is_integral<T>::value;

Integral auto gcd(Integral auto a, Integral auto b) {

if(b == 0) return a;

else return gcd(b, a % b);

}

The Integral concept requires from its type parameter T that std::is_integral<T>::value
be true. std::is_integral<T>::value is a value from the type traits library¹
checking at compile time if T is integral. If std::is_integral<T>::value evaluates
to true, all is fine; otherwise, you get a compile-time error.

The gcd algorithm determines the greatest common divisor based on the Euclidean²
algorithm. The code uses the so-called abbreviated function template syntax to define
gcd. Here, gcd requires that its arguments and return type support the concept
Integral. In other words, gcd is a kind of function template that puts requirements
on its arguments and return value. When I remove the syntactic sugar, you can see
the real nature of gcd.

Here is the semantically equivalent gcd algorithm, using a requires clause.

¹https://en.cppreference.com/w/cpp/header/type_traits
²https://en.wikipedia.org/wiki/Euclid

https://en.cppreference.com/w/cpp/header/type_traits
https://en.wikipedia.org/wiki/Euclid
https://en.cppreference.com/w/cpp/header/type_traits
https://en.wikipedia.org/wiki/Euclid

C++20 12

Use of the concept Integral in the requires clause

template<typename T>

requires Integral<T>

T gcd(T a, T b) {

if(b == 0) return a;

else return gcd(b, a % b);

}

The requires clause states the requirements on the type parameters of gcd.

3.1.2 Modules

Modules promise a lot:

• Faster compile times
• Reduce the need to define macros
• Express the logical structure of the code
• Make header files obsolete
• Get rid of ugly macro workarounds

Here is the first simple math module:

The math module

1 export module math;

2

3 export int add(int fir, int sec) {

4 return fir + sec;

5 }

The expression export module math (line 1) is the module declaration. Putting
export before the function add (line 3) exports the function. Now, it can be used
by a consumer of the module.

C++20 13

Use of the math module

import math;

int main() {

add(2000, 20);

}

The expression import math imports the mathmodule and makes the exported names
visible in the current scope.

3.1.3 The Ranges Library

The ranges library supports algorithms which

• can operate directly on containers; you don’t need iterators to specify a range
• can be evaluated lazily
• can be composed

To make it short: The ranges library supports functional patterns.

The following example demonstrates function composition using the pipe symbol.

Function composition with the pipe symbol

1 int main() {

2 std::vector<int> ints{0, 1, 2, 3, 4, 5};

3 auto even = [](int i){ return i % 2 == 0; };

4 auto square = [](int i) { return i * i; };

5

6 for (int i : ints | std::views::filter(even) |

7 std::views::transform(square)) {

8 std::cout << i << ' '; // 0 4 16

9 }

10 }

C++20 14

Lambda expression even (line 3) is a lambda expression that returns true if an
argument i is even. Lambda expression square (line 4) maps the argument i to
its square. Lines 6 and 7 demonstrate function composition, which you have to
read from left to right: for (int i : ints | std::views::filter(even) |

std::views::transform(square)). Apply on each element of ints the even filter
and map each remaining element to its square. If you are familiar with functional
programming, this reads like prose.

3.1.4 Coroutines

Coroutines are generalized functions that can be suspended and resumed later while
maintaining their state. Coroutines are a convenient way to write event-driven
applications. Event-driven applications can be simulations, games, servers, user
interfaces, or even algorithms. Coroutines are also typically used for cooperative
multitasking.

C++20 does not provide concrete coroutines, instead C++20 provides a framework for
implementing coroutines. This framework consists of more than 20 functions, some
of which you must implement, some of which you can override. Therefore, you can
tailor coroutines to your needs.

The following code snippet uses a generator to create a potentially infinite data-
stream. The chapter coroutines provides the implemenation of the Generator.

A generator for an infinite data-stream

1 Generator<int> getNext(int start = 0, int step = 1){

2 auto value = start;

3 while (true) {

4 co_yield value;

5 value += step;

6 }

7 }

8

9 int main() {

10

11 std::cout << '\n';

12

C++20 15

13 std::cout << "getNext():";

14 auto gen1 = getNext();

15 for (int i = 0; i <= 10; ++i) {

16 gen1.next();

17 std::cout << " " << gen1.getValue();

18 }

19

20 std::cout << "\n\n";

21

22 std::cout << "getNext(100, -10):";

23 auto gen2 = getNext(100, -10);

24 for (int i = 0; i <= 20; ++i) {

25 gen2.next();

26 std::cout << " " << gen2.getValue();

27 }

28

29 std::cout << "\n";

30

31 }

The function getNext is a coroutine because it uses the keyword co_yield. There is
an infinite loop which returns the value at co_yield (line 4). A call to next (lines 16
and 25) resumes the coroutine and the following getValue call gets the value. After
the getNext call returns, the coroutine pauses once again, until the next call next.
There is one big unknown in this example: the return value Generator<int> of the
getNext function. This is where the complication begins, which I describe in full
depth in the coroutines section.

C++20 16

An infinite data-generator

C++20 17

3.2 Core Language

3.2.1 Three-Way Comparison Operator

The three-way comparison operator <=>, or spaceship operator, determines, for
two values A and B, whether A < B, A == B, or A > B.

By declaring the three-way comparison operator default, the compiler will attempt
to generate a consistent relational operator for the class. In this case, you get all six
comparison operators: ==, !=, <, <=, >, and >=.

Auto-generating the three-way comparison operator

struct MyInt {

int value;

MyInt(int value): value{value} { }

auto operator<=>(const MyInt&) const = default;

};

The compiler-generated operator <=> performs lexicographical comparison, starting
with the base classes and taking into account all the non-static data members in their
declaration order. Here is a quite sophisticated example from the Microsoft blog:
Simplify Your Code with Rocket Science: C++ 20’s Spaceship Operator³.

³https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/
https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

C++20 18

3.2.2 Designated Initialization

Spaceship operator for derived classes

struct Basics {

int i;

char c;

float f;

double d;

auto operator<=>(const Basics&) const = default;

};

struct Arrays {

int ai[1];

char ac[2];

float af[3];

double ad[2][2];

auto operator<=>(const Arrays&) const = default;

};

struct Bases : Basics, Arrays {

auto operator<=>(const Bases&) const = default;

};

int main() {

constexpr Bases a = { { 0, 'c', 1.f, 1. },

{ { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, { { 1., 2. }, { 3., 4. } \

} } };

constexpr Bases b = { { 0, 'c', 1.f, 1. },

{ { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, { { 1., 2. }, { 3., 4. } \

} } };

static_assert(a == b);

static_assert(!(a != b));

static_assert(!(a < b));

static_assert(a <= b);

static_assert(!(a > b));

C++20 19

static_assert(a >= b);

}

I assume the most complicated stuff in this code snippet is not the spaceship operator,
but the initialization of Base using aggregate initialization. Aggregate initialization
essentially means that you can directly initialize the members of class types (class,
struct, or union) if all members are public. In this case, you can use a braced
initialization list, as in the example.

Before I discuss designated initialization, let me show more about aggregate
initialization. Here is a straightforward example.

Aggregate initialization

struct Point2D{

int x;

int y;

};

class Point3D{

public:

int x;

int y;

int z;

};

int main(){

std::cout << "\n";

Point2D point2D {1, 2};

Point3D point3D {1, 2, 3};

std::cout << "point2D: " << point2D.x << " " << point2D.y << "\n";

std::cout << "point3D: " << point3D.x << " "

<< point3D.y << " " << point3D.z << "\n";

C++20 20

std::cout << '\n';

}

This is the output of the program:

Aggregate initialization

The aggregate initialization is quite error-prone, because you can swap the construc-
tor arguments, and you will never notice. Explicit is better than implicit. Let’s see
what that means. Take a look at how designated initializers from C99⁴, now part of
the C++ standard, kick in.

Designated initialization

1 struct Point2D{

2 int x;

3 int y;

4 };

5

6 class Point3D{

7 public:

8 int x;

9 int y;

10 int z;

11 };

12

13 int main(){

14

⁴https://en.wikipedia.org/wiki/C99

https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/C99

C++20 21

15 Point2D point2D {.x = 1, .y = 2};

16 // Point2D point2d {.y = 2, .x = 1}; // error

17 Point3D point3D {.x = 1, .y = 2, .z = 2};

18 // Point3D point3D {.x = 1, .z = 2} // {1, 0, 2}

19

20

21 std::cout << "point2D: " << point2D.x << " " << point2D.y << "\n";

22 std::cout << "point3D: " << point3D.x << " " << point3D.y << " " << p\

23 oint3D.z

24 << "\n";

25

26 }

The arguments for the instances of Point2 and Point3D are explicitly named. The
output of the program is identical to the output of the previous one. The commented-
out lines 16 and 18 are quite interesting. Line 16 would give an error because the
order of the designators does not match the declaration order of the data members.
As for line 18, the designator for y is missing. In this case, y is initialized to 0, such
as when using braced initialization list {1, 0, 3}.

3.2.3 consteval and constinit

The new consteval specifier, which was added in C++20, creates an immediate
function. For an immediate function, every call of the function must produce a
compile-time constant expression. An immediate function is implicitly a constexpr
function but not necessarily the other way around.

C++20 22

An immediate function

consteval int sqr(int n) {

return n*n;

}

constexpr int r = sqr(100); // OK

int x = 100;

int r2 = sqr(x); // Error

The final assignment gives an error because x is not a constant expression and,
therefore, sqr(x) cannot be performed at compile time

constinit ensures that the variable with static storage duration or thread storage
duration is initialized at compile time. Static storage duration means that the object
is allocated when the program begins and is deallocated when the program ends.
Thread storage duration means that the objects lifetime is bound to the lifetime of
the thread.

constinit ensures for this kind of variable (static storage duration or thread storage
duration) that they are initialized at compile time. constinit does not imply
constness.

3.2.4 Template Improvements

C++20 offers various improvements to programming with templates. A generic
constructor is a catch-all constructor because you can invoke it with any type.

C++20 23

An implicit and explicit generic constructor

struct Implicit {

template <typename T>

Implicit(T t) {

std::cout << t << '\n';

}

};

struct Explicit {

template <typename T>

explicit Explicit(T t) {

std::cout << t << '\n';

}

};

Explicit exp1 = "implicit"; // Error

Explicit exp2{"explicit"};

The generic constructor of the class Implicit is way too generic. By putting the
keyword explicit in front of the constructor, as for Explicit, the constructor
becomes explicit. This means that implicit conversions are not valid anymore.

3.2.5 Lambda Improvements

Lambdas get many improvements in C++20. They can have template parameters,
can be used in unevaluated contexts, and stateless lambdas can also be default-
constructed and copy-assigned. Furthermore, the compiler can now detect when
you implicitly copy the this pointer, which means a significant cause of undefined
behavior with lambdas is gone.

If you want to define a lambda that accepts only a std::vector, template parameters
for lambdas enable this:

C++20 24

Template parameters for lambdas

auto foo = []<typename T>(std::vector<T> const& vec) {

// do vector-specific stuff

};

3.2.6 New Attributes

C++20 has new attributes, including [[likely]] and [[unlikely]]. Both attributes
allow us to give the optimizer a hint, specifying which path of execution is more or
less likely.

The attribute [[likely]]

for(size_t i=0; i < v.size(); ++i){

if (v[i] < 0) [[likely]] sum -= sqrt(-v[i]);

else sum += sqrt(v[i]);

}

C++20 25

3.3 The Standard Library

3.3.1 std::span

A std::span represents an object that can refer to a contiguous sequence of objects.
A std::span, sometimes also called a view, is never an owner. This view can be a C-
array, a std::array, a pointer with a size, or a std::vector. A typical implementation
of a std::span needs a pointer to its first element and a size. The main reason for
having a std::span is that a plain array will decay to a pointer if passed to a function;
therefore, its size is lost. std::span automatically deduces the size of an array, a
std::array, or a std::vector. If you use a pointer to initialize a std::span, you
have to provide the size in the constructor.

std::span as function argument

void copy_n(const int* src, int* des, int n){}

void copy(std::span<const int> src, std::span<int> des){}

int main(){

int arr1[] = {1, 2, 3};

int arr2[] = {3, 4, 5};

copy_n(arr1, arr2, 3);

C++20 26

copy(arr1, arr2);

}

Compared to the function copy_n, copy doesn’t need the number of elements. Hence,
a common cause of errors is gone with std::span<T>.

3.3.2 Container Improvements

C++20 has many improvements regarding containers of the Standard Template
Library. First of all, std::vector and std::string have constexpr constructors
and can, therefore, be used at compile time. All standard library containers support
consistent container erasure and the associative containers support a contains

member function. Additionally, std::string allows checking for a prefix or suffix.

3.3.3 Arithmetic Utilities

The comparison of signed and unsigned integers is a subtle cause of unexpected
behavior and, therefore, of bugs. Thanks to the new safe comparison functions
for integers, std::cmp_*, a subtle source of bugs is gone.

Safe comparison of integers

int x = -3;

unsigned int y = 7;

if (x < y) std::cout << "expected";

else std::cout << "not expected"; // not expected

if (std::cmp_less(x, y)) std::cout << "expected"; // expected

else std::cout << "not expected";

Additionally, C++20 includes mathematical constants, including e, π, or ϕ in the
namespace std::numbers.

The new bit manipulation enables accessing individual bits and bit sequences, and
reinterpreting them.

C++20 27

Accessing individual bits and bit sequences

std::uint8_t num= 0b10110010;

std::cout << std::has_single_bit(num) << '\n'; // false

std::cout << std::bit_width(unsigned(5)) << '\n'; // 3

std::cout << std::bitset<8>(std::rotl(num, 2)) << '\n'; // 11001010

std::cout << std::bitset<8>(std::rotr(num, 2)) << '\n'; // 10101100

3.3.4 Calendar and Time Zones

The chrono library⁵ from C++11 is extended with calendar and time-zone function-
ality. The calendar consists of types which represent a year, a month, a day of the
week, and an n-th weekday of a month. These elementary types can be combined,
forming complex types such as for example year_month, year_month_day, year_-
month_day_last, year_month_weekday, and year_month_weekday_last. The operator
“/” is overloaded for the convenient specification of time points. Additionally, we get
new literals: d for a day and y for a year.

Time points can be displayed in various time zones. Due to the extended chrono
library, the following use cases are now trivial to implement:

• representing dates in specific formats
• get the last day of a month
• get the number of days between two dates
• printing the current time in various time zones

The following program presents the local time in different time zones.

⁵https://en.cppreference.com/w/cpp/chrono

https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono

C++20 28

The local time in various time zones

using namespace std::chrono;

auto time = floor<milliseconds>(system_clock::now());

auto localTime = zoned_time<milliseconds>(current_zone(), time);

auto berlinTime = zoned_time<milliseconds>("Europe/Berlin", time);

auto newYorkTime = zoned_time<milliseconds>("America/New_York", time);

auto tokyoTime = zoned_time<milliseconds>("Asia/Tokyo", time);

std::cout << time << '\n'; // 2020-05-23 19:07:20.290

std::cout << localTime << '\n'; // 2020-05-23 21:07:20.290 CEST

std::cout << berlinTime << '\n'; // 2020-05-23 21:07:20.290 CEST

std::cout << newYorkTime << '\n'; // 2020-05-23 15:07:20.290 EDT

std::cout << tokyoTime << '\n'; // 2020-05-24 04:07:20.290 JST

3.3.5 Formatting Library

The new formatting library provides a safe and extensible alternative to the printf
functions. It’s intended to complement the existing I/O streams and reuse some of
its infrastructure, such as overloaded insertion operators for user-defined types.

std::string message = std::format("The answer is {}.", 42);

std::format uses Python’s syntax for formatting. The following examples show a
few typical use cases:

• Format and use positional arguments

std::string s = std::format("I'd rather be {1} than {0}.", "rig\

ht", "happy");

// s == "I'd rather be happy than right."

• Convert an integer to a string in a safe way

C++20 29

memory_buffer buf;

std::format_to(buf, "{}", 42); // replaces itoa(42, buffer, \

10)

std::format_to(buf, "{:x}", 42); // replaces itoa(42, buffer, \

16)

• Format user-defined types

C++20 30

3.4 Concurrency

3.4.1 Atomics

The class template std::atomic_ref applies atomic operations to the referenced non-
atomic object. Concurrent writing and reading of the referenced object can take place,
therefore, with no data race. The lifetime of the referenced object must exceed the
lifetime of the std::atomic_ref. Accessing a subobject of the referenced object with
std::atomic_ref is not thread-safe.

According to std::atomic⁶, std::atomic_ref can be specialized and supports spe-
cializations for the built-in data types.

struct Counter {

int a;

int b;

};

Counter counter;

std::atomic_ref<Counter> cnt(counter);

With C++20, we get two atomic smart pointers that are partial specializations of
std::atomic: there are std::atomic<std::shared_ptr<T>> and std::atomic<std::weak_-

⁶https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

C++20 31

ptr<T>>. Both atomic smart pointers guarantee that not only the control block, as in
the case of std::shared_ptr⁷, is thread-safe, but also the associated object.

std::atomic gets more extensions. C++20 provides specializations for atomic float-
ing-point types. This is quite convenient when you have a concurrently incremented
floating-point type.

A value of type std::atomic_flag⁸ is a kind of atomic boolean. It has a cleared and
set state. For simplicity reasons, I call the clear state false and the set state true. The
clear() member function enables you to set its value to false. With the test_and_-
set() member function, you can set the value to true and get the previous value.
There is no member function to ask for the current value. This will change with
C++20, because std::atomic_flag has a test() method.

Furthermore, std::atomic_flag can be used for thread synchronization via the
member functions notify_one(), notify_all(), and wait(). With C++20, notifying
and waiting is available on all partial and full specializations of std::atomic

and std::atomic_ref. Specializations are available for bools, integrals, floats, and
pointers.

3.4.2 Semaphores

Semaphores are a synchronization mechanism used to control concurrent access
to a shared resource. A counting semaphore, such as the one which was added
in C++20, is a special semaphore whose inital counter is bigger than zero. The
counter is initialized in the constructor. Acquiring the semaphore decreases the
counter, and releasing the semaphore increases the counter. If a thread tries to acquire
the semaphore when the counter is zero, the thread blocks until another thread
increments the counter by releasing the semaphore.

3.4.3 Latches and Barriers

Latches and barriers are straightforward thread synchronization mechanisms that
enable some threads to block until a counter becomes zero. What are the differences
between these two mechanisms to synchronize threads? You can use a std::latch

⁷https://en.cppreference.com/w/cpp/memory/shared_ptr
⁸https://en.cppreference.com/w/cpp/atomic/atomic_flag

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/atomic/atomic_flag
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/atomic/atomic_flag

C++20 32

only once, but you can use a std::barrier more than once. A std::latch is useful
for managing one task by multiple threads; a std::barrier is useful for managing
repeated tasks by multiple threads. Furthermore, a std::barrier can adjust the
counter in each iteration.

The following is based on a code snippet from proposal N4204⁹. I fixed a few typos
and reformatted it.

Thread-synchronization with a std::latch

1 void DoWork(threadpool* pool) {

2

3 std::latch completion_latch(NTASKS);

4 for (int i = 0; i < NTASKS; ++i) {

5 pool->add_task([&] {

6 // perform work

7 ...

8 completion_latch.count_down();

9 });

10 }

11 // Block until work is done

12 completion_latch.wait();

13 }

The counter of the std::latch completion_latch is set to NTASKS (line 3). The
thread pool executes NTASKS jobs (lines 4 - 10). At the end of each job, the counter is
decremented (line 8). The thread running function DoWork blocks in line 12 until all
tasks have been finished.

3.4.4 Cooperative Interruption

Thanks to std::stop_token, a std::jthread can be interrupted cooperatively.

⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4204.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4204.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4204.html

C++20 33

Interrupting a std::jthread

1 int main() {

2

3 std::cout << '\n';

4

5 std::jthread nonInterruptible([]{

6 int counter{0};

7 while (counter < 10){

8 std::this_thread::sleep_for(0.2s);

9 std::cerr << "nonInterruptible: " << counter << '\n';

10 ++counter;

11 }

12 });

13

14 std::jthread interruptible([](std::stop_token stoken){

15 int counter{0};

16 while (counter < 10){

17 std::this_thread::sleep_for(0.2s);

18 if (stoken.stop_requested()) return;

19 std::cerr << "interruptible: " << counter << '\n';

20 ++counter;

21 }

22 });

23

24 std::this_thread::sleep_for(1s);

25

26 std::cerr << '\n';

27 std::cerr << "Main thread interrupts both jthreads" << std:: endl;

28 nonInterruptible.request_stop();

29 interruptible.request_stop();

30

31 std::cout << '\n';

32

33 }

C++20 34

The main program starts two threads, nonInterruptible and interruptible (lines
5 and 14). Only thread interruptible gets a std::stop_token, which it uses in
line 18 to check if it is interrupted. The lambda immediately returns in case of an
interruption. The call to interruptible.request_stop() triggers the cancellation of
the thread. Calling nonInterruptible.request_stop() has no effect.

Cooperative interruption of a thread

3.4.5 std::jthread

std::jthread stands for joining thread. std::jthread extends std::thread¹⁰ by auto-
matically joining the started thread. std::jthread can also be interrupted.

¹⁰https://en.cppreference.com/w/cpp/thread/thread

https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/thread

C++20 35

std::jthread is added to the C++20 standard because of the non-intuitive behavior
of std::thread. If a std::thread is still joinable, std::terminate¹¹ is called in its
destructor. A thread thr is joinable if neither thr.join() nor thr.detach() was
called.

Thread thr is still joinable

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::thread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

std::terminate with a still joinable thread

Both executions of the program terminate. In the second run, the thread thr has
enough time to display its message: “Joinable std::thread”.

¹¹https://en.cppreference.com/w/cpp/error/terminate

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate

C++20 36

In the modified example, I use std::jthread from the C++20 standard.

Thread thr joins automatically

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::jthread thr{[]{ std::cout << "Joinable std::jthread" << '\n'; \

}};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

Now, thread thr automatically joins in its destructor if necessary.

Thread thr joins automatically

3.4.6 Synchronized Outputstreams

With C++20, we get synchronized outputstreams. What happens when more threads
write concurrently to std::cout without synchronization?

C++20 37

Unsynchronized writing to std::cout

void sayHello(std::string name) {

std::cout << "Hello from " << name << '\n';

}

int main() {

std::cout << "\n";

std::jthread t1(sayHello, "t1");

std::jthread t2(sayHello, "t2");

std::jthread t3(sayHello, "t3");

std::jthread t4(sayHello, "t4");

std::jthread t5(sayHello, "t5");

std::jthread t6(sayHello, "t6");

std::jthread t7(sayHello, "t7");

std::jthread t8(sayHello, "t8");

std::jthread t9(sayHello, "t9");

std::jthread t10(sayHello, "t10");

std::cout << '\n';

}

You may get a mess.

Unsynchronized writing to std::cout

C++20 38

Switching from std::cout in the function sayHello to std::osyncstream(std::cout)
turns the mess into a harmony.

Synchronized writing to std::cout

void sayHello(std::string name) {

std::osyncstream(std::cout) << "Hello from " << name << '\n';

}

Synchronized writing to std::cout

The Details

4. Core Language

Concepts are one of the most impactful features of C++20. Consequently, it is an
ideal starting point to present the core language features of C++20.

Core Language 41

4.1 Concepts

Cippi studies the stars

To appreciate the impact of concepts to its full extent, I want to start with a short
motivation for concepts.

4.1.1 Two Wrong Approaches

Prior to C++20, we had two diametrically opposed ways to think about functions or
classes: defining them for specific types, or defining them for generic types. In the
latter case, we call them function templates or class templates. Both approaches have
their own set of problems:

4.1.1.1 Too Specific

It’s tedious work to overload a function or reimplement a class for each type. To avoid
that burden, type conversion often comes to our rescue. What seems like a rescue is
often a curse.

Core Language 42

Implicit conversions

1 // tooSpecific.cpp

2

3 #include <iostream>

4

5 void needInt(int i){

6 std::cout << "int: " << i << '\n';

7 }

8

9 int main(){

10

11 std::cout << std::boolalpha << '\n';

12

13 double d{1.234};

14 std::cout << "double: " << d << '\n';

15 needInt(d);

16

17 std::cout << '\n';

18

19 bool b{true};

20 std::cout << "bool: " << b << '\n';

21 needInt(b);

22

23 std::cout << '\n';

24

25 }

In the first case (line 13), I start with a double and end with an int (line 15). In the
second case, I start with a bool (line 19) and also end with an int (line 21).

Core Language 43

Implicit conversions

The program exemplifies two implicit conversions.

4.1.1.1.1 Narrowing Conversion

Invoking getInt(int a) with a double gives you narrowing conversion. Narrowing
conversion is a conversion, including a loss of accuracy. I assume this is not what
you want.

4.1.1.1.2 Integral Promotion

But the other way around is also not better. Invoking getInt(int a) with a bool

promotes the bool to an int. Surprised? Many C++ developers don’t know which
data type they get when they add two bools.

Adding two bools

template <typename T>

auto add(T first, T second){

return first + second;

}

int main(){

add(true, false);

}

C++ Insights¹ visualizes the source code above after the compiler transformed the
function template in an instantiation.

¹https://cppinsights.io/s/9bd14f99

https://cppinsights.io/s/9bd14f99
https://cppinsights.io/s/9bd14f99

Core Language 44

bool to int promotion

Lines 6 - 12 are the crucial ones in this screenshot of C++ Insights². The template
instantiation of the function template add creates a full specialization with the return
type int. Both bools are implicitly promoted to int.

My conviction is that we rely for convenience on the magic of conversions,
because we don’t want to overload a function or reimplement a class for each
type.

Let me try the other way and use a generic function. Maybe this is our rescue?

4.1.1.2 Too Generic

Sorting a container is a general idea. It should work for each container if its elements
support ordering. In the following example, I apply the standard algorithm std::sort

to the standard container std::list.

²https://cppinsights.io/

https://cppinsights.io/
https://cppinsights.io/

Core Language 45

Sorting a std::list

// tooGeneric.cpp

#include <algorithm>

#include <list>

int main(){

std::list<int> myList{1, 10, 3, 2, 5};

std::sort(myList.begin(), myList.end());

}

A compiler error when trying to sort a std::list

I don’t even want to decipher this long message. What’s gone wrong? Let’s take a

Core Language 46

look at the signature of the specific overload of std::sort³ used in this example.

template< class RandomIt >

constexpr void sort(RandomIt first, RandomIt last);

std::sort uses strange-named argument types such as RandomIt. RandomIt stands for
a random-access iterator and gives the key hint for the overwhelming error message.
A std::list only provides a bidirectional iterator, but std:sort requires a random-
access iterator. The following graphic shows why a std::list does not support a
random access iterator.

The structure of a std::list

If you study the std::sort documentation on cppreference.com, you will find
something exciting: type requirements on template parameters. They place concep-
tual requirements on the types that have been formalized into the C++20 feature,
concepts.

4.1.1.3 Concepts to the Rescue

Concepts put semantic constraints on template parameters. std::sort has overloads
that accept a comparator.

template< class RandomIt, class Compare >

constexpr void sort(RandomIt first, RandomIt last, Compare comp);

These are the type requirements for the more powerful overload of std::sort:

• RandomItmustmeet the requirements of ValueSwappable and LegacyRandomAccessIterator.
• The type of the dereferenced RandomItmustmeet the requirements of MoveAssignable
and MoveConstructible.

• The type of the dereferenced RandomItmust meet the requirements of Compare.

³https://en.cppreference.com/w/cpp/algorithm/sort

https://en.cppreference.com/w/cpp/algorithm/sort
https://en.cppreference.com/w/cpp/algorithm/sort

Core Language 47

Requirements such as ValueSwappable or LegacyRandomAccessIterator are so-called
named requirements. Some of these requirements are formalized in C++20 in
concepts⁴.

In particular, std::sort requires a LegacyRandomAccessIterator. Let’s have a closer
look at the named requirement LegacyRandomAccessIterator that is called random_-

access_iterator (part of <iterator>) in C++20:

std::random_access_iterator

template<class I>

concept random_access_iterator =

bidirectional_iterator<I> &&

derived_from<ITER_CONCEPT(I), random_access_iterator_tag> &&

totally_ordered<I> &&

sized_sentinel_for<I, I> &&

requires(I i, const I j, const iter_difference_t<I> n) {

{ i += n } -> same_as<I&>;

{ j + n } -> same_as<I>;

{ n + j } -> same_as<I>;

{ i -= n } -> same_as<I&>;

{ j - n } -> same_as<I>;

{ j[n] } -> same_as<iter_reference_t<I>>;

};

A type I supports the concept random_access_iterator if it supports the concept
bidirectional_iterator and all the following requirements. For example, the
requirement { i += n } -> same_as<I&> as part of the requires expression means
that for a value of type I, { i += n } is a valid expression, and it returns a value of type
I&. To complete the sorting story, std::list does support a bidirectional_iterator,
and not a random_access_iterator that std::sort requires.

When you now use an algorithm that requires a random_access_iterator, but you
only provide a birectional_iterator, you get a concise and readable error message
saying that your iterator does not satisfy the concept random_access_iterator.

⁴https://en.cppreference.com/w/cpp/language/constraints

https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints

Core Language 48

The Standard Template Library

The Essence of Generic Programming
I want to start this short historical detour with a quote from the invaluable
book From Mathematics to Generic Programming⁵, written by Alexan-
der Stepanov (creator of the Standard Template Library) and Daniel Rose
(information retrieval researcher): “The essence of generic programming
lies in the idea of concepts. A concept is a way of describing a family of
related object types.” These related object types can be integral types such
as bool, char, or int. A concept embodies a set of requirements on related
types such as their supported operations, semantics, and time and space
complexity.

The Standard Template Library (STL) as a generic library is based on
concepts. From a bird’s-eye view, the STL consists of three components.
Those are containers, algorithms that run on containers, and iterators that
connect both of them.

Each container provides iterators that respect its structure, and the algo-
rithms operate on these iterators. A container, such as a sequence container
or an associative container, models a semi-open range. Access to the
container’s elements is provided through iterators, as well as iterating
through them, and the equality comparison of them. The abstraction of the
STL is based on concepts such as semi-open range and iterator and allow
for transparent use of the containers and algorithms of the STL.

More generally, what are the advantages of concepts?

4.1.2 Advantages of Concepts

• Requirements for template parameters are part of the interface.

⁵https://www.fm2gp.com/

https://www.fm2gp.com/
https://www.fm2gp.com/

Core Language 49

• The overloading of functions and specialization of class templates can be based
on concepts.

• Concepts can be used for function templates, class templates, and generic
member functions of classes or class templates.

• You get improved error messages because the compiler compares the require-
ments of the template parameters with the given template arguments.

• You can use predefined concepts or define your own.
• The usage of auto and concepts is unified. Instead of auto, you can use a
concept.

• If a function declaration uses a concept, it automatically becomes a function
template. Writing function templates is, therefore, as easy as writing a function.

4.1.3 The long, long History

The first time I heard about concepts was around 2005 - 2006. They reminded me of
Haskell type classes. Type classes in Haskell are interfaces for similar types. Here is
a part of Haskell’s⁶ type classes hierarchy.

Haskell Type Classes Hierarchy

But C++ concepts are different. Here are a few observations.

⁶https://en.wikipedia.org/wiki/Haskell_(programming_language)

https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)

Core Language 50

• In Haskell, any type has to be an instance of a type class. In C++20, a type has
to fulfill the requirements of a concept.

• Concepts can be used on non-type arguments of templates in C++. For example,
numbers such as the value 5 are non-type arguments. For example, when you
want to have a std::array of ints with 5 elements, you use the non-type
argument 5: std::array<int, 5> myArray .

• Concepts add no run-time costs.

Originally, concepts were going to be the key feature of C++11, but they were
removed during a standardization meeting in July 2009 in Frankfurt. The quote from
Bjarne Stroustrup speaks for itself: “The C++0x concept design evolved into a monster
of complexity.”⁷. A few years later, the next try was also not successful: concepts lite
were removed from the C++17 standard. They finally become part of C++20.

4.1.4 Use of Concepts

Essentially, there are four ways to use a concept.

4.1.4.1 Four Ways to use a Concept

I apply the predefined concept std::integral in the program conceptsIntegralVariations.cpp

in all four ways.

Four variations using the concept std::integral

1 // conceptsIntegralVariations.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<typename T>

7 requires std::integral<T>

8 auto gcd(T a, T b) {

9 if(b == 0) return a;

10 else return gcd(b, a % b);

⁷https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s

https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s

Core Language 51

11 }

12

13 template<typename T>

14 auto gcd1(T a, T b) requires std::integral<T> {

15 if(b == 0) return a;

16 else return gcd1(b, a % b);

17 }

18

19 template<std::integral T>

20 auto gcd2(T a, T b) {

21 if(b == 0) return a;

22 else return gcd2(b, a % b);

23 }

24

25 auto gcd3(std::integral auto a, std::integral auto b) {

26 if(b == 0) return a;

27 else return gcd3(b, a % b);

28 }

29

30 int main(){

31

32 std::cout << '\n';

33

34 std::cout << "gcd(100, 10)= " << gcd(100, 10) << '\n';

35 std::cout << "gcd1(100, 10)= " << gcd1(100, 10) << '\n';

36 std::cout << "gcd2(100, 10)= " << gcd2(100, 10) << '\n';

37 std::cout << "gcd3(100, 10)= " << gcd3(100, 10) << '\n';

38

39 std::cout << '\n';

40

41 }

Thanks to the header <concepts> in line 3, I can use the concept std::integral. The
concept is fulfilled if T is the type integral⁸. The function name gcd stands for the

⁸https://en.cppreference.com/w/cpp/types/is_integral

https://en.cppreference.com/w/cpp/types/is_integral
https://en.cppreference.com/w/cpp/types/is_integral

Core Language 52

greatest-common-divisor algorithm based on the Euclidean⁹ algorithm.

Here are the four ways to use concepts:

• Requires clause (line 6)
• Trailing requires clause (line 13)
• Constrained template parameter (line 19)
• Abbreviated function template (line 25)

For simplicity reasons, each function template returns just auto. There is a semantic
difference between the function templates gcd, gcd1, gcd2, and the function gcd3. In
the case of gcd, gcd1, or gcd2, the arguments a and b must have the same type. This
does not hold for the function gcd3. Parameters a and b can have different types, but
must both fulfil the concept integral.

Use of the concept std::integral

The functions gcd and gcd1 use requires clauses. Requires clauses are more powerful
than you may think. Let me discuss more details to requires clauses.

4.1.4.2 Requires Clause

The previous program, conceptsIntegralVariations.cpp, exemplifies that you can
use a concept to define a function or function template. Of course, there are more
use cases. For completeness, I want to add that you can specify the return type of a
function or a function template using concepts.

The keyword requires introduces a requires clause which specifies constraints on
a template argument (gcd) or on a function declaration (gcd1). requires must be
followed by a compile-time predicate such as a named concept (gcd), a conjunc-
tion/disjunction of named concepts, or a requires expression.

The compile-time predicate can also be an expression:

⁹https://en.wikipedia.org/wiki/Euclid

https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Euclid

Core Language 53

Using a compile-time predicate in a requires clause

1 // requiresClause.cpp

2

3 #include <iostream>

4

5 template <unsigned int i>

6 requires (i <= 20)

7 int sum(int j) {

8 return i + j;

9 }

10

11

12 int main() {

13

14 std::cout << '\n';

15

16 std::cout << "sum<20>(2000): " << sum<20>(2000) << '\n',

17 // std::cout << "sum<23>(2000): " << sum<23>(2000) << '\n', // ERR\

18 OR

19

20 std::cout << '\n';

21

22 }

The compile-time predicate used in line 6 exemplifies an interesting point: the
requirement is applied on the non-type i, and not on a type as usual.

Compile-time predicates in a requires clause

When you use line 17, the clang compiler reports the following error:

Core Language 54

Failing compile time predicates in a requires clauses

Avoid Compile-Time Predicates in Requires
Clauses
When you constrain template parameter or function templates using con-
cepts, you should use named concepts or combinations of them. Concepts
are meant to be semantic categories, but not syntactic constraints like i <=

20. Giving concepts a name enables their reuse.

4.1.4.3 Concepts as Return Type of a Function

Here are the definitions of the function template gcd and the function gcd1 using
concepts as return types.

Using a concept as return type

template<typename T>

requires std::integral<T>

std::integral auto gcd(T a, T b) {

if(b == 0) return a;

else return gcd(b, a % b);

}

std::integral auto gcd1(std::integral auto a, std::integral auto b) {

if(b == 0)return a;

else return gcd1(b, a % b);

}

Core Language 55

4.1.4.4 Use-Cases for Concepts

First and foremost, concepts are compile-time predicates. A compile-time predicate
is a function that is executed at compile time and returns a boolean. Before I dive
into the various use cases of concepts, I want to demystify concepts and present them
simply as functions returning a boolean at compile time.

4.1.4.4.1 Compile-Time Predicates

A concept can be used in a control structure, which is executed at run time or compile
time.

Concepts as compile-time predicates

1 // compileTimePredicate.cpp

2

3 #include <compare>

4 #include <iostream>

5 #include <string>

6 #include <vector>

7

8 struct Test{};

9

10 int main() {

11

12 std::cout << '\n';

13

14 std::cout << std::boolalpha;

15

16 std::cout << "std::three_way_comparable<int>: "

17 << std::three_way_comparable<int> << "\n";

18

19 std::cout << "std::three_way_comparable<double>: ";

20 if (std::three_way_comparable<double>) std::cout << "True";

21 else std::cout << "False";

22

23 std::cout << "\n\n";

Core Language 56

24

25 static_assert(std::three_way_comparable<std::string>);

26

27 std::cout << "std::three_way_comparable<Test>: ";

28 if constexpr(std::three_way_comparable<Test>) std::cout << "True";

29 else std::cout << "False";

30

31 std::cout << '\n';

32

33 std::cout << "std::three_way_comparable<std::vector<int>>: ";

34 if constexpr(std::three_way_comparable<std::vector<int>>) std::cout\

35 << "True";

36 else std::cout << "False";

37

38 std::cout << '\n';

39

40 }

In the program above, I use the concept std::three_way_comparable<T>, which
checks at compile time if T supports the six comparison operators. Being a compile-
time predicate means, that std::three_way_comparable can be used at run time
(lines 16 and 20) or at compile time. static_assert (line 25) and constepr if¹⁰ (lines
28 and 34) are evaluated at compile time.

Concepts as compile-time predicates

After this short detour on concepts as compile-time predicates, let me continue this
section with the various use cases of concepts. The concepts’ applications are not too

¹⁰https://en.cppreference.com/w/cpp/language/if

https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/if

Core Language 57

elaborate, and I mainly use predefined concepts, which I describe in more depth in
the section predefined concepts.

4.1.4.4.2 Class Templates

The class template MyVector requires that its template parameter T be regular,
meaning that T behaves such as an int. The formal definition of regular is provided
in the define concepts section.

Using a concept in a class definition

1 // conceptsClassTemplate.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template <std::regular T>

7 class MyVector{};

8

9 int main() {

10

11 MyVector<int> myVec1;

12 MyVector<int&> myVec2; // ERROR because a reference is not regular

13

14 }

Line 12 causes a compile-time error because a reference is not regular. Here is the
essential part of the GCC compiler message:

A reference is not regular

4.1.4.4.3 Generic Member Functions

In this example, I add a generic push_back member function to the class MyVector.
The push_back requires that its arguments be copyable.

Core Language 58

Using a concept in a generic member function

1 // conceptMemberFunction.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 struct NotCopyable {

7 NotCopyable() = default;

8 NotCopyable(const NotCopyable&) = delete;

9 };

10

11 template <typename T>

12 struct MyVector{

13 void push_back(const T&) requires std::copyable<T> {}

14 };

15

16 int main() {

17

18 MyVector<int> myVec1;

19 myVec1.push_back(2020);

20

21 MyVector<NotCopyable> myVec2;

22 myVec2.push_back(NotCopyable()); // ERROR because not copyable

23

24 }

The compilation fails intentionally in line 22. Instances of NotCopyable are not
copyable because the copy constructor is declared as deleted.

4.1.4.4.4 Variadic Templates

You can use concepts in variadic templates.

Core Language 59

Applying concepts to variadic templates

1 // allAnyNone.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<std::integral... Args>

7 bool all(Args... args) { return (... && args); }

8

9 template<std::integral... Args>

10 bool any(Args... args) { return (... || args); }

11

12 template<std::integral... Args>

13 bool none(Args... args) { return not(... || args); }

14

15 int main(){

16

17 std::cout << std::boolalpha << '\n';

18

19 std::cout << "all(5, true, false): " << all(5, true, false) << '\n';

20

21 std::cout << "any(5, true, false): " << any(5, true, false) << '\n';

22

23 std::cout << "none(5, true, false): " << none(5, true, false) << '\\

24 n';

25

26 }

The definitions of the function templates above are based on fold expressions.
C++11 supports variadic templates that can accept an arbitrary number of template
arguments. The arbitrary number of template parameters is held by a so-called
parameter pack. Additionally, with C++17 you can directly reduce a parameter pack
with a binary operator. This reduction is called a fold expression¹¹. In this example,
the logical and && (line 7), the logical or || (line 10), and the negation of the logical

¹¹https://www.modernescpp.com/index.php/fold-expressions

https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions

Core Language 60

or (line 13) are applied as binary operators. Furthermore, all, any, and none requires
from their type parameters that they have to support the concept std::integral.

Applying concepts onto a fold expression

4.1.4.4.5 Overloading

std::advance¹² is an algorithm of the Standard Template Library. It increments a
given iterator iter by n elements. Based on the capabilities of the given iterator,
a different advance strategy could be used. For example, a std::forward_list

supports an iterator that can only advance in one direction, while a std::list

supports a bidirectional iterator, and a std::vector supports a random access itera-
tor. Consequently, for an iterator provided by a std::forward_list or std::list,
a call to std::advance(iter, n) has to be incremented n times (see the struc-
ture of a std::list). This time complexity does not hold for a std::random_-

access_iterator provided by a std::vector. The number n can just be added
to the iterator. A linear time complexity O(n) becomes, therefore, a constant
complexity O(1). To distinguish iterator types, concepts can be used. The program
conceptsOverloadingFunctionTemplates.cpp should give you the general idea.

Overloading function templates on concepts

1 // conceptsOverloadingFunctionTemplates.cpp

2

3 #include <concepts>

4 #include <iostream>

5 #include <forward_list>

6 #include <list>

7 #include <vector>

8

9 template<std::forward_iterator I>

10 void advance(I& iter, int n){

¹²https://en.cppreference.com/w/cpp/iterator/advance

https://en.cppreference.com/w/cpp/iterator/advance
https://en.cppreference.com/w/cpp/iterator/advance

Core Language 61

11 std::cout << "forward_iterator" << '\n';

12 }

13

14 template<std::bidirectional_iterator I>

15 void advance(I& iter, int n){

16 std::cout << "bidirectional_iterator" << '\n';

17 }

18

19 template<std::random_access_iterator I>

20 void advance(I& iter, int n){

21 std::cout << "random_access_iterator" << '\n';

22 }

23

24 int main() {

25

26 std::cout << '\n';

27

28 std::forward_list forwList{1, 2, 3};

29 std::forward_list<int>::iterator itFor = forwList.begin();

30 advance(itFor, 2);

31

32 std::list li{1, 2, 3};

33 std::list<int>::iterator itBi = li.begin();

34 advance(itBi, 2);

35

36 std::vector vec{1, 2, 3};

37 std::vector<int>::iterator itRa = vec.begin();

38 advance(itRa, 2);

39

40 std::cout << '\n';

41 }

The three variations of the function advance are overloaded on the concepts std::forward_-
iterator (line 9), std::bidirectional_iterator (line 14), and std::random_access_-
iterator (line 19). The compiler chooses the best-fitting overload. Thismeans that for

Core Language 62

a std::forward_list (line 28) the overload based on the concept std::forward_list,
for a std::list (line 32) the overload based on the concept std::bidirectional_-
iterator, and for a std::vector (line 36) the overload based on the concept
std::random_access_iterator is used.

Overloading function templates on concepts

A std::random_access_iterator is a std::bidirectional_iterator, and std::bidirectional_-
iterator is a std::forward_iterator.

4.1.4.4.6 Template Specialization

You can also specialize templates using concepts.

Template specialization on concepts

1 // conceptsSpecialization.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template <typename T>

7 struct Vector {

8 Vector() {

9 std::cout << "Vector<T>" << '\n';

10 }

11 };

12

13 template <std::regular Reg>

14 struct Vector<Reg> {

15 Vector() {

16 std::cout << "Vector<std::regular>" << '\n';

17 }

18 };

Core Language 63

19

20 int main() {

21

22 std::cout << '\n';

23

24 Vector<int> myVec1;

25 Vector<int&> myVec2;

26

27 std::cout << '\n';

28

29 }

When instantiating the class template, the compiler chooses the most specialized
one. This means for the call Vector<int> myVec (line 24), the partial template
specialization for std::regular (line 13) is chosen. A reference Vector<int&> myVec2

(line 25) is not regular. Consequently, the primary template (line 6) is chosen.

Partial template specialization of concepts

4.1.4.4.7 Using More than One Concept

So far, the uses of the concepts were straightforward, but most of the time more than
one concept is used at the same time.

Using more than one concept

template<typename Iter, typename Val>

requires std::input_iterator<Iter>

&& std::equality_comparable<Value_type<Iter>, Val>

Iter find(Iter b, Iter e, Val v)

find requires for the iterator Iter and its comparison with Val that

Core Language 64

• the Iterator has to be an input iterator;
• the Iterator’s value type must be equality comparable with Val.

The same restriction on the iterator can also be expressed as a constrained template
parameter.

Using more than one concept

template<std::input_iterator Iter, typename Val>

requires std::equality_comparable<Value_type<Iter>, Val>

Iter find(Iter b, Iter e, Val v)

4.1.5 Constrained and Unconstrained Placeholders

First, let me tell you about an asymmetry in C++14.

4.1.5.1 The Big Asymmetry in C++14

I often have a discussion in my classes, that goes the following way. With C++14,
we had generic lambdas. Generic lambdas are lambdas that use auto instead of a
concrete type.

Comparison of a generic lambda and a function template

1 // genericLambdaTemplate.cpp

2

3 #include <iostream>

4 #include <string>

5

6 auto addLambda = [](auto fir, auto sec){ return fir + sec; };

7

8 template <typename T, typename T2>

9 auto addTemplate(T fir, T2 sec){ return fir + sec; }

10

11 int main(){

12

Core Language 65

13 std::cout << std::boolalpha << '\n';

14

15 std::cout << addLambda(1, 5) << " " << addTemplate(1, 5) << '\n';

16 std::cout << addLambda(true, 5) << " " << addTemplate(true, 5) << '\

17 \n';

18 std::cout << addLambda(1, 5.5) << " " << addTemplate(1, 5.5) << '\n\

19 ';

20

21 const std::string fir{"ge"};

22 const std::string sec{"neric"};

23 std::cout << addLambda(fir, sec) << " " << addTemplate(fir, sec) <<\

24 '\n';

25

26 std::cout << '\n';

27

28 }

The generic lambda (line 6) and the function template (line 8) produce the same
results.

Use of a generic lambda and a function template

Generic lambdas introduce a newway to define function templates. Inmy classes, I’m
often asked: Can we use auto in functions to get function templates? Not with C++14,
but you can with C++20. In C++20, you can use unconstrained placeholders (auto)
or constrained placeholders (concepts) in function declarations to automatically get
function templates. The rule for applying is as simple as it could be. In each place

Core Language 66

where you can use an unconstrained placeholder auto, you can use a concept. I will
detail this fully in the section on abbreviated function templates.

4.1.5.2 Placeholders

Use of constrained placeholders instead of unconstrained placeholders

1 // placeholders.cpp

2

3 #include <concepts>

4 #include <iostream>

5 #include <vector>

6

7 std::integral auto getIntegral(int val){

8 return val;

9 }

10

11 int main(){

12

13 std::cout << std::boolalpha << '\n';

14

15 std::vector<int> vec{1, 2, 3, 4, 5};

16 for (std::integral auto i: vec) std::cout << i << " ";

17 std::cout << '\n';

18

19 std::integral auto b = true;

20 std::cout << b << '\n';

21

22 std::integral auto integ = getIntegral(10);

23 std::cout << integ << '\n';

24

25 auto integ1 = getIntegral(10);

26 std::cout << integ1 << '\n';

27

28 std::cout << '\n';

29

30 }

Core Language 67

The concept std::integral can be used as a return type (line 7), in a range-based
for loop (line 16), or as a type for variable b (line 19), or variable integ (line 22).
To see the symmetry between auto and concepts, line 25 uses auto alone instead of
std::integral auto, which is used on line 22. Hence, integ1 can accept a value of
any type.

Constrained placeholders instead of unconstrained placeholders in action

4.1.6 Abbreviated Function Templates

With C++20, you can use an unconstrained placeholder (auto) or a constrained place-
holder (concept) in a function declaration and this function declaration automatically
becomes a function template.

Abbreviated function templates

1 // abbreviatedFunctionTemplates.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<typename T>

7 requires std::integral<T>

8 T gcd(T a, T b) {

9 if(b == 0) return a;

10 else return gcd(b, a % b);

11 }

12

13 template<typename T>

14 T gcd1(T a, T b) requires std::integral<T> {

15 if(b == 0) return a;

Core Language 68

16 else return gcd1(b, a % b);

17 }

18

19 template<std::integral T>

20 T gcd2(T a, T b) {

21 if(b == 0) return a;

22 else return gcd2(b, a % b);

23 }

24

25 std::integral auto gcd3(std::integral auto a, std::integral auto b) {

26 if(b == 0) return a;

27 else return gcd3(b, a % b);

28 }

29

30 auto gcd4(auto a, auto b){

31 if(b == 0) return a;

32 return gcd4(b, a % b);

33 }

34

35 int main() {

36

37 std::cout << '\n';

38

39 std::cout << "gcd(100, 10)= " << gcd(100, 10) << '\n';

40 std::cout << "gcd1(100, 10)= " << gcd1(100, 10) << '\n';

41 std::cout << "gcd2(100, 10)= " << gcd2(100, 10) << '\n';

42 std::cout << "gcd3(100, 10)= " << gcd3(100, 10) << '\n';

43 std::cout << "gcd4(100, 10)= " << gcd4(100, 10) << '\n';

44

45 std::cout << '\n';

46

47 }

The definitions of the function templates gcd (line 6), gcd1 (line 13), and gcd2

(line 19) are the ones I already presented in section Four ways to use a concept.

Core Language 69

gcd uses a requires clause, gcd1 a trailing requires clause and gcd2 a constrained
template parameter. Now to something new. Function template gcd3 has the concept
std::integral as a type parameter and becomes, therefore, a function template with
restricted type parameters. In contrast, gcd4 is equivalent to function templates with
no restriction on its type parameters. The syntax used in gcd3 and gcd4 to create a
function template is called abbreviated function templates syntax.

Constrained

Let me stress this symmetry by demonstrying it in another example below.

By using auto as a type parameter, the function add becomes a function template and
is equivalent to the equally-named function template add.

The equivalent function and function template add

template<typename T, typename T2>

auto add(T fir, T2 sec) {

return fir + sec;

}

auto add(auto fir, auto sec) {

return fir + sec;

}

Accordingly, due to the usage of the concept std::integral, the function sub is
equivalent to the function template sub.

Core Language 70

The equivalent function and function template sub

template<std::integral T, std::integral T2>

std::integral auto sub(T fir, T2 sec) {

return fir - sec;

}

std::integral auto sub(std::integral auto fir, std::integral auto sec) \

{

return fir - sec;

}

The function and the function template can have arbitrary types. This means both
types can be different but must be integral. For example, a call sub(100, 10) and
also sub(100, true) would be valid.

There is one interesting feature still missing in the abbreviated function templates
syntax: you can overload on auto or concepts.

4.1.6.1 Overloading

The following functions overload are overloaded on auto, on the concept std::integral,
and on the type long.

Abbreviated function templates and overloading

1 // conceptsOverloading.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 void overload(auto t){

7 std::cout << "auto : " << t << '\n';

8 }

9

10 void overload(std::integral auto t){

11 std::cout << "Integral : " << t << '\n';

Core Language 71

12 }

13

14 void overload(long t){

15 std::cout << "long : " << t << '\n';

16 }

17

18 int main(){

19

20 std::cout << '\n';

21

22 overload(3.14);

23 overload(2010);

24 overload(2020L);

25

26 std::cout << '\n';

27

28 }

The compiler chooses the overload on auto (line 6) with a double, the overload on
the concept std::integral (line 10) with an int, and the overload on long (line 14)
with a long.

Abbreviated function templates and overloading

Core Language 72

What we don’t get: Template Introduction
Maybe you are missing one feature in this chapter on concepts: template
introduction. Template introduction was part of the technical specifica-
tion on concepts, TS ISO/IEC TS 19217:2015¹³, and was an experimental
implementation of concepts. GCC 6¹⁴ fully implemented the concepts TS.
Besides the syntactic differences from concepts in C++20, the concepts TS
supported a concise way of defining templates.

In the following example assume that Integral is a concept.

Template introduction in the concepts TS

Integral{T}

Integral gcd(T a, T b){

if(b == 0){ return a; }

else{

return gcd(b, a % b);

}

}

Integral{T}

class ConstrainedClass{};

This small code snippet above used template introduction in two ways.
First, to define a function template with a constrained template parameter;
second, to define a class template with a constrained template parameter.
Template introduction had one limitation. You could only use it with a
constrained template parameter (concept), but not with an unconstrained
template parameter (auto). This asymmetry could easily be overcome by
defining a concept that always returns true:

The concept Generic is always fulfilled

template<typename T>

concept bool Generic(){

return true;

}

Don’t be irritated, I used in the example the concepts TS syntax to define
the Generic concept. The C++20 syntax is slightly more concise. Read more
details of the C++20 syntax in section Defining Concepts.

¹³https://www.iso.org/standard/64031.html

https://www.iso.org/standard/64031.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://www.iso.org/standard/64031.html

Core Language 73

4.1.7 Predefined Concepts

The golden rule “Don’t reinvent the wheel” also applies to concepts. The C++ Core
Guidelines¹⁵ are very clear about this rule: T.11: Whenever possible, use standard
concepts. Consequently, I want to give you an overview of the important predefined
concepts. I intentionally ignore any special or auxiliary concepts.

All predefined concepts are detailed in the latest C++20 working draft, N4860¹⁶, and
finding them all can be quite a challenge! Most of the concepts are in chapter 18
(concepts library) and chapter 24 (ranges library). Additionally, a few concepts are in
chapter 17 (language support library), chapter 20 (general utilities library), chapter
23 (iterators library), and chapter 26 (numerics library). The C++20 draft N4860 also
has an index to all library concepts and shows how the concepts are implemented.

4.1.7.1 Language Support Library

This section discusses an interesting concept, three_way_comparable. It is used to
support the three-way comparison operator. It is specified in the header <compare>.

More formally, let a and b be values of type T. This values are three_way_comparable
only if:

• (a <=> b == 0) == bool(a == b) is true
• (a <=> b != 0) == bool(a != b) is true
• ((a <=> b) <=> 0) and (0 <=> (b <=> a)) are equal
• (a <=> b < 0) == bool(a < b) is true
• (a <=> b > 0) == bool(a > b) is true
• (a <=> b <= 0) == bool(a <= b) is true
• (a <=> b >= 0) == bool(a >= b) is true

4.1.7.2 Concepts Library

The most frequently used concepts can be found in the concepts library. They are
defined in the <concepts> header.

¹⁴https://en.wikipedia.org/wiki/GNU_Compiler_Collection
¹⁵https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
¹⁶https://isocpp.org/files/papers/N4860.pdf

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.org/files/papers/N4860.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.org/files/papers/N4860.pdf

Core Language 74

4.1.7.2.1 Language-related concepts

This section has about 15 concepts that should be self-explanatory. These concepts
express relationships between types, type classifications, and fundamental type
properties. Their implementation is often directly based on the corresponding
function from the type-traits library¹⁷. Where deemed necessary, I provide additional
explanation.

• same_as

• derived_from

• convertible_to

• common_reference_with: common_reference_with<T, U> must be well-formed
and T and U must be convertible to a reference type C, where C is the same as
common_reference_t<T, U>

• common_with: similar to common_reference_with, but the common type C is the
same as common_type_t<T, U> and may not be a reference type

• assignable_from

• swappable

4.1.7.2.2 Arithmetic Concepts

• integral

• signed_integral

• unsigned_integral

• floating_point

The standard’s definition of the arithmetic concepts is straightforward:

¹⁷https://en.cppreference.com/w/cpp/header/type_traits

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 75

template<class T>

concept integral = is_integral_v<T>;

template<class T>

concept signed_integral = integral<T> && is_signed_v<T>;

template<class T>

concept unsigned_integral = integral<T> && !signed_integral<T>;

template<class T>

concept floating_point = is_floating_point_v<T>;

4.1.7.2.3 Lifetime Concepts

• destructible

• constructible_from

• default_constructible

• move_constructible

• copy_constructible

4.1.7.2.4 Comparison Concepts

• equality_comparable

• totally_ordered

Maybe you know it from your mathematics studies: For values a, b, and c of type T,
T models totally_ordered if and only if

• Exactly one of bool(a < b), bool(a > b), or bool(a == b) is true
• If bool(a < b) and bool(b < c), then bool(a < c)

• bool(a > b) == bool(b < a)

• bool(a <= b) == !bool(b < a)

• bool(a >= b) == !bool(a < b)

Core Language 76

4.1.7.2.5 Object Concepts

• movable

• copyable

• semiregular

• regular

Here are the concise definitions of the four concepts:

template<class T>

concept movable = is_object_v<T> && move_constructible<T> &&

assignable_from<T&, T> && swappable<T>;

template<class T>

concept copyable = copy_constructible<T> && movable<T> &&

assignable_from<T&, T&> &&

assignable_from<T&, const T&> && assignable_from<T&,\

const T>;

template<class T>

concept semiregular = copyable<T> && default_initializable<T>;

template<class T>

concept regular = semiregular<T> && equality_comparable<T>;

I have to add a few words. The concept movable requires for T that is_object_v<T>
holds. From the definition of the type-trait is_object<T> this means that T is either
a scalar, an array, a union, or a class.

I implement the concept semiregular and regular in the section define concepts.
Informally, a semiregular type behaves similar to an int, and a regular type behaves
similarly to an int and can be compared using ==.

4.1.7.2.6 Callable Concepts

• invocable

Core Language 77

• regular_invocable: a type models invocable and equality-preserving, and
does not modify the function arguments; equality-preserving means the it
produces the same output when given the same input

• predicate: a type models a predicate if it models invocable and returns a
boolean

4.1.7.3 General Utilities Library

This chapter in the standard has only special memory concepts; therefore I don’t refer
to them here.

4.1.7.4 Iterators Library

The iterators library hasmany important concepts. They are defined in the <iterator>
header. Here are the iterator categories:

• input_iterator

• output_iterator

• forward_iterator

• bidirectional_iterator

• random_access_iterator

• contiguous_iterator

The six categories of iterators correspond to the respective iterator concepts. The table
below provides two interesting pieces of information. For the three most prominent
iterator categories, the table shows their properties and the associated standard
library containers.

Core Language 78

Properties and Containers of each iterator category

Iterator Category Properties Containers

std::forward_iterator ++It, It++ , *It std::unordered_set

It == It2, It != It2 std::unordered_map

std::unordered_multiset

std::unordered_multimap

std::forward_list

std::bidirectional_iterator --It, It-- std::set

std::map

std::multiset

std::multimap

std::list

std::random_access_iterator It[i] std::array

It += n, It -= n std::vector

It + n , It - n std::deque

n + It std::string

It - It2

It < It2, It <= It2

It > It2, It >= It2

The following relation holds: A random-access-iterator is a bidirectional iterator,
and a bidirectional iterator is a forward iterator. A contiguous iterator is a random-
access-iterator and requires that the elements of the container are stored contigu-
ously in memory. This means std::array, std::vector, and std::string, but not
std::deque, support contiguous iterators.

4.1.7.4.1 Algorithm Concepts

• permutable: in-place reordering of elements is possible
• mergeable: merging sorted sequences into an output sequence is possible
• sortable: permuting a sequence into an ordered sequence is possible

Core Language 79

4.1.7.5 Ranges Library

The ranges library contains the concepts critical to the ranges and views features.
They are similar to the concepts in the iterators library and are defined in the
<ranges> header.

4.1.7.5.1 Ranges

• range: A range specifies a group of items that you can iterate over. It provides
a begin iterator and an end sentinel. Of course, the containers of the STL are
ranges.

There are further refinements for std::ranges::range.

• input_range: specifies a range whose iterator type satisfies input_iterator (e.g.
can iterate from beginning to end at least once)

• output_range: specifies a range whose iterator type satisfies output_iterator
• forward_range: specifies a rangewhose iterator type satisfies forward_iterator
(can iterate from beginning to end more than once)

• bidirectional_range : specifies a rangewhose iterator type satisfies bidirectional_-
iterator (can iterate forward and backward more than once)

• random_access_range: specifies a range whose iterator type satisfies random_-
access_iterator (can jump in constant time to an arbitrary element with the
index operator [])

• contiguous_range: specifies a range whose iterator type satisfies contiguous_-
iterator (elements are stored consecutively in memory)

Each container of the Standard Template Library supports a specific range. The
supported range specifies the capabilities of its iterators.

Core Language 80

Properties and containers of each range concept

Concept Properties Containers

std::ranges::input_range ++It, It++ , *It std::unordered_set

It == It2, It != It2 std::unordered_map

std::unordered_multiset

std::unordered_multmap

std::forward_list

std::ranges::bidirectional_-

range

--It, It-- std::set

std::map

std::multiset

std::multimap

std::list

std::ranges::random_access_-

range

It[i] std::deque

It += n, It -= n

It + n , It - n

n + It

It - It2

It < It2, It <= It2

It > It2, It >= It2

std::ranges::contiguous_range It[i] std::array

It += n, It -= n std::vector

It + n , It - n std::string

n + It

It - It2

It < It2, It <= It2

It > It2, It >= It2

A container supporting the std::ranges::contiguous_range concept, supports all
revious mentioned concepts in the table such as std::ranges::random_access_-

range, std::ranges::bidirectional_range, and std::ranges::input_range. The
same holds for all other ranges.

Core Language 81

4.1.7.5.2 Views

A std::ranges::view typically something that you apply on a range and performs
some operation. A view does not own data and the time a view takes to copy, move,
or assign is constant. Here is a quote from Eric Niebler’s range-v3 implementation,
which is the basis for the C++20 ranges: “Views are composable adaptations of ranges
where the adaptation happens lazily as the view is iterated.”

4.1.7.6 Numeric Library

The numeric library provides the concept of a uniform_random_bit_generator that is
defined in the header <random>. A uniform_random_bit_generator g of type G must
return uniformly-distributed unsigned integers. Additionally, a uniform random-bit
generator g of type G has to support the member functions G::min and G::max.

4.1.8 Defining Concepts

When the concept you are looking for is not one of the predefined concepts in C++20,
you must define your own concept. In this section I will define a few concepts which
will be distinguishable from the predefined concepts through the use of CamelCase
syntax. Consequently, my concept for a signed integral is named SignedIntegral,
whereas the C++ standard concept goes by the name signed_integral.

The syntax for defining a concept is straightforward:

Concept definition

template <template-parameter-list>

concept concept-name = constraint-expression;

A concept definition starts with the keyword template and has a template parameter
list. The second line is more interesting. It uses the keyword concept followed by the
concept name and the constraint expression.

A constraint-expression can either be:

• A logical combination of other concepts or compile-time predicates

Core Language 82

– Logical combination can be built out of conjunctions (&&), disjunctions (||),
or negations (!)

– Compile-time predicates are callables that return a boolean value at
compile time

• A requires expression
– Simple requirements
– Type requirements
– Compound requirements
– Nested requirements

In the next two sections I will demonstrate various ways of defining concepts.

4.1.8.1 A Logical Combination of other Concepts and Compile-Time
Predicates

You can combine concepts and compile time predicates using conjunctions (&&)
and disjunctions (||). When building your logical combination, you can negate
components by using the exclamation mark (!). Thanks to the many compile-time
predicates of the type-traits library¹⁸, you have at your disposal all tools required to
build powerful concepts.

¹⁸https://en.cppreference.com/w/cpp/header/type_traits

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 83

Don’t define Concepts Recursively or try to
Constrain them
A recursive definition of a concept is not valid:

Recursively defining a concept

template<typename T>

concept Recursive = Recursive<T*>;

The GCC compiler complains in this case that 'Recursive' was not

declared in this scope.

When you try to constrain a concept such as in the following code snippet,
the GCC compiler unambiguously complains that a concept cannot be

constrained.

Constraining a concept

template<typename T>

concept AlwaysTrue = true;

template<typename T>

requires AlwaysTrue<T>

concept Error = true;

Let’s start with the concepts Integral, SignedIntegral, and UnsignedIntegral.

The concepts Integral, SignedIntegral, and UnsignedIntegral

1 template <typename T>

2 concept Integral = std::is_integral<T>::value;

3

4 template <typename T>

5 concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

6

7 template <typename T>

8 concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

Core Language 84

I used the type-traits function std::is_integral¹⁹ to define the concept Integral
(line 2). Thanks to the function std::is_signed, I refine the concepts Integral to
the concept SignedIntegral (line 4). Finally, negating the concept SignedIntegral
gives me the concept UnsignedIntegral (line 7).

Okay, let’s try it out.

Use of the concepts Integral, SignedIntegral, and UnsignedIntegral

1 // SignedUnsignedIntegrals.cpp

2

3 #include <iostream>

4 #include <type_traits>

5

6 template <typename T>

7 concept Integral = std::is_integral<T>::value;

8

9 template <typename T>

10 concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

11

12 template <typename T>

13 concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

14

15 void func(SignedIntegral auto integ) {

16 std::cout << "SignedIntegral: " << integ << '\n';

17 }

18

19 void func(UnsignedIntegral auto integ) {

20 std::cout << "UnsignedIntegral: " << integ << '\n';

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 func(-5);

¹⁹https://en.cppreference.com/w/cpp/types/is_integral

https://en.cppreference.com/w/cpp/types/is_integral
https://en.cppreference.com/w/cpp/types/is_integral

Core Language 85

28 func(5u);

29

30 std::cout << '\n';

31

32 }

I used the abbreviated function-template syntax to overload the function func on
the concept SignedIntegral (line 15) and UnsignedIntegral (line 19). The compiler
chooses the expected overload:

Use of the concepts SignedIntegral, and UnsignedIntegral

For completeness reasons, the following concept Arithmetic uses disjunction.

The concept Arithmetic

template <typename T>

concept Arithmetic = std::is_integral<T>::value || std::is_floating_poi\

nt<T>::value;

4.1.8.2 Requires Expressions

Thanks to requires expressions, you can define powerful concepts. A requires

expression has the following form:

Requires expression

requires (parameter-list(optional)) {requirement-seq}

• parameter-list: A comma-separated list of parameters, such as in a function
declaration

• requirement-seq: A sequence of requirements, consisting of simple, type,
compound, or nested requirements

Core Language 86

4.1.8.2.1 Simple Requirements

The following concept Addable is a simple requirement:

The concept Addable

template<typename T>

concept Addable = requires (T a, T b) {

a + b;

};

The concept Addable requires that the addition a + b of two values of the same type
T is possible.

Avoid Anonymous Concepts: requires requires

You can define an anonymous concept and directly use it. Avoid it. This
makes your code hard to read and you cannot reuse your concepts.

An anonymous concept for adding two concepts

template<typename T>

requires requires (T x) { x + x; }

T add1(T a, T b) { return a + b; }

The function template defines its concept ad-hoc. add1 uses a requires
expression inside a requires clause. The anonymous concept is equivalent
to the previously defined concept Addable and so is the following function
template add2 using the named concept Addable.

Use of the concept Addable

template<Addable T>

T add2(T a, T b) { return a + b; }

Concepts should encapsulate general ideas and give them a self-explana-
tory name for reuse. They are invaluable for maintaining code. Anonymous
concepts read more like syntactic constraints the template parameters.

Core Language 87

4.1.8.2.2 Type Requirements

In a type requirement, you have to use the keyword typename together with a type
name.

The concept TypeRequirement

template<typename T>

concept TypeRequirement = requires {

typename T::value_type;

typename Other<T>;

};

The concept TypeRequirement requires that type T has a nested member value_type,
and that the class template Other can be instantiated with T.

Let’s try this out:

Use of the concepts TypeRequirement

1 #include <iostream>

2 #include <vector>

3

4 template <typename>

5 struct Other;

6

7 template <>

8 struct Other<std::vector<int>> {};

9

10 template<typename T>

11 concept TypeRequirement = requires {

12 typename T::value_type;

13 typename Other<T>;

14 };

15

16 int main() {

17

18 TypeRequirement auto myVec= std::vector<int>{1, 2, 3};

Core Language 88

19

20 }

The expression TypeRequirement auto myVec = std::vector<int>{1, 2, 3} (line
18) is valid. A std::vector²⁰ has an inner member value_type (line 12) and the class
template Other can be instantiated with std::vector<int> (line 13).

4.1.8.2.3 Compound Requirements

A compound requirement has the form

Compound requirement

{expression} noexcept(optional) return-type-requirement(optional);

In addition to a simple requirement, a compound requirement can have a noexcept

specifier²¹ and a requirement on its return type.

The concept Equal, demonstrated in the following example, uses compound require-
ments.

Definition and use of the concept Equal

1 // conceptsDefinitionEqual.cpp

2

3 #include <concepts>

4 #include <iostream>

5

6 template<typename T>

7 concept Equal = requires(T a, T b) {

8 { a == b } -> std::convertible_to<bool>;

9 { a != b } -> std::convertible_to<bool>;

10 };

11

12 bool areEqual(Equal auto a, Equal auto b){

13 return a == b;

²⁰https://en.cppreference.com/w/cpp/container/vector
²¹https://en.cppreference.com/w/cpp/language/noexcept_spec

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/language/noexcept_spec
https://en.cppreference.com/w/cpp/language/noexcept_spec
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/language/noexcept_spec

Core Language 89

14 }

15

16 struct WithoutEqual{

17 bool operator==(const WithoutEqual& other) = delete;

18 };

19

20 struct WithoutUnequal{

21 bool operator!=(const WithoutUnequal& other) = delete;

22 };

23

24 int main() {

25

26 std::cout << std::boolalpha << '\n';

27 std::cout << "areEqual(1, 5): " << areEqual(1, 5) << '\n';

28

29 /*

30

31 bool res = areEqual(WithoutEqual(), WithoutEqual());

32 bool res2 = areEqual(WithoutUnequal(), WithoutUnequal());

33

34 */

35

36 std::cout << '\n';

37

38 }

The concept Equal (line 6) requires that its type parameter T supports the equal
and not-equal operator. Additionally, both operators have to return a value that is
convertible to a boolean. Of course, int supports the concept Equal, but this does not
hold for the types WithoutEqual (line 16) and WithoutUnequal (line 20). Consequently,
when I use the type WithoutEqual (line 31), I get the following error message when
using the GCC compiler.

Core Language 90

WithoutEqual does not fulfill the concept Equal

4.1.8.2.4 Nested Requirements

A nested requirement has the form

Nested requirement

requires constraint-expression;

Nested requirements are used to specify requirements on type parameters.

Here is another way to define the concept UnsignedIntegral (see logical combina-
tions of concepts and predicates):

The concepts Integral, SignedIntegral, and UnsignedIntegral

1 // nestedRequirements.cpp

2

3 #include <type_traits>

4

5 template <typename T>

6 concept Integral = std::is_integral<T>::value;

7

8 template <typename T>

9 concept SignedIntegral = Integral<T> && std::is_signed<T>::value;

10

11 // template <typename T>

12 // concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

13

14 template <typename T>

15 concept UnsignedIntegral = Integral<T> &&

Core Language 91

16 requires(T) {

17 requires !SignedIntegral<T>;

18 };

19

20 int main() {

21

22 UnsignedIntegral auto n = 5u; // works

23 // UnsignedIntegral auto m = 5; // compile time error, 5 is a sig\

24 ned literal

25

26 }

Line 14 uses with the concept SignedIntegral a nested requirement to refine the
concept Integral. Honestly, the commented-out concept UnsignedIntegral in line
11 is more convenient to read.

The concept Ordering in the following section demonstrates the use of nested
requirements.

4.1.9 Application

In the previous sections I answered two essential questions about concepts: “How
can a concept be used?” and “How can you define your concepts?”. In this section, I
want to apply the theoretical knowledge provided in those sections to define more
advanced concepts such as Ordering, SemiRegular, and Regular.

4.1.9.1 The Concepts Equal and Ordering

I presented already in the short detour to the long, long history of concepts a part of
Haskell’s type classes hierarchy:

Core Language 92

Haskell Type Classes Hierarchy

The class hierarchy shows that the type class Ord is a refinement of the type class Eq.
Haskell expresses this elegantly.

A part of Haskell’s type classes hierarchy

1 class Eq a where

2 (==) :: a -> a -> Bool

3 (/=) :: a -> a -> Bool

4

5 class Eq a => Ord a where

6 compare :: a -> a -> Ordering

7 (<) :: a -> a -> Bool

8 (<=) :: a -> a -> Bool

9 (>) :: a -> a -> Bool

10 (>=) :: a -> a -> Bool

11 max :: a -> a -> a

Each type a supporting the type class Eq (line 1), has to support equality (line 2)
and inequality (line 3). Now to the interesting part of this definition. Each type a

supporting the type class Ord has to support the type class Eq (class Eq a => Ord a

Core Language 93

in line 5). Additionally, type a has to support the four comparison operators and the
functions compare and max (lines 6 - 11).

Here is my challenge. Can we express Haskell’s relationship between the type classes
Eq and Ord with concepts in C++20? For simplicity, I ignore Haskell’s functions
compare and max.

4.1.9.1.1 The Concept Ordering

Thanks to the requires expression, the definition of the concept Ordering looks quite
similar to the definition of the type class ord in Haskell.

The concept Ordering

template <typename T>

concept Ordering =

Equal<T> &&

requires(T a, T b) {

{ a <= b } -> std::convertible_to<bool>;

{ a < b } -> std::convertible_to<bool>;

{ a > b } -> std::convertible_to<bool>;

{ a >= b } -> std::convertible_to<bool>;

};

The Ordering concept uses nested requirements under the hood. A type T supports
the concept Ordering if it supports the concept Equal and, additionally, the four
comparison operators. Let’s try it out.

Core Language 94

Definition and usage of the concept Ordering
1 // conceptsDefinitionOrdering.cpp

2

3 #include <concepts>

4 #include <iostream>

5 #include <unordered_set>

6

7 template<typename T>

8 concept Equal =

9 requires(T a, T b) {

10 { a == b } -> std::convertible_to<bool>;

11 { a != b } -> std::convertible_to<bool>;

12 };

13

14

15 template <typename T>

16 concept Ordering =

17 Equal<T> &&

18 requires(T a, T b) {

19 { a <= b } -> std::convertible_to<bool>;

20 { a < b } -> std::convertible_to<bool>;

21 { a > b } -> std::convertible_to<bool>;

22 { a >= b } -> std::convertible_to<bool>;

23 };

24

25 template <Equal T>

26 bool areEqual(const T& a, const T& b) {

27 return a == b;

28 }

29

30 template <Ordering T>

31 T getSmaller(const T& a, const T& b) {

32 return (a < b) ? a : b;

33 }

34

35 int main() {

Core Language 95

36

37 std::cout << std::boolalpha << '\n';

38

39 std::cout << "areEqual(1, 5): " << areEqual(1, 5) << '\n';

40

41 std::cout << "getSmaller(1, 5): " << getSmaller(1, 5) << '\n';

42

43 std::unordered_set<int> firSet{1, 2, 3, 4, 5};

44 std::unordered_set<int> secSet{5, 4, 3, 2, 1};

45

46 std::cout << "areEqual(firSet, secSet): " << areEqual(firSet, secSe\

47 t) << '\n';

48

49 // auto smallerSet = getSmaller(firSet, secSet);

50

51 std::cout << '\n';

52

53 }

The function template areEqual (line 25) requires that both arguments a and b have
the same type and support the concept Equal. Additionally, the function template
getSmaller (line 30) requires that both arguments support the concept Ordering. Of
course, integrals such as 1 and 5 support both concepts. A std::unordered_set²², as
its name implies, does not fulfill the concept Ordering. Consequently, I commented
out line 48.

Use of the concept Ordering

Let’s look at the more interesting case now. What happens, when we compile line 48:
auto smallerSet = getSmaller(firSet, secSet);? The GCC compiler complains
unambiguously that a std::unordered_set is not a valid argument for the function
template getSmaller.

²²https://en.cppreference.com/w/cpp/container/unordered_set

https://en.cppreference.com/w/cpp/container/unordered_set
https://en.cppreference.com/w/cpp/container/unordered_set

Core Language 96

Erroneous usage of the function template getSmaller

The Ordering concept is already part of the C++20 standard.

• std::three_way_comparable: is equivalent to the concept Ordering presented
above

• std::three_way_comparable_with: allows the comparison of values of different
types; e.g.: 1.0 < 1.0f

With C++20, we get the three-way comparison operator, also known as the spaceship
operator <=>. I present it in full depth in the three-way comparison operator chapter.

4.1.9.2 The Concepts SemiRegular and Regular

When you want to define a concrete type that works well in the C++ ecosystem, you
should define a type that “behaves like an int”. Formally, your concrete type should
be a regular type. In this section, I define the concepts SemiRegular and Regular.

SemiRegular and Regular are essential ideas in C++. Sorry, I should say concepts.
For example, here is rule T.46 from the C++ Core Guidelines: T.46: Require template
arguments to be at least Regular or SemiRegular²³. Now, only one important question
is left to answer: What are Regular or SemiRegular types? Before I dive into the
details, this is the informal answer:

• A regular type “behaves like an int.” It can be copied and the result of the
copy operation is independent of the original one and has the same value.

²³http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

Core Language 97

Okay, let me be more formal. A regular type is also a semiregular type, so let’s
begin.

Regular Types
Alexander Stepanov²⁴, the designer of the Standard Template Library,
defined the terms regular type and semiregular type. A type, according
to him, is regular if it supports these functions:

• Copy construction
• Assignment
• Equality
• Destruction
• Total ordering

Copy construction implies default construction and Equality implies In-
equality. When Stepanov defined the requirements above, move semantics
was not present in C++. The book Elements of Programming²⁵, which
Alexander Stepanov wrote together with Paul McJones²⁶, is devoted to
regular types.

4.1.9.2.1 The Concept SemiRegular

A semiregular type X has to support the Big Six and has to be swappable. The Big
Six consists of the following functions:

• Default constructor: X()
• Copy constructor: X(const X&)

• Copy assignment: X& operator = (const X&)

• Move constructor: X(X&&)
• Move assignment: X& operator = (X&&)

• Destructor: ∼X()

²⁴https://en.wikipedia.org/wiki/Alexander_Stepanov
²⁵http://elementsofprogramming.com/
²⁶https://www.mcjones.org/paul/

https://en.wikipedia.org/wiki/Alexander_Stepanov
http://elementsofprogramming.com/
https://www.mcjones.org/paul/
https://en.wikipedia.org/wiki/Alexander_Stepanov
http://elementsofprogramming.com/
https://www.mcjones.org/paul/

Core Language 98

Additionally, X has to be swappable: swap(X&, X&)

Thanks to the type-traits library²⁷, defining the corresponding concept is a no-brainer.
First, I define the type trait isSemiRegular and then use it to define the concept
SemiRegular.

1 template<typename T>

2 struct isSemiRegular: std::integral_constant<bool,

3 std::is_default_constructible<T>:\

4 :value &&

5 std::is_copy_constructible<T>::va\

6 lue &&

7 std::is_copy_assignable<T>::value\

8 &&

9 std::is_move_constructible<T>::va\

10 lue &&

11 std::is_move_assignable<T>::value\

12 &&

13 std::is_destructible<T>::value &&

14 std::is_swappable<T>::value >{};

15

16

17 template<typename T>

18 concept SemiRegular = isSemiRegular<T>::value;

The type trait isSemiRegular (line 1) is fulfilled when all type traits to the Big Six
(lines 3 - 8) and the type trait std::is_swappable (line 9) are fulfilled. The remaining
step to define the concept SemiRegular is to use the type traits isSemiRegular (line
13).

Let’s continue with the concept Regular.

4.1.9.2.2 The Concept Regular

There is only one step andwe are done with defining the concept Regular. In addition
to the requirements of the concept SemiRegular, the concept Regular requires that

²⁷https://en.cppreference.com/w/cpp/header/type_traits

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 99

the type is equally comparable. I already defined the Equal concept in the section on
requires expressions. Consequently, you are already done. You only have to conjunct
the concepts Equal and SemiRegular.

Definition of the concept Regular

template<typename T>

concept Regular = Equal<T> &&

SemiRegular<T>;

Now, I’m curious. How can we define the corresponding concepts std::semiregular
and std::regular in C++20?

4.1.9.2.3 std::semiregular and std::regular

C++20 combines the concepts std::semiregular and std::regular using of existing
type traits and concepts.

Definition of the concept std::semiregular and std::regular

template<class T>

concept movable = is_object_v<T> && move_constructible<T> &&

assignable_from<T&, T> && swappable<T>;

template<class T>

concept copyable = copy_constructible<T> && movable<T> &&

assignable_from<T&, T&> &&

assignable_from<T&, const T&> && assignable_from<T&,\

const T>;

template<class T>

concept semiregular = copyable<T> && default_initializable<T>;

template<class T>

concept regular = semiregular<T> && equality_comparable<T>;

Interestingly, the std::regular concept is defined similarly to concept Regular. On
the other hand, the std::semiregular concept is combined with more elementary

Core Language 100

concepts, such as std::copyable and std::moveable. The concept std::movable is
based on the type-traits function std::is_object²⁸. cppreference.com also provides
a possible implementation of the compile-time predicate.

A possible implementation of the type trait std::is_object

template< class T>

struct is_object : std::integral_constant<bool,

std::is_scalar<T>::value ||

std::is_array<T>::value ||

std::is_union<T>::value ||

std::is_class<T>::value> {};

A type is an object if it is either a scalar, an array, a union, or a class.

To conclude this section, I want to apply the user-defined concept Regular and the
C++20 concept std::regular. The program regularSemiRegular.cpp does this job.

Application of the concepts Regular and SemiRegular

1 // regularSemiRegular.cpp

2

3 #include <concepts>

4 #include <vector>

5 #include <type_traits>

6

7 template<typename T>

8 struct isSemiRegular: std::integral_constant<bool,

9 std::is_default_constructible<T>:\

10 :value &&

11 std::is_copy_constructible<T>::va\

12 lue &&

13 std::is_copy_assignable<T>::value\

14 &&

15 std::is_move_constructible<T>::va\

16 lue &&

17 std::is_move_assignable<T>::value\

²⁸https://en.cppreference.com/w/cpp/types/is_object

https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object

Core Language 101

18 &&

19 std::is_destructible<T>::value &&

20 std::is_swappable<T>::value >{};

21

22 template<typename T>

23 concept SemiRegular = isSemiRegular<T>::value;

24

25 template<typename T>

26 concept Equal =

27 requires(T a, T b) {

28 { a == b } -> std::convertible_to<bool>;

29 { a != b } -> std::convertible_to<bool>;

30 };

31

32 template<typename T>

33 concept Regular = Equal<T> &&

34 SemiRegular<T>;

35

36 template <Regular T>

37 void behavesLikeAnInt(T) {

38 // ...

39 }

40

41 template <std::regular T>

42 void behavesLikeAnInt2(T) {

43 // ...

44 }

45

46 struct EqualityComparable { };

47 bool operator == (EqualityComparable const&,

48 EqualityComparable const&) {

49 return true;

50 }

51

52 struct NotEqualityComparable { };

53

Core Language 102

54 int main() {

55

56 int myInt{};

57 behavesLikeAnInt(myInt);

58 behavesLikeAnInt2(myInt);

59

60 std::vector<int> myVec{};

61 behavesLikeAnInt(myVec);

62 behavesLikeAnInt2(myVec);

63

64 EqualityComparable equComp;

65 behavesLikeAnInt(equComp);

66 behavesLikeAnInt2(equComp);

67

68 NotEqualityComparable notEquComp;

69 behavesLikeAnInt(notEquComp);

70 behavesLikeAnInt2(notEquComp);

71

72 }

I put all pieces from the previous code-snippets together to define the concept Regular
(line 27). The function templates behavesLikeAnInt (line 31) and behavesLikeAnInt2

(line 36) check if the arguments “behave like an int.” This means the user-defined
concept Regular and the C++20 concept std::regular are used to establish the
condition. As the name suggests, the type EqualityComparable (line 41) supports
equality, but the type NotEqualityComparable (line 47) does not. The use of the type
NotEqualityComparable in both function calls (lines 64 and 65) is the most interesting
part of the program.

Although I’m in the early stage of concepts implementation, I want to compare the
error messages of a new GCC and MSVC compilers.

• GCC

I used the current GCC 10.2 with the command line argument -std=c++20 on
Compiler Explorer²⁹. These are essentially the error messages when I use the user-

²⁹https://godbolt.org/

https://godbolt.org/
https://godbolt.org/

Core Language 103

defined concept Regular (line 64):

Error message when using the concept Regular

The C++20 concept std::regular is more comprehensive. Consequently, the call in
line 65 gives a more comprehensive error message:

Error message when using the concept std::regular

• MSVC

The error message given by the MSVC compiler is too unspecific.

Error message when using the concepts Regular and std::regular

Core Language 104

As you can see from the screenshot, I applied version 19.27.29112 for x64 with the
command line /EHSC /std:c++latest.

Core Language 105

Concepts in C++20: An Evolution or a Revolu-
tion?
This small detour expresses my opinion. First, I present the facts, then I
draw my conclusion. The facts are based on what has been presented in
this chapter. So which arguments speak for evolution or for revolution?

Evolution

• Concepts promote working with generic code at a higher level of
abstraction.

• Concepts give you understandable error messageswhen compiling
a template fails. They provide nothing you could not achieve with the
type-traits library³⁰, SFINAE³¹, and static_assert³².

• auto is a kind of unconstrained placeholder. With C++20, we can use
concepts as constrained placeholders.

• With C++14, we could use generic lambdas as a convenient way to
define function templates.

Revolution

• Concepts allow us, for the first time, to verify template require-
ments. Of course, you can also achieve the verification of template
parameters with a combination of type-traits library³³, SFINAE³⁴, and
static_assert³⁵, but this technique is way too advanced to regard it
as a general solution.

• Thanks to the abbreviated function-templates syntax, defining tem-
plates has been radically improved.

• Concepts represent semantic categories, but not syntactic con-
straints. Instead of a concept such as Addable, which requires that
a type supports the + operator, we should think in terms of a
concept Number, where Number is a semantic category such as Equal
or Ordering.

My Conclusion
There are many arguments whether concepts are an evolutionary step or a
revolutionary jump. Mainly because of the semantic categories, I’m on the
revolution side. Concepts such as Number, Equality, or Ordering remind
me of Plato’s³⁶ world of ideas. It is revolutionary that we can now reason
about programming in such categories.

³⁰https://en.cppreference.com/w/cpp/header/type_traits

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.wikipedia.org/wiki/Plato
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 106

Distilled Information

• Functions or classes defined on a specific type or a type parameter
have their set of problems. Concepts overcome these problems by
putting semantic constraints on type parameters.

• Concepts can be applied in requires clauses, in trailing requires
clauses, as constrained template parameters, or in the abbreviated
function templates.

• Concept are compile-time predicates that can be used for all kinds
of templates. You can overload on concepts, specialize templates on
concepts, use concepts for member functions or variadic templates.

• Thanks to C++20 and concepts, the use of unconstrained placeholders
(auto) and constrained placeholders (concepts) is unified. Whenever
you use auto, you can use concepts in C++20.

• Thanks to the new abbreviated function-templates syntax, defining
a function template has become a piece of cake.

• Don’t reinvent the wheel. Before you define your own concepts,
study the rich set of predefined concepts in the C++20 standard.
When you define your concepts, you can apply two techniques:
combine concepts and compile-time predicates or use requires expres-
sions.

³¹https://en.cppreference.com/w/cpp/language/sfinae
³²https://en.cppreference.com/w/cpp/language/static_assert
³³https://en.cppreference.com/w/cpp/header/type_traits
³⁴https://en.cppreference.com/w/cpp/language/sfinae
³⁵https://en.cppreference.com/w/cpp/language/static_assert
³⁶https://en.wikipedia.org/wiki/Plato

https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/static_assert
https://en.wikipedia.org/wiki/Plato

Core Language 107

4.2 Modules

Cippi prepares the packages

Modules are one of the four big features of C++20: concepts, modules, ranges, and
coroutines. Modules promise a lot: shorter compile times, macro isolation, abolishing
header files, and avoiding ugly workarounds. Before I present the advantages of
modules, I want to step back and explain their benefits.

4.2.1 Why do we need Modules?

Let me start with a simple executable. For obvious reasons, I create a helloWorld.cpp
program.

Core Language 108

A simple hello world program

// helloWorld.cpp

#include <iostream>

int main() {

std::cout << "Hello World" << '\n';

}

Making an executable helloWorld out of the program helloWorld.cpp with GCC³⁷
increases its size by factor 130.

Size of an object file

The numbers 100 and 12928 in the screenshot stand for the number of bytes. Okay.
We should have a basic understanding of what’s happening under the hood.

4.2.1.1 The Classical Build Process

The build process consists of three steps: preprocessing, compilation, and linking.

4.2.1.1.1 Preprocessing

The preprocessor handles the directives as #include and #define. The preprocessor
substitutes #include directives with the corresponding header files, and it substitutes
themacros (#define). Thanks to directives such as #if, #else, #elif, #ifdef, #ifndef,
and #endif parts of the source code can be included or excluded.

³⁷http://gcc.gnu.org/

http://gcc.gnu.org/
http://gcc.gnu.org/

Core Language 109

This straightforward text substitution process can be observed by using the compiler
flag -E on GCC/Clang, or /E on Windows.

Preprocessors output

WOW!!! The output of the preprocessing step has more than half a million bytes. I
don’t want to blame GCC, the other compilers are similarly verbose. The output of
the preprocessor is the input for the compiler.

The result of this preprocessing step is the translation unit.

4.2.1.1.2 Compilation

The compilation is performed separately on each output of the preprocessor. The
compiler parses the C++ source code and converts it into assembly code. The
generated file is called an object file and it contains the compiled code in binary
form. The object file can refer to symbols that don’t have a definition. The object
files can be put in archives for later reuse. These archives are called static libraries.

The objects files that the compiler produces are the inputs for the linker.

4.2.1.1.3 Linking

The output of the linker can be an executable or a static or shared library. It’s the
job of the linker to resolve the references to undefined symbols. Symbols are defined
in object files or in libraries. The typical error in this phase is that symbols aren’t
defined or are defined more than once.

This build process that consists of the three steps is inherited from C. It works
sufficiently well if you have only one translation unit. But when you have more
than one, many issues can occur.

Core Language 110

4.2.1.2 Issues of the Build Process

Here’s an incomplete list of the flaws in a classical build process, which can be
overcome with modules.

4.2.1.2.1 Repeated Substitution

The preprocessor substitutes #include directives with the corresponding header files.
Let me change my initial helloWorld.cpp program to make the repetition visible.

I refactored the program and added two source files hello.cpp and world.cpp. The
source file hello.cpp provides the function hello and the source file world.cpp

provides the function world. Both source files include the corresponding headers.
Refactoring means that the program has the same external behavior such as the
previous program helloWorld.cpp, but the internal structure is improved. Here are
the new files:

• hello.cpp and hello.h

Implementation of hello

// hello.cpp

#include "hello.h"

void hello() {

std::cout << "hello ";

}

Core Language 111

Header of hello

// hello.h

#include <iostream>

void hello();

• world.cpp and world.h

Implementation of world

// world.cpp

#include "world.h"

void world() {

std::cout << "world";

}

Header of world

// world.h

#include <iostream>

void world();

• helloWorld2.cpp

Core Language 112

Use of hello and world

// helloWorld2.cpp

#include <iostream>

#include "hello.h"

#include "world.h"

int main() {

hello();

world();

std::cout << '\n';

}

Building and executing the program works as expected:

Compilation of a simple program

Here is the issue. The preprocessor runs on each source file. This means that the
header file <iostream> is included a total of three times. Consequently, each source
file is blown up to more than half a million lines.

Core Language 113

Size of the preprocessed source file

This is a waste of compile time.

Unlike header files, a module is only imported once and is literally for free.

4.2.1.2.2 Isolation from Preprocessor Macros

If there is one consensus in the C++ community, it’s the following one: we should
get rid of the preprocessor macros. Why? Using a macro is simply text substitution,
excluding any C++ semantics. Of course, this has many negative consequences: for
example, it may depend on which sequence you include macros, or macros can clash
with already defined macros or names in your application.

Imagine you have two header files webcolors.h and productinfo.h.

First definition of macro RED

// webcolors.h

#define RED 0xFF0000

Second definition of macro RED

// productinfo.h

#define RED 0

When a source file client.cpp includes both headers, the value of macro RED depends
on the order of the included header. This dependency is very error-prone.

With modules, import order makes no difference.

Core Language 114

4.2.1.2.3 Multiple Definition of Symbols

ODR stands for the One Definition Rule and says in the case of a function:

• A function can have not more than one definition in any translation unit.
• A function can not have more than one definition in the program.

Inline functions with external linkage can be defined in more than one translation
unit. The definitions have to satisfy the requirement that each definition has to be
the same.

Let’s see what my linker has to say when I try to link a program breaking the
one-definition rule. The following code example has two header files, header.h and
header2.h. Themain program includes the header files header.h twice and, therefore,
breaks the one-definition rule because two definitions of func are included.

Definition of the function func

// header.h

void func() {}

Indirect inclusion of the function definition to func

// header2.h

#include "header.h"

Core Language 115

Double definitions of the function func

// main.cpp

#include "header.h"

#include "header2.h"

int main() {}

The linker complains about the multiple definitions of func:

Breakion the one definition rule

We are used to ugly workarounds, such as putting an include guard around your
header. Adding the include guard FUNC_H to the header file header.h solves the issue.

Using include guards to solve ODR

// header.h

#ifndef FUNC_H

#define FUNC_H

void func(){}

#endif

Core Language 116

With modules, duplicate symbols are very unlikely.

I will now summarize the advantages of modules.

4.2.2 Advantages

Here are the advantages of modules in a concise form:

• Modules are imported only once and are literally for free.
• It makes no difference in which order you import a module.
• Duplicate symbols with modules are very unlikely.
• Modules enable you to express the logical structure of your code. You can
explicitly specify names that should be exported or not. Additionally, you can
bundle a few modules into a bigger module and provide them to your customer
as a logical package.

• Thanks to modules, there is no need to separate your source code into an
interface and an implementation part.

The Long History
Modules in C++ may be older than you think. My short historic detour
should give an idea how long it takes to get something so valuable into the
C++ standard.

In 2004, Daveed Vandevoorde wrote proposal N1736.pdf³⁸, which described
for the first time the idea of modules. It took until 2012 to get a dedicated
Study Group (SG2, Modules). In 2017, Clang 5.0 and MSVC 19.1 provided
the first implementations. One year later, the Modules TS (technical
specification) was finalized. Around the same time, Google proposed the so-
called ATOM (Another Take On Modules) proposal (P0947³⁹) for modules.
In 2019, the Modules TS and the ATOM proposal were merged into the
C++20 committee draft (N4842⁴⁰).

³⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
³⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
⁴⁰https://github.com/cplusplus/draft/releases/tag/n4842

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
https://github.com/cplusplus/draft/releases/tag/n4842
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
https://github.com/cplusplus/draft/releases/tag/n4842

Core Language 117

4.2.3 A First Example

The purpose of this section is straightforward: I will give you an introduction to
modules. More advanced features of modules are in the following sections. Let’s
start with a simple math module.

A simple math module

// math.ixx

export module math;

export int add(int fir, int sec){

return fir + sec;

}

The expression export module math is the module declaration. By putting export

before function add’s definition, add is exported and can, therefore, be used by a
consumer of the module.

Use of the simple math module

// client.cpp

import math;

int main() {

add(2000, 20);

}

import math imports module math and makes the exported names in the module
visible to client.cpp.

Let me start with the module declaration file.

Core Language 118

4.2.3.1 Module Declaration File

Did you notice the strange name of the module: math.ixx.

• The Microsoft compiler uses the extension ixx. The suffix ixx stands for a
module interface source.

• The Clang compiler originally used the extension cppm. The m in the suffix
probably stands for module. This convention changes in newer versions of
Clang to the cpp extension.

• The GCC compiler uses no special extension.

The global module fragment is meant to compose module interfaces. It starts with the
keyword module and ends with the module declaration. The global module fragment
is the place to use preprocessor directives such as #include so that the module
interface can compile. The code in the global module fragment is not exported by
the module interface.

The second version of themodule math supports the two functions add and getProduct.

A module definition with a global module fragment

1 // math1.ixx

2

3 module;

4

5 #include <numeric>

6 #include <vector>

7

8 export module math;

9

10 export int add(int fir, int sec){

11 return fir + sec;

12 }

13

14 export int getProduct(const std::vector<int>& vec) {

15 return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<i\

16 nt>());

17 }

Core Language 119

I included the necessary headers between the global module fragment (line 3) and
the module declaration (line 8).

Use of the improved module math

// client1.cpp

#include <iostream>

#include <vector>

import math;

int main() {

std::cout << '\n';

std::cout << "add(2000, 20): " << add(2000, 20) << '\n';

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::cout << "getProduct(myVec): " << getProduct(myVec) << '\n';

std::cout << '\n';

}

The client imports module math and uses its functionality:

Execution of the program client1.exe

Now, let’s dive into the details.

Core Language 120

4.2.4 Compilation and Use

To compile the module math.ixx used by the client program client.cpp, you have
to use a very recent Clang, GCC, or Microsoft compiler.

The compilation of a module is challenging. For that reason, I show as an example
the compilation of the module with the Microsoft compiler and the Clang compiler.

4.2.4.1 Microsoft Visual Compiler

First, I use the cl.exe 19.25.28614 for x64 compiler.

Microsoft compiler for modules

These are the steps to compile and use the module with the Microsoft compiler. I only
show the minimal command line. As promised, more details follow. Additionally,
with an older Microsoft compiler, you have to use the flag /std:cpplatest.

Building the executable with the Microsoft compiler

1 cl.exe /experimental:module /c math.ixx

2 cl.exe /experimental:module client.cpp math.obj

• Line 1 creates an obj file math.obj and an IFC file math.ifc. The IFC file
contains the metadata description of the module interface. The binary format
of the IFC is modeled after the Internal Program Representation⁴¹ by Gabriel
Dos Reis and Bjarne Stroustrup (2004/2005).

• Line 2 creates the executable client.exe. Without the implicitly used math.ifc

file from the first step, the linker cannot find the module.

For obvious reasons, I do not show the output of the program execution.

⁴¹https://www.stroustrup.com/gdr-bs-macis09.pdf

https://www.stroustrup.com/gdr-bs-macis09.pdf
https://www.stroustrup.com/gdr-bs-macis09.pdf

Core Language 121

4.2.4.2 Clang Compiler

On Linux, I use the Clang 10.0.0 compiler.

Clang compiler for modules

With the clang compiler, the module declaration file is simply a cpp file. Conse-
quently, I have to rename the math.ixx file to math.cpp.

A simple math module

// math.cpp

export module math;

export int add(int fir, int sec){

return fir + sec;

}

The client file client.cpp is unchanged. These are the necessary steps to create the
executable.

Core Language 122

Building the executable with the Clang compiler

1 clang++ -std=c++2a -stdlib=libc++ -c math.cpp -Xclang -emit-module-inte\

2 rface \

3 -o math.pcm

4

5 clang++ -std=c++2a -stdlib=libc++ -fprebuilt-module-path=. client.cpp m\

6 ath.pcm \

7 -o client

• Line 1 creates the module math.pcm. The suffix pcm stands for precompiled
module. The flags -std=c++2a specifies the working draft of the C++20 standard
and the -stdlib=libc++ the used C++ standard library. The flag combination
-Xclang -emit-module-interface is necessary for creating the precompiled
module.

• Line 4 creates the executable client, which uses the module math.pcm. You
specify the path to the module with the -fprebuilt-module-path flag.

4.2.4.3 Used Compiler

I use the cl.exe from Microsoft in this book. Microsoft currently has (end 2020) the
best support for modules⁴². The Microsoft blog provides two excellent introductions
to modules: Overview of modules in C++⁴³ and C++ Modules conformance improve-
ments with MSVC in Visual Studio 2019 16.5⁴⁴. Neither Clang nor GCC provide
similar introductions, making it quite difficult to use modules with those compilers.

4.2.5 Export

There are three ways to export names in a module interface unit.

4.2.5.1 Export Specifier

You can export each name explicitly.

⁴²https://en.cppreference.com/w/cpp/compiler_support
⁴³https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
⁴⁴https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-

2019-16-5/

https://en.cppreference.com/w/cpp/compiler_support
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://en.cppreference.com/w/cpp/compiler_support
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-160&viewFallbackFrom=vs-2019
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/

Core Language 123

Export specifier

export module math;

export int mult(int fir, int sec);

export void doTheMath();

4.2.5.2 Export Group

An export group exports all of its names.

Export group

export module math;

export {

int mult(int fir, int sec);

void doTheMath();

}

4.2.5.3 Export Namespace

Instead of an exported group, you can use an exported namespace.

Core Language 124

Export namespace

export module math;

export namespace math {

int mult(int fir, int sec);

void doTheMath();

}

When a client uses names from an export namespace, they have to qualify those
names.

Only names that don’t have an internal linkage can be exported.

4.2.6 Guidelines for a Module Structure

Let’s examine guidelines for how to structure a module.

Guidelines for the structure of a module

module; // global module fragment

#include <headers for libraries not modularized so far>

export module math; // module declaration; starts the module p\

urview

import <importing of other modules>

<non-exported declarations> // names only visibile inside the module

export namespace math {

<exported declarations> // exported names

}

Core Language 125

This guideline serves one purpose: give you a simplified structure of a module
and also an idea of what I’m going to write about. So, what’s new in this module
structure?

• The globalmodule fragment startingwith the keyword module is optional. After
it and preceding the module declaration is the right place to include headers.

• The module declaration export module math starts the so-called module
purview, which ends at the end of the translation unit.

• You can import modules at the beginning of the module purview. The imported
modules have module linkage and are not visible outside the module. This
observation also applies to the non-exported declarations.

• I put the exported names in namespace math, which has the same name as the
module.

• The module has only declared names. Let’s write about the separation of the
interface and the implementation of a module.

4.2.7 Module Interface Unit and Module
Implementation Unit

When the module becomes bigger, you should structure it into a module interface
unit and one or more module implementation units. Following the previously
mentioned guidelines to structure a module, I will refactor the previous version of
the math module.

4.2.7.1 Module Interface Unit

Core Language 126

The module interface unit

1 // mathInterfaceUnit.ixx

2

3 module;

4

5 #include <vector>

6

7 export module math;

8

9 export namespace math {

10

11 int add(int fir, int sec);

12

13 int getProduct(const std::vector<int>& vec);

14

15 }

• The module interface unit contains the exporting module declaration: export
module math (line 7).

• The names add and getProduct are exported (lines 11 and 13).
• A module can have only one module interface unit.

4.2.7.2 Module Implementation Unit

The module implementation unit

1 // mathImplementationUnit.cpp

2

3 module math;

4

5 #include <numeric>

6

7 namespace math {

8

Core Language 127

9 int add(int fir, int sec) {

10 return fir + sec;

11 }

12

13 int getProduct(const std::vector<int>& vec) {

14 return std::accumulate(vec.begin(), vec.end(), 1, std::multipli\

15 es<int>());

16 }

17 }

• The module implementation unit contains non-exporting module declarations:
module math; (line 3).

• A module can have more than one module implementation unit.

4.2.7.3 Main Program

The client uses module math

1 // client3.cpp

2

3 #include <iostream>

4 #include <vector>

5

6 import math;

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::cout << "math::add(2000, 20): " << math::add(2000, 20) << '\n';

13

14 std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

15

16 std::cout << "math::getProduct(myVec): " << math::getProduct(myVec)\

17 << '\n';

Core Language 128

18

19 std::cout << '\n';

20

21 }

From the user’s perspective, the module math (line 6) is included and the namespace
math was added.

When my explanations become compiler dependent, I put them in a separate tip box.
This information is, in general, highly valuable if you want to try it out.

Core Language 129

Building the Executable with the Mi-
crosoft Compiler
Manually building the executable includes a few steps.

Building a module with a module interface unit and a module implemen-
tation unit

1 cl.exe /c /experimental:module mathInterfaceUnit.ixx /EHsc

2 cl.exe /c /experimental:module mathImplementationUnit.cpp /EHsc

3 cl.exe /c /experimental:module client3.cpp /EHsc

4 cl.exe client3.obj mathInterfaceUnit.obj mathImplementationUnit.obj

• Line 1 creates the object file mathInterfaceUnit.obj and the
module interface file math.ifc.

• Line 2 creates the object file mathImplementationUnit.obj.
• Line 3 creates the object file client3.obj.
• Line 4 creates the executable client3.exe.

For the Microsoft compiler, you have to specify the exception han-
dling model (/EHsc), and enable modules: /experimental:module.

Finally, here is the output of the program:

Execution of the program client2.exe

4.2.8 Submodules and Module Partitions

When your module becomes bigger, you want to divide its functionality into
manageable components. C++20 modules offer two approaches: submodules and
partitions.

Core Language 130

4.2.8.1 Submodules

A module can import modules and then re-export them.

In the following example, module math imports the submodules math.math1 and
math.math2.

The module math

// mathModule.ixx

export module math;

export import math.math1;

export import math.math2;

The expression export import math.math1 imports module math.math1 and re-
exports it as part of the module math.

For completeness, here are the modules math.math1 and math.math2. I used a period
to separate the module math from its submodules. This period is not necessary.

The submodule math.math1

// mathModule1.ixx

export module math.math1;

export int add(int fir, int sec) {

return fir + sec;

}

Core Language 131

The submodule math.math2

// mathModule2.ixx

export module math.math2;

export {

int mul(int fir, int sec) {

return fir * sec;

}

}

If you look carefully, you recognize a small difference in the export statements in the
modules math. While math.math1uses an export specifier, math.math2 uses an export
group or export block.

From the client’s perspective, using the math module is straightforward.

The main program

// mathModuleClient.cpp

#include <iostream>

import math;

int main() {

std::cout << '\n';

std::cout << "add(3, 4): " << add(3, 4) << '\n';

std::cout << "mul(3, 4): " << mul(3, 4) << '\n';

}

Compiling and executing the program gives the expected behavior.

Core Language 132

The usage of function modules and submodules

Compilation of the Module and its Submod-
ules with the Microsoft Compiler
Building the executable out of the modules and its submodules

cl.exe /c /experimental:module mathModule1.ixx /EHsc

cl.exe /c /experimental:module mathModule2.ixx /EHsc

cl.exe /c /experimental:module mathModule.ixx /EHsc

cl.exe /EHsc /experimental:module mathModuleClient.cpp mathModule1.obj \

mathModule2.obj mathModule.obj

Each compilation process of the three modules creates two artifacts: The
IFC file (interface file) *.ifc, which is implicitly used in the last line, and
the *.obj file, which is explicitly used in the last line.

I alreadymentioned that a submodule is also amodule. Each submodule has amodule
declaration. Consequently, I can create a second client that is only interested in the
math.math1 module.

The main program uses only submodule math.math1

// mathModuleClient1.cpp

#include <iostream>

import math.math1;

int main() {

std::cout << '\n';

Core Language 133

std::cout << "add(3, 4): " << add(3, 4) << '\n';

}

The usage of function modules and submodules

The division of modules into modules and submodules is a means for the module
designer to give the user of the module the possibility to import fine-grained parts
of the module. This observation does not apply to module partitions.

4.2.8.2 Module Partitions

Amodule can be divided into partitions. Each partition consists of a module interface
unit (partition interface file) and zero or more module implementation units (see
Module Interface Unit and Module Implementation Unit). The names that the
partitions export are imported and re-exported by the primary module interface unit
(primary interface file). The names of a partition must begin with the name of the
module. The partitions cannot exist on their own.

The description of module partitions is more difficult to understand than its imple-
mentation. In the following lines, I rewrite the math module and its submodules
math.math1 and math.math2 (see Submodules) to module partitions. In this straight-
forward process, I refer to the shortly introduced terms of module partitions.

Core Language 134

Primary interface file

1 // mathPartition.ixx

2

3 export module math;

4

5 export import :math1;

6 export import :math2;

The primary interface file consists of the module declaration (line 3). It imports and
re-exports the partitions math1 and math2 using colons (lines 5 and 6). The name of
the partitions must begin with the name of the module. Consequently, you don’t
have to specify them.

First module partition

1 // mathPartition1.ixx

2

3 export module math:math1;

4

5 export int add(int fir, int sec) {

6 return fir + sec;

7 }

Second module partition

1 // mathPartition2.ixx

2

3 export module math:math2;

4

5 export {

6 int mul(int fir, int sec) {

7 return fir * sec;

8 }

9 }

Core Language 135

Similar to the module declaration, the expressions export module math:math1 and
export module math:math2 (line 3) declare a module interface partition. A module
interface partition is also a module interface unit. The name math stands for the
module and the names math1 or math2 for the partition.

Import the module partition
// mathModuleClient.cpp

import math;

int main() {

std::cout << '\n';

std::cout << "add(3, 4): " << add(3, 4) << '\n';

std::cout << "mul(3, 4): " << mul(3, 4) << '\n';

}

You may have already assumed it: The client program is identical to the client
program I previously used with submodules. The same observation holds for the
creation of the executable and the execution of the program:

The usage of function modules and submodules

4.2.9 Templates in Modules

I often hear the question: How are templates exported by modules? When you
instantiate a template, its definitionmust be available. This is the reason that template
definitions are hosted in headers. Conceptually, the usage of a template has the
following structure

Core Language 136

4.2.9.0.1 Without Modules

• templateSum.h

Definition of the function template sum
// templateSum.h

template <typename T, typename T2>

auto sum(T fir, T2 sec) {

return fir + sec;

}

• sumMain.cpp

Use of the template sum
// sumMain.cpp

#include <templateSum.h>

int main() {

sum(1, 1.5);

}

The main program directly includes the header templateSum.h. The call sum(1, 1.5)

triggers the template instantiation. In this case, the compiler generates out of the
function template sum the concrete function sum, which takes an int and a double as
arguments. If you want to visualize this process, use the example on C++ Insights⁴⁵.

4.2.9.1 With Modules

WithC++20, templates can and should be inmodules.Modules have a unique internal
representation that is neither source code nor assembly. This representation is a kind
of an abstract syntax tree⁴⁶ (AST). Thanks to this AST, the template definition is

⁴⁵https://cppinsights.io/
⁴⁶https://en.wikipedia.org/wiki/Abstract_syntax_tree

https://cppinsights.io/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://cppinsights.io/
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Core Language 137

available during template instantiation.

In the following example, I define the function template sum in module math.

• mathModuleTemplate.ixx

Definition of the function template sum

// mathModuleTemplate.ixx

export module math;

export namespace math {

template <typename T, typename T2>

auto sum(T fir, T2 sec) {

return fir + sec;

}

}

• clientTemplate.cpp

Use of the function template sum

// clientTemplate.cpp

#include <iostream>

import math;

int main() {

std::cout << '\n';

std::cout << "math::sum(2000, 11): " << math::sum(2000, 11) << '\n';

Core Language 138

std::cout << "math::sum(2013.5, 0.5): " << math::sum(2013.5, 0.5) <\

< '\n';

std::cout << "math::sum(2017, false): " << math::sum(2017, false) <\

< '\n';

}

The command line to compile the program is not different from the previous ones.
Consequently, I skip it and present the output of the program directly:

Use of the function template sum

With modules, we get a new kind of linkage.

4.2.10 Module Linkage

Until C++20, C++ supported two kinds of linkage: internal linkage and external
linkage.

• Internal linkage: Names with internal linkage are not accessible outside the
translation unit. Internal linkage includes mainly namespace-scope names that
are declared static and members of anonymous namespaces.

• External linkage: Names with external linkage are accessible outside the
translation unit. External linkage includes names declared not as static, class
types, and their members, variables, and templates.

Modules introduce module linkage:

Core Language 139

• Module linkage: Names with module linkage are only accessible inside the
module. Names have module linkage if they don’t have external linkage and
they are not exported.

A small variation of the previous module declaration mathModuleTemplate.ixx

makes my point. Imagine that I want to return to the user of my function template
sum not only the result of the addition, but also the return type the compiler deduces.

An improved definition of the function template sum

1 // mathModuleTemplate1.ixx

2

3 module;

4

5 #include <iostream>

6 #include <typeinfo>

7 #include <utility>

8

9 export module math;

10

11 template <typename T>

12 auto showType(T&& t) {

13 return typeid(std::forward<T>(t)).name();

14 }

15

16 export namespace math {

17

18 template <typename T, typename T2>

19 auto sum(T fir, T2 sec) {

20 auto res = fir + sec;

21 return std::make_pair(res, showType(res));

22 }

23

24 }

Instead of the sum of the numbers, the function template sum returns a std::pair⁴⁷

⁴⁷https://en.cppreference.com/w/cpp/utility/pair

https://en.cppreference.com/w/cpp/utility/pair
https://en.cppreference.com/w/cpp/utility/pair

Core Language 140

(line 21) consisting of the sum and a string representation of the type of the value
res. Note that I put the function template showType (line 11) outside the exported
namespace math (line 16). Consequently, invoking it from outside the module math

is not possible. Function template showType uses perfect forwarding⁴⁸ to preserve
the value categories of the function argument t. The typeid⁴⁹ operator queries
information about the type at run time (run time type identification (RTTI)⁵⁰).

Use of the improved function template sum

1 // clientTemplate1.cpp

2

3 #include <iostream>

4 import math;

5

6 int main() {

7

8 std::cout << '\n';

9

10 auto [val, message] = math::sum(2000, 11);

11 std::cout << "math::sum(2000, 11): " << val << "; type: " << messag\

12 e << '\n';

13

14 auto [val1, message1] = math::sum(2013.5, 0.5);

15 std::cout << "math::sum(2013.5, 0.5): " << val1 << "; type: " << me\

16 ssage1

17 << '\n';

18

19 auto [val2, message2] = math::sum(2017, false);

20 std::cout << "math::sum(2017, false): " << val2 << "; type: " << me\

21 ssage2

22 << '\n';

23

24 }

⁴⁸https://www.modernescpp.com/index.php/perfect-forwarding
⁴⁹https://en.cppreference.com/w/cpp/language/typeid
⁵⁰https://en.cppreference.com/w/cpp/types

https://www.modernescpp.com/index.php/perfect-forwarding
https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/types
https://www.modernescpp.com/index.php/perfect-forwarding
https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/types

Core Language 141

Now, the program displays the value of the summation and a string representation
of the automatically deduced type.

Use of the improved function template sum

4.2.11 Header Units

At the end of 2020, no compiler, so far, supports header units. Header units are a
smooth way to transition from headers to modules. You just have to replace the
#include directive with the new import directive.

Replacing #include directives with import directives
#include <vector> => import <vector>;

#include "myHeader.h" => import "myHeader.h";

First, import respects the same lookup rules as include. This means in the case of the
quotes ("myHeader.h") that the lookup first searches in the local directory before it
continues with the system search path.

Second, this is way more than text replacement. In this case, the compiler generates
something module-like out of the import directive and treats the result as if it would
be a module. The importing module statement gets all exportable names from the
header. The exported names include macros. Importing these synthesized header
units is faster than including header files and comparable in speed to precompiled
headers.

4.2.11.1 One Drawback

There is one drawbackwith header units. Not all headers are importable.Which head-
ers are importable is implementation-defined⁵¹, but the C++ standard guarantees that

⁵¹https://en.cppreference.com/w/cpp/language/ub

https://en.cppreference.com/w/cpp/language/ub
https://en.cppreference.com/w/cpp/language/ub

Core Language 142

all standard library headers are importable headers. The ability to import excludes C
headers. They are just wrapped in the std namespace. For example <cstring> is the
C++ wrapper for <string.h>. You can easily identify the wrapped C header because
the pattern is: xxx.h gets cxxx.

Distilled Information

• Modules overcome the deficiencies of headers and macros, in partic-
ular. Their import is literally for free, and in contrast to macros, the
sequence in which you import does not matter. Additionally, they
overcome name collisions.

• A module consists of a module interface unit and a module imple-
mentation unit. There must be one module interface unit having the
exporting module declaration and arbitrarily many module imple-
mentation units. Names that are not exported in the module interface
have module linkage and cannot be used outside the module.

• Modules can have headers or import and re-export other modules.
• The standard library in C++20 is not modularized. Building your
modules is with C++20 a challenging task.

• To structure large software systems, modules provide two ways:
submodules and partitions. In contrast to a partition, a submodule
can live on its own.

• Thanks to header units, you can replace an include statement with
an import statement, and the compiler autogenerates a module.

Core Language 143

4.3 Three-Way Comparison Operator

Cippi measures how big she is

The three-way comparison operator <=> is often called the spaceship operator. The
spaceship operator determines for two values A and B whether A < B, A == B, or A
> B. You can define the spaceship operator or the compiler can autogenerates it for
you.

To appreciate the advantages of the three-way comparison operator, let me start with
the classical way of doing it.

4.3.1 Ordering before C++20

I implemented a simple intwrapper MyInt. Of course, I want to compare MyInt. Here
is my solution using the function template isLessThan.

Core Language 144

MyInt supports less than comparisons

// comparisonOperator.cpp

#include <iostream>

struct MyInt {

int value;

explicit MyInt(int val): value{val} { }

bool operator < (const MyInt& rhs) const {

return value < rhs.value;

}

};

template <typename T>

constexpr bool isLessThan(const T& lhs, const T& rhs) {

return lhs < rhs;

}

int main() {

std::cout << std::boolalpha << '\n';

MyInt myInt2011(2011);

MyInt myInt2014(2014);

std::cout << "isLessThan(myInt2011, myInt2014): "

<< isLessThan(myInt2011, myInt2014) << '\n';

std::cout << '\n';

}

The program works as expected:

Core Language 145

Use of the less than operator

Honestly, MyInt is an unintuitive type. When you define one of the six ordering
relations, you should define all of them. Intuitive types should be at least semiregular.
Now, I have to write a lot of boilerplate code. Here are the missing five operators.

The five missing comparison operators

bool operator == (const MyInt& rhs) const {

return value == rhs.value;

}

bool operator != (const MyInt& rhs) const {

return !(*this == rhs);

}

bool operator <= (const MyInt& rhs) const {

return !(rhs < *this);

}

bool operator > (const MyInt& rhs) const {

return rhs < *this;

}

bool operator >= (const MyInt& rhs) const {

return !(*this < rhs);

}

Now, let’s jump to C++20 and the three-way comparison operator.

4.3.2 Ordering since C++20

You can define the three-way comparison operator or request it from the compiler
with = default. In both cases you automatically get all six comparison operators: ==,

Core Language 146

!=, <, <=, >, and >=.

Implement or request the three-way comparison operator

1 // threeWayComparison.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 struct MyInt {

7 int value;

8 explicit MyInt(int val): value{val} { }

9 auto operator<=>(const MyInt& rhs) const {

10 return value <=> rhs.value;

11 }

12 };

13

14 struct MyDouble {

15 double value;

16 explicit constexpr MyDouble(double val): value{val} { }

17 auto operator<=>(const MyDouble&) const = default;

18 };

19

20 template <typename T>

21 constexpr bool isLessThan(const T& lhs, const T& rhs) {

22 return lhs < rhs;

23 }

24

25 int main() {

26

27 std::cout << std::boolalpha << '\n';

28

29 MyInt myInt1(2011);

30 MyInt myInt2(2014);

31

32 std::cout << "isLessThan(myInt1, myInt2): "

33 << isLessThan(myInt1, myInt2) << '\n';

Core Language 147

34

35 MyDouble myDouble1(2011);

36 MyDouble myDouble2(2014);

37

38 std::cout << "isLessThan(myDouble1, myDouble2): "

39 << isLessThan(myDouble1, myDouble2) << '\n';

40

41 std::cout << '\n';

42

43 }

The user-defined (line 9) and the compiler-generated (line 17) three-way comparison
operators work as expected.

Use of the user-defined and compiler-generated spaceship operator

In this case, there are a few subtle differences between the user-defined and the
compiler-generated three-way comparison operator. The compiler-deduced return
type for MyInt (line 9) supports strong ordering, and the compiler-deduced return
type of MyDouble (line 17) supports partial ordering.

Core Language 148

Automatic Comparision of Pointers
The compiler-generated three-way comparison operator compares
the pointers but not the referenced objects.

Automatic Comparison of Pointers

1 // spaceshipPoiner.cpp

2

3 #include <iostream>

4 #include <compare>

5 #include <vector>

6

7 struct A {

8 std::vector<int>* pointerToVector;

9 auto operator <=> (const A&) const = default;

10 };

11

12 int main() {

13

14 std::cout << '\n';

15

16 std::cout << std::boolalpha;

17

18 A a1{new std::vector<int>()};

19 A a2{new std::vector<int>()};

20

21 std::cout << "(a1 == a2): " << (a1 == a2) << "\n\n";

22

23 }

Astonighly, the result of a1 == a2 (line 21) is false and not true,
because the adresses of std::vector<int>* are compared.

Comparison of pointers

Core Language 149

There are three comparison categories.

4.3.3 Comparision Categories

The names of the three comparison categories are strong ordering, weak ordering,
and partial ordering. For a type T, the three following properties distinguish the three
comparison categories.

1. T supports all six relational operators: ==, !=, <, <=, >, and >= (short: Relational
Operator)

2. All equivalent values are indistinguishable: (short: Equivalence)
3. All values of T are comparable: For arbitrary values a and b of T, one of the

three relations a < b, a == b , and a > b must be true (short: Comparable)

When you use as a sorting criterion the case-insensitive representation of a string,
equivalent values need not be different. Additionally, two arbitrary floating-point
values need not to be comparable: for a = 5.5, and b = NaN (Not a Number) neither
of the following expressions returns true: a < Nan, a == Nan , or a > Nan.

Based on the three properties, distinguishing the three comparison strategies is
straightforward:

Strong, weak, and partial ordering

Comparison
Category

Relational
Operator

Equivalence Comparable

Strong Ordering yes yes yes

Weak Ordering yes yes

Partial Ordering yes

A type supporting strong ordering supports implicitly weak and partial ordering. The
same holds for weak ordering. A type supporting weak ordering also supports partial
ordering. The other directions do not apply.

Core Language 150

Strong, weak, and partial ordering

If the declared return type is auto, then the actual return type is the common
comparison category of the base and member subobject and the member array
elements to be compared.

Let me give you an example for this rule:

Implement or request the three-way comparison operator

1 // strongWeakPartial.cpp

2

3 #include <compare>

4

5 struct Strong {

6 std::strong_ordering operator <=> (const Strong&) const = default;

7 };

8

9 struct Weak {

10 std::weak_ordering operator <=> (const Weak&) const = default;

11 };

12

13 struct Partial {

14 std::partial_ordering operator <=> (const Partial&) const = defaul\

15 t;

16 };

17

Core Language 151

18 struct StrongWeakPartial {

19

20 Strong s;

21 Weak w;

22 Partial p;

23

24 auto operator <=> (const StrongWeakPartial&) const = default;

25

26 // FINE

27 // std::partial_ordering operator <=> (const StrongWeakPartial&) co\

28 nst = default;

29

30 // ERROR

31 // std::strong_ordering operator <=> (const StrongWeakPartial&) con\

32 st = default;

33 // std::weak_ordering operator <=> (const StrongWeakPartial&) const\

34 = default;

35

36 };

37

38 int main() {

39

40 StrongWeakPartial a1, a2;

41

42 a1 < a2;

43

44 }

The type StrongWeakPartial has subtypes supporting strong (line 6), weak (line
10), and partial ordering (line 14). The common comparison category for the type
StrongWeakPartial (line 17) is, therefore, std::partial_ordering. Using a more
powerful comparison category, such as strong ordering (line 29) or weak ordering
(line 30), would result in a compile-time error.

Now, I want to focus on the compiler-generated spaceship operator.

Core Language 152

4.3.4 The Compiler-Generated Spaceship Operator

The compiler-generated three-way comparison operator needs the header <compare>,
is implicitly constexpr and noexcept⁵², and performs a lexicographical comparison.

You can even directly use the three-way comparison operator.

4.3.4.1 Direct Use of the Three-Way Comparison Operator

The program spaceship.cpp directly uses the spaceship operator.

Implement or request the three-way comparison operator

1 // spaceship.cpp

2

3 #include <compare>

4 #include <iostream>

5 #include <string>

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11

12 int a(2011);

13 int b(2014);

14 auto res = a <=> b;

15 if (res < 0) std::cout << "a < b" << '\n';

16 else if (res == 0) std::cout << "a == b" << '\n';

17 else if (res > 0) std::cout << "a > b" << '\n';

18

19 std::string str1("2014");

20 std::string str2("2011");

21 auto res2 = str1 <=> str2;

22 if (res2 < 0) std::cout << "str1 < str2" << '\n';

23 else if (res2 == 0) std::cout << "str1 == str2" << '\n';

⁵²https://www.modernescpp.com/index.php/c-core-guidelines-the-noexcept-specifier-and-operator

https://www.modernescpp.com/index.php/c-core-guidelines-the-noexcept-specifier-and-operator
https://www.modernescpp.com/index.php/c-core-guidelines-the-noexcept-specifier-and-operator

Core Language 153

24 else if (res2 > 0) std::cout << "str1 > str2" << '\n';

25

26 std::vector<int> vec1{1, 2, 3};

27 std::vector<int> vec2{1, 2, 3};

28 auto res3 = vec1 <=> vec2;

29 if (res3 < 0) std::cout << "vec1 < vec2" << '\n';

30 else if (res3 == 0) std::cout << "vec1 == vec2" << '\n';

31 else if (res3 > 0) std::cout << "vec1 > vec2" << '\n';

32

33 std::cout << '\n';

34

35 }

The program uses the spaceship operator for int (line 14), string (line 21), and vector
(line 28). Here is the output of the program.

Direct use of the spaceship operator

As already mentioned, these comparisons are constexpr and could be done at
compile time.

4.3.4.2 Comparison at Compile Time

The three-way comparison operator is implicitly constexpr. Consequently, I can
simplify the previous program threeWayComparison.cpp and compare MyDouble in
the following program at compile time.

Core Language 154

A compiler-generated constexpr three-way comparison operator

1 // threeWayComparisonAtCompileTime.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 struct MyDouble {

7 double value;

8 explicit constexpr MyDouble(double val): value{val} { }

9 auto operator<=>(const MyDouble&) const = default;

10 };

11

12 template <typename T>

13 constexpr bool isLessThan(const T& lhs, const T& rhs) {

14 return lhs < rhs;

15 }

16

17 int main() {

18

19 std::cout << std::boolalpha << '\n';

20

21 constexpr MyDouble myDouble1(2011);

22 constexpr MyDouble myDouble2(2014);

23

24 constexpr bool res = isLessThan(myDouble1, myDouble2);

25

26 std::cout << "isLessThan(myDouble1, myDouble2): "

27 << res << '\n';

28

29 std::cout << '\n';

30

31 }

I ask for the result of the comparison at compile time (line 24), and I get it.

Core Language 155

Use of the constexpr compiler-generated spaceship operator

4.3.4.3 Lexicographical Comparison

The compiler-generated three-way comparison operator performs a lexicographical
comparison. Lexicographical comparison, in this case, means that all base classes are
compared left to right and all non-static members of the class in their declaration
order. I have to qualify: for performance reasons, the compiler-generated == and !=
operator behave differently in C++20. I will write about this exception in the section
for the optimized == and != operators.

The post “Simplify Your Code With Rocket Science: C++20’s Spaceship Operator”⁵³
from the Microsoft C++ Team Blog provides an impressive example of lexicographi-
cal comparison. For readability, I added a few comments.

Lexicographical comparison

1 struct Basics {

2 int i;

3 char c;

4 float f;

5 double d;

6 auto operator<=>(const Basics&) const = default;

7 };

8

9 struct Arrays {

10 int ai[1];

11 char ac[2];

12 float af[3];

13 double ad[2][2];

14 auto operator<=>(const Arrays&) const = default;

⁵³https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/
https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

Core Language 156

15 };

16

17 struct Bases : Basics, Arrays {

18 auto operator<=>(const Bases&) const = default;

19 };

20

21 int main() {

22 constexpr Bases a = { { 0, 'c', 1.f, 1. }, // Ba\

23 sics

24 { { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, // Ar\

25 rays

26 { { 1., 2. }, { 3., 4. } } } };

27 constexpr Bases b = { { 0, 'c', 1.f, 1. }, // Ba\

28 sics

29 { { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, // Ar\

30 rays

31 { { 1., 2. }, { 3., 4. } } } };

32 static_assert(a == b);

33 static_assert(!(a != b));

34 static_assert(!(a < b));

35 static_assert(a <= b);

36 static_assert(!(a > b));

37 static_assert(a >= b);

38 }

I assume the most challenging aspect of the program is not the spaceship operator,
but the initialization of Bases via aggregate initialization (lines 22 and 25). Aggregate
initialization enables us to directly initialize the members of a class type (class,
struct, union) when the members are all public. In this case, you can use brace
initialization. Aggregate initialization is discussed in more detail in the section on
designated initializers in C++20.

Core Language 157

Optimized == and != Operators
There is an optimization potential for a string-like or vector-like types. In
this case, a == and !=may be faster than the compiler-generated three-way
comparison operator. The == and != operators can stop if the two values
compared have different lengths. Otherwise, if one value were a prefix of
the other, lexicographical comparison would compare all elements until the
end of the shorter value. The standardization committee was aware of this
performance issue and fixed it with the paper P1185R2⁵⁴. Consequently, the
compiler-generated == and != operators compare, in the case of a string-like
or a vector-like type, first their lengths and then their content if necessary.

Now, it’s time for something new in C++. C++20 introduces the concept of rewriting
expressions.

4.3.5 Rewriting Expressions

When the compiler sees something such as a < b, it rewrites it to (a <=> b) < 0

using the spaceship operator.

Of course, the rule applies to all six comparison operators:

a OP b becomes (a <=> b) OP 0. It’s even better. If there is no conversion of the
type(a) to type(b), the compiler generates the new expression 0 OP (b <=> a).

For example, this means for the less-than operator, if (a <=> b) < 0 does not work,
the compiler generates 0 < (b <=> a). In essence, the compiler takes care of the
symmetry of the comparison operators.

Here are a few examples of rewriting expressions:

⁵⁴http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1185r2.html

Core Language 158

Rewriting expressions with MyInt
1 // rewritingExpressions.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 class MyInt {

7 public:

8 constexpr MyInt(int val): value{val} { }

9 auto operator<=>(const MyInt& rhs) const = default;

10 private:

11 int value;

12 };

13

14 int main() {

15

16 std::cout << '\n';

17

18 constexpr MyInt myInt2011(2011);

19 constexpr MyInt myInt2014(2014);

20

21 constexpr int int2011(2011);

22 constexpr int int2014(2014);

23

24 if (myInt2011 < myInt2014) std::cout << "myInt2011 < myInt2014" << \

25 '\n';

26 if ((myInt2011 <=> myInt2014) < 0) std::cout << "myInt2011 < myInt2\

27 014" << '\n';

28

29 std::cout << '\n';

30

31 if (myInt2011 < int2014) std:: cout << "myInt2011 < int2014" << '\n\

32 ';

33 if ((myInt2011 <=> int2014) < 0) std:: cout << "myInt2011 < int2014\

34 " << '\n';

35

Core Language 159

36 std::cout << '\n';

37

38 if (int2011 < myInt2014) std::cout << "int2011 < myInt2014" << '\n'\

39 ;

40 if (0 < (myInt2014 <=> int2011)) std:: cout << "int2011 < myInt2014\

41 " << '\n';

42

43 std::cout << '\n';

44

45 }

I used in line 24, line 29, and line 34 the less-than operator and the corresponding
spaceship expression. Line 35 is the most interesting one. It exemplifies how the com-
parison (int2011 < myInt2014) triggers the generation of the spaceship expression
(0 < (myInt2014 <=> int2011).

Rewriting expressions

Honestly, MyInt has an issue: its constructor taking one argument should be declared
explicit. Constructors taking one argument such as MyInt(int val) (line 8) are
conversion constructors. This means that an instance from MyInt can be generated
from any integral or floating-point value because each integral or floating-point
value can implicitly be converted to an int.

Let me fix this issue and make the constructor MyInt(int val) explicit. To support
the comparison of MyInt and int, MyInt needs an additional three-way comparison
operator for int.

Core Language 160

An additional three-way comparison operator for int
1 // threeWayComparisonForInt.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 class MyInt {

7 public:

8 constexpr explicit MyInt(int val): value{val} { }

9

10 auto operator<=>(const MyInt& rhs) const = default;

11

12 constexpr auto operator<=>(const int& rhs) const {

13 return value <=> rhs;

14 }

15 private:

16 int value;

17 };

18

19 template <typename T, typename T2>

20 constexpr bool isLessThan(const T& lhs, const T2& rhs) {

21 return lhs < rhs;

22 }

23

24 int main() {

25

26 std::cout << std::boolalpha << '\n';

27

28 constexpr MyInt myInt2011(2011);

29 constexpr MyInt myInt2014(2014);

30

31 constexpr int int2011(2011);

32 constexpr int int2014(2014);

33

34 std::cout << "isLessThan(myInt2011, myInt2014): "

35 << isLessThan(myInt2011, myInt2014) << '\n';

Core Language 161

36

37 std::cout << "isLessThan(int2011, myInt2014): "

38 << isLessThan(int2011, myInt2014) << '\n';

39

40 std::cout << "isLessThan(myInt2011, int2014): "

41 << isLessThan(myInt2011, int2014) << '\n';

42

43 constexpr auto res = isLessThan(myInt2011, int2014);

44

45 std::cout << '\n';

46

47 }

I defined in (line 10) the three-way comparison operator and declared it constexpr.
The user-defined three-way comparison operator is not implicitly constexpr, unlike
the compiler-generated three-way comparison operator. The comparison of MyInt

and int is possible in each combination (lines 34, 37, and 40).

Three-way comparison operator for int

Honestly, the implementation of the various three-way comparison operators is very
elegant. The compiler auto-generates the comparison of MyInt, and the user defines
the comparison with int explicitly. Additionally, thanks to reordering, you have to
define only 2 operators to get 18 = 3 * 6 combinations of comparison operators. The
3 stands for the combinations int OP MyInt, MyInt OP MyInt, and MyInt OP int and
the 6 for six comparison operators.

4.3.6 User-Defined and Auto-Generated Comparison
Operators

When you can define one of the six comparison operators and also auto-generate all
of them using the spaceship operator, there is one question: Which one has the higher

Core Language 162

priority? For example, this implementation MyInt has a user-defined less-than-and-
equal-to operator and also the compiler-generated six comparison operators.

Let’s see what happens.

The interplay of user-defined and auto-generated operators

1 // userDefinedAutoGeneratedOperators.cpp

2

3 #include <compare>

4 #include <iostream>

5

6 class MyInt {

7 public:

8 constexpr explicit MyInt(int val): value{val} { }

9 bool operator == (const MyInt& rhs) const {

10 std::cout << "== " << '\n';

11 return value == rhs.value;

12 }

13 bool operator < (const MyInt& rhs) const {

14 std::cout << "< " << '\n';

15 return value < rhs.value;

16 }

17

18 auto operator<=>(const MyInt& rhs) const = default;

19

20 private:

21 int value;

22 };

23

24 int main() {

25

26 MyInt myInt2011(2011);

27 MyInt myInt2014(2014);

28

29 myInt2011 == myInt2014;

30 myInt2011 != myInt2014;

31 myInt2011 < myInt2014;

Core Language 163

32 myInt2011 <= myInt2014;

33 myInt2011 > myInt2014;

34 myInt2011 >= myInt2014;

35

36 }

To see the user-defined == and < operator in action, I write a corresponding message
to std::cout. Neither operator can be constexpr, because std::cout is a run-time
operation.

Let’s see what happens:

User-defined and auto-generated operators

In this case, the compiler uses the user-defined == (lines 29 and 30) and < operators
(line 31). Additionally, the compiler synthesizes the != operator (line 30) out of the
== operator. On the other hand, the compiler does not synthesize the == operator out
of the != operator.

Similarity to Python
In Python 3, the compiler generates != out of == if necessary but not the
other way around. In Python 2, the so-called rich comparison (the user-
defined six comparison operators) has higher priority than Python’s three-
way comparison operator __cmp__. I have to say Python 2 because the three-
way comparison operator __cmp__ was removed in Python 3.

Core Language 164

Distilled Information

• By defaulting the operator <=>, the compiler autogenerates the six
comparison operators. The compiler-generated comparison operators
apply lexicographical comparison: all base classes are compared left
to right and all non-static members of the class in their declaration
order.

• When auto-generated comparison operators and user-defined com-
parison operators are both present, the user-defined comparison
operators have a higher priority.

• The compiler rewrites expressions to take care of the symmetry of
the comparison operators. For example if (a <=> b) < 0 does not
work, the compiler generates 0 < (b <=> a).

Core Language 165

4.4 Designated Initialization

Cippi receives the divine touch

Designated initialization is a special case of aggregate initialization. Writing about
designated initialization therefore means writing about aggregate initialization.

4.4.1 Aggregate Initialization

First: what is an aggregate? Aggregates are arrays and class types. A class type is a
class, a struct, or a union.

With C++20, the following condition must hold for class types supporting aggregate
initialization:

• No private or protected non-static data members
• No user-declared or inherited constructors
• No virtual, private, or protected base classes
• No virtual member functions

The next program exemplifies aggregate initialization.

Core Language 166

Aggregate initialization

1 // aggregateInitialization.cpp

2

3 #include <iostream>

4

5 struct Point2D{

6 int x;

7 int y;

8 };

9

10 class Point3D{

11 public:

12 int x;

13 int y;

14 int z;

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 Point2D point2D{1, 2};

22 Point3D point3D{1, 2, 3};

23

24 std::cout << "point2D: " << point2D.x << " " << point2D.y << '\n';

25 std::cout << "point3D: " << point3D.x << " " << point3D.y << " "

26 << point3D.z << '\n';

27

28 std::cout << '\n';

29

30 }

Lines 21 and 22 directly initialize the aggregates using curly braces. The sequence of
the initializers in the curly braces has to match the declaration order of the members.

Core Language 167

In the section covering the three-way comparison operator is a more sophisticated
example of aggregate initialization.

Aggregate initialization

Based on aggregate initialization in C++11, we get designed initializers in C++20.
At the end of 2020, only the Microsoft compiler supports designated initialization
completely.

4.4.2 Named Initialization of Class Members

Designated initialization enables the direct initialization of members of a class
type using their names. For a union, only one initializer can be provided. As for
aggregate initialization, the sequence of initializers in the curly braces has to match
the declaration order of the members.

Designated initialization

1 // designatedInitializer.cpp

2

3 #include <iostream>

4

5 struct Point2D{

6 int x;

7 int y;

8 };

9

10 class Point3D{

11 public:

12 int x;

13 int y;

14 int z;

Core Language 168

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 Point2D point2D{.x = 1, .y = 2};

22 Point3D point3D{.x = 1, .y = 2, .z = 3};

23

24 std::cout << "point2D: " << point2D.x << " " << point2D.y << '\n';

25 std::cout << "point3D: " << point3D.x << " " << point3D.y << " "

26 << point3D.z << '\n';

27

28 std::cout << '\n';

29

30 }

Lines 21 and 22 use designated initializers to initialize the aggregates. The initializers
such as .x or .y are often called designators.

Designated Initializers

The members of the aggregate can already have a default value. This default value
is used when the initializer is missing. This does not hold for a union.

Core Language 169

Designated initializers with defaults
1 // designatedInitializersDefaults.cpp

2

3 #include <iostream>

4

5 class Point3D{

6 public:

7 int x;

8 int y = 1;

9 int z = 2;

10 };

11

12 void needPoint(Point3D p) {

13 std::cout << "p: " << p.x << " " << p.y << " " << p.z << '\n';

14 }

15

16 int main(){

17

18 std::cout << '\n';

19

20 Point3D point1{.x = 0, .y = 1, .z = 2};

21 std::cout << "point1: " << point1.x << " " << point1.y << " "

22 << point1.z << '\n';

23

24 Point3D point2;

25 std::cout << "point2: " << point2.x << " " << point2.y << " "

26 << point2.z << '\n';

27

28 Point3D point3{.x = 0, .z = 20};

29 std::cout << "point3: " << point3.x << " " << point3.y << " "

30 << point3.z << '\n';

31

32 // Point3D point4{.z = 20, .y = 1}; ERROR

33

34 needPoint({.x = 0});

35

Core Language 170

36 std::cout << '\n';

37

38 }

Line 20 initializes all members, but line 24 does not provide a value for the member
x. Consequently, x is not initialized. It is fine if you only initialize the members that
don’t have a default value, such as in line 28 or line 34. The expression in line 32
would not compile because z and y are in the wrong order.

Designated initializers with defaults

Designated initializers detect narrowing conversions. Narrowing conversion results
in the loos of precision.

Designated initializers detect narrowing conversion

1 // designatedInitializerNarrowingConversion.cpp

2

3 #include <iostream>

4

5 struct Point2D{

6 int x;

7 int y;

8 };

9

10 class Point3D{

11 public:

12 int x;

13 int y;

14 int z;

15 };

Core Language 171

16

17 int main(){

18

19 std::cout << '\n';

20

21 Point2D point2D{.x = 1, .y = 2.5};

22 Point3D point3D{.x = 1, .y = 2, .z = 3.5f};

23

24 std::cout << "point2D: " << point2D.x << " " << point2D.y << '\n';

25 std::cout << "point3D: " << point3D.x << " " << point3D.y << " "

26 << point3D.z << '\n';

27

28 std::cout << '\n';

29

30 }

Line 21 and line 22 produce compile-time errors, because the initialization .y = 2.5

and .z = 3.5f would cause narrowing conversion to int.

Designated initializers detect narrowing conversion

Interestingly, designated initializers in C behave differently from designated initial-
izers in C++.

Core Language 172

Differences Between C and C++
C designated initializers support use cases that are not supported in C++.
C allows

• initializing the members of the aggregate out-of-order
• initializing the members of a nested aggregate
• mixing designated initializers and regular initializers
• designated initialization of arrays

The proposal P0329R4⁵⁵ provides self-explanatory examples for these use
cases:

Difference between C and C++
struct A { int x, y; };

struct B { struct A a; };

struct A a = {.y = 1, .x = 2}; // valid C, invalid C++ (out of order)

int arr[3] = {[1] = 5}; // valid C, invalid C++ (array)

struct B b = {.a.x = 0}; // valid C, invalid C++ (nested)

struct A a = {.x = 1, 2}; // valid C, invalid C++ (mixed)

The rationale for this difference between C and C++ is also part of the
proposal: “In C++, members are destroyed in reverse construction order
and the elements of an initializer list are evaluated in lexical order, so
field initializers must be specified in order. Array designators conflict with
 lambda-expression syntax. Nested designators are seldom used.” The paper
continues to argue that only out-of-order initialization of an aggregate is
commonly used.

Distilled Information

• Designated initialization is a special case of aggregate initialization
and enables it to initialize the class members using their name. The
initialization order must match the declaration order.

⁵⁵http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf

Core Language 173

4.5 consteval and constinit

Cippi admires the diamond

WithC++20, we get two new keywords: consteval and constinit. Keyword consteval
produces a function that is executed at compile time and constinit guarantees that a
variable is initialized at compile time. Now, you may have the impression that both
specifiers are quite similar to constexpr. To make it short, you are right. Before I
compare the keywords consteval, constinit, constexpr, and good old const, I have
to introduce the new specifiers consteval and constinit.

4.5.1 consteval

consteval creates a so-called immediate function.

A consteval function

consteval int sqr(int n) {

return n * n;

}

Each invocation of an immediate function creates a compile-time constant. To say it
more directly, a consteval (immediate) function is executed at compile time.

consteval cannot be applied to destructors or functions that allocate or deallocate.
You can only use at most one of consteval, constexpr, or constinit specifier in a

Core Language 174

declaration. An immediate function (consteval) is implicitly inline and has to fulfill
the requirements for a constexpr function.

The requirements of a constexpr function in C++14 and, therefore, a consteval

function:

• A consteval (constexpr) can
– have conditional jump instructions or loop instructions.
– have more than one instruction.
– invoke constexpr functions. A consteval function can only invoke a

constexpr function but not the other way around.
– use fundamental data types as variables that have to be initialized with a
constant expression.

• A consteval (constexpr) function cannot
– have static or thread_local data.
– have a try block nor a goto instruction.
– invoke or use non-consteval functions or non-constexpr data.

To make it short: all dependencies of a consteval function must be resolved at
compile time.

The program constevalSqr.cpp applies the consteval function sqr.

A consteval function

1 // constevalSqr.cpp

2

3 #include <iostream>

4

5 consteval int sqr(int n) {

6 return n * n;

7 }

8

9 int main() {

10

11 std::cout << "sqr(5): " << sqr(5) << '\n';

12

Core Language 175

13 const int a = 5;

14 std::cout << "sqr(a): " << sqr(a) << '\n';

15

16 int b = 5;

17 // std::cout << "sqr(b): " << sqr(b) << '\n'; ERROR

18

19 }

The number 5 is a constant expression and can be used as an argument for the
function sqr (line 11). The same holds for the variable a (line 13). A constant variable
such as a is usable in a constant expression when it is initialized with a constant
expression. The variable b (line 16) is not a constant expression. Consequently, the
invocation of sqr(b) (line 17) is not valid.

Here is the output of the program:

Use of a consteval function

4.5.2 constinit

constinit can be applied to variables with static storage duration or thread storage
duration.

• Global (namespace) variables, static variables, or static class members have
static storage duration. These objects are allocated when the program starts,
and are deallocated when the program ends.

• thread_local variables have thread storage duration. Thread-local data is
created for each thread that uses this data. thread_local data exclusively
belongs to the thread. They are created at its first usage and its lifetime is bound
to the lifetime of the thread it belongs to. Often thread-local data is called thread-
local storage.

constinit ensures for this kind of variable (static storage duration or thread storage
duration) that it is initialized at compile time. constinit does not imply constness.

Core Language 176

Initialization with constinit

// constinitSqr.cpp

#include <iostream>

consteval int sqr(int n) {

return n * n;

}

constexpr auto res1 = sqr(5);

constinit auto res2 = sqr(5);

int main() {

std::cout << "sqr(5): " << res1 << '\n';

std::cout << "sqr(5): " << res2 << '\n';

constinit thread_local auto res3 = sqr(5);

std::cout << "sqr(5): " << res3 << '\n';

}

res1 and res2 have static storage duration. res3 has thread storage duration.

Use of constinit initialization

Now it’s time to write about the differences between const, constexpr, consteval,
and constinit. First, I discuss function execution and then variable initialization.

4.5.3 Function Execution

The following program consteval.cpp has three versions of a square function.

Core Language 177

Three versions of a square function

1 // consteval.cpp

2

3 #include <iostream>

4

5 int sqrRunTime(int n) {

6 return n * n;

7 }

8

9 consteval int sqrCompileTime(int n) {

10 return n * n;

11 }

12

13 constexpr int sqrRunOrCompileTime(int n) {

14 return n * n;

15 }

16

17 int main() {

18

19 // constexpr int prod1 = sqrRunTime(100); ERROR

20 constexpr int prod2 = sqrCompileTime(100);

21 constexpr int prod3 = sqrRunOrCompileTime(100);

22

23 int x = 100;

24

25 int prod4 = sqrRunTime(x);

26 // int prod5 = sqrCompileTime(x); ERROR

27 int prod6 = sqrRunOrCompileTime(x);

28

29 }

As the name suggests: the ordinary function sqrRunTime (line 5) runs at run time,
the consteval function sqrCompileTime runs at compile time (line 9), the constexpr
function sqrRunOrCompileTime can run at compile time or run time. Consequently,
asking for the result at compile timewith sqrRunTime (line 19) is an error, accordingly,

Core Language 178

using a non-constant expression as an argument for sqrCompileTime (line 26) is also
an error.

The difference between the constexpr function sqrRunOrCompileTime and the consteval
function sqrCompileTime is that sqrRunOrCompileTime must be executed at compile
time when the context requires compile-time evaluation.

Compile-time and run-time execution

1 static_assert(sqrRunOrCompileTime(10) == 100); // c\

2 ompile time

3 int arrayNewWithConstExpressiomFunction[sqrRunOrCompileTime(100)]; // c\

4 ompile time

5 constexpr int prod = sqrRunOrCompileTime(100); // c\

6 ompile time

7

8 int a = 100;

9 int runTime = sqrRunOrCompileTime(a); // run time

10

11 int runTimeOrCompiletime = sqrRunOrCompileTime(100); // run time or co\

12 mpile time

13

14 int alwaysCompileTime = sqrCompileTime(100); // compile time

The lines 1 - 3 require compile-time evaluation. Line 6 can only be evaluated at run
time because a is not a constant expression. The critical line is line 8. The function can
be executed at compile time or run time. Whether it is executed at compile time or
run time may depend on the compiler or on the optimization level. This observation
does not hold for line 10. A consteval function is always executed at compile time.

4.5.4 Variable Initialization

The program constexprConstinit.cpp compares const, constexpr, and constinit.

Core Language 179

Comparison of const, constexpr, and constinit

1 // constexprConstinit.cpp

2

3 #include <iostream>

4

5 constexpr int constexprVal = 1000;

6 constinit int constinitVal = 1000;

7

8 int incrementMe(int val){ return ++val;}

9

10 int main() {

11

12 auto val = 1000;

13 const auto res = incrementMe(val);

14 std::cout << "res: " << res << '\n';

15

16 // std::cout << "res: " << ++res << '\n'; ERROR

17 // std::cout << "++constexprVal: " << ++constexprVal << '\n'; ERROR

18 std::cout << "++constinitVal: " << ++constinitVal << '\n';

19

20 constexpr auto localConstexpr = 1000; \

21

22 // constinit auto localConstinit = 1000; ERROR

23

24 }

Only the const variable (line 13) is initialized at run time. The constexpr and
constinit variables are initialized at compile time.

The constinit (line 18) does not imply constness, as do const (line 16), or constexpr
(line 17). A constexpr (line 20) or const (line 13) declared variable can be created as
a local, but not a constinit declared variable (line 21).

Core Language 180

const, constexpr, and constinit declared variables

4.5.5 Solving the Static Initialization Order Fiasco

According to the FAQ at isocpp.org⁵⁶, the static initialization order fiasco is “a subtle
way to crash your program”. The FAQ continues: “The static initialization order
problem is a very subtle and commonly misunderstood aspect of C++.”

Before I continue, I want to make a short disclaimer. Dependencies on variables with
static storage duration (short statics) in different translation units are, in general, a
code smell and should be a reason for refactoring. Consequently, if you follow my
advice to refactor, you can skip this section.

4.5.5.1 Static Initialization Order Fiasco

Static variables in one translation unit are initialized according to their definition
order.

In contrast, the initialization of static variables between translation units has a severe
issue. When one static variable staticA is defined in one translation unit and another
static variable staticB is defined in another translation unit, and staticB needs
staticA to initialize itself, you end up with the static initialization order fiasco.
The program is ill-formed because you have no guarantee which static variable is
initialized first at (dynamic) run time.

Before I write about the solution, let me show you the static initialization order fiasco
in action.

4.5.5.1.1 A 50:50 Chance to get it Right

What is unique about the initialization of statics? The initialization-order of statics
happens in two steps: static and dynamic.

When a static cannot be const-initialized during compile time, it is zero-initialized.
At run time, the dynamic initialization happens for these statics that were zero-
initialized.

⁵⁶https://isocpp.org/wiki/faq/ctors#static-init-order

https://isocpp.org/wiki/faq/ctors#static-init-order
https://isocpp.org/wiki/faq/ctors#static-init-order

Core Language 181

The static initialization order fiasco

// sourceSIOF1.cpp

int square(int n) {

return n * n;

}

auto staticA = square(5);

The static initialization order fiasco

1 // mainSOIF1.cpp

2

3 #include <iostream>

4

5 extern int staticA;

6 auto staticB = staticA;

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::cout << "staticB: " << staticB << '\n';

13

14 std::cout << '\n';

15

16 }

Line 5 declares the static variable staticA. The initialization of staticB depends
on the initialization of staticA. But staticB is zero-initialized at compile time and
dynamically initialized at run time. The issue is that there is no guarantee in which
order staticA or staticB are initialized because staticA and staticB belong to
different translation units. You have a 50:50 chance that staticB is 0 or 25.

To demonstrate this problem, I can change the link order of the object files. This also
changes the value for staticB!

Core Language 182

The static initializaion order fiasco caught in action

What a fiasco! The result of the executable depends on the link order of the object
files. What can we do when we don’t have C++20 at our disposal?

4.5.5.1.2 Lazy initialization of a static with a Local Scope

Static variables with local scope are created when they are used the first time. Local
scope essentially means that the static variable is surrounded in some way by curly
braces. This lazy creation is a guarantee that C++98 provides. With C++11, static
variables with local scope are also initialized in a thread-safe way. The thread-safe
Meyers⁵⁷ singleton is based on this additional guarantee.

The lazy initialization can also be used to overcome the static initialization order
fiasco.

⁵⁷https://en.wikipedia.org/wiki/Scott_Meyers

https://en.wikipedia.org/wiki/Scott_Meyers
https://en.wikipedia.org/wiki/Scott_Meyers

Core Language 183

Lazy initialization of a static with local scope

1 // sourceSIOF2.cpp

2

3 int square(int n) {

4 return n * n;

5 }

6

7 int& staticA() {

8

9 static auto staticA = square(5);

10 return staticA;

11

12 }

Lazy initialization of a static with local scope

1 // mainSOIF2.cpp

2

3 #include <iostream>

4

5 int& staticA();

6

7 auto staticB = staticA();

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::cout << "staticB: " << staticB << '\n';

14

15 std::cout << '\n';

16

17 }

staticA (line 9 in file sourceSIOF2.cpp) is, in this case, a static in a local scope. The
line 5 in file mainSOIF2.cpp declares the function staticA, which is used to initialize

Core Language 184

in the following line staticB. This local scope of staticA guarantees that staticA is
created and initialized during run time when it is the first time used. Changing the
link order can, in this case, not change the value of staticB.

Solving the static initialization order fiasco with local statics

In the last step, I solve the static initialization order fiasco using C++20.

4.5.5.1.3 Compile-Time Initialization of a static

Let me apply constinit to staticA. The constinit guarantees that staticA is
initialized during compile time.

Compile-time initialization of a static

1 // sourceSIOF3.cpp

2

3 constexpr int square(int n) {

4 return n * n;

5 }

6

7 constinit auto staticA = square(5);

Core Language 185

Compile-time initialization of a static

1 // mainSOIF3.cpp

2

3 #include <iostream>

4

5 extern constinit int staticA;

6

7 auto staticB = staticA;

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::cout << "staticB: " << staticB << '\n';

14

15 std::cout << '\n';

16

17 }

Line 5 in file mainSOIF3.cpp declares the variable staticA, which is initialized (line 7
in file sourceSIOF3.cpp) at compile time. By the way, using constexpr (line 5 in file
mainSOIF3.cpp) instead of constinitwould not be valid, because constexpr requires
a definition and not just a declaration.

Core Language 186

Solving the static initializaion order fiasco with constinit

As in the case of the lazy initialization with a local static, staticB has the value 25.

Distilled Information

• With C++20, we get two new keywords: consteval and constinit.
consteval produces a function that is executed at compile time, and
constinit guarantees that the variable is initialized at compile time.

• In contrast to constexpr in C++11, consteval guarantees that the
function is executed at compile time.

• There are subtle differences between const, constexpr, and
constinit. const and constexpr create constant variables. constexpr
and constinit are executed at compile time.

Core Language 187

4.6 Template Improvements

Cippi uses her new tools

The improvements to templates make C++20 more consistent and, therefore, less
error-prone when you are writing generic programs.

4.6.1 Conditionally Explicit Constructor

Sometimes you need a class that should have constructors accepting different types.
For example, you have a class VariantWrapper that holds a std::variant accepting
various types.

Core Language 188

A class VariantWrapper holding an attribute std::variant

class VariantWrapper {

std::variant<bool, char, int, double, float, std::string> myVariant;

};

To initialize a VariantWrapper with bool, char, int, double, float, or std::string,
the class VariantWrapper needs constructors for each listed type. Laziness is a virtue
– at least for programmers – , therefore, you decide to make the constructor generic.

The class Implicit shows a generic constructor.

A generic constructor

1 // implicitExplicitGenericConstructor.cpp

2

3 #include <iostream>

4 #include <string>

5

6 struct Implicit {

7 template <typename T>

8 Implicit(T t) {

9 std::cout << t << '\n';

10 }

11 };

12

13 struct Explicit {

14 template <typename T>

15 explicit Explicit(T t) {

16 std::cout << t << '\n';

17 }

18 };

19

20 int main() {

21

22 std::cout << '\n';

Core Language 189

23

24 Implicit imp1 = "implicit";

25 Implicit imp2("explicit");

26 Implicit imp3 = 1998;

27 Implicit imp4(1998);

28

29 std::cout << '\n';

30

31 // Explicit exp1 = "implicit";

32 Explicit exp2{"explicit"};

33 // Explicit exp3 = 2011;

34 Explicit exp4{2011};

35

36 std::cout << '\n';

37

38 }

Now, you have an issue. A generic constructor (line 7) is a catch-all constructor
because you can invoke it with any type. The constructor is way too greedy. By
putting an explicit in front of the constructor (line 14), implicit conversions (lines
31 and 33) are not valid anymore. Only the explicit calls (lines 32 and 34) are valid.

Implicit and explicit generic constructors

In C++20, explicit is even more useful. Imagine you have a type MyBool that should
only support the implicit conversion from bool, but no other implicit conversion. In
this case, explicit can be used conditionally.

Core Language 190

A generic constructor that allows implicit conversions from bool

1 // conditionallyConstructor.cpp

2

3 #include <iostream>

4 #include <type_traits>

5 #include <typeinfo>

6

7 struct MyBool {

8 template <typename T>

9 explicit(!std::is_same<T, bool>::value) MyBool(T t) {

10 std::cout << typeid(t).name() << '\n';

11 }

12 };

13

14 void needBool(MyBool b){ }

15

16 int main() {

17

18 MyBool myBool1(true);

19 MyBool myBool2 = false;

20

21 needBool(myBool1);

22 needBool(true);

23 // needBool(5);

24 // needBool("true");

25

26 }

The explicit(!std::is_same<T, bool>::value) expression guarantees that MyBool
can only be implicitly created from a bool value. The function std::is_same is a
compile-time predicate from the type_traits library⁵⁸. A compile-time predicate, such
as std::is_same is evaluated at compile time and returns a boolean. Consequently,
the implicit conversions from bool (lines 19 and 22) are possible, but not the
commented-out conversions from int and C-string (lines 23 and 24).

⁵⁸https://en.cppreference.com/w/cpp/header/type_traits

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/header/type_traits

Core Language 191

4.6.2 Non-Type Template Parameters

C++ supports non-types as template parameters. Essentially non-types could be

• integers and enumerators
• pointers or references to objects, to functions and to attributes of a class
• std::nullptr_t

Typical Non-Type Template Parameter
When I ask the students in my class if they ever used a non-type as template
parameter they say: No! Of course, I answer my tricky question and show
an often-used example for non-type template parameters:

Defining a std::array

std::array<int, 5> myVec;

Constant 5 is a non-type used as a template argument.

Since the first C++-standard, C++98, there has been an ongoing discussion in the
C++ community about supporting floating-point template parameters. Now, we have
them and more: C++20 supports floating-points, literal types, and string literals as
non-types.

4.6.2.1 Floating-Points and Literal Types

Literal Types have the following two properties:

• all base classes and non-static data members are public and non-mutable
• the types of all base classes and non-static data members are structural types
or arrays of these

A literal type must have a constexpr constructor. The following program uses
floating-point types and literal types as non-type template parameters.

Core Language 192

Floating-points and literal types as non-type template parameters
1 // nonTypeTemplateParameter.cpp

2

3 struct ClassType {

4 constexpr ClassType(int) {}

5 };

6

7 template <ClassType cl>

8 auto getClassType() {

9 return cl;

10 }

11

12 template <double d>

13 auto getDouble() {

14 return d;

15 }

16

17 int main() {

18

19 auto c1 = getClassType<ClassType(2020)>();

20

21 auto d1 = getDouble<5.5>();

22 auto d2 = getDouble<6.5>();

23

24 }

ClassType has a constexpr constructor (line 4) and can, therefore, be used as a
template argument (line 19). The same holds for the function template getDouble

(line 13), which accepts only double. I want to emphasize that each call of the function
template getDouble (lines 21 and 22) creates a new function getDouble. This function
is a full specialization for the given double value.

Since C++20, strings can be used as non-type template arguments.

4.6.2.2 String Literals

The class StringLiteral has a constexpr constructor.

Core Language 193

String literals as non-type template parameters

1 // nonTypeTemplateParameterString.cpp

2

3 #include <algorithm>

4 #include <iostream>

5

6 template <int N>

7 class StringLiteral {

8 public:

9 constexpr StringLiteral(char const (&str)[N]) {

10 std::copy(str, str + N, data);

11 }

12 char data[N];

13 };

14

15 template <StringLiteral str>

16 class ClassTemplate {};

17

18 template <StringLiteral str>

19 void FunctionTemplate() {

20 std::cout << str.data << '\n';

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 ClassTemplate<"string literal"> cls;

28 FunctionTemplate<"string literal">();

29

30 std::cout << '\n';

31

32 }

StringLiteral is a literal type and, therefore, can be used as non-type template pa-

Core Language 194

rameter for ClassTemplate (line 15) and FunctionTemplate (line 18). The constexpr
constructor (line 9) takes a C-string as an argument.

String literals as non-type template parameters

You may wonder why we need string literals as non-type template parameter?

Compile-Time Regular Expressions
A very impressive use-case for string literals is compile-time parsing of
regular expressions⁵⁹. There is already a proposal for C++23 in the pipeline:
P1433R0: Compile-Time Regular Expressions⁶⁰. Hana Dusíková as the
author of the proposal motivates compile-time regular expressions in C++:
“The current std::regex design and implementation [regular expression
library⁶¹] are slow, mostly because the RE [regular expression] pattern
is parsed and compiled at run time. Users often don’t need a runtime
RE [regular expression] parser engine as the pattern is known during
compilation in many common use cases. I think this breaks C++’s promise
of ’don’t pay for what you don’t use’.

If the RE [regular expression] is known at compile time, the pattern should
be checked during the compilation. The design of std::regex doesn’t allow
for this[compile-time evaluation,] as the RE input is a run-time string and
syntax errors are reported as exceptions.”.

Distilled Information

• A conditionally explicit constructor allows it to control explicitly for
a generic constructor which types can be used in a constructor.

• C++20 supports further floating-points as non-type template param-
eters.

⁵⁹https://github.com/hanickadot/compile-time-regular-expressions
⁶⁰http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
⁶¹https://en.cppreference.com/w/cpp/regex

https://github.com/hanickadot/compile-time-regular-expressions
https://github.com/hanickadot/compile-time-regular-expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
https://en.cppreference.com/w/cpp/regex
https://en.cppreference.com/w/cpp/regex
https://github.com/hanickadot/compile-time-regular-expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1433r0.pdf
https://en.cppreference.com/w/cpp/regex

Core Language 195

4.7 Lambda Improvements

Cippi slides down the slide

With C++20, lambda expressions support template parameters and hence concepts,
can be default-constructed and support copy assignment when they have no state.
Additionally, lambda expressions can be used in unevaluated contexts. With C++20,
they detect when you implicitly copy the this pointer. This means a significant cause
of undefined behavior with lambdas is gone.

Let’s start with template parameters for lambdas.

4.7.1 Template Parameter for Lambdas

Admittedly, the differences between typed lambdas (C++11), generic lambdas (C++14),
and template lambdas (template parameter for lambdas) in C++20 are subtle.

Core Language 196

Typed lambdas, generic lambdas, and template lambdas
1 // templateLambda.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <vector>

6

7 auto sumInt = [](int fir, int sec) { return fir + sec; };

8 auto sumGen = [](auto fir, auto sec) { return fir + sec; };

9 auto sumDec = [](auto fir, decltype(fir) sec) { return fir + sec; };

10 auto sumTem = []<typename T>(T fir, T sec) { return fir + sec; };

11

12 int main() {

13

14 std::cout << '\n';

15

16 std::cout << "sumInt(2000, 11): " << sumInt(2000, 11) << '\n';

17 std::cout << "sumGen(2000, 11): " << sumGen(2000, 11) << '\n';

18 std::cout << "sumDec(2000, 11): " << sumDec(2000, 11) << '\n';

19 std::cout << "sumTem(2000, 11): " << sumTem(2000, 11) << '\n';

20

21 std::cout << '\n';

22 \

23

24 std::string hello = "Hello ";

25 std::string world = "world";

26 // std::cout << "sumInt(hello, world): " << sumInt(hello, world) <<\

27 '\n';

28 std::cout << "sumGen(hello, world): " << sumGen(hello, world) << '\\

29 n';

30 std::cout << "sumDec(hello, world): " << sumDec(hello, world) << '\\

31 n';

32 std::cout << "sumTem(hello, world): " << sumTem(hello, world) << '\\

33 n';

34

35

Core Language 197

36 std::cout << '\n';

37 \

38

39 std::cout << "sumInt(true, 2010): " << sumInt(true, 2010) << '\n';

40 std::cout << "sumGen(true, 2010): " << sumGen(true, 2010) << '\n';

41 std::cout << "sumDec(true, 2010): " << sumDec(true, 2010) << '\n';

42 // std::cout << "sumTem(true, 2010): " << sumTem(true, 2010) << '\n\

43 ';

44

45 std::cout << '\n';

46

47 }

Before I show the presumably astonishing output of the program, I want to compare
the four lambdas.

• sumInt

– C++11
– Typed lambda
– Accepts only types convertible to int

• sumGen

– C++14
– Generic lambda
– Accepts all types

• sumDec

– C++14
– Generic lambda
– The second type must be convertible to the first type

• sumTem

– C++20
– Template lambda
– The first type and the second type must be identical

Core Language 198

What does this mean for template arguments with different types? Of course, each
lambda accepts int (lines 16 - 19), and the typed lambda sumInt does not accept
strings (line 25).

Invoking the lambdas with the bool true and the int 2010 may be surprising (lines
33 - 36).

• sumInt returns 2011 because true is an integral, promoted to int.
• sumGen returns 2011 because true is an integral, promoted to int. There is a
subtle difference between sumInt and sumGen, which I will present in a few
lines.

• sumDec returns 2. Why? The type of the second parameter sec becomes the type
of the first parameter fir: thanks to decltype(fir) sec, the compiler deduces
the type of fir and makes it the type of sec. Consequently, 2010 is converted
to true. In the expression fir + sec, fir is integral promoted to 1. Finally, the
result is 2.

• sumTem is not valid.

The subtle differences between typed lambdas, generic lambdas, and template lambdas

A more typical use case for template lambdas is the use of containers in lambdas.
The following program presents three lambdas accepting a container. Each lambda
returns the size of the container.

Core Language 199

Three lambdas accepting a container
1 // templateLambdaVector.cpp

2

3 #include <concepts>

4 #include <deque>

5 #include <iostream>

6 #include <string>

7 #include <vector>

8

9 auto lambdaGeneric = [](const auto& container) { return container.size(\

10); };

11 auto lambdaVector = []<typename T>(const std::vector<T>& vec) { return \

12 vec.size(); };

13 auto lambdaVectorIntegral = []<std::integral T>(const std::vector<T>& v\

14 ec) {

15 return vec.size();

16 };

17

18 int main() {

19

20

21 std::cout << '\n';

22

23 std::deque deq{1, 2, 3};

24 std::vector vecDouble{1.1, 2.2, 3.3, 4.4};

25 std::vector vecInt{1, 2, 3, 4, 5};

26

27 std::cout << "lambdaGeneric(deq): " << lambdaGeneric(deq) << '\n';

28 // std::cout << "lambdaVector(deq): " << lambdaVector(deq) << '\n';

29 // std::cout << "lambdaVectorIntegral(deq): "

30 // << lambdaVectorIntegral(deq) << '\n';

31

32 std::cout << '\n';

33

34 std::cout << "lambdaGeneric(vecDouble): " << lambdaGeneric(vecDoubl\

35 e) << '\n';

Core Language 200

36 std::cout << "lambdaVector(vecDouble): " << lambdaVector(vecDouble)\

37 << '\n';

38 // std::cout << "lambdaVectorIntegral(vecDouble): "

39 // << lambdaVectorIntegral(vecDouble) << '\n';

40

41 std::cout << '\n';

42

43 std::cout << "lambdaGeneric(vecInt): " << lambdaGeneric(vecInt) << \

44 '\n';

45 std::cout << "lambdaVector(vecInt): " << lambdaVector(vecInt) << '\\

46 n';

47 std::cout << "lambdaVectorIntegral(vecInt): "

48 << lambdaVectorIntegral(vecInt) << '\n';

49

50 std::cout << '\n';

51

52 }

Function lambdaGeneric (line 9) can be invoked with any data type that has a
member function size(). Function lambdaVector (line 10) is more specific: it only
accepts a std::vector. Function lambdaVectorIntegral (line 11) uses the C++20
concept std::integral. Consequently, it only accepts a std::vector using integral
types such as int. To use the concept std::integral, I have to include the header
<concepts>. I assume the small program is self-explanatory.

Lambdas, accepting a container and a std::vector

Core Language 201

Class Template Argument Deduction
There is one feature in the program templateLambdaVector.cpp that you
have probably missed. Since C++17, the compiler can deduce the type of
a class template from its arguments (lines 20 - 22). Consequently, instead
of the verbose std::vector<int> myVec{1, 2, 3} you can simply write
std::vector myVec{1, 2, 3}.

4.7.2 Detection of the Implicit Copy of the this Pointer

The C++20 compiler detects when you implicitly copy the this pointer. Implicitly
capturing the this pointer by copy can cause undefined behavior. Undefined
behavior essentially means that there are no guarantees for the behavior of the
program, such as for the following:

Implicitly capturing the this pointer by copy

1 // lambdaCaptureThis.cpp

2

3 #include <iostream>

4 #include <string>

5

6 struct LambdaFactory {

7 auto foo() const {

8 return [=] { std::cout << s << '\n'; };

9 }

10 std::string s = "LambdaFactory";

11 ~LambdaFactory() {

12 std::cout << "Goodbye" << '\n';

13 }

14 };

15

16 auto makeLambda() {

17 LambdaFactory lambdaFactory; \

18

19 return lambdaFactory.foo();

Core Language 202

20 }

21

22

23 int main() {

24

25 std::cout << '\n';

26

27 auto lam = makeLambda();

28 lam();

29

30 std::cout << '\n';

31

32 }

The compilation of the program works as expected, but this does not hold for the
execution of the program.

Segmentation fault due to undefined behavior

Do you spot the issue in the program lambdaCaptureThis.cpp? The member function
foo (line 7) returns the lambda [=] { std::cout << s << '\n'; } having an implicit
copy of the this pointer. This implicit copy is no issue in (line 17), but it becomes an
issue with the end of the scope. The end of the scope means the end of the lifetime of
the local lambda (line 19). Consequently, the call lam() (line 28) triggers undefined
behavior.

A C++20 compiler must, in this case, issue a warning.

Core Language 203

C++20 diagnoses a warning

The last two lambdas features of C++20 are quite handy when you combine them:
Lambdas in C++20 can be default-constructed and support copy-assignment when
they have no state. Additionally, lambdas can be used in unevaluated contexts.

4.7.3 Lambdas in an Unevaluated Context and Stateless
Lambdas can be Default-Constructed and
Copy-Assigned

Admittedly, the title of this section contains two terms that may be new to you:
unevaluated context and stateless lambda. Let me start with unevaluated context.

4.7.3.1 Unevaluated Context

The following code snippet has a function declaration and a function definition.

Declaration and definition of a function

int add1(int, int); // declaration

int add2(int a, int b) { return a + b; } // definition

Function add1 is declared, while add2 is defined. This means, if you use add1 in an
evaluated context, for example, by invoking it, you get a link-time error. The key
observation is that you can use add1 in unevaluated contexts, such as typeid⁶² or
decltype⁶³. Both operators accept unevaluated operands.

⁶²https://en.cppreference.com/w/cpp/language/typeid
⁶³https://en.cppreference.com/w/cpp/language/decltype

https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/language/decltype
https://en.cppreference.com/w/cpp/language/typeid
https://en.cppreference.com/w/cpp/language/decltype

Core Language 204

Unevaluated context

1 // unevaluatedContext.cpp

2

3 #include <iostream>

4 #include <typeinfo> // typeid

5

6 int add1(int, int); // declaration

7 int add2(int a, int b) { return a + b; } // definition

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::cout << "typeid(add1).name(): " << typeid(add1).name() << '\n'\

14 ;

15

16 decltype(*add1) add = add2; \

17

18

19 std::cout << "add(2000, 20): " << add(2000, 20) << '\n';

20

21 std::cout << '\n';

22

23 }

typeid(add1).name() (line 13) returns a string representation of the type and
decltype (line 15) deduces the type of its argument.

Core Language 205

Use of an unevaluated context

4.7.3.2 Stateless Lambda

A stateless lambda is a lambda that captures nothing from its environment. Or, to
put it another way, a stateless lambda is a lambda where the initial brackets [] in
the lambda definition are empty. For example, the lambda expression auto add = [

](int a, int b) { return a + b; }; is stateless.

4.7.3.3 Adapting Associative Containers of the Standard Template
Library

Before I show you the example, I have to add a few remarks. Container std::set
and all other ordered associative containers from the Standard Template Library
(std::map, std::multiset, and std::multimap) by default use the function object
std::less to sort the keys. std::less sorts all keys lexicographically in ascending
order. The declaration of std::set⁶⁴ shows the implicit usage of std::less.

Declaration of std::set

template<

class Key,

class Compare = std::less<Key>,

class Allocator = std::allocator<Key>

> class set;

Now, let me play with the ordering.

⁶⁴https://en.cppreference.com/w/cpp/container/set

https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/set

Core Language 206

Lambdas used in an unevaluated context
1 // lambdaUnevaluatedContext.cpp

2

3 #include <cmath>

4 #include <iostream>

5 #include <memory>

6 #include <set>

7 #include <string>

8

9 template <typename Cont>

10 void printContainer(const Cont& cont) {

11 for (const auto& c: cont) std::cout << c << " ";

12 std::cout << "\n";

13 }

14

15 int main() {

16

17 std::cout << '\n';

18

19 std::set<std::string> set1 = {"scott", "Bjarne", "Herb", "Dave", "m\

20 ichael"};

21 printContainer(set1);

22

23 using SetDecreasing = std::set<std::string,

24 decltype([](const auto& l, const aut\

25 o& r) {

26 return l > r;

27 })>;

28 SetDecreasing set2 = {"scott", "Bjarne", "Herb", "Dave", "michael"};

29 printContainer(set2);

30

31 using SetLength = std::set<std::string,

32 decltype([](const auto& l, const auto& r\

33) {

34 return l.size() < r.size();

35 })>;

Core Language 207

36 SetLength set3 = {"scott", "Bjarne", "Herb", "Dave", "michael"};

37 printContainer(set3);

38

39 std::cout << '\n';

40

41 std::set<int> set4 = {-10, 5, 3, 100, 0, -25};

42 printContainer(set4);

43

44 using setAbsolute = std::set<int, decltype([](const auto& l, const \

45 auto& r) {

46 return std::abs(l)< \

47 std::abs(r);

48 })>;

49 setAbsolute set5 = {-10, 5, 3, 100, 0, -25};

50 printContainer(set5);

51

52 std::cout << "\n\n";

53

54 }

set1 (line 19) and set4 (line 38) sort their keys in ascending order. Each of set2 (line
26), set3 (line 33), and set5 (line 44) sorts its keys in an unique manner, using a
lambda in an unevaluated context. The using keyword (line 22) declares a type alias,
which is used in the following line (line 26) to define the sets. Creating the std::set
causes the call of the default constructor of the stateless lambda.

Here is the output of the program.

Use of a lambda in an unevaluated context

When you study the output of the program, you may be surprised. The special set3,

Core Language 208

which uses the lambda [](const auto& l, const auto& r){ return l.size() <

r.size(); } as a predicate, ignores the name Dave. The reason is simple. Dave has the
same size as Herb, that was added first. std::set supports unique keys, and the keys
are in this case identical using the special predicate. If I had used std::multiset, this
wouldn’t have happened.

Distilled Information

• With C++20, lambdas can have template parameters. In addition,
lambdas detect when the this pointer is implicitly referenced.

Core Language 209

4.8 New Attributes

Cippi is ready for the race

With C++20, we get new and improved attributes such as [[nodiscard("reason")]],
[[likely]], [[unlikely]], and [[no_unique_address]]. In particular, [[nodiscard("reason")]]
can be used to explicitly express the intent of our interface.

Core Language 210

Attributes
Attributes allow the programmer to express additional constraints on the
source code or give the compiler additional optimization possibilities. You
can use attributes for types, variables, functions, names, and code blocks.
When you use more than one attribute, you can apply each one after the
other (func1) or all together in one attribute, separated by commas (func2):

Use of attributes
1 [[attribute1]] [[attribute2]] [[attribute3]]

2 int func1();

3

4 [[attribute1, attribute2, attribute3]]

5 int func2();

Attributes can be implementation-defined language extensions or standard
attributes, such as the following list of attributes C++11 - C++17 already
have.

• [[noreturn]] (C++11): indicates that the function does not return
• [[carries_dependency]] (C++11): indicates a dependency chain in
release-consume ordering⁶⁵

• [[deprecated]] (C++14): indicates that you should not use a name
• [[fallthrough]] (C++17): indicates that a fallthrough in a case
branch is intentional

• [[maybe_unused]] (C++17): suppresses compiler warning about used
names

4.8.1 [[nodiscard("reason")]]

C++17 introduced the new attribute [[nodiscard]] without a reason. C++20 added
the possibility to add a message to the attribute.

⁶⁵https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering

https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering
https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Consume_ordering

Core Language 211

Discarding objects and error codes
1 // withoutNodiscard.cpp

2

3 #include <utility>

4

5 struct MyType {

6

7 MyType(int, bool) {}

8

9 };

10

11 template <typename T, typename ... Args>

12 T* create(Args&& ... args) {

13 return new T(std::forward<Args>(args)...);

14 }

15

16 enum class ErrorCode {

17 Okay,

18 Warning,

19 Critical,

20 Fatal

21 };

22

23 ErrorCode errorProneFunction() { return ErrorCode::Fatal; }

24

25 int main() {

26

27 int* val = create<int>(5);

28 delete val;

29

30 create<int>(5);

31

32 errorProneFunction();

33

34 MyType(5, true);

35

Core Language 212

36 }

Thanks to perfect forwarding and parameter packs, the factory function create (line
11) can call any constructor and return a heap-allocated object.

The program has many issues. First, line 30 has a memory leak, because the
int created on the heap is never deleted. Second, the error code of the function
errorProneFunction (line 32) is not checked. Lastly, the constructor call MyType(5,
true) (line 34) creates a temporary, which is created and immediately destroyed. This
is at least a waste of resources. Now, [[nodiscard]] comes into play.

[[nodiscard]] can be used in a function declaration, enumeration declaration,
or class declaration. If you discard the return value from a function declared as
[[nodiscard]], the compiler should issue a warning. The same holds for a function
returning by copy an enumeration or a class declared as [[nodiscard]]. If you still
want to ignore the return value, you can cast it to void.

Let us see what this means. In the following example, I use the C++17 syntax of the
attribute [[nodiscard]].

Use of the attribute [[nodiscard]] in C++17

1 // nodiscard.cpp

2

3 #include <utility>

4

5 struct MyType {

6

7 MyType(int, bool) {}

8

9 };

10

11 template <typename T, typename ... Args>

12 [[nodiscard]]

13 T* create(Args&& ... args){

14 return new T(std::forward<Args>(args)...);

15 }

16

Core Language 213

17 enum class [[nodiscard]] ErrorCode {

18 Okay,

19 Warning,

20 Critical,

21 Fatal

22 };

23

24 ErrorCode errorProneFunction() { return ErrorCode::Fatal; }

25

26 int main() {

27

28 int* val = create<int>(5);

29 delete val;

30

31 create<int>(5);

32

33 errorProneFunction();

34

35 MyType(5, true);

36

37 }

The factory function create (line 13) and the enum ErrorCode (line 17) are declared
as [[nodiscard]]. Consequently, the calls in lines 31 and 33 create warnings.

A C++17 compiler complains about a discarded object and a discarded error code

Way better, but the program still has a few issues. [[nodiscard]] cannot be used

Core Language 214

for functions such as a constructor returning nothing. Therefore, the temporary
MyType(5, true) (line 35) is still created without a warning. Second, the error
messages are too general. As a user of the functions, I want to have a reason why
discarding the result is an issue.

Both issues can be solvedwith C++20. Constructors can be declared as [[nodiscard]],
and the warning can have additional information.

Use of the attribute [[nodiscard]] in C++20

1 // nodiscardString.cpp

2

3 #include <utility>

4

5 struct MyType {

6

7 [[nodiscard("Implicit destroying of temporary MyInt.")]] MyType(in\

8 t, bool) {}

9

10 };

11

12 template <typename T, typename ... Args>

13 [[nodiscard("You have a memory leak.")]]

14 T* create(Args&& ... args){

15 return new T(std::forward<Args>(args)...);

16 }

17

18 enum class [[nodiscard("Don't ignore the error code.")]] ErrorCode {

19 Okay,

20 Warning,

21 Critical,

22 Fatal

23 };

24

25 ErrorCode errorProneFunction() { return ErrorCode::Fatal; }

26

27 int main() {

28

Core Language 215

29 int* val = create<int>(5);

30 delete val;

31

32 create<int>(5);

33

34 errorProneFunction();

35

36 MyType(5, true);

37

38 }

Now, the user of the functions gets specific messages. Here is the output of the
Microsoft compiler.

A C++20 compiler complains about discarded objects and error codes

Core Language 216

The issue with std::async

Many existing functions in C++ could benefit from the [[nodiscard]]

attribute. An ideal candidate is the function std::async. When you don’t
use the return value of std::asnyc, what you intended as an asynchronous
std::async call implicitly becomes synchronous. What should have run in
a separate thread behaves instead as a blocking function call. Read more
about the counterintuitive behavior of std::async in my post “The Special
Futures”⁶⁶.

While studying the [[nodiscard]] syntax on cpprefer-
ence.com/nodiscard⁶⁷, I noticed that the declarations of std::async⁶⁸
changed with C++20. Here is one:

std::async uses in C++20 the attribute [[nodiscard]]

template<class Function, class... Args>

[[nodiscard]]

std::future<std::invoke_result_t<std::decay_t<Function>,

std::decay_t<Args>...>>

async(Function&& f, Args&&... args);

The return-type of promise std::async, is declared as [[nodiscard]] in
C++20.

The next two attributes [[likely]] and [[unlikely]] are about optimization.

4.8.2 [[likely]] and [[unlikely]]

Proposal P0479R5⁶⁹ for the attributes [[likely]] and [[unlikely]] is the shortest
proposal I know of. To give you an idea, this is the interesting note to the proposal.
“The use of the likely attribute is intended to allow implementations to optimize for
the case where paths of execution including it are arbitrarily more likely than any
alternative path of execution that does not include such an attribute on a statement
or label. The use of the unlikely attribute is intended to allow implementations to

⁶⁶https://www.modernescpp.com/index.php/the-special-futures
⁶⁷https://en.cppreference.com/w/cpp/language/attributes/nodiscard
⁶⁸https://en.cppreference.com/w/cpp/thread/async
⁶⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0479r5.html

https://www.modernescpp.com/index.php/the-special-futures
https://www.modernescpp.com/index.php/the-special-futures
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/thread/async
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0479r5.html
https://www.modernescpp.com/index.php/the-special-futures
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/thread/async
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0479r5.html

Core Language 217

optimize for the case where paths of execution including it are arbitrarily more
unlikely than any alternative path of execution that does not include such an attribute
on a statement or label. A path of execution includes a label if and only if it contains
a jump to that label. Excessive usage of either of these attributes is liable to result in
performance degradation.”

In summary, both attributes allow for giving the optimizer a hint regarding the path
of execution expected to be more or less likely.

Give the optimizer a hint with [[likely]]

for(size_t i=0; i < v.size(); ++i){

if (v[i] < 0) [[likely]] sum -= sqrt(-v[i]);

else sum += sqrt(v[i]);

}

The story of optimization goes on with the new attribute [[no_unique_address]].
This time the optimization addresses space instead of execution time.

4.8.3 [[no_unique_address]]

[[no_unique_address]] expresses that this data member of a class need not have an
address distinct from all other non-static data members of its class. Consequently, if
the member has an empty type, the compiler can optimize it to occupy no memory.

The following program exemplifies the usage of the new attribute.

Use of the attribute [[no_unique_address]]

1 // uniqueAddress.cpp

2

3 #include <iostream>

4

5 struct Empty {};

6

7 struct NoUniqueAddress {

8 int d{};

9 [[no_unique_address]] Empty e{};

Core Language 218

10 };

11

12 struct UniqueAddress {

13 int d{};

14 Empty e{};

15 };

16

17 int main() {

18

19 std::cout << '\n';

20

21 std::cout << std::boolalpha;

22

23 std::cout << "sizeof(int) == sizeof(NoUniqueAddress): " \

24

25 << (sizeof(int) == sizeof(NoUniqueAddress)) << '\n';

26

27 std::cout << "sizeof(int) == sizeof(UniqueAddress): " \

28

29 << (sizeof(int) == sizeof(UniqueAddress)) << '\n';

30

31 std::cout << '\n';

32

33 NoUniqueAddress NoUnique;

34

35 std::cout << "&NoUnique.d: " << &NoUnique.d << '\n';

36 std::cout << "&NoUnique.e: " << &NoUnique.e << '\n';

37

38 std::cout << '\n';

39

40 UniqueAddress unique;

41

42 std::cout << "&unique.d: " << &unique.d << '\n';

43 std::cout << "&unique.e: " << &unique.e << '\n';

44

45 std::cout << '\n';

Core Language 219

46

47 }

The class NoUniqueAddress has a size equal to int (line 7), but not the class
UniqueAddress (line 12). The members d and e of UniqueAddress (lines 40 and 41)
have different addresses but not the members of the class UniqueAddress (lines 33
and 34).

Use of the class NoUniqueAddress and UniqueAddress

Distilled Information

• C++20 supports a few new attributes. [[nodiscard("reason")]] can
be used in various contexts to check if the return value of a function
is ignored.

• [[likely]] and [[unlikely]] allows the programmer to give the
compiler a hint which code path is more likely to be executed.

• Thanks to the attribute [[no_unique_address]], data members of a
class can have the same address.

Core Language 220

4.9 Further Improvements

Cippi goes up

This section presents the remaining small improvements in the C++20 core language.

4.9.1 volatile

The abstract in the proposal P1152R0⁷⁰ gives a short description of the changes that
volatile undergoes: “The proposed deprecation preserves the useful parts of volatile,
and removes the dubious / already broken ones. This paper aims at breaking at
compile-time code which is today subtly broken at run time or through a compiler
update.”

Before I dive into volatile, I want to answer the crucial question: When should
you use volatile? A note from the C++ standard says that “volatile is a hint to
the implementation to avoid aggressive optimization involving the object because the
value of the object might be changed by means undetectable by an implementation.”
This means that for a single thread of execution, the compiler must perform load
or store operations in the executable as often as they occur in the source code.
volatile operations, therefore, cannot be eliminated or reordered. Consequently,
you can use volatile objects for communication with a signal handler but not for
communication with another thread of execution.

⁷⁰http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html

Core Language 221

Before I show you what semantics of volatile are preserved, I want to start with the
deprecated features:

1. Deprecate volatile compound assignment, and pre/post increment/decrement
2. Deprecate volatile qualification of function parameters or return types
3. Deprecate volatile qualifiers in a structured binding declaration

If you want to know all the sophisticated details, I strongly suggest you watch the
CppCon 2019 talk “Deprecating volatile”⁷¹ from JF Bastien. Here are a few examples
from his talk. Additionally, I fixed a few typos in the source code. The numbers in
the following code snippets refer to the three deprecations listed earlier.

Deprecated use case for volatile

// (1)

int neck, tail;

volatile int brachiosaur;

brachiosaur = neck; // OK, a volatile store

tail = brachiosaur; // OK, a volatile load

// deprecated: does this access brachiosaur once or twice

tail = brachiosaur = neck;

// deprecated: does this access brachiosaur once or twice

brachiosaur += neck;

// OK, a volatile load, an addition, a volatile store

brachiosaur = brachiosaur + neck;

###

// (2)

// deprecated: a volatile return type has no meaning

volatile struct amber jurassic();

// deprecated: volatile parameters aren't meaningful to the

⁷¹https://www.youtube.com/watch?v=KJW_DLaVXIY

https://www.youtube.com/watch?v=KJW_DLaVXIY
https://www.youtube.com/watch?v=KJW_DLaVXIY

Core Language 222

// caller, volatile only applies within the function

void trex(volatile short left_arm, volatile short right_arm);

// OK, the pointer isn't volatile, the data it points to is

void fly(volatile struct pterosaur* pterandon);

##

(3)

struct linhenykus { volatile short forelimb; };

void park(linhenykus alvarezsauroid) {

// deprecated: does the binding copy the forelimbs?

auto [what_is_this] = alvarezsauroid; // structured binding

// ...

}

volatile and Multithreading Semantics
volatile is typically used to denote objects that can change independently
of the regular program flow. These are, for example, objects in embedded
programming that represent an external device (memory-mapped I/O).
Because these objects can change independently of the regular program
flow and their value is directly written to main memory, no optimized
storing in caches takes place. In other words, volatile avoids aggressive
optimization and has no multithreading semantics.

4.9.2 Range-based for loop with Initializers

With C++20, you can directly use a range-based for loop with an initializer.

Core Language 223

Range-based for loop with initializer

1 // rangeBasedForLoopInitializer.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <vector>

6

7 int main() {

8

9 for (auto vec = std::vector{1, 2, 3}; auto v : vec) {

10 std::cout << v << " ";

11 }

12

13 std::cout << "\n\n";

14

15 for (auto initList = {1, 2, 3}; auto e : initList) {

16 e *= e;

17 std::cout << e << " ";

18 }

19

20 std::cout << "\n\n";

21

22 using namespace std::string_literals;

23 for (auto str = "Hello World"s; auto c: str) {

24 std::cout << c << " ";

25 }

26

27 std::cout << '\n';

28

29 }

The range-based for loop uses in line 9 a std::vector, in line 15 a std::initializer_-
list, and in line 23 a std::string. Furthermore, in line 9 and line 15 I apply
automatic type deduction for class templates, which we have since C++17. Instead
of std::vector<int>, I just write std::vector.

Core Language 224

Use of a range-based for loop with initializers

4.9.3 Virtual constexpr function

A constexpr function has the potential to run at compile time but can also be
executed at run time. Consequently, you can make a constexpr function with C++20
virtual. Both directions are possible. A virtual constexpr function can override a non-
constexpr function, and a virtual non-constexpr function can override a virtual
constexpr function. I want to emphasize that override implies that the relevant
function of a base class is virtual.

Program virtualConstexpr.cpp shows both combinations:

Virtual constexpr functions

1 // virtualConstexpr.cpp

2

3 #include <iostream>

4

5 struct X1 {

6 virtual int f() const = 0;

7 };

8

9 struct X2: public X1 {

10 constexpr int f() const override { return 2; }

11 };

12

13 struct X3: public X2 {

14 int f() const override { return 3; }

15 };

16

17 struct X4: public X3 {

18 constexpr int f() const override { return 4; }

Core Language 225

19 };

20

21 int main() {

22

23 X1* x1 = new X4;

24 std::cout << "x1->f(): " << x1->f() << '\n';

25

26 X4 x4;

27 X1& x2 = x4;

28 std::cout << "x2.f(): " << x2.f() << '\n';

29

30 }

Line 24 uses virtual dispatch (late binding) via a pointer, line 28 uses virtual dispatch
via reference.

Use of virtual constexpr functions

4.9.4 The new Character Type of UTF-8 Strings: char8_t

In addition to the character types char16_t and char32_t from C++11, C++20 gets
the new character type char8_t. Type char8_t is large enough to represent any UTF-
8 code unit (8 bits). It has the same size, signedness, and alignment as an unsigned
char, but is a distinct type.

Core Language 226

char versus char8_t

A char has one byte. In contrast to a char8_t, the number of bits of a byte
and hence of a char is not defined. Nearly all implementations use 8 bits
for a byte. The std::string is an alias for a std::basic_string of chars.

std::string and a std::string literal

std::string std::basic_string<char>

"Hello World"s

Consequently, C++20 has a new typedef for the character type char8_t (line 1) and
a new UTF-8 string literal (line 2).

A new char8_t character type and an UTF-8 string literal

1 std::u8string std::basic_string<char8_t>

2 u8"Hello World"

The program char8Str.cpp shows the straightforward usage of the new character
type char8_t.

Intuitive usage for the new character type char8_t

1 // char8Str.cpp

2

3 #include <iostream>

4 #include <string>

5

6 int main() {

7

8 const char8_t* char8Str = u8"Hello world";

9 std::basic_string<char8_t> char8String = u8"helloWorld";

10 std::u8string char8String2 = u8"helloWorld";

11

12 char8String2 += u8".";

13

Core Language 227

14 std::cout << "char8String.size(): " << char8String.size() << '\n';

15 std::cout << "char8String2.size(): " << char8String2.size() << '\n';

16

17 char8String2.replace(0, 5, u8"Hello ");

18

19 std::cout << "char8String2.size(): " << char8String2.size() << '\n';

20

21 }

Without further ado, here is the output of the program:

Use of the new character type char8_t

4.9.5 using enum in Local Scopes

A using enum declaration introduces the enumerators of the named enumeration in
the local scope.

Introducing enumerators in the local scope

1 // enumUsing.cpp

2

3 #include <iostream>

4 #include <string_view>

5

6 enum class Color {

7 red,

8 green,

9 blue

10 };

11

12 std::string_view toString(Color col) {

13 switch (col) {

Core Language 228

14 using enum Color;

15 case red: return "red";

16 case green: return "green";

17 case blue: return "blue";

18 }

19 return "unknown";

20 }

21

22 int main() {

23

24 std::cout << '\n';

25

26 std::cout << "toString(Color::red): " << toString(Color::red) << '\\

27 n';

28

29 using enum Color; \

30

31

32 std::cout << "toString(green): " << toString(green) << '\n';

33

34 std::cout << '\n';

35

36 }

The using enum declaration (line 14) introduces the enumerators of the scoped
enumerations Color into the local scope. From that point on, the enumerators can be
used unscoped (lines 15 - 17).

Application of using enum

Core Language 229

4.9.6 Default Member Initializers for Bit Fields

First of all, what is a bit field? Here is the definition fromWikipedia⁷²: “A bit field is
a data structure used in computer programming. It consists of a number of adjacent
computer memory locations which have been allocated to hold a sequence of bits,
stored so that any single bit or group of bits within the set can be addressed. A bit
field is most commonly used to represent integral types of known, fixed bit-width.”

With C++20, we can default-initialize the members of a bit field:

Default initializers for the members of a bit field

1 // bitField.cpp

2

3 #include <iostream>

4

5 struct Class11 {

6 int i = 1;

7 int j = 2;

8 int k = 3;

9 int l = 4;

10 int m = 5;

11 int n = 6;

12 };

13

14 struct BitField20 {

15 int i : 3 = 1;

16 int j : 4 = 2;

17 int k : 5 = 3;

18 int l : 6 = 4;

19 int m : 7 = 5;

20 int n : 7 = 6;

21 };

22

23 int main () {

24

⁷²https://en.wikipedia.org/wiki/Bit_field

https://en.wikipedia.org/wiki/Bit_field
https://en.wikipedia.org/wiki/Bit_field

Core Language 230

25 std::cout << '\n';

26

27 std::cout << "sizeof(Class11): " << sizeof(Class11) << '\n';

28 std::cout << "sizeof(BitField20): " << sizeof(BitField20) << '\n';

29

30 std::cout << '\n';

31

32 }

According to the members of a class (lines 6 - 11) with C++11, the members of bit
field can have default initializers (lines 15 - 20) with C++20. When you sum up the
numbers 3, 4, 5, 6, 7, and 7, you get 32. Hence, 32 bits, or 4 bytes is exactly the size
of the BitField20:

Size information to a bit field

Distilled Information

• The meaning of volatile is clarified in C++20. volatile has no mul-
tithreading semantics and should only be used to avoid aggressive
optimization because an object may be changed independently of the
regular program flow.

• Range-based for loops can use an initializer.
• The new character type char8_t is large enough to represent 8 bits.
• A using enum declaration introduces the enumerators of a named
enumeration in the local scope.

• The members of a bit field can be default-initialized.
• A constexpr function can be virtual.

5. The Standard Library

In addition to the ranges library, the C++20 standard library has many new features
to offer, such as a std::span as a non-owning reference to a contiguous memory
area, improved string and container implementations, and improved algorithms.
Additionally, the chrono library of C++11 is extended with calendar and time-zone
capabilities. Last but not least, text can be safely and powerfully formatted.

The Standard Library 232

5.1 The Ranges Library

Cippi starts the pipeline job

Thanks to the ranges library in C++20, working with the Standard Template Library
(STL) is much more comfortable and powerful. The algorithms of the ranges library
are lazy, can work directly on containers and can easily be composed. To make it
short: The comfort and the power of the ranges library is due to its functional ideas.

Before I dive into the details, here is a first example of the ranges library:

Combining the transform and filter functions

// rangesFilterTransform.cpp

#include <iostream>

#include <ranges>

#include <vector>

int main() {

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

The Standard Library 233

auto results = numbers | std::views::filter([](int n){ return n % 2\

== 0; })

| std::views::transform([](int n){ return n \

* 2; });

for (auto v: results) std::cout << v << " "; // 4 8 12

}

You have to read the expression from left to right. The pipe symbol stands for function
composition: First, all numberswhich are even can pass (std::views::filter([](int
n){ return n % 2 == 0; })). After that, each remaining number is mapped to its
double (std::views::transform([](int n){ return n * 2; })). The small example
shows two new features of the ranges library: function composition being applied on
the entire container.

Now you should be prepared for the details. Let’s go back to square one: ranges and
views are concepts.

5.1.1 The Concepts Ranges and Views

I already presented the concepts ranges and views in the chapter on concepts.
Consequently, here’s a brief refresher.

• range: A range is a group of items that you can iterate over. It provides a begin
iterator and an end sentinel. Of course, the containers of the STL are ranges.

A view is something that you apply on a range and performs some operation. A view
does not own data, and its time complexity to copy, move, or assign is constant.

The Standard Library 234

Views operating on a range

std::vector<int> numbers = {1, 2, 3, 4, 5, 6};

auto results = numbers | std::views::filter([](int n){ return n % 2 == \

0; })

| std::views::transform([](int n){ return n * 2;\

});

In this code snippet, numbers is the range and std::views::filter and std::views::transform
are the views.

Thanks to views, C++20 allows programming in a functional style. Views can be
combined and are lazy. I already presented two views, but C++20 offers more.

Views in C++20

View Description

std::views::all_t Converts a range into a view.
std::views::all

std::ranges::ref_view Takes all elements of another range.

std::ranges::filter_view Takes the elements that satisfy the predicate.
std::views::filter

std::ranges::transform_view Transforms each element.
std::views::transform

std::ranges::take_view Takes the first n elements of another view.
std::views::take

std::ranges::take_while_view Takes the elements of another view as long as the
predicate returns true.

std::views::take_while

std::ranges::drop_view Skips the first n elements of another view.
std::views::drop

The Standard Library 235

Views in C++20

View Description

std::ranges::drop_while_view Skips the initial elements of another view until the
predicate returns false.

std::views::drop_while

std::ranges::join_view Joins a view of ranges.
std::views::join

std::ranges::split_view Splits a view by using a delimiter.
std::views::split

std::ranges::common_view Converts a view into a std::ranges::common_range.
std::views::common

std::ranges::reverse_view Iterates in reverse order.
std::views::reverse

std::ranges::basic_istream_view Applies operator>> on the input stream.
std::ranges::istream_view

std::ranges::elements_view Creates a view on the n-th element of tuples.
std::views::elements

std::ranges::keys_view Creates a view on the first element of pair-like values.
std::views::keys

std::ranges::values_view Creates a view on the second element of pair-like values.
std::views::values

In general, you can use a view such as std::views::transform with the alternative
name std::ranges:: transform_view.

5.1.2 Direct on the Container

The algorithms of the Standard Template Library (STL) are sometimes a little
inconvenient. They need both begin and end iterators. This is often more than you

The Standard Library 236

want to write.

Algorithms of the STL need both begin and end iterators

// sortClassical.cpp

#include <algorithm>

#include <iostream>

#include <vector>

int main() {

std::vector<int> myVec{-3, 5, 0, 7, -4};

std::sort(myVec.begin(), myVec.end());

for (auto v: myVec) std::cout << v << " "; // -4, -3, 0, 5, 7

}

Wouldn’t it be nice if std::sort could be executed on the entire container? Thanks
to the ranges library, this is possible in C++20.

Algorithms of the ranges library operate directly on the container

// sortRanges.cpp

#include <algorithm>

#include <iostream>

#include <vector>

int main() {

std::vector<int> myVec{-3, 5, 0, 7, -4};

std::ranges::sort(myVec);

for (auto v: myVec) std::cout << v << " "; // -4, -3, 0, 5, 7

}

The Standard Library 237

Those algorithms of the algorithm library¹, which are included in the <algorithm>²
header such as std::sort have a ranges pendant std::ranges::sort.

When you study the overloads of std::ranges::sort, you notice that they support
a projection.

5.1.2.1 Projection

std::ranges::sort has two overloads:

Overload of ‘std::ranges::sort

template< std::random_access_iterator I, std::sentinel_for<I> S,

class Comp = ranges::less, class Proj = std::identity >

requires std::sortable<I, Comp, Proj>

constexpr I sort(I first, S last, Comp comp = {}, Proj proj = {});

template< ranges::random_access_range R, class Comp = ranges::less,

class Proj = std::identity >

requires std::sortable<ranges::iterator_t<R>, Comp, Proj>

constexpr ranges::borrowed_iterator_t<R> sort(R&& r, Comp comp = {}, P\

roj proj = {});

When you study the second overload, you notice that it takes a sortable range R, a
predicate Comp, and a projection Proj. The predicate Comp uses for default less, and
the projection Proj the identity. A projection is a mapping of a set into a subset. Let
me show you what that means:

¹https://en.cppreference.com/w/cpp/algorithm
²https://en.cppreference.com/w/cpp/header/algorithm

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/header/algorithm
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/header/algorithm

The Standard Library 238

Applying projections on data types
// rangeProjection.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <vector>

struct PhoneBookEntry{

std::string name;

int number;

};

void printPhoneBook(const std::vector<PhoneBookEntry>& phoneBook) {

for (const auto& entry: phoneBook) std::cout << "(" << entry.name <\

< ", "

<< entry.number\

<< ")";

std::cout << "\n\n";

}

int main() {

std::cout << '\n';

std::vector<PhoneBookEntry> phoneBook{ {"Brown", 111}, {"Smith", 44\

4},

{"Grimm", 666}, {"Butcher", 222}, {"Taylor", 555}, {"Wilson", 333} \

};

std::ranges::sort(phoneBook, {}, &PhoneBookEntry::name); // ascen\

ding by name

printPhoneBook(phoneBook);

std::ranges::sort(phoneBook, std::ranges::greater() ,

&PhoneBookEntry::name); // desce\

The Standard Library 239

nding by name

printPhoneBook(phoneBook);

std::ranges::sort(phoneBook, {}, &PhoneBookEntry::number); // ascen\

ding by number

printPhoneBook(phoneBook);

std::ranges::sort(phoneBook, std::ranges::greater(),

&PhoneBookEntry::number); // descen\

ding by number

printPhoneBook(phoneBook);

std::cout << '\n';

}

phoneBook (line 23) has structs of type PhoneBookEntry (line 8). A PhoneBookEntry

consists of a name and a number. Thanks to projections, the phoneBook can be sorted
in ascending order by name (line 26), descending order by name (line 29), ascending
order by number (line 33), and descending order by number (line 36).

Applying projections on data types

Most ranges algorithms support projections.

5.1.2.2 Direct Views on Keys and Values

Furthermore, you can create direct views on the keys (line 16) and the values (line
24) of a std::unordered_map.

The Standard Library 240

Views on the keys and the values of a std::unordered_map

1 // rangesEntireContainer.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <unordered_map>

7

8

9 int main() {

10

11 std::unordered_map<std::string, int> freqWord{ {"witch", 25}, {"wizar\

12 d", 33},

13 {"tale", 45}, {"dog", \

14 4},

15 {"cat", 34}, {"fish", \

16 23} };

17

18 std::cout << "Keys:" << '\n';

19 auto names = std::views::keys(freqWord);

20 for (const auto& name : names){ std::cout << name << " "; }

21 std::cout << '\n';

22 for (const auto& name : std::views::keys(freqWord)){ std::cout << nam\

23 e << " "; }

24

25 std::cout << "\n\n";

26

27 std::cout << "Values: " << '\n';

28 auto values = std::views::values(freqWord);

29 for (const auto& value : values){ std::cout << value << " "; }

30 std::cout << '\n';

31 for (const auto& value : std::views::values(freqWord)) {

32 std::cout << value << " ";

33 }

34

35 }

The Standard Library 241

Of course, the keys and values can be displayed directly (lines 19 and 27). The output
is identical.

Views on the keys and values of a std::unordered_map

Working directly on the container might be not so thrilling, but function composition
and lazy evaluation are.

5.1.3 Function Composition

In the example rangesComposition.cpp, I use a std::map, because the ordering of
the keys is crucial.

Composition of views

1 // rangesComposition.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <map>

7

8

9 int main() {

10

11 std::map<std::string, int> freqWord{ {"witch", 25}, {"wizard", 33},

12 {"tale", 45}, {"dog", 4},

13 {"cat", 34}, {"fish", 23} };

The Standard Library 242

14

15 std::cout << "All words: ";

16 for (const auto& name : std::views::keys(freqWord)) { std::cout << na\

17 me << " "; }

18

19 std::cout << '\n';

20

21 std::cout << "All words, reverses: ";

22 for (const auto& name : std::views::keys(freqWord)

23 | std::views::reverse) { std::cout << name << "\

24 "; }

25

26 std::cout << '\n';

27

28 std::cout << "The first 4 words: ";

29 for (const auto& name : std::views::keys(freqWord)

30 | std::views::take(4)) { std::cout << name << "\

31 "; }

32

33 std::cout << '\n';

34

35 std::cout << "All words starting with w: ";

36 auto firstw = [](const std::string& name){ return name[0] == 'w'; };

37 for (const auto& name : std::views::keys(freqWord)

38 | std::views::filter(firstw)) { std::cout << na\

39 me << " "; }

40

41 std::cout << '\n';

42

43 }

I’m only interested in the keys. I display all of them (line 15), all of them reversed
(line 20), the first four (line 26), and the keys starting with the letter ‘w’ (line 32).

Finally, here is the output of the program.

The Standard Library 243

Composition of views

The pipe symbol | is syntactic sugar³ for function composition. Instead of C(R) you
can write R | C. Consequently, the next three lines are equivalent.

Three syntactic forms of function composition

auto rev1 = std::views::reverse(std::views::keys(freqWord));

auto rev2 = std::views::keys(freqWord) | std::views::reverse;

auto rev3 = freqWord | std::views::keys | std::views::reverse;

5.1.4 Lazy Evaluation

std::views::iota is a range factory for creating a sequence of elements by suc-
cessively incrementing an initial value. This sequence can be finite or infinite. The
program rangesIota.cpp fills a std::vector with 10 int’s, starting with 0.

Using std::views::iota to fill a std::vector

1 // rangesIota.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <ranges>

6 #include <vector>

7

8 int main() {

9

10 std::cout << std::boolalpha;

11

12 std::vector<int> vec;

13 std::vector<int> vec2;

³https://en.wikipedia.org/wiki/Syntactic_sugar

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar

The Standard Library 244

14

15 for (int i: std::views::iota(0, 10)) vec.push_back(i);

16

17 for (int i: std::views::iota(0) | std::views::take(10)) vec2.push_b\

18 ack(i);

19

20 std::cout << "vec == vec2: " << (vec == vec2) << '\n';

21

22 for (int i: vec) std::cout << i << " ";

23

24 }

The first iota call (line 15) creates all numbers from 0 to 9, incremented by 1. The
second iota call (line 17) creates an infinite data stream, starting with 0, incremented
by 1. std::views::iota(0) is lazy. I only get a new value if I ask for it. I ask for it
ten times. Consequently, both vectors are identical.

Using std::views::iota to fill a std::vector

Now, I want to solve a small challenge: finding the first 20 prime numbers starting
with 1,000,000.

The first 20 prime numbers starting with 1’000’000

1 // rangesLazy.cpp

2

3 #include <iostream>

4 #include <ranges>

5

6

7 bool isPrime(int i) {

8 for (int j=2; j*j <= i; ++j){

9 if (i % j == 0) return false;

10 }

The Standard Library 245

11 return true;

12 }

13

14 int main() {

15

16 std::cout << "Numbers from 1'000'000 to 1'001'000 (displayed each 1\

17 00th): "

18 << '\n';

19 for (int i: std::views::iota(1'000'000, 1'001'000)) {

20 if (i % 100 == 0) std::cout << i << " ";

21 }

22

23 std::cout << "\n\n";

24

25 auto odd = [](int i){ return i % 2 == 1; };

26 std::cout << "Odd numbers from 1'000'000 to 1'001'000 (displayed ea\

27 ch 100th): "

28 << '\n';

29 for (int i: std::views::iota(1'000'000, 1'001'000) | std::views::fi\

30 lter(odd)) {

31 if (i % 100 == 1) std::cout << i << " ";

32 }

33

34 std::cout << "\n\n";

35

36 std::cout << "Prime numbers from 1'000'000 to 1'001'000: " << '\n';

37 for (int i: std::views::iota(1'000'000, 1'001'000) | std::views::fi\

38 lter(odd)

39 | std::views::filte\

40 r(isPrime)) {

41 std::cout << i << " ";

42 }

43

44 std::cout << "\n\n";

45

46 std::cout << "20 prime numbers starting with 1'000'000: " << '\n';

The Standard Library 246

47 for (int i: std::views::iota(1'000'000) | std::views::filter(odd)

48 | std::views::filter(isPrim\

49 e)

50 | std::views::take(20)) {

51 std::cout << i << " ";

52 }

53

54 std::cout << '\n';

55

56 }

This is my iterative strategy:

• line 18: Of course, I don’t know when I have 20 primes greater than 1000000.
To be on the safe side, I create 1000 numbers. For obvious reasons, I displayed
only each 100th.

• line 27: I’m only interested in the odd numbers; therefore, I remove the even
numbers.

• line 34: Now, it’s time to apply the next filter. The predicate isPrime (line 7)
returns if a number is prime. As you can see in the following screenshot, I was
too eager. I got 75 primes.

• line 42: Laziness is a virtue. I use std::iota as an infinite number factory,
starting with 1000000 and ask precisely for 20 primes.

The Standard Library 247

The first 20 prime numbers, starting with 1,000,000

5.1.5 Define a View

You can define your own view.

5.1.5.1 std::ranges::view_interface

Thanks to the std::ranges::view_interface⁴ helper class, defining a view is easy.
To fulfil the concept view, your view needs at least a default constructor, and member
functions begin() and end():

⁴https://en.cppreference.com/w/cpp/ranges/view_interface

https://en.cppreference.com/w/cpp/ranges/view_interface
https://en.cppreference.com/w/cpp/ranges/view_interface

The Standard Library 248

Your own view

class MyView : public std::ranges::view_interface<MyView> {

public:

auto begin() const { /*...*/ }

auto end() const { /*...*/ }

};

By deriving MyView public from the helper class std::ranges::view_interface using
itself as a template parameter, MyView becomes a view. This technique of class
template having itself as a template parameter is calledCuriously Recurring Template
Pattern⁵ (short CRTP).

I use this technique in the next example to create a view out of a container of the
Standard Template Library.

5.1.5.2 A Container View

The view ContainerView creates a view on an arbitrary container.

Creating a view from a container

1 // containerView.cpp

2

3 #include <iostream>

4 #include <ranges>

5 #include <string>

6 #include <vector>

7

8 template<std::ranges::input_range Range>

9 requires std::ranges::view<Range>

10 class ContainerView : public std::ranges::view_interface<ContainerView<\

11 Range>> {

12 private:

13 Range range_{};

14 std::ranges::iterator_t<Range> begin_{ std::begin(range_) };

⁵https://www.modernescpp.com/index.php/c-is-still-lazy

https://www.modernescpp.com/index.php/c-is-still-lazy
https://www.modernescpp.com/index.php/c-is-still-lazy
https://www.modernescpp.com/index.php/c-is-still-lazy

The Standard Library 249

15 std::ranges::iterator_t<Range> end_{ std::end(range_) };

16

17 public:

18 ContainerView() = default;

19

20 constexpr ContainerView(Range r): range_(std::move(r)) ,

21 begin_(std::begin(r)), end_(std::en\

22 d(r)) {}

23

24 constexpr auto begin() const {

25 return begin_;

26 }

27 constexpr auto end() const {

28 return end_;

29 }

30 };

31

32 template<typename Range>

33 ContainerView(Range&& range) -> ContainerView<std::ranges::views::all_t\

34 <Range>>;

35

36 int main() {

37

38 std::vector<int> myVec{ 1, 2, 3, 4, 5, 6, 7, 8, 9};

39

40 auto myContainerView = ContainerView(myVec);

41 for (auto c : myContainerView) std::cout << c << " ";

42 std::cout << '\n';

43

44 for (auto i : std::views::reverse(ContainerView(myVec))) std::cout \

45 << i << ' ';

46 std::cout << '\n';

47

48 for (auto i : ContainerView(myVec) | std::views::reverse) std::cout \

49 << i << ' ';

50 std::cout << '\n';

The Standard Library 250

51

52 std::cout << std::endl;

53

54 std::string myStr = "Only for testing purpose.";

55

56 auto myContainerView2 = ContainerView(myStr);

57 for (auto c: myContainerView2) std::cout << c << " ";

58 std::cout << '\n';

59

60 for (auto i : std::views::reverse(ContainerView(myStr))) std::cout <\

61 < i << ' ';

62 std::cout << '\n';

63

64 for (auto i : ContainerView(myStr) | std::views::reverse) std::cout \

65 << i << ' ';

66 std::cout << '\n';

67

68 }

The class template ContainerView (line 8) derives from the helper class std::ranges::view_-
interface and requires that the container support the concept std::ranges::view
(line 9). The remaining, minimal implementation is straightforward. ContainerView
has a default constructor (line 17), and the two required member functions begin()
(line 22) and end() (line 25). For convenience, I added a user-defined deduction guide
for class template argument deduction (line 32).

In the main function, I apply the ContainerView on a std::vector (line 37) and a
std::string (line 49) and iterate through them forwards and backward.

The Standard Library 251

Creating a view from a container

Let me add a few words to the class template argument deduction guide.

Class Template Argument Deduction Guide
Since C++17, the compiler can deduce template parameters from template
arguments. The template deduction guide is a pattern for the compiler to
deduce the template arguments.

When you use ContainerView(myVec), the compiler applies the following
user-defined deduction guide:

User-Defined Deduction Guide for ContainerView
template<class Range>

ContainerView(Range&& range) -> ContainerView<std::ranges::views::all_t\

<Range>>;

Essentially, a call Container(myVec) causes the compiler to instantiate the
code on the right of the arrow ->:

Applying the deduction guide for Container(myVec)

ContainerView<std::ranges::views::all_t<std::vector<int>&>>(myVec);

cppreference.com⁶ provides more information to the user-defined deduc-
tion guide for class templates.

In the next section on the ranges library, I want to perform a small experiment. Can

⁶https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

The Standard Library 252

I add a flavor of Python into C++?

5.1.6 A Flavor of Python

The programming language Python⁷ has the convenient functions filter and map.

• filter: applies a predicate to all elements of an iterable and returns those
elements for which the predicate returns true

• map: applies a function to all elements of an iterable and returns a new iterable
with the transformed elements

An iterable in C++ would be a type that you could use in a range-based for loop.

Furthermore, Python lets you combine both functions in a list comprehension.

• list comprehension: applies a filter and map phase to an iterable and returns a
new iterable

Here is my challenge: I want to implement Python-like functions filter, map, and
list comprehension in C++20 using the ranges library.

5.1.6.1 filter

Python’s filter function can be directly mapped to the corresponding ranges
function.

⁷https://www.python.org/

https://www.python.org/
https://www.python.org/

The Standard Library 253

Python’s filter function in C++
1 // filterRanges.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <ranges>

6 #include <string>

7 #include <vector>

8

9 template <typename Func, typename Seq>

10 auto filter(Func func, const Seq& seq) {

11

12 typedef typename Seq::value_type value_type;

13

14 std::vector<value_type> result{};

15 for (auto i : seq | std::views::filter(func)) result.push_back(i);

16

17 return result;

18 }

19

20

21 int main() {

22

23 std::cout << '\n';

24

25 std::vector<int> myInts(50);

26 std::iota(myInts.begin(), myInts.end(), 1);

27 auto res = filter([](int i){ return (i % 3) == 0; }, myInts);

28 for (auto v: res) std::cout << v << " ";

29

30

31 std::vector<std::string> myStrings{"Only", "for", "testing", "purpo\

32 ses"};

33 auto res2 = filter([](const std::string& s){ return std::isupper(s[\

34 0]); },

35 myStrings);

The Standard Library 254

36

37 std::cout << "\n\n";

38

39 for (auto word: res2) std::cout << word << '\n';

40

41 std::cout << '\n';

42

43 }

Before I write a few words about the program, let me show you the output.

The filter function applied

The filter function (line 9) should be easy to read. Line 12 detects the type of the
underlying element. I just apply the callable func to each element of the sequence
and return the elements in the std::vector. Line 27 selects all numbers i from 1 to
50 for which (i % 3) == 0 holds. Only the strings that start with an uppercase letter
can pass the filter in line 32.

5.1.6.2 map

map applies a callable to each element of the input sequence.

The Standard Library 255

Python’s map function in C++
1 // mapRanges.cpp

2

3 #include <iostream>

4 #include <list>

5 #include <ranges>

6 #include <string>

7 #include <vector>

8 #include <utility>

9

10

11 template <typename Func, typename Seq>

12 auto map(Func func, const Seq& seq) {

13

14 typedef typename Seq::value_type value_type;

15 using return_type = decltype(func(std::declval<value_type>()));

16

17 std::vector<return_type> result{};

18 for (auto i :seq | std::views::transform(func)) result.push_back(i);

19

20 return result;

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 std::list<int> myInts{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

28 auto res = map([](int i){ return i * i; }, myInts);

29

30 for (auto v: res) std::cout << v << " ";

31

32 std::cout << "\n\n";

33

34 std::vector<std::string> myStrings{"Only", "for", "testing", "purpo\

35 ses"};

The Standard Library 256

36 auto res2 = map([](const std::string& s){ return std::make_pair(s.s\

37 ize(), s); },

38 myS\

39 trings);

40

41 for (auto p: res2) std::cout << "(" << p.first << ", " << p.second\

42 << ") " ;

43

44 std::cout << "\n\n";

45 \

46

47 }

Line 15 in the definition of the map function is quite interesting. The expression
decltype(func(std::declval<value_type>())) deduces the return_type. The
return_type is the type towhich all elements of the input sequence are transformed if
the function func is applied to them. std::declval<value_type>() returns an rvalue
reference that decltype can use to deduce the type. This means the call map([](int
i){ return i * i; }, myInts) (line 28) maps each element of myInt to its square
and the call map([](const std::string& s){ return std::make_pair(s.size(),

s); }, myStrings) maps each string of myStrings to a pair. The first element of
each pair is the length of the string.

The map function applied

5.1.6.3 List Comprehension

The program listComprehensionRanges.cpp has a simplified version of Python’s list-
comprehension algorithm.

map applies a callable to each element of the input sequence.

The Standard Library 257

A simplified variant of Python’s list comprehension in C++
1 // listComprehensionRanges.cpp

2

3 #include <algorithm>

4 #include <cctype>

5 #include <functional>

6 #include <iostream>

7 #include <ranges>

8 #include <string>

9 #include <vector>

10 #include <utility>

11

12 template <typename T>

13 struct AlwaysTrue {

14 constexpr bool operator()(const T&) const {

15 return true;

16 }

17 };

18

19 template <typename Map, typename Seq, typename Filt = AlwaysTrue<

20 typename Seq::val\

21 ue_type>>

22 auto mapFilter(Map map, Seq seq, Filt filt = Filt()) {

23

24 typedef typename Seq::value_type value_type;

25 using return_type = decltype(map(std::declval<value_type>()));

26

27 std::vector<return_type> result{};

28 for (auto i :seq | std::views::filter(filt)

29 | std::views::transform(map)) result.push_back(i);

30 return result;

31 }

32

33 int main() {

34

35 std::cout << '\n';

The Standard Library 258

36

37 std::vector myInts{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

38

39 auto res = mapFilter([](int i){ return i * i; }, myInts);

40 for (auto v: res) std::cout << v << " ";

41

42 std::cout << "\n\n";

43

44 res = mapFilter([](int i){ return i * i; }, myInts,

45 [](auto i){ return i % 2 == 1; });

46 for (auto v: res) std::cout << v << " ";

47

48 std::cout << "\n\n";

49

50 std::vector<std::string> myStrings{"Only", "for", "testing", "purpo\

51 ses"};

52 auto res2 = mapFilter([](const std::string& s){

53 return std::make_pair(s.size(), s);

54 }, myStrings);

55 for (auto p: res2) std::cout << "(" << p.first << ", " << p.second\

56 << ") " ;

57

58 std::cout << "\n\n";

59

60 myStrings = {"Only", "for", "testing", "purposes"};

61 res2 = mapFilter([](const std::string& s){

62 return std::make_pair(s.size(), s);

63 }, myStrings,

64 [](const std::string& word){ return std::isupper(w\

65 ord[0]); });

66

67 for (auto p: res2) std::cout << "(" << p.first << ", " << p.second\

68 << ") " ;

69

70 std::cout << "\n\n";

71

The Standard Library 259

72 }

The default predicate that the filter function applies (line 19) always returns true
(line 12). Always truemeans that the function mapFilter simply behaves by default
as a map function. Consequently, the mapFilter function behaves in lines 37 and 49 as
does the previous map function. Line 42 and 55 apply both functions map and filter

in one call.

Both functions map and filter applied

Distilled Information

• The ranges library provides us with an additional version of the STL
algorithms. The ranges library algorithms are lazy, can work directly
on containers and can be composed.

• The algorithm of the ranges library
– are lazy and can, therefore, be invoked on infinite data streams.
– can operate directly on the container and don’t need a range
defined by two iterators.

– can be composed using the pipe (|) symbol.

The Standard Library 260

5.2 std::span

Cippi walks the dog

A std::span stands for an object that refers to a contiguous sequence of objects. A
std::span, sometimes also called a view, is never an owner. This contiguous sequence
of objects can be a plain C-array, a pointer with a size, a std::array, a std::vector,
or a std::string.

A std::span can have a static extent or a dynamic extent. By default, std::span has
a dynamic extent :

Definition of std::span

template <typename T, std::size_t Extent = std::dynamic_extent>

class span;

5.2.1 Static versus Dynamic Extent

When a std::span has a static extent, its size is known at compile time and part
of the type: std::span<T, size>. Consequently, its implementation needs only a
pointer to the first element of the contiguous sequence of objects.

The Standard Library 261

Implementing a std::span with a dynamic extent consists of a pointer to the first
element and the size of the contiguous sequence of objects. The size is not part of the
type: std::span<T>.

The next example staticDynamicExtentSpan.cpp emphasizes the differences be-
tween both kinds of views.

std::spans with static and dynamic extent

1 // staticDynamicExtentSpan.cpp

2

3 #include <iostream>

4 #include

5 #include <vector>

6

7 void printMe(std::span<int> container) {

8

9 std::cout << "container.size(): " << container.size() << '\n';

10 for (auto e : container) std::cout << e << ' ';

11 std::cout << "\n\n";

12 }

13

14 int main() {

15

16 std::cout << '\n';

17

18 std::vector myVec1{1, 2, 3, 4, 5};

19 std::vector myVec2{6, 7, 8, 9};

20

21 std::span<int> dynamicSpan(myVec1);

22 std::span<int, 4> staticSpan(myVec2);

23

24 printMe(dynamicSpan);

25 printMe(staticSpan); // implicitly converted into a dynamic span

26

27 // staticSpan = dynamicSpan; ERROR

28 dynamicSpan = staticSpan;

29

The Standard Library 262

30 printMe(staticSpan);

31

32 std::cout << '\n';

33

34 }

dynamicSpan (line 21) has a dynamic extent, while staticSpan (line 22) has a static
extent. Both std::spans return their size in the printMe function (line 9). A std::span

with static extent can be assigned to a std::span with dynamic extent, but not the
other way around. Line 27 would cause an error, but lines 7, 25, and 28 are valid.

std::spans with static and dynamic extent

One important reason for having a std::span<T> is that a plain C-array decays⁸ to
a pointer if passed to a function; therefore, the size is lost. This decay is a typical
reason for errors in C/C++.

5.2.2 Automatically Deduces the Size of a Contiguous
Sequence of Objects

In contrast to a C-array, std::span<T> automatically deduces the size of contiguous
sequences of objects.

⁸https://en.cppreference.com/w/cpp/types/decay

https://en.cppreference.com/w/cpp/types/decay
https://en.cppreference.com/w/cpp/types/decay

The Standard Library 263

A std::span automatically deduces the size of its referenced sequence of objects

1 // printSpan.cpp

2

3 #include <iostream>

4 #include <vector>

5 #include <array>

6 #include

7

8 void printMe(std::span<int> container) {

9

10 std::cout << "container.size(): " << container.size() << '\n';

11 for (auto e : container) std::cout << e << ' ';

12 std::cout << "\n\n";

13 }

14

15 int main() {

16

17 std::cout << '\n';

18

19 int arr[]{1, 2, 3, 4};

20 printMe(arr);

21

22 std::vector vec{1, 2, 3, 4, 5};

23 printMe(vec);

24

25 std::array arr2{1, 2, 3, 4, 5, 6};

26 printMe(arr2);

27

28 }

The C-array (line 19), std::vector (line 22), and the std::array (line 25) contain
int values. Consequently, std::span also holds int values. There is something more
interesting in this simple example. For each container, std::span can deduce its size
(line 10).

The Standard Library 264

Automatic size deduction of a std::span

There are more ways to create a std::span.

5.2.3 Create a std::span from a Pointer and a Size

You can create a std::span from a pointer and a size.

Create a std::span

1 // createSpan.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11 std::cout << std::boolalpha;

12

13 std::vector myVec{1, 2, 3, 4, 5};

14

15 std::span mySpan1{myVec};

The Standard Library 265

16 std::span mySpan2{myVec.data(), myVec.size()};

17

18 bool spansEqual = std::equal(mySpan1.begin(), mySpan1.end(),

19 mySpan2.begin(), mySpan2.end());

20

21 std::cout << "mySpan1 == mySpan2: " << spansEqual << '\n';

22

23 std::cout << '\n';

24

25 }

As you may expect, mySpan1, created from the std::vector (line 15), and mySpan2,
created from a pointer and a size (line 16), are equal (line 21).

Create a std::span from a pointer and a size

A std::span is neither a std::string_view nor a
view
You may remember that a std::span is sometimes called a view. Don’t
confuse a std::span with a view from the ranges library or a std::string_-
view⁹.

A view from the ranges library is something that you can apply on a range
and performs some operation. A view does not own data, and its time for
each copy, move, and assignment is constant.

A std::span and a std::string_view are non-owning views and can deal
with strings. Themain difference between a std::span and a std::string_-
view is that a std::span can modify its referenced objects.

⁹https://www.modernescpp.com/index.php/c-17-what-s-new-in-the-library

https://www.modernescpp.com/index.php/c-17-what-s-new-in-the-library
https://www.modernescpp.com/index.php/c-17-what-s-new-in-the-library
https://www.modernescpp.com/index.php/c-17-what-s-new-in-the-library

The Standard Library 266

5.2.4 Modifying the Referenced Objects

You can modify an entire span or only a subspan. When you modify a span, you
modify the referenced objects.

The following program shows how a subspan can be used to modify the referenced
objects from a std::vector.

Modify the objects referenced by a std::span

1 // spanTransform.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6 #include

7

8 void printMe(std::span<int> container) {

9

10 std::cout << "container.size(): " << container.size() << '\n';

11 for (auto e : container) std::cout << e << ' ';

12 std::cout << "\n\n";

13 }

14

15 int main() {

16

17 std::cout << '\n';

18

19 std::vector vec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

20 printMe(vec);

21

22 std::span span1(vec);

23 std::span span2{span1.subspan(1, span1.size() - 2)};

24

25

26 std::transform(span2.begin(), span2.end(),

27 span2.begin(),

28 [](int i){ return i * i; });

The Standard Library 267

29

30

31 printMe(vec);

32 printMe(span1);

33

34 }

span1 references the std::vector vec (line 22). In contrast, span2 references only
the elements of the underlying vec excluding the first and the last element (line 23).
Consequently, the mapping of each element to its square (line 26) only addresses
these elements.

Modify the objects referend by a std::span

There are various convenience functions to address the elements of the std::span.

5.2.5 Addressing std::span Elements

The following table presents the functions to refer to the elements of a std::span.

The Standard Library 268

Interface of a std::span sp

Function Description

sp.front() Access the first element.

sp.back() Access the last element.

sp[i] Access the i-th element.

sp.data() Returns a pointer to the beginning of the sequence.

sp.size() Returns the number of elements of the sequence.

sp.size_bytes() Returns the size of the sequence in bytes.

sp.empty() Returns true if the sequence is empty.

sp.first<count>() Returns a subspan consisting of the first count elements
of the sequence.

sp.first(count)

sp.last<count>() Returns a subspan consisting of the last count elements
of the sequence.

sp.last(count)

sp.subspan<first, count>() Returns a subspan consisting of count elements starting
at first.

sp.subspan(first, count)

The program subspan.cpp shows the usage of the member function subspan.

The Standard Library 269

Use of the member function subspan

1 // subspan.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include

6 #include <vector>

7

8 int main() {

9

10 std::cout << '\n';

11

12 std::vector<int> myVec(20);

13 std::iota(myVec.begin(), myVec.end(), 0);

14 for (auto v: myVec) std::cout << v << " ";

15

16 std::cout << "\n\n";

17

18 std::span<int> mySpan(myVec);

19 auto length = mySpan.size();

20

21 std::size_t count = 5;

22 for (std::size_t first = 0; first <= (length - count); first += cou\

23 nt) {

24 for (auto ele: mySpan.subspan(first, count)) std::cout << ele <\

25 < " ";

26 std::cout << '\n';

27 }

28

29 }

Line 13 fills the vector with all numbers from 0 to 19 (line 13) using the algorithm
std::iota¹⁰. This vector is further used to initialize a std::span (line 18). Finally, the

¹⁰https://en.cppreference.com/w/cpp/algorithm/iota

https://en.cppreference.com/w/cpp/algorithm/iota
https://en.cppreference.com/w/cpp/algorithm/iota

The Standard Library 270

for loop (line 22) uses the function subspan to create all subspans starting at first
and having count elements until mySpan is consumed.

Use of the member function subspan

KilianHenneberger remindedme of a special use case of std::span. A constant range
of modifiable elements.

5.2.6 A Constant Range of Modifiable Elements

For simplicity, I name a std::vector and a std::span a range. A std::vector, like
a std::string models a modifiable range of modifiable elements: std::vector<T>.
When you declare this std::vector as const, the range models a constant range
of constant objects: const std::vector<T>. You cannot model a constant range
of modifiable elements. Here comes std::span into play. A std::span models a
constant range of modifiable objects: std::span<T>. The following table emphasizes
the variations of (constant/modifiable) ranges and (constant/modifiable) elements.

(Constant/modifiable) ranges of (constant/modifiable) elements

Modifiable Elements Constant Elements

Modifiable Range std::vector<T>

Constant Range std::span<T> const std::vector<T>

std::span<const T>

The program constRangeModifiableElements.cpp exemplifies each combination.

The Standard Library 271

(Constant/modifiable) ranges of (constant/modifiable) elements
1 // constRangeModifiableElements.cpp

2

3 #include <iostream>

4 #include

5 #include <vector>

6

7 void printMe(std::span<int> container) {

8

9 std::cout << "container.size(): " << container.size() << '\n';

10 for (auto e : container) std::cout << e << ' ';

11 std::cout << "\n\n";

12 }

13

14 int main() {

15

16 std::cout << '\n';

17

18 std::vector<int> origVec{1, 2, 2, 4, 5};

19

20 // Modifiable range of modifiable elements

21 std::vector<int> dynamVec = origVec;

22 dynamVec[2] = 3;

23 dynamVec.push_back(6);

24 printMe(dynamVec);

25

26 // Constant range of constant elements

27 const std::vector<int> constVec = origVec;

28 // constVec[2] = 3; ERROR

29 // constVec.push_back(6); ERROR

30 std::span<const int> constSpan(origVec);

31 // constSpan[2] = 3; ERROR

32

33 // Constant range of modifiable elements

34 std::span<int> dynamSpan{origVec};

35 dynamSpan[2] = 3;

The Standard Library 272

36 printMe(dynamSpan);

37

38 std::cout << '\n';

39

40 }

The vector dynamVec (line 21) is a modifiable range of modifiable elements. This
observation does not hold for the vector constVec (line 27). Neither can constVec

change an element nor its size. constSpan (line 30) behaves accordingly. dynamSpan
models the unique use case of a constant range of modifiable elements.

(Constant/modifiable) ranges of (constant/modifiable) elements

Distilled Information

• A std::span is an object that refers to a contiguous sequence of
objects. A std::span, also known as view, is never an owner and,
therefore, does not allocate memory. The contiguous sequence of
objects can be a plain C-array, a pointer with a size, a std::array,
a std::vector, or a std::string.

• In contrast to a C-array, a std::span automatically deduces the size
of its referenced sequence of objects.

• When a std::span modifies its elements, the reference objects are
also modified.

The Standard Library 273

5.3 Container Improvements

Cippi inspects the container

C++20 has many improvements regarding containers of the Standard Template
Library. First of all, std::vector and std::string have constexpr constructors
and so can be used at compile time. All containers support consistent container
erasure and the associative containers a member function contains. Additionally,
std::string allows you to check for a prefix or suffix.

5.3.1 constexpr Containers and Algorithms

C++20 supports the constexpr containers std::vector and std::string, where
constexpr means that the member functions of both containers can be applied at
compile time. Additionally, the more than 100 algorithms¹¹ of the Standard Template
Library are declared as constexpr.

Consequently, you can sort a std::vector of ints at compile time.

¹¹https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm

The Standard Library 274

Sort a std::vector at compile time

1 // constexprVector.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 constexpr int maxElement() {

8 std::vector myVec = {1, 2, 4, 3};

9 std::sort(myVec.begin(), myVec.end());

10 return myVec.back();

11 }

12 int main() {

13

14 std::cout << '\n';

15

16 constexpr int maxValue = maxElement();

17 std::cout << "maxValue: " << maxValue << '\n';

18

19 constexpr int maxValue2 = [] {

20 std::vector myVec = {1, 2, 4, 3};

21 std::sort(myVec.begin(), myVec.end()) ;

22 return myVec.back();

23 }();

24

25 std::cout << "maxValue2: " << maxValue2 << '\n';

26

27 std::cout << '\n';

28

29 }

The two containers std::vector (line 8 and 20) are sorted at compile time using
constexpr-declared functions. In the first case, the function maxElement returns the
last element of the vector myVec, which is its maximum value. In the second case, I
use an immediately-invoked lambda that is declared constexpr.

The Standard Library 275

Sort a std::vector at compile time

5.3.2 std::array

C++20 offers two convenientways to create arrays. std::to_array creates a std::array
and std::make_shared allows it to create a std::shared_ptr of arrays.

5.3.2.1 std::to_array

std::to_array creates a std::array from an existing one-dimensional array. The
elements of the created std::array are copy-initialized from the existing one-
dimensional array.

The one-dimensional existing array can be a C-string, a std::initializer_list,
or a one-dimensional array of std::pair. The following example is from cppref-
erence.com/to_array¹².

Create a std::array from various one-dimensional arrays

1 // toArray.cpp

2

3 #include <iostream>

4 #include <utility>

5 #include <array>

6 #include <memory>

7

8 int main() {

9

10 std::cout << '\n';

11

12 auto arr1 = std::to_array("A simple test");

¹²https://en.cppreference.com/w/cpp/container/array/to_array

https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array

The Standard Library 276

13 for (auto a: arr1) std::cout << a;

14 std::cout << "\n\n";

15

16 auto arr2 = std::to_array({1, 2, 3, 4, 5});

17 for (auto a: arr2) std::cout << a;

18 std::cout << "\n\n";

19

20 auto arr3 = std::to_array<double>({0, 1, 3});

21 for (auto a: arr3) std::cout << a;

22 std::cout << '\n';

23 std::cout << "typeid(arr3[0]).name(): " << typeid(arr3[0]).name() <\

24 < '\n';

25 std::cout << '\n';

26

27 auto arr4 = std::to_array<std::pair<int, double>>({ {1, 0.0}, {2, 5\

28 .1},

29 {3, 5.1} });

30 for (auto p: arr4) {

31 std::cout << "(" << p.first << ", " << p.second << ")" << '\n';

32 }

33

34 std::cout << "\n\n";

35

36 }

I created a std::array from aC-string (line 12), from a std::initializer_list (lines
16 and 20), and from a std::initializer_list of std::pair’s (line 26). In general,
the compiler can deduce the type of the std::array. Optionally, you can specify the
type (lines 20 and 26).

The Standard Library 277

Create various std::array from existing one-dimensional arrays

5.3.2.2 std::make_shared

Since C++11, C++ supports the creation of the std::shared_ptr via the factory func-
tion std::make_shared¹³. With C++20, this factory function supports the creation of
arrays of std::shared_ptr.

• std::shared_ptr<double[]> shar = std::make_shared<double[]>(1024):
creates a shared_ptr with 1024 default-initialized doubles

• std::shared_ptr<double[]> shar = std::make_shared<double[]>(1024, 1.0):
creates a shared_ptr with 1024 doubles initialized to 1.0

5.3.3 Consistent Container Erasure

Before C++20, removing elements from a container was too complicated. Let me
show why.

5.3.3.1 The erase-remove Idiom

Removing an element from a container seems to be quite easy. In the case of a
std::vector, you can use the function std::remove_if.

¹³https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

The Standard Library 278

Using std::remove_if to remove elements from a container

1 // removeElements.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::vector myVec{-2, 3, -5, 10, 3, 0, -5 };

12

13 for (auto ele: myVec) std::cout << ele << " ";

14 std::cout << "\n\n";

15

16 std::remove_if(myVec.begin(), myVec.end(), [](int ele){ return ele \

17 < 0; });

18 for (auto ele: myVec) std::cout << ele << " ";

19

20 std::cout << "\n\n";

21

22 }

The program removeElements.cpp removes all elements from the std::vector that
are less than zero. Easy, right? Maybe not; now, you fall into the trap that is well-
known to many seasoned C++ programmer.

The Standard Library 279

Using std::remove_if to remove elements from a container

std::remove_if (lines 16) does not remove anything. The std::vector still has the
same number of arguments. Both algorithms return the new logical end of the
modified container.

To modify a container, you have to apply the new logical end to the container.

Applying the erase-remove idiom to a container

1 // eraseRemoveElements.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <vector>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::vector myVec{-2, 3, -5, 10, 3, 0, -5 };

12

13 for (auto ele: myVec) std::cout << ele << " ";

14 std::cout << "\n\n";

15

16 auto newEnd = std::remove_if(myVec.begin(), myVec.end(),

17 [](int ele){ return ele < 0; });

18 myVec.erase(newEnd, myVec.end());

The Standard Library 280

19 // myVec.erase(std::remove_if(myVec.begin(), myVec.end(),

20 // [](int ele){ return ele < 0; }), myVec.end());

21 for (auto ele: myVec) std::cout << ele << " ";

22

23 std::cout << "\n\n";

24

25 }

Line (16) returns the new logical end newEnd of the container myVec. This new logical
end is applied in line 18 to remove all elements from myVec starting at newEnd. When
you apply the functions remove and erase in one expression such as in line 19, you
see exactly why this construct is called erase-remove idiom.

Using the erase-remove idiom

Thanks to the new functions erase and erase_if in C++20, erasing elements from
containers is far more convenient.

5.3.3.2 erase and erase_if in C++20

With erase and erase_if, you can directly operate on the container. In contrast, the
previously presented erase-remove idiom is quite verbose: it requires two iterations.

Let’s see what the new functions erase and erase_ifmean in practice. The following
program erases elements from a few containers.

The Standard Library 281

Erase elements from a container
1 // eraseCpp20.cpp

2

3 #include <iostream>

4 #include <numeric>

5 #include <deque>

6 #include <list>

7 #include <string>

8 #include <vector>

9

10 template <typename Cont>

11 void eraseVal(Cont& cont, int val) {

12 std::erase(cont, val);

13 }

14

15 template <typename Cont, typename Pred>

16 void erasePredicate(Cont& cont, Pred pred) {

17 std::erase_if(cont, pred);

18 }

19

20 template <typename Cont>

21 void printContainer(Cont& cont) {

22 for (auto c: cont) std::cout << c << " ";

23 std::cout << '\n';

24 }

25

26 template <typename Cont>

27 void doAll(Cont& cont) {

28 printContainer(cont);

29 eraseVal(cont, 5);

30 printContainer(cont);

31 erasePredicate(cont, [](auto i) { return i >= 3; });

32 printContainer(cont);

33 }

34

35 int main() {

The Standard Library 282

36

37 std::cout << '\n';

38

39 std::string str{"A Sentence with an E."};

40 std::cout << "str: " << str << '\n';

41 std::erase(str, 'e');

42 std::cout << "str: " << str << '\n';

43 std::erase_if(str, [](char c){ return std::isupper(c); });

44 std::cout << "str: " << str << '\n';

45

46 std::cout << "\nstd::vector " << '\n';

47 std::vector vec{1, 2, 3, 4, 5, 6, 7, 8, 9};

48 doAll(vec);

49

50 std::cout << "\nstd::deque " << '\n';

51 std::deque deq{1, 2, 3, 4, 5, 6, 7, 8, 9};

52 doAll(deq);

53

54 std::cout << "\nstd::list" << '\n';

55 std::list lst{1, 2, 3, 4, 5, 6, 7, 8, 9};

56 doAll(lst);

57

58 }

Line 41 erases all the 'e' characters from the given string str. Line 43 applies the
lambda expression to the same string and erases all the upper case letters.

In the rest of the program, elements of the sequence containers std::vector (line
47), std::deque (line 51), and std::list (line 55) are erased. On each container,
the function template doAll (line 26) is applied. doAll erases the element 5 and all
elements greater than or equal to 3. The function template eraseVal (line 10) uses
the new function erase and the function template erasePredicate (line 15) uses the
new function erase_if.

The Standard Library 283

Application of the new functions erase and erase_if

The new functions erase and erase_if can be applied to all containers of the
Standard Template Library. This does not hold for the next convenience function
contains, which requires an associative container.

5.3.4 contains for Associative Containers

Thanks to the function contains, you can easily check if an element exists in an
associative container. Stop, you may say, we can already do this with find or count.

No, both functions are not beginner-friendly and have their downsides.

The Standard Library 284

Erase elements from a container

1 // checkExistence.cpp

2

3 #include <set>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 std::set mySet{3, 2, 1};

11 if (mySet.find(2) != mySet.end()) {

12 std::cout << "2 inside" << '\n';

13 }

14

15 std::multiset myMultiSet{3, 2, 1, 2};

16 if (myMultiSet.count(2)) {

17 std::cout << "2 inside" << '\n';

18 }

19

20 std::cout << '\n';

21

22 }

The functions produce the expected result.

Use of find and count to check if a container has a given element

There are issues with both calls. The find call (line 11) is too verbose. The same
argument holds for the count call (line 16). The count call also has a performance
issue. When you want to know if an element is in a container, you should stop when

The Standard Library 285

you found it and not count until the end. In the concrete case myMultiSet.count(2)
returned 2.

Unlike find and count, the contains member function in C++20 is quite convenient
to use.

contains in C++20

1 // containsElement.cpp

2

3 #include <iostream>

4 #include <set>

5 #include <map>

6 #include <unordered_set>

7 #include <unordered_map>

8

9 template <typename AssocCont>

10 bool containsElement5(const AssocCont& assocCont) {

11 return assocCont.contains(5);

12 }

13

14 int main() {

15

16 std::cout << std::boolalpha;

17

18 std::cout << '\n';

19

20 std::set<int> mySet{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

21 std::cout << "containsElement5(mySet): " << containsElement5(mySet);

22

23 std::cout << '\n';

24

25 std::unordered_set<int> myUnordSet{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

26 std::cout << "containsElement5(myUnordSet): " << containsElement5(m\

27 yUnordSet);

28

29 std::cout << '\n';

30

The Standard Library 286

31 std::map<int, std::string> myMap{ {1, "red"}, {2, "blue"}, {3, "gre\

32 en"} };

33 std::cout << "containsElement5(myMap): " << containsElement5(myMap);

34

35 std::cout << '\n';

36

37 std::unordered_map<int, std::string> myUnordMap{ {1, "red"},

38 {2, "blue"}, {3, "\

39 green"} };

40 std::cout << "containsElement5(myUnordMap): " << containsElement5(m\

41 yUnordMap);

42

43 std::cout << '\n';

44

45 }

There is not much to add to this example. The function template containsElement5
returns true if the associative container contains the key 5. In my example, I
used only the associative containers std::set, std::unordered_set, std::map, and
std::unordered_set, none of which can hold a given key more than once.

Use of the new function contains

5.3.5 String prefix and suffix checking

std::string gets new member functions starts_with and ends_with. They allow
you to check if a std::string starts or ends with a specified substring.

The Standard Library 287

Check if a string starts with or ends with a given string
1 // stringStartsWithEndsWith.cpp

2

3 #include <iostream>

4 #include <string_view>

5 #include <string>

6

7 template <typename PrefixType>

8 void startsWith(const std::string& str, PrefixType prefix) {

9 std::cout << " starts with " << prefix << ": "

10 << str.starts_with(prefix) << '\n';

11 }

12

13 template <typename SuffixType>

14 void endsWith(const std::string& str, SuffixType suffix) {

15 std::cout << " ends with " << suffix << ": "

16 << str.ends_with(suffix) << '\n';

17 }

18

19 int main() {

20

21 std::cout << '\n';

22

23 std::cout << std::boolalpha;

24

25 std::string helloWorld("Hello World");

26

27 std::cout << helloWorld << '\n';

28

29 startsWith(helloWorld, helloWorld);

30

31 startsWith(helloWorld, std::string_view("Hello"));

32

33 startsWith(helloWorld, 'H');

34

35 std::cout << "\n\n";

The Standard Library 288

36

37 std::cout << helloWorld << '\n';

38

39 endsWith(helloWorld, helloWorld);

40

41 endsWith(helloWorld, std::string_view("World"));

42

43 endsWith(helloWorld, 'd');

44

45 }

Bothmember functions starts_with and ends_with are predicates and, hence, return
a boolean. You can invoke the new member functions starts_with and ends_with

with a std::string (lines 29 and 39), a std::string_view (lines 31 and 41), and a
char (lines 33 and 43).

Check if a string starts with or ends with a given string

The Standard Library 289

Distilled Information

• std::vector and std::string have constexpr constructors and can,
therefore, be instantiated at compile time. Thanks to the constexpr

algorithms of the Standard Template Library (STL), you can manipu-
late them at compile time.

• C++20 offers two convenient ways to create arrays. std::to_array
creates a std::array and std::make_shared allows the creation of a
std::shared_ptr wrapping a C-array.

• The new algorithm std::erase and std::erase_if are used to erase
specific elements (erase) or elements satisfying a predicate (erase_-
if) from an arbitrary container of the STL.

• Thanks to the member function contains, you can check for an
associative container if it has the requested key.

• std::string supports the new member function start_with and
end_with to check if the container has a specific prefix or suffix.

The Standard Library 290

5.4 Arithmetic Utilities

Cippi studies arithmetic

The comparison of signed and unsigned integers is a subtle cause for unexpected
behavior and, therefore, of bugs. Thanks to the new safe comparison functions for
integers, std::cmp_*, a source of subtle bugs is gone. Additionally, C++20 includes
mathematical constants such as e, π, or ϕ, and with the functions std::midpoint
and std::lerp, you can calculate the midpoint of two numbers or their linear
interpolation. The new bit manipulation allows you to access and modify individual
bits or bit sequences.

5.4.1 Safe Comparison of Integers

When you compare signed and unsigned integers, you may not get the result you
expect. Thanks to the six std::cmp_* functions, there is a cure in C++20. To motivate
safe comparison of integers, I want to start with the unsafe variant.

Integral versus Integer
The terms integral and integer are synonyms in C++. This is the wording
from the standard for fundamental types: “Types bool, char, char8_t,
char16_t, char32_t, wchar_t, and the signed and unsigned integer types
are collectively called integral types. A synonym for [an] integral type is
integer type”. I prefer the term integer in this book.

The Standard Library 291

5.4.1.1 Unsafe Comparison

Of course, there is a reason for the name unsafeComparison.cpp of the following
program.

Unsafe comparison of integers

1 // unsafeComparison.cpp

2

3 #include <iostream>

4

5 int main() {

6

7 std::cout << '\n';

8

9 std::cout << std::boolalpha;

10

11 int x = -3;

12 unsigned int y = 7;

13

14 std::cout << "-3 < 7: " << (x < y) << '\n';

15 std::cout << "-3 <= 7: " << (x <= y) << '\n';

16 std::cout << "-3 > 7: " << (x > y) << '\n';

17 std::cout << "-3 => 7: " << (x >= y) << '\n';

18

19 std::cout << '\n';

20

21 }

When I execute the program, the output may not meet your expectations.

The Standard Library 292

Surprises with unsafe comparisons of integers

When you read the output of the program, you recognize that -3 is bigger than 7.
You presumably know the reason. I compared a signed x (line 11) with an unsigned

y (line 12). What is happening under the hood? The following program provides the
answer.

Unsafe comparison of integers resolved

1 // unsafeComparison2.cpp

2

3 int main() {

4 int x = -3;

5 unsigned int y = 7;

6

7 bool val = x < y;

8 static_assert(static_cast<unsigned int>(-3) == 4'294'967'293);

9 }

In the example, I’m focusing on the less-than operator. C++ Insights¹⁴ gives me the
following output:

¹⁴https://cppinsights.io/s/62732a01

https://cppinsights.io/s/62732a01
https://cppinsights.io/s/62732a01

The Standard Library 293

Unsafe comparison analyzed

Here is what’s happening:

• The compiler transforms the expression x < y (line 7) into static_cast<unsigned
int>(x) < y. In particular, the signed x is converted to an unsigned int.

• Due to the conversion, -3 becomes 4'294'967'293.
• 4'294'967'293 is equal to −3 mod 232

• 32 is the number of bits of an unsigned int on C++ Insights.

Thanks to C++20, we have a safe comparison of integers.

5.4.1.2 Safe Comparison of Integers

C++20 supports six comparison functions for integers:

Six safe comparison functions

Compare Function Meaning

std::cmp_equal ==

std::cmp_not_equal !=

std::cmp_less <

std::cmp_less_equal <=

std::cmp_greater >

std::cmp_greater_equal >=

The Standard Library 294

Thanks to the six comparison functions, I can easily transform the previous program
unsafeComparison.cpp into the program safeComparison.cpp. The new comparison
functions require the header <utility>.

Safe comparison of integers

// safeComparison.cpp

#include <iostream>

#include <utility>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

int x = -3;

unsigned int y = 7;

std::cout << "-3 == 7: " << std::cmp_equal(x, y) << '\n';

std::cout << "-3 != 7: " << std::cmp_not_equal(x, y) << '\n';

std::cout << "-3 < 7: " << std::cmp_less(x, y) << '\n';

std::cout << "-3 <= 7: " << std::cmp_less_equal(x, y) << '\n';

std::cout << "-3 > 7: " << std::cmp_greater(x, y) << '\n';

std::cout << "-3 => 7: " << std::cmp_greater_equal(x, y) << '\n';

std::cout << '\n';

}

Additionally, I applied the equal and not equal operators.

The Standard Library 295

Safe comparison

Invoking a safe-comparison function with a non-integer, such as a double, causes a
compile-time error.

Safe comparison of an unsigned int and a double

// safeComparison2.cpp

#include <iostream>

#include <utility>

int main() {

double x = -3.5;

unsigned int y = 7;

std::cout << "-3.5 < 7: " << std::cmp_less(x, y); // ERROR

}

On the other hand, you can compare a double and an unsigned int the classical way.
The program classicalComparison.cpp applies classical comparison of a double and
an unsigned int.

The Standard Library 296

Classical comparison of an unsigned int and a double

// classicalComparison.cpp

int main() {

double x = -3.5;

unsigned int y = 7;

auto res = x < y; // true

}

It works. The unsigned int is floating-point promoted¹⁵ to double. C++ Insights¹⁶
shows the truth:

Floating point promotion to double

5.4.2 Mathematical Constants

First of all, the constants require the header <numbers> and the namespace std::numbers.
The following table gives you an overview.

¹⁵https://en.cppreference.com/w/cpp/language/implicit_conversion
¹⁶https://cppinsights.io/s/44216566

https://en.cppreference.com/w/cpp/language/implicit_conversion
https://cppinsights.io/s/44216566
https://en.cppreference.com/w/cpp/language/implicit_conversion
https://cppinsights.io/s/44216566

The Standard Library 297

The mathematical constants

Mathematical Constant Description

std::numbers::e e

std::numbers::log2e log
2
e

std::numbers::log10e log
10

e

std::numbers::pi π

std::numbers::inv_pi 1
π

std::numbers::inv_-

sqrtpi

1√
π

std::numbers::ln2 ln 2

std::numbers::ln10 ln 10

std::numbers::sqrt2
√
2

std::numbers::sqrt3
√
3

std::numbers::inv_-

sqrt3

1√
3

std::numbers::egamma Euler-Mascheroni
constant¹⁷

std::numbers::phi ϕ

The program mathematicConstants.cpp applies the mathematical constants.

¹⁷https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant

https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant

The Standard Library 298

The mathematical constants
// mathematicConstants.cpp

#include <iomanip>

#include <iostream>

#include <numbers>

int main() {

std::cout << '\n';

std::cout<< std::setprecision(10);

std::cout << "std::numbers::e: " << std::numbers::e << '\n';

std::cout << "std::numbers::log2e: " << std::numbers::log2e << '\n\

';

std::cout << "std::numbers::log10e: " << std::numbers::log10e << '\

\n';

std::cout << "std::numbers::pi: " << std::numbers::pi << '\n';

std::cout << "std::numbers::inv_pi: " << std::numbers::inv_pi << '\

\n';

std::cout << "std::numbers::inv_sqrtpi: " << std::numbers::inv_sqr\

tpi << '\n';

std::cout << "std::numbers::ln2: " << std::numbers::ln2 << '\n';

std::cout << "std::numbers::sqrt2: " << std::numbers::sqrt2 << '\n\

';

std::cout << "std::numbers::sqrt3: " << std::numbers::sqrt3 << '\n\

';

std::cout << "std::numbers::inv_sqrt3: " << std::numbers::inv_sqrt\

3 << '\n';

std::cout << "std::numbers::egamma: " << std::numbers::egamma << '\

\n';

std::cout << "std::numbers::phi: " << std::numbers::phi << '\n';

std::cout << '\n';

The Standard Library 299

}

Here is the output of the program with the MSVC compiler.

Use of all mathematical constants

The mathematical constants are available for float, double, and long double. By
default, double is used but, you can also specify float (std::numbers::pi_v<float>)
or long double (std::numbers::pi_v<long double>).

5.4.3 Midpoint and Linear Interpolation

• std::midpoint(a, b): calculates the midpoint (a + (b - a) / 2) of integers,
floating points, or pointers. If a and b are pointers, they have to point to the
same array object. The function needs the header <numeric>.

• std::lerp(a, b, t): calculates the linear interpolation (a + t(b - a)). When t

is outside the range [0, 1], it calculates the linear extrapolation. The function
needs the header <cmath>.

The program midpointLerp.cpp applies both functions.

The Standard Library 300

Calculating the midpoint and the linear interpolation of numbers

1 // midpointLerp.cpp

2

3 #include <cmath>

4 #include <numeric>

5 #include <iostream>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::cout << "std::midpoint(10, 20): " << std::midpoint(10, 20) << \

12 '\n';

13

14 std::cout << '\n';

15

16 for (auto v: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\

17 }) {

18 std::cout << "std::lerp(10, 20, " << v << "): " << std::lerp(10\

19 , 20, v)

20 << '\n';

21 }

22

23 std::cout << '\n';

24

25 }

The program should, together with its output, be self-explanatory.

The Standard Library 301

Calculating the midpoint and the linear interpolation of numbers

5.4.4 Bit Manipulation

The header <bit> supports functions to access and manipulate individual bits or bit
sequences.

5.4.4.1 std::endian

Thanks to the new type std::endian, you get the endianness of a scalar type.
Endianness can be big-endian or little-endian. Big-endian means that the most
significant byte is furthest left, little-endian means that the least significant byte is
furthest left. A scalar type is either an arithmetic type, an enum, a pointer, a member
pointer, or a std::nullptr_t.

The class endian provides the endianness of all scalar types:

The Standard Library 302

enum class endian

enum class endian

{

little = /*implementation-defined*/,

big = /*implementation-defined*/,

native = /*implementation-defined*/

};

• If all scalar types are little-endian, std::endian::native is equal to std::endian::little.
• If all scalar types are big-endian, std::endian::native is equal to std::endian::big.

Even corner cases are supported:

• If all scalar types have sizeof 1 and therefore endianness does not matter,
the values of the enumerators std::endian::little, std::endian::big, and
std::endian::native are identical.

• If the platform uses mixed endianness, std::endian::native is neither equal
to std::endian::big nor std::endian::little.

When I perform the following program getEndianness.cpp on a x86 architecture, I
get the answer little-endian.

enum class endian

// getEndianness.cpp

#include <bit>

#include <iostream>

int main() {

if constexpr (std::endian::native == std::endian::big) {

std::cout << "big-endian" << '\n';

}

else if constexpr (std::endian::native == std::endian::little) {

The Standard Library 303

std::cout << "little-endian" << '\n'; // little-endian

}

}

constexpr if enables the compiler to conditionally compile source code. This means
that the compilation depends on the endianness of your architecture.

5.4.4.2 Accessing or Manipulating Bits or Bit Sequences

The following table gives you an overview of all functions. You can find the functions
in the header <bit>.

Bit manipulation

Function Description

std::bit_cast Reinterprets the object representation

std::has_single_bit Checks if a number is a power of two

std::bit_ceil Finds the smallest integer power of two that is not smaller than
the given value

std::bit_floor Finds the largest integer power of two that is not greater than the
given value

std::bit_width Finds the smallest number of bits to represent the given value

std::rotl Computes the bitwise left-rotation

std::rotr Computes the bitwise right-rotation

std::countl_zero Counts the number of consecutive 0s, starting with the most
significant bit

std::countl_one Counts the number of consecutive 1s, starting with the most
significant bit

The Standard Library 304

Bit manipulation

Function Description

std::countr_zero Counts the number of consecutive 0s, starting with the least
significant bit

std::countr_one Counts the number of consecutive 1s, starting with the least
significant bit

std::popcount Counts the number of 1s in an unsigned integer

All of the functions except std::bit_cast require an unsigned integer type (unsigned
char, unsigned short, unsigned int, unsigned long, or unsigned long long).

The program bit.cpp shows the application of the functions.

Bit manipulation

// bit.cpp

#include <bit>

#include <bitset>

#include <iostream>

int main() {

std::uint8_t num= 0b00110010;

std::cout << std::boolalpha;

std::cout << "std::has_single_bit(0b00110010): " << std::has_single\

_bit(num)

<< '\n';

std::cout << "std::bit_ceil(0b00110010): " << std::bitset<8>(std::b\

it_ceil(num))

<< '\n';

std::cout << "std::bit_floor(0b00110010): "

The Standard Library 305

<< std::bitset<8>(std::bit_floor(num)) << '\n';

std::cout << "std::bit_width(5u): " << std::bit_width(5u) << '\n';

std::cout << "std::rotl(0b00110010, 2): " << std::bitset<8>(std::ro\

tl(num, 2))

<< '\n';

std::cout << "std::rotr(0b00110010, 2): " << std::bitset<8>(std::ro\

tr(num, 2))

<< '\n';

std::cout << "std::countl_zero(0b00110010): " << std::countl_zero(n\

um) << '\n';

std::cout << "std::countl_one(0b00110010): " << std::countl_one(num\

) << '\n';

std::cout << "std::countr_zero(0b00110010): " << std::countr_zero(n\

um) << '\n';

std::cout << "std::countr_one(0b00110010): " << std::countr_one(num\

) << '\n';

std::cout << "std::popcount(0b00110010): " << std::popcount(num) <<\

'\n';

}

Here is the output of the program.

The Standard Library 306

Bit manipulation

The following program shows the std::bit_floor, std::bit_ceil, std::bit_width,
and std::bit_popcount for the numbers 2 to 7.

Displaying std::bit_floor, std::bit_ceil, std::bit_width, and std::popcount for a few numbers

// bitFloorCeil.cpp

#include <bit>

#include <bitset>

#include <iostream>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

for (auto i = 2u; i < 8u; ++i) {

std::cout << "bit_floor(" << std::bitset<8>(i) << ") = "

<< std::bit_floor(i) << '\n';

std::cout << "bit_ceil(" << std::bitset<8>(i) << ") = "

<< std::bit_ceil(i) << '\n';

std::cout << "bit_width(" << std::bitset<8>(i) << ") = "

<< std::bit_width(i) << '\n';

The Standard Library 307

std::cout << "popcount(" << std::bitset<8>(i) << ") = "

<< std::popcount(i) << '\n';

std::cout << '\n';

}

std::cout << '\n';

}

Displaying std::bit_floor, std::bit_ceil, std::bit_width, and std::popcount for a few numbers

The Standard Library 308

Distilled Information

• The cmp_* functions in C++20 support the safe comparison of inte-
grals because they detect the comparison of a signed and an unsigned
integral. In the case of an unsafe comparison, the compilation fails.

• Many mathematical constants such as e, log
2
e, or π are now defined.

• C++20 provides utility functions for calculating the midpoint or
linear interpolation of two values.

• New functions to access and manipulate individual bits or bit se-
quences are available.

The Standard Library 309

5.5 Calendar and Time Zones

Cippi studies the calendar

The Standard Library 310

Lack of Compiler Support
At the end of 2020, no C++ compiler supports the chrono extensions so
far. Thanks to the prototype library date¹⁸ from Howard Hinnant, which
is essentially a superset of the extended time functionality in C++20, I can
experiment with it. The library is hosted onGitHub. There are various ways
to use the date prototype:

• You can try it out on Wandbox. Howard has uploaded the date.h

header, which is sufficient to play with the new type std::time_of_-
day and the calendar. Here is Howard’s link: Try it out onWandbox!¹⁹.

• Copy the header date.h into the search path of your C++ compiler.
• Download the project and build it. The already mentioned GitHub
page date²⁰ gives you more information. This step is required when
you want to try out the new time zone features.

The examples in this chapter use Howard Hinnant’s library. My explana-
tions, though, are based on the C++20 terminology. When a C++ compiler
supports the extended chrono functionality, I will adapt the examples to
the C++20 syntax.

C++20 adds new components to the chrono library:

• The time of day is the time duration since midnight, split into hours, minutes,
seconds, and fractional seconds.

• Calendar stands for various calendar dates such as year, a month, a weekday,
or the n-th day of a week.

• A time zone represents time specific to a geographic area.

Essentially, the time-zone functionality (C++20) is based on the calendar func-
tionality (C++20), and the calendar functionality (C++20) is based on the chrono
functionality (C++11).

¹⁸https://github.com/HowardHinnant/date
¹⁹https://wandbox.org/permlink/L8MwjzSSC3fXXrMd
²⁰https://github.com/HowardHinnant/date

https://github.com/HowardHinnant/date
https://wandbox.org/permlink/L8MwjzSSC3fXXrMd
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://wandbox.org/permlink/L8MwjzSSC3fXXrMd
https://github.com/HowardHinnant/date

The Standard Library 311

The Time Library in C++11
To get the most out of this section, a basic understanding of the chrono
library is essential. C++11 introduced three main components to deal with
time:

• A time point is defined by a starting point, the so-called epoch, and
additional time duration.

• A time duration is the difference between two time points. It is given
by the number of ticks.

• A clock consists of a starting point (epoch) and a tick, so that the
current time point can be calculated.

Honestly, time, for me, is a mystery. On one hand, each of us has an
intuitive idea of time, on the other hand, defining it formally is extremely
challenging. For example, the three components time point, time duration,
and clock depend on each other. If you want to know more about the time
functionality in C++11, read my posts about time from time²¹.

This is not all. The C++20 extension includes new clocks. Thanks to the formatting
library in C++20, time durations can comfortably be read or written.

5.5.1 Time of day

std::chrono::hh_mm_ss is the duration since midnight, split into hours, minutes,
seconds, and fractional seconds. This type is typically used as a formatting tool. First,
the following table gives you a concise overview of std::chrono::hh_mm_ss instance
tOfDay.

²¹https://www.modernescpp.com/index.php/tag/time

https://www.modernescpp.com/index.php/tag/time
https://www.modernescpp.com/index.php/tag/time

The Standard Library 312

Time of Day

Function Description

tOfDay.hours() Returns the hour component since midnight

tOfDay.minutes() Returns the minute component since midnight

tOfDay.seconds() Returns the second component since midnight

tOfDay.subseconds() Returns the fractional second component since midnight

tOfDay.to_duration() Returns the time duration since midnight

std::chrono::make12(hour) Returns the 12-hour equivalent of a 24-hour format time
std::chrono::make24(hour) Returns the 24-hour equivalent of a 12-hour format time

std::chrono::is_am(hour) Detects if the 24-hour format time is a.m.
std::chrono::is_pm(hour) Detects if the 24-hour format time is p.m.

The use of the functions is straightforward.

Time of day

1 // timeOfDay.cpp

2

3 #include "date.h"

4 #include <iostream>

5

6 int main() {

7 using namespace date; \

8

9 using namespace std::chrono_literals;

10

11 std::cout << std::boolalpha << '\n';

12 auto timeOfDay = date::hh_mm_ss(10.5h + 98min + 2020s + 0.5s);

13

14 std::cout<< "timeOfDay: " << timeOfDay << '\n';

15

The Standard Library 313

16 std::cout << '\n';

17

18 std::cout << "timeOfDay.hours(): " << timeOfDay.hours() << '\n'; \

19

20 std::cout << "timeOfDay.minutes(): " << timeOfDay.minutes() << '\n\

21 ';

22 std::cout << "timeOfDay.seconds(): " << timeOfDay.seconds() << '\n\

23 ';

24 std::cout << "timeOfDay.subseconds(): " << timeOfDay.subseconds() \

25 << '\n';

26 std::cout << "timeOfDay.to_duration(): " << timeOfDay.to_duration(\

27) << '\n';

28

29 std::cout << '\n';

30

31 std::cout << "date::hh_mm_ss(45700.5s): " << date::hh_mm_ss(45700.\

32 5s) << '\n';

33

34 std::cout << '\n';

35

36 std::cout << "date::is_am(5h): " << date::is_am(5h) << '\n'; \

37

38 std::cout << "date::is_am(15h): " << date::is_am(15h) << '\n';

39

40 std::cout << '\n';

41

42 std::cout << "date::make12(5h): " << date::make12(5h) << '\n';

43 std::cout << "date::make12(15h): " << date::make12(15h) << '\n';

44

45 }

First, I create in line 12 a new instance of std::chrono::hh_mm_ss: timeOfDay.
Thanks to the chrono literals from C++14, I can add a few time durations to initialize
a time of day object. With C++20, you can directly output timeOfDay (line 14). This
is the reason I have to introduce the namespace date in line 7. The rest should be

The Standard Library 314

straightforward to read. Lines 18 - 21 display the components of the time since
midnight in hours, minutes, seconds, and fractional seconds. Line 22 returns the time
duration since midnight in seconds. Line 26 is more interesting: the given seconds
correspond to the time displayed in line 15. Lines 30 and 32 return if the given hour
is a.m. Line 35 and 36 return the 12-hour equivalent of the given hour.

Here is the output of the program:

Time of day

5.5.2 Calendar Dates

A new type of the chrono extension in C++20 is a calendar date. C++20 supports
various ways to create a calendar date and interact with them. First of all: What is a
calendar date?

• A calendar date is a date that consists of a year, a month and a day. Conse-
quently, C++20 has a specific data type std::chrono::year_month_day. C++20
has way more to offer. The following table should give you the first overview
of calendar-date types before I show you various use-cases.

The Standard Library 315

Various calendar-date types

Type Description

std::chrono::last_spec Indicates the last day or weekday of a
month

std::chrono::day Represents a day of a month

std::chrono::month Represents a month of a year

std::chrono::year Represents a year in the Gregorian calendar

std::chrono::weekday Represents a day of the week in the
Gregorian calendar

std::chrono::weekday_indexed Represents the n-th weekday of a month

std::chrono::weekday_last Represents the last weekday of a month

std::chrono::month_day Represents a specific day of a specific
month

std::chrono::month_day_last Represents the last day of a specific month

std::chrono::month_weekday Represents the n-th weekday of a specific
month

std::chrono::month_weekday_last Represents the last weekday of a specific
month

std::chrono::year_month Represents a specific month of a specific
year

std::chrono::year_month_day Represents a specific year, month, and day

std::chrono::year_month_day_last Represents the last day of a specific year
and month

The Standard Library 316

Various calendar-date types

Type Description
std::chrono::year_month_weekday Represents the n-th weekday of a specific

year and month

std::chrono::year_month_day_weekday_-

last

Represents the last weekday of a specific
years and month

std::chrono::operator / Creates a date of the Gregorian calendar

Let me start simple and create a few calendar dates.

5.5.2.1 Create Calendar Dates

The program createCalendar.cpp shows various ways to create calendar-related
dates.

Create calendar dates

1 // createCalendar.cpp

2

3 #include <iostream>

4 #include "date.h"

5

6 int main() {

7

8 std::cout << '\n';

9

10 using namespace date;

11

12 constexpr auto yearMonthDay{year(1940)/month(6)/day(26)}; \

13

14 std::cout << yearMonthDay << " ";

15 std::cout << date::year_month_day(1940_y, June, 26_d) << '\n';

16

17 std::cout << '\n';

18

The Standard Library 317

19 constexpr auto yearMonthDayLast{year(2010)/March/last};

20 std::cout << yearMonthDayLast << " ";

21 std::cout << date::year_month_day_last(2010_y, month_day_last(month\

22 (3))) << '\n';

23

24 constexpr auto yearMonthWeekday{year(2020)/March/Thursday[2]}; \

25

26 std::cout << yearMonthWeekday << " ";

27 std::cout << date::year_month_weekday(2020_y, month(March), Thursda\

28 y[2]) << '\n';

29

30 constexpr auto yearMonthWeekdayLast{year(2010)/March/Monday[last]};\

31

32 std::cout << yearMonthWeekdayLast << " ";

33 std::cout << date::year_month_weekday_last(2010_y, month(March),

34 weekday_last(Monday)) <<\

35 '\n';

36

37 std::cout << '\n';

38

39 constexpr auto day_{day(19)};

40 std::cout << day_ << " ";

41 std::cout << date::day(19) << '\n';

42

43 constexpr auto month_{month(1)};

44 std::cout << month_ << " ";

45 std::cout << date::month(1) << '\n';

46

47 constexpr auto year_{year(1988)};

48 std::cout << year_ << " ";

49 std::cout << date::year(1988) << '\n';

50

51 constexpr auto weekday_{weekday(5)};

52 std::cout << weekday_ << " ";

53 std::cout << date::weekday(5) << '\n';

54

The Standard Library 318

55 constexpr auto yearMonth{year(1988)/1};

56 std::cout << yearMonth << " ";

57 std::cout << date::year_month(year(1988), January) << '\n';

58

59 constexpr auto monthDay{10/day(22)};

60 std::cout << monthDay << " ";

61 std::cout << date::month_day(October, day(22)) << '\n';

62

63 constexpr auto monthDayLast{June/last};

64 std::cout << monthDayLast << " ";

65 std::cout << date::month_day_last(month(6)) << '\n';

66

67 constexpr auto monthWeekday{2/Monday[3]};

68 std::cout << monthWeekday << " ";

69 std::cout << date::month_weekday(February, Monday[3]) << '\n';

70

71 constexpr auto monthWeekDayLast{June/Sunday[last]};

72 std::cout << monthWeekDayLast << " ";

73 std::cout << date::month_weekday_last(June, weekday_last(Sunday)) <\

74 < '\n';

75

76 std::cout << '\n';

77

78 }

There are essentially two ways to create a calendar date. You can use the so-called
cute syntax yearMonthDay{year(1940)/month(6)/day(26)} (line 12), or you can use
the explicit type date::year_month_day(1940y, June, 26d) (line 14). In order not
to overwhelm you, I will delay my explanation of the cute syntax to the next section.
The explicit type is quite interesting, because it uses the date-time literals 1940y, 26d,
and the predefined constant June. This was the obvious part of the program.

Line 18, line 22, and line 26 offer further ways to create calendar dates.

• Line 18: the last day of March 2010: {year(2010)/March/last} or year_month_-
day_last(2010y, month_day_last(month(3)))

The Standard Library 319

• Line 22: the second Thursday of March 2020: {year(2020)/March/Thursday[2]}
or year_month_weekday(2020y, month(March), Thursday[2])

• Line 26: the last Monday of March 2010: {year(2010)/March/Monday[last]} or
year_month_weekday_last(2010y, month(March), weekday_last(Monday))

The remaining calendar types stand for a day (line 33), a month (line 37), or a year
(line 41). You can combine and use them as basic building blocks for fully specified
calendar dates, such as in lines 18, 22, or 26.

This is the output of the program:

Various calendar days

As promised, let me write about the cute syntax.

5.5.2.2 Cute Syntax

The cute syntax consists of overloaded division operators to specify a calendar
date. The overloaded operators support time literals (e.g.: 2020y, 31d) and constants

The Standard Library 320

(January, February, March, April, May, June, July, August, September, October,
November, December).

The following three combinations of year, month, and day are possible when you use
the cute syntax.

Cute syntax

year/month/day

day/month/year

month/day/year

These combinations are not arbitrarily chosen. They are the ones used worldwide.
Any other combination is not allowed.

Consequently, when you choose the type year, month, or day for the first argument,
the type for the remaining two arguments is no longer necessary anymore, and a
number would do the job.

Cute syntax

1 // cuteSyntax.cpp

2

3 #include <iostream>

4 #include "date.h"

5

6 int main() {

7

8 std::cout << '\n';

9

10 using namespace date;

11

12 constexpr auto yearMonthDay{year(1966)/6/26};

13 std::cout << yearMonthDay << '\n';

14

15 constexpr auto dayMonthYear{day(26)/6/1966};

16 std::cout << dayMonthYear << '\n';

17

18 constexpr auto monthDayYear{month(6)/26/1966};

The Standard Library 321

19 std::cout << monthDayYear << '\n';

20

21 constexpr auto yearDayMonth{year(1966)/month(26)/6};

22 std::cout << yearDayMonth << '\n';

23

24 std::cout << '\n';

25

26 }

The combination year/day/month (line 21) is not allowed and causes a run-time
message.

Use of cute syntax

I assume youwant to display a calendar date {year(2010)/March/last} in a readable
form, for example, 2020-03-31. This is a job for the local_days or sys_days operator.

5.5.2.3 Displaying Calendar Dates

Thanks to std::chrono::local_days or std::chrono::sys_days, you can convert
calendar dates to a std::chrono::time_point. I use std::chrono::sys_days in my
example. std::chrono::sys_days is based on std::chrono::system_clock²². Let
me convert the calendar dates (lines 18, 22, and 26) from the previous program
createCalendar.cpp.

²²https://en.cppreference.com/w/cpp/chrono/system_clock

https://en.cppreference.com/w/cpp/chrono/system_clock
https://en.cppreference.com/w/cpp/chrono/system_clock

The Standard Library 322

Displaying calendar dates
1 // sysDays.cpp

2

3 #include <iostream>

4 #include "date.h"

5

6 int main() {

7

8 std::cout << '\n';

9

10 using namespace date;

11

12 constexpr auto yearMonthDayLast{year(2010)/March/last};

13 std::cout << "sys_days(yearMonthDayLast): "

14 << sys_days(yearMonthDayLast) << '\n';

15

16 constexpr auto yearMonthWeekday{year(2020)/March/Thursday[2]};

17 std::cout << "sys_days(yearMonthWeekday): "

18 << sys_days(yearMonthWeekday) << '\n';

19

20 constexpr auto yearMonthWeekdayLast{year(2010)/March/Monday[last]};

21 std::cout << "sys_days(yearMonthWeekdayLast): "

22 << sys_days(yearMonthWeekdayLast) << '\n';

23

24 std::cout << '\n';

25

26 constexpr auto leapDate{year(2012)/February/last};

27 std::cout << "sys_days(leapDate): " << sys_days(leapDate) << '\n';

28

29 constexpr auto noLeapDate{year(2013)/February/last};

30 std::cout << "sys_day(noLeapDate): " << sys_days(noLeapDate) << '\n\

31 ';

32

33 std::cout << '\n';

34

35 }

The Standard Library 323

The std::chrono::last constant (line 11) lets me easily determine how many days
a month has. The output shows that 2012 is a leap year (line 26), but not 2013 (line
29).

Displaying calendar dates

Assume you have a calendar date such as year(2100)/2/29. Your first question may
be: Is this date valid?

5.5.2.4 Check if a Date is valid

The various calendar types in C++20 have a function ok. This function returns true
if the date is valid.

The Standard Library 324

Checking if a date is valid
1 // leapYear.cpp

2

3 #include <iostream>

4 #include "date.h"

5

6 int main() {

7

8 std::cout << std::boolalpha << '\n';

9

10 using namespace date;

11

12 std::cout << "Valid days" << '\n';

13 day day31(31);

14 day day32 = day31 + days(1);

15 std::cout << " day31: " << day31 << "; ";

16 std::cout << "day31.ok(): " << day31.ok() << '\n';

17 std::cout << " day32: " << day32 << "; ";

18 std::cout << "day32.ok(): " << day32.ok() << '\n';

19

20

21 std::cout << '\n';

22

23 std::cout << "Valid months" << '\n';

24 month month1(1);

25 month month0(0);

26 std::cout << " month1: " << month1 << "; ";

27 std::cout << "month1.ok(): " << month1.ok() << '\n';

28 std::cout << " month0: " << month0 << "; ";

29 std::cout << "month0.ok(): " << month0.ok() << '\n';

30

31 std::cout << '\n';

32

33 std::cout << "Valid years" << '\n';

34 year year2020(2020);

35 year year32768(-32768);

The Standard Library 325

36 std::cout << " year2020: " << year2020 << "; ";

37 std::cout << "year2020.ok(): " << year2020.ok() << '\n';

38 std::cout << " year32768: " << year32768 << "; ";

39 std::cout << "year32768.ok(): " << year32768.ok() << '\n';

40

41 std::cout << '\n';

42

43 std::cout << "Leap Years" << '\n';

44

45 constexpr auto leapYear2016{year(2016)/2/29};

46 constexpr auto leapYear2020{year(2020)/2/29};

47 constexpr auto leapYear2024{year(2024)/2/29};

48

49 std::cout << " leapYear2016.ok(): " << leapYear2016.ok() << '\n';

50 std::cout << " leapYear2020.ok(): " << leapYear2020.ok() << '\n';

51 std::cout << " leapYear2024.ok(): " << leapYear2024.ok() << '\n';

52

53 std::cout << '\n';

54

55 std::cout << "No Leap Years" << '\n';

56

57 constexpr auto leapYear2100{year(2100)/2/29};

58 constexpr auto leapYear2200{year(2200)/2/29};

59 constexpr auto leapYear2300{year(2300)/2/29};

60

61 std::cout << " leapYear2100.ok(): " << leapYear2100.ok() << '\n';

62 std::cout << " leapYear2200.ok(): " << leapYear2200.ok() << '\n';

63 std::cout << " leapYear2300.ok(): " << leapYear2300.ok() << '\n';

64

65 std::cout << '\n';

66

67 std::cout << "Leap Years" << '\n';

68

69 constexpr auto leapYear2000{year(2000)/2/29};

70 constexpr auto leapYear2400{year(2400)/2/29};

71 constexpr auto leapYear2800{year(2800)/2/29};

The Standard Library 326

72

73 std::cout << " leapYear2000.ok(): " << leapYear2000.ok() << '\n';

74 std::cout << " leapYear2400.ok(): " << leapYear2400.ok() << '\n';

75 std::cout << " leapYear2800.ok(): " << leapYear2800.ok() << '\n';

76

77 std::cout << '\n';

78

79 }

I check in the program if a given day (line 12), a given month (line 23), or a given
year (line 33) is valid. The range of a day is [1, 31], of a month [1, 12], and of a year
[-32767, 32767]. Consequently, the ok() calls on the corresponding values returns
false. Two facts are interesting when I display various values. First, if the value is not
valid, the output displays: “is not a valid day”, “is not a valid month”, “is not a valid
year”. Second, month values are displayed in string representation.

The Standard Library 327

Check if a data is valid

You can apply the ok-call on a calendar date. Now it’s quite easy to check if a specific
calendar date is a leap day and, therefore, the corresponding year a leap year. In the
worldwide used Gregorian calendar²³, the following rules apply:

Each year that is exactly divisible by 4 is a leap year.

• Except for years which are exactly divisible by 100. They are not leap years.
– Except for years which are exactly divisible by 400. They are leap years.

Too complicated? The program leapYears.cpp exemplifies this rule.

The extended chrono library makes it quite easy to ask for the time duration between
calendar dates.

²³https://en.wikipedia.org/wiki/Gregorian_calendar

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/Gregorian_calendar

The Standard Library 328

5.5.2.5 Query Calendar Dates

Without further ado. The following program queryCalendarDates.cpp queries a few
calendar dates.

Query calendar dates

1 // queryCalendarDates.cpp

2

3 #include "date.h"

4 #include <iostream>

5

6 int main() {

7

8 using namespace date;

9

10 std::cout << '\n';

11

12 auto now = std::chrono::system_clock::now();

13 std::cout << "The current time is: " << now << " UTC\n";

14 std::cout << "The current date is: " << floor<days>(now) << '\n';

15 std::cout << "The current date is: " << year_month_day{floor<days>(\

16 now)}

17 << '\n';

18 std::cout << "The current date is: " << year_month_weekday{floor<da\

19 ys>(now)}

20 << '\n';

21

22 std::cout << '\n';

23

24

25 auto currentDate = year_month_day(floor<days>(now));

26 auto currentYear = currentDate.year();

27 std::cout << "The current year is " << currentYear << '\n';

28 auto currentMonth = currentDate.month();

29 std::cout << "The current month is " << currentMonth << '\n';

30 auto currentDay = currentDate.day();

The Standard Library 329

31 std::cout << "The current day is " << currentDay << '\n';

32

33 std::cout << '\n';

34

35 auto hAfter = floor<std::chrono::hours>(now) - sys_days(January/1/c\

36 urrentYear);

37 std::cout << "It has been " << hAfter << " since New Year!\n";

38 auto nextYear = currentDate.year() + years(1);

39 auto nextNewYear = sys_days(January/1/nextYear);

40 auto hBefore = sys_days(January/1/nextYear) - floor<std::chrono::h\

41 ours>(now);

42 std::cout << "It is " << hBefore << " before New Year!\n";

43

44 std::cout << '\n';

45

46 std::cout << "It has been " << floor<days>(hAfter) << " since New Y\

47 ear!\n";

48 std::cout << "It is " << floor<days>(hBefore) << " before New Year!\

49 \n";

50

51 std::cout << '\n';

52

53 }

With the C++20 extension, you can directly display a time point, such as now (line
12). std::chrono::floor converts the time point to a day std::chrono::sys_days.
This value can be used to initialize the calendar type std::chrono::year_month_day.
Finally, when I put the value into a std::chrono::year_month_weekday calendar type,
I get the answer that this specific day is the 3rd Tuesday in October.

Of course, I can also ask a calendar date for its components, such as the current year,
month, or day (line 23).

Line 33 is the most interesting one. When I subtract from the current date, using
hour resolution, the first of January of the current year, I get the number of hours
since the new year. Conversely, when I subtract from the first of January of the next
year (line 37) the current date, using hour resolution, I get the hours to the new year.

The Standard Library 330

Maybe you don’t like hour resolution. Line 42 and 43 display the values using day
resolution.

Query calendar days

Now, I want to know the day of the week of my birthday.

5.5.2.6 Query Weekdays

Thanks to the extended chrono library, it is quite easy to get the weekday of a given
calendar date.

The Standard Library 331

Weekdays of given calendar dates
1 // weekdaysOfBirthdays.cpp

2

3 #include <cstdlib>

4 #include <iostream>

5 #include "date.h"

6

7 int main() {

8

9 std::cout << '\n';

10

11 using namespace date;

12

13 int y;

14 int m;

15 int d;

16

17 std::cout << "Year: ";

18 std::cin >> y;

19 std::cout << "Month: ";

20 std::cin >> m;

21 std::cout << "Day: ";

22 std::cin >> d;

23

24 std::cout << '\n';

25

26 auto birthday = year(y)/month(m)/day(d);

27

28 if (not birthday.ok()) {

29 std::cout << birthday << '\n';

30 std::exit(EXIT_FAILURE);

31 }

32

33 std::cout << "Birthday: " << birthday << '\n';

34 auto birthdayWeekday = year_month_weekday(birthday);

35 std::cout << "Weekday of birthday: " << birthdayWeekday.weekday() <\

The Standard Library 332

36 < '\n';

37

38 auto currentDate = year_month_day(floor<days>(

39 std::chrono::system_clock::now())\

40);

41 auto currentYear = currentDate.year();

42

43 auto age = (int)currentDate.year() - (int)birthday.year();

44 std::cout << "Your age: " << age << '\n';

45

46 std::cout << '\n';

47

48 std::cout << "Weekdays for your next 10 birthdays" << '\n';

49

50 for (int i = 1, newYear = (int)currentYear; i <= 10; ++i) {

51 std::cout << " Age " << ++age << '\n';

52 auto newBirthday = year(++newYear)/month(m)/day(d);

53 std::cout << " Birthday: " << newBirthday << '\n';

54 std::cout << " Weekday of birthday: "

55 << year_month_weekday(newBirthday).weekday() << '\n';

56 }

57

58 std::cout << '\n';

59

60 }

First, the program asks you for the year, month, and day of your birthday (line 17).
Based on the input, a calendar date is created (line 26) and checked if it’s valid
(line 28). Now I display the weekday of your birthday. I use the calendar date to
fill the calendar type std::chrono::year_month_weekday (line 34). To get the int

representation of the calendar type year, I have to convert it to int (line 41). Now I
can display your age. Finally, the for loop displays, for each of your next ten birthdays
(line 46), the following information: your age, the calendar date, and the weekday. I
just have to increment the age and newYear variable.

Here is a run of the program with my birthday.

The Standard Library 333

Weekdays of birthdays

5.5.2.7 Calculating Ordinal Dates

As a last example of the new calendar facility, I want to present the online resource
Examples and Recipes²⁴ from Howard Hinnant, which has about 40 examples of the

²⁴https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes

https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes
https://github.com/HowardHinnant/date/wiki/Examples-and-Recipes

The Standard Library 334

new chrono functionality. Presumably, the chrono extension in C++20 is not easy to
get, therefore it’s quite important to have so many examples. You should use these
examples as a starting point for further experiments and, therefore, sharpen your
understanding. You can also add your recipes.

To get an idea of Examples and Recipes I want to present a program by Roland Bock²⁵
that calculates ordinal dates.

“An ordinal date consists of a year and a day of year (1st of January being day 1,
31st of December being day 365 or day 366). The year can be obtained directly from
year_month_day. And calculating the day is wonderfully easy. In the code below we
make us of the fact that year_month_day can deal with invalid dates like the 0th of
January:” (Roland Bock)

I added the necessary headers to Roland’s program.

Calculating ordinal dates

1 // ordinalDate.cpp

2

3 #include "date.h"

4 #include <iomanip>

5 #include <iostream>

6

7 int main()

8 {

9 using namespace date;

10

11 const auto time = std::chrono::system_clock::now();

12 const auto daypoint = floor<days>(time);

13 const auto ymd = year_month_day{daypoint};

14

15 // calculating the year and the day of the year

16 const auto year = ymd.year();

17 const auto year_day = daypoint - sys_days{year/January/0};

18

19 std::cout << year << '-' << std::setfill('0') << std::setw(3)

²⁵https://github.com/rbock

https://github.com/rbock
https://github.com/rbock

The Standard Library 335

20 << year_day.count() << '\n';

21

22 // inverse calculation and check

23 assert(ymd == year_month_day{sys_days{year/January/0} + year_day});

24 }

I want to make a few remarks about the program. Line 12 truncates the current time
point. The value is used in the following line to initialize a calendar date. Line 17
calculates the time duration between the two time points. Both time points have
the resolution day. Finally, year_day.count() in line 19 returns the time duration in
days.

Caculating ordinal dates

5.5.3 Time Zones

First of all, a time zone is a region, and its full history of the date, such as daylight
saving time or leap seconds. The time zone library in C++20 is a complete parser of
the IANA timezone database²⁶. The following table should give you a first idea of
the new functionality.

²⁶https://www.iana.org/timezones

https://www.iana.org/timezones
https://www.iana.org/timezones

The Standard Library 336

The time-zone data types

Type Description

std::chrono::tzdb Describes a copy of the IANA time-zone
database

std::chrono::tdzb_list Represents a linked list of the tzdb

std::chrono::get_tzdb Accesses and controls the global time-zone
database

std::chrono::get_tzdb_list

std::chrono::reload_tzdb

std::chrono::remote_version

std::chrono::locate_zone Locates the time zone based on its name

std::chrono::current_zone Returns the current time zone

std::chrono::time_zone Represents a time zone

std::chrono::sys_info Represents information about a time zone at a
specific time point

std::chrono::local_info Represents information about a local time to
UNIX time conversion

std::chrono::zoned_traits Class for time zone pointers

std::chrono::zoned_time Represents a time zone and a time point

std::chrono::leap_second Contains information about a leap-second
insertion

std::chrono::time_zone_link Represents an alternative name for a time zone

std::chrono::nonexistent_local_time Exception which is thrown if a local time does
not exist

I use in my examples the function std::chrono::zones_time, which is essentially a

The Standard Library 337

time zone combined with a time point.

Compilation of the examples
Before I show you two examples, I want to make a short remark. To compile
a program using the time zone library, you have to compile the tz.cpp file
from the date²⁷ library and link it against the curl²⁸ library. The curl library
is necessary to get the current IANA timezone database²⁹. The following
command line for g++ should give you the idea:

Compilation with the prototype library date

g++ localTime.cpp -I <Path to data/tz.h> tz.cpp -std=c++17 -lcurl -o lo\

calTime

My first example is straightforward. It displays the UTC time and the local time.

5.5.3.1 UTC Time and Local Time

The UTC time or Coordinated Universal Time³⁰ is the primary time standard
worldwide. A computer uses Unix time³¹ which is a very close approximation of UTC.
The UNIX time is the number of seconds since the Unix epoch. The Unix epoch is
00:00:00 UTC on 1 January 1970.

std::chrono::system_clock::now() returns in the program localTime.cpp the Unix
time.

²⁷https://github.com/HowardHinnant/date
²⁸https://curl.se/
²⁹https://www.iana.org/timezones
³⁰https://en.wikipedia.org/wiki/Coordinated_Universal_Time
³¹https://en.wikipedia.org/wiki/Unix_time

https://github.com/HowardHinnant/date
https://curl.se/
https://www.iana.org/time%20zones
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Unix_time
https://github.com/HowardHinnant/date
https://curl.se/
https://www.iana.org/time%20zones
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Unix_time

The Standard Library 338

Getting the UTC time and local time

1 // localTime.cpp

2

3 #include "date/tz.h"

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 using namespace date;

11

12 std::cout << "UTC time" << '\n';

13 auto utcTime = std::chrono::system_clock::now();

14 std::cout << " " << utcTime << '\n';

15 std::cout << " " << date::floor<std::chrono::seconds>(utcTime) << '\\

16 n':

17

18 std::cout << '\n';

19

20 std::cout << "Local time" << '\n';

21 auto localTime = date::make_zoned(date::current_zone(), utcTime);

22 std::cout << " " << localTime << '\n';

23 std::cout << " " << date::floor<std::chrono::seconds>(localTime.get_\

24 local_time())

25 << '\n';

26

27 auto offset = localTime.get_info().offset;

28 std::cout << " UTC offset: " << offset << '\n';

29

30 std::cout << '\n';

31

32 }

The code block beginning with line 12 gets the current time point, truncates it to

The Standard Library 339

seconds, and displays it. The call make_zoned (line 20) creates a std::chrono::zoned_-
time localTime. After that, the call localTime.get_local_time() returns the stored
time point as a local time. This time point is also truncated to seconds. localTime
(line 25) can also be used to get information about the time zone. In this case, I’m
interested in the offset to the UTC time.

Displaying UTC time and local time

My last example answers a crucial question when I teach in a different time zone:
When should I start my online class?

5.5.3.2 Various Time Zones for Online Classes

The program onlineClass.cpp answers the following question: How late is it in given
time zones, when I start an online class at the 7h, 13h, or 17h local time (Germany)?

The online class should start on the 1st of February 2021 and should take four hours.
Because of daylight saving time, the calendar date is essential to get the correct
answer.

The Standard Library 340

Calculating the time in different time zones
1 // onlineClass.cpp

2

3 #include "date/tz.h"

4 #include <algorithm>

5 #include <iomanip>

6 #include <iostream>

7

8 template <typename ZonedTime>

9 auto getMinutes(const ZonedTime& zonedTime) {

10 return date::floor<std::chrono::minutes>(zonedTime.get_local_time()\

11);

12 }

13

14 void printStartEndTimes(const date::local_days& localDay,

15 const std::chrono::hours& h,

16 const std::chrono::hours& durationClass,

17 const std::initializer_list<std::string>& timeZ\

18 ones){

19

20 date::zoned_time startDate{date::current_zone(), localDay + h};

21 date::zoned_time endDate{date::current_zone(), localDay + h + durat\

22 ionClass};

23 std::cout << "Local time: [" << getMinutes(startDate) << ", "

24 << getMinutes(endDate) << "]" << '\n';

25

26 longestStringSize = std::max(timeZones, [](const std::string& a,

27 const std::string& b) { return a.size() < b.size\

28 (); }).size();

29 for (auto timeZone: timeZones) {

30 std::cout << " " << std::setw(longestStringSize + 1) << std::l\

31 eft

32 << timeZone

33 << "[" << getMinutes(date::zoned_time(timeZone, start\

34 Date))

35 << ", " << getMinutes(date::zoned_time(timeZone, endD\

The Standard Library 341

36 ate))

37 << "]" << '\n';

38

39 }

40 }

41

42 int main() {

43

44 using namespace std::string_literals;

45 using namespace std::chrono;

46

47 std::cout << '\n';

48

49 constexpr auto classDay{date::year(2021)/2/1};

50 constexpr auto durationClass = 4h;

51 auto timeZones = {"America/Los_Angeles"s, "America/Denver"s,

52 "America/New_York"s, "Europe/London"s,

53 "Europe/Minsk"s, "Europe/Moscow"s,

54 "Asia/Kolkata"s, "Asia/Novosibirsk"s,

55 "Asia/Singapore"s, "Australia/Perth"s,

56 "Australia/Sydney"s};

57

58 for (auto startTime: {7h, 13h, 17h}) {

59 printStartEndTimes(date::local_days{classDay}, startTime,

60 durationClass, timeZones);

61 std::cout << '\n';

62 }

63

64 }

Before I dive into the functions getMinutes (line 8) and printStartEndTimes (line 13),
let me say a few words about the main function. The main function defines the day
of the class, the duration of the class, and all time zones. Finally, the range-based for
loop (line 51) iterates through all potential starting points for an online class. Thanks
to the function printStartEndTimes (line 13), all necessary information is displayed.

The Standard Library 342

The few lines beginning with line 18 calculate the startDate and endDate of my
training by adding the start time and the duration of the class to the calendar
date. Both values are displayed with the help of the function getMinutes (line
8). floor<std::chrono::minutes>(zonedTime.get_local_time()) gets the stored
timepoint out of the std::chrono::zoned_time and truncates the value to the minute
resolution. To properly align the output of the program, line 23 determines the size of
the longest of all timezone names. Line 25 iterates through all time zones and displays
the name of the time zone, and the beginning and end of each online class. A few
calendar dates even cross the day boundaries.

The Standard Library 343

Displaying start and end times in various time zones

The Standard Library 344

5.5.3.3 New Clocks

Beside the wall clock std::system_clock³², the monotonic clock std::steady_-

clock³³, and the most precise clock std::high_resolution_clock³⁴ in C++11, C++20
supports five additional clocks.

• std::utc_clock: Clock for the coordinated Universal Time (UTC). Measures the
time since 00:00:00 UTC, 1 January 1970, including leap seconds.

• std::tai_clock: Clock for International Atomic Time³⁵ (TAI). Measure time since
00:00:00, 1 January 1958, and is offset 10 seconds ahead of UTC at that date. Leap
seconds are not inserted.

• std::gps_clock: Clock for GPS time. It represents Global Positioning System³⁶
(GPS) time. It measures the time since 00:00:00, 6 January 1980 UTC. Leap
seconds are not inserted.

• std::file_clock: Clock for file time. It’s an alias for std::filesystem::file_-
time_type³⁷.

• std::local_t: Pseudo clock to represent local time.

5.5.3.4 Chrono I/O

Thanks to the function std::chrono::parse and the std::formatter from the
formatting library, you can read and write chrono objects.

• std::chrono::parse: Parses a chrono object from a stream. cppreference.com/parse³⁸
gives you detailed infomation about the format string.

• std::formatter: Defines specializations for the various chrono types. Read the
details on the format specification on std::formatter here cppreference.com/formatter³⁹.

³²https://www.modernescpp.com/index.php/the-three-clocks
³³https://www.modernescpp.com/index.php/the-three-clocks
³⁴https://www.modernescpp.com/index.php/the-three-clocks
³⁵https://en.wikipedia.org/wiki/International_Atomic_Time
³⁶https://en.wikipedia.org/wiki/Global_Positioning_System
³⁷https://en.cppreference.com/w/cpp/filesystem/file_time_type
³⁸https://en.cppreference.com/w/cpp/chrono/parse
³⁹https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.cppreference.com/w/cpp/filesystem/file_time_type
https://en.cppreference.com/w/cpp/filesystem/file_time_type
https://en.cppreference.com/w/cpp/chrono/parse
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://www.modernescpp.com/index.php/the-three-clocks
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.cppreference.com/w/cpp/filesystem/file_time_type
https://en.cppreference.com/w/cpp/chrono/parse
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

The Standard Library 345

Distilled Information

• C++20 adds new components to the chrono library: time of day,
calendar, and time zone.

• Time of day is the time duration since midnight, split into hours,
minutes, seconds, and fractional seconds.

• Calendar stands for various calendar dates such as year, a month, a
weekday, or the n-th day of a week.

• A time zone represents time specific to a geographic area.

The Standard Library 346

5.6 Formatting Library

Cippi forms a cup

Lack of Compiler Support
At the end of 2020, no C++ compiler supports the formatting library. Thanks
to the prototype library fmt⁴⁰ by Victor Zverovich, I can experiment with it.
The library is hosted on the Compiler Explorer⁴¹. Once one of the big three
compilers GCC, Clang, or MSVC supports the C++20 formatting library, I
will replace the examples in this chapter.

The formatting library offers a secure and expandable alternative to the printf⁴²
family and extends the I/O streams. The library requires the header <format>. The
format specification follows Python syntax⁴³ and allows you to specify fill letters
and text alignment, set the sign, specify the width and the precision of numbers, and
specify the data type.

5.6.0.1 Formatting Functions

C++20 supports three formatting functions:

⁴⁰https://github.com/fmtlib/fmt
⁴¹https://godbolt.org/z/Eq5763
⁴²https://en.cppreference.com/w/cpp/io/c/fprintf
⁴³https://docs.python.org/3/library/stdtypes.html#str.format

https://github.com/fmtlib/fmt
https://godbolt.org/z/Eq5763
https://en.cppreference.com/w/cpp/io/c/fprintf
https://docs.python.org/3/library/stdtypes.html#str.format
https://github.com/fmtlib/fmt
https://godbolt.org/z/Eq5763
https://en.cppreference.com/w/cpp/io/c/fprintf
https://docs.python.org/3/library/stdtypes.html#str.format

The Standard Library 347

Formatting Functions

Function Description

std::format Returns the formatted string

std::format_to Writes the result to the output iterator

std::format_to_n Writes at most n characters to the output iterator

The formatting functions accept an arbitrary number of arguments. The follow-
ing program format.cpp gives a first impression of the functions std::format,
std::format_to, and std::format_to_n.

Calculating the time in different time zones

1 // format.cpp

2

3 #include <fmt/core.h>

4 #include <fmt/format.h>

5 #include <iostream>

6 #include <iterator>

7 #include <string>

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::cout << fmt::format("Hello, C++{}!\n", "20") << '\n';

14

15 std::string buffer;

16

17 fmt::format_to(

18 std::back_inserter(buffer),

19 "Hello, C++{}!\n",

20 "20");

21

22 std::cout << buffer << '\n';

The Standard Library 348

23

24 buffer.clear();

25

26 fmt::format_to_n(

27 std::back_inserter(buffer), 5,

28 "Hello, C++{}!\n",

29 "20");

30

31 std::cout << buffer << '\n';

32

33

34 std::cout << '\n';

35

36 }

The program on line 13 directly displays the formatted string. The calls on line 17
and 26, though, use a string as a buffer. Additionally, std::format_to_n pushes only
five characters onto the buffer.

Formatted output

Presumably, the most interesting part of the three formatting functions is the format
string ("Hello, C++{}!\n").

5.6.1 Format String

The formatting string syntax is identical for the formatting functions std::format,
std::format_to, and std::format_to_n. I use std::format in my examples.

• Syntax: std::format(FormatString, Args)

The Standard Library 349

The format string FormatString consists of

• Ordinary characters (except { and })
• Escape sequences {{ and }} that are replaced by { and }

• Replacement fields

A replacement field has the format { }

• You can use inside the replacement field an argument id and a colon followed
by a format specification, both components are optional.

The argument id allows you to specify the index of the arguments in Args. The
ids start with 0. When you don’t provide the argument id, the fields are filled in
the same order as the arguments are given. Either all replacement fields have to
use an argument id or none; i.e., std::format("{}, {}", "Hello", "World") and
std::format("{1}, {0}", "World", "Hello")will both compile, but std::format("{1},
{}", "World", "Hello") won’t.

std::formatter and its specializations define the format specification for the
argument types.

• Basic types and std::string: standard format specification⁴⁴ based on Python’s
format specification⁴⁵

• Chrono types: Chrono format specification⁴⁶
• Other formattable types: User-defined std::formatter specialization

I will use the next sections to fill in the theory with practice. Let me start with the
argument id and continue with the format specification.

5.6.1.1 Argument ID

Thanks to the argument id, you can reorder the arguments or address particular
arguments.

⁴⁴https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
⁴⁵https://docs.python.org/3/library/stdtypes.html#str.format
⁴⁶https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str.format
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification
https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://docs.python.org/3/library/stdtypes.html#str.format
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

The Standard Library 350

Using the argument id

1 // formatArgumentID.cpp

2

3 #include <fmt/core.h>

4 #include <iostream>

5 #include <string>

6

7 int main() {

8

9 std::cout << '\n';

10

11 std::cout << fmt::format("{} {}: {}!\n", "Hello", "World", 2020);

12

13 std::cout << fmt::format("{1} {0}: {2}!\n", "World", "Hello", 2020);

14

15 std::cout << fmt::format("{0} {0} {1}: {2}!\n", "Hello", "World", 2\

16 020);

17

18 std::cout << fmt::format("{0}: {2}!\n", "Hello", "World", 2020);

19

20 std::cout << '\n';

21

22 }

Line 11 displays the argument in the given order. On the contrary line 13 reorders
the first and second argument, line 15 shows the first argument twice, and line 17
ignores the second argument.

For completeness, here is the output of the program:

Applying the argument id

The Standard Library 351

Applying the argument id with the format specification makes formatting of text in
C++20 very powerful.

5.6.1.2 Format Specification

I’m not going to present the formal format specification for basic types, string types,
or chrono types. For basic types and std::string, read the full details here: standard
format specification⁴⁷. Accordingly, you can find the details of chrono types here:
chrono format specification⁴⁸.

Rather, I present the simplified format specification for basic types and string types.

Simplified format specification for basic types and string types

fill_align(opt) sign(opt) #(opt) 0(opt) width(opt) precision(opt) type(\

opt)

All parts are optional (opt). The next few sections present the parts of this format
specification.

5.6.1.2.1 Fill Character and Alignment

The fill character is optional (any character except { or }) and is followed by an
alignment specification.

• Fill character: by default, space is used
• Alignment:

– <: left (default for non-numbers)
– >: right (default for numbers)
– ^: center

⁴⁷https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
⁴⁸https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification
https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter#Format_specification

The Standard Library 352

Applying the fill character and alignment

// formatFillAlign.cpp

#include <fmt/core.h>

#include <iostream>

int main() {

std::cout << '\n';

int num = 2020;

std::cout << fmt::format("{:6}", num) << '\n';

std::cout << fmt::format("{:6}", 'x') << '\n';

std::cout << fmt::format("{:*<6}", 'x') << '\n';

std::cout << fmt::format("{:*>6}", 'x') << '\n';

std::cout << fmt::format("{:*^6}", 'x') << '\n';

std::cout << fmt::format("{:6d}", num) << '\n';

std::cout << fmt::format("{:6}", true) << '\n';

std::cout << '\n';

}

Applying the fill character and alignment

The Standard Library 353

5.6.1.2.2 Sign, #, and 0

The sign, #, and 0 character is only valid when an integer or floating-point type is
used.

The sign can have the following values:

• +: sign is used for zero and positive numbers
• -: sign is only used for negative numbers (default)
• space: leading space is used for non-negative numbers and a minus sign for
negative numbers

Applying the sign character

// formatSign.cpp

#include <fmt/core.h>

#include <iostream>

int main() {

std::cout << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", 0) << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", -0) << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", 1) << '\n';

std::cout << std::format("{0:},{0:+},{0:-},{0: }", -1) << '\n';

std::cout << '\n';

}

The Standard Library 354

Applying the sign character

The # causes the alternate form:

• For integer types, the prefix 0b, 0, or 0x is used for binary, octal, or hexadecimal
presented types

• For floating-point types, a decimal point is always used
• 0: pads with leading zeros

1 // formatAlternate.cpp

2

3 #include <fmt/core.h>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 std::cout << fmt::format("{:#015}", 0x78) << '\n';

11 std::cout << fmt::format("{:#015b}", 0x78) << '\n';

12 std::cout << fmt::format("{:#015x}", 0x78) << '\n';

13

14 std::cout << '\n';

15

16 std::cout << fmt::format("{:g}", 120.0) << '\n';

17 std::cout << fmt::format("{:#g}", 120.0) << '\n';

18

19

20 std::cout << '\n';

21

22 }

The Standard Library 355

Applying the # and the 0 characters

5.6.1.2.3 Width and Precision

You can specify the width and the precision of your type. The width specifier can
be applied to numbers and the precision to floating-point numbers and strings. For
floating-point types, the precision specifies the formatting precision; for strings, the
precision specifies how many characters are used and so, ultimately trimming the
string. It does not affect a string if the precision is greater than the length of the
string.

• width: you can use either a positive decimal number or a replacement field ({}
or {n}). When given, n specifies the minimum width.

• precision: you can use a period (.) followed by either a non-negative decimal
number or a replacement field.

A few examples should help you grasp the basics:

Applying the width and precision specifier

1 // formatWidthPrecision.cpp

2

3 #include <fmt/core.h>

4 #include <iostream>

5 #include <string>

6

7 int main() {

8

9 int i = 123456789;

The Standard Library 356

10 double d = 123.456789;

11

12 std::cout << "---" << fmt::format("{}", i) << "---\n";

13 std::cout << "---" << fmt::format("{:15}", i) << "---\n"; // (w =\

14 15)

15 std::cout << "---" << fmt::format("{:}", i, 15) << "---\n"; // (w =\

16 15)

17

18 std::cout << '\n';

19

20 std::cout << "---" << fmt::format("{}", d) << "---\n";

21 std::cout << "---" << fmt::format("{:15}", d) << "---\n"; // (w \

22 = 15)

23 std::cout << "---" << fmt::format("{:}", d, 15) << "---\n"; // (w \

24 = 15)

25

26 std::cout << '\n';

27

28 std::string s= "Only a test";

29

30 std::cout << "---" << fmt::format("{:10.50}", d) << "---\n"; // (w \

31 = 50, p = 50)

32 std::cout << "---" << fmt::format("{:{}.{}}", d, 10, 50) << "---\n"\

33 ; // (w = 50,

34 \

35 // p = 50)

36 std::cout << "---" << fmt::format("{:10.5}", d) << "---\n"; // (w \

37 = 10, p = 5)

38 std::cout << "---" << fmt::format("{:{}.{}}", d, 10, 5) << "---\n";\

39 // (w = 10,

40 \

41 // p = 5)

42

43 std::cout << '\n';

44

45 std::cout << "---" << fmt::format("{:.500}", s) << "---\n"; //\

The Standard Library 357

46 (p = 500)

47 std::cout << "---" << fmt::format("{:.{}}", s, 500) << "---\n"; //\

48 (p = 500)

49 std::cout << "---" << fmt::format("{:.5}", s) << "---\n"; //\

50 (p = 5)

51

52 }

The w character in the source code stands for the width; similarly, the p character for
the precision. I have a few interesting observations about the program. When you
specify the width with a replacement field (line 14), no extra spaces are added. When
you specify a precision higher than the length of the displayed double (lines 26 and
27), the length of the displayed value reflects the precision. This observation does not
hold for a string (lines 35 and 36).

Applying the width and precision specifiers

5.6.1.2.4 Type

In general, the compiler deduces the type of the value used. But sometimes, you want
to specify the type. These are the most important type specifications:

The Standard Library 358

• Strings: s
• Integers:

– b: binary format
– B: same as b but base Prefix is 0B
– d: decimal format
– o: octal format
– x: hexadecimal format
– X: same as x, but base prefix is 0X

• char and wchar_t:
– b, B, d, o, x, X: such as integers

• bool:
– s: true or false
– b, B, d, o, x, X: such as integers

• Floating-point:
– e: exponential format
– E: same as e, but the exponent is written with E

– f, F: fixed point; precision is 6
– g, G: precision 6 but exponent is written with E

When you don’t specify the type, the values are displayed as follows. A string is
displayed as a string, an integer in decimal format, a character as a character, and a
floating-point value with std::to_chars⁴⁹.

Thanks to the type specifiers, you can easily display an int in a different number
system.

⁴⁹https://en.cppreference.com/w/cpp/utility/to_chars

https://en.cppreference.com/w/cpp/utility/to_chars
https://en.cppreference.com/w/cpp/utility/to_chars

The Standard Library 359

Applying the type specifier

1 // formatType.cpp

2

3 #include <fmt/core.h>

4 #include <iostream>

5

6 int main() {

7

8 int num{2020};

9

10 std::cout << "default: " << fmt::format("{:}", num) << '\n';

11 std::cout << "decimal: " << fmt::format("{:d}", num) << '\n';

12 std::cout << "binary: " << fmt::format("{:b}", num) << '\n';

13 std::cout << "octal: " << fmt::format("{:o}", num) << '\n';

14 std::cout << "hexadecimal: " << fmt::format("{:x}", num) << '\n';

15

16 }

Applying the type specifier

So far, I’ve formatted basics types and strings. Additionally, you can format user-
defined types.

5.6.2 User-Defined Types

To format a user-defined type, I have to specialize the class std::formatter⁵⁰ for
my user-defined type. This means, in particular, I have to implement the member
functions parse and format.

⁵⁰https://en.cppreference.com/w/cpp/utility/format/formatter

https://en.cppreference.com/w/cpp/utility/format/formatter
https://en.cppreference.com/w/cpp/utility/format/formatter

The Standard Library 360

• parse:
– Accepts the parse context
– Parses the parse context
– Returns an iterator to the end of the format specification
– Throws a std::format_error in case of an error

• format:
– Gets the value t, which should be formatted, and the format context fc
– Formats t according to the format context
– Writes the output to fc.out()

– Returns an iterator that represents the end of the output

Let me put the theory into practice and format a std::vector.

5.6.2.1 Formatting a std::vector

My first specialization of the class std::formatter is as easy as possible. I specify a
format specification used for each element of the container.

Applying the format specification to the elements of a std::vector

1 // formatVector.cpp

2

3 #include <iostream>

4 #include <fmt/format.h>

5 #include <string>

6 #include <vector>

7

8 template <typename T>

9 struct fmt::formatter<std::vector<T>> {

10

11 std::string formatString;

12

13 auto constexpr parse(format_parse_context& ctx) {

14 formatString = "{:";

15 std::string parseContext(std::begin(ctx), std::end(ctx));

16 formatString += parseContext;

The Standard Library 361

17 return std::end(ctx) - 1;

18 }

19

20 template <typename FormatContext>

21 auto format(const std::vector<T>& v, FormatContext& ctx) {

22 auto out= ctx.out();

23 fmt::format_to(out, "[");

24 if (v.size() > 0) fmt::format_to(out, formatString, v[0]);

25 for (int i= 1; i < v.size(); ++i) fmt::format_to(out, ", " + format\

26 String, v[i]);

27 fmt::format_to(out, "]");

28 return fmt::format_to(out, "\n");

29 }

30

31 };

32

33

34 int main() {

35

36 std::vector<int> myInts{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

37 std::cout << fmt::format("{:}", myInts);

38 std::cout << fmt::format("{:+}", myInts);

39 std::cout << fmt::format("{:03d}", myInts);

40 std::cout << fmt::format("{:b}", myInts);

41

42 std::cout << '\n';

43

44 std::vector<std::string> myStrings{"Only", "for", "testing", "purpose\

45 "};

46 std::cout << fmt::format("{:}", myStrings);

47 std::cout << fmt::format("{:.3}", myStrings);

48

49 }

The specialization for std::vector (line 8) has the member functions parse (line 13)

The Standard Library 362

and format (line 20). parse essentially creates the formatString which is applied to
each element of the std::vector (lines 24 and 25). The parse context ctx (line 13)
contains the characters between the colon (:) and the closing curly brace (}). On end,
the function returns an iterator to the closing curly brace (}). The job of the member
function format is more interesting. The format context returns the output iterator.
Thanks to the output iterator and the function std::format_to⁵¹, the elements of a
std::vector are nicely displayed.

The elements of the std::vector (line 35) are formatted in a few ways. Line 36
displays the number, line 37 writes a sign before each number, line 38 aligns them
to 3 characters and uses the 0 as a fill character. Line 39 displays them in binary
format. The remaining two lines output each string of the std::vector. Finally, line
45 truncates each string to three characters.

Applying the format specification to the elements of a std::vector

When the std::vector becomes bigger, I want to add a linebreak. For this use case,
I extended the syntax of the format specification.

Layouting the elements of a std::vector

1 // formatVectorLinebreak.cpp

2

3 #include <algorithm>

4 #include <iostream>

5 #include <limits>

6 #include <numeric>

7 #include <fmt/format.h>

8 #include <string>

9 #include <vector>

10

⁵¹https://en.cppreference.com/w/cpp/utility/format/format_to

https://en.cppreference.com/w/cpp/utility/format/format_to
https://en.cppreference.com/w/cpp/utility/format/format_to

The Standard Library 363

11 template <typename T>

12 struct fmt::formatter<std::vector<T>> {

13

14 std::string systemFormatString;

15 std::string userFormatString;

16 int lineBreak{std::numeric_limits<int>::max()};

17

18 auto constexpr parse(format_parse_context& ctx) {

19 std::string startFormatString = "{:";

20 std::string parseContext(std::begin(ctx), std::end(ctx));

21 auto posCurly = parseContext.find_last_of("}");

22 auto posTab = parseContext.find_last_of("|");

23 if (posTab == std::string::npos) {

24 systemFormatString = startFormatString + parseContext.substr(0, p\

25 osCurly + 1);

26 }

27 else {

28 systemFormatString = startFormatString + parseContext.substr(0, p\

29 osTab) + "}";

30 userFormatString = parseContext.substr(posTab + 1, posCurly - pos\

31 Tab - 1);

32 lineBreak = std::stoi(userFormatString);

33 }

34 return std::begin(ctx) + posCurly;

35 }

36

37 template <typename FormatContext>

38 auto format(const std::vector<T>& v, FormatContext& ctx) {

39 auto out = ctx.out();

40 auto vectorSize = v.size();

41 if (vectorSize == 0) return fmt::format_to(out, "\n");

42 for (int i = 1; i < vectorSize + 1; ++i) {

43 fmt::format_to(out, systemFormatString, v[i-1]);

44 if ((i % lineBreak) == 0) fmt::format_to(out, "\n");

45 }

46 return fmt::format_to(out, "\n");

The Standard Library 364

47 }

48

49 };

50

51 int main() {

52

53 std::vector<int> myInts(100);

54 std::iota(myInts.begin(), myInts.end(), 1);

55

56 std::cout << fmt::format("{:|20}", myInts);

57 std::cout << '\n';

58 std::cout << fmt::format("{: |20}", myInts);

59 std::cout << '\n';

60 std::cout << fmt::format("{:4d|20}", myInts);

61 std::cout << '\n';

62 std::cout << fmt::format("{:10b|8}", myInts);

63

64 }

Here is how it works. I support an optional | followed by a number to the format
specification. The number tells if a line break should be introduced. I search for the
optional | symbol and the closing curly brace }. For robustness reasons, I start in
lines 21 and 22 from the end. Thanks to the index of the | symbol and the index of
the }, I can create the strings systemFormatString and useFormatString (lines 24 to
29). The member function format uses the systemFormatString and applies it to each
element of the vector. I make a line break when (i % lineBreak == 0) holds (line 41).

Line 53 displays 20 elements in a row and makes a line break. I can do better. The
format specification {: |20} (line 55) puts a space before each number. Additionally,
line 57 aligns each element to four characters. Finally, the last line displays 8 numbers
per line, aligns each element to 8 characters, and displays them: {:10b|8}.

The screenshot shows the readable formated elements of the std::vector.

The Standard Library 365

Applying the format specification and a line break to the elements of a std::vector

The Standard Library 366

Distilled Information

• The formatting library offers a secure and expandable alternative to
the printf family and extends the I/O streams.

• The format specification allows you to specify fill letters and text
alignment, set the sign, specify the width and the precision of
numbers, and specify the data type.

• Thanks to the functions parse and format, the formatting of a user-
defined type can be tailored to your needs.

The Standard Library 367

5.7 Further Improvements

Cippi goes up

5.7.1 std::bind_front

std::bind_front (Func&& func, Args&& ... args) creates a callable wrapper for
a callable func. std::bind_front can have an arbitrary number of arguments and
binds its arguments to the front.

std::bind_front versus std::bind

Since C++11, we have had std::bind⁵² and lambda expressions⁵³. With
C++20, we get std::bind_front⁵⁴. This may make you wonder. To be
pedantic std::bind is available since the Technical Report 1⁵⁵ (TR1).
std::bind and lambda expressions can be used as a replacement of
std::bind_front. Furthermore, std::bind_front seems like the little sis-
ter of std::bind, because only std::bind supports the rearranging of
arguments. Of course, there is a reason to use std::bind_front in the
future: in contrast to std::bind, std::bind_front propagates the exception
specification of the underlying call operator.

⁵²https://en.cppreference.com/w/cpp/utility/functional/bind
⁵³https://en.cppreference.com/w/cpp/language/lambda
⁵⁴https://en.cppreference.com/w/cpp/utility/functional/bind_front
⁵⁵https://en.wikipedia.org/wiki/C%2B%2B_Technical_Report_1

https://en.cppreference.com/w/cpp/utility/functional/bind
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/utility/functional/bind_front
https://en.wikipedia.org/wiki/C++_Technical_Report_1
https://en.cppreference.com/w/cpp/utility/functional/bind
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/utility/functional/bind_front
https://en.wikipedia.org/wiki/C++_Technical_Report_1

The Standard Library 368

The following program shows that you can replace std::bind_frontwith std::bind

or lambda expressions.

Comparing std::bind_front, std::bind, and a lambda expression

1 // bindFront.cpp

2

3 #include <functional>

4 #include <iostream>

5

6 int plusFunction(int a, int b) {

7 return a + b;

8 }

9

10 auto plusLambda = [](int a, int b) {

11 return a + b;

12 };

13

14 int main() {

15

16 std::cout << '\n';

17

18 auto twoThousandPlus1 = std::bind_front(plusFunction, 2000); \

19

20 std::cout << "twoThousandPlus1(20): " << twoThousandPlus1(20) << '\\

21 n';

22

23 auto twoThousandPlus2 = std::bind_front(plusLambda, 2000); \

24

25 std::cout << "twoThousandPlus2(20): " << twoThousandPlus2(20) << '\\

26 n';

27

28 auto twoThousandPlus3 = std::bind_front(std::plus<int>(), 2000);

29 std::cout << "twoThousandPlus3(20): " << twoThousandPlus3(20) << '\\

30 n';

31

32 std::cout << "\n\n";

The Standard Library 369

33

34 using namespace std::placeholders;

35

36 auto twoThousandPlus4 = std::bind(plusFunction, 2000, _1); \

37

38 std::cout << "twoThousandPlus4(20): " << twoThousandPlus4(20) << '\\

39 n';

40

41 auto twoThousandPlus5 = [](int b) { return plusLambda(2000, b); };\

42

43 std::cout << "twoThousandPlus5(20): " << twoThousandPlus5(20) << '\\

44 n';

45

46 std::cout << '\n';

47

48 }

Each call (lines 18, 21, 24, 31, and 34) gets a callable taking two arguments and returns
a callable taking only one argument because the first argument is bound to 2000.
The callable is a function (line 18), a lambda expression (line 21), and a predefined
function object (line 24). Parameter _1 is a so-called placeholder (line 31) and stands
for the missing argument. With lambda expression (line 34), you can directly apply
one argument and provide an argument b for the missing parameter. From the
readability perspective, std::bind_front may be easier to read than std::bind or
a lambda expression.

The Standard Library 370

Applying std::bind, std::bind_front, and a lambda expression

5.7.2 std::is_constant_evaluated

The function std::is_constant_evaluted determines whether the function is exe-
cuted at compile time or run time. Why do we need this function from the type-traits
library? In C++20, we have roughly spoken of three kinds of functions:

• consteval declared functions run at compile time: consteval int alwaysCompiletime();

• constexpr declared functions can run at compile time or run time: constexpr
int itDepends();

• usual functions run at run time: int alwaysRuntime();

Now, I have to write about the complicated case: constexpr. A constexpr function
can run at compile time or run time. Sometimes these functions should behave
differently, depending on whether the function is executed at compile time or run
time. A constexpr function such as getSum has the potential to run at compile time.

A constexpr-declared function

constexpr int getSum(int l, int r) {

return l + r;

}

How can we be sure that the function is executed at compile time? Essentially, there
are three possibilities.

The Standard Library 371

1. A constexpr function is executed at compile time:
• The function is used in a so-called constant-evaluated context. A constant-
evaluated context could be inside a constexpr function or a static_assert.

• The client of the function explicitly wants to have the result at compile
time: constexpr auto res = getSum(2000, 11). Now, getSum() has to run
at compile time.

2. A constexpr function can only be performed at run time if the arguments are
not constexpr. This would be the case if the function getSum(a, 11) is invoked
with a variable, which was not declared as constexpr : int a = 2000.

3. A constexpr function can be executed at compile time or run time when neither
rule 1 nor rule 2 applies. In this case, both options are valid and the decision is
up to the compiler.

Exactly in point 3, the power of std::is_constant_evaluated kicks in. You can
detect if the program runs at compile time or run time and perform different
operations. cppreference.com/is_constant_evaluted⁵⁶ shows a smart use case. At
compile time, you calculate the power of two numbers manually; at run time, you
use std::pow.

Executing different code at compile time and run time

// constantEvaluated.cpp

#include <type_traits>

#include <cmath>

#include <iostream>

constexpr double power(double b, int x) {

if (std::is_constant_evaluated() && !(b == 0.0 && x < 0)) {

if (x == 0)

return 1.0;

double r = 1.0, p = x > 0 ? b : 1.0 / b;

auto u = unsigned(x > 0 ? x : -x);

while (u != 0) {

⁵⁶https://en.cppreference.com/w/cpp/types/is_constant_evaluated

https://en.cppreference.com/w/cpp/types/is_constant_evaluated
https://en.cppreference.com/w/cpp/types/is_constant_evaluated

The Standard Library 372

if (u & 1) r *= p;

u /= 2;

p *= p;

}

return r;

}

else {

return std::pow(b, double(x));

}

}

int main() {

std::cout << '\n';

constexpr double kilo1 = power(10.0, 3);

std::cout << "kilo1: " << kilo1 << '\n';

int n = 3;

double kilo2 = power(10.0, n);

std::cout << "kilo2: " << kilo2 << '\n';

std::cout << '\n';

}

There is one interesting observation I want to share. It is possible to use std::is_-

constant_evaluated in a consteval declared function or in a function that can only
run at run time. Of course, the result of these calls is always true or false.

5.7.3 std::source_location

std::source_location represents information about the source code. This infor-
mation includes file names, line numbers, and function names. The information is
very valuable when you need information about the call site such as for debugging,

The Standard Library 373

logging, or testing purposes. The class std::source_location is the better alternative
than the predefined C++11 macros __FILE__ and __LINE__ and should be used
instead.

std::source_location can give you the following information.

std::source_location src

Function Description

std::source_location::current() Creates a new source_location object src

src.line() Returns the line number

src.column() Returns the column number

src.file_name() Returns the file name

src.function_name() Returns the function name

The call std::source_location::current() creates a new source location object
src that represents the information of the call site. At the end of 2020, no C++
compiler supports std::source_location. Consequently, the following program
sourceLocation.cpp is from cppreference.com/source_location⁵⁷.

Displaying information about the call site with std::source_location

1 // sourceLocation.cpp

2 // from cppreference.com

3

4 #include <iostream>

5 #include <string_view>

6 #include <source_location>

7

8 void log(std::string_view message,

9 const std::source_location& location = std::source_location::c\

10 urrent())

11 {

⁵⁷https://en.cppreference.com/w/cpp/utility/source_location

https://en.cppreference.com/w/cpp/utility/source_location
https://en.cppreference.com/w/cpp/utility/source_location

The Standard Library 374

12 std::cout << "info:"

13 << location.file_name() << ':'

14 << location.line() << ' '

15 << message << '\n';

16 }

17

18 int main()

19 {

20 log("Hello world!"); // info:main.cpp:19 Hello world!

21 }

The output of the program is part of its source code.

Distilled Information

• std::bind_front is the easier-to-use variant for std::bind (C++11).
In constrast to std::bind, std::bind_front does not enable the
rearranging of its arguments.

• The function std::is_constant_evaluted determines whether the
function is executed at compile time or run time.

• std::source_location represents information about the source code.
This information includes file names, line numbers, and function
names, and is highly valuable for debugging, logging, or testing.

6. Concurrency

With the publishing of the C++11 standard, C++ got a multithreading library and a
memory model. This library has basic building blocks like atomic variables, threads,
locks, and condition variables. That’s the foundation on which C++ standards such
as C++20 can establish higher-level abstractions.

Concurrency 376

6.1 Coroutines

Cippi waters the flowers

Coroutines are functions that can suspend and resume their execution while keeping
their state. The evolution of functions in C++ goes one step further.

The Challenge of Understanding Coroutines
It was quite a challenge for me to understand coroutines. I strongly suggest
that you should not read the sections in the chapter in sequence. Skip in
your first iteration the sections “The Framework”, and “The Workflow”.
Furthermore, read the case studies “Variations of Futures”, “Modification
and Generalization of a Generator”, and “Various JobWorkflows”. Reading,
studying, and playing with the provided examples should give you an
initial intuition need for you to actually dive into details and the workflow
of coroutines.

What I present in this section as a new idea in C++20 is quite old. The term
coroutine was coined by Melvin Conway¹. He used it in his publication on compiler

¹https://en.wikipedia.org/wiki/Melvin_Conway

https://en.wikipedia.org/wiki/Melvin_Conway
https://en.wikipedia.org/wiki/Melvin_Conway

Concurrency 377

construction in 1963. Donald Knuth² called procedures a special case of coroutines.
Sometimes, it just takes a while to get your ideas accepted.

Functions versus Coroutines

While you can only call a function and return from it, you can call a coroutine,
suspend and resume it, and destroy a suspended coroutine.

With the new keywords co_await and co_yield, C++20 extends the execution of C++
functions with two new concepts.

Thanks to co_await expression it is possible to suspend and resume the execution
of the expression. If you use co_await expression in a function func, the call auto
getResult = func() does not block if the result of the function is not available.
Instead of resource-consuming blocking, you have resource-friendly waiting.

co_yield expression supports generator functions. The generator function returns
a new value each time you call it. A generator function is a kind of data stream from
which you can pick values. The data stream can be infinite. Therefore, we are at the
center of lazy evaluation with C++.

6.1.1 A Generator Function

The following program is as simple as possible. The function getNumbers returns all
integers from begin to end, incremented by inc. Value begin has to be smaller than

²https://en.wikipedia.org/wiki/Donald_Knuth

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Donald_Knuth

Concurrency 378

end, and inc has to be positive.

A greedy generator function

1 // greedyGenerator.cpp

2

3 #include <iostream>

4 #include <vector>

5

6 std::vector<int> getNumbers(int begin, int end, int inc = 1) {

7

8 std::vector<int> numbers;

9 for (int i = begin; i < end; i += inc) {

10 numbers.push_back(i);

11 }

12

13 return numbers;

14

15 }

16

17 int main() {

18

19 std::cout << '\n';

20

21 const auto numbers= getNumbers(-10, 11);

22

23 for (auto n: numbers) std::cout << n << " ";

24

25 std::cout << "\n\n";

26

27 for (auto n: getNumbers(0, 101, 5)) std::cout << n << " ";

28

29 std::cout << "\n\n";

30

31 }

Of course, I am reinventing the wheel with getNumbers, because that job could be

Concurrency 379

done with std::iota³.

For completeness, here is the output.

A generator function

Two observations of the program greedyGenerator.cpp are essential. On the one
hand, the vector numbers in line 8 always gets all values. This holds even if I’m
only interested in the first 5 elements of a vector with 1000 elements. On the other
hand, it’s quite easy to transform the function getNumbers into a lazy generator. The
following program is intentionally not complete. The definition of the generator is
still missing.

A lazy generator function

1 // lazyGenerator.cpp

2

3 #include <iostream>

4

5 generator<int> generatorForNumbers(int begin, int inc = 1) {

6

7 for (int i = begin;; i += inc) {

8 co_yield i;

9 }

10

11 }

12

13 int main() {

14

15 std::cout << '\n';

16

³http://en.cppreference.com/w/cpp/algorithm/iota

http://en.cppreference.com/w/cpp/algorithm/iota
http://en.cppreference.com/w/cpp/algorithm/iota

Concurrency 380

17 const auto numbers = generatorForNumbers(-10);

18

19 for (int i= 1; i <= 20; ++i) std::cout << numbers() << " ";

20

21 std::cout << "\n\n";

22

23 for (auto n: generatorForNumbers(0, 5)) std::cout << n << " ";

24

25 std::cout << "\n\n";

26

27 }

While the function getNumbers in the file greedyGenerator.cpp returns a std::vector<int>,
the coroutine generatorForNumbers in lazyGenerator.cpp returns a generator. The
generator numbers in line 17 or generatorForNumbers(0, 5) in line 23 returns a new
number on request. The range-based for loop triggers the query. Precisely, the query
of the coroutine returns the value i via co_yield i and immediately suspends its
execution. If a new value is requested, the coroutine resumes its execution exactly at
that place.

The expression generatorForNumbers(0, 5) in line 23 is a just-in-place use of a
generator.

I want to stress one point explicitly. The coroutine generatorForNumbers creates an
infinite data stream because the for loop in line 8 has no end condition. This is fine
if I only ask for a finite number of values, such as in line 20. This does not hold for
line 23, since there is no end condition. Therefore, the expression runs forever.

6.1.2 Characteristics

Coroutines have a few unique characteristics.

6.1.2.1 Typical Use Cases

Coroutines are the usual way to write event-driven applications⁴, which can be
simulations, games, servers, user interfaces, or even algorithms. Coroutines are also

⁴https://en.wikipedia.org/wiki/Event-driven_programming

https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming

Concurrency 381

typically used for cooperative multitasking⁵. The key to cooperative multitasking is
that each task takes as much time as it needs, but avoids sleeping or waiting, and
instead allows some other task to run. Cooperative multitasking stands in contrast
to pre-emptive multitasking, for which we have a scheduler that decides how long
each task gets the CPU.

There are different kinds of coroutines.

6.1.2.2 Underlying Concepts

Coroutines in C++20 are asymmetric, first-class, and stackless.

The workflow of an asymmetric coroutine goes back to the caller. This does not
hold for a symmetric coroutine. A symmetric coroutine can delegate its workflow to
another coroutine.

First-class coroutines are similar to first-class functions, since coroutines behave
like data. Behaving like data means that you can use them as arguments to or return
values from functions, or store them in a variable.

A stackless coroutine can suspend and resume the top-level coroutine. The execution
of the coroutine and the yielding from the coroutine comes back to the caller. The
coroutine stores its state for resumption separate from the stack. Stackless coroutines
are often called resumable functions.

6.1.2.3 Design Goals

Gor Nishanov describes in proposal N4402⁶ the design goals of coroutines.

Coroutines should

• be highly scalable (to billions of concurrent coroutines)
• have highly efficient resume and suspend operations comparable in cost to the
overhead of a function

• seamlessly interact with existing facilities with no overhead

⁵https://en.wikipedia.org/wiki/Computer_multitasking
⁶https://isocpp.org/files/papers/N4402.pdf

https://en.wikipedia.org/wiki/Computer_multitasking
https://isocpp.org/files/papers/N4402.pdf
https://en.wikipedia.org/wiki/Computer_multitasking
https://isocpp.org/files/papers/N4402.pdf

Concurrency 382

• have open-ended coroutine machinery allowing library designers to develop
coroutine libraries exposing various high-level semantics such as generators,
goroutines⁷, tasks and more

• usable in environments where exceptions are forbidden or not available

Due to the design goals of scalability and seamless interaction with existing facilities,
the coroutines are stackless. In contrast, a stackful coroutine reserves a default stack
of 1MB on Windows, and 2MB on Linux.

There are four ways for a function to become a coroutine.

6.1.2.4 Becoming a Coroutine

A function becomes a coroutine if it uses

• co_return, or
• co_await, or
• co_yield, or a
• co_await expression in a range-based for loop.

⁷https://tour.golang.org/concurrency/1

https://tour.golang.org/concurrency/1
https://tour.golang.org/concurrency/1

Concurrency 383

Distinguish Between the Coroutine Factory
and the Coroutine Object
The term coroutine is often used for two different aspects of coroutines:
the function invoking co_return, co_await, or co_yield, and the coroutine
object. Using one term for two different coroutine aspects may puzzle you
(such as it did me). Let me clarify both terms.

A simple coroutine producing 2021

MyFuture<int> createFuture() {

co_return 2021;

}

int main() {

auto fut = createFuture();

std::cout << "fut.get(): " << fut.get() << '\n';

}

This straightforward example has a function createFuture and returns an
object of type MyFuture<int>. Both are called coroutines. To be specific,
the function createFuture is a coroutine factory that returns a coroutine
object. The coroutine object is a resumable object that implements the
framework to model a specific behavior. I present in the section co_return

the implementation and the use of this straightforward coroutine.

6.1.2.4.1 Restrictions

Coroutines cannot have return statements or placeholder return types. This holds
for unconstrained placeholders (auto), and constrained placeholders (concepts).

Additionally, functions having variadic arguments⁸, constexpr functions, consteval
functions, constructors, destructors, and the main function cannot be coroutines.

⁸https://en.cppreference.com/w/cpp/language/variadic_arguments

https://en.cppreference.com/w/cpp/language/variadic_arguments
https://en.cppreference.com/w/cpp/language/variadic_arguments

Concurrency 384

6.1.3 The Framework

The framework for implementing coroutines consists of more than 20 functions, some
of which youmust implement and some of which youmay overwrite. Therefore, you
can tailor the coroutine to your needs.

A coroutine is associated with three parts: the promise object, the coroutine handle,
and the coroutine frame. The client gets the coroutine handle to interact with the
promise object, which keeps its state in the coroutine frame.

6.1.3.1 Promise Object

The promise object is manipulated from inside the coroutine, and it delivers its result
or exception via the promise object.

The promise object must support the following interface.

Promise object

Member Function Description

Default constructor A promise must be default constructible.

initial_suspend() Determines if the coroutine suspends
before it runs.

final_suspend noexcept() Determines if the coroutine suspends
before it ends.

unhandled_exception() Called when an exception happens.

get_return_object() Returns the coroutine object (resumable
object).

return_value(val) Is invoked by co_return val.

return_void() Is invoked by co_return.

yield_value(val) Is invoked by co_yield val.

Concurrency 385

The compiler automatically invokes these functions during its execution of the
coroutine. The section workflow presents this workflow in detail.

The function get_return_object returns a resumable object that the client uses to
interact with the coroutine. A promise needs at least one of the member functions
return_value, return_void, or yield_value. You don’t need to define the member
functions return_value or return_void if your coroutine never ends.

The three functions yield_value, initial_suspend, and final_suspend return await-
ables. An Awaitable is something that you can await on. The awaitable determines
if the coroutine pauses or not.

6.1.3.2 Coroutine Handle

The coroutine handle is a non-owning handle to resume or destroy the coroutine
frame from the outside. The coroutine handle is part of the resumable function.

The following code snippet shows a simple Generator having a coroutine handle
coro.

A coroutine handle

1 template<typename T>

2 struct Generator {

3

4 struct promise_type;

5 using handle_type = std::coroutine_handle<promise_type>;

6

7 Generator(handle_type h): coro(h) {}

8 handle_type coro;

9

10 ~Generator() {

11 if (coro) coro.destroy();

12 }

13 T getValue() {

14 return coro.promise().current_value;

15 }

16 bool next() {

17 coro.resume();

Concurrency 386

18 return not coro.done();

19 }

20 ...

21 }

The constructor (line 7) gets the coroutine handle to the promise that has type
std::coroutine_handle<promise_type>⁹. The member functions next (line 16) and
getValue (line 13) allow a client to resume the promise (gen.next()) or ask for its
value (gen.getValue()) using the coroutine handle.

Invoking a coroutine

Generator<int> coroutineFactory(); // function that returns a coroutine\

object

auto gen = coroutineFactory();

gen.next();

auto result = gen.getValue();

Internally, both functions trigger the coroutine handle coro (line 8) to

• resume the coroutine: coro.resume() (line 17) or coro();
• destroy the coroutine: coro.destroy() (line 11);
• check the state of the coroutine: coro (line 11).

The coroutine is automatically destroyed when its function body ends. The call coro
only returns true at its final suspension point.

The resumable object requires an inner type
promise_type

A resumable object such as Generator must have an inner type
promise_type. Alternatively, you can specialize std::coroutine_traits¹⁰
on Generator and define a public member promise_type in it:
std::coroutine_traits<Generator>.

⁹https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
¹⁰https://en.cppreference.com/w/cpp/coroutine/coroutine_traits

https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_traits
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_traits

Concurrency 387

6.1.3.3 Coroutine Frame

The coroutine frame is an internal, typically heap-allocated state. It consists of the
already mentioned promise object, the coroutine’s copied parameters, the representa-
tion of the suspension points, local variables whose lifetime ends before the current
suspension point, and local variables whose lifetime exceed the current suspension
point.

Two requirements are necessary to optimize out the allocation of the coroutine:

1. The lifetime of the coroutine has to be nested inside the lifetime of the caller.
2. The caller of the coroutine knows the size of the coroutine frame.

The crucial abstractions in the coroutine framework are Awaitables and Awaiters.

6.1.4 Awaitables and Awaiters

The three functions of a promise object prom yield_value, initial_suspend, and
final_suspend return awaitables.

6.1.4.1 Awaitables

An Awaitable is something you can await on. The awaitable determines if the
coroutine pauses or not.

Essentially, the compiler generated the three function calls using the promise prom

and the co_await operator.

Compiler-generated function calls

Call Compiler generated call

yield value co_await prom.yield_value(value)

prom.initial_suspend() co_await prom.initial_suspend()

prom.final_suspend() co_await prom.final_suspend()

Concurrency 388

The co_await operator needs an awaitable as argument. Awaitables have to imple-
ment the concept Awaitable.

6.1.4.2 The Concept Awaitable

The concept Awaitable requires three functions.

The concept Awaitable

Function Description

await_ready Indicates if the result is ready. When it returns false,
await_suspend is called.

await_suspend Schedule the coroutine for resumption or destruction.

await_resume Provides the result for the co_await exp expression.

The C++20 standard already defines two basic awaitables: std::suspend_always, and
std::suspend_never.

6.1.4.3 std::suspend_always and std::suspend_never

As its name suggests, the Awaitable suspend_always always suspends. Therefore, the
call await_ready returns false.

The Awaitable std::suspend_always

struct suspend_always {

constexpr bool await_ready() const noexcept { return false; }

constexpr void await_suspend(std::coroutine_handle<>) const noexcep\

t {}

constexpr void await_resume() const noexcept {}

};

The opposite holds for suspend_never. It never suspends and, hence, the call await_-
ready returns true.

Concurrency 389

The Awaitable std::suspend_never

struct suspend_never {

constexpr bool await_ready() const noexcept { return true; }

constexpr void await_suspend(std::coroutine_handle<>) const noexcep\

t {}

constexpr void await_resume() const noexcept {}

};

The awaitables std::suspend_always and std::suspend_never are the basic building
blocks for functions, such as initial_suspend and final_suspend. Both functions
are automatically executed when the coroutine is exected: initial_suspend at the
beginning and final_suspend at the end end of the coroutine.

6.1.4.4 initial_suspend

When the member function initial_suspend returns std::suspend_always, the
coroutine suspends at its beginning. When returning std::suspend_never, the
coroutine does not pause.

• A lazy coroutine that pauses immediately

A lazy coroutine

std::suspend_always initial_suspend() {

return {};

}

• An eager coroutine that runs immediately

Concurrency 390

A eager coroutine

std::suspend_never initial_suspend() {

return {};

}

6.1.4.5 final_suspend

When the member function final_suspend returns std::suspend_always, the corou-
tine suspends at its end.When returning std::suspend_never, the coroutine does not
pause.

• A lazy coroutine that pauses at its end

A lazy coroutine that finally pauses

std::suspend_always final_suspend noexcept noexcept noexcept noexcept()\

{

return {};

}

• An eager coroutine that doesn’t pause at its end

A eager coroutine that doesn’t pause

std::suspend_never final_suspend() noexcept {

return {};

}

So far, we have only Awaitables, but we need something to await for. Let me fill the
gap and write about Awaiters.

Concurrency 391

6.1.4.6 Awaiter

There are essentially two ways to get an Awaiter.

• A co_await operator is defined.
• The Awaitable becomes the Awaiter.

Remember, when co_await expression is invoked, the expression is an Awaitable.
Further, an expression is a call on the promise object (Awaitable): prom.yield_-
value(value), prom.initial_suspend(), or prom.final_suspend(). For readability,
I rename in the following lines promise object prom to awaitable.

Now, the compiler performs the following lookup rule to get an Awaiter:

1. It looks for the co_await operator on the promise object and returns an Awaiter:

awaiter = awaitable.operator co_await();

2. It looks for a freestanding co_wait operator and returns an Awaiter:

awaiter = operator co_await();

3. If there is no co_wait operator defined, the Awaitable becomes the Awaiter:

awaiter = awaitable;

awaiter = awaitable

When you study my coroutine implementations in this chapter, you may
notice that I use most of the time that an Awaitable implicitly becomes
an Awaiter. Only the example to thread synchronization uses the co_await
operator to get the Awaiter.

After these static aspects of coroutines, I want to continue with their dynamic aspects.

6.1.5 The Workflows

The compiler transforms your coroutine and runs two workflows: the outer promise
workflow and the inner awaiter workflow.

Concurrency 392

6.1.5.1 The Promise Workflow

When you use co_yield, co_await, or co_return in a function, the function becomes
a coroutine, and the compiler transforms its body to something equivalent to the
following lines.

The transformed coroutine

1 {

2 Promise prom;

3 co_await prom.initial_suspend();

4 try {

5 <function body having co_return, co_yield, or co_wait>

6 }

7 catch (...) {

8 prom.unhandled_exception();

9 }

10 FinalSuspend:

11 co_await prom.final_suspend();

12 }

The compiler automatically runs the transformed code using the functions of the
promise object. In short, I call this workflow the promise workflow. Here are the
main steps of this workflow.

• Coroutine begins execution
– allocates the coroutine frame if necessary
– copies all function parameters to the coroutine frame
– creates the prom object prom (line 2)
– calls prom.get_return_object() to create the coroutine handle, and keeps
it in a local variable. The result of the call will be returned to the caller
when the coroutine first suspends.

– calls prom.initial_suspend() and co_awaits its result. The promise type
typically returns suspend_never for eagerly-started coroutines or suspend_-
always for lazily-started coroutines. (line 3)

Concurrency 393

– the body of the coroutine is executed when co_await prom.initial_-

suspend() resumes
• Coroutine reaches a suspension point

– the return object (prom.get_return_object()) is returned to the caller
which resumed the coroutine

• Coroutine reaches co_return
– calls prom.return_void() for co_return or co_return expression, where

expression has type void
– calls prom.return_value(expression) for co_return expression, where

expression has non-void type.
– destroys all stack-created variables
– calls prom.final_suspend() and co_awaits its result

• Coroutine is destroyed (by terminating via co_return an uncaught exception,
or via the coroutine handle)
– calls the destruction of the promise object
– calls the destructor of the function parameters
– frees the memory used by the coroutine frame
– transfers control back to the caller

When a coroutine ends with an uncaught exception, the following happens:

• catches the exception and calls prom.unhandled_exception() from the catch
block

• calls prom.final_suspend() and co_awaits the result (line 11)

When you use co_await expr in a coroutine, or the compiler implicitly invokes
co_await prom.initial_suspend(), co_await prom.final.suspend(), or co_await
prom.yield_value(value), a second, inner awaitable workflow starts.

6.1.5.2 The Awaiter Workflow

Using co_await expr causes the compiler to transform the code based on the
functions await_ready, await_suspend, and await_resume. Consequently, I call the
execution of the transformed code the awaiter workflow.

The compiler generates approximately the following code using the awaitable. For
simplicity, I ignore exception handling and describe the workflow with comments.

Concurrency 394

The generated Awaiter Workflow

1 awaitable.await_ready() returns false:

2

3 suspend coroutine

4

5 awaitable.await_suspend(coroutineHandle) returns:

6

7 void:

8 awaitable.await_suspend(coroutineHandle);

9 coroutine keeps suspended

10 return to caller

11

12 bool:

13 bool result = awaitable.await_suspend(coroutineHandle);

14 if result:

15 coroutine keep suspended

16 return to caller

17 else:

18 go to resumptionPoint

19

20 another coroutine handle:

21 auto anotherCoroutineHandle = awaitable.await_suspend(corou\

22 tineHandle);

23 anotherCoroutineHandle.resume();

24 return to caller

25

26 resumptionPoint:

27

28 return awaitable.await_resume();

The workflow is only executed if awaitable.await_ready() returns false (line 1).
In case it returns true, the coroutine is ready and returns with the result of the call
awaitable.await_resume() (line 27).

Let me assume that awaitable.await_ready() returns false. First, the coroutine is
suspended (line 3), and immediately the return value of awaitable.await_suspend()

Concurrency 395

is evaluated. The return type can be void (line 7), a boolean (line 12), or another
coroutine handle (line 20), such as anotherCoroutineHandle. Depending on the
return type, the program flow returns or another coroutine is executed.

Return value of awaitable.await_suspend()

Type Description

void The coroutine keeps suspended and returns to the caller.

bool bool == true: The coroutine keeps suspended and returns to
the caller.
bool == false: The coroutine is resumed and does not return
to the caller.

anotherCoroutineHandle The other coroutine is resumed and returns to the caller.

Whats happens in case an exception is thrown? It makes a difference if the exception
occurs in await_read, await_suspend, or await_resume.

• await_ready: The coroutine is not suspended, nor are the calls await_suspend
or await_resume evaluated.

• await_suspend: The exception is caught, the coroutine is resumed, and the
exception rethrown. await_resume is not called.

• await_resume: await_ready and await_suspend are evaluated and all values are
returned. Of course, the call await_resume does not return a result.

Let me put theory into practice.

6.1.6 co_return

A coroutine uses co_return as its return statement.

6.1.6.1 A Future

Admittedly, the coroutine in the following program eagerFuture.cpp is the simplest
coroutine I can imagine that still does something meaningful: it automatically stores
the result of its invocation.

Concurrency 396

An eager future
1 // eagerFuture.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 std::shared_ptr<T> value;

10 MyFuture(std::shared_ptr<T> p): value(p) {}

11 ~MyFuture() { }

12 T get() {

13 return *value;

14 }

15

16 struct promise_type {

17 std::shared_ptr<T> ptr = std::make_shared<T>();

18 ~promise_type() { }

19 MyFuture<T> get_return_object() {

20 return ptr;

21 }

22 void return_value(T v) {

23 *ptr = v;

24 }

25 std::suspend_never initial_suspend() {

26 return {};

27 }

28 std::suspend_never final_suspend() noexcept {

29 return {};

30 }

31 void unhandled_exception() {

32 std::exit(1);

33 }

34 };

35 };

Concurrency 397

36

37 MyFuture<int> createFuture() {

38 co_return 2021;

39 }

40

41 int main() {

42

43 std::cout << '\n';

44

45 auto fut = createFuture();

46 std::cout << "fut.get(): " << fut.get() << '\n';

47

48 std::cout << '\n';

49

50 }

MyFuture behaves as a future¹¹, which runs immediately. The call of the coroutine
createFuture (line 45) returns the future, and the call fut.get (line 46) picks up the
result of the associated promise.

There is one subtle difference to a future, the return value of the coroutine createFuture
is available after its invocation. Due to the lifetime issues, the return value is managed
by a std::shared_ptr (lines 9 and 17). The coroutine always uses std::suspend_-
never (lines 25, and 28) and, therefore, neither suspends before it runs nor after. This
means the coroutine is executed when the function createFuture is invoked. The
member function get_return_object (line 19) creates and stores the handle to the
coroutine object, and return_value (lines 22) stores the result of the coroutine, which
was provided by co_return 2021 (line 38). The client invokes fut.get (line 46) and
uses the future as a handle to the promise. The member function get returns the
result to the client (line 13).

An eager future

¹¹https://en.cppreference.com/w/cpp/thread/future

https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future

Concurrency 398

Youmay think that it is not worth the effort of implementing a coroutine that behaves
just like a function. You are right! However, this simple coroutine is an ideal starting
point for writing various implementations of futures. Read more about Variations of
Futures in chapter case studies.

6.1.7 co_yield

Thanks to co_yield you can implement a generator generating an infinite data
stream from which you can successively query values. The return type of the
generator generatorForNumbers(int begin, int inc= 1) is generator<int>, where
generator internally holds a special promise p such that a call co_yield i is
equivalent to a call co_await p.yield_value(i). Statement co_yield i can be
called an arbitrary number of times. Immediately after each call, the execution of
the coroutine is suspended.

6.1.7.1 An Infinite Data Stream

The program infiniteDataStream.cpp produces an infinite data stream. The corou-
tine getNext uses co_yield to create a data stream that starts at start and gives on
request the next value, incremented by step.

An infinite data stream

1 // infiniteDataStream.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 template<typename T>

8 struct Generator {

9

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12

13 Generator(handle_type h): coro(h) {} // (3)

14 handle_type coro;

Concurrency 399

15

16 ~Generator() {

17 if (coro) coro.destroy();

18 }

19 Generator(const Generator&) = delete;

20 Generator& operator = (const Generator&) = delete;

21 Generator(Generator&& oth) noexcept : coro(oth.coro) {

22 oth.coro = nullptr;

23 }

24 Generator& operator = (Generator&& oth) noexcept {

25 coro = oth.coro;

26 oth.coro = nullptr;

27 return *this;

28 }

29 T getValue() {

30 return coro.promise().current_value;

31 }

32 bool next() { // (5)

33 coro.resume();

34 return not coro.done();

35 }

36 struct promise_type {

37 promise_type() = default; // (1)

38

39 ~promise_type() = default;

40

41 auto initial_suspend() { // (4)

42 return std::suspend_always{};

43 }

44 auto final_suspend() noexcept {

45 return std::suspend_always{};

46 }

47 auto get_return_object() { // (2)

48 return Generator{handle_type::from_promise(*this)};

49 }

50 auto return_void() {

Concurrency 400

51 return std::suspend_never{};

52 }

53

54 auto yield_value(const T value) { // (6)

55 current_value = value;

56 return std::suspend_always{};

57 }

58 void unhandled_exception() {

59 std::exit(1);

60 }

61 T current_value;

62 };

63

64 };

65

66 Generator<int> getNext(int start = 0, int step = 1) {

67 auto value = start;

68 while (true) {

69 co_yield value;

70 value += step;

71 }

72 }

73

74 int main() {

75

76 std::cout << '\n';

77

78 std::cout << "getNext():";

79 auto gen = getNext();

80 for (int i = 0; i <= 10; ++i) {

81 gen.next();

82 std::cout << " " << gen.getValue(); // (7)

83 }

84

85 std::cout << "\n\n";

86

Concurrency 401

87 std::cout << "getNext(100, -10):";

88 auto gen2 = getNext(100, -10);

89 for (int i = 0; i <= 20; ++i) {

90 gen2.next();

91 std::cout << " " << gen2.getValue();

92 }

93

94 std::cout << '\n';

95

96 }

The main program creates two coroutines. The first one gen (line 79) returns the values
from 0 to 10, and the second one gen2 (line 88) the values from 100 to -100. Before I
dive into the workflow, thanks to the online compiler Wandbox¹², here is the output
of the program.

An infinite data stream

The numbers in the program infiniteDataStream.cpp stand for the steps in the first
iteration of the workflow.

1. creates the promise
2. calls promise.get_return_object() and keeps the result in a local variable
3. creates the generator
4. calls promise.initial_suspend(). The generator is lazy and, therefore, always

suspends.
5. asks for the next value and returns if the generator is consumed
6. triggered by the co_yield call. The next value is available thereafter.

¹²https://wandbox.org/

https://wandbox.org/
https://wandbox.org/

Concurrency 402

7. gets the next value

In additional iterations, only steps 5, 6, and 7 are performed.

Section Modification and Generalization of Threads in chapter case studies discusses
further improvements and modifications of the generator infiniteDataStream.cpp.

6.1.8 co_await

co_await eventually causes the execution of the coroutine to be suspended or
resumed. The expression exp in co_await exp has to be a so-called awaitable
expression, i.e. which must implement a specific interface, consisting of the three
functions await_ready, await_suspend, and await_resume.

A typical use case for co_await is a server that waits for events.

A blocking server

1 Acceptor acceptor{443};

2 while (true) {

3 Socket socket = acceptor.accept(); // blocking

4 auto request = socket.read(); // blocking

5 auto response = handleRequest(request);

6 socket.write(response); // blocking

7 }

The server is quite simple because it sequentially answers each request in the same
thread. The server listens on port 443 (line 1), accepts the connection (line 3), reads
the incoming data from the client (line 4), and writes its answer to the client (line 6).
The calls in lines 3, 4, and 6 are blocking.

Thanks to co_await, the blocking calls can now be suspended and resumed.

Concurrency 403

A waiting server

1 Acceptor acceptor{443};

2 while (true) {

3 Socket socket = co_await acceptor.accept();

4 auto request = co_await socket.read();

5 auto response = handleRequest(request);

6 co_await socket.write(response);

7 }

Before I present the challenging example of thread synchronization with coroutines,
I want to start with something straightforward: starting a job on request.

6.1.8.1 Starting a Job on Request

The coroutine in the following example is as simple as it can be. It awaits on the
predefined Awaitable std::suspend_never().

Starting a job on request

1 // startJob.cpp

2

3 #include <coroutine>

4 #include <iostream>

5

6 struct Job {

7 struct promise_type;

8 using handle_type = std::coroutine_handle<promise_type>;

9 handle_type coro;

10 Job(handle_type h): coro(h){}

11 ~Job() {

12 if (coro) coro.destroy();

13 }

14 void start() {

15 coro.resume();

16 }

17

Concurrency 404

18

19 struct promise_type {

20 auto get_return_object() {

21 return Job{handle_type::from_promise(*this)};

22 }

23 std::suspend_always initial_suspend() {

24 std::cout << " Preparing job" << '\n';

25 return {};

26 }

27 std::suspend_always final_suspend() noexcept {

28 std::cout << " Performing job" << '\n';

29 return {};

30 }

31 void return_void() {}

32 void unhandled_exception() {}

33

34 };

35 };

36

37 Job prepareJob() {

38 co_await std::suspend_never();

39 }

40

41 int main() {

42

43 std::cout << "Before job" << '\n';

44

45 auto job = prepareJob();

46 job.start();

47

48 std::cout << "After job" << '\n';

49

50 }

You may think that the coroutine prepareJob (line 37) is meaningless because the

Concurrency 405

Awaitable always suspends. No! The function prepareJob is at least a coroutine
factory using co_await (line 38) and returning a coroutine object. The function
call prepareJob() in line 45 creates the coroutine object of type Job. When you
study the data type Job, you recognize that the coroutine object is immediately
suspended, because the member function of the promise returns the Awaitable
std::suspend_always (line 23). This is exactly the reason why the function call
job.start (line 46) is necessary to resume the coroutine (line 15). The member
function final_suspend also returns std::suspend_always (line 27).

Starting a Job on Request

In the case studies’ section various job flows, I use the program startJob as a starting
point for further experiments.

6.1.8.2 Thread Synchronization

It’s typical for threads to synchronize themselves. One thread prepares a work
package another thread awaits. Condition variables¹³, promises and futures¹⁴, and
also an atomic boolean¹⁵ can be used to create a sender-receiver workflow. Thanks
to coroutines, thread synchronization is quite easy, without the inherent risks of
condition variables, such as spurious wakeups and lost wakeups.

¹³https://en.cppreference.com/w/cpp/thread/condition_variable
¹⁴https://en.cppreference.com/w/cpp/thread
¹⁵https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic

Concurrency 406

Thread Synchronization
1 // senderReceiver.cpp

2

3 #include <coroutine>

4 #include <chrono>

5 #include <iostream>

6 #include <functional>

7 #include <string>

8 #include <stdexcept>

9 #include <atomic>

10 #include <thread>

11

12 class Event {

13 public:

14

15 Event() = default;

16

17 Event(const Event&) = delete;

18 Event(Event&&) = delete;

19 Event& operator=(const Event&) = delete;

20 Event& operator=(Event&&) = delete;

21

22 class Awaiter;

23 Awaiter operator co_await() const noexcept;

24

25 void notify() noexcept;

26

27 private:

28

29 friend class Awaiter;

30

31 mutable std::atomic<void*> suspendedWaiter{nullptr};

32 mutable std::atomic<bool> notified{false};

33

34 };

35

Concurrency 407

36 class Event::Awaiter {

37 public:

38 Awaiter(const Event& eve): event(eve) {}

39

40 bool await_ready() const;

41 bool await_suspend(std::coroutine_handle<> corHandle) noexcept;

42 void await_resume() noexcept {}

43

44 private:

45 friend class Event;

46

47 const Event& event;

48 std::coroutine_handle<> coroutineHandle;

49 };

50

51 bool Event::Awaiter::await_ready() const {

52

53 // allow at most one waiter

54 if (event.suspendedWaiter.load() != nullptr){

55 throw std::runtime_error("More than one waiter is not valid");

56 }

57

58 // event.notified == false; suspends the coroutine

59 // event.notified == true; the coroutine is executed like a normal \

60 function

61 return event.notified;

62 }

63

64 bool Event::Awaiter::await_suspend(std::coroutine_handle<> corHandle) n\

65 oexcept {

66

67 coroutineHandle = corHandle;

68

69 if (event.notified) return false;

70

71 // store the waiter for later notification

Concurrency 408

72 event.suspendedWaiter.store(this);

73

74 return true;

75 }

76

77 void Event::notify() noexcept {

78 notified = true;

79

80 // try to load the waiter

81 auto* waiter = static_cast<Awaiter*>(suspendedWaiter.load());

82

83 // check if a waiter is available

84 if (waiter != nullptr) {

85 // resume the coroutine => await_resume

86 waiter->coroutineHandle.resume();

87 }

88 }

89

90 Event::Awaiter Event::operator co_await() const noexcept {

91 return Awaiter{ *this };

92 }

93

94 struct Task {

95 struct promise_type {

96 Task get_return_object() { return {}; }

97 std::suspend_never initial_suspend() { return {}; }

98 std::suspend_never final_suspend() noexcept { return {}; }

99 void return_void() {}

100 void unhandled_exception() {}

101 };

102 };

103

104 Task receiver(Event& event) {

105 auto start = std::chrono::high_resolution_clock::now();

106 co_await event;

107 std::cout << "Got the notification! " << '\n';

Concurrency 409

108 auto end = std::chrono::high_resolution_clock::now();

109 std::chrono::duration<double> elapsed = end - start;

110 std::cout << "Waited " << elapsed.count() << " seconds." << '\n';

111 }

112

113 using namespace std::chrono_literals;

114

115 int main() {

116

117 std::cout << '\n';

118

119 std::cout << "Notification before waiting" << '\n';

120 Event event1{};

121 auto senderThread1 = std::thread([&event1]{ event1.notify(); }); /\

122 / Notification

123 auto receiverThread1 = std::thread(receiver, std::ref(event1));

124

125 receiverThread1.join();

126 senderThread1.join();

127

128 std::cout << '\n';

129

130 std::cout << "Notification after 2 seconds waiting" << '\n';

131 Event event2{};

132 auto receiverThread2 = std::thread(receiver, std::ref(event2));

133 auto senderThread2 = std::thread([&event2]{

134 std::this_thread::sleep_for(2s);

135 event2.notify(); //\

136 Notification

137 });

138

139 receiverThread2.join();

140 senderThread2.join();

141

142 std::cout << '\n';

143

Concurrency 410

144 }

From the user’s perspective, thread synchronization with coroutines is straightfor-
ward. Let’s have a look at the program senderReceiver.cpp. The threads senderThread1
(line 119) and senderThread2 (line 130) each uses an event to send its notifica-
tion,respectively, in lines 119 and 132. The function receiver in lines 102 - 109
is the coroutine, which is executed in threads receiverThread1 (line 122) and
receiverThread2 (line 135). I measured the time between the beginning and the end
of the coroutine and displayed it. This number shows how long the coroutine waits.
The following screenshot shows the output of the program.

Thread synchronization

If you compare the class Generator in the infinite data stream with the class Event
in this example, there is a subtle difference. In the first case, the Generator is the
awaitable and the awaiter; in the second case, the Event uses the operator co_await

to return the awaiter. This separation of concerns into the Awaitable and the awaiter
improves the structure of the code.

The output displays that the execution of the second coroutine takes about two
seconds. The reason is that the event1 sends its notification (line 119) before the
coroutine is suspended, but the event2 sends its notification after a time duration of
2 seconds (line 132).

Concurrency 411

Now, I put the implementer’s hat on. The workflow of the coroutine is quite
challenging to grasp. The class Event has two interesting members: suspendedWaiter
and notified. Variable suspendedWaiter in line 31 holds thewaiter for the signal, and
notified in line 32 has the state of the notification.

In my explanation of both workflows, I assume in the first case (first workflow) that
the event notification happens before the coroutine awaits the events. For the second
case (second workflow), I assume it is the other way around.

Let’s first look at event1 and the first workflow. Here, event1 sends its notification
before receiverThread1 is started. The invocation event1 (line 118) triggers the
method notify (lines 75 to 86). First the notification flag is set and then, the call
static_cast<Awaiter*>(suspendedWaiter.load()); loads the potential waiter. In
this case, the waiter is a nullptr because it was not set before. This means the
following resume call on the waiter in line 84 is not executed. The subsequentially
performed function await_ready (lines 51 - 61) checks first if there is more than
one waiter. In this case, I throw a std::runtime exception. The crucial part of this
method is the return value. event.notificationwas already set to true in the notify
method. true means, in this case, that the coroutine is not suspended and executes
such as a normal function.

In the second workflow, the co_await event2 call happens before event2 sends
its notification. co_wait event2 triggers the call await_ready (line 51). The big
difference with the first workflow is that event.notified is false. This false

value causes the suspension of the coroutine. Technically, method await_suspend

(lines 63 - 73) is executed. await_suspend gets the coroutine handle corHandle and
stores it for later invocation in the variable coroutineHandle (line 65). Of course,
later invocation means resumption. Second, the waiter is stored in the variable
suspendedWaiter. When later event2.notify triggers its notification, method notify
(line 75) is executed. The difference with the first workflow is that the condition
waiter != nullptr evaluates to true. The result is that the waiter uses the
coroutineHandle to resume the coroutine.

Concurrency 412

Distilled Information

• Coroutines are generalized functions that can pause and resume their
execution while keeping their state.

• With C++20, we don’t get concrete coroutines, but a framework for
implementing coroutines. This framework consists of more than 20
functions that you partially have to implement and partially could
overwrite.

• With the new keywords co_await and co_yield, C++20 extends the
execution of C++ functions with two new concepts.

• Thanks to co_await expression it is possible to suspend and resume
the execution of the expression. If you use co_await expression in
a function func, the call auto getResult = func() does not block if
the function’s result is not available. Instead of resource-consuming
blocking, you have resource-friendly waiting.

• co_yield empowers you to write infinite data streams.

Concurrency 413

6.2 Atomics

Cippi studies the atomics

Atomics receives a few important extensions in C++20. Probably the most important
ones are atomic references and atomic smart pointers.

6.2.1 std::atomic_ref

The class template std::atomic_ref applies atomic operations to the referenced
object.

Concurrent writing and reading of an atomic object ensures that there is no data
race. The lifetime of the referenced object must exceed the lifetime of the atomic_ref.
When any atomic_ref is accessing an object, all other accesses to the object must use
an atomic_ref. In addition, no subobject of the atomic_ref-accessed object may be
accessed by another atomic_ref.

Concurrency 414

6.2.1.1 Motivation

Stop. You may think that using a reference inside an atomic would do the job.
Unfortunately not.

In the following program, I have a class ExpensiveToCopy, which includes a counter.
The counter is concurrently incremented by a few threads. Consequently, counter
has to be protected.

Using an atomic reference

1 // atomicReference.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <random>

6 #include <thread>

7 #include <vector>

8

9 struct ExpensiveToCopy {

10 int counter{};

11 };

12

13 int getRandom(int begin, int end) {

14

15 std::random_device seed; // initial seed

16 std::mt19937 engine(seed()); // generator

17 std::uniform_int_distribution<> uniformDist(begin, end);

18

19 return uniformDist(engine);

20 }

21

22 void count(ExpensiveToCopy& exp) {

23

24 std::vector<std::thread> v;

25 std::atomic<int> counter{exp.counter};

26

27 for (int n = 0; n < 10; ++n) {

Concurrency 415

28 v.emplace_back([&counter] {

29 auto randomNumber = getRandom(100, 200);

30 for (int i = 0; i < randomNumber; ++i) { ++counter; }

31 });

32 }

33

34 for (auto& t : v) t.join();

35

36 }

37

38 int main() {

39

40 std::cout << '\n';

41

42 ExpensiveToCopy exp;

43 count(exp);

44 std::cout << "exp.counter: " << exp.counter << '\n';

45

46 std::cout << '\n';

47

48 }

Variable exp (line 42) is the expensive-to-copy object. For performance reasons,
the function count (line 22) takes exp by reference. Function count initializes the
std::atomic<int> with exp.counter (line 25). The following lines create 10 threads
(line 27), each performing the lambda expression, which takes counter by reference.
The lambda expression gets a random number between 100 and 200 (line 29) and
increments the counter exactly as often. The function getRandom (line 13) starts with
an initial seed and creates via the random-number generator Mersenne Twister¹⁶ a
uniform distributed number between 100 and 200.

In the end, the exp.counter (line 44) should have an approximate value of 1500
because ten threads increment on average 150 times. Executing the program on the
Wandbox online compiler¹⁷ gives me a surprising result.

¹⁶https://en.wikipedia.org/wiki/Mersenne_Twister
¹⁷https://wandbox.org/

https://en.wikipedia.org/wiki/Mersenne_Twister
https://wandbox.org/
https://en.wikipedia.org/wiki/Mersenne_Twister
https://wandbox.org/

Concurrency 416

Surprise with an atomic reference

The counter is 0. What is happening? The issue is in line 25. The initialization in the
expression std::atomic<int> counter{exp.counter} creates a copy. The following
small program exemplifies the issue.

Copying the reference

1 // atomicRefCopy.cpp

2

3 #include <atomic>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 int val{5};

11 int& ref = val;

12 std::atomic<int> atomicRef(ref);

13 ++atomicRef;

14 std::cout << "ref: " << ref << '\n';

15 std::cout << "atomicRef.load(): " << atomicRef.load() << '\n';

16

17 std::cout << '\n';

18

19 }

Concurrency 417

The increment operation in line 13 does not address the reference ref (line 11). The
value of ref is not changed.

Copying the reference

Replacing the std::atomic<int> with std::atomic_ref<int> solves the issue.

Using a std::atomic_ref

// atomicRef.cpp

#include <atomic>

#include <iostream>

#include <random>

#include <thread>

#include <vector>

struct ExpensiveToCopy {

int counter{};

};

int getRandom(int begin, int end) {

std::random_device seed; // initial randomness

std::mt19937 engine(seed()); // generator

std::uniform_int_distribution<> uniformDist(begin, end);

return uniformDist(engine);

}

Concurrency 418

void count(ExpensiveToCopy& exp) {

std::vector<std::thread> v;

std::atomic_ref<int> counter{exp.counter};

for (int n = 0; n < 10; ++n) {

v.emplace_back([&counter] {

auto randomNumber = getRandom(100, 200);

for (int i = 0; i < randomNumber; ++i) { ++counter; }

});

}

for (auto& t : v) t.join();

}

int main() {

std::cout << '\n';

ExpensiveToCopy exp;

count(exp);

std::cout << "exp.counter: " << exp.counter << '\n';

std::cout << '\n';

}

Now, the value of counter is as expected:

Concurrency 419

The expected result with std::atomic_ref

In keeping with std::atomic¹⁸, type std::atomic_ref can be specialized and sup-
ports specializations for the built-in data types.

6.2.1.2 Specializations of std::atomic_ref (C++20)

You can specialize std::atomic_ref for user-defined types, use partial specializations
for pointer types, or full specializations for arithmetic types such as integral or
floating-point types.

6.2.1.2.1 Primary Template

The primary template std::atomic_ref can be instantiated with a TriviallyCopy-
able¹⁹ type T.

struct Counters {

int a;

int b;

};

Counter counter;

std::atomic_ref<Counters> cnt(counter);

6.2.1.2.2 Partial Specializations for Pointer Types

The standard provides partial specializations for a pointer type: std::atomic_-
ref<T*>.

¹⁸https://en.cppreference.com/w/cpp/atomic/atomic
¹⁹https://en.cppreference.com/w/cpp/types/is_trivially_copyable

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/types/is_trivially_copyable
https://en.cppreference.com/w/cpp/types/is_trivially_copyable
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/types/is_trivially_copyable

Concurrency 420

6.2.1.2.3 Specializations for Arithmetic Types

The standard provides specialization for the integral and floating-point types: std::atomic_-
ref<arithmetic type>.

• Character types: char, char8_t (C++20), char16_t, char32_t, and wchar_t

• Standard signed-integer types: signed char, short, int, long, and long long

• Standard unsigned-integer types: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long

• Additional integer types, defined in the header <cstdint>²⁰:
– int8_t, int16_t, int32_t, and int64_t (signed integer with exactly 8, 16,
32, and 64 bits)

– uint8_t, uint16_t, uint32_t, and uint64_t (unsigned integer with exactly
8, 16, 32, and 64 bits)

– int_fast8_t, int_fast16_t, int_fast32_t, and int_fast64_t (fastest signed
integer with at least 8, 16, 32, and 64 bits)

– uint_fast8_t, uint_fast16_t, uint_fast32_t, and uint_fast64_t (fastest
unsigned integer with at least 8, 16, 32, and 64 bits)

– int_least8_t, int_least16_t, int_least32_t, and int_least64_t (small-
est signed integer with at least 8, 16, 32, and 64 bits)

– uint_least8_t, uint_least16_t, uint_least32_t, and uint_least64_t

(smallest unsigned integer with at least 8, 16, 32, and 64 bits)
– intmax_t, and uintmax_t (maximum signed and unsigned integer)
– intptr_t, and uintptr_t (signed and unsigned integer for holding a
pointer)

• Standard floating-point types: float, double, and long double

6.2.1.2.4 All Atomic Operations

First, here is the list of all operations on atomic_ref.

²⁰http://en.cppreference.com/w/cpp/header/cstdint

http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint

Concurrency 421

All operations on atomic_ref

Function Description

is_lock_free Checks if the atomic_ref object is lock-free.
atomic_ref<T>::is_always_lock_free Checks at compile time if the atomic type is

always lock-free.

load Atomically returns the value of the referenced
object.

operator T Atomically returns the value of the atomic.
Equivalent to atom.load().

store Atomically replaces the value of the referenced
object with a non-atomic.

exchange Atomically replaces the value of the referenced
object with the new value.

compare_exchange_strong Atomically compares and eventually exchanges
the value of the referenced object.

compare_exchange_weak

fetch_add, += Atomically adds (subtracts) the value to (from)
the referenced object.

fetch_sub, -=

fetch_or, |= Atomically performs bitwise (AND, OR, and
XOR) operation on the referenced object.

fetch_and, &=
fetch_xor, ^=

++, -- Increments or decrements (either pre- and
post-increment) the referenced object.

notify_one Unblocks one atomic wait operation.
notify_all Unblocks all atomic wait operations.

wait Blocks until it is notified.

Concurrency 422

All operations on atomic_ref

Function Description
Compares itself with the old value to protect
against spurious wakeups and lost wakeups.
If the value is different from the old value,
returns.

The composite assignment operators (+=, -=, |=, &=, or ^=) return the new value; the
fetch variations return the old value.

Thanks to the constexpr function atomic_ref<type>::is_always_lock_free, you
can check for each atomic type if it’s lock-free on all supported hardware that the
executable might run on. This check returns only true if it is true for all supported
hardware. The check is performed at compile-time and is available since C++17.

Each function supports an additional memory-ordering argument. The default
for the memory-ordering argument is std::memory_order_seq_cst, but you can
also use std::memory_order_relaxed, std::memory_order_consume, std::memory_-
order_acquire, std::memory_order_release, or std::memory_order_acq_rel. The
compare_exchange_strong and compare_exchange_weak member functions can be
parameterized with two memory orderings, one for the success case, the other for
the failure case. Both calls perform an atomic exchange if equal and an atomic load
if not. They return true in the success case, otherwise false. If you only explicitly
provide one memory ordering, it is used for both the success and the failure case.
Here are the details for memory ordering²¹.

Of course, not all operations are available for all types referenced by std::atomic_-

ref. The table shows the list of all atomic operations, depending on the type
referenced by std::atomic_ref.

²¹https://en.cppreference.com/w/cpp/atomic/memory_order

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order

Concurrency 423

All atomic operations, depending on the type referenced by std::atomic_ref

Function atomic_ref<T> atomic_-
ref<floating>

atomic_ref<T*> atomic_-
ref<integral>

is_lock_free yes yes yes yes

load yes yes yes yes
operator T yes yes yes yes

store yes yes yes yes

exchange yes yes yes yes

compare_-

exchange_strong

yes yes yes yes

compare_-

exchange_weak

yes yes yes yes

fetch_add, += yes yes yes
fetch_sub, -= yes yes yes

fetch_or, |= yes
fetch_and, &= yes
fetch_xor, ^= yes

++, -- yes yes

notify_one yes yes yes yes
notify_all yes yes yes yes

wait yes yes yes yes

6.2.2 Atomic Smart Pointer

A std::shared_ptr²² consists of a control block and its resource. The control block
is thread-safe, but access to the resource is not. This means modifying the reference

²²https://en.cppreference.com/w/cpp/memory/shared_ptr

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

Concurrency 424

counter is an atomic operation and you have the guarantee that the resource is
deleted exactly once. These are the guarantees std::shared_ptr gives you.

The Importance of being Thread-Safe
I want to take a short detour to emphasize how important it is that
the std::shared_ptr has well-defined multithreading semantics. At first
glance, use of a std::shared_ptr does not appear to be a sensible choice
for multithreaded code. It is by definition shared and mutable and is the
ideal candidate for non-synchronized read and write operations and hence
for undefined behavior. On the other hand, there is the guideline in modern
C++: Don’t use raw pointers. This means, consequently, that you should
use smart pointers in multithreaded programs.

The proposal N4162²³ for atomic smart pointers directly addresses the deficiencies
of the current implementation. The deficiencies boil down to these three points:
consistency, correctness, and performance.

• Consistency: the atomic operations for std::shared_ptr are the only atomic
operations for a non-atomic data type.

• Correctness: the use of the global atomic operations is quite error-prone be-
cause the correct usage is based on discipline. It is easy to forget to use an atomic
operation - such as using ptr = localPtr instead of std::atomic_store(&ptr,
localPtr). The result is undefined behavior because of a data race. If we used
an atomic smart pointer instead, the type system would not allow it.

• Performance: the atomic smart pointers have a big advantage compared to the
free atomic_* functions. The atomic versions are designed for the special use
case and can internally have a std::atomic_flag as a kind of cheap spinlock²⁴.
Designing the non-atomic versions of the pointer functions to be thread-safe
would be overkill where they are used in a single-threaded scenario. Theywould
have a performance penalty.

The correctness argument is probably the most important one. Why? The answer lies
in the proposal. The proposal presents a thread-safe singly-linked list that supports

²³http://wg21.link/n4162
²⁴https://en.wikipedia.org/wiki/Spinlock

http://wg21.link/n4162
https://en.wikipedia.org/wiki/Spinlock
http://wg21.link/n4162
https://en.wikipedia.org/wiki/Spinlock

Concurrency 425

insertion, deletion, and searching of elements. This singly-linked list is implemented
in a lock-free way.

Concurrency 426

6.2.2.1 A thread-safe singly-linked list

A thread-safe singly-linked list

Concurrency 427

All changes that are required to compile the program with a C++11 compiler are
marked in red. The implementation with atomic smart pointers is a lot easier and
hence less error-prone. C++20’s type system does not permit using a non-atomic
operation on an atomic smart pointer.

The proposal N4162²⁵ proposed the new types std::atomic_shared_ptr and std::atomic_-
weak_ptr as atomic smart pointers. By merging them in the mainline ISO C++ stan-
dard, they became partial template specialization of std::atomic, namely std::atomic<std::shared_-
ptr<T>>, and std::atomic<std::weak_ptr<T>>.

The following program shows five thread modifying a std::atomic<std::shared_-

ptr<std::string>> withoud synchronization.

1 // atomicSharedPtr.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <atomic>

6 #include <string>

7 #include <thread>

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::atomic<std::shared_ptr<std::string>> sharString(

14 std::make_shared<std::string>("Zero"));

15

16 std::thread t1([&sharString]{

17 sharString.store(std::make_shared<std::string>(*sharString.load\

18 () + "One"));

19 });

20 std::thread t2([&sharString]{

21 sharString.store(std::make_shared<std::string>(*sharString.load\

22 () + "Two"));

23 });

²⁵http://wg21.link/n4162

http://wg21.link/n4162
http://wg21.link/n4162

Concurrency 428

24 std::thread t3([&sharString]{

25 sharString.store(std::make_shared<std::string>(*sharString.load\

26 () +"Three"));

27 });

28 std::thread t4([&sharString]{

29 sharString.store(std::make_shared<std::string>(*sharString.load\

30 () +"Four"));

31 });

32 std::thread t5([&sharString]{

33 sharString.store(std::make_shared<std::string>(*sharString.load\

34 () +"Five"));

35 });

36

37 t1.join();

38 t2.join();

39 t3.join();

40 t4.join();

41 t5.join();

42

43 std::cout << *sharString.load() << '\n';

44

45 }

The atomic std::shared_ptr shaString (line 13) is initialized with the string “Zero”.
Each of the five threads t1 to t5 (lines 16 - 28) adds a string to sharString that is
displayed in line 38. Using a std::shared_ptr instead of std::atomic<std::shared_-
ptr> would be a data race.

Executing the program shows the interleaving of the threads.

Concurrency 429

Thread-safe modifying of a std::string

Consequently, the atomic operations for std::shared_ptr are deprecated with
C++20.

6.2.3 std::atomic_flag Extensions

Before I write about std::atomic_flag extension in C++20, I want to give a short
reminder of std::atomic_flag in C++11. If you want to read more details, read my
post about std::atomic_flag²⁶ in C++11.

6.2.3.1 C++11

std::atomic_flag is a kind of atomic boolean. It has clear- and set-state functions.
I call the clear state false and the set state true for simplicity. Its clear member
function enables you to set its value to false. With the test_and_set method, you
can set the value to true and return the previous value. ATOMIC_FLAG_INIT enables
initializing the std::atomic_flag to false.

std::atomic_flag has two exciting properties, it is

• the only lock-free atomic.

²⁶https://www.modernescpp.com/index.php/the-atomic-flag

https://www.modernescpp.com/index.php/the-atomic-flag
https://www.modernescpp.com/index.php/the-atomic-flag

Concurrency 430

• the building block for higher thread abstractions.

With C++11, there is nomember function to ask for the current value of a std::atomic_-
flag without changing it. This changes with C++20.

6.2.3.2 C++20 Extensions

The following table shows the more powerful interface of std::atomic_flag in
C++20.

All operations of std::atomic_flag atomicFlag

Method Description

atomicFlag.clear() Clears the atomic flag.

atomicFlag.test_and_set() Sets the atomic flag and returns the old value.
atomicFlag.test() (C++20) Returns the value of the flag.

atomicFlag.notify_one() (C++20) Notifies one thread waiting on the atomic flag.
atomicFlag.notify_all (C++20) Notifies all threads waiting on the atomic flag.

atomicFlag.wait(bo) (C++20) Blocks the thread until notified and the atomic value changes.

The call atomicFlag.test() returns the atomicFlag value without changing it. Fur-
ther on, you can use std::atomic_flag for thread synchronization: atomicFlag.wait(),
atomicFlag.notify_one(), and atomicFlag.notify_all(). The member functions
notify_one or notify_all notify one or all of thewaiting atomic flags. atomicFlag.wait(bo)
needs a boolean bo. The call atomicFlag.wait(bo) blocks until the next notification
or spurious wakeup. It checks then if the value of atomicFlag is equal to bo and
unblocks if not. The value bo serves as a predicate to protect against spurious
wakeups. A spurious wakeup is an erroneous notification.

As compared to C++11, default-construction of a std::atomic_flag is initialized to
false state.

The remaining more powerful atomics can provide their functionality by using a
mutex. That is according to the C++ standard. So these atomics have a member

Concurrency 431

function is_lock_free to check if the atomic internally uses a mutex. On the popular
platforms, I always get the answer false. But you should be aware of that. Thanks
to the constexpr function atomic<type>::is_always_lock_free, you can check for
each atomic type if it’s lock-free on all supported hardware that the executable might
run on. This check returns only true if it is true for all supported hardware. The
check is performed at compile-time and is available since C++17.

6.2.3.3 One Time Synchronization of Threads

Sender-receiver workflows are quite common for threads. In such a workflow, the re-
ceiver is waiting for the sender’s notification before Future continues to work. There
are various ways to implement these workflows. With C++11, you can use condition
variables or promise/future pairs; with C++20, you can use std::atomic_flag. Each
way has its pros and cons. Consequently, I want to compare them. I assume you don’t
know the details of condition variables or promises and futures. Therefore, I provide
a short refresher.

6.2.3.3.1 Condition Variables

A condition variable can fulfill the role of a sender or a receiver. As a sender, it can
notify one or more receivers.

Thread synchronization with condition variables

1 // threadSynchronizationConditionVariable.cpp

2

3 #include <iostream>

4 #include <condition_variable>

5 #include <mutex>

6 #include <thread>

7 #include <vector>

8

9 std::mutex mut;

10 std::condition_variable condVar;

11

12 std::vector<int> myVec{};

13

Concurrency 432

14 void prepareWork() {

15

16 {

17 std::lock_guard<std::mutex> lck(mut);

18 myVec.insert(myVec.end(), {0, 1, 0, 3});

19 }

20 std::cout << "Sender: Data prepared." << '\n';

21 condVar.notify_one();

22 }

23

24 void completeWork() {

25

26 std::cout << "Waiter: Waiting for data." << '\n';

27 std::unique_lock<std::mutex> lck(mut);

28 condVar.wait(lck, []{ return not myVec.empty(); });

29 myVec[2] = 2;

30 std::cout << "Waiter: Complete the work." << '\n';

31 for (auto i: myVec) std::cout << i << " ";

32 std::cout << '\n';

33

34 }

35

36 int main() {

37

38 std::cout << '\n';

39

40 std::thread t1(prepareWork);

41 std::thread t2(completeWork);

42

43 t1.join();

44 t2.join();

45

46 std::cout << '\n';

47

48 }

Concurrency 433

The program has two child threads: t1 and t2. They get their payload prepareWork

and completeWork in lines 40 and 41. The function prepareWork (line 14) notifies
that it is done with the preparation of the work: condVar.notify_one(). While
holding the lock, thread t2 is waiting for its notification: condVar.wait(lck, []{

return not myVec.empty(); }). The waiting thread always performs the same
steps. When awoken, it checks the predicate while holding the lock ([]{ return

not myVec.empty();). If the predicate does not hold, it puts itself back to sleep. If the
predicate holds, it continues with its work. In the concrete workflow, the sending
thread puts the initial values into the std::vector (line 18), which the receiving
thread completes (line 29).

Concurrency 434

Thread synchronization with condition variables

Condition variables have many inherent issues. For example, the receiver could be
awakened without notification or could lose the notification. The first issue is known
as spurious wakeup and the second as lost wakeup. The predicate protects against
both flaws. The notification could be lost when the sender sends its notification
before the receiver is in the wait state and does not use a predicate. Consequently, the
receiver waits for something that never happens. This is a deadlock. When you study
the output of the program, you see that every second run would cause a deadlock if
I did not use a predicate. Of course, it is possible to use condition variables without
a predicate.

Concurrency 435

If you want to know the details of the sender-receiver workflow and the traps of
condition variables, read my posts “C++ Core Guidelines: Be Aware of the Traps of
Condition Variables”²⁷.

Let me implement the same workflow using a future/promise pair.

6.2.3.3.2 Futures and Promises

A promise can send a value, an exception, or a notification to its associated future.
Here is the corresponding workflow using a promise and a future.

Thread synchronization with a promise/future pair

1 // threadSynchronizationPromiseFuture.cpp

2

3 #include <iostream>

4 #include <future>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 void prepareWork(std::promise<void> prom) {

11

12 myVec.insert(myVec.end(), {0, 1, 0, 3});

13 std::cout << "Sender: Data prepared." << '\n';

14 prom.set_value();

15

16 }

17

18 void completeWork(std::future<void> fut){

19

20 std::cout << "Waiter: Waiting for data." << '\n';

21 fut.wait();

22 myVec[2] = 2;

23 std::cout << "Waiter: Complete the work." << '\n';

²⁷https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables

https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables
https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables
https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables

Concurrency 436

24 for (auto i: myVec) std::cout << i << " ";

25 std::cout << '\n';

26

27 }

28

29 int main() {

30

31 std::cout << '\n';

32

33 std::promise<void> sendNotification;

34 auto waitForNotification = sendNotification.get_future();

35

36 std::thread t1(prepareWork, std::move(sendNotification));

37 std::thread t2(completeWork, std::move(waitForNotification));

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

When you study the workflow, you recognize that the synchronization is reduced
to its essential parts: prom.set_value() (line 14) and fut.wait() (line 21). I skip the
screenshot to this run because it is essentially the same as the previous run with
condition variables.

Here is more information on promises and futures, often just called tasks²⁸.

6.2.3.3.3 std::atomic_flag

Now, I jump directly from C++11 to C++20.

²⁸https://www.modernescpp.com/index.php/tag/tasks

https://www.modernescpp.com/index.php/tag/tasks
https://www.modernescpp.com/index.php/tag/tasks

Concurrency 437

Thread synchronization with a std::atomic_flag

1 // threadSynchronizationAtomicFlag.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::atomic_flag atomicFlag{};

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 atomicFlag.test_and_set();

17 atomicFlag.notify_one();

18

19 }

20

21 void completeWork() {

22

23 std::cout << "Waiter: Waiting for data." << '\n';

24 atomicFlag.wait(false);

25 myVec[2] = 2;

26 std::cout << "Waiter: Complete the work." << '\n';

27 for (auto i: myVec) std::cout << i << " ";

28 std::cout << '\n';

29

30 }

31

32 int main() {

33

34 std::cout << '\n';

35

Concurrency 438

36 std::thread t1(prepareWork);

37 std::thread t2(completeWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

The thread preparing the work (line 16) sets the atomicFlag to true and sends the
notification. The thread completing the work waits for the notification. It is only
unblocked if atomicFlag is equal to true.

Here are a few runs of the program with the Microsoft Compiler.

Concurrency 439

Thread synchronization with std::atomic_flag

6.2.4 std::atomic Extensions

In C++20, std::atomic. like std::atomic_ref, std::atomic²⁹ can be instantiated
with floating-point types such as float, double, and long double. In addition,
std::atomic_flag and std::atomic can be used for thread synchronization via
the member functions notify_one, notify_all, and wait. Notifying and waiting is
available on all partial and full specializations of std::atomic (bools, integrals, floats
and pointers) and std::atomic_ref.

²⁹https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Concurrency 440

Thanks to atomic<bool>, the previous program threadSynchronizationAtomicFlag.cpp

can directly be reimplemented.

Thread synchronization with std::atomic<bool>

1 // threadSynchronizationAtomicBool.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::atomic<bool> atomicBool{false};

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 atomicBool.store(true);

17 atomicBool.notify_one();

18

19 }

20

21 void completeWork() {

22

23 std::cout << "Waiter: Waiting for data." << '\n';

24 atomicBool.wait(false);

25 myVec[2] = 2;

26 std::cout << "Waiter: Complete the work." << '\n';

27 for (auto i: myVec) std::cout << i << " ";

28 std::cout << '\n';

29

30 }

31

32 int main() {

Concurrency 441

33

34 std::cout << '\n';

35

36 std::thread t1(prepareWork);

37 std::thread t2(completeWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

The call atomicBool.wait(false) blocks if atomicBool == false holds. Conse-
quently, the call atomicBool.store(true) (line 16) sets atomicBool to true and sends
its notification.

As before, here are four runs with the Microsoft Compiler.

Concurrency 442

Thread synchronization with std::atomic<bool>

Concurrency 443

Condition Variables versus Promise/Future
Pairs versus std::atomic_flag

When you only need a one-time notification, such as in the previous
program threadSynchronizationConditionVariable.cpp, promises and
futures are a better choice than condition variables. Promises and futures
cannot be victims of spurious or lost wakeups. Furthermore, there is neither
a need to use locks or mutexes, nor is there a need to use a predicate to
protect against spurious or lost wakeups. There is only one downside to
using promises and futures: they can only be used once.

I’m not sure if I would use a future/promise pair or atomics such as
std::atomic_flag or std::atomic<bool> for such a simple thread-synchro-
nization workflow. All of them are thread-safe by design and require no
protection mechanism so far. Promises and futures are easier to use and
atomics are probably faster. I’m only sure that I would not use a condition
variable if possible.

Distilled Information

• std::atomic_ref applies atomic operations to the referenced object.
Concurrent writing and reading is atomic for referenced objects, with
no data race. The lifetime of the referenced object must exceed the
lifetime of the std::atomic_ref.

• A std::shared_ptr consists of a control block and its resource.
The control block is thread-safe, but the access to the re-
source is not. With C++20, we have an atomic shared pointer:
std::atomic<std::shared_ptr<T>>, and std::atomic<std::weak_-

ptr<T>>.
• std::atomic_flag as a kind of atomic boolean is the only guaranteed
lock-free data structure in C++. Its limited interface is extended
in C++20. You can return its value, and you can use it for thread
synchronization.

• std::atomic, introduced in C++11, gets various improvements in
C++20. You can specialize a std::atomic for a floating-point value,
and you can use it for thread synchronization.

Concurrency 444

6.3 Semaphores

Cippi directs the train

Semaphores are a synchronization mechanism used to control concurrent access to
a shared resource. A counting semaphore is a special semaphore that has a counter
that is bigger than zero. The counter is initialized in the constructor. Acquiring the
semaphore decreases the counter and releasing the semaphore increases the counter.
If a thread tries to acquire the semaphore when the counter is zero, the thread will
block until another thread increments the counter by releasing the semaphore.

Edsger W. Dijkstra invented Semaphores
The Dutch computer scientist Edsger W. Dijkstra³⁰ presented in 1965 the
concept of a semaphore. A semaphore is a data structure with a queue
and a counter. The counter is initialized to a value equal to or greater
than zero. It supports the two operations wait and signal. Operation wait

acquires the semaphore and decreases the counter. It blocks the thread from
acquiring the semaphore if the counter is zero. Operation signal releases
the semaphore and increases the counter. Blocked threads are added to the
queue to avoid starvation³¹.

Originally, a semaphore was a railway signal.

³⁰https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
³¹https://en.wikipedia.org/wiki/Starvation_(computer_science)

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Starvation_(computer_science)

Concurrency 445

Semaphore

The original uploader was AmosWolfe at English Wikipedia. - Transferred from
en.wikipedia to Commons., CC BY 2.0,³²

C++20 supports a std::binary_semaphore, which is an alias for a std::counting_-

semaphore<1>. In this case, the least maximal value is 1. std::binary_semaphores
can be used to implement locks³³.

using binary_semaphore = std::counting_semaphore<1>;

In contrast to a std::mutex, a std::counting_semaphore is not bound to a thread.
This means that the acquire and release of a semaphore call can happen on different
threads. The following table presents the interface of a std::counting_semaphore.

³²https://commons.wikimedia.org/w/index.php?curid=1972304
³³https://en.cppreference.com/w/cpp/named_req/BasicLockable

https://commons.wikimedia.org/w/index.php?curid=1972304
https://commons.wikimedia.org/w/index.php?curid=1972304
https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://commons.wikimedia.org/w/index.php?curid=1972304
https://en.cppreference.com/w/cpp/named_req/BasicLockable

Concurrency 446

Member functions of a std::counting_semaphore sem

Member function Description

sem.max() (static) Returns the maximum value of the counter.

sem.release(upd = 1) Increases counter by upd and subsequently unblocks
threads acquiring the semaphore sem.

sem.acquire() Decrements the counter by 1 or blocks until the
counter is greater than 0.

sem.try_acquire() Tries to decrement the counter by 1 if it is greater
than 0.

sem.try_acquire_for(relTime) Tries to decrement the counter by 1 or blocks for at
most relTime if the counter is 0.

sem.try_acquire_until(absTime) Tries to decrement the counter by 1 or blocks at
most until absTime if the counter is 0.

The constructor call std::counting_semaphore<10> sem(5) creates a semaphore sem
with an at least maximal value of 10 and a counter of 5. The call sem.max() returns the
maximum possible value of the internal counter. The following realations must hold
for upd in sem.release(upd = 1): update >= 0 and update + counter <= sem.max().
sem.try_aquire_for(relTime) needs a [time duration](#chapterXXXTimeSSSDuration);

the member function sem.try_acquire_until(absTime) needs a [time point](#chapterXXXTimeSSSPoint).

The three calls sem.try_acquire, sem.try_acquire_for, and sem.try_acquire_un-
til‘ return a boolean indicating the success of the calls.

Semaphores are typically used in sender-receiver workflows. For example, initializ-
ing the semaphore sem with 0 will block the receiver’s sem.acquire() call until the
sender calls sem.release(). Consequently, the receiver waits for the notification of
the sender. One-time synchronization of threads can easily be implemented using
semaphores.

Concurrency 447

Thread synchronization with a std::counting_semaphore

1 // threadSynchronizationSemaphore.cpp

2

3 #include <iostream>

4 #include <semaphore>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::counting_semaphore<1> prepareSignal(0);

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 prepareSignal.release();

17 }

18

19 void completeWork() {

20

21 std::cout << "Waiter: Waiting for data." << '\n';

22 prepareSignal.acquire();

23 myVec[2] = 2;

24 std::cout << "Waiter: Complete the work." << '\n';

25 for (auto i: myVec) std::cout << i << " ";

26 std::cout << '\n';

27

28 }

29

30 int main() {

31

32 std::cout << '\n';

33

34 std::thread t1(prepareWork);

35 std::thread t2(completeWork);

Concurrency 448

36

37 t1.join();

38 t2.join();

39

40 std::cout << '\n';

41

42 }

The std::counting_semaphore prepareSignal (line 10) can have the values 0 and
1. In the concrete example, it’s initialized with 0 (line 10). This means, that the
call prepareSignal.release() sets the value to 1 (line 16) and unblocks the call
prepareSignal.acquire() (line 22).

Concurrency 449

Thread synchronization with semaphores

Concurrency 450

Distilled Information

• Semaphores are a synchronization mechanism used to control con-
current access to a shared resource.

• A counting semaphore in C++20 has a counter. Acquiring the
semaphore decreases the counter and releasing the semaphore in-
creases the counter. If a thread tries to acquire the semaphore
when the counter is zero, the thread will block until another thread
increments the counter by releasing the semaphore.

Concurrency 451

6.4 Latches and Barriers

Cippi waits at the barrier

Latches and barriers are coordination types that enable some threads to block until
a counter becomes zero. In C++20 we get latches and barriers in two variations:
std::latch and std::barrier. Concurrent invocations of the member functions of
a std::latch or a std::barrier produce no data race.

First, there are two questions:

1. What are the differences between these two mechanisms to coordinate threads?
You can use a std::latch only once, but you can use a std::barrier more
than once. A std::latch helps to manage one task by multiple threads. A
std::barrier helps to manage repeated tasks by multiple threads. Additionally,
a std::barrier enables you to execute a function in the so-called completion
step. The completion step is the state when the counter becomes zero.

2. What use cases do latches and barriers support that cannot be done in C++11
and C++14 with futures, threads, or condition variables combined with locks?
Latches and barriers address no new use cases, but they are a lot easier to use.
They are also more performant because they often use a lock-free mechanism
internally.

Concurrency 452

6.4.1 std::latch

Now, let us have a closer look at the interface of a std::latch.

Member functions of a std::latch lat

Member function Description

lat.count_down(upd = 1) Atomically decrements the counter by upd without
blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks
until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait();.

std::latch::max Returns the maximum value of the counter supported
by the implementation

The default value for upd is 1. When upd is greater than the counter or negative, the
behavior is undefined. The call lat.try_wait() never actually waits, as its name
suggests.

The following program bossWorkers.cpp uses two std::latch to build a boss-
workers workflow. I synchronized the output to std::cout using the function
synchronizedOut (line 13). This synchronization makes it easier to follow the
workflow.

Concurrency 453

A boss-worker workflow using two std::latch

1 // bossWorkers.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <latch>

6 #include <thread>

7

8 std::latch workDone(6);

9 std::latch goHome(1);

10

11 std::mutex coutMutex;

12

13 void synchronizedOut(const std::string& s) {

14 std::lock_guard<std::mutex> lo(coutMutex);

15 std::cout << s;

16 }

17

18 class Worker {

19 public:

20 Worker(std::string n): name(n) { }

21

22 void operator() (){

23 // notify the boss when work is done

24 synchronizedOut(name + ": " + "Work done!\n");

25 workDone.count_down();

26

27 // waiting before going home

28 goHome.wait();

29 synchronizedOut(name + ": " + "Good bye!\n");

30 }

31 private:

32 std::string name;

33 };

34

35 int main() {

Concurrency 454

36

37 std::cout << '\n';

38

39 std::cout << "BOSS: START WORKING! " << '\n';

40

41 Worker herb(" Herb");

42 std::thread herbWork(herb);

43

44 Worker scott(" Scott");

45 std::thread scottWork(scott);

46

47 Worker bjarne(" Bjarne");

48 std::thread bjarneWork(bjarne);

49

50 Worker andrei(" Andrei");

51 std::thread andreiWork(andrei);

52

53 Worker andrew(" Andrew");

54 std::thread andrewWork(andrew);

55

56 Worker david(" David");

57 std::thread davidWork(david);

58

59 workDone.wait();

60

61 std::cout << '\n';

62

63 goHome.count_down();

64

65 std::cout << "BOSS: GO HOME!" << '\n';

66

67 herbWork.join();

68 scottWork.join();

69 bjarneWork.join();

70 andreiWork.join();

71 andrewWork.join();

Concurrency 455

72 davidWork.join();

73

74 }

The idea of the workflow is straightforward. The six workers herb, scott, bjarne,
andrei, andrew, and david (lines 41 - 57) have to fulfill their job. When each has
finished his job, it counts down the std::latch workDone (line 25). The boss (main-
thread) is blocked in line 59 until the counter becomes 0. When the counter is 0, the
boss uses the second std::latch goHome to signal its workers to go home. In this
case, the initial counter is 1 (line 9). The call goHome.wait() blocks until the counter
becomes 0.

A boss-worker workflow using two std::latch

When you think about this workflow, you may notice that it can be done without a
boss. Here it is.

Concurrency 456

A worker’s workflow using a std::latch

1 // workers.cpp

2

3 #include <iostream>

4 #include <barrier>

5 #include <mutex>

6 #include <thread>

7

8 std::latch workDone(6);

9 std::mutex coutMutex;

10

11 void synchronizedOut(const std::string& s) {

12 std::lock_guard<std::mutex> lo(coutMutex);

13 std::cout << s;

14 }

15

16 class Worker {

17 public:

18 Worker(std::string n): name(n) { }

19

20 void operator() () {

21 synchronizedOut(name + ": " + "Work done!\n");

22 workDone.arrive_and_wait(); // wait until all work is done

23 synchronizedOut(name + ": " + "See you tomorrow!\n");

24 }

25 private:

26 std::string name;

27 };

28

29 int main() {

30

31 std::cout << '\n';

32

33 Worker herb(" Herb");

34 std::thread herbWork(herb);

35

Concurrency 457

36 Worker scott(" Scott");

37 std::thread scottWork(scott);

38

39 Worker bjarne(" Bjarne");

40 std::thread bjarneWork(bjarne);

41

42 Worker andrei(" Andrei");

43 std::thread andreiWork(andrei);

44

45 Worker andrew(" Andrew");

46 std::thread andrewWork(andrew);

47

48 Worker david(" David");

49 std::thread davidWork(david);

50

51 herbWork.join();

52 scottWork.join();

53 bjarneWork.join();

54 andreiWork.join();

55 andrewWork.join();

56 davidWork.join();

57

58 }

There is notmuch to add to this simplifiedworkflow. The call wordDone.arrive_and_-
wait() (line 22) is equivalent to the calls count_down(upd); wait();. This means the
workers coordinate themselves, and the boss is no longer necessary, as was the case
in the previous program bossWorkers.cpp.

Concurrency 458

A workers workflow using a std::latch

A std::barrier is similar to a std::latch.

6.4.2 std::barrier

There are two differences between a std::latch and a std::barrier. First, you can
use a std::barrier more than once, and second, you can adjust the counter for
the next phase. The counter is set in the constructor of std::barrier bar. Calling
bar.arrive(), bar.arrive_and_wait(), and bar.arrive_and_drop() decrements

the counter in the current phase. Additionally, bar.arrive_and_drop()
decrements the counter for the next phase. Immediately after the current

phase is finished and the counter becomes zero, the so-called completion

step starts. In this completion step, a [callable](#glossaryXXXCallableSSSUnitZZZcallableSSSBOBOBOGlossaryBCBCBC)

is invoked. The std::barrier‘ gets its callable in its constructor.

The completion step performs the following steps:

1. All threads are blocked.
2. An arbitrary thread is unblocked and executes the callable.
3. If the completion step is done, all threads are unblocked.

Concurrency 459

Member functions of a std::barrier bar

Member function Description

bar.arrive(upd) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step is
done.

bar.arrive_and_wait() Equivalent to wait(arrive())

bar.arrive_and_drop() Decrements the counter for the current and the subsequent
phase by one.

std::barrier::max Maximum value supported by the implementation

The call bar.arrive_and_drop() means essentially that the counter is decremented
by one for the next phase. The program fullTimePartTimeWorkers.cpp halves the
number of workers in the second phase.

Full-time and part-time workers

1 // fullTimePartTimeWorkers.cpp

2

3 #include <iostream>

4 #include <barrier>

5 #include <mutex>

6 #include <string>

7 #include <thread>

8

9 std::barrier workDone(6);

10 std::mutex coutMutex;

11

12 void synchronizedOut(const std::string& s) {

13 std::lock_guard<std::mutex> lo(coutMutex);

14 std::cout << s;

15 }

16

17 class FullTimeWorker {

Concurrency 460

18 public:

19 FullTimeWorker(std::string n): name(n) { }

20

21 void operator() () {

22 synchronizedOut(name + ": " + "Morning work done!\n");

23 workDone.arrive_and_wait(); // Wait until morning work is done

24 synchronizedOut(name + ": " + "Afternoon work done!\n");

25 workDone.arrive_and_wait(); // Wait until afternoon work is do\

26 ne

27

28 }

29 private:

30 std::string name;

31 };

32

33 class PartTimeWorker {

34 public:

35 PartTimeWorker(std::string n): name(n) { }

36

37 void operator() () {

38 synchronizedOut(name + ": " + "Morning work done!\n");

39 workDone.arrive_and_drop(); // Wait until morning work is done

40 }

41 private:

42 std::string name;

43 };

44

45 int main() {

46

47 std::cout << '\n';

48

49 FullTimeWorker herb(" Herb");

50 std::thread herbWork(herb);

51

52 FullTimeWorker scott(" Scott");

53 std::thread scottWork(scott);

Concurrency 461

54

55 FullTimeWorker bjarne(" Bjarne");

56 std::thread bjarneWork(bjarne);

57

58 PartTimeWorker andrei(" Andrei");

59 std::thread andreiWork(andrei);

60

61 PartTimeWorker andrew(" Andrew");

62 std::thread andrewWork(andrew);

63

64 PartTimeWorker david(" David");

65 std::thread davidWork(david);

66

67 herbWork.join();

68 scottWork.join();

69 bjarneWork.join();

70 andreiWork.join();

71 andrewWork.join();

72 davidWork.join();

73

74 }

This workflow consists of two kinds of workers: full-time workers (line 17) and
part-time workers (line 32). The part-time worker works in the morning, the full-
time worker in the morning and the afternoon. Consequently, the full-time workers
call workDone.arrive_and_wait() (lines 23 and 25) two times. On the contrary,
the part-time workers call workDone.arrive_and_drop() (line 38) only once. This
workDone.arrive_and_drop() call causes the part-time worker to skip the afternoon
work. Accordingly, the counter has in the first phase (morning) the value 6, and in
the second phase (afternoon) the value 3.

Concurrency 462

Full-time and part-time workers

Distilled Information

• Latches and barriers are coordination types that enable some threads
to block until a counter becomes zero. You can use a std::latch only
once, but you can use a std::barrier more than once.

• A std::latch is useful for managing one task by multiple threads; a
std::barrier helps manage repeated tasks by multiple threads.

Concurrency 463

6.5 Cooperative Interruption

Cippi stops in front of the stop sign

The additional functionality of the cooperative interruption thread is based on the
std::stop_source, std::stop_token, and the std::stop_callback classes. std::jthread
and std::condition_variable_any support cooperative interruption.

First, why it is not a good idea to kill a thread?

Killing a Thread is Dangerous
Killing a thread is dangerous because you don’t know the state of the thread.
Here are two possible malicious outcomes.

• The thread is only half-done with its job. Consequently, you don’t
know the state of its job and, hence, the state of your program. You
end with undefined behavior, and all bets are off.

• The thread may be in a critical section and having locked a mutex.
Killing a thread while it locks a mutex ends with a high probability
in a deadlock.

Concurrency 464

The std::stop_source, std::stop_token, and the std::stop_callback classes al-
lows a thread to asynchronously request an execution to stop or ask if an execution
got a stop signal. The std::stop_token can be passed to an operation and afterward
be used to actively poll the token for a stop request or to register a callback
via std::stop_callback. The stop request is sent by a std::stop_source. This
signal affects all associated std::stop_token. The three classes std::stop_source,
std::stop_token, and the std::stop_callback share the ownership of an associated
stop state.

In the next subsecions, I provide more details about cooperative interruption.

6.5.1 std::stop_source

You can construct a std::stop_source in two ways:

Constructors of std::stop_source

1 std::stop_source();

2 explicit std::stop_source(std::nostopstate_t) noexcept;

The default constructor (line 1) constructs a std::stop_sourcewith a new stop state.
The constructor taking std::nostopstate_t (line 2) constructs an empty std::stop_-
source without associated stop state.

The component std::stop_source src provides the following member functions for
handling stop requests.

Member functions of std::stop_source src

Member function Description

src.get_token() If stop_possible(), returns a stop_token for the associated
stop state. Otherwise, returns a default-constructed (empty)
stop_token.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and request_stop() was called by one
of the owners.

Concurrency 465

Member functions of std::stop_source src

Member function Description

src.request_stop() Calls a stop request if src.stop_possible() and
!src.stop_requested(). Otherwise, the call has no effect.

The call src.get_token() returns the stop token stoken. Thanks to stoken you can
check if a stop request has been made or can be made by its associated stop source
src. The stop token stoken observes the stop source src.

The call src.request_stop() is visible to all std::stop_source and std::stop_token
of the same associated stop state. Also, any registered callbacks for the associated
std::stop_token and any std::condiction_variable_anywaiting on the associated
std::stop_token() will be awoken. When a stop is requested, it cannot

be withdrawn. src.request_stop() such as src.stop_requested(), and src.stop_-
possible()‘ is atomic.

src.stop_requested() returns true when src has an associated stop state and was
not asked to stop earlier. src.request_stop() is successful and returns true if src
has an associated stop state and it was not requested to stop before.

6.5.2 std::stop_token

std::stop_token is essentially a thread-safe “view” of the associated stop state. It is
typically retrieved from a std::jthread or a std::stop_source src via src.get_-

token(). This causes them share the same associated stop state as the std::jthread
or std::stop_source.

Thanks to the std::stop_token, you can check for the associated std::stop_source

if a stop request has been made.

The std::stop_token can also be passed to the constructor of std::stop_callback,
or to the interruptible waiting functions of std::condition_variable_any.

Concurrency 466

Member functions of std::stop_token stoken

Member function Description

stoken.stop_possible() Returns true if stoken has an associated stop state.

stoken.stop_requested() true if request_stop() was called on the associated
std::stop_source src, otherwise false.

stoken.stop_possible() also returns true if the stop request has already been made.
A default-constructed std::stop_token that has no associated stop state.

stoken.stop_requested() returns true when the stop token has an associated stop
state and has already received a stop request.

If the std::stop_token should be temporarily disabled, you can replace it with a
default-constructed token. A default-constructed token has no associated stop state.
The following code snippet shows how to disable and enable a thread’s capability to
accept stop requests.

Temporarily disable a stop token

1 std::jthread jthr([](std::stop_token stoken) {

2 ...

3 std::stop_token interruptDisabled;

4 std::swap(stoken, interruptDisabled);

5 ...

6 std::swap(stoken, interruptDisabled);

7 ...

8 }

std::stop_token interruptDisabled has no associated stop state. This means the
thread jthr can accept stop requests in all lines except 4 and 5.

6.5.3 std::stop_callback

The following example shows the use of std::stop_callback.

Concurrency 467

Use of callbacks
1 // invokeCallback.cpp

2

3 #include <atomic>

4 #include <chrono>

5 #include <iostream>

6 #include <thread>

7 #include <vector>

8

9 using namespace std::literals;

10

11 auto func = [](std::stop_token stoken) {

12 std::atomic<int> counter{0};

13 auto thread_id = std::this_thread::get_id();

14 std::stop_callback callBack(stoken, [&counter, thread_id] {

15 std::cout << "Thread id: " << thread_id

16 << "; counter: " << counter << '\n';

17 });

18 while (counter < 10) {

19 std::this_thread::sleep_for(0.2s);

20 ++counter;

21 }

22 };

23

24 int main() {

25

26 std::cout << '\n';

27

28 std::vector<std::jthread> vecThreads(10);

29 for(auto& thr: vecThreads) thr = std::jthread(func);

30

31 std::this_thread::sleep_for(1s);

32

33 for(auto& thr: vecThreads) thr.request_stop();

34

35 std::cout << '\n';

Concurrency 468

36

37 }

Each of the ten threads invokes the lambda function func (lines 11 - 22). The callback
in lines 14 - 17 displays the thread id and the counter. Due to the 1-second sleeping
of the main thread and the sleeping of the child threads, the counter is four when
the callbacks are invoked. The call thr.request_stop() triggers the callback on each
thread.

Use of callbacks

6.5.3.1 Joining Threads

A std::jthread is a std::threadwith the additional functionality to signal an inter-
rupt and to automatically join(). To support this functionality it has a std::stop_-

token.

Concurrency 469

The member functions of std::jthread jthr for stop-token handling

Member Function Description

t.get_stop_source() Returns a std::stop_source object associated
with the shared stop state.

t.get_stop_token() Returns a std::stop_token object associated
with the shared stop state.

t.request_stop() Requests execution stop via the shared stop
state.

6.5.3.2 New wait Overloads for the condition_variable_any

std::condition_variable_any is a generalization of std::condition_variable³⁴.
std::condition_variable requires a std::unique_lock<std::mutex>, but std::condition_-
variable_any can operate on any lock lo, supporting lo.lock() and lo.unlock.

The three wait variations to wait, wait_for, and wait_until of the std::condition_-
variable_any get new overloads. They take a std::stop_token.

Three new wait overloads

1 template <class Predicate>

2 bool wait(Lock& lock,

3 stop_token stoken,

4 Predicate pred);

5

6 template <class Rep, class Period, class Predicate>

7 bool wait_for(Lock& lock,

8 stop_token stoken,

9 const chrono::duration<Rep, Period>& rel_time,

10 Predicate pred);

11

12 template <class Clock, class Duration, class Predicate>

13 bool wait_until(Lock& lock,

³⁴https://en.cppreference.com/w/cpp/thread/condition_variable

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable

Concurrency 470

14 stop_token stoken,

15 const chrono::time_point<Clock, Duration>& abs_time,

16 Predicate pred);

These new overloads require a predicate. The presented versions ensure that the
threads are notified if a stop request for the passed std::stop_token stoken is
signaled. The functions return a boolean that indicates whether the predicate
evaluates to true. This returned boolean is independent of whether a stop was
requested or whether the timeout was triggered. The three overloads are equivalent
to the following expressions:

Equivalent expression for the three overloads

// wait in lines 1 - 4

while (!stoken.stop_requested()) {

if (pred()) return true;

wait(lock);

}

return pred();

// wait_for in lines 6 - 10

return wait_until(lock,

std::move(stoken),

chrono::steady_clock::now() + rel_time,

std::move(pred)

);

// wait_until in lines 12 - 16

while (!stoken.stop_requested()) {

if (pred()) return true;

if (wait_until(lock, timeout_time) == std::cv_status::timeout) retu\

rn pred();

}

return pred();

After the wait calls, you can check if a stop request happened.

Concurrency 471

Handle interrupts with wait

cv.wait(lock, stoken, predicate);

if (stoken.stop_requested()){

// interrupt occurred

}

The following example shows the use of a condition variable with a stop request.

Use of condition variable with a stop request

1 // conditionVariableAny.cpp

2

3 #include <condition_variable>

4 #include <thread>

5 #include <iostream>

6 #include <chrono>

7 #include <mutex>

8 #include <thread>

9

10 using namespace std::literals;

11

12 std::mutex mut;

13 std::condition_variable_any condVar;

14

15 bool dataReady;

16

17 void receiver(std::stop_token stopToken) {

18

19 std::cout << "Waiting" << '\n';

20

21 std::unique_lock<std::mutex> lck(mut);

22 bool ret = condVar.wait(lck, stopToken, []{return dataReady;});

23 if (ret){

24 std::cout << "Notification received: " << '\n';

25 }

26 else{

Concurrency 472

27 std::cout << "Stop request received" << '\n';

28 }

29 }

30

31 void sender() {

32

33 std::this_thread::sleep_for(5ms);

34 {

35 std::lock_guard<std::mutex> lck(mut);

36 dataReady = true;

37 std::cout << "Send notification" << '\n';

38 }

39 condVar.notify_one();

40

41 }

42

43 int main(){

44

45 std::cout << '\n';

46

47 std::jthread t1(receiver);

48 std::jthread t2(sender);

49

50 t1.request_stop();

51

52 t1.join();

53 t2.join();

54

55 std::cout << '\n';

56

57 }

The receiver thread (lines 17 - 29) is waiting for the notification of the sender thread
(lines 31 - 41). Before the sender thread sends its notification in line 39, the main

thread triggered a stop request in line 50. The output of the program shows that the

Concurrency 473

stop request happened before the notification.

Sending a stop request to a condition variable

Distilled Information

• Thanks to std::stop_source, std::stop_token, and std::stop_-

callback, threads and condition variables can be cooperatively in-
terrupted. Cooperative interruption means that the thread gets a stop
request that it can accept or ignore.

• The std::stop_token can be passed to an operation and afterward be
used to poll the token for a stop request actively or register a callback
via std::stop_callback.

• Additionally to a std::jthread, std::condition_variable_any can
also accept a stop request.

Concurrency 474

6.6 std::jthread

Cippi ties a braid

std::jthread stands for joining thread. In addition to std::thread³⁵ from C++11,
std::jthread automatically joins in its destructor and can cooperatively be inter-
rupted.

The following table gives you a concise overview of the std::jthread t functionality.
For additional details, please refer to cppreference.com³⁶.

³⁵https://en.cppreference.com/w/cpp/thread/thread
³⁶https://en.cppreference.com/w/cpp/thread/jthread

https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/jthread
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/jthread

Concurrency 475

Functions of a std::jthread t

Method Description

t.join() Waits until thread t has finished its
execution.

t.detach() Executes the created thread t

independently of the creator.

t.joinable() Returns true if thread t is still joinable.

t.get_id() and Returns the id of the thread.
std::this_thread::get_id()

std::jthread::hardware_concurrency() Indicates the number of threads that can
run concurrently.

std::this_thread::sleep_until(absTime) Puts thread t to sleep until time point
absTime.

std::this_thread::sleep_for(relTime) Puts thread t to sleep for time duration
relTime.

std::this_thread::yield() Enables the system to run another thread.

t.swap(t2) and Swaps the threads.
std::swap(t1, t2)

t.get_stop_source() Returns a std::stop_source object
associated with the shared stop state.

t.get_stop_token() Returns a std::stop_token object
associated with the shared stop state.

t.request_stop() Requests execution stop via the shared stop
state.

Concurrency 476

6.6.1 Automatically Joining

This is the non-intuitive behavior of std::thread. If a std::thread is still joinable,
std::terminate³⁷ is called in its destructor. A thread thr is joinable if neither
thr.join() nor thr.detach() was called.

Terminating a still joinable std::thread

// threadJoinable.cpp

#include <iostream>

#include <thread>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::thread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

When executed, the program terminates.

³⁷https://en.cppreference.com/w/cpp/error/terminate

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate

Concurrency 477

Terminating a joinable std::thread

Both executions of std::thread terminate. In the second run, the thread thr has
enough time to display its message: “Joinable std::thread”.

In the next example, I use std::jthread from the current C++20 standard.

Terminating a still joinable std::jthread

// jthreadJoinable.cpp

#include <iostream>

#include <thread>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::jthread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }\

};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

Concurrency 478

}

Now, the thread thr automatically joins in its destructor if it’s still joinable.

Using a std::jthread that joins automatically

Here is a typical implementation of std::jthreads destructor.

Typical implemenation of std::jthreads destructor

1 jthread::~jthread() {

2 if(joinable()) {

3 request_stop();

4 join();

5 }

6 }

First, the thread checks if it is still joinable (line 2). A thread is still joinable if neither
join() or detach() was called on it. If the thread is still joinable, it asks for the
stopping of the execution (line 3) and calls join() afterward (line 4). The join call
blocks until the execution of the thread is done.

6.6.2 Cooperative Interruption of a std::jthread

To get the general idea, let me present a simple example.

Concurrency 479

Interrupt a non-interruptible and interruptible std::jthread

1 // interruptJthread.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 using namespace::std::literals;

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::jthread nonInterruptible([]{

14 int counter{0};

15 while (counter < 10){

16 std::this_thread::sleep_for(0.2s);

17 std::cerr << "nonInterruptible: " << counter << '\n';

18 ++counter;

19 }

20 });

21

22 std::jthread interruptible([](std::stop_token stoken){

23 int counter{0};

24 while (counter < 10){

25 std::this_thread::sleep_for(0.2s);

26 if (stoken.stop_requested()) return;

27 std::cerr << "interruptible: " << counter << '\n';

28 ++counter;

29 }

30 });

31

32 std::this_thread::sleep_for(1s);

33

34 std::cerr << '\n';

35 std::cerr << "Main thread interrupts both jthreads" << '\n';

Concurrency 480

36 nonInterruptible.request_stop();

37 interruptible.request_stop();

38

39 std::cout << '\n';

40

41 }

In the main program, I start the two threads nonInterruptible and interruptible

(lines 13 and 22). Unlike in the thread nonInterruptible, the thread interruptible

gets a std::stop_token and uses it in line 26 to check if it was interrupted:
stoken.stop_requested(). In case of a stop request, the lambda function returns and,
therefore, the thread ends. The call interruptible.request_stop() (line 37) triggers
the stop request. This does not hold for the previous call nonInterruptible.request_-
stop(). The call has no effect.

Concurrency 481

Interrupt a non-interruptible and interruptible std::jthread

Distilled Information

• A std::jthread stands for joining thread. In addition to std::thread
from C++11, std::jthread automatically joins in its destructor and
can cooperatively be interrupted.

• This is the non-intuitive behavior of std::thread. If a std::thread

is still joinable, std::terminate is called in its destructor. In contrast,
a std::jthread automatically joins in its destructor if necessary.

• A std::jthread can cooperatively be interrupted using a std::stop_-
token. Cooperatively means that the std::jthread can ignore the
stop request.

Concurrency 482

6.7 Synchronized Output Streams

Cippi sings in the choir

Compiler Support for Synchronized Output
Streams
At the end of 2020, only GCC 11 supports synchronized output streams.

What happens when you write without synchronization to std::cout?

Non-synchronized access to std::cout

1 // coutUnsynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 class Worker{

8 public:

9 Worker(std::string n):name(n) {};

10 void operator() (){

11 for (int i = 1; i <= 3; ++i) {

12 // begin work

Concurrency 483

13 std::this_thread::sleep_for(std::chrono::milliseconds(200));

14 // end work

15 std::cout << name << ": " << "Work " << i << " done !!!" << '\n\

16 ';

17 }

18 }

19 private:

20 std::string name;

21 };

22

23

24 int main() {

25

26 std::cout << '\n';

27

28 std::cout << "Boss: Let's start working.\n\n";

29

30 std::thread herb= std::thread(Worker("Herb"));

31 std::thread andrei= std::thread(Worker(" Andrei"));

32 std::thread scott= std::thread(Worker(" Scott"));

33 std::thread bjarne= std::thread(Worker(" Bjarne"));

34 std::thread bart= std::thread(Worker(" Bart"));

35 std::thread jenne= std::thread(Worker(" Jenne"));

36

37

38 herb.join();

39 andrei.join();

40 scott.join();

41 bjarne.join();

42 bart.join();

43 jenne.join();

44

45 std::cout << "\n" << "Boss: Let's go home." << '\n';

46

47 std::cout << '\n';

48

Concurrency 484

49 }

The boss has six workers (lines 29 - 34). Each worker has to take care of three
work packages that take 1/5 second each (line 13). After the worker is done with
his work package, he screams out loudly to the boss (line 15). Once the boss receives
notifications from all workers, he sends them home (line 44).

What a mess for such a simple workflow! Each worker screams out his message
ignoring his coworkers!

Non-synchronized writing to std::cout

Concurrency 485

std::cout is thread-safe
The C++11 standard guarantees that you need not protect std::cout. Each
character is written atomically. More output statements like those in the
example may interleave. This interleaving is only a visual issue; the pro-
gram is well-defined. This remark is valid for all global stream objects. In-
sertion to and extraction from global stream objects (std::cout, std::cin,
std::cerr, and std::clog) is thread-safe. To put it more formally: writing
to std::cout is not participating in a data race, but does create a race
condition. This means that the output depends on the interleaving of
threads.

How can we solve this issue? With C++11, the answer is straightforward: use a lock
such as lock_guard³⁸ to synchronize the access to std::cout.

Synchronized access to std::cout

1 // coutSynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex coutMutex;

9

10 class Worker{

11 public:

12 Worker(std::string n):name(n) {};

13

14 void operator() () {

15 for (int i = 1; i <= 3; ++i) {

16 // begin work

17 std::this_thread::sleep_for(std::chrono::milliseconds(200));

18 // end work

19 std::lock_guard<std::mutex> coutLock(coutMutex);

20 std::cout << name << ": " << "Work " << i << " done !!!\n";

³⁸https://en.cppreference.com/w/cpp/thread/lock_guard

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard

Concurrency 486

21 }

22 }

23 private:

24 std::string name;

25 };

26

27

28 int main() {

29

30 std::cout << '\n';

31

32 std::cout << "Boss: Let's start working." << "\n\n";

33

34 std::thread herb= std::thread(Worker("Herb"));

35 std::thread andrei= std::thread(Worker(" Andrei"));

36 std::thread scott= std::thread(Worker(" Scott"));

37 std::thread bjarne= std::thread(Worker(" Bjarne"));

38 std::thread bart= std::thread(Worker(" Bart"));

39 std::thread jenne= std::thread(Worker(" Jenne"));

40

41 herb.join();

42 andrei.join();

43 scott.join();

44 bjarne.join();

45 bart.join();

46 jenne.join();

47

48 std::cout << "\n" << "Boss: Let's go home." << '\n';

49

50 std::cout << '\n';

51

52 }

The coutMutex in line 8 protects the shared object std::cout. Putting the coutMutex
into a std::lock_guard guarantees that the coutMutex is locked in the constructor

Concurrency 487

(line 19) and unlocked in the destructor (line 21) of the std::lock_guard. Thanks to
the coutMutex guarded by the coutLock the mess becomes a harmony.

Synchronized access of std::cout

With C++20, writing synchronized to std::cout is a piece of cake. std::basic_-
syncbuf is a wrapper for a std::basic_streambuf³⁹. It accumulates output in its
buffer. The wrapper sets its content to the wrapped buffer when it is destructed.
Consequently, the content appears as a contiguous sequence of characters, and no

³⁹https://en.cppreference.com/w/cpp/io/basic_streambuf

https://en.cppreference.com/w/cpp/io/basic_streambuf
https://en.cppreference.com/w/cpp/io/basic_streambuf

Concurrency 488

interleaving of characters can happen.

Thanks to std::basic_osyncstream, you can directlywrite synchronously to std::cout.

You can create a named-synchronized output stream. Now, the previous program
coutUnsynchronized.cpp is refactored to write synchronized to std::cout.

Synchronized access of std::cout with std::basic_osyncstream

1 // synchronizedOutput.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <syncstream>

6 #include <thread>

7

8 class Worker{

9 public:

10 Worker(std::string n): name(n) {};

11 void operator() (){

12 for (int i = 1; i <= 3; ++i) {

13 // begin work

14 std::this_thread::sleep_for(std::chrono::milliseconds(200));

15 // end work

16 std::osyncstream syncStream(std::cout);

17 syncStream << name << ": " << "Work " << i << " done !!!" << '\\

18 n';

19 }

20 }

21 private:

22 std::string name;

23 };

24

25

26 int main() {

27

28 std::cout << '\n';

29

Concurrency 489

30 std::cout << "Boss: Let's start working.\n\n";

31

32 std::thread herb= std::thread(Worker("Herb"));

33 std::thread andrei= std::thread(Worker(" Andrei"));

34 std::thread scott= std::thread(Worker(" Scott"));

35 std::thread bjarne= std::thread(Worker(" Bjarne"));

36 std::thread bart= std::thread(Worker(" Bart"));

37 std::thread jenne= std::thread(Worker(" Jenne"));

38

39

40 herb.join();

41 andrei.join();

42 scott.join();

43 bjarne.join();

44 bart.join();

45 jenne.join();

46

47 std::cout << "\n" << "Boss: Let's go home." << '\n';

48

49 std::cout << '\n';

50

51 }

The only change to the previous program coutUnsynchronized.cpp is that std::cout
is wrapped in a std::osyncstream (line 16). To use the std::osyncstream, I add the
header <syncstream>. When the std::osyncstream goes out of scope in line 18, the
characters are transferred and std::cout is flushed. It is worth mentioning that the
std::cout calls in the main program do not introduce a data race and, therefore,
need not be synchronized.

Because I use the syncStream declared on line 17 only once, a temporary object may
be more appropriate. The following code snippet presents the modified call operator.

Concurrency 490

void operator()() {

for (int i = 1; i <= 3; ++i) {

// begin work

std::this_thread::sleep_for(std::chrono::milliseconds(200));

// end work

std::osyncstream(std::cout) << name << ": " << "Work " << i << " do\

ne !!!"

<< '\n';

}

}

std::basic_osyncstream syncStream offers two interesting member functions.

• syncStream.emit() emits all buffered output and executes all pending flushes.
• syncStream.get_wrapped() returns a pointer to the wrapped buffer.

cppreference.com⁴⁰ shows how you can sequence the output of different output
streams with the get_wrapped member function.

Sequence output

// sequenceOutput.cpp

#include <syncstream>

#include <iostream>

int main() {

std::osyncstream bout1(std::cout);

bout1 << "Hello, ";

{

std::osyncstream(bout1.get_wrapped()) << "Goodbye, " << "Planet!"\

<< '\n';

} // emits the contents of the temporary buffer

bout1 << "World!" << '\n';

⁴⁰https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped

https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped
https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped

Concurrency 491

} // emits the contents of bout1

Synchronized access of std::cout

Distilled Information

• Although std::cout is thread-safe, you may get an interleaving of
output operations when threads concurrently write to std::cout.
This is only a visual issue but not a data race.

• C++20 supports synchronized output streams. They accumulate out-
put in an internal buffer and write their content in an atomic step.
Consequently, no interleaving of output operations happens.

7. Case Studies
After providing the theory to C++20, I now apply the theory in practice and provide
you with a few case studies.

When you want to synchronize threads more than once, you can use condition
variables, std::atomic_flag, std::atomic<bool>, or semaphores. In the section fast
synchronization of threads, I want to answer which variant is the fastest? The
section on coroutines presented three coroutines, based on co_return, co_yield,
and co_await. I use these coroutines as a starting point for further experiments to
deepen our understanding of the challenging control-flow of coroutines. In section
variations of futures, I implement a lazy future and a future based on the future
in section co_return. Section modification and generalization of threads improves
the generator from section co_return, and, finally, section various job workflows
discusses the job workflow, started in the section about co_await.

Case Studies 493

7.1 Fast Synchronization of Threads

Cippi plays ping-pong

The Reference PCs
You should take the performance numbers with a grain of salt. I’m
not interested in the exact number for each variation of the algorithms
on Linux and Windows. I’m more interested in getting a gut feeling of
which algorithms may work and which algorithms may not work. I’m not
comparing the absolute numbers of my Linux desktop with the numbers on
my Windows laptop, but I’m interested to know if some algorithms work
better on Linux or Windows.

When you want to synchronize threads more than once, you can use condition
variables, std::atomic_flag, std::atomic<bool>, or semaphores. In this section, I
want to answer the question: which variant is the fastest?

To get comparable numbers, I implement a ping-pong game. One thread executes
a ping function (or ping thread for short), and the other thread a pong function (or
pong thread for short). The ping thread waits for the pong-thread notification and
sends the notification back to the pong thread. The game stops after 1,000,000 ball
changes. I perform each game five times to get comparable performance numbers.

Case Studies 494

About the Numbers
I made my performance test at the end of 2020 with the brand new
Visual Studio compiler 19.28 because it already supported synchroniza-
tion with atomics (std::atomic_flag and std::atomic) and semaphores.
Additionally, I compiled the examples with maximum optimization (/Ox).
The performance number should only give a rough idea of the relative
performance of the various ways to synchronize threads. When you want
the exact number on your platform, you have to repeat the tests.

Let me start the comparison with C++11.

7.1.1 Condition Variables

Multiple time synchronization with a condition variable

1 // pingPongConditionVariable.cpp

2

3 #include <condition_variable>

4 #include <iostream>

5 #include <atomic>

6 #include <thread>

7

8 bool dataReady{false};

9

10 std::mutex mutex_;

11 std::condition_variable condVar1;

12 std::condition_variable condVar2;

13

14 std::atomic<int> counter{};

15 constexpr int countlimit = 1'000'000;

16

17 void ping() {

18

19 while(counter <= countlimit) {

20 {

21 std::unique_lock<std::mutex> lck(mutex_);

Case Studies 495

22 condVar1.wait(lck, []{return dataReady == false;});

23 dataReady = true;

24 }

25 ++counter;

26 condVar2.notify_one();

27 }

28 }

29

30 void pong() {

31

32 while(counter < countlimit) {

33 {

34 std::unique_lock<std::mutex> lck(mutex_);

35 condVar2.wait(lck, []{return dataReady == true;});

36 dataReady = false;

37 }

38 condVar1.notify_one();

39 }

40

41 }

42

43 int main(){

44

45 auto start = std::chrono::system_clock::now();

46

47 std::thread t1(ping);

48 std::thread t2(pong);

49

50 t1.join();

51 t2.join();

52

53 std::chrono::duration<double> dur = std::chrono::system_clock::now(\

54) - start;

55 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

56 }

Case Studies 496

I use two condition variables in the program: condVar1 and condVar2. The ping
thread waits for the notification of condVar1 and sends its notification with condVar2.
Variable dataReady protects against spurious and lost wakeups. The ping-pong game
ends when counter reaches the countlimit. The notify_one calls (lines 26 and 38)
and the counter are thread-safe and are, therefore, outside the critical region.

Here are the numbers.

Multiple time synchronizations with condition variables

The average execution time is 0.52 seconds.

Porting this workflow to std::atomic_flag in C++20 is straightforward.

7.1.2 std::atomic_flag

Here is the same workflow using two atomic flags and then one.

7.1.2.1 Two Atomic Flags

In the following program, I replace the waiting on the condition variable with the
waiting on the atomic flag and the condition variable’s notification with the atomic-
flag setting followed by the notification.

Case Studies 497

Multiple time synchronization with two atomic flags
1 // pingPongAtomicFlags.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic_flag condAtomicFlag1{};

8 std::atomic_flag condAtomicFlag2{};

9

10 std::atomic<int> counter{};

11 constexpr int countlimit = 1'000'000;

12

13 void ping() {

14 while(counter <= countlimit) {

15 condAtomicFlag1.wait(false);

16 condAtomicFlag1.clear();

17

18 ++counter;

19

20 condAtomicFlag2.test_and_set();

21 condAtomicFlag2.notify_one();

22 }

23 }

24

25 void pong() {

26 while(counter < countlimit) {

27 condAtomicFlag2.wait(false);

28 condAtomicFlag2.clear();

29

30 condAtomicFlag1.test_and_set();

31 condAtomicFlag1.notify_one();

32 }

33 }

34

35 int main() {

Case Studies 498

36

37 auto start = std::chrono::system_clock::now();

38

39 condAtomicFlag1.test_and_set();

40 std::thread t1(ping);

41 std::thread t2(pong);

42

43 t1.join();

44 t2.join();

45

46 std::chrono::duration<double> dur = std::chrono::system_clock::now(\

47) - start;

48 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

49

50 }

A call condAtomicFlag1.wait(false) (line 15) blocks if the atomic flag’s value is
false, and returns if condAtomicFlag1 has the value true. The boolean value serves
as a kind of predicate and must, therefore, be set back to false (line 15). Before the
notification (line 21) is sent to the pong thread, condAtomicFlag1 is set to true (line
20). The initial setting of condAtomicFlag1 (line 39) to true starts the game.

Thanks to std::atomic_flag, the game ends faster.

Case Studies 499

Multiple time synchronization with two atomic flags

On average, a game takes 0.32 seconds.

When you analyze the program, you may recognize that one atomic flag is sufficient
for the workflow.

7.1.2.2 One Atomic Flag

Using one atomic flag makes the workflow easier to understand.

Multiple time synchronization with one atomic flag

1 // pingPongAtomicFlag.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic_flag condAtomicFlag{};

8

9 std::atomic<int> counter{};

10 constexpr int countlimit = 1'000'000;

11

12 void ping() {

Case Studies 500

13 while(counter <= countlimit) {

14 condAtomicFlag.wait(true);

15 condAtomicFlag.test_and_set();

16

17 ++counter;

18

19 condAtomicFlag.notify_one();

20 }

21 }

22

23 void pong() {

24 while(counter < countlimit) {

25 condAtomicFlag.wait(false);

26 condAtomicFlag.clear();

27 condAtomicFlag.notify_one();

28 }

29 }

30

31 int main() {

32

33 auto start = std::chrono::system_clock::now();

34

35 condAtomicFlag.test_and_set();

36 std::thread t1(ping);

37 std::thread t2(pong);

38

39 t1.join();

40 t2.join();

41

42 std::chrono::duration<double> dur = std::chrono::system_clock::now(\

43) - start;

44 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

45

46 }

Case Studies 501

In this case, the ping thread blocks on true but the pong thread blocks on false. From
the performance perspective, using one or two atomic flags makes no difference.

Multiple time synchronization with one atomic flag

The average execution time is 0.31 seconds.

I used in this example std::atomic_flag such as an atomic boolean. Let’s give it
another try with std::atomic<bool>.

7.1.3 std::atomic<bool>

The following C++20 implementation is based on std::atomic.

Multiple time synchronization with an atomic bool

1 // pingPongAtomicBool.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic<bool> atomicBool{};

8

9 std::atomic<int> counter{};

Case Studies 502

10 constexpr int countlimit = 1'000'000;

11

12 void ping() {

13 while(counter <= countlimit) {

14 atomicBool.wait(true);

15 atomicBool.store(true);

16

17 ++counter;

18

19 atomicBool.notify_one();

20 }

21 }

22

23 void pong() {

24 while(counter < countlimit) {

25 atomicBool.wait(false);

26 atomicBool.store(false);

27 atomicBool.notify_one();

28 }

29 }

30

31 int main() {

32

33 std::cout << std::boolalpha << '\n';

34

35 std::cout << "atomicBool.is_lock_free(): "

36 << atomicBool.is_lock_free() << '\n';

37

38 std::cout << '\n';

39

40 auto start = std::chrono::system_clock::now();

41

42 atomicBool.store(true);

43 std::thread t1(ping);

44 std::thread t2(pong);

45

Case Studies 503

46 t1.join();

47 t2.join();

48

49 std::chrono::duration<double> dur = std::chrono::system_clock::now(\

50) - start;

51 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

52

53 }

std::atomic<bool> can internally use a locking mechanism such as a mutex. My
Windows run time is lock-free.

Multiple time synchronization with an atomic bool

Case Studies 504

On average, the execution time is 0.38 seconds.

From the readability perspective, this implementation based on std::atomic is
straightforward to understand. This observation also holds for the next implementa-
tion of the ping-pong game based on semaphores.

7.1.4 Semaphores

Semaphores promise to be faster than condition variables. Let’s see if this is true.

Multiple time synchronization with semaphores

1 // pingPongSemaphore.cpp

2

3 #include <iostream>

4 #include <semaphore>

5 #include <thread>

6

7 std::counting_semaphore<1> signal2Ping(0);

8 std::counting_semaphore<1> signal2Pong(0);

9

10 std::atomic<int> counter{};

11 constexpr int countlimit = 1'000'000;

12

13 void ping() {

14 while(counter <= countlimit) {

15 signal2Ping.acquire();

16 ++counter;

17 signal2Pong.release();

18 }

19 }

20

21 void pong() {

22 while(counter < countlimit) {

23 signal2Pong.acquire();

24 signal2Ping.release();

25 }

Case Studies 505

26 }

27

28 int main() {

29

30 auto start = std::chrono::system_clock::now();

31

32 signal2Ping.release();

33 std::thread t1(ping);

34 std::thread t2(pong);

35

36 t1.join();

37 t2.join();

38

39 std::chrono::duration<double> dur = std::chrono::system_clock::now(\

40) - start;

41 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

42

43 }

The program pingPongsemaphore.cpp uses two semaphores: signal2Ping and signal2Pong
(lines 7 and 8). Both can have the two values 0 or 1, and are initialized with 0. This
meanswhen the value is 0 for the semaphore signal2Ping, a call signal2Ping.release()
(lines 24 and 32) sets the value to 1 and is, therefore, a notification. A signal2Ping.acquire()

(line 15) call blocks until the value becomes 1. The same argumentation holds for the
second semaphore signal2Pong.

Case Studies 506

Multiple time synchronization with semaphores

On average, the execution time is 0.33 seconds.

7.1.5 All Numbers

As expected, condition variables are the slowest way, and atomic flag the fastest
way to synchronize threads. The performance of a std::atomic<bool> is in between.
There is one downside with std::atomic<bool>. std::atomic_flag is the only
atomic data type that is always lock-free. Semaphores impressed me most because
they are nearly as fast as atomic flags.

Execution Time

Condition
Variables

Two
Atomic
Flags

One
Atomic
Flag

Atomic
Boolean

Semaphores

Execution
Time

0.52 0.32 0.31 0.38 0.33

Case Studies 507

7.2 Variations of Futures

Cippi starts the workflow

Before I create variations of the future from section co_return, we should understand
its control flow. Commentsmake the control flow transparent. Additionally, I provide
a link to the presented programs on online compilers.

Control flow of an eager future

1 // eagerFutureWithComments.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 std::shared_ptr<T> value;

10 MyFuture(std::shared_ptr<T> p): value(p) {

11 std::cout << " MyFuture::MyFuture" << '\n';

12 }

13 ~MyFuture() {

14 std::cout << " MyFuture::~MyFuture" << '\n';

15 }

16 T get() {

17 std::cout << " MyFuture::get" << '\n';

Case Studies 508

18 return *value;

19 }

20

21 struct promise_type {

22 std::shared_ptr<T> ptr = std::make_shared<T>();

23 promise_type() {

24 std::cout << " promise_type::promise_type" << '\n';

25 }

26 ~promise_type() {

27 std::cout << " promise_type::~promise_type" << '\n';

28 }

29 MyFuture<T> get_return_object() {

30 std::cout << " promise_type::get_return_object" << '\

31 \n';

32 return ptr;

33 }

34 void return_value(T v) {

35 std::cout << " promise_type::return_value" << '\n';

36 *ptr = v;

37 }

38 std::suspend_never initial_suspend() {

39 std::cout << " promise_type::initial_suspend" << '\n\

40 ';

41 return {};

42 }

43 std::suspend_never final_suspend() noexcept {

44 std::cout << " promise_type::final_suspend" << '\n';

45 return {};

46 }

47 void unhandled_exception() {

48 std::exit(1);

49 }

50 };

51 };

52

53 MyFuture<int> createFuture() {

Case Studies 509

54 std::cout << "createFuture" << '\n';

55 co_return 2021;

56 }

57

58 int main() {

59

60 std::cout << '\n';

61

62 auto fut = createFuture();

63 auto res = fut.get();

64 std::cout << "res: " << res << '\n';

65

66 std::cout << '\n';

67

68 }

The call createFuture (line 60) causes the creating of the instance of MyFuture (line
59). Before MyFuture’s constructor call (line 10) is completed, the promise promise_-
type is created, executed, and destroyed (lines 20 - 48). The promise uses in each step
of its control flow the awaitable std::suspend_never (lines 36 and 40) and, hence,
never pauses. To save the result of the promise for the later fut.get() call (line 60),
it has to be allocated. Furthermore, the used std::shared_ptrs ensure (lines 9 and
21) that the program does not cause a memory leak. As a local, fut goes out of scope
in line 65, and the C++ run time calls its destructor.

You can try out the program on the Compiler Explorer¹.

¹https://godbolt.org/z/Y9naEx

https://godbolt.org/z/Y9naEx
https://godbolt.org/z/Y9naEx

Case Studies 510

An eager future

The presented coroutine runs immediately and is, therefore, eager. Furthermore, the
coroutine runs in the thread of the caller.

Let’s make the coroutine lazy.

7.2.1 A Lazy Future

A lazy future is a future that runs only if asked for the value. Let’s see what I have to
change in the eager coroutine, presented in eagerFutureWithComments.cpp, to make
it lazy.

Control flow of a lazy future

1 // lazyFuture.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 struct promise_type;

10 using handle_type = std::coroutine_handle<promise_type>;

11

12 handle_type coro;

Case Studies 511

13

14 MyFuture(handle_type h): coro(h) {

15 std::cout << " MyFuture::MyFuture" << '\n';

16 }

17 ~MyFuture() {

18 std::cout << " MyFuture::~MyFuture" << '\n';

19 if (coro) coro.destroy();

20 }

21

22 T get() {

23 std::cout << " MyFuture::get" << '\n';

24 coro.resume();

25 return coro.promise().result;

26 }

27

28 struct promise_type {

29 T result;

30 promise_type() {

31 std::cout << " promise_type::promise_type" << '\n';

32 }

33 ~promise_type() {

34 std::cout << " promise_type::~promise_type" << '\n';

35 }

36 auto get_return_object() {

37 std::cout << " promise_type::get_return_object" << '\

38 \n';

39 return MyFuture{handle_type::from_promise(*this)};

40 }

41 void return_value(T v) {

42 std::cout << " promise_type::return_value" << '\n';

43 result = v;

44 }

45 std::suspend_always initial_suspend() {

46 std::cout << " promise_type::initial_suspend" << '\n\

47 ';

48 return {};

Case Studies 512

49 }

50 std::suspend_always final_suspend() noexcept {

51 std::cout << " promise_type::final_suspend" << '\n';

52 return {};

53 }

54 void unhandled_exception() {

55 std::exit(1);

56 }

57 };

58 };

59

60 MyFuture<int> createFuture() {

61 std::cout << "createFuture" << '\n';

62 co_return 2021;

63 }

64

65 int main() {

66

67 std::cout << '\n';

68

69 auto fut = createFuture();

70 auto res = fut.get();

71 std::cout << "res: " << res << '\n';

72

73 std::cout << '\n';

74

75 }

Let’s first study the promise. The promise always suspends at the beginning (line 44)
and the end (line 48). Furthermore, the member function get_return_object (line 36)
creates the return object that is returned to the caller of the coroutine createFuture
(line 58). The future MyFuture is more interesting. It has a handle coro (line 12) to the
promise. MyFuture uses the handle to manage the promise. It resumes the promise
(line 24), asks the promise for the result (line 25), and finally destroys it (line 19). The
resumption of the coroutine is necessary because it never runs automatically (line

Case Studies 513

44). When the client invokes fut.get() (line 68) to ask for the result of the future, it
implicitly resumes the promise (line 24).

You can try out the program on the Compiler Explorer².

A lazy future

What happens if the client is not interested in the result of the future? Let’s try it out.

The client does not resume the coroutine

int main() {

std::cout << '\n';

auto fut = createFuture();

// auto res = fut.get();

// std::cout << "res: " << res << '\n';

std::cout << '\n';

}

As you may guess, the promise never runs, and the member functions return_value
and final_suspend are not executed.

²https://godbolt.org/z/EejWcj

https://godbolt.org/z/EejWcj
https://godbolt.org/z/EejWcj

Case Studies 514

A lazy future that is not started

Lifetime Challenges of Coroutines
One of the challenges of dealing with coroutines is to handle the lifetime
of the coroutine. In the previous program eagerFutureWithComments.cpp,
I stored the coroutine result in a std::shared_ptr. This is critical because
the coroutine is executed eagerly.

In this program lazyFuture.cpp, the call final_suspend always sus-
pends (line 48): std::suspend_always final_suspend(). Consequently, the
promise outlives the client, and a std::shared_ptr is not necessary any-
more. Returning std::suspend_never from the function final_suspend

would cause, in this case, undefined behavior because the client would
outlive the promise. Hence, the lifetime of the result ends, bevor the client
asks for it.

Let’s vary the coroutine further and run the promise in a separate thread.

7.2.2 Execution on Another Thread

The coroutine is fully suspended before entering the coroutine createFuture (line
67), because the member function initial_suspend returns std::suspend_always

(line 52). Consequently, the promise can run on another thread.

Case Studies 515

Executing the promise on another thread
1 // lazyFutureOnOtherThread.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6 #include <thread>

7

8 template<typename T>

9 struct MyFuture {

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12 handle_type coro;

13

14 MyFuture(handle_type h): coro(h) {}

15 ~MyFuture() {

16 if (coro) coro.destroy();

17 }

18

19 T get() {

20 std::cout << " MyFuture::get: "

21 << "std::this_thread::get_id(): "

22 << std::this_thread::get_id() << '\n';

23

24 std::thread t([this] { coro.resume(); });

25 t.join();

26 return coro.promise().result;

27 }

28

29 struct promise_type {

30 promise_type(){

31 std::cout << " promise_type::promise_type: "

32 << "std::this_thread::get_id(): "

33 << std::this_thread::get_id() << '\n';

34 }

35 ~promise_type(){

Case Studies 516

36 std::cout << " promise_type::~promise_type: "

37 << "std::this_thread::get_id(): "

38 << std::this_thread::get_id() << '\n';

39 }

40

41 T result;

42 auto get_return_object() {

43 return MyFuture{handle_type::from_promise(*this)};

44 }

45 void return_value(T v) {

46 std::cout << " promise_type::return_value: "

47 << "std::this_thread::get_id(): "

48 << std::this_thread::get_id() << '\n';

49 std::cout << v << std::endl;

50 result = v;

51 }

52 std::suspend_always initial_suspend() {

53 return {};

54 }

55 std::suspend_always final_suspend() noexcept {

56 std::cout << " promise_type::final_suspend: "

57 << "std::this_thread::get_id(): "

58 << std::this_thread::get_id() << '\n';

59 return {};

60 }

61 void unhandled_exception() {

62 std::exit(1);

63 }

64 };

65 };

66

67 MyFuture<int> createFuture() {

68 co_return 2021;

69 }

70

71 int main() {

Case Studies 517

72

73 std::cout << '\n';

74

75 std::cout << "main: "

76 << "std::this_thread::get_id(): "

77 << std::this_thread::get_id() << '\n';

78

79 auto fut = createFuture();

80 auto res = fut.get();

81 std::cout << "res: " << res << '\n';

82

83 std::cout << '\n';

84

85 }

I added a few comments to the program that show the id of the running thread.
The program lazyFutureOnOtherThread.cpp is quite similar to the previous program
lazyFuture.cpp. The main difference is the member function get (line 19). The call
std::thread t([this] { coro.resume(); }); (line 24) resumes the coroutine on
another thread.

You can try out the program on the Wandbox³ online compiler.

Execution on another thread

I want to add a few additional remarks about the member function get. It is
crucial that the promise, resumed in a separate thread, finishes before it returns
coro.promise().result.

³https://wandbox.org/permlink/jFVVj80Gxu6bnNkc

https://wandbox.org/permlink/jFVVj80Gxu6bnNkc
https://wandbox.org/permlink/jFVVj80Gxu6bnNkc

Case Studies 518

The member function get using std::thread

T get() {

std::thread t([this] { coro.resume(); });

t.join();

return coro.promise().result;

}

Where I to join the thread t after the call return coro.promise().result, the
program would have undefined behavior. In the following implementation of the
function get, I use a std::jthread. Since std::jthread automatically joins when it
goes out of scope. This is too late.

The member function get using std::jthread

T get() {

std::jthread t([this] { coro.resume(); });

return coro.promise().result;

}

In this case, the client likely gets its result before the promise prepares it using the
member function return_value. Now, result has an arbitrary value, and therefore
so does res.

Execution on another thread

There are other possibilities to ensure that the thread is done before the return call.

• Create a std::jthread in its scope.

Case Studies 519

std::jthread has its own scope

T get() {

{

std::jthread t([this] { coro.resume(); });

}

return coro.promise().result;

}

• Make std::jthread a temporary object

std::jthread as a temporary

T get() {

std::jthread([this] { coro.resume(); });

return coro.promise().result;

}

In particular, I don’t like the last solution because it may take you a few seconds to
recognize that I just called the constructor of std::jthread.

Case Studies 520

7.3 Modification and Generalization of a
Generator

Cippi handles a data stream

Before I modify and generalize the generator for an infinite data stream, I want
to present it as a starting point of our journey. I intentionally put many output
operations in the source code and only ask for three values. This simplification and
visualization should help to understand the control flow.

Generator generating an infinite data stream

1 // infiniteDataStreamComments.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 template<typename T>

8 struct Generator {

9

Case Studies 521

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12

13 Generator(handle_type h): coro(h) {

14 std::cout << " Generator::Generator" << '\n';

15 }

16 handle_type coro;

17

18 ~Generator() {

19 std::cout << " Generator::~Generator" << '\n';

20 if (coro) coro.destroy();

21 }

22 Generator(const Generator&) = delete;

23 Generator& operator = (const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

30 return *this;

31 }

32 int getNextValue() {

33 std::cout << " Generator::getNextValue" << '\n';

34 coro.resume();

35 return coro.promise().current_value;

36 }

37 struct promise_type {

38 promise_type() {

39 std::cout << " promise_type::promise_type" << '\\

40 n';

41 }

42

43 ~promise_type() {

44 std::cout << " promise_type::~promise_type" << '\

45 \n';

Case Studies 522

46 }

47

48 std::suspend_always initial_suspend() {

49 std::cout << " promise_type::initial_suspend" <<\

50 '\n';

51 return {};

52 }

53 std::suspend_always final_suspend() noexcept {

54 std::cout << " promise_type::final_suspend" << '\

55 \n';

56 return {};

57 }

58 auto get_return_object() {

59 std::cout << " promise_type::get_return_object" \

60 << '\n';

61 return Generator{handle_type::from_promise(*this)};

62 }

63

64 std::suspend_always yield_value(int value) {

65 std::cout << " promise_type::yield_value" << '\n\

66 ';

67 current_value = value;

68 return {};

69 }

70 void return_void() {}

71 void unhandled_exception() {

72 std::exit(1);

73 }

74

75 T current_value;

76 };

77

78 };

79

80 Generator<int> getNext(int start = 10, int step = 10) {

81 std::cout << " getNext: start" << '\n';

Case Studies 523

82 auto value = start;

83 while (true) {

84 std::cout << " getNext: before co_yield" << '\n';

85 co_yield value;

86 std::cout << " getNext: after co_yield" << '\n';

87 value += step;

88 }

89 }

90

91 int main() {

92

93 auto gen = getNext();

94 for (int i = 0; i <= 2; ++i) {

95 auto val = gen.getNextValue();

96 std::cout << "main: " << val << '\n';

97 }

98

99 }

Executing the program on the Compiler Explorer⁴ makes the control flow transpar-
ent.

⁴https://godbolt.org/z/cTW9Gq

https://godbolt.org/z/cTW9Gq
https://godbolt.org/z/cTW9Gq

Case Studies 524

Generator generating an infinite data stream

Let’s analyze the control flow.

The call getNext() (line 87) triggers the creation of the Generator<int>. First, the
promise_type (line 38) is created, and the following get_return_object call (line
54) creates the generator (line 56) and stores it in a local variable. The result of this
call is returned to the caller when the coroutine is suspended the first time. The
initial suspension happens immediately (line 48). Because the member function call
initial_suspend returns an Awaitable std::suspend_always (line 48), the control
flow continues with the coroutine getNext until the instruction co_yield value

(line 79). This call is mapped to the call yield_value(int value) (line 59) and the
current value is prepared current_value = value (line 61). The member function
yield_value(int value) returns the Awaitable std::suspend_always (line 59). Con-
sequently, the execution of the coroutine pauses, and the control flow goes back to the
main function, and the for loop starts (line 89). The call gen.getNextValue() (line 89)
starts the execution of the coroutine by resuming the coroutine, using coro.resume()
(line 34). Further, the function getNextValue() returns the current value that was

Case Studies 525

prepared using the previously invoked member function yield_value(int value)

(line 59). Finally, the generated number is displayed in line 90 and the for loop
continues. In the end, the generator and the promise are destructed.

After this detailed analysis, I want to make a first modification of the control flow.

7.3.1 Modifications

The snippets and line numbers are all based on the previous program infiniteDataStreamComments.cpp.
I only show the modifications.

7.3.1.1 The Coroutine is Not Resumed

When I disable the resumption of the coroutine (gen.getNextValue() in line 89) and
the display of its value (line 90), the coroutine immediately pauses.

Not resuming the coroutine

int main() {

auto gen = getNext();

for (int i = 0; i <= 2; ++i) {

// auto val = gen.getNextValue();

// std::cout << "main: " << val << '\n';

}

}

The coroutine never runs. Consequently, the generator and its promise are created
and destroyed.

Not resuming the coroutine

Case Studies 526

7.3.1.2 initial_suspend Never Suspends

In the program, the member function initial_suspend returns the Awaitable
std::suspend_always (line 46). As its name suggests, the Awaitable std::suspends_-
always causes the coroutine to pause immediately. Let me return std::suspend_-

never instead of std::suspend_always.

initial_suspend suspends never

std::suspend_never initial_suspend() {

std::cout << " promise_type::initial_suspend" << '\n';

return {};

}

In this case, the coroutine runs immediately and pauses when the function yield_-

value (line 59) is invoked. A subsequent call gen.getNextValue() (line 89) resumes
the coroutine and triggers the execution of the member function yield_value once
more. The result is that the start value 10 is ignored, and the coroutine returns the
values 20, 30, and 40.

Case Studies 527

Don’t Resuming the Coroutine

7.3.1.3 yield_value Never Suspends

The member function yield_value (line 59) is triggered by the call co_yield value

and prepares the current_value (line 61). The function returns the Awaitable
std::suspend_always (line 62) and, therefore, pauses the coroutine. Consequently,
a subsequent call gen.getNextValue (line 89) has to resume the coroutine. When I
change the return value of themember function yield_value to std::suspend_never,
let me see what happens.

Case Studies 528

yield_value never suspends

std::suspend_never yield_value(int value) {

std::cout << " promise_type::yield_value" << '\n';

current_value = value;

return {};

}

As you may guess, the while loop (lines 77 - 82) runs forever, and the coroutine does
not return anything.

yield_value Never Suspends

It is straightforward to restructure the generator infiniteDataStreamComments.cpp
so that it produces a finite number of values.

Case Studies 529

7.3.2 Generalization

You may wonder why I never used the full generic potential of Generator. Let
me adjust its implementation to produce the successive elements of an arbitrary
container of the Standard Template Library.

Generator successively returning each element

1 // coroutineGetElements.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6 #include <string>

7 #include <vector>

8

9 template<typename T>

10 struct Generator {

11

12 struct promise_type;

13 using handle_type = std::coroutine_handle<promise_type>;

14

15 Generator(handle_type h): coro(h) {}

16

17 handle_type coro;

18

19 ~Generator() {

20 if (coro) coro.destroy();

21 }

22 Generator(const Generator&) = delete;

23 Generator& operator = (const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

Case Studies 530

30 return *this;

31 }

32 T getNextValue() {

33 coro.resume();

34 return coro.promise().current_value;

35 }

36 struct promise_type {

37 promise_type() {}

38

39 ~promise_type() {}

40

41 std::suspend_always initial_suspend() {

42 return {};

43 }

44 std::suspend_always final_suspend() noexcept {

45 return {};

46 }

47 auto get_return_object() {

48 return Generator{handle_type::from_promise(*this)};

49 }

50

51 std::suspend_always yield_value(const T value) {

52 current_value = value;

53 return {};

54 }

55 void return_void() {}

56 void unhandled_exception() {

57 std::exit(1);

58 }

59

60 T current_value;

61 };

62

63 };

64

65 template <typename Cont>

Case Studies 531

66 Generator<typename Cont::value_type> getNext(Cont cont) {

67 for (auto c: cont) co_yield c;

68 }

69

70 int main() {

71

72 std::cout << '\n';

73

74 std::string helloWorld = "Hello world";

75 auto gen = getNext(helloWorld);

76 for (int i = 0; i < helloWorld.size(); ++i) {

77 std::cout << gen.getNextValue() << " ";

78 }

79

80 std::cout << "\n\n";

81

82 auto gen2 = getNext(helloWorld);

83 for (int i = 0; i < 5 ; ++i) {

84 std::cout << gen2.getNextValue() << " ";

85 }

86

87 std::cout << "\n\n";

88

89 std::vector myVec{1, 2, 3, 4 ,5};

90 auto gen3 = getNext(myVec);

91 for (int i = 0; i < myVec.size() ; ++i) {

92 std::cout << gen3.getNextValue() << " ";

93 }

94

95 std::cout << '\n';

96

97 }

In this example, the generator is instantiated and used three times. In the first two
cases, gen (line 76) and gen2 (line 83) are initialized with std::string helloWorld,

Case Studies 532

while gen3 uses a std::vector<int> (line 91). The output of the program should not
be surprising. Line 78 returns all characters of the string helloWorld successively, line
85 only the first five characters, and line 93 the elements of the std::vector<int>.

You can try out the program on the Compiler Explorer⁵.

A generator successively returning each element

To make it short. The implementation of the Generator<T> is almost identical to
the previous one. The crucial difference with the previous program is the coroutine
getNext.

getNext

template <typename Cont>

Generator<typename Cont::value_type> getNext(Cont cont) {

for (auto c: cont) co_yield c;

}

getNext is a function template that takes a container as an argument and iterates in
a range-based for loop through all elements of the container. After each iteration, the
function template pauses. The return type Generator<typename Cont::value_type>

may look surprising to you. Cont::value_type is a dependent template parameter,
for which the parser needs a hint. By default, the compiler assumes a non-type if it
could be interpreted as a type or a non-type. For this reason, I have to put typename
in front of Cont::value_type.

⁵https://godbolt.org/z/j9znva

https://godbolt.org/z/j9znva
https://godbolt.org/z/j9znva

Case Studies 533

7.4 Various Job Workflows

Cippi digs the garden

Before I modify the workflow from section co_await, I want to make the awaiter
workflow more transparent.

7.4.1 The Transparent Awaiter Workflow

I added a few output messages to the program startJob.cpp.

Starting a job on request (including comments)

1 // startJobWithComments.cpp

2

3 #include <coroutine>

4 #include <iostream>

5

6 struct MySuspendAlways {

7 bool await_ready() const noexcept {

8 std::cout << " MySuspendAlways::await_ready" << '\n';

Case Studies 534

9 return false;

10 }

11 void await_suspend(std::coroutine_handle<>) const noexcept {

12 std::cout << " MySuspendAlways::await_suspend" << '\n';

13

14 }

15 void await_resume() const noexcept {

16 std::cout << " MySuspendAlways::await_resume" << '\n';

17 }

18 };

19

20 struct MySuspendNever {

21 bool await_ready() const noexcept {

22 std::cout << " MySuspendNever::await_ready" << '\n';

23 return true;

24 }

25 void await_suspend(std::coroutine_handle<>) const noexcept {

26 std::cout << " MySuspendNever::await_suspend" << '\n';

27

28 }

29 void await_resume() const noexcept {

30 std::cout << " MySuspendNever::await_resume" << '\n';

31 }

32 };

33

34 struct Job {

35 struct promise_type;

36 using handle_type = std::coroutine_handle<promise_type>;

37 handle_type coro;

38 Job(handle_type h): coro(h){}

39 ~Job() {

40 if (coro) coro.destroy();

41 }

42 void start() {

43 coro.resume();

44 }

Case Studies 535

45

46

47 struct promise_type {

48 auto get_return_object() {

49 return Job{handle_type::from_promise(*this)};

50 }

51 MySuspendAlways initial_suspend() {

52 std::cout << " Job prepared" << '\n';

53 return {};

54 }

55 MySuspendAlways final_suspend() noexcept {

56 std::cout << " Job finished" << '\n';

57 return {};

58 }

59 void return_void() {}

60 void unhandled_exception() {}

61

62 };

63 };

64

65 Job prepareJob() {

66 co_await MySuspendNever();

67 }

68

69 int main() {

70

71 std::cout << "Before job" << '\n';

72

73 auto job = prepareJob();

74 job.start();

75

76 std::cout << "After job" << '\n';

77

78 }

Case Studies 536

First of all, I replaced the predefinedAwaitables std::suspend_always and std::suspend_-
never with Awaitables MySuspendAlways (line 6) and MySuspendNever (line 20). I use
them in lines 51, 55, and 66. The Awaitables mimic the behavior of the predefined
Awaitables but additionally write a comment. Due to the use of std::cout, the mem-
ber functions await_ready, await_suspend, and await_resume cannot be declared as
constexpr.

The screenshot of the program execution shows the control flow nicely, which you
can directly observe on the Compiler Explorer⁶.

Starting a job on request (including comments)

The function initial_suspend (line 51) is executed at the beginning of the coroutine
and the function final_suspend at its end (line 55). The call prepareJob() (line 73)
triggers the creation of the coroutine object, and the function call job.start() its
resumption and, hence, completion (line 74). Consequently, the members await_-

ready, await_suspend, and await_resume of MySuspendAlways are executed. When
you don’t resume the Awaitable such as the coroutine object returned by the member
function final_suspend, the function await_resume is not processed. In contrast,
the Awaitable’s MySuspendNever function is immediately ready because await_ready
returns true and, hence, does not suspend.

Thanks to the comments, you should have an elementary understanding of the
awaiter workflow. Now, it’s time to vary it.

⁶https://godbolt.org/z/T5rcE4

https://godbolt.org/z/T5rcE4
https://godbolt.org/z/T5rcE4

Case Studies 537

7.4.2 Automatically Resuming the Awaiter

In the previous workflow, I explicitly started the job.

Explicitly starting the job

int main() {

std::cout << "Before job" << '\n';

auto job = prepareJob();

job.start();

std::cout << "After job" << '\n';

}

This explicit invoking of job.start() was necessary because await_ready in the
Awaitable MySuspendAlways always returned false. Now let’s assume that await_-
ready can return true or false and the job is not explicitly started. A short reminder:
When await_ready returns true, the function await_resume is directly invoked but
not await_suspend.

Automatically Resuming the Awaiter

1 // startJobWithAutomaticResumption.cpp

2

3 #include <coroutine>

4 #include <functional>

5 #include <iostream>

6 #include <random>

7

8 std::random_device seed;

9 auto gen = std::bind_front(std::uniform_int_distribution<>(0,1),

10 std::default_random_engine(seed()));

11

12 struct MySuspendAlways {

Case Studies 538

13 bool await_ready() const noexcept {

14 std::cout << " MySuspendAlways::await_ready" << '\n';

15 return gen();

16 }

17 bool await_suspend(std::coroutine_handle<> handle) const noexcept {

18 std::cout << " MySuspendAlways::await_suspend" << '\n';

19 handle.resume();

20 return true;

21

22 }

23 void await_resume() const noexcept {

24 std::cout << " MySuspendAlways::await_resume" << '\n';

25 }

26 };

27

28 struct Job {

29 struct promise_type;

30 using handle_type = std::coroutine_handle<promise_type>;

31 handle_type coro;

32 Job(handle_type h): coro(h){}

33 ~Job() {

34 if (coro) coro.destroy();

35 }

36

37 struct promise_type {

38 auto get_return_object() {

39 return Job{handle_type::from_promise(*this)};

40 }

41 MySuspendAlways initial_suspend() {

42 std::cout << " Job prepared" << '\n';

43 return {};

44 }

45 std::suspend_always final_suspend() noexcept {

46 std::cout << " Job finished" << '\n';

47 return {};

48 }

Case Studies 539

49 void return_void() {}

50 void unhandled_exception() {}

51

52 };

53 };

54

55 Job performJob() {

56 co_await std::suspend_never();

57 }

58

59 int main() {

60

61 std::cout << "Before jobs" << '\n';

62

63 performJob();

64 performJob();

65 performJob();

66 performJob();

67

68 std::cout << "After jobs" << '\n';

69

70 }

First of all, the coroutine is now called performJob and runs automatically. gen (line
9) is a random number generator for the numbers 0 or 1. It uses for its job the default
random engine, initialized with the seed. Thanks to std::bind_front, I can bind it
together with the std::uniform_int_distribution to get a callable which, when
used, gives me a random number 0 or 1.

I removed in this example the Awaitables with predefined Awaitables from the
C++ standard, except the Awaitable MySuspendAlways as the return type of the
member function initial_suspend (line 41). await_ready (line 13) returns a boolean.
When the boolean is true, the control flow jumps directly to the member function
await_resume (line 23), when false, the coroutine is immediately suspended and,
therefore, the function await_suspend runs (line 17). The function await_suspend

gets the handle to the coroutine and uses it to resume the coroutine (line 19). Instead

Case Studies 540

of returning the value true, await_suspend can also return void.

The following screenshot shows: When await_ready returns true, the function
await_resume is called, when await_ready returns false, the function await_-

suspend is also called.

You can try out the program on the Compiler Explorer⁷.

Automatically Resuming the Awaiter

Let me improve the presented program more and resume the awaiter on a separate
thread.

7.4.3 Automatically Resuming the Awaiter on a
Separate Thread

The following program is based on the previous one.

⁷https://godbolt.org/z/8b1Y14

https://godbolt.org/z/8b1Y14
https://godbolt.org/z/8b1Y14

Case Studies 541

Automatically Resuming the Awaiter on a Seperate Thread
1 // startJobWithAutomaticResumptionOnThread.cpp

2

3 #include <coroutine>

4 #include <functional>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <vector>

9

10 std::random_device seed;

11 auto gen = std::bind_front(std::uniform_int_distribution<>(0,1),

12 std::default_random_engine(seed()));

13

14 struct MyAwaitable {

15 std::jthread& outerThread;

16 bool await_ready() const noexcept {

17 auto res = gen();

18 if (res) std::cout << " (executed)" << '\n';

19 else std::cout << " (suspended)" << '\n';

20 return res;

21 }

22 void await_suspend(std::coroutine_handle<> h) {

23 outerThread = std::jthread([h] { h.resume(); });

24 }

25 void await_resume() {}

26 };

27

28

29 struct Job{

30 static inline int JobCounter{1};

31 Job() {

32 ++JobCounter;

33 }

34

35 struct promise_type {

Case Studies 542

36 int JobNumber{JobCounter};

37 Job get_return_object() { return {}; }

38 std::suspend_never initial_suspend() {

39 std::cout << " Job " << JobNumber << " prepared on threa\

40 d "

41 << std::this_thread::get_id();

42 return {};

43 }

44 std::suspend_never final_suspend() noexcept {

45 std::cout << " Job " << JobNumber << " finished on threa\

46 d "

47 << std::this_thread::get_id() << '\n';

48 return {};

49 }

50 void return_void() {}

51 void unhandled_exception() { }

52 };

53 };

54

55 Job performJob(std::jthread& out) {

56 co_await MyAwaitable{out};

57 }

58

59 int main() {

60

61 std::vector<std::jthread> threads(8);

62 for (auto& thr: threads) performJob(thr);

63

64 }

The main difference with the previous program is the new awaitable MyAwaitable,
used in the coroutine performJob (line 54). On the contrary, the coroutine object
returned from the coroutine performJob is straightforward. Essentially, its mem-
ber functions initial_suspend (line 38) and final_suspend (line 43) return the
predefined awaitable std::suspend_never. Additionally, both functions show the

Case Studies 543

JobNumber of the executed job and the thread ID on which it runs. The screenshot
shows which coroutine runs immediately and which one is suspended. Thanks to
the thread id, you can observe that suspended coroutines are resumed on a different
thread.

You can try out the program on the Wandbox⁸.

Automatically Resuming the Awaiter on a Separate Thread

Let me discuss the interesting control flow of the program. Line 59 creates eight
default-constructed threads, which the coroutine performJob (line 53) takes by refer-
ence. Further, the reference becomes the argument for creating MyAwaitable{out}

(line 54). Depending on the value of res (line 17), and, therefore, the return
value of the function await_ready, the Awaitable continues (res is true) to run
or is suspended (res is false). In case MyAwaitable is suspended, the function
await_suspend (line 22) is executed. Thanks to the assignment of outerThread (line
23), it becomes a running thread. The running threads must outlive the lifetime of
the coroutine. For this reason, the threads have the scope of the main function.

⁸https://wandbox.org/permlink/skHgWKF0SYAwp8Dm

https://wandbox.org/permlink/skHgWKF0SYAwp8Dm
https://wandbox.org/permlink/skHgWKF0SYAwp8Dm

Case Studies 544

Distilled Information

• When you want to synchronize threads more than once, you have
many options. You can use condition variables, std::atomic_flag,
std::atomic<bool>, or semaphores. This case study answers the
question: Which variant is the fastest one? The numbers show that
condition variables are the slowest way, and atomic flags the fastest
way to synchronize threads. The performance of std::atomic<bool>
is in between. Semaphores are nearly as fast as atomic flags.

• The section coroutines introduced an eager future, using co_return.
This future is an ideal starting point to make it lazy and finally, let it
run on its own thread.

• Modifications of the generator for an infinite data stream reveals
its nature. When the member function initial_suspend returns
std::suspend_never, the coroutine starts immediately and ignores
the first value. In contrast, returning std::suspend_never from the
function yield_value ends in an infinite loop. When you forget to
resume the coroutine, it will never run.

• The generator Generator<T> is generally applicable. Instead of an
infinite data stream, it can successively return the elements of an
arbitrary container of the Standard Template Library.

• Implementing your own Awaitable MySuspendNever and
MySuspendAlwaysmakes the awaiter workflow transparent. Adapting
the Awaitable MySuspendAlways enables it to create an Awaiter that
resumes itself if necessary.

• Modification of the Awaitable empowers you to automatically re-
sume the coroutine on a separate thread.

Epilogue

Congratulations! When you read these lines, you have mastered the challenging and
thrilling C++20 standard. C++20 is a C++ standard that likely has the same influence
for C++, such as the other two significant C++ standards: C++98 and C++11. Due to
C++11, the following names for the C++ standards are used by the C++ community.

• Legacy C++: C++98, and C++03
• Modern C++ : C++11, C++14, and C++17
• <Placeholder>: C++20

I’m not sure what name will be used for C++20 in the future. I’m only sure that
C++20 starts a new C++ area. Let me remind you why, in particular, the Big Four
change the way we program in C++.

• Concepts: Concepts revolutionize the way we think about and write generic
code. Thanks to them, we can reason about our program for the first time in
semantic categories such as Number or Ordering.

• Modules: Modules are the starting point of software components. Modules help
overcome the deficiencies of legacy headers and macros.

• Ranges: The ranges library extends the Standard Template Library with func-
tional ideas. Algorithms can operate directly on the containers, can be evaluated
lazily, and can be composed.

• Coroutines: Thanks to coroutines, asynchronous programming becomes a first-
class citizen in C++. Coroutines transform blocking function calls in waiting
and are highly valuable in event-driven systems such as simulations, servers,
or user interfaces.

546

C++20 is just the starting point. There is work to be done in C++23 to fully integrate
and use the potential of the Big Four in C++. Let me give you a few ideas about the
near C++ future.

• The Standard Template Library was designed by Alexander Stephanov⁹ with
concepts in mind. Still, the integration of concepts is missing in C++20.

• We can expect a modularized Standard Template Library and hope for a
packaging system in C++.

• Many algorithms known from functional programming are still missing in the
ranges library. A future C++ standard should improve the interplay of the range
algorithms and the standard containers.

• We don’t have coroutines. We only have a framework for building powerful
coroutines. A coroutines library will be, with high probability, in C++23.

In the chapter about C++23 and Beyond, I give more details on the near future of
C++.

To make it short: C++ has a bright, shiny future.

⁹https://en.wikipedia.org/wiki/Alexander_Stepanov

https://en.wikipedia.org/wiki/Alexander_Stepanov
https://en.wikipedia.org/wiki/Alexander_Stepanov

Further Information

8. C++23 and Beyond
Whoever might think that a significant C++ standard is followed by a small C++
standard is wrong. C++23 will provide just as powerful extensions as C++20 does.
Ville Voutilainen’s proposal P0592R4¹ “To boldly suggest an overall plan for C++23”
gives a first idea of the upcoming C++23 standard. Ville names seven features.

• C++23
– Library support for coroutines
– A modular standard library
– Executors
– Networking

• C++23 or later
– Reflection
– Pattern Matching
– Contracts

The first four features are aimed for C++23, and the remaining three have no specific
schedule. It is likely that reflection, pattern matching, and contracts are successively
added to the C++ standards.

“Prediction is very difficult, especially if it’s about the future.” (Niels Bohr²). Conse-
quently, you should read this chapter as my best attempt to predict the C++ future.

¹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html
²https://www.goodreads.com/quotes/23796-prediction-is-very-difficult-especially-about-the-future

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html
https://www.goodreads.com/quotes/23796-prediction-is-very-difficult-especially-about-the-future
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html
https://www.goodreads.com/quotes/23796-prediction-is-very-difficult-especially-about-the-future

C++23 and Beyond 549

8.1 C++23

The coroutines library, the modularized standard library, and the executors have
something in common: they are supposed to be part of C++23.

8.1.1 The Coroutines Library

Coroutines in C++20 are no more than a framework for the implementation of
concrete coroutines. This means that it is up to the software developer to implement
coroutines. The cppcoro³ library from Lewis Baker gives the first idea how a library
of coroutines could look like. His library provides what C++20 could not offer: high-
level coroutines.

³https://github.com/lewissbaker/cppcoro

https://github.com/lewissbaker/cppcoro
https://github.com/lewissbaker/cppcoro

C++23 and Beyond 550

Using cppcoro
The cppcoro library is based on the coroutines TS. The TS stands for
technical specification and is the preliminary version of the coroutines
functionality we get with C++20. Lewis will presumably port the cppcoro
library from the coroutines TS to the coroutines defined in C++20. The
library can be used on Windows (Visual Studio 2017) or Linux (Clang
5.0/6.0 and libc++). For my experiments, I used the following command
line for all examples:

cppcoro command line

clang++ -std=c++17 -fcoroutines-ts -Iinclude -stdlib=libc++ libcppcoro.\

a

cppcoroTask.cpp -pthread

• -std=c++17: support for C++17
• -fcoroutines-ts : support for the C++ coroutines TS
• -Iinclude : cppcoro headers
• -stdlib=libc++: LLVM⁴ implementation of the standard library
• libcppcoro.a: cppcoro library

As I already mentioned, when cppcoro is based on C++20 coroutines, you
can use them with each compiler that supports C++20. Additionally, they
give you a flavor for the concrete coroutines we may get with C++23.

In the rest of this section to the coroutines library, I want to demonstrate a
few examples that show the power of coroutines. My demonstration starts
with the coroutine types.

8.1.1.1 Coroutine Types

cppcoro has various kinds of tasks and generators.

8.1.1.1.1 task<T>

What is a task? This is the definition used in cppcoro:

⁴https://en.wikipedia.org/wiki/LLVM

https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/LLVM

C++23 and Beyond 551

• A task represents an asynchronous computation that is executed lazily in that
the execution of the coroutine does not start until the task is awaited.

A task is a coroutine. In the following program, the function main waits for the
function first, first waits for second, and second waits for third.

Coroutines first sleeping

1 // cppcoroTask.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <string>

6 #include <thread>

7

8 #include <cppcoro/sync_wait.hpp>

9 #include <cppcoro/task.hpp>

10

11 using std::chrono::high_resolution_clock;

12 using std::chrono::time_point;

13 using std::chrono::duration;

14

15 using namespace std::chrono_literals;

16

17 auto getTimeSince(const time_point<high_resolution_clock>& start) {

18

19 auto end = high_resolution_clock::now();

20 duration<double> elapsed = end - start;

21 return elapsed.count();

22

23 }

24

25 cppcoro::task<> third(const time_point<high_resolution_clock>& start) {

26

27 std::this_thread::sleep_for(1s);

28 std::cout << "Third waited " << getTimeSince(start) << " seconds." \

29 << '\n';

C++23 and Beyond 552

30

31 co_return;

32

33 }

34

35 cppcoro::task<> second(const time_point<high_resolution_clock>& start) {

36

37 auto thi = third(start);

38 std::this_thread::sleep_for(1s);

39 co_await thi;

40

41 std::cout << "Second waited " << getTimeSince(start) << " seconds.\

42 " << '\n';

43

44 }

45

46 cppcoro::task<> first(const time_point<high_resolution_clock>& start) {

47

48 auto sec = second(start);

49 std::this_thread::sleep_for(1s);

50 co_await sec;

51

52 std::cout << "First waited " << getTimeSince(start) << " seconds.\

53 " << '\n';

54

55 }

56

57 int main() {

58

59 std::cout << '\n';

60

61 auto start = high_resolution_clock::now();

62 cppcoro::sync_wait(first(start));

63

64 std::cout << "Main waited " << getTimeSince(start) << " seconds." \

65 << '\n';

C++23 and Beyond 553

66

67 std::cout << '\n';

68

69 }

Admittedly, the program doesn’t do anything meaningful, but it helps to understand
the workflow of coroutines.

First of all, the main function can’t be a coroutine. cppcoro::sync_wait (line 59) often
serves, such as in this case, as a starting top-level task and waits until the task is
finished. The coroutine first, similar to the other coroutines, gets as an argument
the start time and displays its execution time. What does the coroutine first do? It
starts the coroutine second (line 36 and 46), which is immediately paused, sleeps for a
second, and resumes the coroutine via its handle sec (line 38 and 48). The coroutine
second performs the same workflow, but not the coroutine third. As for third it
is a coroutine that returns nothing and does not wait on another coroutine. When
third is done, all other coroutines are executed. Consequently, each coroutine takes
3 seconds.

Coroutines first sleeping

Let’s vary the program a little. What happens if the coroutines sleep after the co_-

await call?

C++23 and Beyond 554

Coroutines first waiting
1 // cppcoroTask2.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <string>

6 #include <thread>

7

8 #include <cppcoro/sync_wait.hpp>

9 #include <cppcoro/task.hpp>

10

11 using std::chrono::high_resolution_clock;

12 using std::chrono::time_point;

13 using std::chrono::duration;

14

15 using namespace std::chrono_literals;

16

17 auto getTimeSince(const time_point<::high_resolution_clock>& start) {

18

19 auto end = high_resolution_clock::now();

20 duration<double> elapsed = end - start;

21 return elapsed.count();

22

23 }

24

25 cppcoro::task<> third(const time_point<high_resolution_clock>& start) {

26

27 std::cout << "Third waited " << getTimeSince(start) << " seconds." \

28 << '\n';

29 std::this_thread::sleep_for(1s);

30 co_return;

31

32 }

33

34 cppcoro::task<> second(const time_point<high_resolution_clock>& start) {

35

C++23 and Beyond 555

36 auto thi = third(start);

37 co_await thi;

38

39 std::cout << "Second waited " << getTimeSince(start) << " seconds.\

40 " << '\n';

41 std::this_thread::sleep_for(1s);

42

43 }

44

45 cppcoro::task<> first(const time_point<high_resolution_clock>& start) {

46

47 auto sec = second(start);

48 co_await sec;

49

50 std::cout << "First waited " << getTimeSince(start) << " seconds.\

51 " << '\n';

52 std::this_thread::sleep_for(1s);

53

54 }

55

56 int main() {

57

58 std::cout << '\n';

59

60 auto start = ::high_resolution_clock::now();

61

62 cppcoro::sync_wait(first(start));

63

64 std::cout << "Main waited " << getTimeSince(start) << " seconds." \

65 << '\n';

66

67 std::cout << '\n';

68

69 }

C++23 and Beyond 556

You may have guessed it. The main function waits 3 seconds, but each iteratively-
invoked coroutine one second less.

!Coroutines first waiting](images/Cpp23/cppcoroTask2.png)

The next coroutine that cppcoro provides is a generator<T>.

8.1.1.1.2 generator<T>

Here is cppcoro’s definition of a generator:

• A generator represents a coroutine type that produces a sequence of values of
type T, where values are produced lazily and synchronously.

Without further ado, the program cppcoroGenerator.cpp demonstrates two genera-
tors in action.

Use of two generators

1 // cppcoroGenerator.cpp

2

3 #include <iostream>

4 #include <cppcoro/generator.hpp>

5

6 cppcoro::generator<char> hello() {

7 co_yield 'h';

8 co_yield 'e';

9 co_yield 'l';

10 co_yield 'l';

11 co_yield 'o';

12 }

13

14 cppcoro::generator<const long long> fibonacci() {

15 long long a = 0;

16 long long b = 1;

17 while (true) {

18 co_yield b;

19 auto tmp = a;

C++23 and Beyond 557

20 a = b;

21 b += tmp;

22 }

23 }

24

25 int main() {

26

27 std::cout << '\n';

28

29 for (auto c: hello()) std::cout << c;

30

31 std::cout << "\n\n";

32

33 for (auto i: fibonacci()) {

34 if (i > 1'000'000) break;

35 std::cout << i << " ";

36 }

37

38 std::cout << "\n\n";

39

40 }

The first coroutine hello returns on request the next character and the coroutine
fibonacci the next fibonacci number. fibonacci creates an infinite data stream.
What happens in line 33? The range-based for loop triggers the execution of the
coroutine. The first iteration starts the coroutines, returns the value at co_yield
b (line 18), and pauses. Subsequent calls of the range-based for loop resume the
coroutine fibonacci and return the next fibonacci number.

Executing two generators

C++23 and Beyond 558

cppcoro provides more awaitable types.

8.1.1.2 Awaitable Types

cppcoro supports various awaitable types:

• single_consumer_event

• single_consumer_async_auto_reset_event

• async_mutex

• async_manual_reset_event

• async_auto_reset_event

• async_latch

• sequence_barrier

• multi_producer_sequencer

• single_producer_sequencer

I want to have a closer look at the awaitables single_consumer_event and async_-

mutex.

8.1.1.2.1 single_consumer_event

The single_consumer_event is, according to the documentation, a simple manual-
reset event type that supports only a single coroutine awaiting it at a time. single_-
consumer_event provides a new way for the one-time synchronization of threads.

One-time thread synchronization with cppcoro

1 // cppcoroProducerConsumer.cpp

2

3 #include <cppcoro/single_consumer_event.hpp>

4 #include <cppcoro/sync_wait.hpp>

5 #include <cppcoro/task.hpp>

6

7 #include <future>

8 #include <iostream>

9 #include <string>

C++23 and Beyond 559

10 #include <thread>

11 #include <chrono>

12

13 cppcoro::single_consumer_event event;

14

15 cppcoro::task<> consumer() {

16

17 auto start = std::chrono::high_resolution_clock::now();

18

19 co_await event; // suspended until some thread calls event.set()

20

21 auto end = std::chrono::high_resolution_clock::now();

22 std::chrono::duration<double> elapsed = end - start;

23 std::cout << "Consumer waited " << elapsed.count() << " seconds." <\

24 < '\n';

25

26 co_return;

27 }

28

29 void producer() {

30

31 using namespace std::chrono_literals;

32 std::this_thread::sleep_for(2s);

33

34 event.set(); // resumes the consumer

35

36 }

37

38 int main() {

39

40 std::cout << '\n';

41

42 auto con = std::async([]{ cppcoro::sync_wait(consumer()); });

43 auto prod = std::async(producer);

44

45 con.get(), prod.get();

C++23 and Beyond 560

46

47 std::cout << '\n';

48

49 }

The code should be self-explanatory. The consumer (line 41) and the producer (line
42) run in their thread. The call cppcoro::sync_wait(consumer()) (line 41) serves as
a top-level task because the main function cannot be a coroutine. The call waits until
the coroutine consumer is done. The coroutine consumer waits in the call co_await
event (line 19) until someone calls event.set() (line 33). The function producer

sends its event after a sleep of two seconds.

One-time thread synchronization with cppcoro

cppcoro also supports a mutex⁵.

8.1.1.2.2 async_mutex

A mutex such as cppcoro::async_mutex is a synchronization mechanism to protect
shared data from being accessed by multiple threads simultaneously.

⁵https://en.cppreference.com/w/cpp/named_req/Mutex

https://en.cppreference.com/w/cpp/named_req/Mutex
https://en.cppreference.com/w/cpp/named_req/Mutex

C++23 and Beyond 561

Mutual exclusion with cppcoro
1 // cppcoroMutex.cpp

2

3 #include <cppcoro/async_mutex.hpp>

4 #include <cppcoro/sync_wait.hpp>

5 #include <cppcoro/task.hpp>

6

7 #include <iostream>

8 #include <thread>

9 #include <vector>

10

11

12 cppcoro::async_mutex mutex;

13

14 int sum{}; \

15

16

17 cppcoro::task<> addToSum(int num) {

18 cppcoro::async_mutex_lock lockSum = co_await mutex.scoped_lock_asyn\

19 c();

20 sum += num;

21

22 } \

23

24

25 int main() {

26

27 std::cout << '\n';

28

29 std::vector<std::thread> vec(10); \

30

31

32 for(auto& thr: vec) {

33 thr = std::thread([]{

34 for(int n = 0; n < 10; ++n) cppcoro::sync_wait(addToSum(n))\

35 ; });

C++23 and Beyond 562

36 }

37

38 for(auto& thr: vec) thr.join();

39

40 std::cout << "sum: " << sum << '\n';

41

42 std::cout << '\n';

43

44 }

Line 26 creates ten threads. Each thread adds the numbers 0 to 9 to the shared sum

variable (line 14). The function addToSum is the coroutine. The coroutine waits in
the expression co_await mutex.scoped_lock_async() (line 17) until the mutex is
acquired. The coroutine that waits for the mutex is not blocked but suspended. The
previous lock holder resumes the waiting coroutine in its unlock call. As the name
suggests, the mutex stays locked until the end of its scope (line 20).

Mutual exclusion with cppcoro

8.1.1.3 Functions

There are more interesting functions to handle awaitables.

• sync_wait()

• when_all()

• when_all_ready()

• fmap()

• schedule_on()

C++23 and Beyond 563

• resume_on()

The function when_all creates an awaitable that waits for all its input-awaitables,
and returns an aggregate of their individual results.

The following example should give you the first impression:

Waiting for all awaitables with when_all

1 // cppcoroWhenAll.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 #include <cppcoro/sync_wait.hpp>

8 #include <cppcoro/task.hpp>

9 #include <cppcoro/when_all.hpp>

10

11 using namespace std::chrono_literals;

12

13 cppcoro::task<std::string> getFirst() {

14 std::this_thread::sleep_for(1s);

15 co_return "First";

16 }

17

18 cppcoro::task<std::string> getSecond() {

19 std::this_thread::sleep_for(1s);

20 co_return "Second";

21 }

22

23 cppcoro::task<std::string> getThird() {

24 std::this_thread::sleep_for(1s);

25 co_return "Third";

26 }

27

28

C++23 and Beyond 564

29 cppcoro::task<> runAll() {

30

31 auto[fir, sec, thi] = co_await cppcoro::when_all(getFirst(), getSec\

32 ond(),

33 getThird());

34

35 std::cout << fir << " " << sec << " " << thi << '\n';

36

37 }

38

39 int main() {

40

41 std::cout << '\n';

42

43 auto start = std::chrono::steady_clock::now();

44

45 cppcoro::sync_wait(runAll());

46

47 std::cout << '\n';

48

49 auto end = std::chrono::high_resolution_clock::now();

50 std::chrono::duration<double> elapsed = end - start;

51 std::cout << "Execution time " << elapsed.count() << " seconds." <<\

52 '\n';

53

54 std::cout << '\n';

55

56 }

The top-level task cppcoro::sync_wait(runAll()) (line 44) awaits the awaitable
runAll, which awaits the awaitables getFirst, getSecond, and getThird (line 31).
The awaitables runAll, getFirst, getSecond, and getThird are coroutines. Each of
the get functions sleeps for one second (line 14, 19, and 24). Three times one second
makes three seconds. This is the time the call cppcoro::sync_wait(runAll()) waits
for the coroutines. Line 49 displays the time duration.

C++23 and Beyond 565

Waiting for all awaitables with when_all

You can combine when_all with thread pools in cppcoro.

8.1.1.4 static_thread_pool

static_thead_pool schedules work on a fixed-size pool of threads.

cppcoro::static_thread_pool can be invoked with and without a number. The
number stands for the number of threads that are created. If you don’t spec-
ify a number, the C++11 function std::thread::hardware_concurrency() is used.
std::thread::hardware_concurrency⁶ gives you a hint for the number of hardware
threads supported by your system. This may be the number of processors or cores
you have.

Letme try it out. The following example is based on the previous one cppcoroWhenAll.cpp
using the awaitable when_any. This time, the coroutines are executed concurrently.

⁶https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency

https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency

C++23 and Beyond 566

Waiting for concurrently running awaitables with when_all

1 // cppcoroWhenAllOnThreadPool.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 #include <cppcoro/sync_wait.hpp>

8 #include <cppcoro/task.hpp>

9 #include <cppcoro/static_thread_pool.hpp>

10 #include <cppcoro/when_all.hpp>

11

12

13 using namespace std::chrono_literals;

14

15 cppcoro::task<std::string> getFirst() {

16 std::this_thread::sleep_for(1s);

17 co_return "First";

18 }

19

20 cppcoro::task<std::string> getSecond() {

21 std::this_thread::sleep_for(1s);

22 co_return "Second";

23 }

24

25 cppcoro::task<std::string> getThird() {

26 std::this_thread::sleep_for(1s);

27 co_return "Third";

28 }

29

30 template <typename Func>

31 cppcoro::task<std::string> runOnThreadPool(cppcoro::static_thread_pool&\

32 tp,

33 Func func) {

34 co_await tp.schedule();

35 auto res = co_await func();

C++23 and Beyond 567

36 co_return res;

37 }

38

39 cppcoro::task<> runAll(cppcoro::static_thread_pool& tp) {

40

41 auto[fir, sec, thi] = co_await cppcoro::when_all(

42 runOnThreadPool(tp, getFirst),

43 runOnThreadPool(tp, getSecond),

44 runOnThreadPool(tp, getThird));

45

46 std::cout << fir << " " << sec << " " << thi << '\n';

47

48 }

49

50 int main() {

51

52 std::cout << '\n';

53

54 auto start = std::chrono::steady_clock::now();

55

56 cppcoro::static_thread_pool tp;

57 cppcoro::sync_wait(runAll(tp));

58

59 std::cout << '\n';

60

61 auto end = std::chrono::high_resolution_clock::now();

62 std::chrono::duration<double> elapsed = end - start;

63 std::cout << "Execution time " << elapsed.count() << " seconds." <<\

64 '\n';

65

66 std::cout << '\n';

67

68 }

This is the crucial difference with the previous program cppcoroWhenAll.cpp. At

C++23 and Beyond 568

line 55, I create a thread pool tp and use it as an argument for the function
runAll(tp) (line 56). The function runAll uses the thread pool to start the coroutines
concurrently. Thanks to structured binding (line 40), the values of each coroutine can
be easily aggregated and assigned to a variable. In the end, the main function takes
one instead of three seconds.

Waiting for all awaitables with when_all

C++23 and Beyond 569

8.1.2 Modularized Standard Library for Modules

Maybe you’d like to stop using Standard Library headers? Microsoft supports
modules for all STL headers according to the C++ proposal P0541⁷. Microsoft’s
implementation gives you the first idea of how a modularized standard library for
modules could look like. Here is what I have found in the post Using C++ Modules
in Visual Studio 2017⁸ from the Microsoft C++ team blog.

8.1.2.1 C++ modules in Visual Studio 2017

• std.regex provides the content of the header <regex>
• std.filesystem provides the content of the header <experimental/filesystem>
• std.memory provides the content of the header <memory>
• std.threading provides the contents of headers <atomic>, <condition_variable>,
<future>, <mutex>, <shared_mutex>, and <thread>

• std.core provides everything else in the C++ Standard Library

To use the Microsoft Standard Library modules, you have to specify the exception
handling model (/EHsc) and the multithreading library (/MD). Additionally, you have
to use the flags /std:c++latest and /experimental:module.

In the section on modules, I used the following module definition.

A module definition with a global module fragment

1 // math1.ixx

2

3 module;

4

5 #include <numeric>

6 #include <vector>

7

8 export module math;

9

10 export int add(int fir, int sec){

⁷http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0581r0.pdf
⁸https://devblogs.microsoft.com/cppblog/cpp-modules-in-visual-studio-2017/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0581r0.pdf
https://devblogs.microsoft.com/cppblog/cpp-modules-in-visual-studio-2017/
https://devblogs.microsoft.com/cppblog/cpp-modules-in-visual-studio-2017/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0581r0.pdf
https://devblogs.microsoft.com/cppblog/cpp-modules-in-visual-studio-2017/

C++23 and Beyond 570

11 return fir + sec;

12 }

13

14 export int getProduct(const std::vector<int>& vec) {

15 return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<i\

16 nt>());

17 }

This module definition can directly be refactored using the modularized standard
library. You have to replace the headers <numeric> and <vector> with the module
std.core.

Importing the module std.core into the interface file

// math2.ixx

module;

export module math;

import std.core;

export int add(int fir, int sec){

return fir + sec;

}

export int getProduct(const std::vector<int>& vec) {

return std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<i\

nt>());

}

Furthermore, you must use the module std.core instead of the standard header files:

C++23 and Beyond 571

Importing the module std.core into the client program

// client2.cpp

import math;

import std.core;

int main() {

std::cout << '\n';

std::cout << "add(2000, 20): " << add(2000, 20) << '\n';

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::cout << "getProduct(myVec): " << getProduct(myVec) << '\n';

std::cout << '\n';

}

The program produces the expected output:

Using the module std.core on Windows

C++23 and Beyond 572

8.1.3 Executors

Executors have quite a history in C++. The discussion began at early as 2010. For
the details, Detlef Vollmann gives in his presentation Finally Executors for C++⁹ an
excellent overview.

My introduction to executors is mainly based on the proposals for the design of
executors P0761¹⁰, and their formal description P0443¹¹. I also refer to the relatively
new Modest Executor Proposal P1055¹².

First of all. What are Executors?

Executors are the basic building blocks for execution in C++ and fulfill a similar
role for execution, such as allocators for the containers in C++. Many proposals for
executors are published, and many design decisions are still open. They should be
part of C++23, but can probably be used much earlier to extend the C++ standard.

An executor consists of rules about where, when, and how to run a callable.

• Where: The callable may run on an internal or external processor, and that the
result is read back from the internal or external processor.

• When: The callable may run immediately or just be scheduled.
• How: The callable may run on a CPU or GPU or even be executed in a
vectorized way.

The concurrency and parallelism features of C++ heavily depend on executors
as building blocks for execution. This dependency holds for existing concurrency
features, such as the parallel algorithms of the Standard Template Library¹³, but also
for new concurrency features, such as latches and barriers, coroutines, the network
library, extended futures¹⁴, transactional memory¹⁵, or task blocks¹⁶.

⁹http://www.vollmann.ch/en/presentations/executors2018.pdf
¹⁰http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
¹¹http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0443r7.html
¹²http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
¹³https://www.modernescpp.com/index.php/parallel-algorithm-of-the-standard-template-library
¹⁴https://www.modernescpp.com/index.php/std-future-extensions
¹⁵https://www.modernescpp.com/index.php/transactional-memory
¹⁶https://www.modernescpp.com/index.php/task-blocks

http://www.vollmann.ch/en/presentations/executors2018.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0443r7.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
https://www.modernescpp.com/index.php/parallel-algorithm-of-the-standard-template-library
https://www.modernescpp.com/index.php/std-future-extensions
https://www.modernescpp.com/index.php/transactional-memory
https://www.modernescpp.com/index.php/task-blocks
http://www.vollmann.ch/en/presentations/executors2018.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0443r7.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
https://www.modernescpp.com/index.php/parallel-algorithm-of-the-standard-template-library
https://www.modernescpp.com/index.php/std-future-extensions
https://www.modernescpp.com/index.php/transactional-memory
https://www.modernescpp.com/index.php/task-blocks

C++23 and Beyond 573

8.1.3.1 First Examples

The following code snippets should give you a first impression of executors.

8.1.3.1.1 Using an Executor

• The promise std::async

std::async uses an executor

// get an executor through some means

my_executor_type my_executor = ...

// launch an async using my executor

auto future = std::async(my_executor, [] {

std::cout << "Hello world, from a new execution agent!" < '\n';

});

• The STL algorithm std::for_each

std::for_each uses an executor

// get an executor through some means

my_executor_type my_executor = ...

// execute a parallel for_each "on" my executor

std::for_each(std::execution::par.on(my_executor),

data.begin(), data.end(), func);

8.1.3.1.2 Obtaining an Executor

There are various ways to obtain an executor.

• From the execution context static_thread_pool

C++23 and Beyond 574

An exector from the static_thread_pool

// create a thread pool with 4 threads

static_thread_pool pool(4);

// get an executor from the thread pool

auto exec = pool.executor();

// use the executor on some long-running task

auto task1 = long_running_task(exec);

• From the system executor

The system executor is the default executor used if not specified otherwise.

• From an executor adapter

Adapting an executor

// get an executor from a thread pool

auto exec = pool.executor();

// wrap the thread pool's executor in a logging_executor

logging_executor<decltype(exec)> logging_exec(exec);

// use the logging executor in a parallel sort

std::sort(std::execution::par.on(logging_exec), my_data.begin(), my_dat\

a.end());

logging_executor is a wrapper for the pool executor.

C++23 and Beyond 575

8.1.3.2 Goals of an Executor Concept

What are the goals of an executor concept according to proposal P1055¹⁷?

• Batchable: control the trade-off between the cost of the transition of the callable
and its size.

• Heterogenous: allow the callable to run on heterogeneous contexts and get the
result back.

• Orderable: specify the order in which the callables are invoked. The goal
includes ordering guarantees such as LIFO (Last In, First Out), FIFO (First In,
First Out) execution, priority or time constraints, or even sequential execution.

• Controllable: the callable has to be targetable to a specific compute resource,
deferred, or even canceled.

• Continuable: for non-blocking submission of work units, signals from the work
units are needed. These signals have to indicate, whether the result is available,
whether an error occurred, when the callable is done or if the callee wants to
cancel the callable. The explicit starting of the callable or the stopping of the
staring should also be possible.

• Layerable: hierarchies allow new capabilities to be added without increasing
the complexity of the simpler use-cases.

• Usable: ease of use for the implementer and the user should be the main goal.
• Composable: allows a user to extend the executors for features that are not part
of the standard.

• Minimal: nothing should exist on the executor concepts that could be added
externally in a library on top of the concept.

8.1.3.3 Execution Function

An executor provides one or more execution functions for creating execution agents
from a callable. An executor has to support at least one of the six following functions.

¹⁷http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf

http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf

C++23 and Beyond 576

Exuction functions of a executor

Member function Cardinality Direction

execute single oneway

twoway_execute single twoway

then_execute single then

bulk_execute bulk oneway

bulk_twoway_execute bulk twoway

bulk_then_execute bulk then

Each execution function has two properties: cardinality and direction.

• Cardinality:
– single: creates one execution agent
– bulk: creates a group of execution agents

• Direction:
– oneway: creates an execution agent and does not return a result
– twoway: creates an execution agent and returns a future that can be used to
wait for execution to complete

– then: creates an execution agent and returns a future that can be used to
wait for execution to complete. The execution agent begins execution after
a given future becomes ready.

The next lines give a more formal explanation of the execution functions.

First, I refer to the single cardinality case:

• A oneway execution function is a fire-and-forget job. It’s quite similar to a fire-
and-forget future, but it does not automatically block in the destructor of the
future¹⁸.

• A twoway execution function returns you a future which you can use to pick up
the result. This behaves similarly to a std::promise¹⁹ that gives you back the
handle to the associated std::future.

¹⁸https://www.modernescpp.com/index.php/the-special-futures
¹⁹https://www.modernescpp.com/index.php/promise-and-future

https://www.modernescpp.com/index.php/the-special-futures
https://www.modernescpp.com/index.php/promise-and-future
https://www.modernescpp.com/index.php/the-special-futures
https://www.modernescpp.com/index.php/promise-and-future

C++23 and Beyond 577

• A then execution function is a continuation. It gives you back a future, but the
execution agent runs only if the provided future is ready.

Second, the bulk cardinality case is more complicated. These functions create a group
of execution agents, and each of these execution agents calls the given callable. They
return the result of a factory and not the result of a single callable f invoked by the
execution agents. The user is responsible for disambiguating the right result via this
factory.

8.1.3.3.1 execution::require

How can you be sure that your executor supports the specific execution function?

In the special case, you know it:

An executor using the execution function execute

void concrete_context(const my_oneway_single_executor& ex)

{

auto task = ...;

ex.execute(task);

}

In the general case, you can use the function execution::require to ask for it.

An executor requiring a single and twoway execution function

template <typename Executor>

void generic_context(const Executor& ex)

{

auto task = ...;

// ensure .twoway_execute() is available with execution::require()

execution::require(ex, execution::single, execution::twoway).twoway\

_execute(task);

}

In this case, the executor ex has to support single cardinality and twoway direction
execution.

C++23 and Beyond 578

8.1.4 The Network Library

The network library in C++23 is based on the boost::asio²⁰ library from Christopher
M. Kohlhoff. The library targets the network and low-level I/O programming.

The following components are part of the network library:

• TCP, UDP, and multicast
• Client/Server applications
• Scalability for more concurrent connections
• IPv4 and IPv6
• Name resolution (DNS)
• Clocks

However, the following components are not part of the network library:

• Implementation of network protocols such as HTTP, SMTP, or FTP
• Encryption (SSL or TLS)
• Operating specific multiplexing interfaces, such as select or poll
• Support for realtime
• TCP/IP protocols like ICMP

Thanks to the network library, you can directly implement an echo server.

A simple echo server

1 template <typename Iterator>

2 void uppercase(Iterator begin, Iterator end) {

3 std::locale loc("");

4 for (Iterator iter = begin; iter != end; ++iter)

5 *iter = std::toupper(*iter, loc);

6 }

7

8 void sync_connection(tcp::socket& socket) {

9 try {

²⁰https://www.boost.org/doc/libs/1_75_0/doc/html/boost_asio.html

https://www.boost.org/doc/libs/1_75_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_75_0/doc/html/boost_asio.html

C++23 and Beyond 579

10 std::vector<char> buffer_space(1024);

11 while (true) {

12 std::size_t length = socket.read_some(buffer(buffer_space))\

13 ;

14 uppercase(buffer_space.begin(), buffer_space.begin() + leng\

15 th);

16 write(socket, buffer(buffer_space, length)); \

17

18 }

19 }

20 catch (std::system_error& e) {

21 // ...

22 }

23 }

The server gets the client socket socket socket (line 8), reads the text (line 12),
transforms the text into capital letters (line 13), and sends the text back to the client
(line 14).

The boost library has more examples of chat or HTTP servers. Additionally, the
server can run synchronously - such as presented in the program - or asynchronously.

C++23 and Beyond 580

8.2 C++23 or Later

It is not sure that the following three features, contracts, reflection, and pattern
matching, will be part of C++23. The general idea is, therefore, that they should be
part of an upcoming C++ standard. This means that they are partially supported in
C++23.

8.2.1 Contracts

Contracts were planned to be the fifth big feature of C++20. Because of design issues,
theywere removed in the standardization committeemeeting in July 2019 in Cologna.
At the same time, the study group 21 for contracts²¹ was created.

• What is a Contract?

A contract specifies in a precise and checkable way interfaces for software compo-
nents. These software components are typically functions andmember functions that
have to fulfill preconditions, postconditions, or invariants. Here are the simplified
definitions of these three terms:

• A precondition: a predicate that is supposed to hold upon entry in a function
• A postcondition: a predicate that is supposed to hold upon exit from the
function

• An assertion: a predicate that is supposed to hold at its point in the computation

The precondition and the postcondition are placed outside the function definition,
but the invariant (assertion) is placed inside. A predicate is a function, which returns
a boolean.

Here is a first example:

²¹https://isocpp.org/std/the-committee

https://isocpp.org/std/the-committee
https://isocpp.org/std/the-committee

C++23 and Beyond 581

The function push uses contracts

int push(queue& q, int val)

[[expects: !q.full()]]

[[ensures !q.empty()]] {

...

[[assert: q.is_ok()]]

...

}

The attribute expects is a precondition, the attribute ensures a postcondition, and
the attribute assert an assertion. The contracts for the function push are that the
queue is not full before adding an element, that it is not empty after adding and the
assertion q.is_ok() holds.

Preconditions and postconditions are part of the function interface. This means they
can’t access local members of a function or private or protected members of a class.
Assertions, however, are part of the implementation and can, therefore, access local
members of a function of private or protected members of a class:

Accessing a private attribute

class X {

public:

void f(int n)

[[expects: n < m]] // error; m is private

{

[[assert: n < m]]; // OK

// ...

}

private:

int m;

};

The attribute m is private and can, therefore, not be part of a precondition. By default,
a violation of a contract terminates the program.

You can adjust the behavior of the attributes.

C++23 and Beyond 582

8.2.1.1 Fine-tune Attributes

The syntax for adapting the attributes is quite elaborate: [[contract-attribute
modifier: conditional-expression]].

• contract-attribute: expects, ensures, and assert

• modifier: specifies the contract level or the enforcement of the contract;
possible values are default, audit, and axiom

– default: the cost of run-time checking should be small; it is the default
modifier

– audit: the cost of run-time checking is assumed to be large
– axiom: the predicate is not checked at run time

• conditional-expression: the predicate of the contract

For the ensures attribute, there is additionally an identifier available: [[ensures
modifier identifier: conditional-expression]]

The identifier lets you refer to the return value of the function.

Accessing the return value

int mul(int x, int y)

[[expects: x > 0]] // implicit default

[[expects default: y > 0]]

[[ensures audit res: res > 0]] {

return x * y;

}

res as the identifier is an arbitrary name. As shown in the example, you can use
more contracts of the same kind.

Let me dive deeper into the handling of contract violations.

C++23 and Beyond 583

8.2.1.2 Handling Contract Violations

A compilation has three assertion build levels:

• off: no contracts are checked
• default: default contracts are checked; this is the default
• audit: default and audit contracts are checked

When a contract violation occurs, because the predicate returns false, the violation
handler is invoked. The violation handler gets a value of type std::contract_-

violation. This value provides detailed information about the violation of the
contract.

The class contract_violation

namespace std {

class contract_violation{

public:

uint_least32_t line_number() const noexcept;

string_view file_name() const noexcept;

string_view function_name() const noexcept;

string_view comment() const noexcept;

string_view assertion_level() const noexcept;

};

}

• line_number: the line number of the contract violation
• file_name: the file name of the contract violation
• function_name: the function name of the contract violation
• comment: the predicate of the contract
• assertion_level: the assertion level of the contract

C++23 and Beyond 584

8.2.1.3 Declaration of Contracts

A contract can be placed on the declaration of a function. This includes declarations
of virtual functions or function templates.

• The contract declaration of a function must be identical. Any declaration
different from the first one can omit the contract.

Conctract declarations must be idential

int f(int x)

[[expects: x > 0]]

[[ensures r: r > 0]];

int f(int x); // OK. No contract.

int f(int x)

[[expects: x >= 0]]; // Error missing ensures and different expects\

condition

• A contract cannot be modified in an overriding function.

Overriding functions cannot modify a contract

struct B {

virtual void f(int x)[[expects: x > 0]];

virtual void g(int x);

};

struct D: B{

void f(int x)[[expects: x >= 0]]; // error

void g(int x)[[expects: x != 0]]; // error

};

C++23 and Beyond 585

Both contract definitions of class D are erroneous. The contract of the member
function D::f differs from the one from B::f. The member function D::g adds a
contract to B::g.

Closing Thoughts from Herb Sutter
Contracts were planned to be part of C++20 but were delayed at least to
C++23. Herb Sutter’s thoughts on Sutter’s Mill²² give you an idea about
their importance: “contracts is the most impactful feature of C++20 so
far, and arguably the most impactful feature we have added to C++ since
C++11.”

²²https://herbsutter.com/2018/07/02/trip-report-summer-iso-c-standards-meeting-rapperswil/

https://herbsutter.com/2018/07/02/trip-report-summer-iso-c-standards-meeting-rapperswil/
https://herbsutter.com/2018/07/02/trip-report-summer-iso-c-standards-meeting-rapperswil/

C++23 and Beyond 586

8.2.2 Reflection

Reflection is the possibility of a program to analyze and modify itself. Reflection
takes place at compile time and, therefore, adheres to the C++ metarule: “don’t pay
for anything you don’t use”. The type-traits library²³ is a powerful tool for reflection,
but the proposal P0385²⁴ for static reflection goes much further.

The following code snippet should give you a first impression on reflection:

The reflection operator

1 template <typename T>

2 T min(constT& a,constT& b) {

3 log() << "function: min<"

4 << get_base_name_v<get_aliased_t<$reflect(T)>>

5 << ">("

6 << get_base_name_v<$reflect(a)> << ": "

7 << get_base_name_v<get_aliased_t<get_type_t<$reflect(a)>>>

8 << " = " << a << ", "

9 << get_base_name_v<$reflect(b)> << ": "

10 << get_base_name_v<get_aliased_t<get_type_t<$reflect(b)>>>

11 << " = " << b

12 << ")" << '\n';

13 return a < b ? a : b;

14 }

The new reflection operator $reflect is the crucial expression in the example. First,
the new operator creates a special data type, which provides meta information on
the template parameter T (line 4) and the values a (line 6), and c (line 9). Thanks to
function composition, the metainformation can be used to provide more information:
get_base_name_v<get_aliased_t (lines 7 and 10).

When you invoke the function min with the argument min(12.34, 23.45), you get
the following output:

²³https://en.cppreference.com/w/cpp/header/type_traits
²⁴http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf

https://en.cppreference.com/w/cpp/header/type_traits
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf
https://en.cppreference.com/w/cpp/header/type_traits
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf

C++23 and Beyond 587

Calling min(12.34, 23.45)

You may be curious and want to know: Which metainformation could you get with
reflection? The following points give you the answer:

• Objects: the source-code line and column and the name of the file
• Classes: the private and public data members and member functions
• Aliases: the name of the resolved alias

The next example from proposal P0385 shows how reflection helps determine the
private and public members of a class.

Determining the public and private members of the class foo

#include <reflect>

#include <iostream>

struct foo {

private:

int _i, _j;

public:

static constexpr const bool b = true;

float x, y, z;

private:

static double d;

};

template <typename ... T>

void eat(T ...) { }

template <typename Metaobjects, std::size_t I>

int do_print_data_member(void) {

using namespace std;

typedef reflect::get_element_t<Metaobjects, I> metaobj;

cout << I << ": "

C++23 and Beyond 588

<< (reflect::is_public_v<metaobj>?"public":"non-public")

<< " "

<< (reflect::is_static_v<metaobj>?"static":"")

<< " "

<< reflect::get_base_name_v<reflect::get_type_t<metaobj>>

<< " "

<< reflect::get_base_name_v<metaobj>

<< '\n';

}

return 0;

template <typename Metaobjects, std::size_t ... I>

void do_print_data_members(std::index_sequence<I...>) {

eat(do_print_data_member<Metaobjects, I>()...);

}

template <typename Metaobjects>

void do_print_data_members(void) {

using namespace std;

do_print_data_members<Metaobjects>(

make_index_sequence<

reflect::get_size_v<Metaobjects>

>()

);

}

template <typename MetaClass>

void print_data_members(void) {

using namespace std;

cout << "Public data members of " << reflect::get_base_name_v<M\

etaClass>

<< '\n';

do_print_data_members<reflect::get_public_data_members_t<MetaCl\

C++23 and Beyond 589

ass>>();

}

template <typename MetaClass>

void print_all_data_members(void) {

using namespace std;

cout << "All data members of " << reflect::get_base_name_v<Meta\

Class>

<< '\n';

do_print_data_members<reflect::get_data_members_t<MetaClass>>();

}

int main(void) {

print_data_members<$reflect(foo)>();

print_all_data_members<$reflect(foo)>();

return 0;

}

The program produces the following output:

Displaying the public and private members of the class foo

C++23 and Beyond 590

8.2.3 Pattern Matching

New data types such as std::tuple²⁵ or std::variant²⁶ need new ways to work
with their elements. Simple if or switch conditions or functions like std::apply²⁷
or std::visit²⁸ can only provide basic functionality. Pattern matching, heavily used
in functional programming, enables the more powerful handling of the new data
types.

The following code snippets from the proposal P1371R2²⁹ on pattern matching
compares classical control structures with pattern matching. Pattern matching uses
the keyword inspect and __ for a placeholder.

• switch statement

switch statement versus pattern matching

switch (x) {

case 0: std::cout << "got zero"; break;

case 1: std::cout << "got one"; break;

default: std::cout << "don't care";

}

inspect (x) {

0: std::cout << "got zero";

1: std::cout << "got one";

__: std::cout << "don't care";

}

• if condition

²⁵https://en.cppreference.com/w/cpp/utility/tuple
²⁶https://en.cppreference.com/w/cpp/utility/variant
²⁷https://en.cppreference.com/w/cpp/utility/apply
²⁸https://en.cppreference.com/w/cpp/utility/variant/visit
²⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/apply
https://en.cppreference.com/w/cpp/utility/variant/visit
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf
https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/apply
https://en.cppreference.com/w/cpp/utility/variant/visit
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

C++23 and Beyond 591

if statement versus pattern matching

if (s == "foo") {

std::cout << "got foo";

} else if (s == "bar") {

std::cout << "got bar";

} else {

std::cout << "don't care";

}

inspect (s) {

"foo": std::cout << "got foo";

"bar": std::cout << "got bar";

__: std::cout << "don't care";

}

The application of pattern matching on std::tuple, std::variant, or polymorphy
demonstrates its power.

• std::tuple

std::tuple versus pattern matching

auto&& [x, y] = p;

if (x == 0 && y == 0) {

std::cout << "on origin";

} else if (x == 0) {

std::cout << "on y-axis";

} else if (y == 0) {

std::cout << "on x-axis";

} else {

std::cout << x << ',' << y;

}

inspect (p) {

[0, 0]: std::cout << "on origin";

C++23 and Beyond 592

[0, y]: std::cout << "on y-axis";

[x, 0]: std::cout << "on x-axis";

[x, y]: std::cout << x << ',' << y;

}

• std::variant

std::variant versus pattern matching

struct visitor {

void operator()(int i) const {

os << "got int: " << i;

}

void operator()(float f) const {

os << "got float: " << f;

}

std::ostream& os;

};

std::visit(visitor{strm}, v);

inspect (v) {

<int> i: strm << "got int: " << i;

<float> f: strm << "got float: " << f;

}

• Polymorphic data types

C++23 and Beyond 593

Polymorphy versus pattern matching

struct Shape { virtual ~Shape() = default; };

struct Circle : Shape { int radius; };

struct Rectangle : Shape { int width, height; };

virtual int Shape::get_area() const = 0;

int Circle::get_area() const override {

return 3.14 * radius * radius;

}

int Rectangle::get_area() const override {

return width * height;

}

int get_area(const Shape& shape) {

return inspect (shape) {

<Circle> [r] => 3.14 * r * r,

<Rectangle> [w, h] => w * h

}

}

The proposal P1371R2 on pattern matching offers more advanced use cases. For
example, pattern matching can be used to traverse an expression tree³⁰.

8.3 Further Information about C++23

The proposal P0592R4³¹ gives only a rough idea of C++23 and concentrates on
the main features. Features such as task blocks³², unified futures³³, transactional
memory³⁴, or the data-parallel vector library³⁵, which supports SIMD³⁶, are not even

³⁰https://en.wikipedia.org/wiki/Binary_expression_tree
³¹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html
³²https://www.modernescpp.com/index.php/task-blocks
³³https://www.modernescpp.com/index.php/the-end-of-the-detour-unified-futures
³⁴https://www.modernescpp.com/index.php/transactional-memory
³⁵https://en.cppreference.com/w/cpp/experimental/simd
³⁶https://en.wikipedia.org/wiki/SIMD

https://en.wikipedia.org/wiki/Binary_expression_tree
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html
https://www.modernescpp.com/index.php/task-blocks
https://www.modernescpp.com/index.php/the-end-of-the-detour-unified-futures
https://www.modernescpp.com/index.php/transactional-memory
https://www.modernescpp.com/index.php/transactional-memory
https://en.cppreference.com/w/cpp/experimental/simd
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Binary_expression_tree
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html
https://www.modernescpp.com/index.php/task-blocks
https://www.modernescpp.com/index.php/the-end-of-the-detour-unified-futures
https://www.modernescpp.com/index.php/transactional-memory
https://en.cppreference.com/w/cpp/experimental/simd
https://en.wikipedia.org/wiki/SIMD

C++23 and Beyond 594

mentioned. When you want more insight into the future of C++20, you have to
study cppreference.com/compiler_support³⁷ or read the standardization committee
papers³⁸ related to C++23.

³⁷https://en.cppreference.com/w/cpp/compiler_support
³⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

https://en.cppreference.com/w/cpp/compiler_support
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
https://en.cppreference.com/w/cpp/compiler_support
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

9. Feature Testing
The header <version> allows you to ask your compiler for its C++11 or later support.
You can ask for attributes, features of the core language, or the library. <version>
has about 200 macros defined, which expand to a number when the feature is
implemented. The number stands for the year and the month in which the feature
was added to the C++ standard. These are the numbers for static_assert, lambdas,
and concepts.

Macros for static_assert, lambdas, and concepts

__cpp_static_assert 200410L

__cpp_lambdas 200907L

__cpp_concepts 201907L

Feature Support
When I experiment with brand-new C++ features, I check which compiler
implements the feature I’m interested in. This is the time I visit cppref-
erence.com/compiler_support¹, search for the feature I want to try out
and hope that at least one compiler of the big three (GCC, Clang, MSVC)
implements the new feature.

Getting the answer partial is not satisfying. In the end, I don’t know who
I should contact when the compilation of a brand-new feature fails.

¹https://en.cppreference.com/w/cpp/compiler_support

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

Feature Testing 596

Feature support for C++20 core language

The cppreference.com page for feature testing² uses all macros together in a long,
long source file.

Use of all feature test macros

1 // featureTest.cpp

2 // from cppreference.com

3

4 #if __cplusplus < 201100

5 # error "C++11 or better is required"

6 #endif

7

8 #include <algorithm>

9 #include <cstring>

10 #include <iomanip>

11 #include <iostream>

12 #include <string>

13

14 #ifdef __has_include

15 # if __has_include(<version>)

16 # include <version>

²https://en.cppreference.com/w/cpp/feature_test

https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/feature_test

Feature Testing 597

17 # endif

18 #endif

19

20 #define COMPILER_FEATURE_VALUE(value) #value

21 #define COMPILER_FEATURE_ENTRY(name) { #name, COMPILER_FEATURE_VALUE(na\

22 me) },

23

24 #ifdef __has_cpp_attribute

25 # define COMPILER_ATTRIBUTE_VALUE_AS_STRING(s) #s

26 # define COMPILER_ATTRIBUTE_AS_NUMBER(x) COMPILER_ATTRIBUTE_VALUE_AS_ST\

27 RING(x)

28 # define COMPILER_ATTRIBUTE_ENTRY(attr) \

29 { #attr, COMPILER_ATTRIBUTE_AS_NUMBER(__has_cpp_attribute(attr)) },

30 #else

31 # define COMPILER_ATTRIBUTE_ENTRY(attr) { #attr, "_" },

32 #endif

33

34 // Change these options to print out only necessary info.

35 static struct PrintOptions {

36 constexpr static bool titles = 1;

37 constexpr static bool attributes = 1;

38 constexpr static bool general_features = 1;

39 constexpr static bool core_features = 1;

40 constexpr static bool lib_features = 1;

41 constexpr static bool supported_features = 1;

42 constexpr static bool unsupported_features = 1;

43 constexpr static bool sorted_by_value = 0;

44 constexpr static bool cxx11 = 1;

45 constexpr static bool cxx14 = 1;

46 constexpr static bool cxx17 = 1;

47 constexpr static bool cxx20 = 1;

48 constexpr static bool cxx23 = 0;

49 } print;

50

51 struct CompilerFeature {

52 CompilerFeature(const char* name = nullptr, const char* value = nul\

Feature Testing 598

53 lptr)

54 : name(name), value(value) {}

55 const char* name; const char* value;

56 };

57

58 static CompilerFeature cxx[] = {

59 COMPILER_FEATURE_ENTRY(__cplusplus)

60 COMPILER_FEATURE_ENTRY(__cpp_exceptions)

61 COMPILER_FEATURE_ENTRY(__cpp_rtti)

62 #if 0

63 COMPILER_FEATURE_ENTRY(__GNUC__)

64 COMPILER_FEATURE_ENTRY(__GNUC_MINOR__)

65 COMPILER_FEATURE_ENTRY(__GNUC_PATCHLEVEL__)

66 COMPILER_FEATURE_ENTRY(__GNUG__)

67 COMPILER_FEATURE_ENTRY(__clang__)

68 COMPILER_FEATURE_ENTRY(__clang_major__)

69 COMPILER_FEATURE_ENTRY(__clang_minor__)

70 COMPILER_FEATURE_ENTRY(__clang_patchlevel__)

71 #endif

72 };

73 static CompilerFeature cxx11[] = {

74 COMPILER_FEATURE_ENTRY(__cpp_alias_templates)

75 COMPILER_FEATURE_ENTRY(__cpp_attributes)

76 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

77 COMPILER_FEATURE_ENTRY(__cpp_decltype)

78 COMPILER_FEATURE_ENTRY(__cpp_delegating_constructors)

79 COMPILER_FEATURE_ENTRY(__cpp_inheriting_constructors)

80 COMPILER_FEATURE_ENTRY(__cpp_initializer_lists)

81 COMPILER_FEATURE_ENTRY(__cpp_lambdas)

82 COMPILER_FEATURE_ENTRY(__cpp_nsdmi)

83 COMPILER_FEATURE_ENTRY(__cpp_range_based_for)

84 COMPILER_FEATURE_ENTRY(__cpp_raw_strings)

85 COMPILER_FEATURE_ENTRY(__cpp_ref_qualifiers)

86 COMPILER_FEATURE_ENTRY(__cpp_rvalue_references)

87 COMPILER_FEATURE_ENTRY(__cpp_static_assert)

88 COMPILER_FEATURE_ENTRY(__cpp_threadsafe_static_init)

Feature Testing 599

89 COMPILER_FEATURE_ENTRY(__cpp_unicode_characters)

90 COMPILER_FEATURE_ENTRY(__cpp_unicode_literals)

91 COMPILER_FEATURE_ENTRY(__cpp_user_defined_literals)

92 COMPILER_FEATURE_ENTRY(__cpp_variadic_templates)

93 };

94 static CompilerFeature cxx14[] = {

95 COMPILER_FEATURE_ENTRY(__cpp_aggregate_nsdmi)

96 COMPILER_FEATURE_ENTRY(__cpp_binary_literals)

97 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

98 COMPILER_FEATURE_ENTRY(__cpp_decltype_auto)

99 COMPILER_FEATURE_ENTRY(__cpp_generic_lambdas)

100 COMPILER_FEATURE_ENTRY(__cpp_init_captures)

101 COMPILER_FEATURE_ENTRY(__cpp_return_type_deduction)

102 COMPILER_FEATURE_ENTRY(__cpp_sized_deallocation)

103 COMPILER_FEATURE_ENTRY(__cpp_variable_templates)

104 };

105 static CompilerFeature cxx14lib[] = {

106 COMPILER_FEATURE_ENTRY(__cpp_lib_chrono_udls)

107 COMPILER_FEATURE_ENTRY(__cpp_lib_complex_udls)

108 COMPILER_FEATURE_ENTRY(__cpp_lib_exchange_function)

109 COMPILER_FEATURE_ENTRY(__cpp_lib_generic_associative_lookup)

110 COMPILER_FEATURE_ENTRY(__cpp_lib_integer_sequence)

111 COMPILER_FEATURE_ENTRY(__cpp_lib_integral_constant_callable)

112 COMPILER_FEATURE_ENTRY(__cpp_lib_is_final)

113 COMPILER_FEATURE_ENTRY(__cpp_lib_is_null_pointer)

114 COMPILER_FEATURE_ENTRY(__cpp_lib_make_reverse_iterator)

115 COMPILER_FEATURE_ENTRY(__cpp_lib_make_unique)

116 COMPILER_FEATURE_ENTRY(__cpp_lib_null_iterators)

117 COMPILER_FEATURE_ENTRY(__cpp_lib_quoted_string_io)

118 COMPILER_FEATURE_ENTRY(__cpp_lib_result_of_sfinae)

119 COMPILER_FEATURE_ENTRY(__cpp_lib_robust_nonmodifying_seq_ops)

120 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_timed_mutex)

121 COMPILER_FEATURE_ENTRY(__cpp_lib_string_udls)

122 COMPILER_FEATURE_ENTRY(__cpp_lib_transformation_trait_aliases)

123 COMPILER_FEATURE_ENTRY(__cpp_lib_transparent_operators)

124 COMPILER_FEATURE_ENTRY(__cpp_lib_tuple_element_t)

Feature Testing 600

125 COMPILER_FEATURE_ENTRY(__cpp_lib_tuples_by_type)

126 };

127

128 static CompilerFeature cxx17[] = {

129 COMPILER_FEATURE_ENTRY(__cpp_aggregate_bases)

130 COMPILER_FEATURE_ENTRY(__cpp_aligned_new)

131 COMPILER_FEATURE_ENTRY(__cpp_capture_star_this)

132 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

133 COMPILER_FEATURE_ENTRY(__cpp_deduction_guides)

134 COMPILER_FEATURE_ENTRY(__cpp_enumerator_attributes)

135 COMPILER_FEATURE_ENTRY(__cpp_fold_expressions)

136 COMPILER_FEATURE_ENTRY(__cpp_guaranteed_copy_elision)

137 COMPILER_FEATURE_ENTRY(__cpp_hex_float)

138 COMPILER_FEATURE_ENTRY(__cpp_if_constexpr)

139 COMPILER_FEATURE_ENTRY(__cpp_inheriting_constructors)

140 COMPILER_FEATURE_ENTRY(__cpp_inline_variables)

141 COMPILER_FEATURE_ENTRY(__cpp_namespace_attributes)

142 COMPILER_FEATURE_ENTRY(__cpp_noexcept_function_type)

143 COMPILER_FEATURE_ENTRY(__cpp_nontype_template_args)

144 COMPILER_FEATURE_ENTRY(__cpp_nontype_template_parameter_auto)

145 COMPILER_FEATURE_ENTRY(__cpp_range_based_for)

146 COMPILER_FEATURE_ENTRY(__cpp_static_assert)

147 COMPILER_FEATURE_ENTRY(__cpp_structured_bindings)

148 COMPILER_FEATURE_ENTRY(__cpp_template_template_args)

149 COMPILER_FEATURE_ENTRY(__cpp_variadic_using)

150 };

151 static CompilerFeature cxx17lib[] = {

152 COMPILER_FEATURE_ENTRY(__cpp_lib_addressof_constexpr)

153 COMPILER_FEATURE_ENTRY(__cpp_lib_allocator_traits_is_always_equal)

154 COMPILER_FEATURE_ENTRY(__cpp_lib_any)

155 COMPILER_FEATURE_ENTRY(__cpp_lib_apply)

156 COMPILER_FEATURE_ENTRY(__cpp_lib_array_constexpr)

157 COMPILER_FEATURE_ENTRY(__cpp_lib_as_const)

158 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_is_always_lock_free)

159 COMPILER_FEATURE_ENTRY(__cpp_lib_bool_constant)

160 COMPILER_FEATURE_ENTRY(__cpp_lib_boyer_moore_searcher)

Feature Testing 601

161 COMPILER_FEATURE_ENTRY(__cpp_lib_byte)

162 COMPILER_FEATURE_ENTRY(__cpp_lib_chrono)

163 COMPILER_FEATURE_ENTRY(__cpp_lib_clamp)

164 COMPILER_FEATURE_ENTRY(__cpp_lib_enable_shared_from_this)

165 COMPILER_FEATURE_ENTRY(__cpp_lib_execution)

166 COMPILER_FEATURE_ENTRY(__cpp_lib_filesystem)

167 COMPILER_FEATURE_ENTRY(__cpp_lib_gcd_lcm)

168 COMPILER_FEATURE_ENTRY(__cpp_lib_hardware_interference_size)

169 COMPILER_FEATURE_ENTRY(__cpp_lib_has_unique_object_representations)

170 COMPILER_FEATURE_ENTRY(__cpp_lib_hypot)

171 COMPILER_FEATURE_ENTRY(__cpp_lib_incomplete_container_elements)

172 COMPILER_FEATURE_ENTRY(__cpp_lib_invoke)

173 COMPILER_FEATURE_ENTRY(__cpp_lib_is_aggregate)

174 COMPILER_FEATURE_ENTRY(__cpp_lib_is_invocable)

175 COMPILER_FEATURE_ENTRY(__cpp_lib_is_swappable)

176 COMPILER_FEATURE_ENTRY(__cpp_lib_launder)

177 COMPILER_FEATURE_ENTRY(__cpp_lib_logical_traits)

178 COMPILER_FEATURE_ENTRY(__cpp_lib_make_from_tuple)

179 COMPILER_FEATURE_ENTRY(__cpp_lib_map_try_emplace)

180 COMPILER_FEATURE_ENTRY(__cpp_lib_math_special_functions)

181 COMPILER_FEATURE_ENTRY(__cpp_lib_memory_resource)

182 COMPILER_FEATURE_ENTRY(__cpp_lib_node_extract)

183 COMPILER_FEATURE_ENTRY(__cpp_lib_nonmember_container_access)

184 COMPILER_FEATURE_ENTRY(__cpp_lib_not_fn)

185 COMPILER_FEATURE_ENTRY(__cpp_lib_optional)

186 COMPILER_FEATURE_ENTRY(__cpp_lib_parallel_algorithm)

187 COMPILER_FEATURE_ENTRY(__cpp_lib_raw_memory_algorithms)

188 COMPILER_FEATURE_ENTRY(__cpp_lib_sample)

189 COMPILER_FEATURE_ENTRY(__cpp_lib_scoped_lock)

190 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_mutex)

191 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_ptr_arrays)

192 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_ptr_weak_type)

193 COMPILER_FEATURE_ENTRY(__cpp_lib_string_view)

194 COMPILER_FEATURE_ENTRY(__cpp_lib_to_chars)

195 COMPILER_FEATURE_ENTRY(__cpp_lib_transparent_operators)

196 COMPILER_FEATURE_ENTRY(__cpp_lib_type_trait_variable_templates)

Feature Testing 602

197 COMPILER_FEATURE_ENTRY(__cpp_lib_uncaught_exceptions)

198 COMPILER_FEATURE_ENTRY(__cpp_lib_unordered_map_try_emplace)

199 COMPILER_FEATURE_ENTRY(__cpp_lib_variant)

200 COMPILER_FEATURE_ENTRY(__cpp_lib_void_t)

201 };

202

203 static CompilerFeature cxx20[] = {

204 COMPILER_FEATURE_ENTRY(__cpp_aggregate_paren_init)

205 COMPILER_FEATURE_ENTRY(__cpp_char8_t)

206 COMPILER_FEATURE_ENTRY(__cpp_concepts)

207 COMPILER_FEATURE_ENTRY(__cpp_conditional_explicit)

208 COMPILER_FEATURE_ENTRY(__cpp_consteval)

209 COMPILER_FEATURE_ENTRY(__cpp_constexpr)

210 COMPILER_FEATURE_ENTRY(__cpp_constexpr_dynamic_alloc)

211 COMPILER_FEATURE_ENTRY(__cpp_constexpr_in_decltype)

212 COMPILER_FEATURE_ENTRY(__cpp_constinit)

213 COMPILER_FEATURE_ENTRY(__cpp_deduction_guides)

214 COMPILER_FEATURE_ENTRY(__cpp_designated_initializers)

215 COMPILER_FEATURE_ENTRY(__cpp_generic_lambdas)

216 COMPILER_FEATURE_ENTRY(__cpp_impl_coroutine)

217 COMPILER_FEATURE_ENTRY(__cpp_impl_destroying_delete)

218 COMPILER_FEATURE_ENTRY(__cpp_impl_three_way_comparison)

219 COMPILER_FEATURE_ENTRY(__cpp_init_captures)

220 COMPILER_FEATURE_ENTRY(__cpp_modules)

221 COMPILER_FEATURE_ENTRY(__cpp_nontype_template_args)

222 COMPILER_FEATURE_ENTRY(__cpp_using_enum)

223 };

224 static CompilerFeature cxx20lib[] = {

225 COMPILER_FEATURE_ENTRY(__cpp_lib_array_constexpr)

226 COMPILER_FEATURE_ENTRY(__cpp_lib_assume_aligned)

227 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_flag_test)

228 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_float)

229 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_lock_free_type_aliases)

230 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_ref)

231 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_shared_ptr)

232 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_value_initialization)

Feature Testing 603

233 COMPILER_FEATURE_ENTRY(__cpp_lib_atomic_wait)

234 COMPILER_FEATURE_ENTRY(__cpp_lib_barrier)

235 COMPILER_FEATURE_ENTRY(__cpp_lib_bind_front)

236 COMPILER_FEATURE_ENTRY(__cpp_lib_bit_cast)

237 COMPILER_FEATURE_ENTRY(__cpp_lib_bitops)

238 COMPILER_FEATURE_ENTRY(__cpp_lib_bounded_array_traits)

239 COMPILER_FEATURE_ENTRY(__cpp_lib_char8_t)

240 COMPILER_FEATURE_ENTRY(__cpp_lib_chrono)

241 COMPILER_FEATURE_ENTRY(__cpp_lib_concepts)

242 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_algorithms)

243 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_complex)

244 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_dynamic_alloc)

245 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_functional)

246 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_iterator)

247 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_memory)

248 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_numeric)

249 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_string)

250 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_string_view)

251 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_tuple)

252 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_utility)

253 COMPILER_FEATURE_ENTRY(__cpp_lib_constexpr_vector)

254 COMPILER_FEATURE_ENTRY(__cpp_lib_coroutine)

255 COMPILER_FEATURE_ENTRY(__cpp_lib_destroying_delete)

256 COMPILER_FEATURE_ENTRY(__cpp_lib_endian)

257 COMPILER_FEATURE_ENTRY(__cpp_lib_erase_if)

258 COMPILER_FEATURE_ENTRY(__cpp_lib_execution)

259 COMPILER_FEATURE_ENTRY(__cpp_lib_format)

260 COMPILER_FEATURE_ENTRY(__cpp_lib_generic_unordered_lookup)

261 COMPILER_FEATURE_ENTRY(__cpp_lib_int_pow2)

262 COMPILER_FEATURE_ENTRY(__cpp_lib_integer_comparison_functions)

263 COMPILER_FEATURE_ENTRY(__cpp_lib_interpolate)

264 COMPILER_FEATURE_ENTRY(__cpp_lib_is_constant_evaluated)

265 COMPILER_FEATURE_ENTRY(__cpp_lib_is_layout_compatible)

266 COMPILER_FEATURE_ENTRY(__cpp_lib_is_nothrow_convertible)

267 COMPILER_FEATURE_ENTRY(__cpp_lib_is_pointer_interconvertible)

268 COMPILER_FEATURE_ENTRY(__cpp_lib_jthread)

Feature Testing 604

269 COMPILER_FEATURE_ENTRY(__cpp_lib_latch)

270 COMPILER_FEATURE_ENTRY(__cpp_lib_list_remove_return_type)

271 COMPILER_FEATURE_ENTRY(__cpp_lib_math_constants)

272 COMPILER_FEATURE_ENTRY(__cpp_lib_polymorphic_allocator)

273 COMPILER_FEATURE_ENTRY(__cpp_lib_ranges)

274 COMPILER_FEATURE_ENTRY(__cpp_lib_remove_cvref)

275 COMPILER_FEATURE_ENTRY(__cpp_lib_semaphore)

276 COMPILER_FEATURE_ENTRY(__cpp_lib_shared_ptr_arrays)

277 COMPILER_FEATURE_ENTRY(__cpp_lib_shift)

278 COMPILER_FEATURE_ENTRY(__cpp_lib_smart_ptr_for_overwrite)

279 COMPILER_FEATURE_ENTRY(__cpp_lib_source_location)

280 COMPILER_FEATURE_ENTRY(__cpp_lib_span)

281 COMPILER_FEATURE_ENTRY(__cpp_lib_ssize)

282 COMPILER_FEATURE_ENTRY(__cpp_lib_starts_ends_with)

283 COMPILER_FEATURE_ENTRY(__cpp_lib_string_view)

284 COMPILER_FEATURE_ENTRY(__cpp_lib_syncbuf)

285 COMPILER_FEATURE_ENTRY(__cpp_lib_three_way_comparison)

286 COMPILER_FEATURE_ENTRY(__cpp_lib_to_address)

287 COMPILER_FEATURE_ENTRY(__cpp_lib_to_array)

288 COMPILER_FEATURE_ENTRY(__cpp_lib_type_identity)

289 COMPILER_FEATURE_ENTRY(__cpp_lib_unwrap_ref)

290 };

291

292 static CompilerFeature cxx23[] = {

293 COMPILER_FEATURE_ENTRY(__cpp_cxx23_stub) //< Populate eventually

294 };

295 static CompilerFeature cxx23lib[] = {

296 COMPILER_FEATURE_ENTRY(__cpp_lib_cxx23_stub) //< Populate eventually

297 };

298

299 static CompilerFeature attributes[] = {

300 COMPILER_ATTRIBUTE_ENTRY(carries_dependency)

301 COMPILER_ATTRIBUTE_ENTRY(deprecated)

302 COMPILER_ATTRIBUTE_ENTRY(fallthrough)

303 COMPILER_ATTRIBUTE_ENTRY(likely)

304 COMPILER_ATTRIBUTE_ENTRY(maybe_unused)

Feature Testing 605

305 COMPILER_ATTRIBUTE_ENTRY(nodiscard)

306 COMPILER_ATTRIBUTE_ENTRY(noreturn)

307 COMPILER_ATTRIBUTE_ENTRY(no_unique_address)

308 COMPILER_ATTRIBUTE_ENTRY(unlikely)

309 };

310

311 constexpr bool is_feature_supported(const CompilerFeature& x) {

312 return x.value[0] != '_' && x.value[0] != '0' ;

313 }

314

315 inline void print_compiler_feature(const CompilerFeature& x) {

316 constexpr static int max_name_length = 44; //< Update if necessary

317 std::string value{ is_feature_supported(x) ? x.value : "------" };

318 if (value.back() == 'L') value.pop_back(); //~ 201603L -> 201603

319 // value.insert(4, 1, '-'); //~ 201603 -> 2016-03

320 if ((print.supported_features && is_feature_supported(x))

321 || (print.unsupported_features && !is_feature_supported(x))) {

322 std::cout << std::left << std::setw(max_name_length)

323 << x.name << " " << value << '\n';

324 }

325 }

326

327 template<size_t N>

328 inline void show(char const* title, CompilerFeature (&features)[N]) {

329 if (print.titles) {

330 std::cout << '\n' << std::left << title << '\n';

331 }

332 if (print.sorted_by_value) {

333 std::sort(std::begin(features), std::end(features),

334 [](CompilerFeature const& lhs, CompilerFeature const& rhs) {

335 return std::strcmp(lhs.value, rhs.value) < 0;

336 });

337 }

338 for (const CompilerFeature& x : features) {

339 print_compiler_feature(x);

340 }

Feature Testing 606

341 }

342

343 int main() {

344 if (print.general_features) show("C++ GENERAL", cxx);

345 if (print.cxx11 && print.core_features) show("C++11 CORE", cxx11);

346 if (print.cxx14 && print.core_features) show("C++14 CORE", cxx14);

347 if (print.cxx14 && print.lib_features) show("C++14 LIB" , cxx14lib\

348);

349 if (print.cxx17 && print.core_features) show("C++17 CORE", cxx17);

350 if (print.cxx17 && print.lib_features) show("C++17 LIB" , cxx17lib\

351);

352 if (print.cxx20 && print.core_features) show("C++20 CORE", cxx20);

353 if (print.cxx20 && print.lib_features) show("C++20 LIB" , cxx20lib\

354);

355 if (print.cxx23 && print.core_features) show("C++23 CORE", cxx23);

356 if (print.cxx23 && print.lib_features) show("C++23 LIB" , cxx23lib\

357);

358 if (print.attributes) show("ATTRIBUTES", attributes);

359 }

Of course, the length of the source file is overwhelming. When you want to know
more about each macro, visit the page for feature testing³. In particular, that page
provides a link for each macro so that you can get more information about a feature.
For example, here is the table on attributes:

³https://en.cppreference.com/w/cpp/feature_test

https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/feature_test

Feature Testing 607

Macros for the attributes

Here is a demonstration of the <version> header and its macros. I executed the
program on the brand-new GCC, Clang, and MSVC compilers. I used the Compiler
Explorer for the GCC and Clang compilers. The /Zc:__cplusplus flag enables
that the __cplusplus macro reports the recent C++ language standards support.
Additionally, I enabled C++20 support on all three platforms. For obvious reasons,
I only display the support of the C++20 core language.

• GCC 10.2

Feature Testing 608

C++20 core language support available on the GCC compiler

• Clang 11.0

Feature Testing 609

C++20 core language support available on the Clang compiler

• MSVC 19.27

C++20 core language support available on the MSVC compiler

Feature Testing 610

The three screenshots speak a clear message about the big three: Their C++20 core
language support is quite good at the end of 2020.

10. Glossary
The idea of this glossary is by no means to be exhaustive but to provide a reference
for the essential terms.

10.1 Callable

see Callable Unit.

10.2 Callable Unit

A callable unit (short callable) is something that behaves like a function. Not only are
these named functions but also function objects or lambda expressions. If a callable
accepts one argument, it’s called a unary callable, and with two arguments, it’s called
a binary callable.

Predicates are special callables that return a boolean as a result.

10.3 Concurrency

Concurrency means that the execution of several tasks overlaps. Concurrency is a
superset of parallelism.

10.4 Critical Section

A critical section is a section of code that contains shared variables and must be
protected to avoid a data race. At most one thread at one point in time should enter
a critical section.

Glossary 612

10.5 Data Race

A data race is a situation in which at least two threads access a shared variable at the
same time. At least one thread tries to modify the variable and the other tries to read
or modify the variable. If your program has a data race, it has undefined behavior.
This means all outcomes are possible.

10.6 Deadlock

A deadlock is a state in which at least one thread is blocked forever because it waits
for the release of a resource that it will never get.

There are two main reasons for deadlocks:

1. A mutex has not been unlocked.
2. You lock your mutexes in an incorrect order.

10.7 Eager Evaluation

In case of eager evaluation, the expression is evaluated immediately. This evaluation
strategy is opposite to lazy evaluation. Eager evaluation is often called greedy
evaluation.

10.8 Executor

An executor is an object associated with a specific execution context. It provides one
or more execution functions for creating execution agents from a callable function
object.

Glossary 613

10.9 Function Objects

First of all, don’t call them functors¹. That’s a well-defined term from a branch of
mathematics called category theory².

Function objects are objects that behave like functions. They achieve this by imple-
menting the function call operator. As function objects are objects, they can have
attributes and, therefore, state.

struct Square{

void operator()(int& i){i= i*i;}

};

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), Square());

for (auto v: myVec) std::cout << v << " "; // 1 4 9 16 25 36 49 64 81 1\

00

Instantiate function objects to use them
It’s a common error that the name of the function object (Square) is used
in an algorithm instead of an instance of function object (Square()) itself:
std::for_each(myVec.begin(), myVec.end(), Square). Of course, that’s a
typical error. You have to use the instance: std::for_each(myVec.begin(),
myVec.end(), Square())

10.10 Lambda Expressions

Lambda expressions provide their functionality in-place. The compiler gets all the
necessary information to optimize the code optimally. Lambda functions can receive

¹https://en.wikipedia.org/wiki/Functor
²https://en.wikipedia.org/wiki/Category_theory

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory

Glossary 614

their arguments by value or by reference. They can capture the variables of their
defining environment by value or by reference as well.

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), [](int& i){ i= i*i; });

// 1 4 9 16 25 36 49 64 81 100

10.11 Lazy Evaluation

In the case of lazy evaluation³, the expression is only evaluated if needed. This
evaluation strategy is opposite to eager evaluation. Lazy evaluation is often called
call-by-need.

10.12 Lock-free

A non-blocking algorithm is lock-free if there is guaranteed system-wide progress.

10.13 Lost Wakeup

A lost wakeup is a situation in which a thread misses its wake-up notification due to
a race condition.

10.14 Math Laws

A binary operation (*) on some set X is

• associative, if it satisfies the associative law for all x, y, z in X: (x * y) * z = x *
(y * z)

• commutative, if it satisfies the commutative law for all x, y in X: x * y = y * x

• distributive, if it satisfies the distributive law for all x, y, z in X: x(y + z) = xy
+ xz

³https://en.wikipedia.org/wiki/Lazy_evaluation

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation

Glossary 615

10.15 Memory Location

A memory location is according to cppreference.com⁴

• an object of scalar type (arithmetic type, pointer type, enumeration type, or
std::nullptr_t),

• or the largest contiguous sequence of bit fields of non-zero length.

10.16 Memory Model

The memory model defines the relationship between objects and memory locations
and deals with the question: What happens if two threads access the same memory
locations?

10.17 Non-blocking

An algorithm is called non-blocking if failure or suspension of any thread cannot
cause failure or suspension of another thread. This definition is from the excellent
book Java concurrency in practice⁵.

10.18 Object

A type is an object if it is either a scalar, an array, a union, or a class.

10.19 Parallelism

Parallelism means that several tasks are performed at the same time. Parallelism is
a subset of Concurrency. In contrast to concurrency, parallelism requires multiple
cores.

⁴http://en.cppreference.com/w/cpp/language/memory_model
⁵http://jcip.net/

http://en.cppreference.com/w/cpp/language/memory_model
http://jcip.net/
http://en.cppreference.com/w/cpp/language/memory_model
http://jcip.net/

Glossary 616

10.20 Predicate

Predicates are callable units that return a boolean as a result. If a predicate has one
argument, it’s called a unary predicate. If a predicate has two arguments, it’s called
a binary predicate.

10.21 RAII

Resource Acquisition Is Initialization, in short RAII, stands for a popular technique
in C++ in which the resource acquisition and release are bound to the lifetime of an
object. This means for a lock that the mutex will be locked in the constructor and
unlocked in the destructor.

Typical use cases in C++ are locks that handle the lifetime of its underlying mutex,
smart pointers that handle the lifetime of its resource (memory), or containers of the
standard template library⁶ that handle the lifetime of their elements.

10.22 Race Conditions

A race condition is a situation in which the result of an operation depends on the
interleaving (ordering of operations) of certain individual operations.

Race conditions are quite difficult to spot. Whether they occur depends on the
interleaving of the threads. That means the number of cores, the utilization of your
system, or the optimization level of your executable may all be reasons why a race
condition appears or does not.

10.23 Regular

In addition to the requirements of the concept SemiRegular, the concept Regular
requires that the type is equally comparable.

⁶https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container

Glossary 617

10.24 Scalar

A scalar type is either an arithmetic type (see std::is_arithmetic⁷), an enum, a
pointer, a member pointer, or a std::nullptr_t.

10.25 SemiRegular

A semiregular type X has to support the Big Six and has to be swappable: swap(X&,
X&)

10.26 Spurious Wakeup

A spurious wakeup is an erroneous notification. The waiting component of a
condition variable or an atomic flag can get a notification, although the notification
component didn’t send the signal.

10.27 The Big Four

The Big Four are the four key features of C++20: concepts, modules, the ranges library,
and coroutines.

• Concepts change the way we think about and program with templates. They
are semantic categories for template parameters. They enable you to express
your intention directly in the type system. If something goes wrong, the
compiler gives you a clear error message.

• Modules overcome the restrictions of header files. They promise a lot. For
example, the separation of header and source files becomes as obsolete as the
preprocessor. In the end, we have faster build times and an easier way to build
packages.

⁷https://en.cppreference.com/w/cpp/types/is_arithmetic

https://en.cppreference.com/w/cpp/types/is_arithmetic
https://en.cppreference.com/w/cpp/types/is_arithmetic

Glossary 618

• The new ranges library supports performing algorithms directly on the con-
tainers, composing algorithms with the pipe symbol, and applying algorithms
lazily on infinite data streams.

• Thanks to coroutines, asynchronous programming in C++ becomes main-
stream. Coroutines are the basis for cooperative tasks, event loops, infinite data
streams, or pipelines.

10.28 The Big Six

The Big Six consists of the following functions:

• Default constructor: X()
• Copy constructor: X(const X&)

• Copy assignment: X& operator = (const X&)

• Move constructor: X(X&&)
• Move assignment: X& operator = (X&&)

• Destructor: ∼X()

10.29 Thread

In computer science, a thread of execution is the smallest sequence of programmed
instructions that a scheduler can manage independently that is typically a part of
the operating system. The implementation of threads and processes differs between
operating systems, but in most cases, a thread is a process component. Multiple
threads can exist within one process, executing concurrently and sharing resources
such as memory, while different processes do not share these resources. For the
details, read the Wikipedia article about threads⁸.

10.30 Time Complexity

O(i) stands for the time complexity (run time) of an operation. With O(1), the run
time of an operation on a container is constant and is, hence, independent of its
size. Conversely, O(n) means that the run time depends linearly on the number of
container elements.

⁸https://en.wikipedia.org/wiki/Thread_(computing)

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)

Glossary 619

10.31 Translation Unit

A translation unit is the source file after processing of the C preprocessor. The
C preprocessor includes the header files using #include directives, performs
conditional inclusionwith directives such as #ifdef, or #ifndef, and expandsmacros.
The compiler uses the translation unit to create an object file.

10.32 Undefined Behavior

All bets are off. Your program can produce the correct result, the wrong result, can
crash at run time, or may not even compile. That behavior might change when
porting to a new platform, upgrading to a new compiler, or as a result of an unrelated
code change.

Index
Entries in capital letters stand for sections and subsections.

__cpp_designated_initializers
(formatting) __cpp_enumerator_attributes
0 __cpp_exceptions
0 (formatting) __cpp_fold_expressions
[__cpp_generic_lambdas
[[carries_dependency]] __cpp_generic_lambdas
[[deprecated]] __cpp_guaranteed_copy_elision
[[fallthrough]] __cpp_hex_float
[[likely]] __cpp_if_constexpr
[[maybe_unused]] __cpp_impl_coroutine
[[nodiscard]] __cpp_impl_destroying_delete
[[noreturn]] __cpp_impl_three_way_comparison
[[unlikely]] __cpp_inheriting_constructors
[i] (span) __cpp_inheriting_constructors
_ __cpp_init_captures
__cplusplus __cpp_init_captures
__cpp_aggregate_bases __cpp_initializer_lists
__cpp_aggregate_nsdmi __cpp_inline_variables
__cpp_aggregate_paren_init __cpp_lambdas
__cpp_alias_templates __cpp_lib_addressof_constexpr
__cpp_aligned_new __cpp_lib_allocator_traits_is_always_equal
__cpp_attributes __cpp_lib_any
__cpp_binary_literals __cpp_lib_apply
__cpp_capture_star_this __cpp_lib_array_constexpr
__cpp_char8_t __cpp_lib_as_const
__cpp_concepts __cpp_lib_assume_aligned
__cpp_conditional_explicit __cpp_lib_atomic_flag_test
__cpp_consteval __cpp_lib_atomic_float
__cpp_constexpr __cpp_lib_atomic_is_always_lock_free
__cpp_constinit __cpp_lib_atomic_lock_free_type_aliases
__cpp_decltype __cpp_lib_atomic_ref

Index 621

__cpp_decltype_auto __cpp_lib_atomic_shared_ptr
__cpp_deduction_guides __cpp_lib_atomic_value_initialization
__cpp_delegating_constructors __cpp_lib_atomic_wait

Index 622

__cpp_lib_barrier __cpp_lib_incomplete_container_elements
__cpp_lib_bind_front __cpp_lib_int_pow2
__cpp_lib_bit_cast __cpp_lib_integer_comparison_functions
__cpp_lib_bitops __cpp_lib_integer_sequence
__cpp_lib_bool_constant __cpp_lib_integral_constant_callable
__cpp_lib_bounded_array_traits __cpp_lib_interpolate
__cpp_lib_boyer_moore_searcher __cpp_lib_invoke
__cpp_lib_byte __cpp_lib_is_aggregate
__cpp_lib_char8_t __cpp_lib_is_constant_evaluated
__cpp_lib_chrono __cpp_lib_is_final
__cpp_lib_chrono __cpp_lib_is_invocable
__cpp_lib_chrono_udls __cpp_lib_is_layout_compatible
__cpp_lib_clamp __cpp_lib_is_nothrow_convertible
__cpp_lib_complex_udls __cpp_lib_is_null_pointer
__cpp_lib_concepts __cpp_lib_is_pointer_interconvertible
__cpp_lib_constexpr_algorithms __cpp_lib_is_swappable
__cpp_lib_constexpr_complex __cpp_lib_jthread
__cpp_lib_constexpr_dynamic_alloc __cpp_lib_latch
__cpp_lib_constexpr_functional __cpp_lib_launder
__cpp_lib_constexpr_iterator __cpp_lib_list_remove_return_type
__cpp_lib_constexpr_memory __cpp_lib_logical_traits
__cpp_lib_constexpr_numeric __cpp_lib_make_from_tuple
__cpp_lib_constexpr_string __cpp_lib_make_reverse_iterator
__cpp_lib_constexpr_string_view __cpp_lib_make_unique
__cpp_lib_constexpr_tuple __cpp_lib_map_try_emplace
__cpp_lib_constexpr_utility __cpp_lib_math_constants
__cpp_lib_constexpr_vector __cpp_lib_math_special_functions
__cpp_lib_coroutine __cpp_lib_memory_resource
__cpp_lib_destroying_delete __cpp_lib_node_extract
__cpp_lib_enable_shared_from_this __cpp_lib_nonmember_container_access
__cpp_lib_endian __cpp_lib_not_fn
__cpp_lib_erase_if __cpp_lib_null_iterators
__cpp_lib_exchange_function __cpp_lib_optional
__cpp_lib_execution __cpp_lib_parallel_algorithm
__cpp_lib_filesystem __cpp_lib_polymorphic_allocator
__cpp_lib_format __cpp_lib_quoted_string_io
__cpp_lib_gcd_lcm __cpp_lib_ranges
__cpp_lib_generic_associative_lookup __cpp_lib_raw_memory_algorithms
__cpp_lib_generic_unordered_lookup __cpp_lib_remove_cvref

Index 623

__cpp_lib_hardware_interference_size __cpp_lib_result_of_sfinae
__cpp_lib_has_unique_object_-
representations

__cpp_lib_robust_nonmodifying_seq_ops

__cpp_lib_hypot __cpp_lib_sample

Index 624

__cpp_lib_scoped_lock __cpp_rvalue_references
__cpp_lib_semaphore __cpp_sized_deallocation
__cpp_lib_shared_mutex __cpp_static_assert
__cpp_lib_shared_ptr_arrays __cpp_structured_bindings
__cpp_lib_shared_ptr_weak_type __cpp_template_template_args
__cpp_lib_shared_timed_mutex __cpp_threadsafe_static_init
__cpp_lib_shift __cpp_unicode_characters
__cpp_lib_smart_ptr_for_overwrite __cpp_unicode_literals
__cpp_lib_source_location __cpp_user_defined_literals
__cpp_lib_span __cpp_using_enum
__cpp_lib_ssize __cpp_variable_templates
__cpp_lib_starts_ends_with __cpp_variadic_templates
__cpp_lib_string_udls __cpp_variadic_using
__cpp_lib_string_view _dynamic_alloc
__cpp_lib_syncbuf _in_decltype
__cpp_lib_three_way_comparison A
__cpp_lib_to_address A Generator Function
__cpp_lib_to_array A Quick Overview
__cpp_lib_to_chars A thread-safe singly linked list
__cpp_lib_transformation_trait_aliases Abbreviated Function Templates
__cpp_lib_transparent_operators acquire
__cpp_lib_transparent_operators Addable
__cpp_lib_tuple_element_t Aggregate Initialization
__cpp_lib_tuples_by_type alignment
__cpp_lib_type_identity all (views)
__cpp_lib_type_trait_variable_templates All Atomic Operations (std::atomic_ref)
__cpp_lib_uncaught_exceptions all_t (views)
__cpp_lib_unordered_map_try_emplace An Infinite Data Stream
__cpp_lib_unwrap_ref Anonymous Concepts
__cpp_lib_variant April
__cpp_lib_void_t Argument ID
__cpp_modules Arithmetic
__cpp_namespace_attributes arrive
__cpp_noexcept_function_type arrive_and_drop
__cpp_nontype_template_args arrive_and_wait (barrier)
__cpp_nontype_template_parameter_auto arrive_and_wait (latch)
__cpp_nsdmi assertion (contracts)
__cpp_range_based_for assignable_from (concepts)
__cpp_raw_strings associative (Glossary)

Index 625

__cpp_ref_qualifiers atomic Extensions
__cpp_return_type_deduction Atomic Smart Pointer
__cpp_rtti atomic<shared_ptr<T>>

Index 626

atomic<weak_ptr<T>> C++17
atomic_flag Extensions C++23 and Beyond
ATOMIC_FLAG_INIT C++23
atomic_ref C++98
atomic_shared_ptr Calendar and Timezone
atomic_weak_ptr Calendar Dates
Atomics callable (Glossary)
August callable (Glossary)
Automatically Joining Callable Unit
await_ready Case Studies
await_resume char16_t
await_suspend char32_t
Awaitable char8_t
Awaitables (coroutines) char
Awaitables and Awaiters (coroutines) Cippi
Awaiter (coroutines) Class Template Argument Deduction Guide
B clear (atomic_flag)
back (span) cmp_equal
barrier cmp_greater
basic_istream (views) cmp_greater_equal
basic_istream_view cmp_less
basic_osyncstream cmp_less_equal
basic_streambuf cmp_not_equal
basic_syncbuf co_await
Becoming a Coroutine co_awaitsssoperator
bidirectional_iterator (concepts) co_return
bidirectional_range (concepts) co_wait operator
big (endian) co_yield
big-endian column
binary_semaphore common (views)
bind_front common_reference_with (concepts)
bit field common_view
Bit Manipulation common_with (concepts)
bit_cast commutative (Glossary)
bit_ceil Comparison
bit_floor compilation (source code)
bit_width Compilation and Use (modules)
bulk (executors) compile-time predicate
C Compound Requirements

Index 627

C++03 Concepts
C++11 Concurrency (Glossary)
C++14 Concurrency

Index 628

condition_variable_any D
Conditionally Explicit Constructor data (span)
Consistent Container Erasure Data Race (Glossary)
consteval day
constexpr Container Deadlock (Glossary)
constinit December
constrained placeholders Default Member Initializers Bit Fields
constrained template parameter default_constructible (concepts)
constraint-expression define (macro)
constructible_from (concepts) Defining Concepts
Container Improvements derived_from (concepts)
contains Design Goals (coroutines)
contiguous_iterator (concepts) Designated Initialization
contiguous_range (concepts) designators
contract_violation (contracts) destructible (concepts)
Contracts detach
convertible_to (concepts) Details (coroutines)
copy_constructible (concepts) distributive (Glossary)
copyable (concepts) drop (views)
Core Language drop_view
coroutine factory drop_while (views)
Coroutine Frame (coroutines) drop_while_view
Coroutine Handle (coroutines) dynamic extent (span)static extent (span)
coroutine handle E
coroutine object e
coroutine state Eager evaluation (Glossary)
coroutine_traits Edsger W. Dijkstra
Coroutines Library egamma
Coroutines elements (views)
count (span) elements_view
count_down elif (macro)
counting semaphores else (macro)
countl_one emit
countl_zero empty (span)
countr_one endian
countr_zero endif (macro)
cppcoro ends_with
Critical Section (Glossary) Epilogue
current epoch

Index 629

current_zone Equal
Cute Syntax equality_comparable (concepts)
CWG erase-remove idiom

Index 630

erase Further Information
erase_if G
EWG generic lambdas
Executor (Glossary) get_id
Executors get_return_object
export group get_stop_source
export import get_stop_token
export namespace get_token (stop_source)
export specifier get_tzdb
export get_tzdb_list
external linkage get_wrapped
F global module fragment
Fast Synchronisation of Threads Glossary
Feature Testing gps_clock
February Guideline for a Module Structure
file_clock H
file_name has_single_bit
fill character Haskell type classes
filter (Python) header units
filter (views) hh_mm_ss
filter_view high_resolution_clock
final_suspend(coroutines) Historical Context of C++
final_suspend hours
first (span) I
floating_point (concept definition) if (macro)
format (user-defined type) ifdef (macro)
Format String immediate function
format import
format_error (user-defined type) include (macro)
format_to (user-defined type) indef (macro)
format_to Initalizers
format_to_n initial_suspend(coroutines)
formatter (user-defined type) initial_suspend
Formatting Library input_iterator (concepts)
forward_iterator (concepts) input_range (concepts)
forward_range (concepts) inspect
Four Ways to use a Concept integral (concept definition)
From Mathematics to Generic Programming integral (concepts)
front (span) Integral

Index 631

Function Objects (Glossary) internal linkage
function_name inv_pi
Further Improvements inv_sqrt3

Index 632

inv_sqrtpi local_info
invariant (contracts) local_t
invocable (concepts) locate_zone
is_am lock-free (Glossary)
is_constant_evaluated log10e
is_lock_free (atomic_ref)#text log2e
is_pm Lost Wakeup (Glossary)
J LWG
January M
join (views) make12
join make14
join_view make_shared
joinable map (Python)
Joining Threads March
jthread Math Laws (Glossary)
July Mathematical Constants
June max (barrier)
K max (counting_semaphore)
keys (views) max (latch)
keys_view May
L Memory Location (Glossary)
Lambda Functions (Glossary) Memory Model (Glossary)
Lambda Improvements mergeable (concepts)
last (span) midpoint
last minutes
last_spec Modication and Generalization of a Generator
latch Modularized Standard Library for Modules
Latches and Barriers module declaration file
Lazy eEvaluation (Glossary) module declaration
leap_second Module implementation unit
LegacyRandomAccessIterator module interface partition
lerp module interface unit
LEWG module linkage
lexicographical comparison module partitions
line module purview
linking Modules
list comprehension (Python) month
little (endian) month_day
little-endian month_day_last

Index 633

ln10 month_weekday
ln2 month_weekday_last
local_days movable (concepts)

Index 634

move_constructiblee (concepts) precision
N precondition (contracts)
NaN Predefined Concepts
Nested Requirements predicate (concepts)
Network Library Predicate (Glossary)
New Attributes preprocessing
no_unique_address (attribute) primary interface file
Non-blocking (Glossary) projection
Non-Type Template Parameters promise object (coroutine)
nonexistent_local_time Promise Object (coroutines)
nostopstate_t R
Not a Number Race Condition
notify_all (atomic_flag) RAII (Glossary)
notify_one (atomic_flag) random_access_iterator (concepts)
November random_access_range (concepts)
O range (concepts)
Object (Glossary) Range-based for-loop
October Ranges Library
ODR ref_view
ok Reference PCs
one definition rule reflection operator
One Time Synchronization of Threads Reflection
oneway (executors) regular (concepts)
Operations Regular (Glossary)
operator / regular_invocable (concepts)
Optimized == and != Operators release (counting_semaphore)
ordinal dates reload_tzdb
output_iterator (concepts) remote_version
output_range (concepts) request_stop (stop_source)
P request_stop
Parallelism (Glossary) require (execution)
parse (user-defined type) Requires Clauses
parse Requires Expressions
partial ordering requires requires
partition interface file Restrictions (coroutines)
Pattern Matching resumable function
permutable (concepts) resumable object
phi return_value
pi return_void

Index 635

placeholders reverse (views)
popcount reverse_view
postcondition (contracts) rotl

Index 636

rotr sortable (concepts)
S source_location
Safe Comparison of Integers integral spacehip operator (concepts)
same_as (concepts) spaceship
Scalar (Glossary) span
scalar type Specilisations of std::atomic_ref
seconds split (views)
Semaphores split_view
semiregular (concepts) Spurious wakeup (Glossary)
SemiRegular (Glossary) sqrt2
September sqrt3
SG10 Standard Library
SG11 Standardization
SG12 starts_with
SG13 stateless lambda
SG14 static initialization order fiasco
SG15 steady_clock
SG16 stop_callback
SG17 stop_possible (stop_source)
SG18 stop_possible (stop_token)
SG19 stop_requested (stop_source)
SG1 stop_requested (stop_token)
SG20 stop_source
SG21 stop_token
SG22 strong ordering
SG2 Study Group
SG2 submodules
SG3 subseconds
SG4 subspan (span)
SG5 suspend_always
SG6 suspend_never
SG7 swappable (concepts)
SG8 Synchronized Output Streams
SG9 sys_days
SG sys_info
sign system_clock
signed_integral (concept definition) T
SignedIntegral tai_clock
Simple Requirements take (views)

Index 637

single (executors) take_view
size (span) take_while (views)
size_bytes (span) take_while_view

Index 638

tdzb_list Type Requirements
Template Improvements Typical Use-Cases (coroutines)
Template Introduction tzdb
template lambdas U
Templates in Modules unconstrained placeholders
test (atomic_flag) Undefined Behavior Unit (Glossary)
test_and_set (atomic_flag) Underlying Concepts (coroutines)
The Awaiter Workflow unevaluated context
The Big Four (Glossary) unhandled_exception
The Big Six (Glossary) Unix time
The Concepts Equal andOrdering unsigned_integral (concept definition)
The Concepts SemiRegular and Regular UnsignedIntegral
The Details using enum in local Scopes
The Framework (coroutines) UTC time
The Promise Workflow utc_clock
The structure of a std::list V
The Workflow values (views)
then (executors) values_view
this_thread::get_id Variations of
this_thread::sleep_for Various Job Workflows
this_thread::sleep_until view (concepts)
this_thread::yield view
Thread (Glossary) view_interface
thread::hardware_concurrency Virtual constexpr function
Three-Way Comparison operator volatile
Three-Way Comparison operator W
Time Complexity (Glossary) wait (atomic_flag)
time_zone wait (barrier)
time_zone_link wait (condition_variable_any)
to_array wait (latch)
to_duration wait_for (condition_variable_any)
totally_ordered (concepts) wait_until (condition_variable_any)
TR1 weak ordering
trailing requires clause weekday
transform (views) weekday_indexed
transform_view weekday_last
Translation Unit (Glossary) WG21
try_acquire width
try_acquire_for with

Index 639

try_acquire_until Working Group 21
try_wait Y
twoway (executors) year

Index 640

year_month
year_month_day
year_month_day_last
year_month_weekday
year_month_weekday_last
yield_value
Z
zoned_time
zoned_traits

	Table of Contents
	Reader Testimonials
	Introduction
	Conventions
	Special Fonts
	Special Boxes

	Source Code
	Compilation of the Programs

	How should you read the Book?
	Personal Notes
	Acknowledgments
	About Me

	About C++
	Historical Context
	C++98
	C++03
	TR1
	C++11
	C++14
	C++17

	Standardization
	Stage 3
	Stage 2
	Stage 1

	A Quick Overview of C++20
	C++20
	The Big Four
	Concepts
	Modules
	The Ranges Library
	Coroutines

	Core Language
	Three-Way Comparison Operator
	Designated Initialization
	consteval and constinit
	Template Improvements
	Lambda Improvements
	New Attributes

	The Standard Library
	std::span
	Container Improvements
	Arithmetic Utilities
	Calendar and Time Zones
	Formatting Library

	Concurrency
	Atomics
	Semaphores
	Latches and Barriers
	Cooperative Interruption
	std::jthread
	Synchronized Outputstreams

	The Details
	Core Language
	Concepts
	Two Wrong Approaches
	Advantages of Concepts
	The long, long History
	Use of Concepts
	Constrained and Unconstrained Placeholders
	Abbreviated Function Templates
	Predefined Concepts
	Defining Concepts
	Application

	Modules
	Why do we need Modules?
	Advantages
	A First Example
	Compilation and Use
	Export
	Guidelines for a Module Structure
	Module Interface Unit and Module Implementation Unit
	Submodules and Module Partitions
	Templates in Modules
	Module Linkage
	Header Units

	Three-Way Comparison Operator
	Ordering before C++20
	Ordering since C++20
	Comparision Categories
	The Compiler-Generated Spaceship Operator
	Rewriting Expressions
	User-Defined and Auto-Generated Comparison Operators

	Designated Initialization
	Aggregate Initialization
	Named Initialization of Class Members

	consteval and constinit
	consteval
	constinit
	Function Execution
	Variable Initialization
	Solving the Static Initialization Order Fiasco

	Template Improvements
	Conditionally Explicit Constructor
	Non-Type Template Parameters

	Lambda Improvements
	Template Parameter for Lambdas
	Detection of the Implicit Copy of the this Pointer
	Lambdas in an Unevaluated Context and Stateless Lambdas can be Default-Constructed and Copy-Assigned

	New Attributes
	[[nodiscard("reason")]]
	[[likely]] and [[unlikely]]
	[[no_unique_address]]

	Further Improvements
	volatile
	Range-based for loop with Initializers
	Virtual constexpr function
	The new Character Type of UTF-8 Strings: char8_t
	using enum in Local Scopes
	Default Member Initializers for Bit Fields

	The Standard Library
	The Ranges Library
	The Concepts Ranges and Views
	Direct on the Container
	Function Composition
	Lazy Evaluation
	Define a View
	A Flavor of Python

	std::span
	Static versus Dynamic Extent
	Automatically Deduces the Size of a Contiguous Sequence of Objects
	Create a std::span from a Pointer and a Size
	Modifying the Referenced Objects
	Addressing std::span Elements
	A Constant Range of Modifiable Elements

	Container Improvements
	constexpr Containers and Algorithms
	std::array
	Consistent Container Erasure
	contains for Associative Containers
	String prefix and suffix checking

	Arithmetic Utilities
	Safe Comparison of Integers
	Mathematical Constants
	Midpoint and Linear Interpolation
	Bit Manipulation

	Calendar and Time Zones
	Time of day
	Calendar Dates
	Time Zones

	Formatting Library
	Format String
	User-Defined Types

	Further Improvements
	std::bind_front
	std::is_constant_evaluated
	std::source_location

	Concurrency
	Coroutines
	A Generator Function
	Characteristics
	The Framework
	Awaitables and Awaiters
	The Workflows
	co_return
	co_yield
	co_await

	Atomics
	std::atomic_ref
	Atomic Smart Pointer
	std::atomic_flag Extensions
	std::atomic Extensions

	Semaphores
	Latches and Barriers
	std::latch
	std::barrier

	Cooperative Interruption
	std::stop_source
	std::stop_token
	std::stop_callback

	std::jthread
	Automatically Joining
	Cooperative Interruption of a std::jthread

	Synchronized Output Streams

	Case Studies
	Fast Synchronization of Threads
	Condition Variables
	std::atomic_flag
	std::atomic<bool>
	Semaphores
	All Numbers

	Variations of Futures
	A Lazy Future
	Execution on Another Thread

	Modification and Generalization of a Generator
	Modifications
	Generalization

	Various Job Workflows
	The Transparent Awaiter Workflow
	Automatically Resuming the Awaiter
	Automatically Resuming the Awaiter on a Separate Thread

	Epilogue
	Further Information
	C++23 and Beyond
	C++23
	The Coroutines Library
	Modularized Standard Library for Modules
	Executors
	The Network Library

	C++23 or Later
	Contracts
	Reflection
	Pattern Matching

	Further Information about C++23

	Feature Testing
	Glossary
	Callable
	Callable Unit
	Concurrency
	Critical Section
	Data Race
	Deadlock
	Eager Evaluation
	Executor
	Function Objects
	Lambda Expressions
	Lazy Evaluation
	Lock-free
	Lost Wakeup
	Math Laws
	Memory Location
	Memory Model
	Non-blocking
	Object
	Parallelism
	Predicate
	RAII
	Race Conditions
	Regular
	Scalar
	SemiRegular
	Spurious Wakeup
	The Big Four
	The Big Six
	Thread
	Time Complexity
	Translation Unit
	Undefined Behavior

	Index

