Standard C++ Library Reference

——— E— —
" S——
- .
—— E————
—— -
LB]
I W E—
I 7 E—

SC09-8000-00

Note!
FBefore using this information and the product it supports, read the information in|‘Notices” on page 429

Edition Notice (October 2005)

© Copyright International Business Machines Corporation 1999, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. C++ Library

Chapter 2. C++ Library Overview .

Using C++ Library Headers

C++ Library Conventions .

Iostreams Conventions .

C++ Program Startup and Termmatlon

Chapter 3. Characters.
Character Sets .
Character Sets and Locales
Escape Sequences .
Numeric Escape Sequences .
Trigraphs .
Multibyte Characters
Wide-Character Encoding.

Chapter 4. Expressions

Chapter 5. Files and Streams .
Text and Binary Streams .

Byte and Wide Streams

Controlling Streams

Stream States .

Chapter 6. Functions.

Chapter 7. Formatted Input
Scan Formats .

Scan Functions

Scan Conversion Spec1f1ers

Chapter 8. Formatted Output
Print Formats.

Print Functions . . .

Print Conversion Spec1f1ers .

Chapter 9. STL Conventions
Iterator Conventions
Algorithm Conventions

Chapter 10. Containers.
Cont.
Cont::begin
Cont:clear. .
Cont::const_iterator .
Cont::const_reference .
Cont::const_reverse_iterator .
Cont:difference_type .
Cont:empty .
Cont::end .
Cont::erase
Cont::iterator .

© Copyright IBM Corp. 1999, 2005

NN oo G

—om
NPk =R oo v O

13
. 15

. 17
.17
.18
.19
.20

. 23

. 25
.25
.25
.26

. 31
.31
.32
.33

. 37
.37
. 38

.4
.42
. 44
. 44
. 44
.44
. 44
. 44
. 44
. 45
. 45
. 45

Cont:max_size45
Conturbegin45
Contureference45
Contzrend.45
Cont:reverse_iterator46
Contisize46
Contusize_type46
Contuswap46
Cont:value_type.46
operator!=.46
operator==46
operator<47
operator<=47
operator>47
operator>=47
swap LAY

Chapter 11. Preprocessing 49

Chapter 12. Standard C++ Library
Header Files51

<bitset>b4
bitset54
operator<<58
operator>>5
<cassert>5
<cctype>5
<cerrno>5
<cfloat>5
<cisob646>60
<climits>60
<clocale>60
<cmath>60
<complex>61
abs63
arg63
complex63
complex<double>66
complex<float>67
complex<long double>67
conj. 67
17 Y= < V4
cosh.67
exp68
imag.68
log68
logto68
norm68
operator!=.68
operator*68
operator+69
operator-69
operator/69
operator<<69
operator==70
iii

operator>>70 noboolalpha9
polar70 noshowbase9
pow.7 noshowpoint99
real7 noshowpos9
sin7 noskipws.100
simh.7 nounitbuf100
sqrt71 nouppercase.100
_STD. COMPLEX71 oct.100
tan7 right100
tanh.7 scientific100
<csetmp>.72 showbase.100
<csignal>72 showpoint100
<estdarg>.72 showpos100
<cstddef>72 skipws101
<cstdio>72 streamoff.101
<cstdlib>73 streampos101
<cstring>73 streamsize101
<ctime>73 unitbuf101
<cwchar>74 uppercase101
<cwctype>.74 wios10
<exception>74 wstreampos101
bad_exception75 <osfwd>.102
exception75 <iostream>103
set_terminate.75 cerr. 104
set_unexpected75 can.104
terminate75 cog104
terminate_handler75 cout104
uncaught_exception76 weerr104
unexpected76 wein105
unexpected_handler76 wclog105
<fstreem>.76 weout.105
basic_filebuf77 <istreem>105
basic_fstreem.81 basic_iostream106
basic_ifstreem82 basic_istreem106
basic_ofstreem83 iostreem12
filebuf8 istreem12
fstrem.84 operator>>112
ifstreem84 wiostreem114
ofstreem8 wistream114
wfstreem8 WS14
wifstreem8 <limits>14
wofstreem.8 float_denorm_style 114
wfilebuf8 float_round_style115
<iomanip>.8 numeric_limits115
resetiosflags86 <locale>19
setbase.86 codecvt121
setfill86 codecvt base125
setiosflags86 codecvt_byname125
setprecision86 collate.126
setw.86 collate_byname.127
<ios>86 ctype 0L 0127
basicios88 ctype<char>.131
boolalpha91 ctype_base132
dec 00092 ctype_byname133
fixed.9 has_facet.133
fpos.92 isalnum133
hex9 isalpha133
internal.9 isentrel133
ios L L L. L. % isdigit.133
ios_base9% isgraph134
left9 islower13

iv Standard C++ Library

isprint.

ispunct

isspace

isupper
isxdigit

locale .
messages .
messages_base .
messages_byname .
money_base .
money_get
money_put .
moneypunct.

moneypunct_byname.

num_get .
num_put .
numpunct
numpunct_byname
time_base
time_get . .
time_get_byname .
time_put .
time_put_byname .
tolower
toupper
use_facet .
<new> . .
bad_alloc.
new_handler
nothrow .
nothrow_t
operator delete .
operator delete][]
operator new
operator new(] .
set_new_handler
<ostream>
basic_ostream
endl
ends
flush
operator<< .
ostream
wostream.
<sstream> .
basic_stringbuf . .
basic_istringstream
basic_ostringstream
basic_stringstream .
istringstream
ostringstream
stringbuf .
stringstream .
wistringstream .
wostringstream .
wstringbuf
wstringstream .
<stdexcept> .
domain_error
invalid_argument .
length_error .

. 134
. 134
. 134
. 134
. 134
. 134
. 139
. 140
. 140
. 141
. 141
. 143
. 145
. 149
. 149
. 152
. 156
. 158
. 158
. 158
. 162
. 162
. 163
. 163
. 164
. 164
. 164
. 164
. 165
. 165
. 165
. 165
. 165
. 166
. 167
. 167
. 168
. 169
. 173
. 173
. 173
. 173
. 176
. 176
. 176
. 176
. 180
. 181
. 182
. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 184
. 184
. 184
. 184

logic_error
out_of_range
overflow_error .
range_error .
runtime_error
underflow_error

<streambuf>.

basic_streambuf
streambuf
wstreambuf .

<string> .

basic_string .
char_traits .
char_traits<char> .
char_traits<wchar_t> .
getline.
operator+.
operator!=
operator==.
operator<.
operator<< .
operator<= .
operator>.
operator>= .
operator>> .
string .

swap .

wstring

<strstream> .

strstreambuf .
istrstream
ostrstream
strstream .

<typeinfo>

bad_cast .
bad_typeid .
type_info .

<valarray>

abs .

acos

asin

atan

atan2 .

Cos .

cosh

exp.

gslice .
gslice_array .
indirect_array
log . .
log10 .
mask_array .
operator!=
operator%
operator&
operator&é& .
operator>.
operator>> .
operator>= .
operator<.
operator<< .

. 184
. 185
. 185
. 185
. 185
. 185
. 185
. 186
. 194
. 194
. 195
. 197
. 210
. 213
. 213
. 214
. 214
. 214
. 215
. 215
. 215
. 216
. 216
. 216
. 216
. 217
. 217
. 217
. 217
. 217
. 221
. 222
. 223
. 224
. 224
. 224
. 225
. 225
. 229
. 229
. 229
. 230
. 230
. 230
. 230
. 230
. 230
. 231
. 232
. 233
. 233
. 233
. 234
. 234
. 234
. 234
. 235
. 235
. 235
. 235
. 236

Contents

A\

operator<= .
operator® .
operator+.
operator- .
operator/.
operator==.
operator”.
operator | .
operator | |

pow

sin .

sinh

slice

slice_array

sqrt.

tan .

tanh .
valarray . .
valarray<bool> .

<algorithm>.
adjacent_find
binary_search
copy
copy_backward.
count . -
count_if .
equal .
equal_range .
fill .

filLn .

find

find_end .
find_first_of .
find_if .
for_each .
generate .
generate_n
includes .
inplace_merge .
iter_swap.

lexicographical_compare.

lower_bound
make_heap .

max . . .
max_element
merge .

min . . .
min_element
mismatch.
next_permutation .
nth_element .
partial_sort .
partial_sort_copy .
partition .
pop_heap.
prev_permutation .
push_heap
random_shuffle.

Standard C++ Library

. 236
. 236
. 236
. 237
. 237
. 237
. 237
. 238
. 238
. 238
. 238
. 239
. 239
. 239
. 240
. 240
. 240
. 240
. 247

Chapter 13. Standard Template Library
C++

e 249
. 249
. 253
. 254
. 254
. 254
. 254
. 255
. 255
. 255
. 255
. 256
. 256
. 256
. 256
. 257
. 257
. 257
. 257
. 257
. 258
. 258
. 258
. 259
. 259
. 259
. 259
. 260
. 260
. 261
. 261
. 261
. 262
. 262
. 262
. 263
. 263
. 263
. 264
. 264

remove
remove_copy
remove_copy_if
remove_if
replace
replace_copy
replace_copy_if.
replace_if.
reverse
reverse_copy
rotate .
rotate_copy .
search .
search_n .
set_difference
set_intersection .

set_symmetric_difference

set_union.
sort.
sort_heap.
stable_partition.
stable_sort
swap .
swap_ranges
transform.
unique
unique_copy
upper_bound
<deque> .
deque .
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
swap .
<functional>.
binary_function.
binary_negate .
bind1st
bind2nd .
binderlst .
binder2nd
const_mem_fun_t .
const_mem_fun_ref_t.
const_mem_funl_t.
const_mem_funl_ref t
divides
equal_to .
greater
greater_equal
hash
less.
less_equal
logical_and .
logical_not
logical_or.
mem_fun.
mem_fun_ref
mem_fun_t .

. 264
. 265
. 265
. 265
. 266
. 266
. 266
. 266
. 267
. 267
. 267
. 267
. 267
. 268
. 268
. 269
. 269
. 270
. 270
. 271
. 271
. 271
. 272
. 272
. 272
. 272
. 273
. 273
. 274
. 274
. 281
. 281
. 282
. 282
. 282
. 282
. 282
. 282
. 285
. 285
. 285
. 285
. 286
. 286
. 286
. 287
. 287
. 287
. 287
. 287
. 288
. 288
. 288
. 288
. 288
. 288
. 289
. 289
. 289
. 289
. 289

mem_fun_ref t.
mem_funl_t.
mem_funl_ref t
minus .
modulus .
multiplies
negate.

notl

not2
not_equal_to
plus

pointer_to_binary_function .
pointer_to_unary_function .

ptr_fun
unary_function .
unary_negate
<iterator>
advance . .
back_insert_iterator
back_inserter
bidirectional_iterator_tag
distance . ..
forward_iterator_tag .
front_insert_iterator
front_inserter
input_iterator_tag .
insert_iterator
inserter
istream_iterator.
istreambuf_iterator
iterator
iterator_traits
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
operator+.
operator- .
ostream_iterator
ostreambulf_iterator
output_iterator_tag

random_access_iterator_tag.

reverse_iterator.
<list> .
list .
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
swap .
<map>
map
multimap.
operator!=
operator==.
operator<.
operator<= .

. 290
. 290
. 290
. 290
. 290
. 290
. 291
. 291
. 291
. 291
. 291
. 291
. 291
. 292
. 292
. 292
. 293
. 294
. 294
. 296
. 296
. 296
. 296
. 296
. 297
. 298
. 298
. 299
. 299
. 300
. 302
. 302
. 303
. 303
. 304
. 304
. 304
. 304
. 304
. 304
. 304
. 306
. 307
. 307
. 307
. 310
. 310
. 319
. 319
. 319
. 319
. 319
. 319
. 320
. 320
. 321
. 328
. 335
. 335
. 335
. 336

operator>.
operator>= .
swap .
<memory>
allocator .
allocator<void>.
auto_ptr
get_temporary_buffer.
operator!=
operator==. .
raw_storage_iterator .
return_temporary_buffer
uninitialized_copy .
uninitialized_fill
uninitialized_fill n
<numeric>
accumulate .
adjacent_difference
inner_product .
partial_sum .
<queue> .
operator!=
operator== .
operator<.
operator<= .
operator>.
operator>= .
priority_queue .
queue .
<set> .
multiset .
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
set .
swap .
<stack>
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
stack
<unordered_map>.
unordered_map
unordered_multimap .
<unordered_set>
unordered_multiset
unordered_set .
<utility> .
make_pair
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .

Contents

. 336
. 336
. 336
. 336
. 337
. 340
. 340
. 343
. 343
. 343
. 343
. 344
. 345
. 345
. 345
. 345
. 346
. 346
. 346
. 347
. 347
. 348
. 348
. 348
. 348
. 348
. 348
. 348
. 351
. 353
. 354
. 360
. 360
. 360
. 361
. 361
. 361
. 361
. 367
. 368
. 368
. 368
. 368
. 369
. 369
. 369
. 369
. 371
. 371
. 378
. 386
. 386
. 393
. 400
. 401
. 401
. 401
. 401
. 402
. 402
. 402

vii

pair

<vector> .
operator!=
operator== .
operator<.
operator<= .
operator>.
operator>= .
swap .
vector . .
vector<bool, A>

Appendix. Type Traits.

Implementation Notes

Header file <type_traits>

Helper Class .

The Traits e

Unary Type Traits
Primary Type Categories
Composite Type Traits
Type Properties.

Binary Type Traits .

viii Standard C++ Library

. 402
. 403
. 403
. 403
. 404
. 404
. 404
. 404
. 404
. 404
. 411

. 415
. 415
. 416
. 417
. 417
. 417
. 418
. 419
. 420
. 424

is_same
is_convertible
is_base_of . . .

Relationships Between

remove_const
remove_volatile
remove_cv
add_const
add_volatile .
add_cv .
remove_reference .
add_reference
remove_pointer.
add_pointer .
remove_extent .
remove_all_extents
aligned_storage.

Notices .
References
Bug Reports .

Types .

. 424
. 424
. 424
. 425
. 425
. 425
. 425
. 425
. 426
. 426
. 426
. 426
. 426
. 426
. 427
. 427
. 427

. 429

. 431
. 431

Chapter 1. C++ Library

The C++ library supplied by IBM and this manual is based on the Dinkum C++
Library and the Dinkum C++ Library Reference.

Use of this Dinkum C++ Library Reference is subject to limitations. See the
Copyright Notice (page [429) for detailed restrictions.

A C++ program can call on a large number of functions from the Dinkum C++
Library, a conforming implementation of the Standard C++ library. These
functions perform essential services such as input and output. They also provide
efficient implementations of frequently used operations. Numerous function and
class definitions accompany these functions to help you to make better use of the
library. Most of the information about the Standard C++ library can be found in
the descriptions of the C++ library headers (page |5) that declare or define library
entities for the program.

The Standard C++ library consists of 53 headers. Of these 53 headers, 13 constitute
the Standard Template Library, or STL. These are indicated below with the
notation (STL):
<algorithm> (page — (STL) for defining numerous templates that
implement useful algorithms
<bitset> (page @) — for defining a template class that administers sets of bits
<complex> (page — for defining a template class that supports complex
arithmetic
<deque> (page — (STL) for defining a template class that implements a
deque container
<exception> (page [74) — for defining several functions that control exception
handling
<fstream> (page|76) — for defining several iostreams template classes that
manipulate exteral files
<functional> (page — (STL) for defining several templates that help
construct predicates for the templates defined in <algorithm> (page and
<numeric> (page [345)
<iomanip> (page [85) — for declaring several iostreams manipulators that take
an argument
<ios> (page [86) — for defining the template class that serves as the base for
many iostreams classes
<iosfwd> (page — for declaring several iostreams template classes before

they are necessarily defined

<iostream> (page — for declaring the iostreams objects that manipulate the
standard streams

<istream> (page — for defining the template class that performs
extractions

<iterator> (page — (STL) for defining several templates that help define
and manipulate iterators

<limits> (page [114) — for testing numeric type properties

<list> (page [310) — (STL) for defining a template class that implements a list
container

<locale> (page — for defining several classes and templates that control
locale-specific behavior, as in the iostreams classes

<map> (page — (STL) for defining template classes that implement
associative containers that map keys to values

© Copyright IBM Corp. 1999, 2005 1

2

Standard C++ Library

<memory> (page — (STL) for defining several templates that allocate and
free storage for various container classes

<new> (page — for declaring several functions that allocate and free
storage

<numeric> (page — (STL) for defining several templates that implement
useful numeric functions

<ostream> (page [L68) — for defining the template class that performs insertions
<queue> (page [347) — (STL) for defining a template class that implements a
queue container

<set> (page — (STL) for defining template classes that implement
associative containers

<sstream> (page — for defining several iostreams template classes that

manipulate string containers

<stack> (page — (STL) for defining a template class that implements a
stack container

<stdexcept> (page — for defining several classes useful for reporting
exceptions

<streambuf> (page — for defining template classes that buffer iostreams
operations

<string> (page — for defining a template class that implements a string
container

<strstream> (page — for defining several iostreams classes that manipulate
in-memory character sequences

<typeinfo> (page — for defining class type_info, the result of the typeid
operator

<unordered_map> (page — (STL) for defining template classes that
implement unordered associative containers that map keys to values
<unordered_set> (page — (STL) for defining template classes that
implement unordered associative containers

<utility> (page 400) — (STL) for defining several templates of general utility
<valarray> (page[225) — for defining several classes and template classes that
support value-oriented arrays

<vector> (page — (STL) for defining a template class that implements a
vector container

The Standard C++ library works in conjunction with the headers from the
Standard C library. For information about the Standard C library, refer to the
documentation that is supplied with the operating system.

Other information on the Standard C++ library includes:

C++ Library Overview (page EI) — how to use the Standard C++ library
Characters (page @' — how to write character constants (page E[) and string literals
(page E[), and how to convert between multibyte characters (page and wide
characters (page

Files and Streams (page — how to read and write data between the program
and files (page

Formatted Output (page — how to generate text under control of a format
string (page

Formatted Input (page @ — how to scan and parse text under control of a format
string (page

STL Conventions (page @ — how to read the descriptions of STL (page
template classes and functions

Containers (page — how to use an arbitrary STL (page|l) container template
class

A few special conventions are introduced into this document specifically for this
particular implementation of the Standard C++ library. Because the C++ Standard
(page is still relatively new, not all implementations support all the features
described here. Hence, this implementation introduces macros, or alternative
declarations, where necessary to provide reasonable substitutes for the capabilities
required by the C++ Standard.

Chapter 1. C++ Library 3

4 Standard C++ Library

Chapter 2. C++ Library Overview

Using C++ Library Headers (page B} - C++ Library Conventions (page@ .
Iostreams Conventions (page [7) - Program Startup and Termination (page

All C++ library entities are declared or defined in one or more standard headers.
To make use of a library entity in a program, write an include directive (page
that names the relevant standard header. The Standard C++ library consists of 53
required headers. These 53 C++ library headers (along with the additional
Standard C headers constitute a hosted implementation of the C++ library:
<algorithm> (page [249), <bitset> (page [54), <cassert> (page [39), <cctype> (page
59), <cerrno> (page [59), <cfloat> (page [59), <ciso646> (page |60), <climits> (page
60), <clocale> (page [60), <cmath> (page [60), <complex> (page [61), <csetimp> (page
72), <csignal> (page[72), <cstdarg> (page[72), <cstddef> (page [72)), <cstdio> (page
72), <cstdlib> (page [73), <cstring> (page[73), <ctime> (page [73), <cwchar> (page
74), <cwctype> (page [74), <deque> (page [274), <exception> (page , <fstream>
(page [76), <functional> (page [282), <iomanip> (page|85), <ios> (page [86), <iosfwd>
(page [102), <iostream> (page [103), <istream> (page [105), <iterator> (page [293),
<limits> (page [114), <list> (page [310)), <locale> (page [119), <map> (page [320),
<memory> (page [336), <new> (page [164), <numeric> (page [345), <ostream> (page
168), <queue> (page [347), <set> (page [353), <sstream> (page [176), <stack> (page

B68), <stdexcept> (page 184), <streambuf> page 185), <string> (page 195),
<strstream> (page , <typeinfo> (page [224), <unordered_map> (page [371),
400

<unordered_set> (page , <utility> (page [400), <valarray> (page , and
<vector> (page 403).

A freestanding implementation of the C++ library provides only a subset of these
headers: <cstddef> (page , <cstdlib> (page (declaring at least the functions
abort, atexit, and exit), <exception> (page [74), <limits> (page , <new> (page
, <typeinfo> (page , and <cstdarg> (page[72).

~

The C++ library headers have two broader subdivisions, iostreams (page Iﬂ)
headers and STL (page [1) headers.

Using C++ Library Headers

You include the contents of a standard header by naming it in an include (page @)
directive, as in:

#include <iostream> /* include I/0 facilities */

You can include the standard headers in any order, a standard header more than
once, or two or more standard headers that define the same macro or the same
type. Do not include a standard header within a declaration. Do not define macros
that have the same names as keywords before you include a standard header.

A C++ library header includes any other C++ library headers it needs to define
needed types. (Always include explicitly any C++ library headers needed in a
translation unit, however, lest you guess wrong about its actual dependencies.) A
Standard C header never includes another standard header. A standard header
declares or defines only the entities described for it in this document.

© Copyright IBM Corp. 1999, 2005 5

Every function in the library is declared in a standard header. Unlike in Standard
C, the standard header never provides a masking macro, with the same name as
the function, that masks the function declaration and achieves the same effect.

All names other than operator delete and operator new in the C++ library
headers are defined in the std namespace, or in a namespace nested within the std
namespace. Including a C++ library header does not introduce any library names
into the current namespace. You refer to the name cin (page , for example, as
std::cin. Alternatively, you can write the declaration:

using namespace std;

which promotes all library names into the current namespace. If you write this
declaration immediately after all include directives, you can otherwise ignore
namespace considerations in the remainder of the translation unit. Note that macro
names are not subject to the rules for nesting namespaces.

Note that the C Standard headers behave mostly as if they include no namespace
declarations. If you include, for example, <cstdlib> (page , you should call
std::abort() to cause abnormal termination, but if you include <stdlib.h>, you
should call abort(). (The C++ Standard is intentionally vague on this topic, so you
should stick with just the usages described here for maximum portability.)

Unless specifically indicated otherwise, you may not define names in the std
namespace, or in a namespace nested within the std namespace.

C++ Library Conventions

6

Standard C++ Library

The C++ library obeys much the same conventions as the Standard C library, plus
a few more outlined here.

An implementation has certain latitude in how it declares types and functions in
the C++ library:

* Names of functions in the Standard C library may have either extern “C++" or
extern “C” linkage. Include the appropriate Standard C header rather than
declare a library entity inline.

* A member function name in a library class may have additional function
signatures over those listed in this document. You can be sure that a function
call described here behaves as expected, but you cannot reliably take the address
of a library member function. (The type may not be what you expect.)

* A library class may have undocumented (non-virtual) base classes. A class
documented as derived from another class may, in fact, be derived from that
class through other undocumented classes.

* A type defined as a synonym for some integer type may be the same as one of
several different integer types.

* A bitmask type can be implemented as either an integer type or an
enumeration. In either case, you can perform bitwise operations (such as AND
and OR) on values of the same bitmask type. The elements A and B of a bitmask
type are nonzero values such that A & B is zero.

* A library function that has no exception specification can throw an arbitrary
exception, unless its definition clearly restricts such a possibility.

On the other hand, there are some restrictions you can count on:

* The Standard C library uses no masking macros. Only specific function
signatures are reserved, not the names of the functions themselves.

A library function name outside a class will not have additional, undocumented,
function signatures. You can reliably take its address.

* Base classes and member functions described as virtual are assuredly virtual,
while those described as non-virtual are assuredly non-virtual.

* Two types defined by the C++ library are always different unless this document
explicitly suggests otherwise.

* Functions supplied by the library, including the default versions of replaceable
functions (page , can throw at most those exceptions listed in any exception
specification. No destructors supplied by the library throw exceptions. Functions
in the Standard C library may propagate an exception, as when gsort calls a
comparison function that throws an exception, but they do not otherwise throw
exceptions.

lostreams Conventions

The iostreams headers support conversions between text and encoded forms, and
input and output to external files (page [17): <fstream> (page [76), <iomanip> (page
85), <ios> (page , <iosfwd> (page [102), <iostream> (page [103), <istream> (page
105

), <ostream> (page 168), <sstream> (page , <streambuf> (page 185), and
i.

<strstream> (page

The simplest use of iostreams requires only that you include the header
<iostream>. You can then extract values from cin (page , to read the standard
input. The rules for doing so are outlined in the description of the class
basic_istream (page . You can also insert values to cout (page , to write the
standard output. The rules for doing so are outlined in the description of the class
basic_ostream (page . Format control common to both extractors and insertors
is managed by the class basic_ios (page . Manipulating this format information
in the guise of extracting and inserting objects is the province of several

manipulators (page .

You can perform the same iostreams operations on files that you open by name,
using the classes declared in <fstream>. To convert between iostreams and objects
of class basic_string (page , use the classes declared in <sstream>. And to do
the same with C strings, use the classes declared in <strstream>.

The remaining headers provide support services, typically of direct interest to only
the most advanced users of the iostreams classes.

C++ Program Startup and Termination

A C++ program performs the same operations as does a C program at program
startup and at program termination, plus a few more outlined here.

Before the target environment calls the function main, and after it stores any
constant initial values you specify in all objects that have static duration, the
program executes any remaining constructors for such static objects. The order of
execution is not specified between translation units, but you can nevertheless
assume that some iostreams (page IZ) objects are properly initialized for use by
these static constructors. These control text streams:

* cin (page [104) — for standard input

* cout (page [104) — for standard output

» cerr (page — for unbuffered standard error output

* clog (page — for buffered standard error output

Chapter 2. C++ Library Overview 7

You can also use these objects within the destructors called for static objects,
during program termination.

As with C, returning from main or calling exit calls all functions registered with
atexit in reverse order of registry. An exception thrown from such a registered
function calls terminate().

8 Standard C++ Library

Chapter 3. Characters

Character Sets (page EI) - Character Sets and Locales (page - Escape Sequences
(page - Numeric Escape Sequences (page - Trigraphs (page [11) - Multibyte
Characters (page [12) - Wide-Character Encoding (page

Characters play a central role in Standard C. You represent a C program as one or
more source files. The translator reads a source file as a text stream consisting of
characters that you can read when you display the stream on a terminal screen or
produce hard copy with a printer. You often manipulate text when a C program
executes. The program might produce a text stream that people can read, or it
might read a text stream entered by someone typing at a keyboard or from a file
modified using a text editor. This document describes the characters that you use
to write C source files and that you manipulate as streams when executing C
programs.

Character Sets

When you write a program, you express C source files as text lines (page
containing characters from the source character set. When a program executes in
the target environment, it uses characters from the target character set. These
character sets are related, but need not have the same encoding or all the same
members.

Every character set contains a distinct code value for each character in the basic C
character set. A character set can also contain additional characters with other code
values. For example:

* The character constant "x’ becomes the value of the code for the character
corresponding to x in the target character set.

* The string literal "xyz" becomes a sequence of character constants stored in
successive bytes of memory, followed by a byte containing the value zero:
{’X’, aya’ ,Z’, 5\0,}

A string literal is one way to specify a null-terminated string, an array of zero or
more bytes followed by a byte containing the value zero.

Visible graphic characters in the basic C character set:

Form Members

letter ABCDEFGHIJKLM
NOPQRSTUVWXY?Z
abcdefghijklm
nopgrstuvwxyz

digit 0123456789

underscore

punctuation ! " # % & "' () x+, - ./ :
s <=>2[\N1~{ |}~

Additional graphic characters in the basic C character set:

Character Meaning
space leave blank space
BEL signal an alert (BELL)

© Copyright IBM Corp. 1999, 2005 9

BS go back one position (BackSpace)

FF go to top of page (Form Feed)

NL go to start of next line (Newline)

CR go to start of this line (Carriage Return)
HT go to next Horizontal Tab stop

VT go to next Vertical Tab stop

The code value zero is reserved for the null character which is always in the target
character set. Code values for the basic C character set are positive when stored in
an object of type char. Code values for the digits are contiguous, with increasing
value. For example, "0’ + 5 equals ’5°. Code values for any two letters are not
necessarily contiguous.

Character Sets and Locales

An implementation can support multiple locales, each with a different character
set. A locale summarizes conventions peculiar to a given culture, such as how to
format dates or how to sort names. To change locales and, therefore, target
character sets while the program is running, use the function setlocale. The
translator encodes character constants and string literals for the “C” locale, which
is the locale in effect at program startup.

Escape Sequences

10

Within character constants and string literals, you can write a variety of escape
sequences. Each escape sequence determines the code value for a single character.
You use escape sequences to represent character codes:

* you cannot otherwise write (such as \n)
* that can be difficult to read properly (such as \t)
* that might change value in different target character sets (such as \a)

* that must not change in value among different target environments (such as \0)

An escape sequence takes the form shown in the diagram.

e5cape
Secgiscs

]

>

r - ow
0-7]
&
|:|—9 a-f A-F

Mnemonic escape sequences help you remember the characters they represent:

Character Escape Sequence

n \II
1 \I
? \?
\ \\
BEL \a
BS \b
FF \f
NL \n
CR \r
HT \t
VT \v

Standard C++ Library

Numeric Escape Sequences

You can also write numeric escape sequences using either octal or hexadecimal
digits. An octal escape sequence takes one of the forms:

\d or \dd or \ddd

The escape sequence yields a code value that is the numeric value of the 1-, 2-, or
3-digit octal number following the backslash (\). Each d can be any digit in the
range 0-7.

A hexadecimal escape sequence takes one of the forms:
\xh or \xhh or ...

The escape sequence yields a code value that is the numeric value of the
arbitrary-length hexadecimal number following the backslash (\). Each h can be
any decimal digit 0-9, or any of the letters a-f or A-F. The letters represent the
digit values 10-15, where either a or A has the value 10.

A numeric escape sequence terminates with the first character that does not fit the
digit pattern. Here are some examples:

* You can write the null character (page as "\0’.

* You can write a newline character (VL) within a string literal by writing:
"hi\n" which becomes the array {’h’, ’i’, "\n’, 0}

* You can write a string literal that begins with a specific numeric value:
"\3abc" which becomes the array {3, ’a’, ’b’, ’c’, 0}

* You can write a string literal that contains the hexadecimal escape sequence \xF
followed by the digit 3 by writing two string literals:
"\xF" "3" which becomes the array {0xF, ’3", 0}

Trigraphs

A trigraph is a sequence of three characters that begins with two question marks
(??). You use trigraphs to write C source files with a character set that does not
contain convenient graphic representations for some punctuation characters. (The
resultant C source file is not necessarily more readable, but it is unambiguous.)

The list of all defined trigraphs is:

Character Trigraph
27(
27/
?77)
72!
77<
7?1
77>
??-
7?=

e Qe >

These are the only trigraphs. The translator does not alter any other sequence that
begins with two question marks.

For example, the expression statements:
printf("Case ??=3 is done??/n");

printf("You said what????/n");

are equivalent to:

Chapter 3. Characters 11

printf("Case #3 is done\n");
printf("You said what??\n");

The translator replaces each trigraph with its equivalent single character
representation in an early phase of translation (page @) You can always treat a
trigraph as a single source character.

Multibyte Characters

12

A source character set or target character set can also contain multibyte characters
(sequences of one or more bytes). Each sequence represents a single character in
the extended character set. You use multibyte characters to represent large sets of
characters, such as Kanji. A multibyte character can be a one-byte sequence that is
a character from the basic C character set (page E[), an additional one-byte sequence
that is implementation defined, or an additional sequence of two or more bytes
that is implementation defined.

Any multibyte encoding that contains sequences of two or more bytes depends, for
its interpretation between bytes, on a conversion state determined by bytes earlier
in the sequence of characters. In the initial conversion state if the byte
immediately following matches one of the characters in the basic C character set,
the byte must represent that character.

For example, the EUC encoding is a superset of ASCII. A byte value in the interval
[0xA1, OxFE] is the first of a two-byte sequence (whose second byte value is in the
interval [0x80, OxFF]). All other byte values are one-byte sequences. Since all
members of the basic C character set (page E[) have byte values in the range [0x00,
0x7F] in ASCII, EUC meets the requirements for a multibyte encoding in Standard
C. Such a sequence is not in the initial conversion state immediately after a byte
value in the interval [0xA1, OxFe]. It is ill-formed if a second byte value is not in
the interval [0x80, OxFF].

Multibyte characters can also have a state-dependent encoding. How you interpret
a byte in such an encoding depends on a conversion state that involves both a
parse state, as before, and a shift state, determined by bytes earlier in the sequence
of characters. The initial shift state, at the beginning of a new multibyte character,
is also the initial conversion state. A subsequent shift sequence can determine an
alternate shift state, after which all byte sequences (including one-byte sequences)
can have a different interpretation. A byte containing the value zero, however,
always represents the null character (page . It cannot occur as any of the bytes
of another multibyte character.

For example, the JIS encoding is another superset of ASCIL In the initial shift

state, each byte represents a single character, except for two three-byte shift

sequences:

* The three-byte sequence "\x1B$B" shifts to two-byte mode. Subsequently, two
successive bytes (both with values in the range [0x21, 0x7E]) constitute a single
multibyte character.

* The three-byte sequence "\x1B(B" shifts back to the initial shift state.

JIS also meets the requirements for a multibyte encoding in Standard C. Such a
sequence is not in the initial conversion state when partway through a three-byte
shift sequence or when in two-byte mode.

Standard C++ Library

(Amendment 1 adds the type mbstate_t, which describes an object that can store a
conversion state. It also relaxes the above rules for generalized multibyte characters
(page , which describe the encoding rules for a broad range of wide streams

(page|[18).)

You can write multibyte characters in C source text as part of a comment, a
character constant, a string literal, or a filename in an include (page directive.
How such characters print is implementation defined. Each sequence of multibyte
characters that you write must begin and end in the initial shift state. The program
can also include multibyte characters in null-terminated (page[9) C strings used by
several library functions, including the format strings (page [31) for printf and
scanf. Each such character string must begin and end in the initial shift state.

Wide-Character Encoding

Each character in the extended character set also has an integer representation,
called a wide-character encoding. Each extended character has a unique
wide-character value. The value zero always corresponds to the null wide
character. The type definition wchar_t specifies the integer type that represents
wide characters.

You write a wide-character constant as L’'mbc’, where mbc represents a single
multibyte character. You write a wide-character string literal as L"mbs", where mbs
represents a sequence of zero or more multibyte characters. The wide-character
string literal L"xyz" becomes a sequence of wide-character constants stored in
successive bytes of memory, followed by a null wide character:

{L'x’, L'y, L'z’, L’\0’}

The following library functions help you convert between the multibyte and
wide-character representations of extended characters: btowc, mblen, mbrlen,
mbrtowc, mbsrtowcs, mbstowcs, mbtowc, wertomb, wesrtombs, westombs, wctob,
and wctomb.

The macro MB_LEN_MAX specifies the length of the longest possible multibyte
sequence required to represent a single character defined by the implementation
across supported locales. And the macro MB_CUR_MAX specifies the length of the
longest possible multibyte sequence required to represent a single character
defined for the current locale.

For example, the string literal (page E[) "hello" becomes an array of six char:
{Ihl’ Iel’ I'II’ I'||, IOI’G}

while the wide-character string literal L"hel10" becomes an array of six integers of
type wchar_t:

{L'h', L'e', L'1', L'1', L'o", 0}

Chapter 3. Characters 13

14 Standard C++ Library

Chapter 4. Expressions

You write expressions to determine values, to alter values stored in objects, and to
call functions that perform input and output. In fact, you express all computations
in the program by writing expressions. The translator must evaluate some of the
expressions you write to determine properties of the program. The translator or the
target environment must evaluate other expressions prior to program startup to
determine the initial values stored in objects with static duration. The program
evaluates the remaining expressions when it executes.

This document describes briefly just those aspect of expressions most relevant to
the use of the Standard C library:

An address constant expression specifies a value that has a pointer type and that
the translator or target environment can determine prior to program startup.

A constant expression specifies a value that the translator or target environment
can determine prior to program startup.

An integer constant expression specifies a value that has an integer type and that
the translator can determine at the point in the program where you write the
expression. (You cannot write a function call, assigning operator, or comma operator
except as part of the operand of a sizeof (page [16) operator.) In addition, you must
write only subexpressions that have integer type. You can, however, write a
floating-point constant as the operand of an integer type cast operator.

An lvalue expression An lvalue expression designates an object that has an object
type other than an array type. Hence, you can access the value stored in the object.
A modifiable Ivalue expression designates an object that has an object type other
than an array type or a const type. Hence, you can alter the value stored in the
object. You can also designate objects with an lvalue expression that has an array
type or an incomplete type, but you can only take the address of such an
expression.

Promoting occurs for an expression whose integer type is not one of the
“‘computational”” types. Except when it is the operand of the sizeof operator, an
integer rvalue expression has one of four types: int, unsigned int, long, or unsigned
long. When you write an expression in an rvalue context and the expression has an
integer type that is not one of these types, the translator promotes its type to one of
these. If all of the values representable in the original type are also representable as
type int, then the promoted type is int. Otherwise, the promoted type is unsigned
int. Thus, for signed char, short, and any signed bitfield type, the promoted type is int.
For each of the remaining integer types (char, unsigned char, unsigned short, any
plain bitfield type, or any unsigned bitfield type), the effect of these rules is to favor
promoting to int wherever possible, but to promote to unsigned int if necessary to
preserve the original value in all possible cases.

An rvalue expression is an expression whose value can be determined only when

the program executes. The term also applies to expressions which need not be
determined until program execution.

© Copyright IBM Corp. 1999, 2005 15

You use the sizeof operator, as in the expression sizeof X to determine the size in
bytes of an object whose type is the type of X. The translator uses the expression
you write for X only to determine a type; it is not evaluated.

A void expression has type void.

16 Standard C++ Library

Chapter 5. Files and Streams

Text and Binary Streams (page - Byte and Wide Streams (page .
Controlling Streams (page [19) - Stream States (page

A program communicates with the target environment by reading and writing files
(ordered sequences of bytes). A file can be, for example, a data set that you can
read and write repeatedly (such as a disk file), a stream of bytes generated by a
program (such as a pipeline), or a stream of bytes received from or sent to a
peripheral device (such as the keyboard or display). The latter two are interactive
files. Files are typically the principal means by which to interact with a program.

You manipulate all these kinds of files in much the same way — by calling library
functions. You include the standard header <stdio.h> to declare most of these
functions.

Before you can perform many of the operations on a file, the file must be opened.
Opening a file associates it with a stream, a data structure within the Standard C
library that glosses over many differences among files of various kinds. The library
maintains the state of each stream in an object of type FILE.

The target environment opens three files prior to program startup. You can open a
file by calling the library function fopen with two arguments. The first argument is
a filename, a multibyte string that the target environment uses to identify which
file you want to read or write. The second argument is a C string that specifies:

* whether you intend to read data from the file or write data to it or both

* whether you intend to generate new contents for the file (or create a file if it did
not previously exist) or leave the existing contents in place

* whether writes to a file can alter existing contents or should only append bytes
at the end of the file

* whether you want to manipulate a text stream (page or a binary stream
(page

Once the file is successfully opened, you can then determine whether the stream is
byte oriented (a byte stream (page) or wide oriented (a wide stream (page
18)). Wide-oriented streams are supported only with Amendment 1. A stream is
initially unbound. Calling certain functions to operate on the stream makes it byte
oriented, while certain other functions make it wide oriented. Once established, a
stream maintains its orientation until it is closed by a call to fclose or freopen.

Text and Binary Streams

A text stream consists of one or more lines of text that can be written to a
text-oriented display so that they can be read. When reading from a text stream,
the program reads an NL (newline) at the end of each line. When writing to a text
stream, the program writes an NL to signal the end of a line. To match differing
conventions among target environments for representing text in files, the library
functions can alter the number and representations of characters transmitted
between the program and a text stream.

Thus, positioning within a text stream is limited. You can obtain the current
file-position indicator (page [L9) by calling fgetpos or ftell. You can position a text

© Copyright IBM Corp. 1999, 2005 17

stream at a position obtained this way, or at the beginning or end of the stream, by
calling fsetpos or fseek. Any other change of position might well be not
supported.

For maximum portability, the program should not write:
* empty files

* space characters at the end of a line

* partial lines (by omitting the NL at the end of a file)

¢ characters other than the printable characters, N, and HT (horizontal tab)

If you follow these rules, the sequence of characters you read from a text stream
(either as byte or multibyte characters) will match the sequence of characters you
wrote to the text stream when you created the file. Otherwise, the library functions
can remove a file you create if the file is empty when you close it. Or they can
alter or delete characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can
write the value stored in an arbitrary object to a (byte-oriented) binary stream and
read exactly what was stored in the object when you wrote it. The library functions
do not alter the bytes you transmit between the program and a binary stream.
They can, however, append an arbitrary number of null bytes to the file that you
write with a binary stream. The program must deal with these additional null
bytes at the end of any binary stream.

Thus, positioning within a binary stream is well defined, except for positioning
relative to the end of the stream. You can obtain and alter the current file-position
indicator (page the same as for a text stream (page [17). Moreover, the offsets
used by ftell and fseek count bytes from the beginning of the stream (which is
byte zero), so integer arithmetic on these offsets yields predictable results.

A byte stream treats a file as a sequence of bytes. Within the program, the stream
looks like the same sequence of bytes, except for the possible alterations described
above.

Byte and Wide Streams

While a byte stream treats a file as a sequence of bytes, a wide stream treats a file
as a sequence of generalized multibyte characters, which can have a broad range
of encoding rules. (Text and binary files are still read and written as described
above.) Within the program, the stream looks like the corresponding sequence of
wide characters (page . Conversions between the two representations occur
within the Standard C library. The conversion rules can, in principle, be altered by
a call to setlocale that alters the category LC_CTYPE. Each wide stream
determines its conversion rules at the time it becomes wide oriented, and retains
these rules even if the category LC_CTYPE subsequently changes.

Positioning within a wide stream suffers the same limitations as for text streams
(page . Moreover, the file-position indicator (page may well have to deal
with a state-dependent encoding (page . Typically, it includes both a byte offset
within the stream and an object of type mbstate_t. Thus, the only reliable way to
obtain a file position within a wide stream is by calling fgetpos, and the only
reliable way to restore a position obtained this way is by calling fsetpos.

18 Standard C++ Library

Controlling Streams

fopen returns the address of an object of type FILE. You use this address as the
stream argument to several library functions to perform various operations on an
open file. For a byte stream, all input takes place as if each character is read by
calling fgetc, and all output takes place as if each character is written by calling
fputc. For a wide stream (with Amendment 1), all input takes place as if each
character is read by calling fgetwc, and all output takes place as if each character is
written by calling fputwc.

You can close a file by calling fclose, after which the address of the FILE object is
invalid.

A FILE object stores the state of a stream, including:

* an error indicator — set nonzero by a function that encounters a read or write
error

* an end-of-file indicator — set nonzero by a function that encounters the end of
the file while reading

* a file-position indicator — specifies the next byte in the stream to read or write,
if the file can support positioning requests

* a stream state (page @ — specifies whether the stream will accept reads
and/or writes and, with Amendment 1, whether the stream is unbound (page
, byte oriented (page , or wide oriented (page

* a conversion state (page [12) — remembers the state of any partly assembled or
generated generalized multibyte character (page , as well as any shift state for
the sequence of bytes in the file)

* a file buffer — specifies the address and size of an array object that library

functions can use to improve the performance of read and write operations to
the stream

Do not alter any value stored in a FILE object or in a file buffer that you specify for

use with that object. You cannot copy a FILE object and portably use the address of
the copy as a stream argument to a library function.

Chapter 5. Files and Streams 19

Stream States

The valid states, and state transitions, for a stream are shown in the diagram.

WLl K
W ORTEHTED

w/ S\ \
WMIDE WMIDE
WMEITING READ TN

LTy
at EOF

BYTHE
B OFTENTED ER

I v BR
EYTE EYTE
WMEITING READLTING

F=il)
at. EOF

-1 fwideds, -1} I positionm M+l fwideis, +1)
LR byta pread R wide resd
Pzl bytae wrike R wide pribe

Each of the circles denotes a stable state. Each of the lines denotes a transition that
can occur as the result of a function call that operates on the stream. Five groups
of functions can cause state transitions.

Functions in the first three groups are declared in <stdio.h>:

* the byte read functions — fgetc, fgets, fread, fscanf, getc, getchar, gets,
scanf, and ungetc

* the byte write functions — fprintf, fputc, fputs, fwrite, printf, putc, putchar,
puts, vfprintf, and vprintf

* the position functions — fflush, fseek, fsetpos, and rewind

Functions in the remaining two groups are declared in <wchar.h>:

¢ the wide read functions — fgetwc, fgetws, fwscanf, getwc, getwchar, ungetwc,
and wscanf

* the wide write functions — fwprintf, fputwc, fputws, putwc, putwchar,
vfwprintf, vwprintf, and wprintf

For the stream s, the call fwide(s, 0) is always valid and never causes a change of
state. Any other call to fwide, or to any of the five groups of functions described
above, causes the state transition shown in the state diagram. If no such transition
is shown, the function call is invalid.

The state diagram shows how to establish the orientation of a stream:

* The call fwide(s, -1), or to a byte read or byte write function, establishes the
stream as byte oriented (page .

20 Standard C++ Library

e The call fwide(s, 1), or to a wide read or wide write function, establishes the
stream as wide oriented (page .

The state diagram shows that you must call one of the position functions between
most write and read operations:

* You cannot call a read function if the last operation on the stream was a write.

* You cannot call a write function if the last operation on the stream was a read,
unless that read operation set the end-of-file indicator (page .

Finally, the state diagram shows that a position operation never decreases the
number of valid function calls that can follow.

Chapter 5. Files and Streams 21

22 Standard C++ Library

Chapter 6. Functions

You write functions to specify all the actions that a program performs when it
executes. The type of a function tells you the type of result it returns (if any). It can
also tell you the types of any arguments that the function expects when you call it
from within an expression.

This document describes briefly just those aspect of functions most relevant to the
use of the Standard C library:

Argument promotion occurs when the type of the function fails to provide any
information about an argument. Promotion occurs if the function declaration is not
a function prototype or if the argument is one of the unnamed arguments in a
varying number of arguments. In this instance, the argument must be an rvalue
expression (page . Hence:

¢ An integer argument type is promoted.

* An lvalue of type array of T becomes an rvalue of type pointer to T.

* A function designator of type function returning T becomes an rvalue of type
pointer to function returning T.

e An argument of type float is converted to double.

A do statement executes a statement one or more times, while its test-context
expression (page has a nonzero value:

do
statement
while (test);

An expression statement evaluates an expression in a side-effects context (page :

printf("hello\n"); call a function
y =m=*x + b; store a value
++count; alter a stored value

A for statement executes a statement zero or more times, while the optional
test-context expression (page test has a nonzero value. You can also write two
expressions, se-1 and se-2, in a for statement that are each in a side-effects context
(page :
for (se-1; test; se-2)
statement

An if statement executes a statement only if the test-context expression (page
has a nonzero value:

if (test)
statement

An if-else statement executes one of two statements, depending on whether the
test-context expression (page has a nonzero value:
if (test)
statement-1

else
statement-2

© Copyright IBM Corp. 1999, 2005 23

24

Standard C++ Library

A return statement terminates execution of the function and transfers control to the
expression that called the function. If you write the optional rvalue expression
(page within the return statement, the result must be assignment-compatible
with the type returned by the function. The program converts the value of the
expression to the type returned and returns it as the value of the function call:

return expression;

An expression that occurs in a side-effects context specifies no value and
designates no object or function. Hence, it can have type void. You typically
evaluate such an expression for its side effects — any change in the state of the
program that occurs when evaluating an expression. Side effects occur when the
program stores a value in an object, accesses a value from an object of volatile
qualified type, or alters the state of a file.

A switch statement jumps to a place within a controlled statement, depending on
the value of an integer expression:
switch (expr)

{

case val-1:
stat-1;
break;
case val-2:
stat-2; falls through to next
default:
stat-n
1

In a test-context expression the value of an expression causes control to flow one
way within the statement if the computed value is nonzero or another way if the
computed value is zero. You can write only an expression that has a scalar rvalue
result, because only scalars can be compared with zero.

A while statement executes a statement zero or more times, while the test-context
expression has a nonzero value:

while (test)
statement

Chapter 7. Formatted Input

Scan Formats (page @ - Scan Functions (page @ - Scan Conversion Specifiers
(page

Several library functions help you convert data values from text sequences that are
generally readable by people to encoded internal representations. You provide a
format string (page as the value of the format argument to each of these
functions, hence the term formatted input. The functions fall into two categories:

The byte scan functions (declared in <stdio.h>) convert sequences of type char to
internal representations, and help you scan such sequences that you read: fscanf,
scanf, and sscanf. For these functions, a format string is a multibyte string that
begins and ends in the initial shift state (page .

The wide scan functions (declared in <wchar.h> and hence added with
Amendment 1) convert sequences of type wchar_t, to internal representations, and
help you scan such sequences that you read: fwscanf, wscanf and swscanf. For
these functions, a format string is a wide-character string. In the descriptions that
follow, a wide character wc from a format string or a stream is compared to a
specific (byte) character c as if by evaluating the expression wctob(wc) == c.

Scan Formats

A format string has the same general syntax (page [31) for the scan functions as for
the print functions (page : zero or more conversion specifications (page ,
interspersed with literal text and white space (page . For the scan functions,
however, a conversion specification is one of the scan conversion specifications

(page described below.

A scan function scans the format string once from beginning to end to determine
what conversions to perform. Every scan function accepts a varying number of
arguments, either directly or under control of an argument of type va_list. Some
scan conversion specifications in the format string use the next argument in the
list. A scan function uses each successive argument no more than once. Trailing
arguments can be left unused.

In the description that follows, the integer conversions (page EZI) and floating-point
conversions (page are the same as for the print functions (page .

Scan Functions

For the scan functions, literal text in a format string must match the next characters
to scan in the input text. White space in a format string must match the longest
possible sequence of the next zero or more white-space characters in the input.
Except for the scan conversion specifier (page IZ[) %n (which consumes no input),
each scan conversion specification determines a pattern that one or more of the
next characters in the input must match. And except for the scan conversion
specifiers ¢, n, and [, every match begins by skipping any white space characters in
the input.

A scan function returns when:

© Copyright IBM Corp. 1999, 2005 25

* it reaches the terminating null in the format string
* it cannot obtain additional input characters to scan (input failure)
* a conversion fails (matching failure)

A scan function returns EOF if an input failure occurs before any conversion.
Otherwise it returns the number of converted values stored. If one or more
characters form a valid prefix but the conversion fails, the valid prefix is consumed
before the scan function returns. Thus:

scanf("%i", &i) consumes 0X from field 0XZ
scanf("%f", &f) consumes 3.2E from field 3.2EZ

A scan conversion specification typically converts the matched input characters to
a corresponding encoded value. The next argument value must be the address of
an object. The conversion converts the encoded representation (as necessary) and
stores its value in the object. A scan conversion specification has the format shown
in the diagram.

5031
CoRversion
specificakion

>
?'1@?'1?@1

Following the percent character (%) in the format string, you can write an asterisk
(*) to indicate that the conversion should not store the converted value in an
object.

> (=)

Following any *, you can write a nonzero field width that specifies the maximum
number of input characters to match for the conversion (not counting any white
space that the pattern can first skip).

Scan Conversion Specifiers

26

Following any field width (page @, you must write a one-character scan
conversion specifier, either a one-character code or a scan set (page , possibly
preceded by a one-character qualifier. Each combination determines the type
required of the next argument (if any) and how the scan functions interpret the
text sequence and converts it to an encoded value. The integer (page @Fand
floating-point conversions (page [32) also determine what base to assume for the
text representation. (The base is the base argument to the functions strtol and
strtoul.) The following table lists all defined combinations and their properties.

Conversion Argument Conversion
Specifier Type Function Base
%C char x[]
%lc wchar_t x[]

%d int *x strtol 10
%hd short *x strtol 10
%1d long *x strtol 10

%e float *x strtod 10
%le doubTe *x strtod 10
%Le lTong double *x strtod 10

%E float *x strtod 10
%1E doubTe #*x strtod 10
%LE long double *x strtod 10

%f float *x strtod 10

Standard C++ Library

%1 f doubTe #*x
SLE long double =*x

%9 float *x
%1g doubTe =*x
%Lg long double =*x

%G float *x
%1G double =*x
%LG long double =*x

%i int *x
%hi short *x
%11 long *x

%n int *x
%hn short *x
%1n long *x

%0 unsigned int *x
%ho unsigned short *x
%10 unsigned Tong *x

%p void **x

%S char x[]

%1s wchar_t x[]

%u unsigned int *x
%hu unsigned short *x
%1u unsigned long *x

%X unsigned int *x
%hx unsigned short *x
%1x unsigned Tong *x

%X unsigned int *x
%hX unsigned short *x
%1X unsigned Tong *x

%[...] char x[]
S1[...] wchar_t x[]
%% none

strtod
strtod
strtod
strtod
strtod
strtod
strtod
strtod
strtol
strtol
strtol

strtoul
strtoul
strtoul

strtoul
strtoul
strtoul
strtoul
strtoul
strtoul
strtoul
strtoul
strtoul

o 00

The scan conversion specifier (or scan set (page) determines any behavior not

summarized in this table. In the following descriptions, examples follow each of
the scan conversion specifiers. In each example, the function sscanf matches the

bold characters.

You write %c to store the matched input characters in an array object. If you
specify no field width w, then w has the value one. The match does not skip
leading white space (page . Any sequence of w characters matches the

conversion pattern.

sscanf("129E-2", "%c", &c)
sscanf("129E-2", "%2c", &c[0])

stores '1l'
stores '1', '2'

For a wide stream (page , conversion occurs as if by repeatedly calling wertomb,
beginning in the initial conversion state (page .

swscanf(L"129E-2", L"%c", &c)

stores '1l'

You write %lc to store the matched input characters in an array object, with
elements of type wchar_t. If you specify no field width w, then w has the value

equence of w
, conversion

occurs as if by repeatedly calling mbrtowc, beginning in the initial conversion state

one. The match does not skip leading white space (page . Any s
characters matches the conversion pattern. For a byte stream (page

(page[12).

sscanf("129E-2", "%1c", &c)
sscanf("129E-2", "%21c", &c)
swscanf(L"129E-2", L"%1c", &c)

stores L'1'

stores L'1', L'2'

stores L'1'

You write %d, %i, %0, %u, %X, or %X to convert the matched input characters as

a signed integer and store the result in an integer object.

Chapter 7. Formatted Input

27

28

sscanf("129E-2", "%0%d%x", &i, &j, &k) stores 10, 9, 14

You write %e, %E, %f, %g, or %G to convert the matched input characters as a
signed fraction, with an optional exponent, and store the result in a floating-point
object.

sscanf("129E-2", "%e", &f) stores 1.29

You write %n to store the number of characters matched (up to this point in the
format) in an integer object. The match does not skip leading white space and does
not match any input characters.

sscanf("129E-2", "12%n", &i) stores 2

You write %p to convert the matched input characters as an external representation
of a pointer to void and store the result in an object of type pointer to void. The input
characters must match the form generated by the %p print conversion specification
(page p2).

sscanf("129E-2", "%p", &p) stores, e.g. 0x129E

You write %s to store the matched input characters in an array object, followed by
a terminating null character. If you do not specify a field width w, then w has a
large value. Any sequence of up to w non white-space characters matches the
conversion pattern.

sscanf("129E-2", "%s", &s[0]) stores "129E-2"

For a wide stream (page , conversion occurs as if by repeatedly calling wcrtomb
beginning in the initial conversion state (page .

swscanf(L"129E-2", L"%s", &s[0]) stores "129E-2"

You write %lIs to store the matched input characters in an array object, with
elements of type wchar_t, followed by a terminating null wide character. If you do
not specify a field width w, then w has a large value. Any sequence of up to w non
white-space characters matches the conversion pattern. For a byte stream (page ,
conversion occurs as if by repeatedly calling mbrtowc, beginning in the initial
conversion state.

sscanf("129E-2", "%1s", &s[0]) stores L"129E-2"
swscanf(L"129E-2", L"%1s", &s[0]) stores L"129E-2"

You write %l to store the matched input characters in an array object, followed by
a terminating null character. If you do not specify a field width w, then w has a
large value. The match does not skip leading white space. A sequence of up to w
characters matches the conversion pattern in the scan set that follows. To complete
the scan set, you follow the left bracket ([) in the conversion specification with a
sequence of zero or more match characters, terminated by a right bracket (]).

If you do not write a caret (*) immediately after the [, then each input character
must match one of the match characters. Otherwise, each input character must not
match any of the match characters, which begin with the character following the .
If you write a] immediately after the [or [*, then the] is the first match
character, not the terminating]. If you write a minus (-) as other than the first or
last match character, an implementation can give it special meaning. It usually
indicates a range of characters, in conjunction with the characters immediately
preceding or following, as in 0-9 for all the digits.) You cannot specify a null
match character.

sscanf("129E-2", "[54321]", &s[0]) stores "12"

Standard C++ Library

For a wide stream (page , conversion occurs as if by repeatedly calling wertomb,
beginning in the initial conversion state.

swscanf(L"129E-2", L"[54321]", &s[0]) stores "12"

You write %lI[to store the matched input characters in an array object, with
elements of type wchar_t, followed by a terminating null wide character. If you do
not specify a field width w, then w has a large value. The match does not skip
leading white space. A sequence of up to w characters matches the conversion
pattern in the scan set (page that follows.

For a byte stream (page , conversion occurs as if by repeatedly calling mbrtowc,
beginning in the initial conversion state.

sscanf("129E-2", "1[54321]", &s[0]) stores L"12"
swscanf(L"129E-2", L"1[54321]", &s[0]) stores L"12"

You write %% to match the percent character (%). The function does not store a

value.
sscanf("% OXA", "%% %i") stores 10

Chapter 7. Formatted Input 29

30 Standard C++ Library

Chapter 8. Formatted Output

Print Formats (page - Print Functions (page - Print Conversion Specifiers
(page

Several library functions help you convert data values from encoded internal
representations to text sequences that are generally readable by people. You
provide a format string (page as the value of the format argument to each of
these functions, hence the term formatted output. The functions fall into two
categories.

The byte print functions (declared in <stdio.h>) convert internal representations to
sequences of type char, and help you compose such sequences for display: fprintf,
printf, sprintf, vfprintf, vprintf, and vsprintf. For these function, a format
string is a multibyte string that begins and ends in the initial shift state (page .

The wide print functions (declared in <wchar.h> and hence added with
Amendment 1) convert internal representations to sequences of type wchar_t, and
help you compose such sequences for display: fwprintf, swprintf, wprintf,
vfwprintf, vswprintf, and vwprintf. For these functions, a format string is a
wide-character string. In the descriptions that follow, a wide character wc from a
format string or a stream is compared to a specific (byte) character c as if by
evaluating the expression wctob(wc) == c.

Print Formats

A format string has the same syntax for both the print functions and the scan
functions (page , as shown in the diagram.

COIVers 1o
B specificabion
formd
any mltibyka shring

character axcept)@—)
wixike space i opall b -

A format string consists of zero or more conversion specifications interspersed
with literal text and white space. White space is a sequence of one or more
characters ¢ for which the call isspace(c) returns nonzero. (The characters defined
as white space can change when you change the LC_CTYPE locale category.) For
the print functions, a conversion specification is one of the print conversion
specifications (page described below.

A print function scans the format string once from beginning to end to determine
what conversions to perform. Every print function accepts a varying number of
arguments, either directly or under control of an argument of type va_list. Some
print conversion specifications in the format string use the next argument in the
list. A print function uses each successive argument no more than once. Trailing
arguments can be left unused.

© Copyright IBM Corp. 1999, 2005 31

In the description that follows:
* integer conversions are the conversion specifiers that end in d, i, o, u, x, or X

* floating-point conversions are the conversion specifiers that end in e, E, f, g, or
G

Print Functions

32

For the print functions, literal text or white space (page in a format string
generates characters that match the characters in the format string. A print
conversion specification typically generates characters by converting the next
argument value to a corresponding text sequence. A print conversion specification
has the format:

pering
SoRVeErs ion

t - specificakion
Ay N Ny Ny
) Ny NoE) '

B

Following the percent character (%) in the format string, you can write zero or
more format flags:

* - — to leftjustify a conversion
* + — to generate a plus sign for signed values that are positive

* space — to generate a space for signed values that have neither a plus nor a
minus sign

* # — to prefix 0 on an o conversion, to prefix 0x on an x conversion, to prefix 0X
on an X conversion, or to generate a decimal point and fraction digits that are
otherwise suppressed on a floating-point conversion

* 0 — to pad a conversion with leading zeros after any sign or prefix, in the
absence of a minus (-) format flag or a specified precision

Following any format flags, you can write a field width that specifies the
minimum number of characters to generate for the conversion. Unless altered by a
format flag, the default behavior is to pad a short conversion on the left with space
characters. If you write an asterisk (*) instead of a decimal number for a field
width, then a print function takes the value of the next argument (which must be
of type int) as the field width. If the argument value is negative, it supplies a -
format flag and its magnitude is the field width.

Following any field width, you can write a dot (.) followed by a precision that
specifies one of the following: the minimum number of digits to generate on an
integer conversion; the number of fraction digits to generate on an e, E, or f
conversion; the maximum number of significant digits to generate on a g or G
conversion; or the maximum number of characters to generate from a C string on
an s conversion.

If you write an * instead of a decimal number for a precision, a print function
takes the value of the next argument (which must be of type int) as the precision.
If the argument value is negative, the default precision applies. If you do not write
either an * or a decimal number following the dot, the precision is zero.

Standard C++ Library

Print Conversion Specifiers

Following any precision (page , you must write a one-character print
conversion specifier, possibly preceded by a one-character qualifier. Each
combination determines the type required of the next argument (if any) and how
the library functions alter the argument value before converting it to a text
sequence. The integer (page and floating-point conversions (page also
determine what base to use for the text representation. If a conversion specifier
requires a precision p and you do not provide one in the format, then the
conversion specifier chooses a default value for the precision. The following table
lists all defined combinations and their properties.

Conversion Argument Converted Default Pre-
Specifier Type Value Base cision

%C int x (unsigned char)x
%c wint_t x wchar_t a[2] = {x}

%d int x (int)x 10 1
%hd int x (short)x 10 1
%1d long x (Tong) x 10 1

%e double x (double)x 10 6
%Le long double x (Tong double)x 10 6

%E double x (double)x 10 6
%LE long double x (Tong double)x 10 6

%f double x (double)x 10 6
SLf long double x (Tong double)x 10 6

%9 double x (double)x 10 6
%Lg long double x (Tong double)x 10 6

%G double x (double)x 10 6
%LG long double x (long double)x 10 6

%i int x (int)x 10 1
%hi int x (short)x 10 1
%11 long x (Tong) x 10 1

%n int *x
%hn short *x
%1In long *x

%0 int x (unsigned int)x 8 1
%ho int x (unsigned short)x 8 1
%10 long x (unsigned long)x 8 1

%p void *x (void *)x

%S char x[] x[0]... large
%1s wchar_t x[] x[0]... large

%U int x (unsigned int)x 10 1
%hu int x (unsigned short)x 10 1
%1u long x (unsigned long)x 10 1

%X int x (unsigned int)x 16 1
%hx int x (unsigned short)x 16 1
%1x long x (unsigned long)x 16 1

%X int x (unsigned int)x 16 1
%hX int x (unsigned short)x 16 1
%1X long x (unsigned long)x 16 1

%% none %!

The print conversion specifier determines any behavior not summarized in this
table. In the following descriptions, p is the precision. Examples follow each of the
print conversion specifiers. A single conversion can generate up to 509 characters.

You write %c to generate a single character from the converted value.

printf("%c", 'a') generates a
printf("<%3c|%-3c>", 'a', 'b') generates < a|b >

For a wide stream (page , conversion of the character x occurs as if by calling
btowc (x).

wprintf(L"%c", 'a') generates btowc(a)

Chapter 8. Formatted Output 33

34

You write %lc to generate a single character from the converted value. Conversion
of the character x occurs as if it is followed by a null character in an array of two
elements of type wchar_t converted by the conversion specification s (page .

printf("%1c", L'a') generates a
wprintf(L"1c", L'a") generates L'a’'

You write %d, %i, %0, %u, %X, or %X to generate a possibly signed integer
representation. %d or %1 specifies signed decimal representation, %0 unsigned octal,
%u unsigned decimal, %x unsigned hexadecimal using the digits 0-9 and a-f, and
%X unsigned hexadecimal using the digits 0-9 and A-F. The conversion generates at
least p digits to represent the converted value. If p is zero, a converted value of
zero generates no digits.

printf("%d %o %x", 31, 31, 31) generates 31 37 1f

printf("%hu", Oxffff) generates 65535
printf("%#X %+d", 31, 31) generates OX1F +31

You write %e or %E to generate a signed fractional representation with an
exponent. The generated text takes the form +d.dddE+dd, where + is either a plus
or minus sign, d is a decimal digit, the dot (.) is the decimal point for the current
locale, and E is either e (for %e conversion) or E (for %E conversion). The generated
text has one integer digit, a decimal point if p is nonzero or if you specify the #
format flag, p fraction digits, and at least two exponent digits. The result is
rounded. The value zero has a zero exponent.

printf("%e", 31.4) generates 3.140000e+01
printf("%.2E", 31.4) generates 3.14E+01

You write %f to generate a signed fractional representation with no exponent. The
generated text takes the form +d.ddd, where + is either a plus or minus sign, d is a
decimal digit, and the dot (.) is the decimal point for the current locale. The
generated text has at least one integer digit, a decimal point if p is nonzero or if
you specify the # format flag, and p fraction digits. The result is rounded.

printf("%f", 31.4) generates 31.400000
printf("%.0f %#.0f", 31.0, 31.0)generates 31 31.

You write %g or %G to generate a signed fractional representation with or without
an exponent, as appropriate. For %g conversion, the generated text takes the same
form as either %e or %f conversion. For %G conversion, it takes the same form as
either %E or %f conversion. The precision p specifies the number of significant digits
generated. (If p is zero, it is changed to 1.) If %e conversion would yield an
exponent in the range [-4, p), then %f conversion occurs instead. The generated text
has no trailing zeros in any fraction and has a decimal point only if there are
nonzero fraction digits, unless you specify the # format flag.

printf("%.69", 31.4) generates 31.4
printf("%.1g", 31.4) generates 3.14e+01

You write %n to store the number of characters generated (up to this point in the
format) in the object of type int whose address is the value of the next successive
argument.

printf("abc%n", &x) stores 3

You write %p to generate an external representation of a pointer to void. The
conversion is implementation defined.

printf("%p", (void *)&x) generates, e.g. F4CO

You write %s to generate a sequence of characters from the values stored in the
argument C string.

Standard C++ Library

printf("%s", "hello") generates hello
printf("%.2s", "hello") generates he

For a wide stream (page , conversion occurs as if by repeatedly calling mbrtowc,
beginning in the initial conversion state (page . The conversion generates no
more than p characters, up to but not including the terminating null character.

wprintf(L"%s", "hello") generates hello

You write %ls to generate a sequence of characters from the values stored in the
argument wide-character string. For a byte stream (page , conversion occurs as
if by repeatedly calling wcrtomb, beginning in the initial conversion state (page ,
so long as complete multibyte characters can be generated. The conversion
generates no more than p characters, up to but not including the terminating null
character.

printf("%1s", L"hello") generates hello
wprintf(L"%.2s", L"hello") generates he

You write %% to generate the percent character (%).
printf("%%") generates %

Chapter 8. Formatted Output 35

36 Standard C++ Library

Chapter 9. STL Conventions

The Standard Template Library (page , or STL (page , establishes uniform
standards for the application of iterators (page to STL containers (page or
other sequences that you define, by STL algorithms (page or other functions
that you define. This document summarizes many of the conventions used widely
throughout the Standard Template Library.

Iterator Conventions

The STL facilities make widespread use of iterators, to mediate between the
various algorithms and the sequences upon which they act. For brevity in the
remainder of this document, the name of an iterator type (or its prefix) indicates
the category of iterators required for that type. In order of increasing power, the
categories are summarized here as:

e Outlt — An output iterator X can only have a value V stored indirect on it, after
which it must be incremented before the next store, as in (*X++ = V), (*X =V,
++X), or (*X =V, X++).

* InIt — An input iterator X can represent a singular value that indicates
end-of-sequence. If an input iterator does not compare equal to its
end-of-sequence value, it can have a value V accessed indirect on it any number
of times, as in (V = *X). To progress to the next value, or end-of-sequence, you
increment it, as in ++X, X++, or (V = *X++). Once you increment any copy of an
input iterator, none of the other copies can safely be compared, dereferenced, or
incremented thereafter.

e FwdIt — A forward iterator X can take the place of an output iterator (for
writing) or an input iterator (for reading). You can, however, read (via V = *X)
what you just wrote (via *X = V) through a forward iterator. And you can make
multiple copies of a forward iterator, each of which can be dereferenced and
incremented independently.

e BidIt — A bidirectional iterator X can take the place of a forward iterator. You
can, however, also decrement a bidirectional iterator, as in =X, X—, or (V = *X-).

¢ Ranlt — A random-access iterator X can take the place of a bidirectional iterator.
You can also perform much the same integer arithmetic on a random-access
iterator that you can on an object pointer. For N an integer object, you can write
x[N], x + N, x - N, and N + X.

Note that an object pointer can take the place of a random-access iterator, or any
other for that matter. All iterators can be assigned or copied. They are assumed to
be lightweight objects and hence are often passed and returned by value, not by
reference. Note also that none of the operations described above can throw an
exception, at least when performed on a valid iterator.

The hierarchy of iterator categories can be summarize by showing three sequences.
For write-only access to a sequence, you can use any of:
output iterator

-> forward iterator

-> bidirectional iterator
-> random-access iterator

© Copyright IBM Corp. 1999, 2005 37

The right arrow means ““can be replaced by.”” So any algorithm that calls for an
output iterator should work nicely with a forward iterator, for example, but not the
other way around.

For read-only access to a sequence, you can use any of:

input iterator
-> forward iterator
-> bidirectional iterator
-> random-access iterator

An input iterator is the weakest of all categories, in this case.

Finally, for read/write access to a sequence, you can use any of:

forward iterator
-> bidirectional iterator
-> random-access iterator

Remember that an object pointer can always serve as a random-access iterator.
Hence, it can serve as any category of iterator, so long as it supports the proper
read/write access to the sequence it designates.

An iterator It other than an object pointer must also define the member types
required by the specialization iterator_traits<It>. Note that these requirements
can be met by deriving It from the public base class iterator.

This ““algebra” of iterators is fundamental to practically everything else in the
Standard Template Library (page . It is important to understand the promises,
and limitations, of each iterator category to see how iterators are used by
containers and algorithms in STL.

Algorithm Conventions

The descriptions of the algorithm template functions employ several shorthand
phrases:

* The phrase “'in the range [A, B)” means the sequence of zero or more discrete
values beginning with A up to but not including B. A range is valid only if B is
reachable from A — you can store A in an object N (N = A), increment the object
zero or more times (++N), and have the object compare equal to B after a finite
number of increments (N == B).

* The phrase ““each N in the range [A, B)” means that N begins with the value A
and is incremented zero or more times until it equals the value B. The case N ==
B is not in the range.

* The phrase ““the lowest value of N in the range [A, B) such that X" means that
the condition X is determined for each N in the range [A, B) until the condition
X is met.

* The phrase ““the highest value of N in the range [A, B) such that X" usually
means that X is determined for each N in the range [A, B). The function stores
in K a copy of N each time the condition X is met. If any such store occurs, the
function replaces the final value of N (which equals B) with the value of K. For a
bidirectional or random-access iterator, however, it can also mean that N begins
with the highest value in the range and is decremented over the range until the
condition X is met.

* Expressions such as X - Y, where X and Y can be iterators other than
random-access iterators, are intended in the mathematical sense. The function

38 Standard C++ Library

does not necessarily evaluate operator- if it must determine such a value. The
same is also true for expressions such as X + N and X - N, where N is an integer

type.

Several algorithms make use of a predicate, using operator==, that must impose an
equivalence relationship on pairs of elements from a sequence. For all elements X,
Y, and Z:

e X == X is true.
e If X == Y is true, then Y == X is true.
e If X ==Y &% Y == 7 is true, then X == 7 is true.

Several algorithms make use of a predicate that must impose a strict weak
ordering on pairs of elements from a sequence. For the predicate pr(X, Y):

o “strict” means that pr(X, X) is false

* “weak” means that X and Y have an equivalent ordering if !pr(X, Y) && !pr(Y,
X) (X == Y need not be defined)

* “ordering” means that pr(X, Y) && pr(Y, Z) implies pr(X, Z)

Some of these algorithms implicitly use the predicate X < Y. Other predicates that
typically satisfy the ““strict weak ordering” requirement are X > Y, less(X, Y), and
greater(X, Y). Note, however, that predicates such as X <= Y and X >= Y do not
satisfy this requirement.

A sequence of elements designated by iterators in the range [first, last) is “a
sequence ordered by operator<” if, for each N in the range [0, last - first) and
for each M in the range (N, last - first) the predicate ! (*(first + M) < x(first
+N)) is true. (Note that the elements are sorted in ascending order.) The predicate
function operator<, or any replacement for it, must not alter either of its operands.
Moreover, it must impose a strict weak ordering (page on the operands it
compares.

A sequence of elements designated by iterators in the range [first, last) is “a
heap ordered by operator<” if, for each N in the range [1, Tast - first) the
predicate ! (xfirst < *(first + N)) is true. (The first element is the largest.) Its
internal structure is otherwise known only to the template functions make_heap
(page , pop_heap (page , and push_heap (page . As with an ordered
sequence (page [39), the predicate function operator<, or any replacement for it,
must not alter either of its operands, and it must impose a strict weak ordering
(page on the operands it compares.

Chapter 9. STL Conventions 39

40 Standard C++ Library

Chapter 10. Containers

namespace std {
template<class T>
class Cont;

// TEMPLATE FUNCTIONS
template<class T>
bool operator==
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator!=(
const Cont<T>& Tlhs,
const Cont<T>& rhs);
template<class T>
bool operator<(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator>(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator<=(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator>=(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
void swap(
Cont<T>& 1hs,
Cont<T>& rhs);
1

A container is an STL (page 1) template class that manages a sequence of elements.
Such elements can be of any object type that supplies a copy constructor, a
destructor, and an assignment operator (all with sensible behavior, of course). The
destructor may not throw an exception. This document describes the properties
required of all such containers, in terms of a generic template class Cont. An actual
container template class may have additional template parameters. It will certainly

have additional member functions.

The STL template container classes are:

deque (page

Tist (page
map (page [321)
multimap (page [328)

multiset (page |354)
set (page

S

vector (page

The Standard C++ library template class basic_string also meets the requirements

for a template container class.

© Copyright IBM Corp. 1999, 2005

Cont

begin (page @ - clear (page @) - const_iterator (page @ - const_reference (pa
44)

- const_reverse_iterator (page @ - difference_type (page @ - empty (page
- end (page - erase (page - iterator (page - max_size (page [45) - rbegin
% - rend (page - reverse_iterator (page [46) - size

(page - reference (page |4
(page - size_type (page - swap (page [46) - value_type (page [46)

template<class T<T> >
class Cont {

public:
typedef TO size_type;
typedef T1 difference_type;
typedef T2 reference;
typedef T3 const_reference;
typedef T4 value_type;
typedef T5 iterator;
typedef T6 const_iterator;
typedef T7 reverse_iterator;
typedef T8 const_reverse_iterator;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
size_type size() const;
size_type max_size() const;
bool empty() const;
iterator erase(iterator it);
iterator erase(iterator first, iterator last);
void clear();
void swap(Cont& x);

s

The template class describes an object that controls a varying-length sequence of
elements, typically of type T. The sequence is stored in different ways, depending
on the actual container.

A container constructor or member function may call the constructor T(const T&)
or the function T::operator=(const T&). If such a call throws an exception, the
container object is obliged to maintain its integrity, and to rethrow any exception it
catches. You can safely swap, assign to, erase, or destroy a container object after it
throws one of these exceptions. In general, however, you cannot otherwise predict
the state of the sequence controlled by the container object.

A few additional caveats:

* If the expression ~T() throws an exception, the resulting state of the container
object is undefined.

* If the container stores an allocator object al, and al throws an exception other
than as a result of a call to al.allocate, the resulting state of the container
object is undefined.

* If the container stores a function object comp, to determine how to order the
controlled sequence, and comp throws an exception of any kind, the resulting
state of the container object is undefined.

The container classes defined by STL satisfy several additional requirements, as
described in the following paragraphs.

42 Standard C++ Library

Container template class 1ist (page provides deterministic, and useful,
behavior even in the presence of the exceptions described above. For example, if an
exception is thrown during the insertion of one or more elements, the container is
left unaltered and the exception is rethrown.

For all the container classes defined by STL, if an exception is thrown during calls
to the following member functions:

insert // single element inserted
push_back
push_front

the container is left unaltered and the exception is rethrown.

For all the container classes defined by STL, no exception is thrown during calls to
the following member functions:

erase // single element erased
pop_back
pop_front

Moreover, no exception is thrown while copying an iterator returned by a member
function.

The member function swap (page [46) makes additional promises for all container
classes defined by STL:

¢ The member function throws an exception only if the container stores an
allocator object al, and al throws an exception when copied.

* References, pointers, and iterators that designate elements of the controlled
sequences being swapped remain valid.

An object of a container class defined by STL allocates and frees storage for the
sequence it controls through a stored object of type A, which is typically a template
parameter. Such an allocator object (page must have the same external
interface as an object of class allocator (page . In particular, A must be the
same type as A::rebind<value_type>::other

For all container classes defined by STL, the member function:
A get_allocator() const;

returns a copy of the stored allocator object. Note that the stored allocator object is
not copied when the container object is assigned. All constructors initialize the
value stored in allocator, to A() if the constructor contains no allocator parameter.

According to the C++ Standard (page [431) a container class defined by STL can
assume that:

* All objects of class A compare equal.

* Type A::const_pointer is the same as const T *.
* Type A::const_reference is the same as const T&.
* Type A::pointer is the same as T *.

* Type A::reference is the same as T&.

In this implementation (page E[), however, containers do not make such simplifying

assumptions. Thus, they work properly with allocator objects that are more
ambitious:

Chapter 10. Containers 43

* All objects of class A need not compare equal. (You can maintain multiple pools
of storage.)

* Type A::const_pointer need not be the same as const T *. (A pointer can be a
class.)

* Type A::pointer need not be the same as T *. (A const pointer can be a class.)

Cont::begin

const_iterator begin() const;
iterator begin();

The member function returns an iterator that points at the first element of the
sequence (or just beyond the end of an empty sequence).

Cont::clear

void clear();

The member function calls erase(begin(), end()).

Cont::const_iterator
typedef T6 const_iterator;

The type describes an object that can serve as a constant iterator for the controlled
sequence. It is described here as a synonym for the unspecified type Té.

Cont::const_reference

typedef T3 const_reference;

The type describes an object that can serve as a constant reference to an element of
the controlled sequence. It is described here as a synonym for the unspecified type
T3 (typically A::const_reference).

Cont::const_reverse_iterator

typedef T8 const_reverse_iterator;

The type describes an object that can serve as a constant reverse iterator for the
controlled sequence. It is described here as a synonym for the unspecified type T8
(typically reverse_iterator <const_iterator>).

Cont::difference_type
typedef T1 difference_type;
The signed integer type describes an object that can represent the difference
between the addresses of any two elements in the controlled sequence. It is

described here as a synonym for the unspecified type T1 (typically
A::difference_type).

Cont::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

44 Standard C++ Library

Cont::end

const_iterator end() const;
iterator end();

The member function returns an iterator that points just beyond the end of the
sequence.

Cont::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled sequence pointed
to by it. The second member function removes the elements of the controlled
sequence in the range [first, last). Both return an iterator that designates the
first element remaining beyond any elements removed, or end() if no such element
exists.

The member functions never throw an exception.

Cont::iterator
typedef T5 iterator;

The type describes an object that can serve as an iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T5. An object
of type iterator can be cast to an object of type const_iterator (page .

Cont::max_size
size_type max_size() const;

The member function returns the length of the longest sequence that the object can
control, in constant time regardless of the length of the controlled sequence.

Cont::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse iterator that points just beyond the end of
the controlled sequence. Hence, it designates the beginning of the reverse
sequence.

Cont::reference

typedef T2 reference;

The type describes an object that can serve as a reference to an element of the
controlled sequence. It is described here as a synonym for the unspecified type T2
(typically A::reference). An object of type reference can be cast to an object of
type const_reference (page .

Cont::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

Chapter 10. Containers 45

The member function returns a reverse iterator that points at the first element of
the sequence (or just beyond the end of an empty sequence). Hence, it designates
the end of the reverse sequence.

Cont::reverse _iterator

typedef T7 reverse_iterator;

The type describes an object that can serve as a reverse iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T7 (typically
reverse_iterator <iterator>).

Cont::size
size_type size() const;

The member function returns the length of the controlled sequence, in constant
time regardless of the length of the controlled sequence.

Cont::size_type
typedef TO size_type;

The unsigned integer type describes an object that can represent the length of any
controlled sequence. It is described here as a synonym for the unspecified type T0

(typically A::size_type).

Cont::swap

void swap(Cont& x);

The member function swaps the controlled sequences between *this and x. If
get_allocator() == x.get_allocator(), it does so in constant time. Otherwise, it
performs a number of element assignments and constructor calls proportional to
the number of elements in the two controlled sequences.

Cont::value_type
typedef T4 value_type;

The type is a synonym for the template parameter T. It is described here as a
synonym for the unspecified type T4 (typically A::value_type).

operator!=
template<class T>
bool operator!=(
const Cont <T>& Ths,
const Cont <T>& rhs);
The template function returns ! (Ths == rhs).
operator==

template<class T>
bool operator==(
const Cont <T>& Ths,
const Cont <T>& rhs);

Standard C++ Library

The template function overloads operator== to compare two objects of template
class Cont (page @ The function returns Ths.size() == rhs.size() &&
equal(Ths. begin(), Ths. end(), rhs.begin()).

operator<

template<class T>
bool operator<(
const Cont <T>& 1lhs,
const Cont <T>& rhs);

The template function overloads operator< to compare two objects of template
class Cont. The function returns lexicographical _compare(lhs. begin(), Ths.
end(), rhs.begin(), rhs.end()).

operator<=

template<class T>
bool operator<=(
const Cont <T>& 1lhs,
const Cont <T>& rhs);

The template function returns !(rhs < Ths).

operator>

template<class T>
bool operatorxgt; (
const Cont <T>& 1lhs,
const Cont <T>& rhs);

The template function returns rhs < Ths.

operator>=

template<class T>
bool operator>=(
const Cont <T>& 1lhs,
const Cont <T>& rhs);

The template function returns ! (Ths < rhs).

swap

template<class T>
void swap(
Cont <T>& Ths,
Cont <T>& rhs);

The template function executes Ths.swap (page (rhs).

Portions derived from work copyright © 1994 by Hewlett-Packard Company. All rights
reserved.

Chapter 10. Containers

47

48 Standard C++ Library

Chapter 11. Preprocessing

The translator processes each source file in a series of phases. Preprocessing
constitutes the earliest phases, which produce a translation unit (page .
Preprocessing treats a source file as a sequence of text lines (page|17). You can
specify directives and macros that insert, delete, and alter source text.

This document describes briefly just those aspect of preprocessing most relevant to
the use of the Standard C library:

The macro _ FILE__ expands to a string literal (page E[) that gives the remembered
filename of the current source file. You can alter the value of this macro by writing
a line directive.

The macro __LINE__ expands to a decimal integer constant that gives the
remembered line number within the current source file. You can alter the value of
this macro by writing a line directive.

A define directive defines a name as a macro. Following the directive name define,
you write one of two forms:

* a name not immediately followed by a left parenthesis, followed by any
sequence of preprocessing tokens — to define a macro without parameters

* a name immediately followed by a left parenthesis with 7o intervening white
space, followed by zero or more distinct parameter names separated by commas,
followed by a right parenthesis, followed by any sequence of preprocessing
tokens — to define a macro with as many parameters as names that you write
inside the parentheses

You can selectively skip groups of lines within source files by writing an if
directive, or one of the other conditional directives, ifdef or ifndef. You follow the
conditional directive by the first group of lines that you want to selectively skip.
Zero or more elif directives follow this first group of lines, each followed by a
group of lines that you want to selectively skip. An optional else directive follows
all groups of lines controlled by elif directives, followed by the last group of lines
you want to selectively skip. The last group of lines ends with an endif directive.

At most one group of lines is retained in the translation unit — the one
immediately preceded by a directive whose if expression (page @b has a nonzero
value. For the directive:

#ifdef X

this expression is defined (X), and for the directive:
#ifndef X

this expression is !defined (X).

An if expression is a conditional expression that the preprocessor evaluates. You

can write only integer constant expressions (page , with the following additional

considerations:

* The expression defined X, or defined (X), is replaced by 1 if X is defined as a
macro, otherwise 0.

© Copyright IBM Corp. 1999, 2005 49

50

* You cannot write the sizeof (page or type cast operators. (The translator
expands all macro names, then replaces each remaining name with 0, before it
recognizes keywords.)

* The translator may be able to represent a broader range of integers than the
target environment.

* The translator represents type int the same as long, and unsigned int the same as
unsigned long.

e The translator can translate character constants to a set of code values different
from the set for the target environment.

An include directive includes the contents of a standard header or another source
file in a translation unit. The contents of the specified standard header or source
file replace the include directive. Following the directive name include, write one of
the following:

* a standard header name between angle brackets
* a filename between double quotes

* any other form that expands to one of the two previous forms after macro
replacement

A line directive alters the source line number and filename used by the predefined
macros __FILE__ (page @[) and _ FILE_ . Following the directive name Tine, write
one of the following:

* a decimal integer (giving the new line number of the line following)

* a decimal integer as before, followed by a string literal (giving the new line
number and the new source filename)

* any other form that expands to one of the two previous forms after macro
replacement

Preprocessing translates each source file in a series of distinct phases. The first few
phases of translation: terminate each line with a newline character (NL), convert
trigraphs to their single-character equivalents, and concatenate each line ending in
a backslash (\) with the line following. Later phases process include directives
(page , expand macros, and so on to produce a translation unit. The translator
combines separate translation units, with contributions as needed from the
Standard C library, at link time, to form the executable program.

An undef directive removes a macro definition. You might want to remove a macro
definition so that you can define it differently with a define directive or to unmask
any other meaning given to the name. The name whose definition you want to
remove follows the directive name undef. If the name is not currently defined as a
macro, the undef directive has no effect.

Standard C++ Library

Chapter 12. Standard C++ Library Header Files

The Standard C++ Library is composed of eight special-purpose libraries:

¢ The Language Support Library

* The Diagnostics Library

¢ The General Utilities Library

* The Standard String Templates

* Localization Classes and Templates

¢ The Containers, Iterators and Algorithms Libraries (the Standard Template

Library)
¢ The Standard Numerics Library
¢ The Standard Input/Output Library
e C++ Headers for the Standard C Library

The Language Support Library

The Language Support Library defines types and functions that will be used

implicitly by C++ programs that employ such C++ language features as operators

new and delete, exception handling and runtime type information (RTTI).

Standard C++ Equivalent in previous versions
header
xception> (page LS <stdexcept.h>
74)
390

no equivalent

<limits> (page[l14) | no equivalent

<new> (page 164) <new.h>

<ti{ einfo> (page <typeinfo.h>
224) no equivalent

The Diagnostics Library

The Diagnostics Library is used to detect and report error conditions in C++

programs.
Standard C++ Equivalent in previous versions
header
<itdexcept> (page LS <stdexcept.h>
184))
B no equivalent

The General Utilities Library

The General Utilities Library is used by other components of the Standard C++

Library, especially the Containers, Iterators and Algorithms Libraries (the Standard

Template Library).

Standard C++ header Equivalent in previous versions
<utility> (page no equivalent
<functional> (page no equivalent

© Copyright IBM Corp. 1999, 2005

51

<memory> (page no equivalent

The Standard String Templates
The Strings Library is a facility for the manipulation of character sequences.

Standard C++ header Equivalent in previous versions
<string> (page no equivalent

Localization Classes and Templates
The Localization Library permits a C++ program to address the cultural differences
of its various users.

Standard C++ header Equivalent in previous versions
<locale> (page [119) no equivalent

The Containers, Iterators and Algorithms Libraries (the Standard Template
Library)

The Standard Template Library (STL) is a facility for the management and
manipulation of collections of objects.

Standard C++ header Equivalent in previous versions
<algorithm> (page no equivalent
<bitset> (page @ no equivalent
<deque> (page no equivalent
<iterator> (page no equivalent
<list> (page no equivalent
<map> (page no equivalent
<queue> (page no equivalent
<set> (page no equivalent
<stack> (page no equivalent
<unordered_map> (page no equivalent
<unordered set> (page no equivalent
<vector> (page no equivalent

The Standard Numerics Library
The Numerics Library is a facility for performing seminumerical operations.

Users who require library facilities for complex arithmetic but wish to maintain
compatibility with older compilers may use the compatibility complex numbers
library whose types are defined in the non-standard header file <complex.h>.
Although the header files <complex> and <complex.h> are similar in purpose, they
are mutually incompatible.

Standard C++ header Equivalent in previous versions
<complex> (page no equivalent
<numeric> (page no equivalent
<valarray> (page no equivalent

52 Standard C++ Library

The Standard Input/Output Library

The standard iostreams library differs from the compatibility iostreams in a
number of important respects. To maintain compatibility between such a product
and VisualAge C++ Version 5.0 or z/OS C/C++ Version 1.2, use instead the
compatibility iostreams library.

Standard C++ header Equivalent in previous versions
<fstream> (page no equivalent
<iomanip> (page no equivalent
<ios> (page no equivalent
<iosfwd> (page no equivalent
<iostream> (page no equivalent
<istream> (page no equivalent
<ostream> (page no equivalent
<streambuf> (page no equivalent
<sstream> (page no equivalent

C++ Headers for the Standard C Library

The C International Standard specifies 18 headers which must be provided by a
conforming hosted implementation. The name of each of these headers is of the
form name.h. The C++ Standard Library includes the C Standard Library and,
hence, includes these 18 headers. Additionally, for each of the 18 headers specified
by the C International Standard, the C++ standard specifies a corresponding
header that is functionally equivalent to its C library counterpart, but which locates
all of the declarations that it contains within the std namespace. The name of each
of these C++ headers is of the form cname, where name is the string that results
when the “.h” extension is removed from the name of the equivalent C Standard
Library header. For example, the header files <stdlib.h> and <cstdlib> are both
provided by the C++ Standard Library and are equivalent in function, with the
exception that all declarations in <cstdlib> are located within the std namespace.

Standard C++ Header Corresponding Standard C & C++ Header
<cassert> (page @b <assert.h>
<cctype> (page <ctype.h>
<cerrno> (page @b <errno.h>
<cfloat> (page @b <float.h>
<ciso646> (page @ <is0646.h>
<climits> (page <limits.h>
<clocale> (page I@ <locale.h>
<cmath> (page <math.h>
<csetjmp> (page [72) <setjmp.h>
<csignal> (page <signal.h>
<cstdarg> (page <stdarg.h>
<cstddef> (page <stddef.h>
<cstdio> (page <stdio.h>
<cstdlib> (page <stdlib.h>

Chapter 12. Standard C++ Library Header Files 53

<cstring> (page <string.h>
<ctime> (page <time.h>
<cwchar> (page <wchar.h>
<cwctype> (page <wctype.h>

<bitset>

bitset

namespace std {
template<size_t N>
class bitset;

// TEMPLATE FUNCTIONS
template<class E, class T, size t N>
basic_istream<E, T>&
operator>>(basic_istream<kE, >& is,
bitset<N>& x);
template<class E, class T, size_t N>
basic_ostream<kE, T>&
operator<<(basic_ostream<E, T>& os,
const bitset<N>& x);

}s

Include the standard header <bitset> to define the template class bitset and two
supporting templates.

any (page - at (page [55) - bitset (page [55) - bitset_size (page - count (page
56) - element_type (page - flip (page [56) - none (page @ - operator!= (page
56) - operator&= (page [56) - operator<< (age - operator<<= (age .
operator== (page [56) - operator>> (page [57) - operator>>= (page [57) - operator[]
(page [57) - operator”= (page [57) - operator | = (pa e - operator~ (page [57) -

reference (page [57) - reset (page - set (page [58) - size (page - test (page .
to_string (page [58) - to_ulong (page

template<size_t N>
class bitset {
public:
typedef bool element_type;
class reference;
bitset();
bitset(unsigned long val);
template<class E, class T, class A>
explicit bitset(const basic_string<kE, T, A>& str,
typename basic_string<E, T, A>::size_type
pos = 0,
typename basic_string<kE, T, A>::size_type
n = basic_string<E, T, A>::npos);
bitset<N>& operator&=(const bitset<N>& rhs);
bitset<N>& operator|=(const bitset<N>& rhs);
bitset<N>& operator”=(const bitset<N>& rhs);
bitset<N>& operator<<=(const bitset<N>& pos);
bitset<N>& operator>>=(const bitset<N>& pos);
bitset<N>& set();
bitset<N>& set(size_t pos, bool val = true);
bitset<N>& reset();
bitset<N>& reset(size_t pos);
bitset<N>& flip();
bitset<N>& flip(size_t pos);
reference operator[](size t pos);
bool operator[](size_t pos) const;
reference at(size_t pos);

54 Standard C++ Library

bool at(size_t pos) const;

unsigned long to_ulong() const;

template<class E, class T, class A>
basic_string<k, T, A> to_string() const;

size_t count() const;

size_t size() const;

bool operator==(const bitset<N>& rhs) const;

bool operator!=(const bitset<N>& rhs) const;

bool test(size_t pos) const;

bool any() const;

bool none() const;

bitset<N> operator<<(size t pos) const;

bitset<N> operator>>(size_t pos) const;

bitset<N> operator™();

static const size_t bitset_size = N;

1

The template class describes an object that stores a sequence of N bits. A bit is set if
its value is 1, reset if its value is 0. To flip a bit is to change its value from 1 to 0
or from 0 to 1. When converting between an object of class bitset<N> and an
object of some integral type, bit position j corresponds to the bit value 1 << j. The
integral value corresponding to two or more bits is the sum of their bit values.

bitset::any
bool any() const;

The member function returns true if any bit is set in the bit sequence.

bitset::at
bool at(size_type pos) const;
reference at(size_type pos);

The member function returns an object of class reference (page @), which
designates the bit at position pos, if the object can be modified. Otherwise, it
returns the value of the bit at position pos in the bit sequence. If that position is
invalid, the function throws an object of class out_of_range (page .

bitset::bitset

bitset();
bitset(unsigned long val);
template<class E, class T, class A>
explicit bitset(const basic_string<k, T, A>& str,
typename basic_string<E, T, A>::size_type
pos = 0,
typename basic_string<E, T, A>::size_type
n = basic_string<E, T, A>::npos);

The first constructor resets all bits in the bit sequence. The second constructor sets
only those bits at position j for which val & 1 << j is nonzero.

The third constructor determines the initial bit values from elements of a string
determined from str. If str.size (page () < pos, the constructor throws an
object of class out_of range (page [185). Otherwise, the effective length of the string
rlen is the smaller of n and str.size() - pos. If any of the rlen elements
beginning at position pos is other than 0 or 1, the constructor throws an object of
class invalid_argument (page . Otherwise, the constructor sets only those bits
at position j for which the element at position pos + j is 1.

Chapter 12. Standard C++ Library Header Files 55

56

bitset::bitset_size
static const size_t bitset_size = N;

The const static member is initialized to the template parameter N.

bitset::count
size_t count() const;

The member function returns the number of bits set in the bit sequence.

bitset::element_type
typedef bool element_type;

The type is a synonym for bool.

bitset::flip
bitset<N>& flip();
bitset<N>& flip(size_t pos);

The first member function flips all bits in the bit sequence, then returns *this. The
second member function throws out_of_range (page [185) if size() <= pos.
Otherwise, it flips the bit at position pos, then returns *this.

bitset::none
bool none() const;

The member function returns true if none of the bits are set in the bit sequence.

bitset::operator!=
bool operator !=(const bitset<N>& rhs) const;

The member operator function returns true only if the bit sequence stored in *this
differs from the one stored in rhs.

bitset::operator&=
bitset<N>& operator&=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in
*this with the logical AND of its previous value and the corresponding bit in rhs.
The function returns *this.

bitset::operator<<
bitset<N> operator<<(const bitset<N>& pos);

The member operator function returns bitset(*this) <<= pos.

bitset::operator<<=
bitset<N>& operator<<=(const bitset<N>& pos);

The member operator function replaces each element of the bit sequence stored in
*this with the element pos positions earlier in the sequence. If no such earlier
element exists, the function clears the bit. The function returns *this.

bitset::operator==
bool operator ==(const bitset<N>& rhs) const;

Standard C++ Library

The member operator function returns true only if the bit sequence stored in *this
is the same as the one stored in rhs.

bitset::operator>>
bitset<N> operator>>(const bitset<N>& pos);

The member operator function returns bitset(*this) >>= (page pos.

bitset::operator>>=
bitset<N>& operator>>=(const bitset<N>& pos);

The member function replaces each element of the bit sequence stored in *this
with the element pos positions later in the sequence. If no such later element exists,
the function clears the bit. The function returns *this.

bitset::operator(]

bool operator[](size_type pos) const;
reference operator[] (size_type pos);

The member function returns an object of class reference, which designates the bit
at position pos, if the object can be modified. Otherwise, it returns the value of the
bit at position pos in the bit sequence. If that position is invalid, the behavior is
undefined.

bitset::operator”=
bitset<N>& operator”~=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in
*this with the logical EXCLUSIVE OR of its previous value and the corresponding
bit in rhs. The function returns *this.

bitset::operator|=
bitset<N>& operator|=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in
*this with the logical OR of its previous value and the corresponding bit in rhs.
The function returns *this.

bitset::operator~
bitset<N> operator™();

The member operator function returns bitset(*this).f1ip().

bitset::reference
class reference {
pubTic:
reference& operator=(bool b};
reference& operator=(const reference& x);
bool operator™() const;
operator bool() const;
reference& flip();

}s

The member class describes an object that designates an individual bit within the
bit sequence. Thus, for b an object of type bool, x and y objects of type bitset<N>,
and i and j valid positions within such an object, the member functions of class
reference ensure that (in order):

» x[i] = b stores b at bit position i in x

Chapter 12. Standard C++ Library Header Files 57

58

» x[i] = y[J] stores the value of the bit y[j] at bit position i in x

* b ="~x[i] stores the flipped value of the bit x[i] in b

e b = x[i] stores the value of the bit x[i] in b

» x[i].f1ip() stores the flipped value of the bit x[i] back at bit position i in x

bitset::reset

bitset<N>& reset();
bitset<N>& reset(size_t pos);

The first member function resets (or clears) all bits in the bit sequence, then returns
*this. The second member function throws out_of range if size() <= pos.
Otherwise, it resets the bit at position pos, then returns *this.

bitset::set

bitset<N>& set();
bitset<N>& set(size_t pos, bool val = true);

The first member function sets all bits in the bit sequence, then returns *this. The
second member function throws out_of range if size() <= pos. Otherwise, it
stores val in the bit at position pos, then returns *this.

bitset::size
size t size() const;

The member function returns N.

bitset::test
bool test(size_t pos, bool val = true);

The member function throws out_of range (page [185) if size() <= pos.
Otherwise, it returns true only if the bit at position pos is set.

bitset::to_string

template<class E, class T, class A>
basic_string<k, T, A> to_string() const;

The member function constructs str, an object of class basic_string<k, T, A>. For
each bit in the bit sequence, the function appends 1 if the bit is set, otherwise 0.
The last element appended to str corresponds to bit position zero. The function
returns str.

bitset::to_ulong
unsigned long to_ulong() const;

The member function throws overflow_error (page [185) if any bit in the bit
sequence has a bit value that cannot be represented as a value of type unsigned
long. Otherwise, it returns the sum of the bit values in the bit sequence.

operator<<

template<class E, class T, size t N>
basic_ostream<kE, T>&
operator<<(basic_ostream<E, T>& os,
const bitset<N>& x);

Standard C++ Library

The template function overloads operator<< to insert a text representation of the
bit sequence in os. It effectively executes os << x.to_string<k, T, allocator<E>
>(), then returns os.

operator>>

template<class E, class T, size_t N>
basic_istream<kE, T>&
operator>>(basic_istream<E, T>& is,
bitset<N>& x);

The template function overloads operator>> to store in x the value bitset(str),
where str is an object of type basic_string<kE, T, allocator<E> >& extracted from
is. The function extracts elements and appends them to str until:

* N elements have been extracted and stored
* end-of-file occurs on the input sequence

* the next input element is neither 0 not 1, in which case the input element is not
extracted

If the function stores no characters in str, it calls is.setstate(ios_base::failbit).
In any case, it returns is.

<cassert>
#include <assert.h>
Include the standard header <cassert> to effectively include the standard header
<assert.h>.
<cctype>
#include <ctype.h>
namespace std {
using ::isalnum; using ::isalpha; using ::iscntrl;
using ::isdigit; using ::isgraph; using ::islower;
using ::isprint; using ::ispunct; using ::isspace;
using ::isupper; using ::isxdigit; using ::tolower;
using ::toupper;
}s
Include the standard header <cctype> to effectively include the standard header
<ctype.h> within the std namespace (page E[)
<cerrno>
#include <errno.h>
Include the standard header <cerrno> to effectively include the standard header
<errno.h>.
<cfloat>

#include <float.h>

Include the standard header <cfloat> to effectively include the standard header
<float.h>.

Chapter 12. Standard C++ Library Header Files 59

<Cis0646>

#include <iso0646.h>

Include the standard header <cis0646> to effectively include the standard header
<is0646.h>.

<climits>

#include <limits.h>

Include the standard header <climits> to effectively include the standard header
<limits.h>.

<clocale>

#include <locale.h>

namespace std {
using ::1conv; using ::localeconv; using ::setlocale;

}s

Include the standard header <clocale> to effectively include the standard header
<locale.h> within the std namespace (page E[)

<cmath>

#include <math.h>

namespace std {

using ::abs; using ::acos; using ::asin;
using ::atan; using ::atan2; using ::ceil;
using ::€0S; using ::cosh; using ::exp;
using ::fabs; using ::floor; using ::fmod;
using ::frexp; using ::ldexp; using ::1o0g;
using ::10910; using ::modf; using ::pow;
using ::sin; using ::sinh; using ::sqrt;
using ::tan; using ::tanh;

using ::acosf; using ::asinf;

using ::atanf; using ::atan2f; using ::ceilf;
using ::cosf; using ::coshf; using ::expf;
using ::fabsf; using ::floorf; using ::fmodf;
using ::frexpf; using ::Tdexpf; using ::1ogf;
using ::10910f; using ::modff; using ::powf;
using ::sinf; using ::sinhf; using ::sqrtf;
using ::tanf; using ::tanhf;

using ::acosl; using ::asinl;

using ::atanl; using ::atan21; using ::ceill;
using ::cosl; using ::coshl; using ::expl;
using ::fabsl; using ::floorl; using ::fmodl;
using ::frexpl; using ::Tdexpl; using ::1o0gl;
using ::109107; using ::modfl; using ::powl;
using ::sinl; using ::sinhl; using ::sqrtl;
using ::tanl; using ::tanhl;

}s

Include the standard header <cmath> to effectively include the standard header
<math.h> within the std namespace (page E[)

60 Standard C++ Library

<complex>

abs (page - arg (page - complex (page |63 complex<d0uble> (pag;

complex<float> (page

(page [68) - norm (page [68) - operator!= (page
(page [69) - operator- (page - operator/ (
operator== age .i operat0r>> (page
real (page ‘ sin (page .» sinh (page
(page[71) - __ STD_COMPLEX (page 71)
namespace std {

#define __STD_COMPLEX

// TEMPLATE CLASSES

template<class T>

class complex;
template<>

class complex<float>;
template<>

class complex<double>;
template<>

class complex<long double>;

// TEMPLATE FUNCTIONS
template<class T>
complex<T> operator+(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& 1hs,
const T& rhs);
template<class T>
complex<T> operator+(const T& Ths,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& Tlhs,
const T& rhs);
template<class T>
complex<T> operator-(const T& Ths,
const complex<T>& rhs);
template<class T>
complex<T> operator*(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator*(const complex<T>& lhs,
const T& rhs);
template<class T>
complex<T> operator*(const T& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator/(const complex<T>& 1hs,
const complex<T>& rhs);
template<class T>
complex<T> operator/(const complex<T>& 1lhs,
const T& rhs);
template<class T>
complex<T> operator/(const T& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& 1hs);
template<class T>
complex<T> operator-(const complex<T>& 1hs);
template<class T>

Chapter 12.

) - complex<long double> (pa
(page[67) - cosh (page [67) - exp (page[68) - imag

- polar (page [70) -
71) - sqrt (page |71) -

- conj (p

(page [68 log (pag
operator* (page 68

- log10

Standard C++ Library Header Files

operator+
- operator<< (page (69 ‘

- pow (page [70) -
tan (page[71) - tanh

61

62

Standard C++ Library

bool operator==(const complex<T>& Ths,
const complex<T>& rhs);

template<class

T>

bool operator==(const complex<T>& Ths,
const T& rhs);

template<class

T>

bool operator==(const T& Ths,
const complex<T>& rhs);

template<class

T>

bool operator!=(const complex<T>& Ths,
const complex<T>& rhs);

template<class

T>

bool operator!=(const complex<T>& Ths,
const T& rhs);

template<class

T>

bool operator!=(const T& lhs,
const complex<T>& rhs);

template<class

U, class E, class T>

basic_istream<k, T>&
operator>>(basic_istream<kE, T>& is,
complex<U>& x);

template<class

U, class E, class T>

basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const complex<U>& x);

template<class

T>

T real(const complex<T>& Xx);

template<class

T>

T imag(const complex<T>& X);

template<class

T>

T abs(const complex<T>& x);

template<class

T>

T arg(const complex<T>& x);

template<class

T>

T norm(const complex<T>& X);

template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>

I:nj(const complex<T>& x);
;:1ar(const T& rho, const T& theta =
I:s(const complex<T>& x);

I:sh(const complex<T>& x);

Z;p(const complex<T>& x);

I:g(const complex<T>& x);

I:glﬂ(const complex<T>& x);

;:w(const complex<T>& x, int y);
;:w(const complex<T>& x, const T& y);
;:w(const complex<T>& x,

const complex<T>& y);

template<class
complex<T>
template<class
complex<T>
template<class
complex<T>
template<class
complex<T>

}s

;:w(const T& x, const complex<T>& y);
I:n(const complex<T>& x);
l:nh(const complex<T>& x);
I;rt(const complex<T>& x);

0);

Include the standard header <complex> to define template class complex and a host

of supporting template functions. Unless otherwise specified, functions that can
return multiple values return an imaginary part in the half-open interval (-pi,

pil.
abs
template<class T>
T abs(const complex<T>& x);
The function returns the magnitude of x.
arg
template<class T>
T arg(const complex<T>& x);
The function returns the phase angle of x.
complex

template<class T>
class complex {
pubTic:

typedef T value_type;
T real() const;
T imag() const;
complex(const T& re = 0, const T& im = 0);
template<class U>

complex(const complex<U>& Xx);
template<class U>

complex& operator=(const complex<U>& rhs);
template<class U>

complex& operator+=(const complex<U>& rhs);
template<class U>

complex& operator-=(const complex<U>& rhs);
template<class U>

complex& operator*=(const complex<U>& rhs);
template<class U>

complex& operator/=(const complex<U>& rhs);
complex& operator=(const T& rhs);
complex& operator+=(const T& rhs);
complex& operator-=(const T& rhs);
complex& operator*=(const T& rhs);
complex& operator/=(const T& rhs);
friend complex<T>

operator+(const complex<T>& lhs, const T& rhs);
friend complex<T>

operator+(const T& Ths, const complex<T>& rhs);
friend complex<T>

operator-(const complex<T>& lhs, const T& rhs);
friend complex<T>

operator-(const T& Ths, const complex<T>& rhs);
friend complex<T>

operatorx(const complex<T>& 1hs, const T& rhs);
friend complex<T>

operatorx(const T& 1hs, const complex<T>& rhs);
friend complex<T>

operator/(const complex<T>& lhs, const T& rhs);
friend complex<T>

operator/(const T& Ths, const complex<T>& rhs);
friend bool

operator==(const complex<T>& lhs, const T& rhs);
friend bool

operator==(const T& Ths, const complex<T>& rhs);

Chapter 12. Standard C++ Library Header Files

63

friend bool

operator!=(const complex<T>& Ths, const T& rhs);
friend bool

operator!=(const T& Ths, const complex<T>& rhs);
}s

The template class describes an object that stores two objects of type T, one that

represents the real part of a complex number and one that represents the

imaginary part. An object of class T:

* has a public default constructor, destructor, copy constructor, and assignment
operator — with conventional behavior

* can be assigned integer or floating-point values, or type cast to such values —
with conventional behavior

* defines the arithmetic operators and math functions, as needed, that are defined
for the floating-point types — with conventional behavior

In particular, no subtle differences may exist between copy construction and
default construction followed by assignment. And none of the operations on
objects of class T may throw exceptions.

Explicit specializations of template class complex exist for the three floating-point
types. In this implementation (page , a value of any other type T is type cast to
double for actual calculations, with the double result assigned back to the stored
object of type T.

complex::complex

complex(const T& re = 0, const T& im = 0);
template<class U>
complex(const complex<U>& Xx);

The first constructor initializes the stored real part to re and the stored imaginary
part to im. The second constructor initializes the stored real part to x.real () and
the stored imaginary part to x.imag().

In this implementation (page , if a translator does not support member template
functions, the template:

template<class U>
complex(const complex<U>& Xx);

is replaced by:

complex(const complex& x);

which is the copy constructor.

complex::imag
T imag() const;

The member function returns the stored imaginary part.

complex::operator*=
template<class U>

complex& operator*=(const complex<U>& rhs);
complex& operator*=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex product of *this and rhs. It then returns *this.

64 Standard C++ Library

The second member function multiplies both the stored real part and the stored
imaginary part with rhs. It then returns *this.

In this implementation (page E[), if a translator does not support member template
functions, the template:

template<class U>
complex& operator*=(const complex<U>& rhs);

is replaced by:

complex& operator*=(const complex& rhs);

complex::operator+=

template<class U>
complex& operator+=(const complex<U>& rhs);
complex& operator+=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex sum of *this and rhs. It then returns *this.

The second member function adds rhs to the stored real part. It then returns *this.

In this implementation (page E[), if a translator does not support member template
functions, the template:

template<class U>
complex& operator+=(const complex<U>& rhs);

is replaced by:
complex& operator+=(const complex& rhs);

complex::operator-=
template<class U>

complex& operator-=(const complex<U>& rhs);
complex& operator-=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex difference of *this and rhs. It then returns *this.

The second member function subtracts rhs from the stored real part. It then returns
*this.

In this implementation (page E[), if a translator does not support member template
functions, the template:

template<class U>
complex& operator-=(const complex<U>& rhs);

is replaced by:

complex& operator-=(const complex& rhs);

complex::operator/=

template<class U>
complex& operator/=(const complex<U>& rhs);
complex& operator/=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex quotient of *this and rhs. It then returns *this.

Chapter 12. Standard C++ Library Header Files 65

66

The second member function multiplies both the stored real part and the stored
imaginary part with rhs. It then returns *this.

In this implementation (page , if a translator does not support member template
functions, the template:

template<class U>
complex& operator/=(const complex<U>& rhs);

is replaced by:

complex& operator/=(const complex& rhs);

complex::operator=

template<class U>
complex& operator=(const complex<U>& rhs);
complex& operator=(const T& rhs);

The first member function replaces the stored real part with rhs.real() and the
stored imaginary part with rhs.imag(). It then returns *this.

The second member function replaces the stored real part with rhs and the stored
imaginary part with zero. It then returns *this.

In this implementation (page E[), if a translator does not support member template
functions, the template:

template<class U>
complex& operator=(const complex<U>& rhs);

is replaced by:
complex& operator=(const complex& rhs);

which is the default assignment operator.

complex::real
T real() const;

The member function returns the stored real part.

complex::value_type
typedef T value_type;

The type is a synonym for the template parameter T.

complex<double>

template<>
class complex<double> {
public:
complex(double re = 0, double im = 0);
complex(const complex<float>& x);
explicit complex(const complex<long double>& x);
// rest same as template class complex

}s

The explicitly specialized template class describes an object that stores two objects
of type double, one that represents the real part of a complex number and one that
represents the imaginary part. The explicit specialization differs only in the
constructors it defines. The first constructor initializes the stored real part to re and

Standard C++ Library

the stored imaginary part to im. The remaining two constructors initialize the
stored real part to x.real() and the stored imaginary part to x.imag().

complex<float>

template<>
class complex<float> {
public:
complex(float re = 0, float im = 0);
explicit complex(const complex<double>& x);
explicit complex(const complex<long double>& x);
// rest same as template class complex

}s

The explicitly specialized template class describes an object that stores two objects
of type float, one that represents the real part of a complex number and one that
represents the imaginary part. The explicit specialization differs only in the
constructors it defines. The first constructor initializes the stored real part to re and
the stored imaginary part to im. The remaining two constructors initialize the
stored real part to x.real() and the stored imaginary part to x.imag().

complex<long double>

conj

COsS

cosh

template<>

class complex<long double> {
public:

complex(long double re = 0, long double im = 0);

complex(const complex<float>& x);

complex(const complex<double>& x);
// rest same as template class complex

b
The explicitly specialized template class describes an object that stores two objects
of type Tong double, one that represents the real part of a complex number and
one that represents the imaginary part. The explicit specialization differs only in
the constructors it defines. The first constructor initializes the stored real part to re

and the stored imaginary part to im. The remaining two constructors initialize the
stored real part to x.real() and the stored imaginary part to x.imag().

template<class T>
complex<T> conj(const complex<T>& x);

The function returns the conjugate of x.

template<class T>
complex<T> cos(const complex<T>& x);

The function returns the cosine of x.

template<class T>
complex<T> cosh(const complex<T>& x);

The function returns the hyperbolic cosine of x.

Chapter 12. Standard C++ Library Header Files 67

exp

template<class T>
complex<T> exp(const complex<T>& x);

The function returns the exponential of x.

imag
template<class T>
T imag(const complex<T>& Xx);

The function returns the imaginary part of x.

log
template<class T>
complex<T> log(const complex<T>& x);

The function returns the logarithm of x. The branch cuts are along the negative real
axis.

log10

template<class T>
complex<T> 1loglO(const complex<T>& x);

The function returns the base 10 logarithm of x. The branch cuts are along the
negative real axis.

norm
template<class T>
T norm(const complex<T>& X);
The function returns the squared magnitude of x.
operator!=
template<class T>
bool operator!=(const complex<T>& Ths,
const complex<T>& rhs);
template<class T>
bool operator!=(const complex<T>& Ths,
const T& rhs);
template<class T>
bool operator!=(const T& 1hs,
const complex<T>& rhs);
The operators each return true only if real(Ths) != real(rhs) || imag(Ths) !=
imag(rhs).
operator*

template<class T>
complex<T> operator*(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operatorx(const complex<T>& 1lhs,
const T& rhs);
template<class T>
complex<T> operator*(const T& 1lhs,
const complex<T>& rhs);

68 Standard C++ Library

The operators each convert both operands to the return type, then return the
complex product of the converted Ths and rhs.

operator+

template<class T>
complex<T> operator+(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& Tlhs,
const T& rhs);
template<class T>
complex<T> operator+(const T& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& lhs);

The binary operators each convert both operands to the return type, then return
the complex sum of the converted Ths and rhs.

The unary operator returns Ths.

operator-

template<class T>
complex<T> operator-(const complex<T>& Tlhs,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& 1hs,
const T& rhs);
template<class T>
complex<T> operator-(const T& Ths,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& 1hs);

The binary operators each convert both operands to the return type, then return
the complex difference of the converted Ths and rhs.

The unary operator returns a value whose real part is -real(Ths) and whose
imaginary part is -imag(1hs).

operator/

template<class T>
complex<T> operator/(const complex<T>& 1hs,
const complex<T>& rhs);
template<class T>
complex<T> operator/(const complex<T>& lhs,
const T& rhs);
template<class T>
complex<T> operator/(const T& 1lhs,
const complex<T>& rhs);

The operators each convert both operands to the return type, then return the
complex quotient of the converted Ths and rhs.

operator<<

template<class U, class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const complex<U>& x);

Chapter 12. Standard C++ Library Header Files

69

70

The template function inserts the complex value x in the output stream os,
effectively by executing:

basic_ostringstream<E, T> ostr;

ostr.flags(os.flags());

ostr.imbue(os.imbue());

ostr.precision(os.precision());

ostr << '(' << real(x) << ','
<< imag(x) << ')';

0s << ostr.str().c_str();

Thus, if os.width() is greater than zero, any padding occurs either before or after
the parenthesized pair of values, which itself contains no padding. The function
returns os.

operator==

template<class T>
bool operator==(const complex<T>& Ths,
const complex<T>& rhs);
template<class T>
bool operator==(const complex<T>& Ths,
const T& rhs);
template<class T>
bool operator==(const T& 1lhs,
const complex<T>& rhs);

The operators each return true only if real(Ths) == real(rhs) && imag(lhs) ==
imag(rhs).

operator>>

template<class U, class E, class T>
basic_istream<k, T>&
operator>>(basic_istream<kE, T>& is,
complex<U>& x);

The template function attempts to extract a complex value from the input stream
is, effectively by executing:

is >> ch & ch == '('
&& is >> re >> ch && ¢

h
&& is >> im >> ch && ch

Here, ch is an object of type E, and re and im are objects of type U.

If the result of this expression is true, the function stores re in the real part and im
in the imaginary part of x. In any event, the function returns is.

polar
template<class T>
complex<T> polar(const T& rho,
const T& theta = 0);
The function returns the complex value whose magnitude is rho and whose phase
angle is theta.
pow

template<class T>

complex<T> pow(const complex<T>& x, int y);
template<class T>

complex<T> pow(const complex<T>& x,

Standard C++ Library

real

sin

sinh

sqrt

const T& y);
template<class T>
complex<T> pow(const complex<T>& x,
const complex<T>& y);
template<class T>
complex<T> pow(const T& x,
const complex<T>& y);

The functions each effectively convert both operands to the return type, then

return the converted x to the power y. The branch cut for x is along the negative
real axis.

template<class T>
T real(const complex<T>& X);

The function returns the real part of x.

template<class T>
complex<T> sin(const complex<T>& x);

The function returns the sine of x.

template<class T>
complex<T> sinh(const complex<T>& x);

The function returns the hyperbolic sine of x.

template<class T>
complex<T> sqrt(const complex<T>& x);

The function returns the square root of x, with phase angle in the half-open
interval (-pi/2, pi/2]. The branch cuts are along the negative real axis.

__STD_COMPLEX

tan

tanh

#define __STD_COMPLEX

The macro is defined, with an unspecified expansion, to indicate compliance with
the specifications of this header.

template<class T>
complex<T> tan(const complex<T>& x);

The function returns the tangent of x.

template<class T>
complex<T> tanh(const complex<T>& x);

The function returns the hyperbolic tangent of x.

Chapter 12. Standard C++ Library Header Files 71

<csetjmp>

#include <setjmp.h>

namespace std {
using ::jmp_buf; using ::Tongjmp;

}s

Include the standard header <csetjmp> to effectively include the standard header
<setjmp.h> within the std namespace (page [6).

<csignal>
#include <signal.h>
namespace std {
using ::sig_atomic_t; using ::raise; using ::signal;
b
Include the standard header <csignal> to effectively include the standard header
<signal.h> within the std namespace (page [6).
<cstdarg>
#include <stdarg.h>
namespace std {
using ::va_list;
b
Include the standard header <cstdarg> to effectively include the standard header
<stdarg.h> within the std namespace (page|6).
<cstddef>
#include <stddef.h>
namespace std {
using ::ptrdiff_t; using ::size_t;
b
Include the standard header <cstddef> to effectively include the standard header
<stddef.h> within the std namespace (page E[)
<cstdio>

#include <stdio.h>

namespace std {

using ::size_t; using ::fpos_t; using ::FILE;
using ::clearerr; using ::fclose; using ::feof;
using ::ferror; using ::fflush; using ::fgetc;
using ::fgetpos; using ::fgets; using ::fopen;
using ::fprintf; using ::fputc; using ::fputs;
using ::fread; using ::freopen; using ::fscanf;
using ::fseek; using ::fsetpos; using ::ftell;
using ::fwrite; using ::gets; using ::perror;
using ::printf; using ::puts; using ::remove;
using ::rename; using ::rewind; using ::scanf;
using ::setbuf; using ::setvbuf; using ::sprintf;

72 Standard C++ Library

using ::sscanf; using ::tmpfile; using ::tmpnam;
using ::ungetc; using ::vfprintf; using ::vprintf;
using ::vsprintf;

}s

Include the standard header <cstdio> to effectively include the standard header
<stdio.h> within the std namespace (page E[)

<cstdlib>
#include <stdlib.h>
namespace std {
using ::size_t; using ::div_t; using ::1div_t;
using ::abort; using ::abs; using ::atexit;
using ::atof; using ::atoi; using ::atol;
using ::bsearch; using ::calloc; using ::div;
using ::exit; using ::free; using ::getenv;
using ::labs; using ::1div; using ::malloc;
using ::mblen; using ::mbstowcs; using ::mbtowc;
using ::qsort; using ::rand; using ::realloc;
using ::srand; using ::strtod; using ::strtol;
using ::strtoul; using ::system;
using ::wcstombs; using ::wctomb;
1
Include the standard header <cstdlib> to effectively include the standard header
<stdlib.h> within the std namespace (page EI)
<cstring>
#include <string.h>
namespace std {
using ::size_t; using ::memcmp; using ::memcpy;
using ::memmove; using ::memset; using ::strcat;
using ::strcmp; using ::strcoll; using ::strcpy;
using ::strcspn; using ::strerror; using ::strlen;
using ::strncat; using ::strncmp; using ::strncpy;
using ::strspn; using ::strtok; using ::strxfrm;
1
Include the standard header <cstring> to effectively include the standard header
<string.h> within the std namespace (page E[)
<ctime>

#include <time.h>

namespace std {

using ::clock_t; using ::size_t;

using ::time_t; using ::tm;

using ::asctime; using ::clock; using ::ctime;

using ::difftime; using ::gmtime; using ::localtime;
using ::mktime; using ::strftime; using ::time;

}s

Include the standard header <ctime> to effectively include the standard header
<time.h> within the std namespace (page E[)

Chapter 12. Standard C++ Library Header Files

73

<cwchar>

#include <wchar.h>

namespace std {

using ::mbstate_t; using ::size_t; using ::wint_t;
using ::fgetwc; using ::fgetws; using ::fputwc;
using ::fputws; using ::fwide; using ::fwprintf;
using ::fwscanf; using ::getwc; using ::getwchar;
using ::mbrlen; using ::mbrtowc; using ::mbsrtowcs;
using ::mbsinit; using ::putwc; using ::putwchar;
using ::swprintf; using ::swscanf; using ::ungetwc;
using ::vfwprintf; using ::vswprintf; using ::vwprintf;
using ::wcrtomb; using ::wprintf; using ::wscanf;
using ::wcsrtombs; using ::wcstol; using ::wcscat;
using ::wcschr; using ::wcscmp; using ::wcscoll;
using ::wcscpy; using ::wcscspn; using ::wcslen;
using ::wcsncat; using ::wcsncmp; using ::wcsncpy;
using ::wcspbrk; using ::wcsrchr; using ::wcsspn;
using ::wcsstr; using ::wcstok; using ::wcsxfrm;
using ::wmemchr; using ::wmemcmp; using ::wmemcpy;
using ::wmemmove; using ::wmemset; using ::wcsftime;

}s

Include the standard header <cwchar> to effectively include the standard header
<wchar.h> within the std namespace (page B)

<cwctype>
#include <wctype.h>
namespace std {
using ::wint_t; using ::wctrans_t; using ::wctype_t;
using ::iswalnum; using ::iswalpha; using ::iswcntrl;
using ::iswctype; using ::iswdigit; using ::iswgraph;
using ::iswlower; using ::iswprint; using ::iswpunct;
using ::iswspace; using ::iswupper; using ::iswxdigit;
using ::towctrans; using ::towlower; using ::towupper;
using ::wctrans; using ::wctype;
1
Include the standard header <cwctype> to effectively include the standard header
<wctype.h> within the std namespace (page [6).
<exception>

namespace std {
class exception;
class bad_exception;

// FUNCTIONS

typedef void (*terminate_handler) ();
typedef void (*unexpected_handler)();
terminate_handler

set_terminate(terminate_handler ph) throw();
unexpected_handler

set_unexpected(unexpected_handler ph) throw();
void terminate();
void unexpected();
bool uncaught_exception();

}s

Include the standard header <exception> to define several types and functions
related to the handling of exceptions.

74 Standard C++ Library

bad_exception

class bad_exception : public exception {

bs

The class describes an exception that can be thrown from an unexpected handler
(page . The value returned by what() is an implementation-defined C string.
None of the member functions throw any exceptions.

exception

class exception {

public:
exception() throw();
exception(const exception& rhs) throw();
exception& operator=(const exception& rhs) throw();
virtual “~exception() throw();
virtual const char *what() const throw();

}s

The class serves as the base class for all exceptions thrown by certain expressions
and by the Standard C++ library. The C string value returned by what() is left
unspecified by the default constructor, but may be defined by the constructors for
certain derived classes as an implementation-defined C string.

None of the member functions throw any exceptions.

set_terminate

terminate_handler
set_terminate(terminate_handler ph) throw();

The function establishes a new terminate handler (page[75) as the function *ph.
Thus, ph must not be a null pointer. The function returns the address of the
previous terminate handler.

set_unexpected

unexpected_handler
set_unexpected(unexpected_handler ph) throw();

The function establishes a new unexpected handler (page|76) as the function *ph.
Thus, ph must not be a null pointer. The function returns the address of the
previous unexpected handler.

terminate

void terminate();

The function calls a terminate handler, a function of type void (). If terminate is
called directly by the program, the terminate handler is the one most recently set
by a call to set_terminate (page . If terminate is called for any of several other
reasons during evaluation of a throw expression, the terminate handler is the one
in effect immediately after evaluating the throw expression.

A terminate handler may not return to its caller. At program startup, the terminate
handler is a function that calls abort ().

terminate_handler
typedef void (*terminate_handler)();

Chapter 12. Standard C++ Library Header Files 75

The type describes a pointer to a function suitable for use as a terminate handler

(page [75).

uncaught_exception

bool uncaught_exception();

The function returns true only if a thrown exception is being currently processed.
Specifically, it returns true after completing evaluation of a throw expression and
before completing initialization of the exception declaration in the matching
handler or calling unexpected (page as a result of the throw expression.

unexpected

void unexpected();

The function calls an unexpected handler, a function of type void (). If
unexpected is called directly by the program, the unexpected handler is the one
most recently set by a call to set_unexpected (page . If unexpected is called
when control leaves a function by a thrown exception of a type not permitted by
an exception specification for the function, as in:

void f() throw() // function may throw no exceptions
{throw "bad"; } // throw calls unexpected()

the unexpected handler is the one in effect immediately after evaluating the throw
expression.

An unexpected handler may not return to its caller. It may terminate execution by:

* throwing an object of a type listed in the exception specification (or an object of
any type if the unexpected handler is called directly by the program)

* throwing an object of type bad_exception
* calling terminate(), abort(), or exit(int)

At program startup, the unexpected handler is a function that calls terminate().

unexpected_handler

typedef void (*unexpected_handler)();

The type describes a pointer to a function suitable for use as an unexpected
handler.

<fstream>

namespace std {

template<class E, class T = char_traits<gE> >
class basic_filebuf;

typedef basic_filebuf<char> filebuf;

typedef basic_filebuf<wchar_t> wfilebuf;

template<class E, class T = char_traits<g> >
class basic_ifstream;

typedef basic_ifstream<char> ifstream;

typedef basic_ifstream<wchar_t> wifstream;

template<class E, class T = char_traits<gt> >
class basic_ofstream;

typedef basic_ofstream<char> ofstream;

typedef basic_ofstream<wchar_t> wofstream;

template<class E, class T = char_traits<gE> >

76 Standard C++ Library

class basic_fstream;
typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;

Include the iostreams (page IZ) standard header <fstream> to define several classes
that support iostreams operations on sequences stored in external files (page .

basic filebuf

template <class E, class T = char_traits<E> >
class basic_filebuf : public basic_streambuf<E, T> {
public:
typedef typename basic_streambuf<E, T>::char_type
char_type;
typedef typename basic_streambuf<E, T>::traits_type
traits_type;
typedef typename basic_streambuf<E, T>::int_type
int_type;
typedef typename basic_streambuf<E, T>::pos_type
pos_type;
typedef typename basic_streambuf<E, T>::off_type
off_type;
basic_filebuf();
bool is_open() const;
basic_filebuf xopen(const char =*s,
jos_base::openmode mode);
basic_filebuf *close();
protected:
virtual pos_type seekoff(off_type off,
ios_base::seekdir way,
jos_base::openmode which =
ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type pos,
ios_base::openmode which =
ios_base::in | ios_base::out);
virtual int_type underflow();
virtual int_type pbackfail(int_type c =
traits_type::eof());
virtual int_type overflow(int_type c =
traits_type::eof());
virtual int sync();
virtual basic_streambuf<k, T>
*xsetbuf (E *s, streamsize n);
}s

The template class describes a stream buffer (page that controls the
transmission of elements of type E, whose character traits (page are
determined by the class T, to and from a sequence of elements stored in an
external file (page .

An object of class basic_filebuf<E, T> stores a file pointer, which designates the
FILE object that controls the stream (page associated with an open (page
file. It also stores pointers to two file conversion facets (page for use by the
protected member functions overflow (page and underflow (page .

basic_filebuf::basic_filebuf
basic_filebuf();

The constructor stores a null pointer in all the pointers controlling the input buffer

(page 187) and the output buffer (page 187). It also stores a null pointer in the file
pointer (page .

Chapter 12. Standard C++ Library Header Files 77

78

basic_filebuf::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

basic_filebuf::close
basic_filebuf *close();

The member function returns a null pointer if the file pointer (page fp is a null
pointer. Otherwise, it calls fclose(fp). If that function returns a nonzero value, the
function returns a null pointer. Otherwise, it returns this to indicate that the file
was successfully closed (page .

For a wide stream, if any insertions have occured since the stream was opened, or
since the last call to streampos, the function calls overflow(). It also inserts any
sequence needed to restore the initial conversion state (page , by using the file
conversion facet (page fac to call fac.unshift as needed. Each element x of
type char thus produced is written to the associated stream designated by the file
pointer fp as if by successive calls of the form fputc(x, fp). If the call to
fac.unshift or any write fails, the function does not succeed.

basic_filebuf::int_type
typedef typename traits_type::int_type int_type;

The type is a synonym for traits_type::int_type.

basic_filebuf::is_open
bool is_open();

The member function returns true if the file pointer is not a null pointer.

basic_filebuf::off_type
typedef typename traits_type::off_type off_type;

The type is a synonym for traits_type::off_type.

basic_filebuf::open

basic_filebuf *xopen(const char =*s,
ios_base::openmode mode);

The member function endeavors to open the file with filename s, by calling
fopen(s, strmode). Here strmode is determined from mode & ~(ate & | binary):

* ios_base::in becomes "r" (open existing file for reading).

* jos_base::out or ios_base::out | ios_base::trunc becomes "w" (truncate
existing file or create for writing).

* ios_base::out | app becomes "a" (open existing file for appending all writes).

 jos_base::in | ios_base::out becomes "r+" (open existing file for reading and
writing).

 jos_base::in | ios_base::out | ios_base::trunc becomes "w+" (truncate
existing file or create for reading and writing).

* ios_base::in | ios_base::out | jos_base::app becomes "a+" (open existing
file for reading and for appending all writes).

If mode & ios_base::binary is nonzero, the function appends b to strmode to open
a binary stream (page instead of a text stream (page [17). It then stores the

Standard C++ Library

value returned by fopen in the file pointer (page fp. If mode & ios_base::ate is
nonzero and the file pointer is not a null pointer, the function calls fseek(fp, 0,
SEEK_END to position the stream at end-of-file. If that positioning operation fails, the
function calls close(fp) and stores a null pointer in the file pointer.

If the file pointer is not a null pointer, the function determines the file conversion
facet: use_facet< codecvt<E, char, traits_type:: state_type> >(getloc()), for
use by underflow and overflow.

If the file pointer is a null pointer, the function returns a null pointer. Otherwise, it
returns this.

basic_filebuf::overflow

virtual int_type overflow(int_type c =
traits_type::eof());

If ¢ != traits_type::eof(), the protected virtual member function endeavors to
insert the element traits_type::to_char_type(c) into the output buffer (page 187).
It can do so in various ways:

« If a write position (page [L88) is available, it can store the element into the write
position and increment the next pointer for the output buffer.

* It can make a write position available by allocating new or additional storage for
the output buffer.

* It can convert any pending output in the output buffer, followed by ¢, by using
the file conversion facet (page fac to call fac.out as needed. Each element x
of type char thus produced is written to the associated stream designated by the
file pointer fp as if by successive calls of the form fputc(x, fp). If any
conversion or write fails, the function does not succeed.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
traits_type::not_eof(c).

basic_filebuf::pbackfail

virtual int_type pbackfail(int_type c =
traits_type::eof());

The protected virtual member function endeavors to put back an element into the
input buffer (page , then make it the current element (pointed to by the next
pointer). If ¢ == traits_type::eof(), the element to push back is effectively the
one already in the stream before the current element. Otherwise, that element is
replaced by x = traits_type::to_char_type(c). The function can put back an
element in various ways:

« If a putback position (page [L88) is available, and the element stored there
compares equal to X, it can simply decrement the next pointer for the input
buffer.

* If the function can make a putback position available, it can do so, set the next
pointer to point at that position, and store x in that position.

* If the function can push back an element onto the input stream, it can do so,
such as by calling ungetc for an element of type char.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
traits_type::not_eof(c).

Chapter 12. Standard C++ Library Header Files 79

80

basic_filebuf::pos_type
typedef typename traits_type::pos_type pos_type;

The type is a synonym for traits_type::pos_type.

basic_filebuf::seekoff

virtual pos_type seekoff(off_type off,
ios_base::seekdir way,
ios_base::openmode which =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for
the controlled streams. For an object of class basic_filebuf<E, T>, a stream
position can be represented by an object of type fpos_t, which stores an offset and
any state information needed to parse a wide stream (page . Offset zero
designates the first element of the stream. (An object of type pos_type (page
stores at least an fpos_t object.)

For a file opened for both reading and writing, both the input and output streams
are positioned in tandem. To switch (page [20) between inserting and extracting,
you must call either pubseekoff (page or pubseekpos (page . Calls to
pubseekoff (and hence to seekoff) have various limitations for text streams (page
, binary streams (page , and wide streams (page .

If the file pointer (page fp is a null pointer, the function fails. Otherwise, it
endeavors to alter the stream position by calling fseek(fp, off, way). If that
function succeeds and the resultant position fposn can be determined by calling
fgetpos (fp, &fposn), the function succeeds. If the function succeeds, it returns a
value of type pos_type containing fposn. Otherwise, it returns an invalid stream
position.

basic_filebuf::seekpos

virtual pos_type seekpos(pos_type pos,
ios_base::openmode which =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for
the controlled streams. For an object of class basic_filebuf<E, T>, a stream
position can be represented by an object of type fpos_t, which stores an offset and
any state information needed to parse a wide stream (page . Offset zero
designates the first element of the stream. (An object of type pos_type (page
stores at least an fpos_t object.)

For a file opened for both reading and writing, both the input and output streams
are positioned in tandem. To switch (page|20) between inserting and extracting,
you must call either pubseekoff (page [L90) or pubseekpos (page . Calls to
pubseekoff (and hence to seekoff) have various limitations for text streams (page
, binary streams (page , and wide streams (page .

For a wide stream, if any insertions have occured since the stream was opened, or
since the last call to streampos, the function calls overflow(). It also inserts any
sequence needed to restore the initial conversion state (page , by using the file
conversion facet (page[79) fac to call fac.unshift as needed. Each element x of
type char thus produced is written to the associated stream designated by the file
pointer fp as if by successive calls of the form fputc(x, fp). If the call to
fac.unshift or any write fails, the function does not succeed.

Standard C++ Library

If the file pointer (page fp is a null pointer, the function fails. Otherwise, it
endeavors to alter the stream position by calling fsetpos(fp, &fposn), where

fposn is the fpos_t object stored in pos. If that function succeeds, the function
returns pos. Otherwise, it returns an invalid stream position.

basic_filebuf::setbuf

virtual basic_streambuf<k, T>
+«setbuf (E *s, streamsize n);

The protected member function returns zero if the file pointer (page fp is a null
pointer. Otherwise, it calls setvbuf(fp, (char *)s, _IOFBF, n * sizeof (E)) to
offer the array of n elements beginning at s as a buffer for the stream. If that
function returns a nonzero value, the function returns a null pointer. Otherwise, it
returns this to signal success.

basic_filebuf::sync
int sync();

The protected member function returns zero if the file pointer (page fp is a null
pointer. Otherwise, it returns zero only if calls to both overflow() and fflush(fp)
succeed in flushing any pending output to the stream.

basic_filebuf::traits_type
typedef T traits_type;

The type is a synonym for the template parameter T.

basic_filebuf::underflow
virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c
from the input stream, and return the element as traits_type::to_int_type(c). It
can do so in various ways:

* If a read position (page is available, it takes c as the element stored in the
read position and advances the next pointer for the input buffer (page [187).

* It can read one or more elements of type char, as if by successive calls of the
form fgetc(fp), and convert them to an element c of type E by using the file
conversion facet (page fac to call fac.in as needed. If any read or
conversion fails, the function does not succeed.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
¢, converted as described above.

basic_fstream

template <class E, class T = char_traits<E> >
class basic_fstream : public basic_iostream<E, T> {
pubTic:
basic_fstream();
explicit basic_fstream(const char *s,
ios_base::openmode mode =
ios_base::in | ios_base::out);
basic_filebuf<E, T> *rdbuf() const;
bool is_open() const;
void open(const char xs,
ios_base::openmode mode =
ios_base::in | ios_base::out);
void close();

}s

Chapter 12. Standard C++ Library Header Files 81

The template class describes an object that controls insertion and extraction of
elements and encoded objects using a stream buffer (page of class
basic_filebuf<E, T> with elements of type E, whose character traits (page are
determined by the class T. The object stores an object of class basic_filebuf<E, T>.

basic_fstream::basic_fstream

basic_fstream();
explicit basic_fstream(const char =*s,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The first constructor initializes the base class by calling basic_iostream(sb), where
sb is the stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<k, T>().

The second constructor initializes the base class by calling basic_iostream(sb). It
also initializes sh by calling basic_filebuf<E, T>(), then sb.open(s, mode). If the
latter function returns a null pointer, the constructor calls setstate(failbit).

basic_fstream::close
voidclose();

The member function calls rdbuf()-> close().

basic_fstream::is_open
bool is_open();

The member function returns rdbuf()-> is_open().

basic_fstream::open
void open(const char xs,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The member function calls rdbuf()-> open(s, mode). If that function returns a null
pointer, the function calls setstate(failbit).

basic_fstream::rdbuf
basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer, of type
pointer to basic_filebuf<kE, T>.

basic_ifstream

template <class E, class T = char_traits<E> >
class basic_ifstream : public basic_istream<E, T> {
public:
basic_filebuf<E, T> *rdbuf() const;
basic_ifstream();
explicit basic_ifstream(const char =s,
jos_base::openmode mode = jos_base::in);
bool is_open() const;
void open(const char *s,
jos_base::openmode mode = ios_base::in);
void close();

1

The template class describes an object that controls extraction of elements and
encoded objects from a stream buffer of class basic_filebuf<k, T>, with elements

82 Standard C++ Library

of type E, whose character traits (page [211) are determined by the class T. The
object stores an object of class basic_filebuf<E, T>.

basic_ifstream::basic_ifstream

basic_ifstream();
explicit basic_ifstream(const char *s,
jos_base::openmode mode = ios_base::in);

The first constructor initializes the base class by calling basic_i stream(sb), where
sb is the stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<k, T>().

The second constructor initializes the base class by calling basic_istream(sb). It
also initializes sb by calling basic_filebuf<E, T>(), then sbh.open(s, mode |
ios_base::in). If the latter function returns a null pointer, the constructor calls
setstate(failbit).

basic_ifstream::close
void close();

The member function calls rdbuf()-> close().

basic_ifstream::is_open
bool 1is_open();

The member function returns rdbuf()-> is_open().

basic_ifstream::open

void open(const char *s,
jos_base::openmode mode = jos_base::in);

The member function calls rdbuf()-> open(s, mode | ios_base::in). If that
function returns a null pointer, the function calls setstate(failbit).

basic_ifstream::rdbuf
basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer.

basic_ofstream

template <class E, class T = char_traits<E> >
class basic_ofstream : public basic_ostream<E, T> {
public:
basic_filebuf<k, T> *rdbuf() const;
basic_ofstream();
explicit basic_ofstream(const char =*s,
ios_base::openmode mode = jos_base::out);
bool is_open() const;
void open(const char xs,
jos_base::openmode mode = ios_base::out);
void close();

The template class describes an object that controls insertion of elements and
encoded objects into a stream buffer of class basic_filebuf<k, T>, with elements
of type E, whose character traits (page are determined by the class T. The
object stores an object of class basic_filebuf<k, T>.

Chapter 12. Standard C++ Library Header Files 83

basic_ofstream::basic_ofstream

basic_ofstream();
explicit basic_ofstream(const char =*s,
jos_base::openmode which = ios_base::out);

The first constructor initializes the base class by calling basic_ostream(sb), where
sb is the stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<k, T>().

The second constructor initializes the base class by calling basic_ostream(sb). It
also initializes sb by calling basic_filebuf<E, T>(), then sb.open(s, mode |
ios_base::out). If the latter function returns a null pointer, the constructor calls
setstate(failbit).

basic_ofstream::close
void close();

The member function calls rdbuf()-> close().

basic_ofstream::is_open
bool 1is_open();

The member function returns rdbuf()-> is_open().
basic_ofstream::open
void open(const char =*s,

jos_base::openmode mode = ios_base::out);

The member function calls rdbuf()-> open(s, mode | ios_base::out). If that
function returns a null pointer, the function calls setstate(failbit).

basic_ofstream::rdbuf
basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer.

filebuf

typedef basic_filebuf<char, char_traits<char> > filebuf;

The type is a synonym for template class basic_filebuf (page , specialized for
elements of type char with default character traits (page [211).

fstream

typedef basic_fstream<char, char_traits<char> > fstream;

The type is a synonym for template class basic_fstream (page , specialized for
elements of type char with default character traits (page [211).

ifstream

typedef basic_ifstream<char, char_traits<char> > ifstream;

The type is a synonym for template class basic_ifstream (page , specialized for
elements of type char with default character traits (page [211).

84 Standard C++ Library

ofstream

typedef basic_ofstream<char, char_traits<char> >
ofstream;

The type is a synonym for template class basic_ofstream (page , specialized for
elements of type char with default character traits (page [211).

wfstream

typedef basic_fstream<wchar_t, char_traits<wchar_t> >
wfstream;

The type is a synonym for template class basic_fstream (page [81), specialized for
elements of type wchar_t with default character traits (page [211).

wifstream

typedef basic_ifstream<wchar_t, char_traits<wchar_t> >
wifstream;

The type is a synonym for template class basic_ifstream (page [82)), specialized for
elements of type wchar_t with default character traits (page [211).

wofstream

typedef basic_ofstream<wchar_t, char_traits<wchar_t> >
wofstream;

The type is a synonym for template class basic_ofstream (page [83), specialized for
elements of type wchar_t with default character traits (page 211).

wfilebuf

typedef basic_filebuf<wchar_t, char_traits<wchar_t> >
wfilebuf;

The type is a synonym for template class basic_filebuf (page [77), specialized for
elements of type wchar_t with default character traits (page 211).

<iomanip>

namespace std {
T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags(ios_base::fmtflags mask);
T3 setbase(int base);
template<class E>
T4 setfill(E c);
T5 setprecision(streamsize n);
T6 setw(streamsize n);

s

Include the iostreams (page Izl) standard header <iomanip> to define several
manipulators (page that each take a single argument. Each of these
manipulators returns an unspecified type, called T1 through T6 here, that overloads
both basic_istream<E, T>::operator>> and basic_ostream<E, T>::operator<<.
Thus, you can write extractors and inserters such as:

cin >> setbase(8);
cout << setbase(8);

Chapter 12. Standard C++ Library Header Files 85

resetiosflags

T1 resetiosflags(ios_base::fmtflags mask);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(ios_base:: fmtflags(), mask), then returns str.

setbase

setfill

T3 setbase(int base);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(mask, ios_base::basefield), then returns str. Here,
mask is determined as follows:

» If base is 8, then mask is ios_base::oct

 If base is 10, then mask is ios_base: :dec

» If base is 16, then mask is ios_base: :hex

 If base is any other value, then mask is ios_base::fmtflags(0)

template<class E>
T4 setfill(E fillch);

The template manipulator returns an object that, when extracted from or inserted
into the stream str, calls str.fi11(fill1ch), then returns str. The type E must be
the same as the element type for the stream str.

setiosflags

T2 setiosflags(ios_base::fmtflags mask);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(mask), then returns str.

setprecision

setw

T5 setprecision(streamsize prec);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.precision(prec), then returns str.

T6 setw(streamsize wide);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.width(wide), then returns str.

<ios>

basic_ios (page - fpos (page[92) - ios (page @) - ios_base (page - streamoff
(page - streampos (page [101) - streamsize (page - wios (page .
wstreampos (page [101)

noshowpoint (page [99) - noshowpos (page [99) - noskipws (page - nounitbuf

boolalpha (page - dec (page - fixed (paie - hex (page - internal

(page [94) - left (page [99) - noboolalpha (page [99) - noshowbase (page .
i

86 Standard C++ Library

(page [100) - nouppercase (pa - oct (page - r1 ht (page 100) - scientific

(page [10 showbase (page [100) showpomt (page [100] showpos (page [100) -
skipws (page - unitbuf (page - uppercase (page 101

namespace std {
typedef T1 streamoff;
typedef T2 streamsize;
class ios_base;

// TEMPLATE CLASSES
template <class E, class T = char_traits<E> >
class basic_ios;
typedef basic_ios<char, char_traits<char> > ios;
typedef basic_ios<wchar_t, char_traits<wchar_t> >
wios;
template <class St>
class fpos;
typedef fpos<mbstate_t> streampos;
typedef fpos<mbstate t> wstreampos;

// MANIPULATORS
jos_base& boolalpha(ios_base& str);
jos_base& noboolalpha(ios_base& str);
jos_base& showbase(ios_base& str);
jos_base& noshowbase(ios_base& str);
jos_base& showpoint(ios_base& str);
jos_base& noshowpoint(ios_base& str);
jos_base& showpos(ios_base& str);
jos_base& noshowpos(ios_base& str);
jos_base& skipws(ios_base& str);
jos_base& noskipws(ios_base& str);
jos_base& unitbuf(ios_base& str);
jos_base& nounitbuf(ios_base& str);
jos_base& uppercase(ios_base& str);
jos_base& nouppercase(ios_base& str);
jos_base& internal(ios_base& str);
jos_base& Teft(ios_base& str);
jos_base& right(ios_base& str);
jos_base& dec(ios_base& str);
jos_base& hex(ios_base& str);
jos_base& oct(ios_base& str);
jos_base& fixed(ios_base& str);
jos_base& scientific(ios_base& str);

1

Include the iostreams (page IZ) standard header <ios> to define several types and
functions basic to the operation of iostreams. (This header is typically included for
you by another of the iostreams headers. You seldom have occasion to include it
directly.)

A large group of functions are manipulators. A manipulator declared in <ios>
alters the values stored in its argument object of class ios_base (page [94). Other
manipulators perform actions on streams controlled by objects of a type derived
from this class, such as a specialization of one of the template classes basic_istream
(page or basic_ostream (page . For example, noskipws(str) clears the
format flag ios_base::skipws in the object str, which might be of one of these

types.

You can also call a manipulator by inserting it into an output stream or extracting
it from an input stream, thanks to some special machinery supplied in the classes
derived from i0s_base. For example:

istr >> noskipws;

Chapter 12. Standard C++ Library Header Files 87

88

calls noskipws(istr).

basic_ios

bad (page. basic_ios (page [89) - char_type (page @i .
co yfmt (page [89) - eof (page [89) - exceptions (pa

- good (page [90) - imbue (page - init (pa e
(page @ - off_type (page operator' (page [91) perator void * (pag e
pos_type (page - rdbuf (ae 91) - rdstate (ae 9 - setstate (page [91) t1e
(page [91) - traits_type (page . widen (page [91]

template <class E, class T = char_traits<E> >
class basic_ios : public jos_base {

pubTic:
typedef E char_type;
typedef T traits_type;
typedef typename T::int_type int_type;
typedef typename T::pos_type pos_type;
typedef typename T::off_type off_type;
explicit basic_ios(basic_streambuf<kE, T> *sb);
virtual ~basic_ios();
operator void *() const;
bool operator!() const;
jostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;
jostate exceptions() const;
jostate exceptions(iostate except);
basic_ios& copyfmt(const basic_ios& rhs);
locale imbue(const Tocale& loc);
char_type widen(char ch);
char narrow(char_type ch, char dfit);
char_type fil1() const;
char_type fill(char_type ch);
basic_ostream<kE, T> *tie() const;
basic_ostream<E, T> *tie(basic_ostream<E, T> *str);
basic_streambuf<kE, T> *rdbuf() const;
basic_streambuf<k, T>

xrdbuf (basic_streambuf<E, T> *sb);

E widen(char ch);
char narrow(E ch, char dflt);

protected:
void init(basic_streambuf<kE, T> *sbh);
basic_ios();
basic_ios(const facetd); // not defined
void operator=(const facet&) // not defined

}s

The template class describes the storage and member functions common to both
input streams (of template class basic_istream (page [L0§]) and output streams (of
template class basic_ostream (page [16) that depend on the template parameters.
(The class ios_base (page describes what is common and not dependent on
template parameters.) An object of class basic_ios<E, T> helps control a stream
with elements of type E, whose character traits (page are determined by the
class T.

An object of class basic_ios<E, T> stores:
* a tie pointer to an object of type basic_ostream<E, T>
* a stream buffer pointer to an object of type basic_streambuf<E, T>

Standard C++ Library

 formatting information (page
* stream state information (page in a base object of type ios_base (page @)
* a fill character in an object of type char_type

basic_ios::bad
bool bad() const;

The member function returns true if rdstate() & badbit is nonzero.

basic_ios::basic_ios

explicit basic_ios(basic_streambuf<k, T> *sb);
basic_ios();

The first constructor initializes its member objects by calling init(sb). The second
(protected) constructor leaves its member objects uninitialized. A later call to init
must initialize the object before it can be safely destroyed.

basic_ios::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

basic_ios::clear
void clear(iostate state = goodbit);

The member function replaces the stored stream state information (page [95) with
state | (rdbuf() != 0 ? goodbit : badbit). If state & exceptions() is nonzero,
it then throws an object of class failure (page .

basic_ios::copyfmt
basic_ios& copyfmt(const basic_ios& rhs);

The member function reports the callback event (page [95) erase_event (page [95). It
then copies from rhs into *this the fill character (page[89), the tie pointer (page
88), and the formatting information (page . Before altering the exception mask
(page , it reports the callback event copyfmt_event (page [95). If, after the copy is
complete, state & exceptions() is nonzero, the function effectively calls clear
(page with the argument rdstate(). It returns *this.

basic_ios::eof
bool eof() const;

The member function returns true if rdstate() & eofbit is nonzero.

basic_ios::exceptions

iostate exceptions() const;
jostate exceptions(iostate except);

The first member function returns the stored exception mask (page . The second
member function stores except in the exception mask and returns its previous
stored value. Note that storing a new exception mask can throw an exception just
like the call clear(rdstate()).

Chapter 12. Standard C++ Library Header Files 89

basic_ios::fail
bool fail() const;

The member function returns true if rdstate() & failbit is nonzero.

basic_ios::fill
char_type fil1() const;
char_type fill(char_type ch);

The first member function returns the stored fill character (page . The second
member function stores ch in the fill character and returns its previous stored
value.

basic_ios::good
bool good() const;

The member function returns true if rdstate() == goodbit (no state flags are set).

basic_ios::imbue
Tocale imbue(const Tocale& loc);

If rdbuf (page is not a null pointer, the member function calls
rdbuf () ->pubimbue(Toc). In any case, it returns ios_base::imbue(loc).

basic_ios::init
void init(basic_streambuf<kE, T> xsb);

The member function stores values in all member objects, so that:

e rdbuf() returns sh

* tie() returns a null pointer

* rdstate() returns goodbit if sb is nonzero; otherwise, it returns badbit
* exceptions() returns goodbit

« flags() returns skipws | dec

e width() returns zero

e precision() returns 6

» fi11() returns the space character

e getloc() returns lTocale::classic()

* iword returns zero and pword returns a null pointer for all argument value

basic_ios::int_type
typedef typename T::int_type int_type;

The type is a synonym for T::int_type.

basic_ios::narrow
char narrow(char_type ch, char dfit);

The member function returns use_facet< ctype<E> >(getloc()). narrow(ch,
dflt).

basic_ios::off_type
typedef typename T::off type off_type;

The type is a synonym for T::0ff_type.

90 Standard C++ Library

basic_ios::operator void *
operator void *() const;

The operator returns a null pointer only if fail ().

basic_ios::operator!
bool operator!() const;

The operator returns fail().

basic_ios::pos_type
typedef typename T::pos_type pos_type;

The type is a synonym for T::pos_type.
basic_ios::rdbuf

basic_streambuf<k, T> *rdbuf() const;
basic_streambuf<kE, T> *rdbuf(basic_streambuf<k, T> =*sb);

The first member function returns the stored stream buffer pointer.

The second member function stores sb in the stored stream buffer pointer and
returns the previously stored value.

basic_ios::rdstate
iostate rdstate() const;

The member function returns the stored stream state information.

basic_ios::setstate
void setstate(iostate state);

The member function effectively calls clear(state | rdstate()).
basic_ios::tie

basic_ostream<E, T> *tie() const;
basic_ostream<kE, T> *tie(basic_ostream<kE, T> #*str);

The first member function returns the stored tie pointer (page . The second
member function stores str in the tie pointer and returns its previous stored value.

basic_ios::traits_type
typedef T traits_type;

The type is a synonym for the template parameter T.

basic_ios::widen
char_type widen(char ch);

The member function returns use facet< ctype<k> >(getloc()). widen(ch).

boolalpha

jos_base& boolalpha(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: boolalpha), then returns
str.

Chapter 12. Standard C++ Library Header Files 91

dec

jos_base& dec(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: dec, ios_base::
basefield), then returns str.

fixed

jos_base& fixed(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: fixed, ios_base::
floatfield), then returns str.

fpos

template <class St>
class fpos {

public:
fpos(streamoff off);
explicit fpos(St state);
St state() const;
void state(St state);
operator streamoff() const;
streamoff operator-(const fpos& rhs) const;
fpos& operator+=(streamoff off);
fpos& operator-=(streamoff off);
fpos operator+(streamoff off) const;
fpos operator-(streamoff off) const;
bool operator==(const fpos& rhs) const;
bool operator!=(const fpos& rhs) const;

1

The template class describes an object that can store all the information needed to
restore an arbitrary file-position indicator (page within any stream. An object of
class fpos<St> effectively stores at least two member objects:

* a byte offset, of type streamoff (page

* a conversion state, for use by an object of class basic_filebuf, of type St,
typically mbstate_t

It can also store an arbitrary file position, for use by an object of class basic_filebuf
(page , of type fpos_t. For an environment with limited file size, however,
streamoff and fpos_t may sometimes be used interchangeably. And for an
environment with no streams that have a state-dependent encoding (page ,
mbstate_t may actually be unused. So the number of member objects stored may
vary.

fpos::fpos

fpos(streamoff off);
explicit fpos(St state);

The first constructor stores the offset off, relative to the beginning of file and in
the initial conversion state (page (if that matters). If off is -1, the resulting

object represents an invalid stream position.

The second constructor stores a zero offset and the object state.

92 Standard C++ Library

hex

fpos::operator!=
bool operator!=(const fpos& rhs) const;

The member function returns ! (*this == rhs).

fpos::operator+
fpos operator+(streamoff off) const;

The member function returns fpos(*this) += off.

fpos::operator+=
fpos& operator+=(streamoff off);

The member function adds off to the stored offset member object, then returns
*this. For positioning within a file, the result is generally valid only for binary
streams (page that do not have a state-dependent encoding (page .

fpos::operator-

streamoff operator-(const fpos& rhs) const;
fpos operator-(streamoff off) const;

The first member function returns (streamoff)=*this - (streamoff)rhs. The
second member function returns fpos(*this) -= off.

fpos::operator-=
fpos& operator-=(streamoff off);

The member function returns fpos(*this) -= off. For positioning within a file, the
result is generally valid only for binary streams (page ﬁ_%b that do not have a
state-dependent encoding (page .

fpos::operator==
bool operator==(const fpos& rhs) const;

The member function returns (streamoff)*this == (streamoff)rhs.

fpos::operator streamoff
operator streamoff() const;

The member function returns the stored offset member object, plus any additional
offset stored as part of the fpos_t member object.

fpos::state
St state() const;
void state(St state);

The first member function returns the value stored in the St member object. The
second member function stores state in the St member object.

jos_base& hex(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: hex, ios_base::
basefield), then returns str.

Chapter 12. Standard C++ Library Header Files 93

internal

jos_base& internal(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: internal, ios_base::
adjustfield), then returns str.

10S
typedef basic_ios<char, char_traits<char> > ijos;
The type is a synonym for template class basic_ios (page [88), specialized for
elements of type char with default character traits (page [211).

ios_base

fmtflags (page - getloc (page - imbue (page [96) - Init (page [97) - ios_base
(page [97) - iostate (page [97) - iword (page @ - openmode (page [97) - precision

(page [98) - pword (page [98) - register_callback (page - seekdir (page [98) - setf
99]

event (page - event_callback ge - failure (page [95) - flags (page .
5 4§

(page - sync_with_stdio (page - unsetf (page - width (page[99) - xalloc
(page [99)

class ios_base {

public:

class failure;

typedef T1 fmtflags;

static const fmtflags boolalpha, dec, fixed, hex,
internal, left, oct, right, scientific,
showbase, showpoint, showpos, skipws, unitbuf,
uppercase, adjustfield, basefield, floatfield;

typedef T2 iostate;

static const iostate badbit, eofbit, failbit,
goodbit;

typedef T3 openmode;

static const openmode app, ate, binary, in, out,
trunc;

typedef T4 seekdir;

static const seekdir beg, cur, end;

typedef T5 event;

static const event copyfmt_event, erase_event,
copyfmt_event;

class Init;

fmtflags flags() const;

fmtflags flags(fmtflags fmtfl);

fmtflags setf(fmtflags fmtfl);

fmtflags setf(fmtflags fmtfl, fmtflags mask);

void unsetf(fmtflags mask);

streamsize precision() const;

streamsize precision(streamsize prec);

streamsize width() const;

stramsize width(streamsize wide);

locale imbue(const Tocale& loc);

locale getloc() const;

static int xalloc();

Tong& iword(int idx);

void *& pword(int idx);

typedef void *(event_callback(event ev,
jos_base& ios, int idx);

void register_callback(event callback pfn, int idx);

static bool sync_with_stdio(bool sync = true);

protected:
ios_base();

94 Standard C++ Library

private:
ios_base(const ios_based);
jos_base& operator=(const ios_base&);

}s

The class describes the storage and member functions common to both input and
output streams that does not depend on the template parameters. (The template
class basic_ios (page describes what is common and is dependent on template
parameters.)

An object of class i0s_base stores formatting information, which consists of:
+ format flags in an object of type fmtflags (page @)

* an exception mask in an object of type iostate (page @

* a field width in an object of type int

* a display precison in an object of type int

* alocale object (page in an object of type locale (page

* two extensible arrays, with elements of type long and void pointer

An object of class i0s_base also stores stream state information, in an object of
type iostate (page @, and a callback stack.

ios_base::event

typedef T5 event;
static const event copyfmt_event, erase_event,
imbue_event;

The type is an enumerated type T5 that describes an object that can store the

callback event used as an argument to a function registered with register_callback

(page . The distinct event values are:

+ copyfmt_event, to identify a callback that occurs near the end of a call to
copyfmt, just before the exception mask is copied.

* erase_event, to identify a callback that occurs at the beginning of a call to
copyfmt, or at the beginning of a call to the destructor for *this.

* imbue_event, to identify a callback that occurs at the end of a call to imbue (page
@, just before the function returns.

ios_base::event_callback

typedef void *(event_callback(event ev,
jos_base& ios, int idx);

The type describes a pointer to a function that can be registered with
register_callback (page . Such a function must not throw an exception.

ios_base::failure

class failure : public exception {
public:
explicit failure(const string& what arg) {

}s

The member class serves as the base class for all exceptions thrown by the member
function clear (page in template class basic_ios (page . The value returned
by what () is what_arg.data().

ios_base::flags
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);

Chapter 12. Standard C++ Library Header Files 95

The first member function returns the stored format flags (page . The second
member function stores fmtf1 in the format flags and returns its previous stored
value.

ios_base::fmtflags

typedef T1 fmtflags;

static const fmtflags boolalpha, dec, fixed, hex,
internal, left, oct, right, scientific,
showbase, showpoint, showpos, skipws, unitbuf,
uppercase, adjustfield, basefield, floatfield;

The type is a bitmask type (page @ T1 that describes an object that can store
format flags. The distinct flag values (elements) are:

* boolalpha, to insert or extract objects of type bool as names (such as true and
false) rather than as numeric values

* dec, to insert or extract integer values in decimal format

+ fixed, to insert floating-point values in fixed-point format (with no exponent
field)

* hex, to insert or extract integer values in hexadecimal format

e internal, to pad to a field width (page as needed by inserting fill characters
(page at a point internal to a generated numeric field

* left, to pad to a field width (page as needed by inserting fill characters
(page at the end of a generated field (left justification)

* oct, to insert or extract integer values in octal format

* right, to pad to a field width (page as needed by inserting fill characters
(page at the beginning of a generated field (right justification)

* scientific, to insert floating-point values in scientific format (with an exponent
field)

* showbase, to insert a prefix that reveals the base of a generated integer field

* showpoint, to insert a decimal point unconditionally in a generated floating-point
field

* showpos, to insert a plus sign in a non-negative generated numeric field
 skipws, to skip leading white space (page before certain extractions
* unitbuf, to flush output after each insertion

* uppercase, to insert uppercase equivalents of lowercase letters in certain
insertions

In addition, several useful values are:

* adjustfield, internal | left | right
* basefield, dec | hex | oct

« floatfield, fixed | scientific

ios_base::getloc
locale getloc() const;

The member function returns the stored locale object.

ios_base::imbue
locale imbue(const locale& loc);

The member function stores 1oc in the locale object, then reports the callback event
(page imbue_event (page . It returns the previous stored value.

96 Standard C++ Library

ios_base::Init
class Init {

}s

The nested class describes an object whose construction ensures that the standard
iostreams objects are properly constructed (page [L04), even before the execution of
a constructor for an arbitrary static object.

ios_base::ios_base
ios_base();

The (protected) constructor does nothing. A later call to basic_ios::init must
initialize the object before it can be safely destroyed. Thus, the only safe use for
class i0s_base is as a base class for template class basic_ios (page .

ios_base::iostate

typedef T2 iostate;
static const iostate badbit, eofbit, failbit, goodbit;

The type is a bitmask type (page[6) T2 that describes an object that can store
stream state information (page |95). The distinct flag values (elements) are:

* badbit, to record a loss of integrity of the stream buffer
e eofbit, to record end-of-file while extracting from a stream
* failbit, to record a failure to extract a valid field from a stream

In addition, a useful value is:
* goodbit, no bits set

ios_base::iword
Tong& iword(int idx);

The member function returns a reference to element idx of the extensible array
(page |95) with elements of type long. All elements are effectively present and
initially store the value zero. The returned reference is invalid after the next call to
iword for the object, after the object is altered by a call to basic_ios::copyfmt, or
after the object is destroyed.

If idx is negative, or if unique storage is unavailable for the element, the function
calls setstate(badbit) and returns a reference that might not be unique.

To obtain a unique index, for use across all objects of type i0s_base, call xalloc

(page 9.

ios_base::openmode

typedef T3 openmode;
static const openmode app, ate, binary, in, out, trunc;

The type is a bitmask type (page @ T3 that describes an object that can store the
opening mode for several iostreams objects. The distinct flag values (elements) are:

* app, to seek to the end of a stream before each insertion

* ate, to seek to the end of a stream when its controlling object is first created

* binary, to read a file as a binary stream (page , rather than as a text stream
(page

* in, to permit extraction from a stream

Chapter 12. Standard C++ Library Header Files 97

98

* out, to permit insertion to a stream
* trunc, to truncate an existing file when its controlling object is first created

ios_base::precision

streamsize precision() const;
streamsize precision(streamsize prec);

The first member function returns the stored display precision (page . The
second member function stores prec in the display precision and returns its
previous stored value.

ios_base::pword
void *& pword(int idx);

The member function returns a reference to element idx of the extensible array
(page with elements of type void pointer. All elements are effectively present
and initially store the null pointer. The returned reference is invalid after the next
call to pword for the object, after the object is altered by a call to
basic_ios::copyfmt, or after the object is destroyed.

If idx is negative, or if unique storage is unavailable for the element, the function
calls setstate(badbit) and returns a reference that might not be unique.

To obtain a unique indeXx, for use across all objects of type ios_base, call xalloc

(page 9.

ios_base::register_callback
void register_callback(event callback pfn, int idx);

The member function pushes the pair {pfn, idx} onto the stored callback stack
(page . When a callback event (page ev is reported, the functions are called,
in reverse order of registry, by the expression (*pfn) (ev, *this, idx).

ios_base::seekdir

typedef T4 seekdir;
static const seekdir beg, cur, end;

The type is an enumerated type T4 that describes an object that can store the seek
mode used as an argument to the member functions of several iostreams classes.
The distinct flag values are:

* beg, to seek (alter the current read or write position) relative to the beginning oc
a sequence (array, stream, or file)

* cur, to seek relative to the current position within a sequence
* end, to seek relative to the end of a sequence

ios_base::setf

void setf(fmtflags mask);
fmtflags setf(fmtflags fmtfl, fmtflags mask);

The first member function effectively calls flags(mask | flags()) (set selected
bits), then returns the previous format flags (page . The second member
function effectively calls flags(mask & fmtfl, flags() & “mask) (replace selected
bits under a mask), then returns the previous format flags.

ios_base::sync_with_stdio
static bool sync_with_stdio(bool sync = true);

Standard C++ Library

The static member function stores a stdio sync flag, which is initially true. When
true, this flag ensures that operations on the same file are properly synchronized
between the iostreams (page E[) functions and those defined in the Standard C
library. Otherwise, synchronization may or may not be guaranteed, but
performance may be improved. The function stores sync in the stdio sync flag and
returns its previous stored value. You can call it reliably only before performing
any operations on the standard streams.

ios_base::unsetf
void unsetf(fmtflags mask);

The member function effectively calls flags(“mask & flags()) (clear selected bits).

ios_base::width

streamsize width() const;
streamsize width(streamsize wide);

The first member function returns the stored field width (page . The second
member function stores wide in the field width and returns its previous stored
value.

ios_base::xalloc
static int xalloc();

The static member function returns a stored static value, which it increments on
each call. You can use the return value as a unique index argument when calling
the member functions iword (page I@) or pword (page .

left
jos_base& left(ios_base& str);
The manipulator effectively calls str.setf(ios_base:: Teft, jos_base::
adjustfield), then returns str.

noboolalpha
jos_base& noboolalpha(ios_base& str);
The manipulator effectively calls str.unsetf(ios_base::boolalpha), then returns
str.

noshowbase
jos_base& noshowbase(ios_base& str);
The manipulator effectively calls str.unsetf(ios_base::showbase), then returns
str.

noshowpoint
jos_base& noshowpoint(ios_base& str);
The manipulator effectively calls str.unsetf(ios_base::showpoint), then returns
str.

noshowpos

jos_base& noshowpos(ios_base& str);

Chapter 12. Standard C++ Library Header Files 99

The manipulator effectively calls str.unsetf(ios_base:

str.

noskipws

jos_base& noskipws(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:

nounitbuf

jos_base& nounitbuf(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:

nouppercase

jos_base& nouppercase(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base:

str.

oct

jos_base& oct(ios_base& str);

The manipulator effectively calls str.setf(ios_base::
then returns str.

right

jos_base& right(ios_base& str);

:showpos"), then returns

:skipws), then returns str.

:unitbuf), then returns str.

:uppercase), then returns

oct, ios_base::basefield),

The maiipulator effectively calls str.setf(ios_base::right,

ios_base::adjustfield), then returns str.
scientific
jos_base& scientific(ios_based str);

The manipulator effectively calls str.setf(ios_base:
jos_base::floatfield), then returns str.

showbase

jos_base& showbase(ios_base& str);

The manipulator effectively calls str.setf(ios_base:

showpoint

jos_base& showpoint(ios_base& str);

The manipulator effectively calls str.setf(ios_base:

showpos

jos_base& showpos(ios_base& str);

The manipulator effectively calls str.setf(ios_base:

100 Standard C++ Library

:scientific,

:showbase), then returns str.

:showpoint), then returns str.

:showpos), then returns str.

skipws

jos_base& skipws(ios_base& str);

The manipulator effectively calls str.setf(ios_base::skipws), then returns str.

streamoff
typedef T1 streamoff;

The type is a signed integer type T1 that describes an object that can store a byte
offset involved in various stream positioning operations. Its representation has at
least 32 value bits. It is not necessarily large enough to represent an arbitrary byte
position within a stream. The value streamoff(-1) generally indicates an erroneous
offset.

streampos

typedef fpos<mbstate t> streampos;

The type is a synonym for fpos< mbstate_t>.

streamsize
typedef T2 streamsize;
The type is a signed integer type T3 that describes an object that can store a count
of the number of elements involved in various stream operations. Its representation

has at least 16 bits. It is not necessarily large enough to represent an arbitrary byte
position within a stream.

unitbuf

jos_base& unitbuf(ios_base& str);

The manipulator effectively calls str.setf(ios_base::unitbuf), then returns str.

uppercase

jos_base& uppercase(ios_base& str);

The manipulator effectively calls str.setf(ios_base::uppercase), then returns str.

wios
typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;
The type is a synonym for template class basic_ios (page , specialized for
elements of type wchar_t with default character traits (page [211)).
wstreampos

typedef fpos<mbstate_t> wstreampos;

The type is a synonym for fpos< wmbstate_t>.

Chapter 12. Standard C++ Library Header Files 101

<iosfwd>

namespace std {

typedef T1 streamoff;
typedef T2 streamsize;
typedef fpos streampos;

// TEMPLATE CLASSES

template<class E>
class char_traits;

class char_traits<char>;

class char_traits<wchar_t>;

template<class E, class T = char_traits<E> >
class basic_ios;

template<class E, class T = char_traits<g> >
class istreambuf_iterator;

template<class E, class T = char_traits<gt> >
class ostreambuf_iterator;

template<class E, class T = char_traits<gt> >
class basic_streambuf;

template<class E, class T = char_traits<gE> >
class basic_istream;

template<class E, class T
class basic_ostream;

template<class E, class T = char_traits<E> >
class basic_iostream;

template<class E, class T = char_traits<g> >
class basic_stringbuf;

template<class E, class T = char_traits<g> >
class basic_istringstream;

template<class E, class T = char_traits<g> >
class basic_ostringstream;

template<class E, class T = char_traits<gt> >
class basic_stringstream;

template<class E, class T = char_traits<gE> >
class basic_filebuf;

template<class E, class T
class basic_ifstream;

template<class E, class T = char_traits<E> >
class basic_ofstream;

template<class E, class T = char_traits<g> >
class basic_fstream;

char_traits<g> >

char_traits<g> >

// char TYPE DEFINITIONS
typedef basic_ios<char, char_traits<char> > jos;
typedef basic_streambuf<char, char_traits<char> >

streambuf;

typedef basic_istream<char, char_traits<char> >
istream;

typedef basic_ostream<char, char_traits<char> >
ostream;

typedef basic_iostream<char, char_traits<char> >
iostream;

typedef basic_stringbuf<char, char_traits<char> >
stringbuf;

typedef basic_istringstream<char, char_traits<char> >
istringstream;

typedef basic_ostringstream<char, char_traits<char> >
ostringstream;

typedef basic_stringstream<char, char_traits<char> >
stringstream;

typedef basic_filebuf<char, char_traits<char> >
filebuf;

typedef basic_ifstream<char, char_traits<char> >
ifstream;

typedef basic_ofstream<char, char_traits<char> >
ofstream;

102 Standard C++ Library

typedef basic_fstream<char, char_traits<char> >
fstream;

// wchar_t TYPE DEFINITIONS

typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;

typedef basic_streambuf<wchar_t, char_traits<wchar_t> >
wstreambuf;

typedef basic_istream<wchar_t, char_traits<wchar_t> >
wistream;

typedef basic_ostream<wchar_t, char_traits<wchar_t> >
wostream;

typedef basic_iostream<wchar_t, char_traits<wchar_t> >
wiostream;

typedef basic_stringbuf<wchar_t, char_traits<wchar_t> >
wstringbuf;

typedef basic_istringstream<wchar_t,
char_traits<wchar_t> > wistringstream;

typedef basic_ostringstream<wchar_t,
char_traits<wchar_t> > wostringstream;

typedef basic_stringstream<wchar_t,
char_traits<wchar_t> > wstringstream;

typedef basic_filebuf<wchar_t, char_traits<wchar_t> >
wfilebuf;

typedef basic_ifstream<wchar_t, char_traits<wchar_ t> >

wifstream;

typedef basic_ofstream<wchar_t, char_traits<wchar_t> >
wofstream;

typedef basic_fstream<wchar_t, char_traits<wchar_t> >
wfstream;

}s

Include the iostreams (page IZ) standard header <iosfwd> to declare forward

references to several template classes used throughout iostreams. All such template

classes are defined in other standard headers. You include this header explicitly
only when you need one of the above declarations, but not its definition.

<iostream>

namespace std {

extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

}s

Include the iostreams (page IZ) standard header <iostream> to declare objects that

control reading from and writing to the standard streams. This is often the only
header you need include to perform input and output from a C++ program.

The objects fall into two groups:

* cin (page , cout (page 104), cerr (page 104), and clog (page 104) are byte

oriented (page [L7), performing conventional byte-at-a-time transfers

* wcin (page , wcout (page , weerr (page , and wclog (page are

wide oriented (page , translating to and from the wide characters (page [13)

that the program manipulates internally

Chapter 12. Standard C++ Library Header Files

103

104

Once you perform certain operations (page on a stream, such as the standard
input, you cannot perform operations of a different orientation on the same stream.
Hence, a program cannot operate interchangeably on both cin and wcin, for
example.

All the objects declared in this header share a peculiar property — you can assume
they are constructed before any static objects you define, in a translation unit that
includes <iostreams>. Equally, you can assume that these objects are not destroyed
before the destructors for any such static objects you define. (The output streams
are, however, flushed during program termination.) Hence, you can safely read
from or write to the standard streams prior to program startup and after program
termination.

This guarantee is not universal, however. A static constructor may call a function in
another translation unit. The called function cannot assume that the objects
declared in this header have been constructed, given the uncertain order in which
translation units participate in static construction. To use these objects in such a
context, you must first construct an object of class ios_base:Init (page @, as in:

#include <iostream>

void marker()
{ // called by some constructor
ios_base::Init unused_name;
cout << "called fun" << endl;

}

cerr

extern ostream cerr;
The object controls unbuffered insertions to the standard error output as a byte

stream (page . Once the object is constructed, the expression cerr.flags() &
unitbuf is nonzero.

cin

extern istream cin;

The object controls extractions from the standard input as a byte stream (page .
Once the object is constructed, the call cin.tie() returns &cout.

clog

extern ostream clog;

The object controls buffered insertions to the standard error output as a byte
stream (page .

cout

extern ostream cout;

The object controls insertions to the standard output as a byte stream (page .

wcerr

extern wostream wcerr;

Standard C++ Library

The object controls unbuffered insertions to the standard error output as a wide
stream (page . Once the object is constructed, the expression wcerr.flags() &
unitbuf is nonzero.

wcin
extern wistream wcin;
The object controls extractions from the standard input as a wide stream (page .
Once the object is constructed, the call wcin.tie() returns &wcout.
wclog
extern wostream wclog;
The object controls buffered insertions to the standard error output as a wide
stream.
wcout
extern wostream wcout;
The object controls insertions to the standard output as a wide stream (page .
<istream>

namespace std {

template<class E, class T = char_traits<g> >
class basic_istream;

typedef basic_istream<char, char_traits<char> >
istream;

typedef basic_istream<wchar_t, char_traits<wchar_t> >
wistream;

template<class E, class T = char_traits<gE> >
class basic_iostream;

typedef basic_iostream<char, char_traits<char> >
iostream;

typedef basic_iostream<wchar_t, char_traits<wchar_t> >
wiostream;

// EXTRACTORS
template<class E, class T>
basic_istream<E, T>&
operator>>(basic_istream<kE, T>& is, E *s);
template<class E, class T>
basic_istream<kE, T>&
operator>>(basic_istream<E, T>& is, E& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char =s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char *s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned chard c);

Chapter 12. Standard C++ Library Header Files 105

106

// MANIPULATORS
template class<E, T>
basic_istream<kE, T>& ws(basic_istream<kE, T>& is);

}s

Include the iostreams (page E[) standard header <istream> to define template class
basic_istream (page [106), which mediates extractions for the iostreams, and the
template class. basic_iostream (page [L06), which mediates both insertions and
extractions. The header also defines a related manipulator (page . (This header
is typically included for you by another of the iostreams headers. You seldom have
occasion to include it directly.)

basic_iostream

template <class E, class T = char_traits<E> >
class basic_iostream : public basic_istream<kE, T>,
public basic_ostream<k, T> {
public:
explicit basic_iostream(basic_streambuf<k, T>& =*sb);
virtual ~basic_iostream();

}s

The template class describes an object that controls insertions, through its base
object basic_ostream<E, T> (page , and extractions, through its base object
basic_istream<E, T>. The two objects share a common virtual base object
basic_ios<E, T>. They also manage a common stream buffer (page , with
elements of type E, whose character traits (page are determined by the class T.
The constructor initializes its base objects via basic_istream(sh) and
basic_ostream(sb).

basic_istream

basic_istream (age - gcount (page .

get (page - getline (pa, e
ignore ge - ipfx (page [109) - isfx (pa

- operator>> (pa e peek

(page [111 putback (pa - read (page [111) - readsome (pa ge 111) - seekg
(page [111) - sentry (page [112] - tellg (page |11 unget (page [11
template <class E, class T = char_traits<E> >

class basic_istream
: virtual public basic_ios<k, T> {

- sync (page [112)

public:

typedef typename basic_ios<E, T>::char_type char_type;
typedef typename basic_ios<E, T>::traits_type traits_type;
typedef typename basic_ios<E, T>::int_type int_type;
typedef typename basic_ios<E, T>::pos_type pos_type;
typedef typename basic_ios<E, T>::off_type off_type;
explicit basic_istream(basic_streambuf<k, T> *sb);
class sentry;
virtual ~istream();
bool ipfx(bool noskip = false);
void isfx();
basic_istream& operator>>(

basic_istream& (*pf)(basic_istreams));
basic_istream& operator>>(

jos_base& (*pf)(ios_based));
basic_istream& operator>>(

basic_ios<kE, T>& (*pf)(basic_ios<E, T>&));
basic_istream& operator>>(

basic_streambuf<k, T> =*sb);
basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);

Standard C++ Library

basic_istream& operator>>(Tong& n);
basic_istream& operator>>(unsigned long& n);
basic_istream& operator>>(void *& n);
basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(Tong double& n);
streamsize gcount() const;

int_type get();

basic_istream& get(char_type& c);
basic_istream& get(char_type *s, streamsize n);
basic_istream&

get(char_type *s, streamsize n, char_type delim);

basic_istream&
get(basic_streambuf<char_type, T> *sbh);
basic_istream&

get(basic_streambuf<E, T> *sb, char_type delim);
basic_istream& getline(char_type *s, streamsize n);

basic_istream& getline(char_type *s, streamsize n,
char_type delim);
basic_istream& ignore(streamsize n = 1,
int_type delim = traits_type::eof());
int_type peek();
basic_istream& read(char_type *s, streamsize n);
streamsize readsome(char_type *s, streamsize n);
basic_istream& putback(char_type c);
basic_istream& unget();
pos_type tellg();
basic_istream& seekg(pos_type pos);
basic_istream& seekg(off type off,
jos_base::seek_dir way);
int sync();

The template class describes an object that controls extraction of elements and
encoded objects from a stream buffer (page 187) with elements of type E, also

known as char_type (page , whose character traits (page [211) are determined by

the class T, also known as traits_type (page .

Most of the member functions that overload operator>> (page are formatted

input functions. They follow the pattern:

iostate state = goodbit;
const sentry ok(*this);
if (ok)
{try
{<extract elements and convert
accumulate flags in state
store a successful conversion>}
catch (...)
{try
{setstate(badbit); }
catch (...)

if ((exceptions() & badbit) != 0)
throw; }}
setstate(state);
return (*this);

Many other member functions are unformatted input functions. They follow the

pattern:
iostate state = goodbit;
count = 0; // the value returned by gcount
const sentry ok(*this, true);
if (ok)
{try

Chapter 12. Standard C++ Library Header Files

107

108

{<extract elements and deliver
count extracted elements in count
accumulate flags in state>}
catch (...)
{try
{setstate(badbit); }
catch (...)

{}
if ((exceptions() & badbit) != 0)
throw; }}
setstate(state);

Both groups of functions call setstate(eofbit) if they encounter end-of-file while
extracting elements.

An object of class basic_istream<E, T> stores:
* a virtual public base object of class basic_ios<E, T>

* an extraction count for the last unformatted input operation (called count in the
code above

basic_istream::basic_istream
explicit basic_istream(basic_streambuf<E, T> *sb);

The constructor initializes the base class by calling init(sb). It also stores zero in
the extraction count (page [108).

basic_istream::gcount
streamsize gcount() const;

The member function returns the extraction count (page [108).

basic_istream::get

int_type get();

basic_istream& get(char_type& c);

basic_istream& get(char_type *s, streamsize n);

basic_istream& get(char_type *s, streamsize n,
char_type delim);

basic_istream& get(basic_streambuf<k, T> =*sb);

basic_istream& get(basic_streambuf<k, T> =*sb,
char_type delim);

The first of these unformatted input functions (page [L07) extracts an element, if
possible, as if by returning rdbuf ()->sbumpc (). Otherwise, it returns
traits_type::eof(). If the function extracts no element, it calls setstate(failbit).

The second function extracts the int_type (page element x the same way. If x
compares equal to traits_type::eof(x), the function calls setstate(failbit).
Otherwise, it stores traits_type::to_char_type(x) in c. The function returns
*this.

The third function returns get(s, n, widen(’\n’)).

The fourth function extracts up to n - 1 elements and stores them in the array
beginning at s. It always stores char_type() after any extracted elements it stores.
In order of testing, extraction stops:

1. at end of file

2. after the function extracts an element that compares equal to delim, in which
case the element is put back to the controlled sequence

Standard C++ Library

3. after the function extracts n - 1 elements

If the function extracts no elements, it calls setstate(failbit). In any case, it
returns *this.

The fifth function returns get(sb, widen(’\n’)).

The sixth function extracts elements and inserts them in sb. Extraction stops on
end-of-file or on an element that compares equal to delim (which is not extracted).
It also stops, without extracting the element in question, if an insertion fails or
throws an exception (which is caught but not rethrown). If the function extracts no
elements, it calls setstate(failbit). In any case, the function returns *this.

basic_istream::getline

basic_istream& getline(char_type *s, streamsize n);
basic_istream& getline(char_type *s, streamsize n,
char_type delim);

The first of these unformatted input functions (page [107) returns getline(s, n,
widen(’\n’)).

The second function extracts up to n - 1 elements and stores them in the array
beginning at s. It always stores char_type() after any extracted elements it stores.
In order of testing, extraction stops:

1. at end of file

2. after the function extracts an element that compares equal to delim, in which
case the element is neither put back nor appended to the controlled sequence

3. after the function extracts n - 1 elements

If the function extracts no elements or n - 1 elements, it calls setstate(failbit).
In any case, it returns *this.

basic_istream::ignore

basic_istream& ignore(streamsize n = 1,
int_type delim = traits_type::eof());

The unformatted input function (page extracts up to n elements and discards
them. If n equals numeric_limits<int>::max(), however, it is taken as arbitrarily
large. Extraction stops early on end-of-file or on an element x such that
traits_type::to_int_type(x) compares equal to delim (which is also extracted).
The function returns *this.

basic_istream::ipfx
bool ipfx(bool noskip = false);

The member function prepares for formatted (page [L07) or unformatted (page [107)
input. If good() is true, the function:

* calls tie-> flush() if tie() is not a null pointer
* effectively calls ws(*this) if flags() & skipws is nonzero

If, after any such preparation, good() is false, the function calls setstate(failbit).
In any case, the function returns good().

You should not call ipfx directly. It is called as needed by an object of class sentry

(page [112).

Chapter 12. Standard C++ Library Header Files 109

110

basic_istream::isfx
void isfx();

The member function has no official duties, but an implementation may depend on
a call to isfx by a formatted (page or unformatted (page input function
to tidy up after an extraction. You should not call isfx directly. It is called as
needed by an object of class sentry (page .

basic_istream::operator>>

basic_istream& operator>>(

basic_istream& (*pf)(basic_istreamd));
basic_istream& operator>>(

jos_base& (*pf)(ios_based));
basic_istream& operator>>(

basic_ios<E, T>& (*pf)(basic_ios<kE, T>8&));
basic_istream& operator>>(

basic_streambuf<kE, T> *sbh);
basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(Tong& n);
basic_istream& operator>>(unsigned Tong& n);
basic_istream& operator>>(void *& n);
basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(long double& n);

The first member function ensures that an expression of the form istr >> ws calls
ws (istr), then returns *this. The second and third functions ensure that other
manipulators (page , such as hex (page [93) behave similarly. The remaining
functions constitute the formatted input functions (page .

The function:

basic_istream& operator>>(
basic_streambuf<k, T> =*sb);

extracts elements, if sb is not a null pointer, and inserts them in sh. Extraction
stops on end-of-file. It also stops, without extracting the element in question, if an
insertion fails or throws an exception (which is caught but not rethrown). If the
function extracts no elements, it calls setstate(failbit). In any case, the function
returns *this.

The function:
basic_istream& operator>>(bool& n);

extracts a field and converts it to a boolean value by calling use_facet<num_get<E,
InIt>(getloc()). get(InIt(rdbuf()), Init(0), =*this, getloc(), n). Here,
Inlt is defined as istreambuf_iterator<kE, T>. The function returns *this.

The functions:

basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(Tong& n);
basic_istream& operator>>(unsigned Tong& n);
basic_istream& operator>>(void *& n);

Standard C++ Library

each extract a field and convert it to a numeric value by calling
use_facet<num_get<E, InIt>(getloc()). get(InIt(rdbuf()), Init(0), *this,
getloc(), x). Here, InlIt is defined as istreambuf_iterator<E, T> and x has type
long, unsigned long, or void * as needed.

If the converted value cannot be represented as the type of n, the function calls
setstate(failbit). In any case, the function returns *this.

The functions:

basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(long double& n);

each extract a field and convert it to a numeric value by calling

use facet<num get<E, InIt>(getloc()). get(InIt(rdbuf()), Init(0), *this,
getloc(), x). Here, InlIt is defined as istreambuf_iterator<E, T> and x has type
double or long double as needed.

If the converted value cannot be represented as the type of n, the function calls
setstate(failbit). In any case, it returns *this.

basic_istream::peek
int_type peek();

The unformatted input function (page [107) extracts an element, if possible, as if by
returning rdbuf () ->sgetc(). Otherwise, it returns traits_type::eof().

basic_istream::putback
basic_istream& putback(char_type c);

The unformatted input function (page puts back ¢, if possible, as if by calling
rdbuf () ->sputbackc (). If rdbuf() is a null pointer, or if the call to sputbackc
returns traits_type::eof(), the function calls setstate(badbit). In any case, it
returns *this.

basic_istream::read
basic_istream& read(char_type *s, streamsize n);

The unformatted input function (page [107) extracts up to n elements and stores
them in the array beginning at s. Extraction stops early on end-of-file, in which
case the function calls setstate(failbit). In any case, it returns *this.

basic_istream::readsome
streamsize readsome(char_type *s, streamsize n);

The member function extracts up to n elements and stores them in the array
beginning at s. If rdbuf() is a null pointer, the function calls setstate(failbit).
Otherwise, it assigns the value of rdbuf()->in_avail() to N. if N < 0, the function
calls setstate(eofbit). Otherwise, it replaces the value stored in N with the
smaller of n and N, then calls read(s, N). In any case, the function returns

gcount ().

basic_istream::seekg

basic_istream& seekg(pos_type pos);
basic_istream& seekg(off_type off,
jos_base::seek_dir way);

Chapter 12. Standard C++ Library Header Files 111

If fail() is false, the first member function calls rdbuf () -> pubseekpos (pos). If
fail() is false, the second function calls rdbuf()-> pubseekoff(off, way). Both
functions return *this.

basic_istream::sentry

class sentry {
public:
explicit sentry(basic_istream& is,
bool noskip = false);
operator bool() const;

}s

The nested class describes an object whose declaration structures the formatted
input functions (page and the unformatted input functions (page . The
constructor effectively calls is.ipfx(noskip) and stores the return value. operator
bool() delivers this return value. The destructor effectively calls is.isfx().

basic_istream::sync
int sync();

If rdbuf() is a null pointer, the function returns -1. Otherwise, it calls
rdbuf () ->pubsync(). If that returns -1, the function calls setstate(badbit) and
returns -1. Otherwise, the function returns zero.

basic_istream::tellg
pos_type tellg();

If fail() is false, the member function returns rdbuf()-> pubseekoff (0, cur, in).
Otherwise, it returns pos_type(-1).

basic_istream::unget
basic_istream& unget();

The unformatted input function (page puts back the previous element in the
stream, if possible, as if by calling rdbuf ()->sungetc(). If rdbuf() is a null pointer,
or if the call to sungetc returns traits_type::eof(), the function calls
setstate(badbit). In any case, it returns *this.

iostream

typedef basic_iostream<char, char_traits<char> > iostream;

The type is a synonym for template class basic_iostream (page [106), specialized for
elements of type char with default character traits (page [211).

istream

typedef basic_istream<char, char_traits<char> > istream;

The type is a synonym for template class basic_istream (page [106), specialized for
elements of type char with default character traits (page 11)).

operator>>

template<class E, class T>
basic_istream<kE, T>&
operator>>(basic_istream<E, T>& is, E *s);
template<class E, class T>
basic_istream<E, T>&

112 Standard C++ Library

operator>>(basic_istream<kE, T>& is, E& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char #s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed charg& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char *s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char& c);

The template function:
template<class E, class T>
basic_istream<E, T>&
operator>>(basic_istream<E, T>& is, E *s);

extracts up to n - 1 elements and stores them in the array beginning at s. If
is.width() is greater than zero, n is is.width(); otherwise it is the largest array of
E that can be declared. The function always stores E() after any extracted elements
it stores. Extraction stops early on end-of-file or on any element (which is not
extracted) that would be discarded by ws (page . If the function extracts no
elements, it calls is.setstate(failbit). In any case, it calls is.width(0) and
returns is.

The template function:

template<class E, class T>
basic_istream<kE, T>&
operator>>(basic_istream<E, T>& is, char& c);

extracts an element, if possible, and stores it in c. Otherwise, it calls
is.setstate(failbit). In any case, it returns is.

The template function:

template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char =s);

returns is >> (char *)s.

The template function:
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char& c);

returns is >> (char&)c.

The template function:

template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char *s);

Chapter 12. Standard C++ Library Header Files 113

returns is >> (char *)s.

The template function:

template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char& c);

returns is >> (char&)c.

wiostream

typedef basic_iostream<wchar_ t, char_traits<wchar t> >
wiostream;

The type is a synonym for template class basic_iostream (page [L06), specialized for
elements of type wchar_t with default character traits (page [211).

wistream

typedef basic_istream<wchar_t, char_traits<wchar_t> >
wistream;

The type is a synonym for template class basic_istream (page [106), specialized for
elements of type wchar_t with default character traits (page [211).

wSs
template class<E, T>
basic_istream<E, T>& ws(basic_istream<E, T>& is);
The manipulator extracts and discards any elements x for which use_facet<
ctype<E> >(getloc()). is(ctype<kE>::space, x) is true.
The function calls setstate(eofbit) if it encounters end-of-file while extracting
elements. It returns is.
<limits>

namespace std {
enum float_denorm_style;
enum float_round_style;
template<class T>

class numeric_limits;

}s

Include the standard header <1imits> to define the template class numeric_Timits.
Explicit specializations of this class describe many arithmetic properties of the
scalar types (other than pointers).

float_denorm_style

enum float denorm_style {
denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1

s

114 Standard C++ Library

The enumeration describes the various methods that an implementation can choose
for representing a denormalized floating-point value — one too small to represent

as a normalized value:

* denorm_indeterminate — presence or absence of denormalized forms cannot be

determined at translation time
* denorm_absent — denormalized forms are absent

 denorm_present — denormalized forms are present

float_round_style

enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

}s

The enumeration describes the various methods that an implementation can choose

for rounding a floating-point value to an integer value:

* round_indeterminate — rounding method cannot be determined

* round_toward_zero — round toward zero
* round_to_nearest — round to nearest integer

* round_toward_infinity — round away from zero

* round_toward_neg_infinity — round to more negative integer

numeric_limits

template<class T>
class numeric_limits {

public:
static const float_denorm_style has_denorm

= denorm_absent;
static const bool has_denorm_loss = false;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const bool is_bounded = false;
static const bool is_exact = false;
static const bool is_iec559 = false;
static const bool is_integer = false;
static const bool is_modulo = false;
static const bool is_signed = false;
static const bool is_specialized = false;
static const bool tinyness_before = false;
static const bool traps = false;
static const float_round_style round_style =
round_toward_zero;

static const int digits = 0;
static const int digitsl0 = 0;

static const int max_exponent = 0;
static const int max_exponentl0 = 0;
static const int min_exponent = 0;
static const int min_exponentl0 = 0;

static const int radix = 0;
static T denorm_min() throw();
static T epsilon() throw();
static T infinity() throw();
static T max() throw();
static T min() throw();

Chapter 12. Standard C++ Library Header Files

115

116

static T quiet_NaN() throw();
static T round_error() throw();
static T signaling_NaN() throw();
1

The template class describes many arithmetic properties of its parameter type T.
The header defines explicit specializations for the types wchar_t, bool, char, signed
char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, float,
double, and long double. For all these explicit specializations, the member
is_specialized is true, and all relevant members have meaningful values. The
program can supply additional explicit specializations.

For an arbitrary specialization, 70 members have meaningful values. A member
object that does not have a meaningful value stores zero (or false) and a member
function that does not return a meaningful value returns T(0).

numeric_limits::denorm_min
static T denorm_min() throw();

The function returns the minimum value for the type (which is the same as min()
if has_denorm is not equal to denorm_present).

numeric_limits::digits
static const int digits = 0;

The member stores the number of radix (page digits that the type can
represent without change (which is the number of bits other than any sign bit for a
predefined integer type, or the number of mantissa digits for a predefined
floating-point type).

numeric_limits::digits10
static const int digitsl0 = 0;

The member stores the number of decimal digits that the type can represent
without change.

numeric_limits::epsilon
static T epsilon() throw();

The function returns the difference between 1 and the smallest value greater than 1
that is representable for the type (which is the value FLT_EPSILON for type float).

numeric_limits::has_denorm

static const float_denorm_style has_denorm =
denorm_absent;

The member stores denorm_present (page [L15) for a floating-point type that has
denormalized values (effectively a variable number of exponent bits).

numeric_limits::has_denorm_loss
static const bool has_denorm_loss = false;

The member stores true for a type that determines whether a value has lost
accuracy because it is delivered as a denormalized result (too small to represent as
a normalized value) or because it is inexact (not the same as a result not subject to
limitations of exponent range and precision), an option with IEC 559 (page
floating-point representations that can affect some results.

Standard C++ Library

numeric_limits::has_infinity
static const bool has_infinity = false;

The member stores true for a type that has a representation for positive infinity.
True if is_iec559 (page [L17) is true.

numeric_limits::has_quiet_NaN
static const bool has_quiet_NaN = false;

The member stores true for a type that has a representation for a quiet NaN, an
encoding that is “"Not a Number”” which does not signal its presence in an
expression. True if is_iec559 (page [117) is true.

numeric_limits::has_signaling_NaN
static const bool has_signaling_NaN = false;

The member stores true for a type that has a representation for a signaling NaN,
an encoding that is “"Not a Number”” which signals its presence in an expression
by reporting an exception. True if is_iec559 (page [L17) is true.

numeric_limits::infinity
static T infinity() throw();

The function returns the representation of positive infinity for the type. The return
value is meaningful only if has_infinity (page[117) is true.

numeric_limits::is_bounded
static const bool is_bounded = false;

The member stores true for a type that has a bounded set of representable values
(which is the case for all predefined types).

numeric_limits::is_exact
static const bool is_exact = false;

The member stores true for a type that has exact representations for all its values
(which is the case for all predefined integer types). A fixed-point or rational
representation is also considered exact, but not a floating-point representation.

numeric_limits::is_iec559
static const bool is_iec559 = false;

The member stores true for a type that has a representation conforming to IEC 559,
an international standard for representing floating-point values (also known as
IEEE 754 in the USA).

numeric_limits::is_integer
static const bool is_integer = false;

The member stores true for a type that has an integer representation (which is the
case for all predefined integer types).

numeric_limits::is_modulo
static const bool is_modulo = false;

Chapter 12. Standard C++ Library Header Files 117

118

The member stores true for a type that has a modulo representation, where all
results are reduced modulo some value (which is the case for all predefined
unsigned integer types).

numeric_limits::is_signed
static const bool is_signed = false;

The member stores true for a type that has a signed representation (which is the
case for all predefined floating-point and signed integer types).

numeric_limits::is_specialized
static const bool is_specialized = false;

The member stores true for a type that has an explicit specialization defined for
template class numeric_limits (page [L15) (which is the case for all scalar types
other than pointers).

numeric_limits::max
static T max() throw();

The function returns the maximum finite value for the type (which is INT_MAX
for type int and FLT_MAX for type float). The return value is meaningful if
is_bounded (page [117) is true.

numeric_limits::max_exponent
static const int max_exponent = 0;

The member stores the maximum positive integer such that the type can represent
as a finite value radix (page [119) raised to that power (which is the value
FLT_MAX_EXP for type float). Meaningful only for floating-point types.

numeric_limits::max_exponent10
static const int max_exponentl® = 0;

The member stores the maximum positive integer such that the type can represent
as a finite value 10 raised to that power (which is the value FLT_MAX_10_EXP for
type float). Meaningful only for floating-point types.

numeric_limits::min
static T min() throw();

The function returns the minimum normalized value for the type (which is
INT_MIN for type int and FLT_MIN for type float). The return value is meaningful
if is_bounded (page [117) is true or is_bounded is false and is_signed (page [118) is
false.

numeric_limits::min_exponent
static const int min_exponent = 0;

The member stores the minimum negative integer such that the type can represent
as a normalized value radix (page [119) raised to that power (which is the value
FLT_MIN_EXP for type float). Meaningful only for floating-point types.

numeric_limits::min_exponent10
static const int min_exponentl0 = 0;

Standard C++ Library

The member stores the minimum negative integer such that the type can represent
as a normalized value 10 raised to that power (which is the value
FLT_MIN_10_EXP for type float). Meaningful only for floating-point types.

numeric_limits::quiet_NaN
static T quiet_NaN() throw();

The function returns a representation of a quiet NaN (page [117) for the type. The
return value is meaningful only if has_quiet_ NaN (page [L17) is true.

numeric_limits::radix
static const int radix = 0;

The member stores the base of the representation for the type (which is 2 for the
predefined integer types, and the base to which the exponent is raised, or
FLT_RADIX, for the predefined floating-point types).

numeric_limits::round_error
static T round_error() throw();

The function returns the maximum rounding error for the type.

numeric_limits::round_style

static const float_round_style round_style =
round_toward_zero;

The member stores a value that describes the vaious methods that an
implementation can choose for rounding a floating-point value to an integer value.

numeric_limits::signaling_NaN
static T signaling_NaN() throw();

The function returns a representation of a signaling NaN (page [117) for the type.
The return value is meaningful only if has_signaling NaN (page [L17) is true.

numeric_limits::tinyness_before
static const bool tinyness_before = false;

The member stores true for a type that determines whether a value is ““tiny” (too
small to represent as a normalized value) before rounding, an option with IEC 559
(page [117) floating-point representations that can affect some results.

numeric_limits::traps
static const bool traps = false;

The member stores true for a type that generates some kind of signal to report
certain arithmetic exceptions.

<locale>

codecvt (page - codecvt_base (page - codecvt_byname (page - collate
(page - collate_byname (page - ctype (page - ctype<char> (page
- ctype_base (page - ctype_byname (page [133) - has_facet (page - locale
(page [134) - messages (page [139) - messages_base (page [140) - messages_byname
(page [140) - money_base (page [141) - money_get (page [141) - money_put (page
143) - moneypunct (page [145) - moneypunct_byname (page - num_get (page
149) - num_put (page [152) - numpunct (page - numpunct_byname (page [158)

Chapter 12. Standard C++ Library Header Files 119

120

- time_base (page [158) - time_get (page [158) - time_get_byname (page [162) -
162] 164)

time_put (page - time_put_byname (page [163) - use_facet (page

isalnum (page [133)
isgraph (page [134)
isspace (page [134)
toupper (page [164)
namespace std {
class locale;
class ctype_base;
template<class E>
class ctype;
template<>
class ctype<char>;
template<class E>
class ctype_byname;
class codect_base;
template<class From, class To, class State>
class codecvt;
template<class From, class To, class State>
class codecvt_byname;
template<class E, class InIt>
class num_get;
template<class E, class QutIt>
class num_put;
template<class E>
class numpunct;
template<class E>
class numpunct_byname;
template<class E>
class collate;
template<class E>
class collate_byname;
class time_base;
template<class E, class InIt>
class time_get;
template<class E, class InIt>
class time_get_byname;
template<class E, class QutIt>
class time_put;
template<class E, class QutIt>
class time_put_byname;
class money_base;
template<class E, bool Intl, class InIt>
class money_get;
template<class E, bool Intl, class Outlt>
class money put;
template<class E, bool Intl>
class moneypunct;
template<class E, bool Intl>
class moneypunct_byname;
class messages_base;
template<class E>
class messages;
template<class E>
class messages_byname;

- iscntrl (page [133)
- isprint (page [134
- isxdigit (page [134)

- isalpha (page |133)
- islower (page [134)
- isupper (page [134)

- isdigit (page [133) -
- ispunct (page [134) -
- tolower (page [163) -

// TEMPLATE FUNCTIONS

template<class Facet>

bool has_facet(const Tocale& Toc);
template<class Facet>

const Facet& use_facet(const Tocale& Toc);
template<class E>

bool isspace(E c, const Tocale& loc) const;
template<class E>

Standard C++ Library

bool isprint(E c, const Tocale& Toc) const;
template<class E>

bool isentrl1(E c, const locale& loc) const;
template<class E>

bool isupper(E c, const Tocale& loc) const;
template<class E>

bool islower(E c, const locale& loc) const;
template<class E>

bool isalpha(E c, const Tocale& loc) const;
template<class E>

bool isdigit(E c, const Tocale& loc) const;
template<class E>

bool ispunct(E c, const Tocale& Toc) const;
template<class E>

bool isxdigit(E c, const Tocale& loc) const;
template<class E>

bool isalnum(E c, const locale& loc) const;
template<class E>

bool isgraph(E c, const Tocale& loc) const;
template<class E>

E toupper(E c, const locale& loc) const;
template<class E>
E tolower(E c, const locale& loc) const;

b

Include the standard header <locale> to define a host of template classes and
functions that encapsulate and manipulate locales.

codecvt

template<class From, class To, class State>
class codecvt
: public Tocale::facet, codecvt_base {
public:
typedef From intern_type;
typedef To extern_type;
typedef State state_type;
explicit codecvt(size t refs = 0);
result in(State& state,
const To *firstl, const To *Tastl,
const To *nextl,
From *first2, From *last2, From *next2);
result out(Stated& state,
const From *firstl, const From =*lastl,
const From *nextl,
To *first2, To *last2, To *next2);
result unshift(State& state,
To *=first2, To *last2, To *next2);
bool always_noconv() const throw();
int max_length() const throw();
int length(State& state,
const To *firstl, const To *lastl,
size_t N2) const throw();
int encoding() const throw();
static Tocale::id id;
protected:
~codecvt();
virtual result do_in(State& state,
const To *firstl, const To *Tastl,
const To *nextl,
From *first2, From *last2, From *next2);
virtual result do_out(State& state,
const From *firstl, const From =*lastl,
const From *nextl,
To *first2, To *last2, To *next2);
virtual result do_unshift(State& state,

Chapter 12. Standard C++ Library Header Files 121

122

To *first2, To *last2, To *next2);
virtual bool do_always_noconv() const throw();
virtual int do_max_length() const throw();
virtual int do_encoding() const throw();
virtual int do_length(State& state,
const To *firstl, const To *Tastl,
size_t len2) const throw();

}s

The template class describes an object that can serve as a locale facet (page , to
control conversions between a sequence of values of type From and a sequence of
values of type To. The class State characterizes the transformation — and an object
of class State stores any necessary state information during a conversion.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

The template versions of do_in and do_out always return codecvt_base: :noconv.
The Standard C++ library defines an explicit specialization, however, that is more
useful:

template<>
codecvt<wchar_t, char, mbstate_t>

which converts between wchar_t and char sequences.

codecvt::always_noconv
bool always_noconv() const throw();

The member function returns do_always_noconv ().

codecvt::codecvt
explicit codecvt(size t refs = 0);

The constructor initializes its Tocale::facet base object with Tocale::facet(refs).

codecvt::do_always_noconv
virtual bool do_always_noconv() const throw();

The protected virtual member function returns true only if every call to do_in
(page [122) or do_out (page [123) returns noconv (page [125). The template version
always returns true.

codecvt::do_encoding
virtual int do_encoding() const throw();

The protected virtual member function returns:
* -1, if the encoding of sequences of type extern_type is state dependent
* 0, if the encoding involves sequences of varying lengths

* n, if the encoding involves only sequences of length n

codecvt::do in

virtual result do_in(State stateg,
const To *firstl, const To *Tastl, const To *nextl,
From *first2, From *last2, From *next2);

The protected virtual member function endeavors to convert the source sequence at
[firstl, Tastl) to a destination sequence that it stores within [first2, last2). It

Standard C++ Library

always stores in nextl a pointer to the first unconverted element in the source
sequence, and it always stores in next2 a pointer to the first unaltered element in
the destination sequence.

state must represent the initial conversion state (page|12)) at the beginning of a
new source sequence. The function alters its stored value, as needed, to reflect the
current state of a successful conversion. Its stored value is otherwise unspecified.

The function returns:

* codecvt_base:error if the source sequence is ill formed

¢ codecvt_base:noconv if the function performs no conversion
* codecvt_base::ok if the conversion succeeds

* codecvt_base::partial if the source is insufficient, or if the destination is not large
enough, for the conversion to succeed

The template version always returns noconv.

codecvt::do_length

virtual int do_length(State stateg,
const To *firstl, const To *lastl,
size_t len2) const throw();

The protected virtual member function effectively calls do_in(state, firstl,
lastl, nextl, buf, buf + Ten2, next2) for some buffer buf and pointers nextl
and next2, then returns next2 - buf. (Thus, it counts the maximum number of
conversions, not greater than Ten2, defined by the source sequence at [firstl,
lastl).)

The template version always returns the lesser of Tastl - firstl and len2.

codecvt::do_max_length
virtual int do_max_length() const throw();

The protected virtual member function returns the largest permissible value that
can be returned by do_length(firstl, lastl, 1), for arbitrary valid values of
firstl and lastl. (Thus, it is roughly analogous to the macro MB_CUR_MAX, at
least when To is type char.)

The template version always returns 1.

codecvt::do_out

virtual result do_out(State stated,
const From *firstl, const From =*lastl,
const From *nextl,
To *first2, To *last2, To *next2);

The protected virtual member function endeavors to convert the source sequence at
[firstl, Tastl) to a destination sequence that it stores within [first2, last2). It
always stores in nextl a pointer to the first unconverted element in the source
sequence, and it always stores in next2 a pointer to the first unaltered element in
the destination sequence.

state must represent the initial conversion state (page at the beginning of a

new source sequence. The function alters its stored value, as needed, to reflect the
current state of a successful conversion. Its stored value is otherwise unspecified.

Chapter 12. Standard C++ Library Header Files 123

124

The function returns:

* codecvt_base:error if the source sequence is ill formed

* codecvt_base:noconv if the function performs no conversion
e codecvt_base::ok if the conversion succeeds

* codecvt_base::partial if the source is insufficient, or if the destination is not large
enough, for the conversion to succeed

The template version always returns noconv.

codecvt::do unshift

virtual result do_unshift(State state&,
To *=first2, To *last2, To *next2);

The protected virtual member function endeavors to convert the source element
From(0) to a destination sequence that it stores within [first2, last2), except for
the terminating element To(0). It always stores in next2 a pointer to the first
unaltered element in the destination sequence.

state must represent the initial conversion state (page at the beginning of a
new source sequence. The function alters its stored value, as needed, to reflect the
current state of a successful conversion. Typically, converting the source element
From(0) leaves the current state in the initial conversion state.

The function returns:

* codecvt_base:error if state represents an invalid state

* codecvt_base:noconv if the function performs no conversion
¢ codecvt_base::0k if the conversion succeeds

* codecvt_base::partial if the destination is not large enough for the conversion to
succeed

The template version always returns noconv.

codecvt::extern_type
typedef To extern_type;

The type is a synonym for the template parameter To.

codecvt::in

result in(State state&,
const To *firstl, const To *lastl, const To *nextl,
From *first2, From *last2, From *next2);

The member function returns do_in(state, firstl, lastl, nextl, first2,
last2, next2).

codecvt::intern_type
typedef From intern_type;

The type is a synonym for the template parameter From.

codecvt::length

int length(State stated,
const To *firstl, const To *lastl,
size_t len2) const throw();

Standard C++ Library

The member function returns do_length(firstl, Tastl, len2).

codecvt::encoding
int encoding() const throw();

The member function returns do_encoding().

codecvt::max_length
int max_length() const throw();

The member function returns do_max_Tength().

codecvt::out

result out(State state&,
const From *firstl, const From *lastl,
const From #*nextl,
To *first2, To *last2, To *next2);

The member function returns do_out(state, firstl, lastl, nextl, first2,
last2, next2).

codecvt::state_type
typedef State state_type;

The type is a synonym for the template parameter State.

codecvt::unshift

result unshift(State state&,
To *first2, To *last2, To *next2);

The member function returns do_unshift(state, first2, Tast2, next2).

codecvt_base

class codecvt_base {
public:
enum result {ok, partial, error, noconv};

}s

The class describes an enumeration common to all specializations of template class
codecvt (page [121). The enumeration result describes the possible return values
from do_in (page @b or do_out (page 123):

e error if the source sequence is ill formed

* noconv if the function performs no conversion
* ok if the conversion succeeds

* partial if the destination is not large enough for the conversion to succeed

codecvt_byname

template<class From, class To, class State>
class codecvt_byname
: public codecvt<From, To, State> {
pubTic:
explicit codecvt_byname(const char =*s,
size_t refs = 0);
protected:
~codecvt_hyname();

bs

Chapter 12. Standard C++ Library Header Files 125

126

The template class describes an object that can serve as a locale facet (page of
type codecvt<From, To, State>. Its behavior is determined by the named (page
locale s. The constructor initializes its base object with codecvt<From, To,
State>(refs).

collate

template<class E>
class collate : public Tocale::facet {
pubTic:
typedef E char_type;
typedef basic_string<E> string_type;
explicit collate(size_t refs = 0);
int compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;
string_type transform(const E *first,
const E *last) const;
long hash(const E *first, const E *Tast) const;
static Tocale::id id;
protected:
~collate();
virtual int
do_compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;
virtual string_type do_transform(const E *first,
const E *last) const;
virtual long do_hash(const E *first,
const E *last) const;
1

The template class describes an object that can serve as a locale facet (page [135), to
control comparisons of sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

collate::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

collate::collate
explicit collate(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

collate::compare

int compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;

The member function returns do_compare(firstl, lastl, first2, last2).

collate::do_compare

virtual int do_compare(const E xfirstl, const E *lastl,
const E *first2, const E *last2) const;

The protected virtual member function compares the sequence at [firstl, lastl)
with the sequence at [first2, last2). It compares values by applying operator<
between pairs of corresponding elements of type E. The first sequence compares
less if it has the smaller element in the earliest unequal pair in the sequences, or if
no unequal pairs exist but the first sequence is shorter.

Standard C++ Library

If the first sequence compares less than the second sequence, the function returns
-1. If the second sequence compares less, the function returns +1. Otherwise, the
function returns zero.

collate::do_hash

virtual long do_hash(const E *first,
const E *last) const;

The protected virtual member function returns an integer derived from the values
of the elements in the sequence [first, last). Such a hash value can be useful,
for example, in distributing sequences pseudo randomly across an array of lists.

collate::do_transform

virtual string_type do_transform(const E *first,
const E *last) const;

The protected virtual member function returns an object of class string_type (page
whose controlled sequence is a copy of the sequence [first, Tast). If a class
derived from collate<E> overrides do_compare (page , it should also override
do_transform to match. Put simply, two transformed strings should yield the same
result, when passed to collate::compare, that you would get from passing the
untransformed strings to compare in the derived class.

collate::hash
Tong hash(const E *first, const E *Tast) const;

The member function returns do_hash(first, last).

collate::string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page [197) whose
objects can store copies of the source sequence.

collate::transform

string_type transform(const E *first,
const E *last) const;

The member function returns do_transform(first, last).

collate_byname

ctype

template<class E>
class collate_byname : public collate<E> {
public:
explicit collate_byname(const char =*s,
size t refs = 0);
protected:
~collate_byname();

}s
The template class describes an object that can serve as a locale facet (page 135) of

type collate<E>. Its behavior is determined by the named (page [136) locale s. The
constructor initializes its base object with collate<E>(refs).

char_type (page - ctype (page - do_is (page - do_narrow (page .

do_scan_is (page [129) - do_scan_not (page - do_tolower (page .

Chapter 12. Standard C++ Library Header Files 127

128

do_toupper (pae - do_widen (page [130) - is (page [130) - narrow (page [130) -
scan_is (page [130) - scan_not (page @ - tolower (page [131) - toupper (page [131) -
widen (page [131)

template<class E>
class ctype
: public Tocale::facet, public ctype_base {
public:
typedef E char_type;
explicit ctype(size t refs = 0);
bool is(mask msk, E ch) const;
const E *is(const E *first, const E *last,
mask *dst) const;
const E *scan_is(mask msk, const E *first,
const E *last) const;
const E *scan_not(mask msk, const E *first,
const E *last) const;
E toupper(E ch) const;
const E *toupper(E *first, E *last) const;
E tolower(E ch) const;
const E *tolower(E *first, E xTast) const;
E widen(char ch) const;
const char *widen(char *first, char *last,
E *dst) const;
char narrow(E ch, char dflt) const;
const E *narrow(const E *first, const E *last,
char dflt, char *dst) const;
static Tocale::id id;
protected:
~ctype();
virtual bool do_is(mask msk, E ch) const;
virtual const E *do_is(const E *first, const E *last,
mask *dst) const;
virtual const E *do_scan_is(mask msk, const E *first,
const E *last) const;
virtual const E *do_scan_not(mask msk, const E *first,
const E *last) const;
virtual E do_toupper(E ch) const;
virtual const E *do_toupper(E *first, E *last) const;
virtual E do_tolower(E ch) const;
virtual const E *do_tolower(E *first, E *last) const;
virtual E do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last,
E xdst) const;
virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first,
const E *last, char dflt, char *dst) const;
}s

The template class describes an object that can serve as a locale facet (page 135), to
characterize various properties of a ““character’” (element) of type E. Such a facet
also converts between sequences of E elements and sequences of char.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

The Standard C++ library defines two explicit specializations of this template class:

* ctype<char> (page [131), an explicit specialization whose differences are
described separately

* ctype<wchar_t>, which treats elements as wide characters (page

In this implementation (page E[), other specializations of template class ctype<E>:
* convert a value ch of type E to a value of type char with the expression (char)ch

Standard C++ Library

» convert a value c of type char to a value of type E with the expression E(c)

All other operations are performed on char values the same as for the explicit
specialization ctype<char>.

ctype::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

ctype::ctype

explicit ctype(size_t refs = 0);
The constructor initializes its Tocale::facet base object with Tocale::facet(refs).

ctype::do_is

virtual bool do_is(mask msk, E ch) const;

virtual const E *do_is(const E *first, const E *last,
mask *dst) const;

The first protected member template function returns true if MASK(ch) & msk is
nonzero, where MASK(ch) designates the mapping between an element value ch
and its classification mask, of type mask (page . The name MASK is purely
symbolic here; it is not defined by the template class. For an object of class
ctype<char> (page , the mapping is tab[(unsigned char) (char)ch], where tab
is the stored pointer to the ctype mask table (page .

The second protected member template function stores in dst[I] the value
MASK(first[I]) & msk, where I ranges over the interval [0, Tast - first).

ctype::do_narrow

virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first, const E *last,
char dflt, char *dst) const;

The first protected member template function returns (char)ch, or df1t if that
expression is undefined.

The second protected member template function stores in dst[I] the value
do_narrow(first[I], dflt), for I in the interval [0, Tast - first).

ctype::do_scan_is

virtual const E *do_scan_is(mask msk, const E *first,
const E *last) const;

The protected member function returns the smallest pointer p in the range [first,
last) for which do_is(msk, *p) is true. If no such value exists, the function
returns last.

ctype::do_scan_not

virtual const E *do_scan_not(mask msk, const E *first,
const E *last) const;

The protected member function returns the smallest pointer p in the range [first,

last) for which do_is(msk, *p) is false. If no such value exists, the function
returns last.

Chapter 12. Standard C++ Library Header Files 129

130

ctype::do_tolower

virtual E do_tolower(E ch) const;
virtual const E *do_tolower(E *first, E *last) const;

The first protected member template function returns the lowercase character
corresponding to ch, if such a character exists. Otherwise, it returns ch.

The second protected member template function replaces each element first[I],
for I in the interval [0, last - first), with do_tolower(first[I]).

ctype::do_toupper

virtual E do_toupper(E ch) const;
virtual const E *do_toupper(E *first, E *last) const;

The first protected member template function returns the uppercase character
corresponding to ch, if such a character exists. Otherwise, it returns ch.

The second protected member template function replaces each element first[I],
for I in the interval [0, last - first), with do_toupper(first[I]).

ctype::do_widen

virtual E do_widen(char ch) const;
virtual const char *do_widen(char *first, char =*last,
E *dst) const;

The first protected member template function returns E(ch).

The second protected member template function stores in dst[I] the value
do_widen(first[I]), for I in the interval [0, Tast - first).

ctype::is

bool is(mask msk, E ch) const;

const E *is(const E *first, const E *last,
mask *dst) const;

The first member function returns do_is(msk, ch). The second member function
returns do_is(first, last, dst).

ctype::narrow

char narrow(E ch, char dflt) const;
const E *narrow(const E *first, const E *last,
char df1t, char *dst) const;

The first member function returns do_narrow(ch, df1t). The second member
function returns do_narrow(first, last, dflt, dst).

ctype::scan_is
const E *scan_is(mask msk, const E *first,
const E *last) const;

The member function returns do_scan_is(msk, first, Tast).
ctype::scan_not

const E xscan_not(mask msk, const E *first,
const E *last) const;

The member function returns do_scan_not(msk, first, last).

Standard C++ Library

ctype::tolower

E tolower(E ch) const;
const E *tolower(E *first, E xTast) const;

The first member function returns do_tolower(ch). The second member function

returns do_tolower(first, last).

ctype::toupper
E toupper(E ch) const;
const E *toupper(E *first, E *last) const;

The first member function returns do_toupper(ch). The second member function

returns do_toupper(first, last).

ctype::widen
E widen(char ch) const;
const char *widen(char *first, char *last, E *dst) const;

The first member function returns do_widen(ch). The second member function

returns do_widen(first, last, dst).

ctype<char>

template<>
class ctype<char>
: public locale::facet, public ctype_base {
pubTic:
typedef char char_type;
explicit ctype(const mask xtab = 0, bool del = false,
size t refs = 0);
bool is(mask msk, char ch) const;
const char *is(const char *first, const char =*last,
mask *dst) const;
const char *scan_is(mask msk,
const char *first, const char *last) const;
const char *scan_not(mask msk,
const char *first, const char *last) const;
char toupper(char ch) const;
const char xtoupper(char *first, char *last) const;
char tolower(char ch) const;
const char *tolower(char *first, char *last) const;
char widen(char ch) const;
const char *widen(char *first, char *last,
char *dst) const;
char narrow(char ch, char dflt) const;
const char *narrow(const char *first,
const char *last, char dflt, char *dst) const;
static Tocale::id id;
protected:
~ctype();
virtual char do_toupper(char ch) const;
virtual const char *do_toupper(char *first,
char *last) const;
virtual char do_tolower(char ch) const;
virtual const char *do_tolower(char *first,
char *last) const;
virtual char do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last,
char *dst) const;
virtual char do_narrow(char ch, char dflt) const;
virtual const char *do_narrow(const char *first,
const char *last, char dflt, char *dst) const;

Chapter 12. Standard C++ Library Header Files

131

132

const mask *table() const throw();
static const mask *classic_table() const throw();
static const size_t table_size;

}s

The class is an explicit specialization of template class ctype (page for type
char. Hence, it describes an object that can serve as a locale facet (page , to
characterize various properties of a ““character” (element) of type char. The explicit
specialization differs from the template class in several ways:

* An object of class ctype<char> stores a pointer to the first element of a ctype
mask table, an array of UCHAR_MAX + 1 elements of type ctype_base: :mask. It
also stores a boolean object that indicates whether the array should be deleted
when the ctype<E> object is destroyed.

* Its sole public constructor lets you specify tab, the ctype mask table, and del,
the boolean object that is true if the array should be deleted when the
ctype<char> object is destroyed — as well as the usual reference-count
parameter refs.

* The protected member function table() returns the stored ctype mask table.

* The static member object table_size specifies the minimum number of elements
in a ctype mask table.

» The protected static member function classic_table() returns the ctype mask
table appropriate to the "C" locale.

« There are no protected virtual member functions do_is (page [129), do_scan_is
(page [129), or do_scan_not (page [129). The corresponding public member
functions perform the equivalent operations themselves.

* The member functions do_narrow (page 129) and do_widen (page 130) simply
copy elements unaltered.

ctype_base

class ctype_base {
public:
enum mask;
static const mask space, print, cntrl,
upper, lower, digit, punct, xdigit,
alpha, alnum, graph;

1

The class serves as a base class for facets of template class ctype (page [127). It
defines just the enumerated type mask and several constants of this type. Each of
the constants characterizes a different way to classify characters, as defined by the
functions with similar names declared in the header <ctype.h>. The constants are:

* space (function isspace)

* print (function isprint)

* cntrl (function iscntrl)

* upper (function isupper)
* lower (function islower)
* digit (function isdigit)

* punct (function ispunct)
* xdigit (function isxdigit)
* alpha (function isalpha)

e alnum (function isalnum)

* graph (function isgraph)

Standard C++ Library

You can charaterize a combination of classifications by ORing these constants. In
particular, it is always true that alnum == (alpha | digit) and graph == (alnum |
punct).

ctype_byname

template<class E>
class ctype_byname : public ctype<k> {
public:
explicit ctype_byname(const char *s,
size_t refs = 0);
protected:
~ctype_byname() ;

B

The template class describes an object that can serve as a locale facet (page of
type ctype<E>. Its behavior is determined by the named (page locale s. The
constructor initializes its base object with ctype<k>(refs) (or the equivalent for
base class ctype<char> (page).

has_facet

template<class Facet>
bool has_facet(const Tocale& loc);

The template function returns true if a locale facet (page [135) of class Facet is
listed within the locale object (page [135) Toc.

isalnum

template<class E>
bool isalnum(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(Toc). is(ctype<E>:: alnum,
c).
isalpha

template<class E>
bool isalpha(E c, const Tocale& Toc) const;

The template function returns use_facet< ctype<t> >(Toc). is(ctype<E>:: alpha,

c).

iscntrl

template<class E>
bool iscntr1(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<t> >(Toc). is(ctype<E>:: cntrl,

c).
isdigit
template<class E>

bool isdigit(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<kt> >(Toc). is(ctype<E>:: digit,

c).

Chapter 12. Standard C++ Library Header Files 133

isgraph
template<class E>
bool isgraph(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<kE> >(Toc). is(ctype<E>:: graph,

c).

islower

template<class E>
bool islower(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(Toc). is(ctype<E>:: Tower,

c).
isprint

template<class E>
bool isprint(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E> >(Toc). is(ctype<E>:: print,

c).

ispunct

template<class E>
bool ispunct(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E> >(Toc). is(ctype<E>:: punct,

c).

isspace

template<class E>
bool isspace(E c, const Tocale& Toc) const;

The template function returns use_facet< ctype<t> >(Toc). is(ctype<E>:: space,

c).

isupper

template<class E>
bool isupper(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<t> >(Toc). is(ctype<E>:: upper,

c).
isxdigit

template<class E>
bool isxdigit(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>::
xdigit, c).

locale

category (pagr classic (page [137] 1 - combine (page - facet (page .
!Ii

global (page [137) - id (page 1 \ locale (page - name (page [138) - operator!=
(page 138) - operator() (page [138) - operator== (page [139)

134 Standard C++ Library

class locale {
pubTic:
class facet;
class id;
typedef int category;
static const category none, collate, ctype, monetary,
numeric, time, messages, all;
locale();
explicit locale(const char xs);
locale(const locale& x, const Tocaled y,
category cat);
locale(const localed& x, const char *s, category cat);
template<class Facet>
locale(const locale& x, Facet =fac);
template<class Facet>
locale combine(const locale& x) const;
template<class E, class T, class A>
bool operator() (const basic_string<k, T, A>& lhs,
const basic_string<k, T, A>& rhs) const;
string name() const;
bool operator==(const locale& x) const;
bool operator!=(const locale& x) const;
static Tocale global(const localed x);
static const Tocale& classic();

}s

The class describes a locale object that encapsulates a locale. It represents

culture-specific information as a list of facets. A facet is a pointer to an object of a

class derived from class facet (page [L37) that has a public object of the form:
static Tocale::id id;

You can define an open-ended set of these facets. You can also construct a locale

object that designates an arbitrary number of facets.

Predefined groups of these facets represent the locale categories traditionally
managed in the Standard C library by the function setlocale.

Category collate (page (LC_COLLATE) includes the facets:

collate<char>
collate<wchar_t>

Category ctype (page (LC_CTYPE) includes the facets:

ctype<char>

ctype<wchar_t>

codecvt<char, char, mbstate_t>
codecvt<wchar_t, char, mbstate t>

Category monetary (page (LC_MONETARY) includes the facets:

moneypunct<char, false>

moneypunct<wchar_t, false>

moneypunct<char, true>

moneypunct<wchar_t, true>

money_get<char, istreambuf_iterator<char> >
money_get<wchar_t, istreambuf_iterator<wchar_t> >
money_put<char, ostreambuf_iterator<char> >
money_put<wchar_t, ostreambuf iterator<wchar_ t> >

Category numeric (page (LC_NUMERIC) includes the facets:

Chapter 12. Standard C++ Library Header Files

135

136

num_get<char, istreambuf_iterator<char> >
num_get<wchar_t, istreambuf_iterator<wchar_t> >
num_put<char, ostreambuf_iterator<char> >
num_put<wchar_t, ostreambuf_iterator<wchar_t> >
numpunct<char>

numpunct<wchar_t>

Category time (page (LC_TIME) includes the facets:

time_get<char, istreambuf_iterator<char> >
time_get<wchar_t, istreambuf_iterator<wchar_t> >
time_put<char, ostreambuf_iterator<char> >
time_put<wchar_t, ostreambuf_iterator<wchar_t> >

Category messages (page [sic] (LC_MESSAGE) includes the facets:

messages<char>
messages<wchar_t>

(The last category is required by Posix, but not the C Standard.)

Some of these predefined facets are used by the iostreams (page Iﬂ) classes, to
control the conversion of numeric values to and from text sequences.

An object of class locale also stores a locale name as an object of class string
(page . Using an invalid locale name to construct a locale facet (page or a
locale object throws an object of class runtime_error (page . The stored locale
name is "*" if the locale object cannot be certain that a C-style locale corresponds
exactly to that represented by the object. Otherwise, you can establish a matching
locale within the Standard C library, for the locale object x, by calling setlocale(
LC_ALL, x.name. c_str()).

In this implementation (page , you can also call the static member function:
static locale empty();

to construct a locale object that has no facets. It is also a transparent locale — if
the template functions has_facet (page [L33) and use_facet (page [164) cannot find
the requested facet in a transparent locale, they consult first the global locale (page

137) and then, if that is transparent, the classic locale (page [137). Thus, you can

write:

cout.imbue(locale::empty());

Subsequent insertions to cout (page [L04) are mediated by the current state of the
global locale. You can even write:
Tocale Toc(locale::empty(), locale::classic(),

locale: :numeric);
cout.imbue(Toc);

Numeric formatting rules for subsequent insertions to cout remain the same as in
the C locale, even as the global locale supplies changing rules for inserting dates
and monetary amounts.

locale::category

typedef int category;
static const category none, collate, ctype, monetary,
numeric, time, messages, all;

The type is a synonym for int, so that it can represent any of the C locale
categories. It can also represent a group of constants local to class Tocale:

Standard C++ Library

* none, corresponding to none of the the C categories

* collate, corresponding to the C category LC_COLLATE

* ctype, corresponding to the C category LC_CTYPE

* monetary, corresponding to the C category LC_MONETARY
* numeric, corresponding to the C category LC_NUMERIC

* time, corresponding to the C category LC_TIME

* messages, corresponding to the Posix category LC_MESSAGE

* all, corresponding to the C union of all categories LC_ALL

You can represent an arbitrary group of categories by ORing these constants, as in
monetary | time.

locale::classic
static const locale& classic();

The static member function returns a locale object that represents the classic locale,
which behaves the same as the C locale within the Standard C library.

locale::combine

template<class Facet>
locale combine(const locale& x) const;

The member function returns a locale object that replaces in (or adds to) *this the
facet Facet listed in x.

locale::facet

class facet {
protected:
explicit facet(size t refs = 0);
virtual ~facet();
private:
facet(const facetd) // not defined
void operator=(const facet&) // not defined

}s

The member class serves as the base class for all locale facets (page . Note that
you can neither copy nor assign an object of class facet. You can construct and
destroy objects derived from class locale::facet, but not objects of the base class
proper. Typically, you construct an object myfac derived from facet when you
construct a locale, as in:

locale Toc(locale::classic(), new myfac);

In such cases, the constructor for the base class facet should have a zero refs
argument. When the object is no longer needed, it is deleted. Thus, you supply a
nonzero refs argument only in those rare cases where you take responsibility for
the lifetime of the object.

locale::global
static Tocale global(const locale& x);

The static member function stores a copy of x as the global locale. It also calls
setlocale(LC_ALL, x.name. c_str()), to establishing a matching locale within the
Standard C library. The function then returns the previous global locale. At
program startup, the global locale is the same as the classic locale (page .

Chapter 12. Standard C++ Library Header Files 137

138

locale::id

class id {

protected:
id();

private:
id(const id&) // not defined
void operator=(const id&) // not defined

}s

The member class describes the static member object required by each unique
locale facet (page [135). Note that you can neither copy nor assign an object of class
id.

locale::locale

locale();
explicit locale(const char *s);
locale(const locale& x, const localed y,
category cat);
locale(const locale& x, const char *s, category cat);
template<class Facet>
locale(const locale& x, Facet *fac);

The first constructor initializes the object to match the global locale (page . The
second constructor initializes all the locale categories to have behavior consistent
with the locale name (page s. The remaining constructors copy x, with the
exceptions noted:

locale(const locale& x, const localed y,
category cat);

replaces from y those facets corresponding to a category c for which c¢ & cat is
nonzero.

locale(const locale& x, const char *s, category cat);

replaces from locale(s, all) those facets corresponding to a category ¢ for which
¢ & cat is nonzero.

template<class Facet>
locale(const locale& x, Facet *fac);

replaces in (or adds to) x the facet fac, if fac is not a null pointer.

If a locale name s is a null pointer or otherwise invalid, the function throws
runtime_error (page [185).

locale::name
string name() const;

The member function returns the stored locale name (page [136).

locale::operator!=
bool operator!=(const locale& x) const;

The member function returns ! (*this == x).

locale::operator()
template<class E, class T, class A>
bool operator() (const basic_string<k, T, A>& Ths,
const basic_string<kE, T, A>& rhs);

Standard C++ Library

The member function effectively executes:

const collate<E>& fac = use_fac<collate<E> >(*this);
return (fac.compare(lhs.begin(), Ths.end(),
rhs.begin(), rhs.end()) < 0);

Thus, you can use a locale object as a function object (page [285).

locale::operator==
bool operator==(const locale& x) const;

The member function returns true only if *this and x are copies of the same locale
or have the same name (other than "*").

messages

template<class E>
class messages
: public Tocale::facet, public messages_base f{
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit messages(size_t refs = 0);
catalog open(const string& name,
const locale& loc) const;
string _type get(catalog cat, int set, int msg,
const string_type& df1t) const;
void close(catalog cat) const;
static Tocale::id id;
protected:
“messages();
virtual catalog do_open(const string& name,
const locale& loc) const;
virtual string_type do_get(catalog cat, int set,
int msg, const string_type& dflt) const;
virtual void do_close(catalog cat) const;

1

The template class describes an object that can serve as a locale facet (page [135), to
characterize various properties of a message catalog that can supply messages
represented as sequences of elements of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

messages: :char_type
typedef E char_type;

The type is a synonym for the template parameter E.

messages::close
void close(catalog cat) const;

The member function calls do_close(cat) ;.

messages::do_close
virtual void do_close(catalog cat) const;

The protected member function closes the message catalog (page [139) cat, which
must have been opened by an earlier call to do_open (page [140).

Chapter 12. Standard C++ Library Header Files 139

140

messages::do_get

virtual string_type do_get(catalog cat, int set, int msg,
const string_type& dflt) const;

The protected member function endeavors to obtain a message sequence from the
message catalog (page cat. It may make use of set, msg, and df1t in doing so.
It returns a copy of df1t on failure. Otherwise, it returns a copy of the specified
message sequence.

messages::do_open

virtual catalog do_open(const string& name,
const locale& loc) const;

The protected member function endeavors to open a message catalog (page
whose name is name. It may make use of the locale Toc in doing so. It returns a
value that compares less than zero on failure. Otherwise, the returned value can be
used as the first argument on a later call to get (page [140). It should in any case be
used as the argument on a later call to close (page [L39).

messages::get

string_type get(catalog cat, int set, int msg,
const string_type& df1t) const;

The member function returns do_get(cat, set, msg, df1t);.

messages:.messages
explicit messages(size t refs = 0);

The constructor initializes its base object with locale::facet(refs).
messages::open

catalog open(const string& name,
const Tocale& Toc) const;

The member function returns do_open(name, loc);.

messages: :stri ng_type
typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string (page [197) whose
objects can store copies of the message sequences.

messages_base

class messages_base {
typedef int catalog;
}s

The class describes a type common to all specializations of template class messages
(page [139). The type catalog is a synonym for type int that describes the possible
return values from messages::do_open.

messages_byname

template<class E>

class messages_byname : public messages<E> {
public:

explicit messages_byname(const char *s,

Standard C++ Library

size t refs = 0);
protected:
“messages_byname() ;

b

The template class describes an object that can serve as a locale facet of type
messages<E>. Its behavior is determined by the named locale s. The constructor
initializes its base object with messages<E>(refs).

money_base

class money_base {
enum part {none, sign, space, symbol, value};
struct pattern {
char field[4];
}s
}s

The class describes an enumeration and a structure common to all specializations
of template class moneypunct (page . The enumeration part describes the
possible values in elements of the array field in the structure pattern. The values
of part are:

* none to match zero or more spaces or generate nothing
* sign to match or generate a positive or negative sign

* space to match zero or more spaces or generate a space
* symbol to match or generate a currency symbol
 value to match or generate a monetary value

money_get

template<class E,
class InIt = istreambuf iterator<E> >
class money_get : public Tocale::facet {
public:
typedef E char_type;
typedef InIt iter_type;
typedef basic_string<E> string_type;
explicit money_get(size_t refs = 0);
iter_type get(iter_type first, iter type last,
bool intl, ios_base& x, ios_base::iostated st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostated st,
string_type& val) const;
static Tocale::id id;
protected:
“money_get();
virtual iter_type do_get(iter_type first,
iter_type last, bool intl, ios_base& x,
ios_base::iostate& st, string_type& val) const;
virtual iter_type do_get(iter type first,
iter_type last, bool intl, ios_base& x,
jos_base::iostate& st, long double& val) const;

}s

The template class describes an object that can serve as a locale facet, to control
conversions of sequences of type E to monetary values.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

Chapter 12. Standard C++ Library Header Files 141

142

money_get::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

money_get::do_get

virtual iter_type do_get(iter_type first, iter_type last,
bool intl, ios _base& x, ios base::jostated st,
string_type& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::jostated st,
Tong double& val) const;

The first virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has recognized
a complete, nonempty monetary input field. If successful, it converts this field to a
sequence of one or more decimal digits, optionally preceded by a minus sign (-),
to represent the amount and stores the result in the string_type (page object
val. It returns an iterator designating the first element beyond the monetary input
field. Otherwise, the function stores an empty sequence in val and sets
ios_base::failbit in st. It returns an iterator designating the first element beyond
any prefix of a valid monetary input field. In either case, if the return value equals
last, the function sets ios_base::eofbit in st.

The second virtual protected member function behaves the same as the first, except
that if successful it converts the optionally-signed digit sequence to a value of type
long double and stores that value in val.

The format of a monetary input field is determined by the locale facet (page [135)
fac returned by the (effective) call use_facet <moneypunct<E, int1> >(x.
getloc()). Specifically:

+ fac.neg_format() determines the order in which components of the field occur.

» fac.curr_symbol() determines the sequence of elements that constitutes a
currency symbol.

» fac.positive_sign() determines the sequence of elements that constitutes a
positive sign.

+ fac.negative_sign() determines the sequence of elements that constitutes a
negative sign.

» fac.grouping() determines how digits are grouped to the left of any decimal
point.

» fac.thousands_sep() determines the element that separates groups of digits to
the left of any decimal point.

+ fac.decimal_point() determines the element that separates the integer digits
from the fraction digits.

» fac.frac_digits() determines the number of significant fraction digits to the
right of any decimal point.

If the sign string (fac.negative_sign or fac.positive_sign) has more than one
element, only the first element is matched where the element equal to
money_base::sign (page appears in the format pattern (fac.neg_format). Any
remaining elements are matched at the end of the monetary input field. If neither
string has a first element that matches the next element in the monetary input
field, the sign string is taken as empty and the sign is positive.

Standard C++ Library

If x.flags() & showbase is nonzero, the string fac.curr_symbol must match where
the element equal to money_base: :symbol appears in the format pattern. Otherwise,
if money_base::symbol occurs at the end of the format pattern, and if no elements
of the sign string remain to be matched, the currency symbol is not matched.
Otherwise, the currency symbol is optionally matched.

If no instances of fac.thousands_sep() occur in the value portion of the monetary
input field (where the element equal to money_base: :value appears in the format
pattern), no grouping constraint is imposed. Otherwise, any grouping constraints
imposed by fac.grouping() is enforced. Note that the resulting digit sequence
represents an integer whose low-order fac.frac_digits() decimal digits are
considered to the right of the decimal point.

Arbitrary white space (page|31) is matched where the element equal to
money_base: :space appears in the format pattern, if it appears other than at the
end of the format pattern. Otherwise, no internal white space is matched. An
element c is considered white space if use_facet <ctype<E> >(x. getloc()).
is(ctype base:: space, c) is true.

money_get::get

iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostated st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::jostated st,
string_type& val) const;

Both member functions return do_get(first, Tast, intl, x, st, val).

money_get::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter InIt.

money_get::money_get
explicit money_get(size t refs = 0);

The constructor initializes its base object with locale::facet(refs).

money_get::string_type
typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string (page [197) whose
objects can store sequences of elements from the source sequence.

money_put

template<class E,
class OutIt = ostreambuf_iterator<k> >
class money_put : public Tocale::facet {
pubTic:
typedef E char_type;
typedef Outlt iter_type;
typedef basic_string<E> string_type;
explicit money put(size_t refs = 0);
iter_type put(iter_type next, bool intl, ios_base& x,
E fi11, Tong double& val) const;
iter_type put(iter_type next, bool intl, ios_base& x,
E fi11, string_type& val) const;
static Tocale::id id;

Chapter 12. Standard C++ Library Header Files 143

144

protected:
~money_put();
virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, string_type& val) const;
virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, Tong double& val) const;
1

The template class describes an object that can serve as a locale facet (page [135), to
control conversions of monetary values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

money_put::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

money_put::do_put

virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, string_type& val) const;

virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, long double& val) const;

The first virtual protected member function generates sequential elements
beginning at next to produce a monetary output field from the string_type (page
object val. The sequence controlled by val must begin with one or more
decimal digits, optionally preceded by a minus sign (-), which represents the
amount. The function returns an iterator designating the first element beyond the
generated monetary output field.

The second virtual protected member function behaves the same as the first, except
that it effectively first converts val to a sequence of decimal digits, optionally
preceded by a minus sign, then converts that sequence as above.

The format of a monetary output field is determined by the locale facet (page [135)

fac returned by the (effective) call use_facet <moneypunct<E, int1> >(x.

getloc()). Specifically:

» fac.pos_format() determines the order in which components of the field are
generated for a non-negative value.

» fac.neg_format() determines the order in which components of the field are
generated for a negative value.

» fac.curr_symbol() determines the sequence of elements to generate for a
currency symbol.

+ fac.positive_sign() determines the sequence of elements to generate for a
positive sign.

» fac.negative_sign() determines the sequence of elements to generate for a
negative sign.

» fac.grouping() determines how digits are grouped to the left of any decimal
point.

+ fac.thousands_sep() determines the element that separates groups of digits to
the left of any decimal point.

+ fac.decimal_point() determines the element that separates the integer digits
from any fraction digits.

Standard C++ Library

» fac.frac_digits() determines the number of significant fraction digits to the
right of any decimal point.

If the sign string (fac.negative_sign or fac.positive_sign) has more than one
element, only the first element is generated where the element equal to
money_base: :sign appears in the format pattern (fac.neg_format or
fac.pos_format). Any remaining elements are generated at the end of the monetary
output field.

If x.flags() & showbase is nonzero, the string fac.curr_symbol is generated where
the element equal to money_base: :symbol appears in the format pattern. Otherwise,
no currency symbol is generated.

If no grouping constraints are imposed by fac.grouping() (its first element has the
value CHAR_MAX) then no instances of fac.thousands_sep() are generated in the
value portion of the monetary output field (where the element equal to
money_base: :value appears in the format pattern). If fac.frac_digits() is zero,
then no instance of fac.decimal_point() is generated after the decimal digits.
Otherwise, the resulting monetary output field places the low-order
fac.frac_digits() decimal digits to the right of the decimal point.

Padding (page occurs as for any numeric output field, except that if x.flags()
& x.internal is nonzero, any internal padding is generated where the element
equal to money_base: :space appears in the format pattern, if it does appear.
Otherwise, internal padding occurs before the generated sequence. The padding
character is fill.

The function calls x.width(0) to reset the field width to zero.

money_put::put

iter_type put(iter_type next, bool intl, ios_base& x,
E fi11, Tong double& val) const;

iter_type put(iter_type next, bool intl, ios_base& x,
E fill, string_type& val) const;

Both member functions return do_put(next, intl, x, fill, val).

money_put::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter OQutIt.

money_put::money_put
explicit money_put(size t refs = 0);

The constructor initializes its base object with Tocale::facet(refs).

money_put::string_type
typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string (page [197) whose
objects can store sequences of elements from the source sequence.

moneypunct

char_type (page - curr_symbol (page - decimal_point (page .
do_curr_symbol (page - do_decimal_point (page [147) - do_frac_digits (page

Chapter 12. Standard C++ Library Header Files 145

- do_grouping (page - do_neg_format (page [147) - do_negative_sign
[a5) -

(page - do_pos_format (page - do_positive_sign (page

e [148) - frac_digits (ae - grouping (page [148) -
148

do_thousands_sep (pa

moneypunct (page [148) - neg_format (page - negative_sign (page [148) -
pos_format (page [148) - positive_sign (page [148) - string_type (page [148) -
thousands_sep (page [149)
template<class E, bool Intl>

class moneypunct
: public Tocale::facet, public money base {

pubTic:
typedef E char_type;
typedef basic_string<E> string_type;
explicit moneypunct(size t refs = 0);
E decimal_point() const;
E thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format(oonst;
pattern neg_format() const;
static const bool intl = Intl;
static Tocale::id id;
protected:
~moneypunct () ;
virtual E do_decimal_point() const;
virtual E do_thousands_sep() const;
virtual string do_grouping() const;
virtual string type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

s

The template class describes an object that can serve as a locale facet (page , to
desceibe the sequences of type E used to represent a monetary input field (page
or a monetary output field (page . If the template parameter Int1 is true,
international conventions are observed.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

The const static object int1 stores the value of the template parameter Intl.

moneypunct::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

moneypunct::curr_symbol
string_type curr_symbol() const;

The member function returns do_curr_symbol ().

moneypunct::decimal_point
E decimal_point() const;

The member function returns do_decimal_point().

146 Standard C++ Library

moneypunct::do_curr_symbol
string_type do_curr_symbol() const;

The protected virtual member function returns a locale-specific sequence of
elements to use as a currency symbol.

moneypunct::do_decimal_point
E do_decimal_point() const;

The protected virtual member function returns a locale-specific element to use as a
decimal-point.

moneypunct::do_frac_digits
int do_frac_digits() const;

The protected virtual member function returns a locale-specific count of the
number of digits to display to the right of any decimal point.

moneypunct::do_grouping
string do_grouping() const;

The protected virtual member function returns a locale-specific rule for
determining how digits are grouped to the left of any decimal point. The encoding
is the same as for Tconv::grouping.

moneypunct::do_neg_format
pattern do_neg_format() const;

The protected virtual member function returns a locale-specific rule for
determining how to generate a monetary output field (page [144) for a negative
amount. Each of the four elements of pattern::field can have the values:

* none (page to match zero or more spaces or generate nothing
* sign (page to match or generate a positive or negative sign

* space (page to match zero or more spaces or generate a space
* symbol (page to match or generate a currency symbol

* value (page to match or generate a monetary value

Components of a monetary output field are generated (and components of a
monetary input field (page are matched) in the order in which these elements
appear in pattern::field. Each of the values sign, symbol, value, and either none
or space must appear exactly once. The value none must not appear first. The
value space must not appear first or last. If Int1 is true, the order is symbol, sign,
none, then value.

The template version of moneypunct<E, Int1> returns {money_base::symbol,
money base::sign, money base::value, money base::none}.

moneypunct::do_negative_sign
string_type do_negative_sign() const;

The protected virtual member function returns a locale-specific sequence of
elements to use as a negative sign.

moneypunct::do_pos_format
pattern do_pos_format() const;

Chapter 12. Standard C++ Library Header Files 147

The protected virtual member function returns a locale-specific rule for
determining how to generate a monetary output field (page for a positive
amount. (It also determines how to match the components of a monetary input
field (page .) The encoding is the same as for do_neg_format (page

The template version of moneypunct<E, Int1> returns {money_base::symbol,
money base::sign, money base::value, money base::none}.

moneypunct::do_positive_sign
string_type do_positive_sign() const;

The protected virtual member function returns a locale-specific sequence of
elements to use as a positive sign.

moneypunct::do_thousands_sep
E do_thousands_sep() const;

The protected virtual member function returns a locale-specific element to use as a
group separator to the left of any decimal point.

moneypunct::frac_digits
int frac_digits() const;

The member function returns do_frac_digits().

moneypunct::grouping
string grouping() const;

The member function returns do_grouping().

moneypunct::moneypunct
explicit moneypunct(size t refs = 0);

The constructor initializes its base object with Tocale::facet(refs).

moneypunct:: neg_format
pattern neg_format() const;

The member function returns do_neg_format ().

moneypunct::negative_sign
string_type negative_sign() const;

The member function returns do_negative sign().

moneypunct::pos_format
pattern pos_format() const;

The member function returns do_pos_format ().

moneypunct::positive_sign
string_type positive_sign() const;

The member function returns do_positive_sign().

moneypunct: :string_type
typedef basic_string<E> string_type;

148 Standard C++ Library

The type describes a specialization of template class basic_string (page [197) whose

objects can store copies of the punctuation sequences.

moneypunct::thousands_sep
E thousands_sep() const;

The member function returns do_thousands_sep().

moneypunct_byname

template<class E, bool Intl>
class moneypunct_byname
: public moneypunct<kE, Intl> {
public:
explicit moneypunct_byname(const char =*s,
size_t refs = 0);
protected:
~“moneypunct_byname () ;

B

The template class describes an object that can serve as a locale facet of type

moneypunct<E, Int1>. Its behavior is determined by the named (page [136) locale s.

The constructor initializes its base object with moneypunct<E, Int1>(refs).

num_get

template<class E, class InlIt = istreambuf_iterator<E> >
class num_get : public locale::facet {
public:
typedef E char_type;
typedef Inlt iter_type;
explicit num_get(size_t refs = 0);
iter_type get(iter_type first, iter type last,
ios_base& x, ios_base::iostated st,
long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
unsigned long& val) const;
iter_type get(iter_type first, iter_type last,
jos_base& x, jos_base::iostate& st,
double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
void *& val) const;
iter_type get(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st,
bool& val) const;
static Tocale::id id;
protected:
~num_get () ;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
long& val) const;
virtual iter_type
do_get(iter type first, iter type last,
jos_base& x, ios_base::iostated st,
unsigned long& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st,
double& val) const;

Chapter 12. Standard C++ Library Header Files

149

virtual iter_type
do_get(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st,
long double& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
void *& val) const;
virtual iter_type
do_get(iter_type first, iter type last,
ios_base& x, ios_base::iostated st,
bool& val) const;

}s

The template class describes an object that can serve as a locale facet (page [135), to
control conversions of sequences of type E to numeric values.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

num_get::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

num_get::do_get
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
Tong& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
virtual iter_type do_get(iter type first, iter_type last,
ios_base& x, ios_base::iostated st,
Tong double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
void *& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;

The first virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has recognized
a complete, nonempty integer input field. If successful, it converts this field to its
equivalent value as type long, and stores the result in val. It returns an iterator
designating the first element beyond the numeric input field. Otherwise, the
function stores nothing in val and sets ios_base::failbit in st. It returns an
iterator designating the first element beyond any prefix of a valid integer input
field. In either case, if the return value equals 1ast, the function sets
jos_base::eofbit in st.

The integer input field is converted by the same rules used by the scan functions
(page [25) for matching and converting a series of char elements from a file. (Each
such char element is assumed to map to an equivalent element of type E by a
simple, one-to-one, mapping.) The equivalent scan conversion specification (page
is determined as follows:

150 Standard C++ Library

o If x.flags() & ios_base::basefield == jos_base::oct, the conversion
specification is To.

o If x.flags() & ios_base::basefield == jos_base::hex, the conversion
specification is Tx.

» If x.flags() & ios_base::basefield == 0, the conversion specification is 11.

¢ Otherwise, the conversion specification is 1d.

The format of an integer input field is further determined by the locale facet (page
135) fac returned by the call use_facet <numpunct<E>(x. getloc()). Specifically:

» fac.grouping() determines how digits are grouped to the left of any decimal
point

» fac.thousands_sep() determines the sequence that separates groups of digits to
the left of any decimal point

If no instances of fac.thousands_sep() occur in the numeric input field, no
grouping constraint is imposed. Otherwise, any grouping constraints imposed by
fac.grouping() is enforced and separators are removed before the scan conversion
occurs.

The second virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;

behaves the same as the first, except that it replaces a conversion specification of
1d with Tu. If successful it converts the numeric input field to a value of type
unsigned long and stores that value in val.

The third virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;

behaves the same as the first, except that it endeavors to match a complete,
nonempty floating-point input field. fac.decimal_point() determines the
sequence that separates the integer digits from the fraction digits. The equivalent
scan conversion specifier is 1f.

The fourth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
long double& val) const;

behaves the same the third, except that the equivalent scan conversion specifier is
Lf.

The fifth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last,

ios_base& x, ios_base::iostate& st,
void *& val) const;

behaves the same the first, except that the equivalent scan conversion specifier is p.

The sixth virtual protected member function:

Chapter 12. Standard C++ Library Header Files 151

152

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
bool& val) const;

behaves the same as the first, except that it endeavors to match a complete,
nonempty boolean input field. If successful it converts the boolean input field to a
value of type bool and stores that value in val.

A boolean input field takes one of two forms. If x.flags() & ios_base::boolalpha
is false, it is the same as an integer input field, except that the converted value
must be either 0 (for false) or 1 (for true). Otherwise, the sequence must match
either fac.falsename() (for false), or fac.truename() (for true).

num_get::get
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
Tong& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
Tong double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;

All member functions return do_get(first, last, x, st, val).

num_get::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter InIt.

num_get::num_get
explicit num_get(size t refs = 0);

The constructor initializes its base object with Tocale::facet(refs).

num_put

template<class E, class OQutIt = ostreambuf_iterator<k> >
class num_put : public Tocale::facet {
pubTic:
typedef E char_type;
typedef Outlt iter_type;
explicit num_put(size_t refs = 0);
iter_type put(iter_type next, ios_based x,
E fi11, Tong val) const;
iter_type put(iter_type next, ios_based x,
E fill, unsigned lTong val) const;
iter_type put(iter_type next, ios_based x,
E fill, double val) const;
iter_type put(iter_type next, ios_based X,
E fi11, Tong double val) const;
iter_type put(iter_type next, ios_based x,

Standard C++ Library

E fill, const void *val) const;

iter_type put(iter_type next, ios_based x,
E fi1l, bool val) const;

static Tocale::id id;

protected:

~num_put () ;

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, Tong val) const;

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, unsigned Tong val) const;

virtual iter_type do_put(iter_type next, ios_base& x,
E fill, double val) const;

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, Tong double val) const;

virtual iter_type do_put(iter_type next, ios base& x,
E fil1, const void *val) const;

virtual iter_type do_put(iter type next, ios base& x,
E fi1l, bool val) const;

}s

The template class describes an object that can serve as a locale facet (page [135), to
control conversions of numeric values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

num_put::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

num_put::do_put

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, Tong val) const;

virtual iter_type do_put(iter_type next, ios_based x,
E fi11, unsigned Tong val) const;

virtual iter_type do_put(iter_type next, jos_base& x,
E fill, double val) const;

virtual iter_type do_put(iter_type nextp ios_base& x,
E fill, Tong double val) const;

virtual iter_type do_put(iter_type nextp ios_base& x,
E fil1, const void *val) const;

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, bool val) const;

The first virtual protected member function generates sequential elements
beginning at next to produce an integer output field from the value of val. The
function returns an iterator designating the next place to insert an element beyond
the generated integer output field.

The integer output field is generated by the same rules used by the print functions
(page [32) for generating a series of char elements to a file. (Each such char element
is assumed to map to an equivalent element of type E by a simple, one-to-one,
mapping.) Where a print function pads a field with either spaces or the digit 0,
however, do_put instead uses fi11. The equivalent print conversion specification
(page is determined as follows:

o If x.flags() & ios_base::basefield == jos_base::oct, the conversion
specification is To.

o If x.flags() & ios_base::basefield == jos_base::hex, the conversion
specification is Tx.

Chapter 12. Standard C++ Library Header Files 153

154

* Otherwise, the conversion specification is 1d.

If x.width() is nonzero, a field width of this value is prepended. The function then
calls x.width(0) to reset the field width to zero.

Padding occurs only if the minimum number of elements N required to specify the

output field is less than x.width(). Such padding consists of a sequence of N -

width() copies of fill. Padding then occurs as follows:

» If x.flags() & ios_base::adjustfield == ios_base::Teft, the flag - is
prepended. (Padding occurs after the generated text.)

» If x.flags() & ios_base::adjustfield == jos_base::internal, the flag 0 is
prepended. (For a numeric output field, padding occurs where the print
functions pad with 0.)

¢ Otherwise, no additional flag is prepended. (Padding occurs before the
generated sequence.)

Finally:
» If x.flags() & ios_base::showpos is nonzero, the flag + is prepended to the
conversion specification.

» If x.flags() & ios_base::showbase is nonzero, the flag # is prepended to the
conversion specification.

The format of an integer output field is further determined by the locale facet

(page [135) fac returned by the call use_facet <numpunct<E>(x. getloc()).

Specifically:

» fac.grouping() determines how digits are grouped to the left of any decimal
point

+ fac.thousands_sep() determines the sequence that separates groups of digits to
the left of any decimal point

If no grouping constraints are imposed by fac.grouping() (its first element has the
value CHAR_MAX) then no instances of fac.thousands_sep() are generated in the
output field. Otherwise, separators are inserted after the print conversion occurs.

The second virtual protected member function:

virtual iter_type do_put(iter_type next, jos_base& x,
E fi11, unsigned Tong val) const;

behaves the same as the first, except that it replaces a conversion specification of
1d with Tu.

The third virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
E fill, double val) const;

behaves the same as the first, except that it produces a floating-point output field
from the value of val. fac.decimal_point() determines the sequence that separates
the integer digits from the fraction digits. The equivalent print conversion
specification is determined as follows:

o If x.flags() & ios_base::floatfield == ios_base::fixed, the conversion
specification is 1f.
o If x.flags() & ios_base::floatfield == ios_base::scientific, the conversion

specification is le. If x.flags() & ios_base::uppercase is nonzero, e is replaced
with E.

Standard C++ Library

* Otherwise, the conversion specification is 1g. If x.flags() &
ios_base::uppercase is nonzero, g is replaced with G.

If x.flags() & ios_base::fixed is nonzero, or if x.precision() is greater than
zero, a precision with the value x.precision() is prepended to the conversion
specification. Any padding (page behaves the same as for an integer output
field. The padding character is fi11. Finally:

» If x.flags() & ios_base::showpos is nonzero, the flag + is prepended to the
conversion specification.

» If x.flags() & ios_base::showpoint is nonzero, the flag # is prepended to the
conversion specification.

The fourth virtual protected member function:

virtual iter_type do_put(iter_type next, jos_base& x,
E fill, Tong double val) const;

behaves the same the third, except that the qualifier 1 in the conversion
specification is replaced with L.

The fifth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
E fill, const void *val) const;

behaves the same the first, except that the conversion specification is p, plus any
qualifier needed to specify padding.

The sixth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
E fill, bool val) const;

behaves the same as the first, except that it generates a boolean output field from
val.

A boolean output field takes one of two forms. If x.flags() &
ios_base::boolalpha is false, the generated sequence is either 0 (for false) or 1 (for
true). Otherwise, the generated sequence is either fac.falsename() (for false), or
fac.truename() (for true).

num_put::put

iter_type put(iter_type next, ios_based x,
E fi11, Tong val) const;

iter_type put(iter_type next, ios_based x,
E fi11, unsigned Tong val) const;

iter_type put(iter_type iter_type next, ios_base& x,
E fi11, double val) const;

iter_type put(iter_type next, ios_based x,
E fi11, Tong double val) const;

iter_type put(iter_type next, ios_based x,
E fill, const void *val) const;

iter_type put(iter_type next, ios_based X,
E fill, bool val) const;

All member functions return do_put(next, x, fill, val).

Chapter 12. Standard C++ Library Header Files 155

num_put::iter_type
typedef InIt iter_type;

The type is a synonym for the template parameter OutIt.

num_put::num_put
explicit num_put(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

numpunct

do_thousands_sep (age - falsename (page [157) - grouping (page [157) -
numpunct (page [157) - string_type (page - thousands_sep (page |157) -
truename (page [157)
template<class E, class numpunct : public Tocale::facet {
pubTic:

typedef E char_type;

typedef basic_string<E> string_type;

explicit numpunct(size t refs = 0);

E decimal_point() const;

E thousands_sep() const;

string grouping() const;

string_type truename() const;

string_type falsename() const;

static Tocale::id id;
protected:

~numpunct () ;

virtual E do_decimal_point() const;

virtual E do_thousands_sep() const;

virtual string do_grouping() const;

virtual string _type do_truename() const;

virtual string_type do_falsename() const;

}s

The template class describes an object that can serve as a locale facet (page [135), to
desceibe the sequences of type E used to represent the input fields matched by
num_get (page [149) or the output fields generated by num_get (page [149).

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

numpunct::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

numpunct::decimal_point
E decimal_point() const;

The member function returns do_decimal_point().

numpunct::do_decimal_point
E do_decimal_point() const;

The protected virtual member function returns a locale-specific element to use as a
decimal-point.

156 Standard C++ Library

numpunct::do_falsename
string_type do_falsename() const;

The protected virtual member function returns a locale-specific sequence to use as
a text representation of the value false.

numpunct::do_grouping
string do_grouping() const;

The protected virtual member function returns a locale-specific rule for
determining how digits are grouped to the left of any decimal point. The encoding
is the same as for 1conv::grouping.

numpunct::do_thousands_sep
E do_thousands_sep() const;

The protected virtual member function returns a locale-specific element to use as a
group separator to the left of any decimal point.

numpunct::do_truename
string_type do_truename() const;

The protected virtual member function returns a locale-specific sequence to use as
a text representation of the value true.

numpunct::falsename
string_type falsename() const;

The member function returns do_falsename().

numpunct::grouping
string grouping() const;

The member function returns do_grouping().

numpunct::numpunct
explicit numpunct(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

numpunct::string_type
typedef basic_string<E> string_type;

The type describes a specialization of template class basic_string (page [197) whose
objects can store copies of the punctuation sequences.

numpunct::thousands_sep
E thousands_sep() const;

The mmmber function returns do_thousands_sep().

numpunct::truename
string_type falsename() const;

The member function returns do_truename().

Chapter 12. Standard C++ Library Header Files 157

numpunct_byname

template<class E>
class numpunct_byname : public numpunct<E> {
public:
explicit numpunct_byname(const char =*s,
size_t refs = 0);
protected:
“numpunct_byname() ;

b

The template class describes an object that can serve as a lTocale facet of type
numpunct<k>. Its behavior is determined by the named (page 136) locale s. The
constructor initializes its base object with numpunct<t>(refs).

time_base

class time_base {
public:
enum dateorder {no_order, dmy, mdy, ymd, ydm};

}s

The class serves as a base class for facets of template class time_get (page . It
defines just the enumerated type dateorder and several constants of this type. Each
of the constants characterizes a different way to order the components of a date.
The constants are:

* no_order specifies no particular order.

* dmy specifies the order day, month, then year, as in 2 December 1979.
* mdy specifies the order month, day, then year, as in December 2, 1979.
» ymd specifies the order year, month, then day, as in 1979/12/2.

* ydm specifies the order year, day, then month, as in 1979: 2 Dec.

time_get

template<class E, class InlIt = istreambuf_iterator<E> >
class time_get : public Tocale::facet {
public:
typedef E char_type;
typedef Inlt iter_type;
explicit time_get(size_t refs = 0);
dateorder date_order() const;
iter_type get_time(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_date(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_weekday(iter_ type first, iter type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_month(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_year(iter_type first, iter_type last,
jos_base& x, ios_base::iostated st, tm *pt) const;
static Tocale::id id;
protected:
~time_get();
virtual dateorder do_date_order() const;
virtual iter_type
do_get_time(iter_type first, iter_type last,
jos_base& x, ios_base::iostated st, tm xpt) const;
virtual iter_type
do_get_date(iter type first, iter type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_weekday(iter_ type first, iter_type last,

158 Standard C++ Library

jos_base& x, ios_base::iostated st, tm xpt) const;
virtual iter_type

do_get_month(iter type first, iter type last,

ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type

do_get_year(iter_type first, iter_type last,

ios_base& x, ios_base::iostate& st, tm *pt) const;

}s

The template class describes an object that can serve as a locale facet (page [135), to
control conversions of sequences of type E to time values.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

time_get::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

time_get::date_order
dateorder date_order() const;

The member function returns date_order().

time_get::do_date_order
virtual dateorder do_date_order() const;

The virtual protected member function returns a value of type
time_base::dateorder, which describes the order in which date components are
matched by do_get_date (page . In this implementation (page , the value is
time_base::mdy, corresponding to dates of the form December 2, 1979.

time_get::do_get_date

virtual iter_type
do_get_date(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty date input field. If successful, it converts this field to its
equivalent value as the components tm: :tm_mon, tm::tm_day, and tm::tm_year, and
stores the results in pt->tm_mon, pt->tm_day and pt->tm_year, respectively. It
returns an iterator designating the first element beyond the date input field.
Otherwise, the function sets ios_base::failbit in st. It returns an iterator
designating the first element beyond any prefix of a valid date input field. In either
case, if the return value equals Tast, the function sets ios_base::eofbit in st.

In this implementation (page E[), the date input field has the form MMM DD, YYYY,
where:

* MMM is matched by calling get_month (page [L61), giving the month.

* DD is a sequence of decimal digits whose corresponding numeric value must be
in the range [1, 31], giving the day of the month.

* YYYY is matched by calling get_year (page , giving the year.

* The literal spaces and commas must match corresponding elements in the input
sequence.

Chapter 12. Standard C++ Library Header Files 159

160

time_get::do_get_month

virtual iter_type
do_get_month(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty month input field. If successful, it converts this field to its
equivalent value as the component tm::tm_mon, and stores the result in pt->tm_mon.
It returns an iterator designating the first element beyond the month input field.
Otherwise, the function sets ios_base::failbit in st. It returns an iterator
designating the first element beyond any prefix of a valid month input field. In
either case, if the return value equals 1ast, the function sets ios_base::eofbit in
st.

The month input field is a sequence that matches the longest of a set of
locale-specific sequences, such as: Jan, January, Feb, February, etc. The converted
value is the number of months since January.

time_get::do_get_time

virtual iter_type
do_get_time(iter type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty time input field. If successful, it converts this field to its
equivalent value as the components tm::tm_hour, tm::tm_min, and tm::tm_sec, and
stores the results in pt->tm_hour, pt->tm_min and pt->tm_sec, respectively. It
returns an iterator designating the first element beyond the time input field.
Otherwise, the function sets ios_base::failbit in st. It returns an iterator
designating the first element beyond any prefix of a valid time input field. In
either case, if the return value equals 1ast, the function sets ios_base::eofbit in
st.

In this implementation (page E[), the time input field has the form HH:MM:SS, where:

* HH is a sequence of decimal digits whose corresponding numeric value must be
in the range [0, 24), giving the hour of the day.

* MMis a sequence of decimal digits whose corresponding numeric value must be
in the range [0, 60), giving the minutes past the hour.

* SS is a sequence of decimal digits whose corresponding numeric value must be
in the range [0, 60), giving the seconds past the minute.

* The literal colons must match corresponding elements in the input sequence.

time_get::do_get_weekday

virtual iter_type
do_get_weekday(iter _type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty weekday input field. If successful, it converts this field to its
equivalent value as the component tm: :tm_wday, and stores the result in
pt->tm_wday. It returns an iterator designating the first element beyond the
weekday input field. Otherwise, the function sets ios_base::failbit in st. It

Standard C++ Library

returns an iterator designating the first element beyond any prefix of a valid
weekday input field. In either case, if the return value equals Tast, the function
sets i0s_base::eofbit in st.

The weekday input field is a sequence that matches the longest of a set of
locale-specific sequences, such as: Sun, Sunday, Mon, Monday, etc. The converted
value is the number of days since Sunday.

time_get::do_get_year

virtual iter_type
do_get_year(iter_type first, iter_type last,
jos_base& x, ios_base::iostated& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty year input field. If successful, it converts this field to its
equivalent value as the component tm: :tm_year, and stores the result in

pt->tm year. It returns an iterator designating the first element beyond the year
input field. Otherwise, the function sets ios_base::failbit in st. It returns an
iterator designating the first element beyond any prefix of a valid year input field.
In either case, if the return value equals 1ast, the function sets ios_base::eofbit
in st.

The year input field is a sequence of decimal digits whose corresponding numeric
value must be in the range [1900, 2036). The stored value is this value minus 1900.
In this implementation (page [3), a numeric value in the range [0, 136) is also
permissible. It is stored unchanged.

time_get::get_date

iter_type get_date(iter_type first, iter_ type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_date(first, last, x, st, pt).
time_get::get_month

iter_type get_month(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get month(first, last, x, st, pt).
time_get::get_time
iter_type get_time(iter_type first, iter_type last,

jos_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get time(first, last, x, st, pt).
time_get::get_weekday
iter_type get_weekday(iter_type first, iter_type last,

jos_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get weekday(first, last, x, st, pt).
time_get::get_year

iter_type get_year(iter type first, iter type last,
jos_base& x, ios_base::iostated& st, tm xpt) const;

The member function returns do_get_year(first, last, x, st, pt).

Chapter 12. Standard C++ Library Header Files 161

162

time_get::iter_type
typedef InIt iter_type;

The type is a synonym for the template parameter InIt.

time_get::time_get
explicit time_get(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

time_get_byname

template<class E, class InIt>
class time_get_byname : public time_get<k, InIt> {
public:
explicit time_get_byname(const char =s,
size_t refs = 0);
protected:
~time_get_byname();

bs

The template class describes an object that can serve as a locale facet (page 135) of
type time_get<E, InIt>. Its behavior is determined by the named (page [136) locale
s. The constructor initializes its base object with time_get<E, InIt>(refs).

time_put

template<class E, class QutIt = ostreambuf iterator<E> >
class time_put : public locale::facet {
pubTic:
typedef E char_type;
typedef OutlIt iter_type;
explicit time_put(size t refs = 0);
iter_type put(iter_type next, ios_based x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_based x,
char_type fill, const tm *pt, const E *first, const E *last) const;
static Tocale::id id;
protected:
~time_put();
virtual iter_type do_put(iter_type next, jos_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;
}s

The template class describes an object that can serve as a locale facet (page 135), to
control conversions of time values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

time_put::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

time_put::do_put

virtual iter_type do_put(iter_type next, ios_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;

Standard C++ Library

The virtual protected member function generates sequential elements beginning at
next from time values stored in the object *pt, of type tm. The function returns an
iterator designating the next place to insert an element beyond the generated
output.

The output is generated by the same rules used by strftime, with a last argument
of pt, for generating a series of char elements into an array. (Each such char element
is assumed to map to an equivalent element of type E by a simple, one-to-one,
mapping.) If mod equals zero, the effective format is "%F", where F equals fmt.
Otherwise, the effective format is "%MF", where M equals mod.

The parameter fi11 is not used.

time_put::put
iter_type put(iter_type next, ios_base& X,

char_type fill, const tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_base& x,

char_type fill, const tm *pt, const E *first, const E *last) const;

The first member function returns do_put(next, x, fill, pt, fmt, mod). The
second member function copies to *next++ any element in the interval [first,
Tast) other than a percent (%). For a percent followed by a character C in the
interval [first, Tast), the function instead evaluates next = do_put(next, x,
fill, pt, C, 0) and skips past C. If, however, C is a qualifier character from the
set EOQ#, followed by a character C2 in the interval [first, Tast), the function
instead evaluates next = do_put(next, x, fill, pt, C2, C) and skips past C2.

time_put::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter QutIt.

time_put::time_put
explicit time_put(size t refs = 0);

The constructor initializes its base object with locale::facet(refs).

time_put_byname

template<class E, class QutIt>
class time_put_byname : public time_put<E, OutIt> {
public:
explicit time_put_byname(const char =*s,
size_t refs = 0);
protected:
~time_put_byname() ;

B

The template class describes an object that can serve as a locale facet of type
time_put<E, OutIt>. Its behavior is determined by the named (page [136) locale s.
The constructor initializes its base object with time_put<E, OutIt>(refs).

tolower

template<class E>
E tolower(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). tolower(c).

Chapter 12. Standard C++ Library Header Files 163

toupper

template<class E>
E toupper(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(1oc). toupper(c).

use_ facet

template<class Facet>
const Facet& use_facet(const locale& loc);

The template function returns a reference to the locale facet of class Facet listed
within the locale object (page [135) Toc. If no such object is listed, the function
throws an object of class bad_cast (page .

<hew>

namespace std {
typedef void (*new_handler)();
class bad_alloc;
class nothrow_t;
extern const nothrow_t nothrow;

// FUNCTIONS
new_handler set_new_handler(new_handler ph) throw();

}s

// OPERATORS -- NOT IN NAMESPACE std
void operator delete(void *p) throw();
void operator delete(void *, void *) throw();
void operator delete(void *p,
const std::nothrow_t&) throw();
void operator delete[](void *p) throw();
void operator delete[](void *, void *) throw();
void operator delete[](void *p,
const std::nothrow_t&) throw();
void *operator new(std::size t n)
throw(std::bad_alloc);
void *operator new(std::size_t n,
const std::nothrow t&) throw();
void *operator new(std::size_t n, void *p) throw();
void *operator new[](std::size_t n)
throw(std::bad_alloc);
void *operator new[](std::size_t n,
const std::nothrow _t&) throw();
void *operator new[](std::size_t n, void *p) throw();

Include the standard header <new> to define several types and functions that
control allocation and freeing of storage under program control.

Some of the functions declared in this header are replaceable. The implementation
supplies a default version, whose behavior is described in this document. A
program can, however, define a function with the same signature to replace the
default version at link time. The replacement version must satisfy the requirements
described in this document.

bad_alloc

class bad_alloc : public exception {

}s

164 Standard C++ Library

The class describes an exception thrown to indicate that an allocation request did
not succeed. The value returned by what () is an implementation-defined C string.
None of the member functions throw any exceptions.

new_handler
typedef void (*new_handler)();

The type points to a function suitable for use as a new handler (page [166).

nothrow

extern const nothrow_t nothrow;

The object is used as a function argument to match the parameter type nothrow_t
(page [165).

nothrow t

class nothrow t {};

The class is used as a function parameter to operator new to indicate that the
function should return a null pointer to report an allocation failure, rather than
throw an exception.

operator delete

void operator delete(void *p) throw();
void operator delete(void *, void *) throw();
void operator delete(void *p,

const std::nothrow t&) throw();

The first function is called by a delete expression to render the value of p invalid.
The program can define a function with this function signature that replaces (page
the default version defined by the Standard C++ library. The required
behavior is to accept a value of p that is null or that was returned by an earlier call
to operator new(size_t).

The default behavior for a null value of p is to do nothing. Any other value of p
must be a value returned earlier by a call as described above. The default behavior
for such a non-null value of p is to reclaim storage allocated by the earlier call. It is
unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call to operator new(size_t), or to any of calloc(size_t),
malloc(size_ t), or realloc(void*, size_ t).

The second function is called by a placement delete expression corresponding to
a new expression of the form new(std::size_t). It does nothing.

The third function is called by a placement delete expression corresponding to a
new expression of the form new(std::size_t, const std::nothrow_t&). It calls
delete(p).

operator delete[]

void operator delete[] (void *p) throw();
void operator delete[](void *, void *) throw();
void operator delete[] (void =*p,

const std::nothrow t&) throw();

Chapter 12. Standard C++ Library Header Files 165

166

The first function is called by a delete[] expression to render the value of p
invalid. The program can define a function with this function signature that
replaces (page the default version defined by the Standard C++ library.

The required behavior is to accept a value of p that is null or that was returned by
an earlier call to operator new[] (size_t).

The default behavior for a null value of p is to do nothing. Any other value of ptr
must be a value returned earlier by a call as described above. The default behavior
for such a non-null value of p is to reclaim storage allocated by the earlier call. It is
unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call to operator new(size_t), or to any of calloc(size_t),
malloc(size_t), or realloc(void*, size t).

The second function is called by a placement delete[] expression corresponding
to a new[] expression of the form new[] (std::size_t). It does nothing.

The third function is called by a placement delete expression corresponding to a
new[] expression of the form new[] (std::size_t, const std::nothrow_t&). It calls
delete[] (p).

operator new

void *operator new(std::size_t n) throw(bad_alloc);
void *operator new(std::size t n,

const std::nothrow_t&) throw();
void *operator new(std::size_t n, void *p) throw();

The first function is called by a new expression to allocate n bytes of storage
suitably aligned to represent any object of that size. The program can define a
function with this function signature that replaces (page the default version
defined by the Standard C++ library.

The required behavior is to return a non-null pointer only if storage can be
allocated as requested. Each such allocation yields a pointer to storage disjoint
from any other allocated storage. The order and contiguity of storage allocated by
successive calls is unspecified. The initial stored value is unspecified. The returned
pointer points to the start (lowest byte address) of the allocated storage. If n is
zero, the value returned does not compare equal to any other value returned by
the function.

The default behavior is to execute a loop. Within the loop, the function first
attempts to allocate the requested storage. Whether the attempt involves a call to
malloc(size_t) is unspecified. If the attempt is successful, the function returns a
pointer to the allocated storage. Otherwise, the function calls the designated new
handler. If the called function returns, the loop repeats. The loop terminates when
an attempt to allocate the requested storage is successful or when a called function
does not return.

The required behavior of a new handler is to perform one of the following
operations:

* make more storage available for allocation and then return
 call either abort() or exit(int)
* throw an object of type bad_alloc

Standard C++ Library

The default behavior of a new handler is to throw an object of type bad_alloc. A
null pointer designates the default new handler.

The order and contiguity of storage allocated by successive calls to operator
new(size_t) is unspecified, as are the initial values stored there.

The second function:

void *operator new(std::size_t n,
const std::nothrow_t&) throw();

is called by a placement new expression to allocate n bytes of storage suitably
aligned to represent any object of that size. The program can define a function
with this function signature that replaces (page the default version defined by
the Standard C++ library.

The default behavior is to return operator new(n) if that function succeeds.
Otherwise, it returns a null pointer.

The third function:

void *operator new(std::size_t n, void *p) throw();

is called by a placement new expression, of the form new (args) T. Here, args
consists of a single object pointer. The function returns p.

operator new(]

void *operator new[](std::size_t n)
throw(std::bad _alloc);
void *operator new[](std::size_t n,
const std::nothrow_t&) throw();
void *operator new[](std::size_t n, void *p) throw();

The first function is called by a new[] expression to allocate n bytes of storage
suitably aligned to represent any array object of that size or smaller. The program
can define a function with this function signature that replaces (page the
default version defined by the Standard C++ library.

The required behavior is the same as for operator new(size_t). The default
behavior is to return operator new(n).

The second function is called by a placement new[] expression to allocate n bytes
of storage suitably aligned to represent any array object of that size. The program
can define a function with this function signature that replaces (page the
default version defined by the Standard C++ library.

The default behavior is to return operator new(n) if that function succeeds.
Otherwise, it returns a null pointer.

The third function is called by a placement new[] expression, of the form new
(args) T[N]. Here, args consists of a single object pointer. The function returns p.

set_new_handler

new_handler set_new_handler(new_handler ph) throw();

Chapter 12. Standard C++ Library Header Files 167

The function stores ph in a static new handler (page [166) pointer that it maintains,
then returns the value previously stored in the pointer. The new handler is used by
operator new(size t).

<ostream>

namespace std {

template<class E, class T = char_traits<gE> >
class basic_ostream;

typedef basic_ostream<char, char_traits<char> >
ostream;

typedef basic_ostream<wchar_t, char_traits<wchar_t> >
wostream;

// INSERTERS
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
const E *s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
Ec);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const char *s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
char ¢);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const signed char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
signed char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const unsigned char =s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
unsigned char c);

// MANIPULATORS
template class<E, T>
basic_ostream<E, T>&
endl(basic_ostream<kE, T>& 0s);
template class<E, T>
basic_ostream<E, T>&
ends(basic_ostream<E, T>& o0s);

168 Standard C++ Library

template class<E, T>
basic_ostream<E, T>&
flush(basic_ostream<kE, T>& os);
}s

Include the iostreams (page IZ) standard header <ostream> to define template class
basic_ostream (page , which mediates insertions for the iostreams. The header
also defines several related manipulators (page . (This header is typically
included for you by another of the iostreams headers. You seldom have occasion to
include it directly.)

basic_ostream

basic_ostream (p - flush (
osfx (page [172 b put (page
(page [172) - write (page 17

temp]ate <class E, class T =

class basic_ostream
: virtual public basic_ios<k, T> {

- operator<< (page

- opfx (page
seekp (page - sentry (page - tellp

ae
iz

char_traits<E> >

pubTic:
typedef typename
typedef typename
typedef typename

basic_ios<E,
basic_ios<E,

T>::char_type char_type;
T>::traits_type traits_type;
basic_ios<E, T>::int_type int_type;
typedef typename basic_ios<E, T>::pos_type pos_type;
typedef typename basic_ios<E, T>::off _type off type;
explicit basic_ostream(basic_streambuf<k, T> *sb);
class sentry;
virtual ~ostream();
bool opfx();
void osfx();
basic_ostream& operator<<(

basic_ostream& (*pf)(basic_ostreamd));
basic_ostream& operator<<(

ios_base;& (*pf)(ios_based));
basic_ostream& operator<<(

basic_ios<k, T>& (*pf)(basic_ios<E, T>&));
basic_ostream& operator<<(

basic_streambuf<k, T> =*sb);

basic_ostream&
basic_ostream&
basic_ostreamé
basic_ostream&
basic_ostreamé
basic_ostream&
basic_ostreamé
basic_ostream&
basic_ostream&
basic_ostreamé
basic_ostream&
basic_ostreamé
basic_ostream&
basic_ostreamé

operator<<(bool n);
operator<<(short n);
operator<<(unsigned short n);
operator<<(int n);
operator<<(unsigned int n);
operator<<(long n);
operator<<(unsigned long n);
operator<<(float n);
operator<<(double n);
operator<<(long double n);
operator<<(const void *n);
put(char_type c);
write(char_type *s, streamsize n);
flush();

pos_type tellp();

basic_ostream&
basic_ostreamé

seekp (pos_type pos);
seekp (off_type off,

jos_base::seek_dir way);
1

The template class describes an object that controls insertion of elements and
encoded objects into a stream buffer (page with elements of type E, also
known as char_type (page , whose character traits (page are determined by
the class T, also known as traits_type (page .

Chapter 12. Standard C++ Library Header Files 169

Most of the member functions that overload operator<< (page [170) are formatted
output functions. They follow the pattern:

iostate state = goodbit;
const sentry ok(*this);
if (ok)
{try
{<convert and insert elements
accumulate flags in state>}
catch (...)
{try
{setstate(badbit); }
catch (...)
{}
if ((exceptions() & badbit) != 0)
throw; }}
width(0); // except for operator<<(E)
setstate(state);
return (*this);

Two other member functions are unformatted output functions. They follow the
pattern:

iostate state = goodbit;
const sentry ok(*this);
if ('ok)
state |= badbit;
else
{try
{<obtain and insert elements
accumulate flags in state>}
catch (...)
{try
{setstate(badbit); }
catch (...)

{1
if ((exceptions() & badbit) != 0)
throw; }}
setstate(state);
return (*this);

Both groups of functions call setstate(badbit) if they encounter a failure while
inserting elements.

An object of class basic_istream<E, T> stores only a virtual public base object of
class basic_ios<E, T> (page

basic_ostream::basic_ostream
explicit basic_ostream(basic_streambuf<k, T> *sb);

The constructor initializes the base class by calling init(sb).

basic_ostream::flush
basic_ostream& flush();

If rdbuf() is not a null pointer, the function calls rdbuf ()->pubsync(). If that
returns -1, the function calls setstate(badbit). It returns *this.

basic_ostream::operator<<

basic_ostream& operator<<(

basic_ostream& (*pf)(basic_ostreamd));
basic_ostreamé& operator<<(

jos_base& (*pf)(ios_based));
basic_ostreamd operator<<(

170 Standard C++ Library

basic_ios<E, T>& (*pf)(basic_ios<E, T>&));

basic_ostream&

operator<<(

basic_streambuf<k, T> =*sb);

basic_ostream&
basic_ostream&
basic_ostreamd
basic_ostreamé
basic_ostream&
basic_ostream&
basic_ostreamd
basic_ostream&
basic_ostream&
basic_ostream&
basic_ostreamé

operator<<(bool n);
operator<<(short n);
operator<<(unsigned short n);
operator<<(int n);
operator<<(unsigned int n);
operator<<(long n);
operator<<(unsigned long n);
operator<<(float n);
operator<<(double n);
operator<<(long double n);
operator<<(const void #*n);

The first member function ensures that an expression of the form ostr << end]
calls end1 (ostr), then returns *this. The second and third functions ensure that
other manipulators (page , such as hex (page [93) behave similarly. The
remaining functions are all formatted output functions (page .

The function:
basic_ostreamd

operator<<(

basic_streambuf<kE, T> *sbh);

extracts elements from sb, if sb is not a null pointer, and inserts them. Extraction

stops on end-of-file, or if an extraction throws an exception (which is rethrown). It
also stops, without extracting the element in question, if an insertion fails. If the
function inserts no elements, or if an extraction throws an exception, the function
calls setstate(failbit). In any case, the function returns *this

The function:
basic_ostream& operator<<(bool n);

converts n to a boolean field and inserts it by calling use_facet<num_put<E,
OutIt>(getloc()). put(OutIt(rdbuf()), *this, getloc(), n). Here, Outlt is
defined as ostreambuf_iterator<kE, T>. The function returns *this.

The functions:

basic_ostream&
basic_ostream&
basic_ostream&
basic_ostream&
basic_ostream&
basic_ostreamd
basic_ostream&

operator<<(short n);
operator<<(unsigned short n);
operator<<(int n);
operator<<(unsigned int n);
operator<<(long n);
operator<<(unsigned long n);
operator<<(const void =n);

each convert n to a numeric field and insert it by calling use_facet<num_put<E,
OutIt>(getloc()). put(OutIt(rdbuf()), *this, getloc(), n). Here, Outlt is
defined as ostreambuf_iterator<k, T>.

The function returns *this.

The functions:

basic_ostream& operator<<(float n);
basic_ostream& operator<<(double n);
basic_ostream& operator<<(long double n);

Chapter 12. Standard C++ Library Header Files 171

172

each convert n to a numeric field and insert it by calling use_facet<num_put<E,
OutIt>(getloc()). put(OutIt(rdbuf()), *this, getloc(), n). Here, Outlt is
defined as ostreambuf_iterator<k, T>. The function returns *this.

basic_ostream::opfx
bool opfx();

If good() is true, and tie() is not a null pointer, the member function calls
tie->flush(). It returns good().

You should not call opfx directly. It is called as needed by an object of class sentry
(page [172).

basic_ostream::osfx
void osfx();

If flags() & unitbuf is nonzero, the member function calls flush(). You should
not call osfx directly. It is called as needed by an object of class sentry.

basic_ostream::put
basic_ostream& put(char_type c);

The unformatted output function (page [L70) inserts the element c. It returns *this.

basic_ostream::seekp

basic_ostream& seekp(pos_type pos);
basic_ostream& seekp(off_type off,
jos_base::seek_dir way);

If fail() is false, the first member function calls rdbuf ()-> pubseekpos (pos). If
fail() is false, the second function calls rdbuf()-> pubseekoff(off, way). Both
functions return *this.

basic_ostream::sentry

class sentry {
pubTic:
explicit sentry(basic_ostream<kE, T>& os);
operator bool() const;
private:
sentry(const sentry&); // not defined
sentry& operator=(const sentry&); // not defined

}s

The nested class describes an object whose declaration structures the formatted
output functions (page and the unformatted output functions (page . The
constructor effectively calls os.opfx() and stores the return value. operator bool ()
delivers this return value. The destructor effectively calls os.o0sfx(), but only if
uncaught_exception() returns false.

basic_ostream::tellp
pos_type tellp();

If fail() is false, the member function returns rdbuf()-> pubseekoff (0, cur, in).
Otherwise, it returns pos_type(-1).

basic_ostream::write
basic_ostream& write(const char_type *s, streamsize n);

Standard C++ Library

The unformatted output function (page [L70) inserts the sequence of n elements
beginning at s.

endl
template class<E, T>
basic_ostream<kE, T>& endl(basic_ostream<E, T>& o0s);
The manipulator calls os.put(os. widen(’\n’)), then calls os.flush(). It returns
0S.
ends

template class<E, T>
basic_ostream<kE, T>& ends(basic_ostream<E, T>& o0s);

The manipulator calls os.put(E(’\0’)). It returns os.

flush

template class<E, T>
basic_ostream<kE, T>& flush(basic_ostream<kE, T>& os);

The manipulator calls os.flush(). It returns os.

operator<<

template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
const E *s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
Ec);
template<class E, class T>
basic_ostream<kE, T>&
operator<<(basic_ostream<E, T>& os,
const char *s);
template<class E, class T>
basic_ostream<kE, T>&
operator<<(basic_ostream<E, T>& os,
char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const char =*s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const signed char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
signed char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const unsigned char *s);

Chapter 12. Standard C++ Library Header Files

173

174

template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
unsigned char c);

The template function:
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
const E *s);

is a formatted output functions (page that determines the length n =
traits_type::Tength(s) of the sequence beginning at s, and inserts the sequence.
If n < os.width(), then the function also inserts a repetition of os.width() - n fill
characters (page . The repetition precedes the sequence if (os.flags() &
adjustfield != left. Otherwise, the repetition follows the sequence. The function
returns os.

The template function:
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
Ec)s

inserts the element c. If 1 < os.width(), then the function also inserts a repetition
of os.width() - 1 fill characters (page . The repetition precedes the sequence if
(os.flags() & adjustfield != left. Otherwise, the repetition follows the
sequence. It returns os.

The template function:

template<class E, class T>
basic_ostream<k, T>&
operator<<(basic_ostream<kE, T>& os,
const char #s);

behaves the same as:

template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
const E *s);

except that each element c of the sequence beginning at s is converted to an object
of type E by calling os.put(os. widen(c)).

The template function:

template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
char c);

behaves the same as:

template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
Ec);

except that c is converted to an object of type E by calling os.put(os. widen(c)).

The template function:

Standard C++ Library

template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const char *s);

behaves the same as:
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const E *s);

(It does not have to widen the elements before inserting them.)

The template function:

template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
char c);

behaves the same as:

template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
Ec);

(It does not have to widen ¢ before inserting it.)

The template function:

template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const signed char *s);

returns 0s << (const char *)s.

The template function:

template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
signed char c);

returns os << (char)c.

The template function:

template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const unsigned char *s);

returns 0s << (const char =)s.

The template function:

template<class T>
basic_ostream<char, T>&

operator<<(basic_ostream<char, T>& os,
unsigned char c);

returns os << (char)c.

Chapter 12. Standard C++ Library Header Files

175

ostream

typedef basic_ostream<char, char_traits<char> > ostream;

The type is a synonym for template class basic_ostream (page [169), specialized for
elements of type char with default character traits (page D11)).

wostream

typedef basic_ostream<wchar_t, char_traits<wchar_t> >
wostream;

The type is a synonym for template class basic_ostream (page [169), specialized for
elements of type wchar_t with default character traits (page [211).

<sstream>

namespace std {
template<class E,

class T = char_traits<k>,

class A = allocator<E> >

class basic_stringbuf;
typedef basic_stringbuf<char> stringbuf;
typedef basic_stringbuf<wchar_t> wstringbuf;
template<class E,

class T = char_traits<E>,

class A = allocator<kE> >

class basic_istringstream;
typedef basic_istringstream<char> istringstream;
typedef basic_istringstream<wchar_t> wistringstream;
template<class E,

class T = char_traits<k>,

class A = allocator<E> >

class basic_ostringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
template<class E,

class T = char_traits<kE>,

class A = allocator<kE> >

class basic_stringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;

}s

Include the iostreams (page ﬂ) standard header <sstream> to define several
template classes that support iostreams operations on sequences stored in an
allocated array object. Such sequences are easily converted to and from objects of

template class basic_string (page .

basic_stringbuf

template <class E,
class T = char_traits<k>,
class A = allocator<kE> >
class basic_stringbuf
: public basic_streambuf<k, T> {
public:
typedef typename basic_streambuf<E, T>::char_type
char_type;
typedef typename basic_streambuf<E, T>::traits_type
traits_type;
typedef typename basic_streambuf<E, T>::int_type
int_type;
typedef typename basic_streambuf<E, T>::pos_type

176 Standard C++ Library

pos_type;
typedef typename basic_streambuf<E, T>::off_type
off_type;
basic_stringbuf(ios_base::openmode mode =
ios_base::in | ios_base::out);
basic_stringbuf(basic_string<E, T, A>& X,
ios_base::openmode mode =
ios_base::in | ios_base::out);
basic_string<k, T, A> str() const;
void str(basic_string<k, T, A>& X);
protected:
virtual pos_type seekoff(off_type off,
ios_base::seekdir way,
ios_base::openmode mode =
ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp,
ios_base::openmode mode =
ios_base::in | ios_base::out);
virtual int_type underflow();
virtual int_type pbackfail(int_type c =
traits_type::eof());
virtual int_type overflow(int type c =
traits_type::eof());
bs

The template class describes a stream buffer (page that controls the
transmission of elements of type E, whose character traits (page are
determined by the class T, to and from a sequence of elements stored in an array
object. The object is allocated, extended, and freed as necessary to accommodate
changes in the sequence.

An object of class basic_stringbuf<k, T, A> stores a copy of the
ios_base::openmode argument from its constructor as its stringbuf mode mode:

* If mode & ios_base::in is nonzero, the input buffer (page 187) is accessible.
« If mode & ios_base::out is nonzero, the output buffer (page [187) is accessible.

basic_stringbuf::basic_stringbuf
basic_stringbuf(ios_base::openmode mode =
ios_base::in | ios_base::out);
basic_stringbuf(basic_string<k, T, A>& x,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The first constructor stores a null pointer in all the pointers controlling the input
buffer (page [187) and the output buffer (page [187). It also stores mode as the
stringbuf mode (page [L77).

The second constructor allocates a copy of the sequence controlled by the string
object x. If mode & ios_base::in is nonzero, it sets the input buffer to begin
reading at the start of the sequence. If mode & ios_base::out is nonzero, it sets the
output buffer to begin writing at the start of the sequence. It also stores mode as the
stringbuf mode (page .

basic_stringbuf::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

Chapter 12. Standard C++ Library Header Files 177

basic_stringbuf::int_type
typedef typename traits_type::int_type int_type;

The type is a synonym for traits_type::int_type.

basic_stringbuf::off_type
typedef typename traits_type::off_type off_type;

The type is a synonym for traits_type::off_type.

basic_stringbuf::overflow

virtual int_type overflow(int_type c =
traits_type::eof());

If ¢ does not compare equal to traits_type::eof(), the protected virtual member
function endeavors to insert the element traits_type::to _char _type(c) into the
output buffer (page[187). It can do so in various ways:

* If a write position (page is available, it can store the element into the write
position and increment the next pointer for the output buffer.

* It can make a write position available by allocating new or additional storage for
the output buffer. (Extending the output buffer this way also extends any
associated input buffer (page [187).)

If the function cannot succeed, it returns traits_type::eof(). Otherwise, it returns
traits_type::not_eof(c).

basic_stringbuf::pbackfail

virtual int_type pbackfail(int_type c =
traits_type::eof());

The protected virtual member function endeavors to put back an element into the
input buffer (page , then make it the current element (pointed to by the next
pointer). If ¢ compares equal to traits_type::eof(), the element to push back is
effectively the one already in the stream before the current element. Otherwise,
that element is replaced by x = traits_type::to_char_type(c). The function can
put back an element in various ways:

* If a putback position (page is available, and the element stored there
compares equal to x, it can simply decrement the next pointer for the input
buffer.

 If a putback position is available, and if the stringbuf mode (page permits
the sequence to be altered (mode & io0s_base::out is nonzero), it can store x into
the putback position and decrement the next pointer for the input buffer.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
traits_type::not_eof(c).

basic_stringbuf::pos_type
typedef typename traits_type::pos_type pos_type;

The type is a synonym for traits_type::pos_type.

basic_stringbuf::seekoff
virtual pos_type seekoff(off type off,
ios_base::seekdir way,
ios_base::openmode mode =
ios_base::in | ios_base::out);

178 Standard C++ Library

The protected virtual member function endeavors to alter the current positions for
the controlled streams. For an object of class basic_stringbuf<kE, T, A>, a stream

position consists purely of a stream offset. Offset zero designates the first element
of the controlled sequence.

The new position is determined as follows:

» If way == ios_base::beg, the new position is the beginning of the stream plus
off.

e If way == ios_base::cur, the new position is the current stream position plus
off.

* If way == ios_base::end, the new position is the end of the stream plus off.

If mode & ios_base::in is nonzero, the function alters the next position to read in
the input buffer. If mode & ios_base::out is nonzero, the function alters the next
position to write in the output buffer. For a stream to be affected, its buffer must
exist. For a positioning operation to succeed, the resulting stream position must lie
within the controlled sequence. If the function affects both stream positions, way
must be ios_base::beg or ios_base::end and both streams are positioned at the
same element. Otherwise (or if neither position is affected) the positioning
operation fails.

If the function succeeds in altering the stream position(s), it returns the resultant
stream position. Otherwise, it fails and returns an invalid stream position.

basic_stringbuf::seekpos

virtual pos_type seekpos(pos_type sp,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for
the controlled streams. For an object of class basic_stringbuf<k, T, A>, a stream

position consists purely of a stream offset. Offset zero designates the first element
of the controlled sequence. The new position is determined by sp.

If mode & ios_base::in is nonzero, the function alters the next position to read in
the input buffer. If mode & ios_base::out is nonzero, the function alters the next
position to write in the output buffer. For a stream to be affected, its buffer must
exist. For a positioning operation to succeed, the resulting stream position must lie
within the controlled sequence. Otherwise (or if neither position is affected) the
positioning operation fails.

If the function succeeds in altering the stream position(s), it returns the resultant
stream position. Otherwise, it fails and returns an invalid stream position.

basic_stringbuf::str

basic_string<k, T, A> str() const;
void str(basic_string<k, T, A>& x);

The first member function returns an object of class basic_string<k, T, A>, whose
controlled sequence is a copy of the sequence controlled by *this. The sequence
copied depends on the stored stringbuf mode (page [177) mode:

* If mode & ios_base::out is nonzero and an output buffer exists, the sequence is
the entire output buffer (epptr() - pbase() elements beginning with pbase()).

Chapter 12. Standard C++ Library Header Files 179

180

* Otherwise, if mode & ios_base::1in is nonzero and an input buffer exists, the
sequence is the entire input buffer (egptr() - eback() elements beginning with
eback()).

* Otherwise, the copied sequence is empty.

The second member function deallocates any sequence currently controlled by
*this. It then allocates a copy of the sequence controlled by x. If mode &
ios_base::in is nonzero, it sets the input buffer to begin reading at the beginning
of the sequence. If mode & ios_base::out is nonzero, it sets the output buffer to
begin writing at the beginning of the sequence.

basic_stringbuf::traits_type
typedef T traits_type;

The type is a synonym for the template parameter T.

basic_stringbuf::underflow
virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c
from the input buffer, then advance the current stream position, and return the
element as traits type::to_int_type(c). It can do so in only one way: If a read
position (page is available, it takes c as the element stored in the read position
and advances the next pointer for the input buffer.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
the current element in the input stream, converted as described above.

basic_istringstream

template <class E,
class T = char_traits<k>,
class A = allocator<k> >
class basic_istringstream
: public basic_istream<k, T> {
public:
explicit basic_istringstream(
jos_base::openmode mode = ios_base::in);
explicit basic_istringstream(
const basic_string<E, T, A>& x,
jos_base::openmode mode = ios_base::in);
basic_stringbuf<k, T, A> *rdbuf() const;
basic_string<k, T, A>& str();
void str(const basic_string<k, T, A>& x);

}s

The template class describes an object that controls extraction of elements and
encoded objects from a stream buffer of class basic_stringbuf<k, T, A>, with
elements of type E, whose character traits (page are determined by the class T,
and whose elements are allocated by an allocator of class A. The object stores an
object of class basic_stringbuf<k, T, A>.

basic_istringstream::basic_istringstream

explicit basic_istringstream(
jos_base::openmode mode = jos_base::in);
explicit basic_istringstream(
const basic_string<kE, T, A>& x,
jos_base::openmode mode = ios_base::in);

Standard C++ Library

The first constructor initializes the base class by calling basic_istream(sb), where
sb is the stored object of class basic_stringbuf<E, T, A>. It also initializes sb by
calling basic_stringbuf<E, T, A>(mode | ios_base::in).

The second constructor initializes the base class by calling basic_istream(sb). It
also initializes sb by calling basic_stringbuf<E, T, A>(x, mode | ios_base::in).

basic_istringstream::rdbuf
basic_stringbuf<k, T, A> *rdbuf() const

The member function returns the address of the stored stream bulffer, of type
pointer to basic_stringbuf<E, T, A>.

basic_istringstream::str

basic_string<E, T, A> str() const;
void str(basic_string<k, T, A>& x);

The first member function returns rdbuf()-> str(). The second member function
calls rdbuf()-> str(x).

basic_ostringstream

template <class E,
class T = char_traits<E>,
class A = allocator<g> >
class basic_ostringstream
: public basic_ostream<k, T> {
public:
explicit basic_ostringstream(
jos_base::openmode mode = ios_base::out);
explicit basic_ostringstream(
const basic_string<k, T, A>& X,
jos_base::openmode mode = ios_base::out);
basic_stringbuf<k, T, A> *rdbuf() const;
basic_string<k, T, A>& str();
void str(const basic_string<k, T, A>& x);

}s

The template class describes an object that controls insertion of elements and
encoded objects into a stream buffer of class basic_stringbuf<k, T, A>, with
elements of type E, whose character traits (page are determined by the class T,
and whose elements are allocated by an allocator of class A. The object stores an
object of class basic_stringbuf<k, T, A>.

basic_ostringstream::basic_ostringstream

explicit basic_ostringstream(
jos_base::openmode mode = ios_base::out);
explicit basic_ostringstream(
const basic_string<E, T, A>& x,
jos_base::openmode mode = jos_base::out);

The first constructor initializes the base class by calling basic_ostream(sb), where
sb is the stored object of class basic_stringbuf<E, T, A>. It also initializes sb by
calling basic_stringbuf<E, T, A>(mode | ios_base::out).

The second constructor initializes the base class by calling basic_ostream(sb). It
also initializes sb by calling basic_stringbuf<E, T, A>(x, mode | ios_base::out).

basic_ostringstream::rdbuf
basic_stringbuf<k, T, A> *rdbuf() const

Chapter 12. Standard C++ Library Header Files 181

182

The member function returns the address of the stored stream bulffer, of type
pointer to basic_stringbuf<kE, T, A>.

basic_ostringstream::str

basic_string<k, T, A> str() const;
void str(basic_string<k, T, A>& x);

The first member function returns rdbuf()-> str(). The second member function
calls rdbuf()-> str(x).

basic_stringstream

template <class E,
class T = char_traits<k>,
class A = allocator<kE> >
class basic_stringstream
: public basic_iostream<k, T> {
public:
explicit basic_stringstream(
ios_base::openmode mode =
ios_base::in | ios_base::out);
explicit basic_stringstream(
const basic_string<E, T, A>& x,
ios_base::openmode mode =
ios_base::in | ios_base::out);
basic_stringbuf<k, T, A> *rdbuf() const;
basic_string<E, T, A>& str();
void str(const basic_string<k, T, A>& x);

1

The template class describes an object that controls insertion and extraction of
elements and encoded objects using a stream buffer of class basic_stringbuf<k,

T, A>, with elements of type E, whose character traits (page are determined by
the class T, and whose elements are allocated by an allocator of class A. The object
stores an object of class basic_stringbuf<k, T, A>.

basic_stringstream::basic_stringstream

explicit basic_stringstream(
ios_base::openmode mode =
ios_base::in | jos_base::out);
explicit basic_stringstream(
const basic_string<kE, T, A>& x,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The first constructor initializes the base class by calling basic_iostream(sb), where
sb is the stored object of class basic_stringbuf<kE, T, A>. It also initializes sb by
calling basic_stringbuf<k, T, A>(mode).

The second constructor initializes the base class by calling basic_ostream(sb). It
also initializes sb by calling basic_stringbuf<E, T, A>(x, mode).

basic_stringstream::rdbuf
basic_stringbuf<k, T, A> *rdbuf() const

The member function returns the address of the stored stream bulffer, of type
pointer to basic_stringbuf<kE, T, A>.

basic_stringstream::str

basic_string<k, T, A> str() const;
void str(basic_string<E, T, A>& x);

Standard C++ Library

The first member function returns rdbuf()-> str(). The second member function
calls rdbuf()-> str(x).

istringstream

typedef basic_istringstream<char> istringstream;

The type is a synonym for template class basic_istringstream (page [L80),
specialized for elements of type char.

ostringstream

typedef basic_ostringstream<char> ostringstream;

The type is a synonym for template class basic_ostringstream (page [181),
specialized for elements of type char.

stringbuf

typedef basic_stringbuf<char> stringbuf;

The type is a synonym for template class basic_stringbuf (page [176), specialized for
elements of type char.

stringstream

typedef basic_stringstream<char> stringstream;

The type is a synonym for template class basic_stringstream, specialized for
elements of type char.

wistringstream

typedef basic_istringstream<wchar_t> wistringstream;

The type is a synonym for template class basic_istringstream, specialized for
elements of type wchar_t.

wostringstream

typedef basic_ostringstream<wchar_t> wostringstream;

The type is a synonym for template class basic_ostringstream, specialized for
elements of type wchar_t.

wstringbuf

typedef basic_stringbuf<wchar_t> wstringbuf;

The type is a synonym for template class basic_stringbuf, specialized for elements
of type wchar_t.

wstringstream

typedef basic_stringstream<wchar_t> wstringstream;

The type is a synonym for template class basic_stringstream, specialized for
elements of type wchar_t.

Chapter 12. Standard C++ Library Header Files 183

<stdexcept>

namespace std {

class Tlogic_error;
class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;
class underflow_error;

}s

Include the standard header <stdexcept> to define several classes used for
reporting exceptions. The classes form a derivation hierarchy, as indicated by the
indenting above, all derived from class exception (page .

domain_error

class domain_error : public Togic_error {
public:
domain_error(const string& what_arg);

}s

The class serves as the base class for all exceptions thrown to report a domain
error. The value returned by what () is a copy of what_arg.data().

invalid_argument

class invalid_argument : public Togic_error {
public:
invalid_argument(const string& what_arg);

}s

The class serves as the base class for all exceptions thrown to report an invalid
argument. The value returned by what () is a copy of what_arg.data().

length_error

class length_error : public Togic_error {
public:
length_error(const string& what_arg);

bs

The class serves as the base class for all exceptions thrown to report an attempt to
generate an object too long to be specified. The value returned by what() is a copy
of what_arg.data().

logic_error

class logic_error : public exception {
public:
logic_error(const string& what_arg);

}s

The class serves as the base class for all exceptions thrown to report errors
presumably detectable before the program executes, such as violations of logical
preconditions. The value returned by what () is a copy of what_arg.data().

184 Standard C++ Library

out_of_range
class out_of_range : public Togic_error {
pubTic:
out_of range(const string& what_arg);

The class serves as the base class for all exceptions thrown to report an argument
that is out of its valid range. The value returned by what() is a copy of
what_arg.data().

overflow_error

class overflow_error : public runtime_error {
pubTic:
overflow_error(const string& what_arg);

1

The class serves as the base class for all exceptions thrown to report an arithmetic
overflow. The value returned by what () is a copy of what_arg.data().

range_error

class range_error : public runtime_error {
pubTic:
range_error(const string& what_arg);

B

The class serves as the base class for all exceptions thrown to report a range error.
The value returned by what() is a copy of what_arg.data().

runtime_error

class runtime_error : public exception {
pubTic:
runtime_error(const string& what_arg);

1

The class serves as the base class for all exceptions thrown to report errors
presumably detectable only when the program executes. The value returned by
what () is a copy of what_arg.data().

underflow _error

class underflow_error : public runtime_error {
public:
underflow_error(const string& what_arg);

s

The class serves as the base class for all exceptions thrown to report an arithmetic
underflow. The value returned by what () is a copy of what_arg.data().

<streambuf>

namespace std {

template<class E, class T = char_traits<gE> >
class basic_streambuf;

typedef basic_streambuf<char, char_traits<char> >
streambuf;

typedef basic_streambuf<wchar_t,
char_traits<wchar_t> > wstreambuf;

s

Chapter 12. Standard C++ Library Header Files 185

186

Include the iostreams (page [7) standard header <streambuf> to define template
h

class basic_streambuf (page

86), which is basic to the operation of the iostreams

classes. (This header is typically included for you by another of the iostreams
headers. You seldom have occasion to include it directly.)

basic_streambuf

- epptr (pa

imbue (page
overflow (page

ge [188]

189) -

basic_streambuf (page - char_typ age

i - gbump (paei
- in_avail (page (18
- pbackfail (a e - pbase (page |190)

- eback (page [188) - egptr (page
getloc (page [189) - ptr (page 189) -

mt_type (page [189) - off_type (page [189) -
- pbump (page [190) -

pos_type (page [190) pptr (age publmbue (age 190) - pubseekoff (page
i pubseeki (page pubsetbuf (page pubs nc (pageu

sbumpc (pa

- seekoff (

- setp (pa
snextc (page [192)
- stossc (page (193]
- uflow (page |193)

template <class E, class T =
class basic_streambuf {
pubTic:
typedef E char_type;
typedef T traits_type;

typedef typename traits_type::
typedef typename traits_type:
typedef typename traits_type:

page |191
. sgetc (page |19
- sputbackc (pa
- sungetc (page |
- underflow (page [194]

pos (page |19

- setbuf (page

) - sgetn (page 192) - showmanyc
- sputc (page [193) - sputn

- sync (page [193) - traits_type

- xsgetn (page - xsputn

- seek

char_traits<g> >

int_type int_type;

:pos_type pos_type;
:off_type off_type;

virtual ~streambuf();

locale pubimbue(const locale& loc);

locale getloc() const;

basic_streambuf *pubsetbuf(char_type *s,
streamsize n);

pos_type pubseekoff(off type off,
ios_base::seekdir way,
ios_base::openmode which =

ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,

ios_base::openmode which =
ios_base::in | ios_base::out);

int pubsync();

streamsize in_avail();

int_type snextc();

int_type sbumpc();

int_type sgetc();

void stossc(); // OPTIONAL

streamsize sgetn(char_type *s, streamsize n);

int_type sputbackc(char_type c);

int_type sungetc();

int_type sputc(char_type c);

streamsize sputn(const char_type *s, streamsize

protected:

basic_streambuf();

char_type *eback() const;

char_type *gptr() const;

char_type *egptr() const;

void gbump(int n);

void setg(char_type *gbeg,
char_type *gnext, char_type *gend);

char_type *pbase() const;

char_type *pptr() const;

char_type *epptr() const;

void pbump(int n);

void setp(char_type *pbeg, char_type *pend);

virtual void imbue(const Tocale &loc);

n);

Standard C++ Library

virtual basic_streambuf xsetbuf(char_type =*s,
streamsize n);

virtual pos_type seekoff(off type off,
ios_base::seekdir way,
jos_base::openmode which =

ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp,

ios_base::openmode which =
ios_base::in | ios_base::out);

virtual int sync();

virtual streamsize showmanyc();

virtual streamsize xsgetn(char_type =*s,
streamsize n);

virtual int_type underflow();

virtual int_type uflow();

virtual int_type pbackfail(int_type c =
traits_type::eof());

virtual streamsize xsputn(const char_type =*s,
streamsize n);

virtual int_type overflow(int_type c =
traits_type::eof());

}s

The template class describes an abstract base class for deriving a stream buffer,
which controls the transmission of elements to and from a specific representation
of a stream. An object of class basic_streambuf helps control a stream with
elements of type T, also known as char_type (page , whose character traits
(page are determined by the class char_traits (page , also known as

traits_type (page [193).

Every stream buffer conceptually controls two independent streams, in fact, one for
extractions (input) and one for insertions (output). A specific representation may;,
however, make either or both of these streams inaccessible. It typically maintains
some relationship between the two streams. What you insert into the output
stream of a basic_stringbuf<kE, T> object, for example, is what you later extract
from its input stream. And when you position one stream of a basic_filebuf<E,

T> (page object, you position the other stream in tandem.

The public interface to template class basic_streambuf (page supplies the
operations common to all stream buffers, however specialized. The protected
interface supplies the operations needed for a specific representation of a stream to
do its work. The protected virtual member functions let you tailor the behavior of
a derived stream buffer for a specific representation of a stream. Each of the
derived stream buffers in this library describes how it specializes the behavior of
its protected virtual member functions. Documented here is the default behavior
for the base class, which is often to do nothing.

The remaining protected member functions control copying to and from any
storage supplied to buffer transmissions to and from streams. An input buffer, for
example, is characterized by:

+ eback() (page|[188), a pointer to the beginning of the buffer
+ gptr() (pagell89), a pointer to the next element to read
* egptr() (page , a pointer just past the end of the buffer

Similarly, an output buffer is characterized by:

* pbase() (page , a pointer to the beginning of the buffer
* pptr() (page , a pointer to the next element to write

* epptr() (page , a pointer just past the end of the buffer

Chapter 12. Standard C++ Library Header Files 187

188

For any buffer, the protocol is:

* If the next pointer is null, no buffer exists. Otherwise, all three pointers point
into the same sequence. (They can be safely compared for order.)

* For an output buffer, if the next pointer compares less than the end pointer, you
can store an element at the write position designated by the next pointer.

* For an input buffer, if the next pointer compares less than the end pointer, you
can read an element at the read position designated by the next pointer.

* For an input buffer, if the beginning pointer compares less than the next pointer,
you can put back an element at the putback position designated by the
decremented next pointer.

Any protected virtual member functions you write for a class derived from
basic_streambuf<E, T> must cooperate in maintaining this protocol.

An object of class basic_streambuf<E, T> stores the six pointers described above. It
also stores a locale object (page [135) in an object of type locale (page [134) for
potential use by a derived stream buffer.

basic_streambuf::basic_streambuf
basic_streambuf();

The protected constructor stores a null pointer in all the pointers controlling the

input buffer (page|187) and the output buffer (page [L87). It also stores
lTocale::classic() in the locale object (page[135).

basic_streambuf::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

basic_streambuf::eback
char_type *eback() const;

The member function returns a pointer to the beginning of the input buffer (page

[i57).

basic_streambuf::egptr
char_type *egptr() const;

The member function returns a pointer just past the end of the input buffer (page

187).

basic_streambuf::epptr
char_type *epptr() const;

The member function returns a pointer just past the end of the output buffer (page

[187).

basic_streambuf::gbump
void gbump(int n);

The member function adds n to the next pointer for the input buffer (page [187).

Standard C++ Library

basic_streambuf::getloc
locale getloc() const;

The member function returns the stored locale object.

basic_streambuf::gptr
char_type *gptr() const;

The member function returns a pointer to the next element of the input buffer

(page [187).

basic_streambuf::imbue
virtual void imbue(const locale &loc);

The default behavior is to do nothing.

basic_streambuf::in_avail
streamsize in_avail();

If a read position (page 188) is available, the member function returns egptr() -
gptr(). Otherwise, it returns showmanyc ().

basic_streambuf::int_type
typedef typename traits_type::int_type int_type;

The type is a synonym for traits_type::int_type.

basic_streambuf::off_type
typedef typename traits_type::off_type off_type;

The type is a synonym for traits_type::off_type.

basic_streambuf::overflow

virtual int_type overflow(int_type c =
traits_type::eof());

If ¢ does not compare equal to traits_type::eof(), the protected virtual member
function endeavors to insert the element traits_type:: to_char type(c) into the
output stream. It can do so in various ways:

« If a write position (page [L88) is available, it can store the element into the write
position and increment the next pointer for the output buffer (page [187).

* It can make a write position available by allocating new or additional storage for
the output buffer.

* It can make a write position available by writing out, to some external
destination, some or all of the elements between the beginning and next pointers
for the output buffer.

If the function cannot succeed, it returns traits_type::eof() or throws an
exception. Otherwise, it returns traits_type::not_eof(c). The default behavior is
to return traits_type::eof().

basic_streambuf::pbackfail

virtual int_type pbackfail(int_type c =
traits_type::eof());

Chapter 12. Standard C++ Library Header Files 189

190

The protected virtual member function endeavors to put back an element into the
input stream, then make it the current element (pointed to by the next pointer). If ¢
compares equal to traits_type::eof(), the element to push back is effectively the
one already in the stream before the current element. Otherwise, that element is
replaced by traits_type::to_char_type(c). The function can put back an element
in various ways:

« If a putback position (page [188) is available, it can store the element into the
putback position and decrement the next pointer for the input buffer (page [187).

* It can make a putback position available by allocating new or additional storage
for the input buffer.

* For a stream buffer with common input and output streams, it can make a
putback position available by writing out, to some external destination, some or

all of the elements between the beginning and next pointers for the output
buffer.

If the function cannot succeed, it returns traits_type::eof () or throws an
exception. Otherwise, it returns some other value. The default behavior is to return
traits_type::eof().

basic_streambuf::pbase
char_type *pbase() const;

The member function returns a pointer to the beginning of the output buffer (page

187).

basic_streambuf::pbump
void pbump(int n);

The member function adds n to the next pointer for the output buffer (page [187).

basic_streambuf::pos_type
typedef typename traits_type::pos_type pos_type;

The type is a synonym for traits_type::pos_type.

basic_streambuf::pptr
char_type *pptr() const;

The member function returns a pointer to the next element of the output buffer.

basic_streambuf::pubimbue
locale pubimbue(const locale& loc);

The member function stores loc in the locale object, calls imbue(), then returns the
previous value stored in the locale object.

basic_streambuf::pubseekoff
pos_type pubseekoff(off type off,
ios_base::seekdir way,
ios_base::openmode which =
ios_base::in | ios_base::out);

The member function returns seekoff(off, way, which).

Standard C++ Library

basic_streambuf::pubseekpos

pos_type pubseekpos(pos_type sp,
ios_base::openmode which =
ios_base::in | ios_base::out);

The member function returns seekpos(sp, which).

basic_streambuf::pubsetbuf
basic_streambuf *pubsetbuf(char_type *s, streamsize n);

The member function returns stbuf(s, n).

basic_streambuf::pubsync
int pubsync();

The member function returns sync().

basic_streambuf::sbumpc
int_type sbumpc();

If a read position (page is available, the member function returns
traits_type::to_int_type(*gptr()) and increments the next pointer for the input
buffer. Otherwise, it returns uflow().

basic_streambuf::seekoff

virtual pos_type seekoff(off_type off,
ios_base::seekdir way,
ios_base::openmode which =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for
the controlled streams. The new position is determined as follows:

» If way == ios_base::beg, the new position is the beginning of the stream plus
off.

» If way == ios_base::cur, the new position is the current stream position plus
off.

* If way == ios_base::end, the new position is the end of the stream plus off.

Typically, if which & ios_base::in is nonzero, the input stream is affected, and if
which & fos_base::out is nonzero, the output stream is affected. Actual use of this
parameter varies among derived stream buffers, however.

If the function succeeds in altering the stream position(s), it returns the resultant
stream position (or one of them). Otherwise, it returns an invalid stream position.
The default behavior is to return an invalid stream position.

basic_streambuf::seekpos

virtual pos_type seekpos(pos_type sp,
ios_base::openmode which =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for
the controlled streams. The new position is sp.

Typically, if which & ios_base::in is nonzero, the input stream is affected, and if
which & ios_base::out is nonzero, the output stream is affected. Actual use of this
parameter varies among derived stream buffers, however.

Chapter 12. Standard C++ Library Header Files 191

192

If the function succeeds in altering the stream position(s), it returns the resultant
stream position (or one of them). Otherwise, it returns an invalid stream position.
The default behavior is to return an invalid stream position.

basic_streambuf::setbuf

virtual basic_streambuf *setbuf(char_type *s,
streamsize n);

The protected virtual member function performs an operation peculiar to each
derived stream bulffer. (See, for example, basic_filebuf (page) The default
behavior is to return this.

basic_streambuf::setg

void setg(char_type *gbeg, char_type *gnext,
char_type *gend);

The member function stores gheg in the beginning pointer, gnext in the next
pointer, and gend in the end pointer for the input buffer (page [187).

basic_streambuf::setp
void setp(char_type *pbeg, char_type *pend);

The member function stores pbeg in the beginning pointer, pbeg in the next pointer,
and pend in the end pointer for the output buffer (page 187).

basic_streambuf::sgetc
int_type sgetc();

If a read position (page [188) is available, the member function returns
traits_type::to_int_type(*gptr()) Otherwise, it returns underflow().

basic_streambuf::sgetn
streamsize sgetn(char_type *s, streamsize n);

The member function returns xsgetn(s, n).

basic_streambuf::showmanyc
virtual streamsize showmanyc();

The protected virtual member function returns a count of the number of characters
that can be extracted from the input stream with no fear that the program will
suffer an indefinite wait. The default behavior is to return zero.

basic_streambuf::snextc
int_type snextc();

The member function calls shumpc() and, if that function returns
traits_type::eof(), returns traits_type::eof(). Otherwise, it returns sgetc().

basic_streambuf::sputbackc
int_type sputbackc(char_type c);

If a putback position (page is available and ¢ compares equal to the character
stored in that position, the member function decrements the next pointer for the
input buffer and returns ch, which is the value traits_type::to_int_type(c).
Otherwise, it returns pbackfail(ch).

Standard C++ Library

basic_streambuf::sputc
int_type sputc(char_type c);

If a write position (page [188) is available, the member function stores ¢ in the write
position, increments the next pointer for the output buffer, and returns ch, which is
the value traits_type::to_int_type(c). Otherwise, it returns overflow(ch).

basic_streambuf::sputn
streamsize sputn(const char_type *s, streamsize n);

The member function returns xsputn(s, n).

basic_streambuf::stossc
void stossc(); // OPTIONAL

The member function calls sbumpc(). Note that an implementation is not required
to supply this member function.

basic_streambuf::sungetc
int_type sungetc();

If a putback position (page [L88) is available, the member function decrements the
next pointer for the input buffer and returns traits_type::to_int_type(*gptr()).
Otherwise it returns pbackfail().

basic_streambuf::sync
virtual int sync();

The protected virtual member function endeavors to synchronize the controlled
streams with any associated external streams. Typically, this involves writing out
any elements between the beginning and next pointers for the output buffer. It
does not involve putting back any elements between the next and end pointers for
the input buffer. If the function cannot succeed, it returns -1. The default behavior
is to return zero.

basic_streambuf::traits_type
typedef T traits_type;

The type is a synonym for the template parameter T.

basic_streambuf::uflow
virtual int_type uflow();

The protected virtual member function endeavors to extract the current element c
from the input stream, then advance the current stream position, and return the
element as traits_type::to_int_type(c). It can do so in various ways:

« If a read position (page [188) is available, it takes c as the element stored in the
read position and advances the next pointer for the input buffer.

* It can read an element directly, from some external source, and deliver it as the
value c.

* For a stream buffer with common input and output streams, it can make a read
position available by writing out, to some external destination, some or all of the
elements between the beginning and next pointers for the output buffer. Or it
can allocate new or additional storage for the input buffer. The function then
reads in, from some external source, one or more elements.

Chapter 12. Standard C++ Library Header Files 193

If the function cannot succeed, it returns traits_type::eof(), or throws an
exception. Otherwise, it returns the current element c in the input stream,
converted as described above, and advances the next pointer for the input buffer.
The default behavior is to call underflow() and, if that function returns
traits_type::eof(), to return traits_type::eof (). Otherwise, the function returns
the current element c in the input stream, converted as described above, and
advances the next pointer for the input buffer.

basic_streambuf::underflow
virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c

from the input stream, without advancing the current stream position, and return

it as traits_type::to_int_type(c). It can do so in various ways:

« If a read position (page|188) is available, c is the element stored in the read
position.

* It can make a read position available by allocating new or additional storage for
the input buffer, then reading in, from some external source, one or more
elements.

If the function cannot succeed, it returns traits_type::eof(), or throws an
exception. Otherwise, it returns the current element in the input stream, converted
as described above. The default behavior is to return traits_type::eof().

basic_streambuf::xsgetn
virtual streamsize xsgetn(char_type *s, streamsize n);

The protected virtual member function extracts up to n elements from the input
stream, as if by repeated calls to sbumpc (page [191), and stores them in the array
beginning at s. It returns the number of elements actually extracted.

basic_streambuf::xsputn

virtual streamsize xsputn(const char_type *s,
streamsize n);

The protected virtual member function inserts up to n elements into the output
stream, as if by repeated calls to sputc (page[193), from the array beginning at s. It
returns the number of elements actually inserted.

streambuf

typedef basic_streambuf<char, char_traits<char> >
streambuf;

The type is a synonym for template class basic_streambuf, specialized for elements
of type char with default character traits (page [211).

wstreambuf

typedef basic_streambuf<wchar_t, char_traits<wchar_t> >
wstreambuf;

The type is a synonym for template class basic_streambuf, specialized for elements
of type wchar_t with default character traits (page .

194 Standard C++ Library

<string>

basic_string (page - char_traits (page [210) - char_traits<char> (pa

ge [213) -
char_traits<wchar_t> (page [213) - getline (age - operator+ (Eage 214) -

operator!= (page - operator== (page [215) - operator< (page

operator> (page [216) - operator>= (page [216) -
- swap (page [217) - wstring (page [217)

(page - operator<= (page .
operator>> (page - string (page
namespace std {
template<class E>

class char_traits;
template<>

class char_traits<char>;
template<>

class char_traits<wchar_t>;
template<class E,

class T = char_traits<k>,

class A = allocator<kE> >

class basic_string;
typedef basic_string<char> string;

typedef basic_string>wchar_t> wstring;

// TEMPLATE FUNCTIONS
template<class E, class T, class A>
basic_string<kE, T, A> operator+(
const basic_string<E, T, A>&
const basic_string<E, T, A>&
template<class E, class T, class A>
basic_string<E, T, A> operator+(
const basic_string<E, T, A>&
const E *rhs);
template<class E, class T, class A>
basic_string<kE, T, A> operator+(
const basic_string<E, T, A>&
E rhs);
template<class E, class T, class A>
basic_string<kE, T, A> operator+(
const E *lh