

Table	of	Contents
Preface

Introduction	to	C

Variables	and	types

Constants

Operators

Conditionals

Loops

Arrays

Strings

Pointers

Functions

Input	and	output

Variables	scope

Static	variables

Global	variables

Type	definitions

Enumerated	Types

Structures

Command	line	parameters

Header	files

The	preprocessor

Conclusion

2

Preface
The	C	Programming	Handbook	follows	the	80/20	rule:	learn	in	20%	of	the	time
the	80%	of	a	topic.

I	find	this	approach	gives	a	well-rounded	overview.

This	 book	 does	 not	 try	 to	 cover	 everything	 under	 the	 sun	 related	 to	 C.	 It
focuses	 on	 the	 core	 of	 the	 language,	 trying	 to	 simplify	 the	 more	 complex
topics.

I	hope	the	contents	of	this	book	will	help	you	achieve	what	you	want:	learn	the
basics	of	C.

This	book	is	written	by	Flavio.	I	publish	programming	tutorials	every	day	on
my	website	flaviocopes.com.

You	can	reach	me	on	Twitter	@flaviocopes.

Enjoy!

3

https://flaviocopes.com
https://twitter.com/flaviocopes

Introduction	to	C
C	is	probably	the	most	widely	known	programming	language.	It	is	used	as	the
reference	 language	 for	computer	science	courses	all	over	 the	world,	and	 it's
probably	the	language	that	people	learn	the	most	in	school	among	with	Python
and	Java.

I	remember	it	being	my	second	programming	language	ever,	after	Pascal.

C	 is	 not	 just	 what	 students	 use	 to	 learn	 programming.	 It's	 not	 an	 academic
language.	And	I	would	say	it's	not	the	easiest	language,	because	C	is	a	rather
low	level	programming	language.

Today,	 C	 is	 widely	 used	 in	 embedded	 devices,	 and	 it	 powers	 most	 of	 the
Internet	servers,	which	are	built	using	Linux.	The	Linux	kernel	is	built	using	C,
and	this	also	means	that	C	powers	the	core	of	all	Android	devices.	We	can	say
that	 C	 code	 runs	 a	 good	 portion	 of	 the	 entire	 world.	 Right	 now.	 Pretty
remarkable.

When	it	was	created,	C	was	considered	a	high	level	language,	because	it	was
portable	across	machines.	Today	we	kind	of	give	for	granted	that	we	can	run	a
program	 written	 on	 a	 Mac	 on	Windows	 or	 Linux,	 perhaps	 using	 Node.js	 or
Python.	Once	upon	a	time,	this	was	not	the	case	at	all.	What	C	brought	to	the
table	was	 a	 language	 simple	 to	 implement,	 having	 a	 compiler	 that	 could	 be
easily	ported	to	different	machines.

I	said	compiler:	C	is	a	compiled	programming	language,	like	Go,	Java,	Swift	or
Rust.	Other	 popular	 programming	 language	 like	Python,	Ruby	 or	 JavaScript
are	interpreted.	The	difference	is	consistent:	a	compiled	language	generates	a
binary	file	that	can	be	directly	executed	and	distributed.

C	 is	 not	 garbage	 collected.	 This	 means	 we	 have	 to	 manage	 memory
ourselves.	 It's	 a	 complex	 task	 and	 one	 that	 requires	 a	 lot	 of	 attention	 to
prevent	 bugs,	 but	 it	 is	 also	 what	 makes	 C	 ideal	 to	 write	 programs	 for
embedded	devices	like	Arduino.

4

C	 does	 not	 hide	 the	 complexity	 and	 the	 capabilities	 of	 the	 machine
underneath.	You	have	a	lot	of	power,	once	you	know	what	you	can	do.

I	want	to	introduce	the	first	C	program	now,	which	we'll	call	"Hello,	World!"

hello.c

#include	<stdio.h>

int	main(void)	{

				printf("Hello,	World!");

}

Let's	describe	the	program	source	code:	we	first	import	the		stdio		library	(the
name	stands	for	standard	input-output	library).

This	library	gives	us	access	to	input/output	functions.

C	is	a	very	small	language	at	its	core,	and	anything	that's	not	part	of	the	core
is	 provided	 by	 libraries.	 Some	 of	 those	 libraries	 are	 built	 by	 normal
programmers,	and	made	available	for	others	to	use.	Some	other	libraries	are
built	into	the	compiler.	Like		stdio		and	others.

	stdio		is	the	libraries	that	provides	the		printf()		function.

This	function	is	wrapped	into	a	 	main()		function.	The	 	main()		function	is	the
entry	point	of	any	C	program.

But	what	is	a	function,	anyway?

A	function	is	a	routine	that	takes	one	or	more	arguments,	and	returns	a	single
value.

In	 the	 case	 of	 	main()	 ,	 the	 function	 gets	 no	 arguments,	 and	 returns	 an
integer.	We	 identify	 that	using	 the	 	void		keyword	 for	 the	argument,	and	 the
	int		keyword	for	the	return	value.

The	function	has	a	body,	which	is	wrapped	in	curly	braces,	and	inside	the	body
we	have	all	the	code	that	the	function	needs	to	perform	its	operations.

5

The	 	printf()		function	is	written	differently,	as	you	can	see.	It	has	no	return
value	 defined,	 and	 we	 pass	 a	 string,	 wrapped	 in	 double	 quotes.	 We	 didn't
specify	the	type	of	the	argument.

That's	 because	 this	 is	 a	 function	 invocation.	 Somewhere,	 inside	 the	 	stdio	
library,		printf		is	defined	as

int	printf(const	char	*format,	...);

You	don't	 need	 to	understand	what	 this	means	now,	but	 in	 short,	 this	 is	 the
definition	 and	 when	 we	 call	 	printf("Hello,	 World!");	 ,	 that's	 where	 the
function	is	ran.

The		main()		function	we	defined	above:

#include	<stdio.h>

int	main(void)	{

				printf("Hello,	World!");

}

will	be	ran	by	the	operating	system	when	the	program	is	executed.

How	do	we	execute	a	C	program?

As	mentioned,	C	 is	 a	 compiled	 language.	 To	 run	 the	 program	we	must	 first
compile	 it.	 Any	 Linux	 or	macOS	computer	 already	 comes	with	 a	C	 compiler
built-in.	For	Windows,	you	can	use	the	Windows	Subsystem	for	Linux	(WSL).

In	any	case,	when	you	open	the	terminal	window	you	can	type	 	gcc	,	and	this
command	should	return	you	an	error	saying	that	you	didn't	specify	any	file:

6

That's	good.	It	means	the	C	compiler	is	there,	and	we	can	start	using	it.

Now	type	the	program	above	into	a	 	hello.c		file.	You	can	use	any	editor,	but
for	 the	sake	of	 simplicity	 I'm	going	 to	use	 the	 	nano		editor	 in	 the	command
line:

Type	the	program:

7

Now	press		ctrl-X		to	exit:

Confirm	by	pressing	the		y		key,	then	press	enter	to	confirm	the	file	name:

8

That's	it,	we	should	be	back	to	the	terminal	now:

Now	type

gcc	hello.c	-o	hello

The	program	should	give	you	no	errors:

9

but	it	should	have	generated	a		hello		executable.	Now	type

./hello

to	run	it:

I	prepend		./		to	the	program	name,	to	tell	the	terminal	that	the	command
is	in	the	current	folder

Awesome!

Now	if	you	call	 	ls	-al	hello	,	you	can	see	that	the	program	is	only	12KB	in
size:

10

This	 is	one	of	 the	pros	of	C:	 it's	highly	optimized,	and	 this	 is	also	one	of	 the
reasons	it's	this	good	for	embedded	devices	that	have	a	very	limited	amount	of
resources.

11

Variables	and	types
C	is	a	statically	typed	language.

This	means	that	any	variable	has	an	associated	type,	and	this	type	is	known	at
compilation	time.

This	is	very	different	than	how	you	work	with	variables	in	Python,	JavaScript,
PHP	and	other	interpreted	languages.

When	you	create	a	variable	in	C,	you	have	to	specify	the	type	of	a	variable	at
the	declaration.

In	this	example	we	initialize	a	variable		age		with	type		int	:

int	age;

A	variable	name	can	contain	any	uppercase	or	 lowercase	 letter,	can	contain
digits	 and	 the	underscore	 character,	 but	 it	 can't	 start	with	 a	 digit.	 	AGE	 	 and
	Age10		are	valid	variable	names,		1age		is	not.

You	can	also	initialize	a	variable	at	declaration,	specifying	the	initial	value:

int	age	=	37;

Once	you	declare	a	variable,	you	are	then	able	to	use	it	in	your	program	code,
and	you	can	change	its	value	at	any	time,	using	the	 	=		operator	for	example,
like	in		age	=	100;	,	provided	the	new	value	is	of	the	same	type.

In	this	case:

#include	<stdio.h>

int	main(void)	{

				int	age	=	0;

				age	=	37.2;

				printf("%u",	age);

12

}

the	compiler	will	raise	a	warning	at	compile	time,	and	will	convert	the	decimal
number	to	an	integer	value.

The	C	built-in	data	types	are	 	int	,	 	char	,	 	short	,	 	long	,	 	float	,	 	double	,
	long	double	.	Let's	find	out	more	about	those.

Integer	numbers
C	provides	us	the	following	types	to	define	integer	values:

	char	

	int	

	short	

	long	

Most	of	 the	 times,	you'll	 likely	use	an	 	int		 to	store	an	 integer.	But	 in	some
cases,	you	might	want	to	choose	one	of	the	other	3	options.

The		char		type	is	commonly	used	to	store	letters	of	the	ASCII	chart,	but	it	can
be	used	to	hold	small	integers	from		-128		to		127	.	It	takes	at	least	1	byte.

	int		 takes	at	 least	2	bytes.	 	short		 takes	at	 least	2	bytes.	 	long		 takes	 at
least	4	bytes.

As	 you	 can	 see,	 we	 are	 not	 guaranteed	 the	 same	 values	 for	 different
environments.	 We	 only	 have	 an	 indication.	 The	 problem	 is	 that	 the	 exact
numbers	that	can	be	stored	in	each	data	type	depends	on	the	implementation
and	the	architecture.

We're	guaranteed	that	 	short		is	not	longer	than	 	int	.	And	we're	guaranteed
	long		is	not	shorter	than		int	.

The	ANSI	C	spec	standard	determines	the	minimum	values	of	each	type,	and
thanks	to	it	we	can	at	least	know	what's	the	minimum	value	we	can	expect	to
have	at	our	disposal.

13

If	 you	 are	 programming	C	 on	 an	 Arduino,	 different	 board	 will	 have	 different
limits.

On	an	Arduino	Uno	board,	 	int		stores	a	2	byte	value,	ranging	from	 	-32,768	
to	 	32,767	.	On	a	Arduino	MKR	1010,	 	int		stores	a	4	bytes	value,	 ranging
from		-2,147,483,648		to		2,147,483,647	.	Quite	a	big	difference.

On	all	Arduino	boards,	 	short		stores	a	2	bytes	value,	ranging	from	 	-32,768	
to	 	 32,767	 .	 	 long	 	 store	 4	 bytes,	 ranging	 from	 	 -2,147,483,648	 	 to
	2,147,483,647	.

Unsigned	integers
For	all	the	above	data	types,	we	can	prepend	 	unsigned		to	start	the	range	at
0,	instead	of	a	negative	number.	This	might	make	sense	in	many	cases.

	unsigned	char		will	range	from		0		to	at	least		255	
	unsigned	int		will	range	from		0		to	at	least		65,535	
	unsigned	short		will	range	from		0		to	at	least		65,535	
	unsigned	long		will	range	from		0		to	at	least		4,294,967,295	

The	problem	with	overflow
Given	all	those	limits,	a	question	might	come	up:	how	can	we	make	sure	our
numbers	do	not	exceed	the	limit?	And	what	happens	it	we	do	exceed	the	limit?

If	you	have	an	 	unsigned	int		number	at	255,	and	you	increment	it,	you'll	get
256	in	return.	As	expected.	If	you	have	a	 	unsigned	char		number	at	255,	and
you	increment	it,	you'll	get	0	in	return.	It	resets	starting	from	the	initial	possible
value.

If	you	have	a	 	unsigned	char		number	at	255	and	you	add	10	 to	 it,	you'll	get
the	number		9	:

#include	<stdio.h>

14

int	main(void)	{

		unsigned	char	j	=	255;

		j	=	j	+	10;

		printf("%u",	j);	/*	9	*/

}

If	you	have	a	signed	value,	the	behavior	is	undefined.	It	will	basically	give	you
a	huge	number	which	can	vary,	like	in	this	case:

#include	<stdio.h>

int	main(void)	{

		char	j	=	127;

		j	=	j	+	10;

		printf("%u",	j);	/*	4294967177	*/

}

In	other	words,	C	does	not	protect	you	from	going	over	the	limits	of	a	type.	You
need	to	take	care	of	this	yourself.

Warnings	when	declaring	the	wrong
type
When	you	declare	the	variable	and	initialize	it	with	the	wrong	value,	the	 	gcc	
compiler	(the	one	you're	probably	using)	should	warn	you:

#include	<stdio.h>

int	main(void)	{

		char	j	=	1000;

}

hello.c:4:11:	warning:	implicit	conversion	

		from	'int'	to

						'char'	changes	value	from	1000	to	-24

15

						[-Wconstant-conversion]

								char	j	=	1000;

													~			^~~~

1	warning	generated.

And	it	also	warns	you	in	direct	assignments:

#include	<stdio.h>

int	main(void)	{

		char	j;

		j	=	1000;

}

But	not	if	you	increase	the	number	using	for	example		+=	:

#include	<stdio.h>

int	main(void)	{

		char	j	=	0;

		j	+=	1000;

}

Floating	point	numbers
Floating	point	 types	can	 represent	a	much	 larger	set	of	values	 than	 integers
can,	and	can	also	represent	fractions,	something	that	integers	can't	do.

Using	 floating	 point	 numbers,	 we	 represent	 numbers	 as	 decimal	 numbers
times	powers	of	10.

You	might	see	floating	point	numbers	written	as

	1.29e-3	

	-2.3e+5	

and	in	other	seemingly	weird	ways.

16

The	following	types:

	float	

	double	

	long	double	

are	used	 to	 represent	 numbers	with	decimal	 points	 (floating	point	 types).	All
can	represent	both	positive	and	negative	numbers.

The	 minimum	 requirements	 for	 any	 C	 implementation	 is	 that	 	float	 	 can
represent	a	range	between	10^-37	and	10^+37,	and	 is	 typically	 implemented
using	32	bits.	 	double		can	represent	a	bigger	set	of	numbers.	 	long	double	
can	hold	even	more	numbers.

The	exact	figures,	as	with	integer	values,	depend	on	the	implementation.

On	a	modern	Mac,	a	 	float		is	represented	in	32	bits,	and	has	a	precision	of
24	significant	bits,	8	bits	are	used	to	encode	the	exponent.	A	 	double		number
is	represented	in	64	bits,	with	a	precision	of	53	significant	bits,	11	bits	are	used
to	encode	the	exponent.	The	type	 	long	double		is	represented	in	80	bits,	has
a	precision	of	64	significant	bits,	15	bits	are	used	to	encode	the	exponent.

On	 your	 specific	 computer,	 how	 can	 you	 determine	 the	 specific	 size	 of	 the
types?	You	can	write	a	program	to	do	that:

#include	<stdio.h>

int	main(void)	{

		printf("char	size:	%lu	bytes\n",	sizeof(char));

		printf("int	size:	%lu	bytes\n",	sizeof(int));

		printf("short	size:	%lu	bytes\n",	sizeof(short));

		printf("long	size:	%lu	bytes\n",	sizeof(long));

		printf("float	size:	%lu	bytes\n",	sizeof(float));

		printf("double	size:	%lu	bytes\n",	

				sizeof(double));

		printf("long	double	size:	%lu	bytes\n",	

				sizeof(long	double));

}

In	my	system,	a	modern	Mac,	it	prints:

17

char	size:	1	bytes

int	size:	4	bytes

short	size:	2	bytes

long	size:	8	bytes

float	size:	4	bytes

double	size:	8	bytes

long	double	size:	16	bytes

18

Constants
Let's	now	talk	about	constants.

A	 constant	 is	 declared	 similarly	 to	 variables,	 except	 it	 is	 prepended	with	 the
	const		keyword,	and	you	always	need	to	specify	a	value.

Like	this:

const	int	age	=	37;

This	 is	 perfectly	 valid	 C,	 although	 it	 is	 common	 to	 declare	 constants
uppercase,	like	this:

const	int	AGE	=	37;

It's	just	a	convention,	but	one	that	can	greatly	help	you	while	reading	or	writing
a	 C	 program	 as	 it	 improves	 readability.	 Uppercase	 name	 means	 constant,
lowercase	name	means	variable.

A	constant	name	follows	the	same	rules	for	variable	names:	can	contain	any
uppercase	 or	 lowercase	 letter,	 can	 contain	 digits	 and	 the	 underscore
character,	 but	 it	 can't	 start	with	a	digit.	 	AGE		 and	 	Age10		 are	 valid	 variable
names,		1AGE		is	not.

Another	way	to	define	constants	is	by	using	this	syntax:

#define	AGE	37

In	 this	 case,	 you	don't	 need	 to	add	a	 type,	and	you	don't	 also	need	 the	 	=	
equal	sign,	and	you	omit	the	semicolon	at	the	end.

The	C	compiler	will	infer	the	type	from	the	value	specified,	at	compile	time.

19

20

Operators
C	offers	us	a	wide	variety	of	operators	that	we	can	use	to	operate	on	data.

In	particular,	we	can	identify	various	groups	of	operators:

arithmetic	operators
comparison	operators
logical	operators
compound	assignment	operators
bitwise	operators
pointer	operators
structure	operators
miscellaneous	operators

In	 this	section	I'm	going	to	detail	all	of	 them,	using	2	 imaginary	variables	 	a	
and		b		as	examples.

I	am	keeping	bitwise	operators,	structure	operators	and	pointer	operators
out	of	this	list,	to	keep	things	simpler

Arithmetic	operators
In	 this	 macro	 group	 I	 am	 going	 to	 separate	 binary	 operators	 and	 unary
operators.

Binary	operators	work	using	two	operands:

Operator Name Example

	=	 Assignment 	a	=	b	

	+	 Addition 	a	+	b	

	-	 Subtraction 	a	-	b	

	*	 Multiplication 	a	*	b	

	/	 Division 	a	/	b	

21

	%	 Modulo 	a	%	b	

Unary	operators	only	take	one	operand:

Operator Name Example

	+	 Unary	plus 	+a	

	-	 Unary	minus 	-a	

	++	 Increment 	a++		or		++a	

	--	 Decrement 	a--		or		--a	

The	 difference	 between	 	a++	 	 and	 	++a	 	 is	 that	 	a++	 	 increments	 the	 	a	
variable	after	using	it.		++a		increments	the		a		variable	before	using	it.

For	example:

int	a	=	2;

int	b;

b	=	a++	/*	b	is	2,	a	is	3	*/

b	=	++a	/*	b	is	4,	a	is	4	*/

The	same	applies	to	the	decrement	operator.

Comparison	operators

Operator Name Example

	==	 Equal	operator 	a	==	b	

	!=	 Not	equal	operator 	a	!=	b	

	>	 Bigger	than 	a	>	b	

	<	 Less	than 	a	<	b	

	>=	 Bigger	than	or	equal	to 	a	>=	b	

	<=	 Less	than	or	equal	to 	a	<=	b	

22

Logical	operators
	!		NOT	(example:		!a)
	&&		AND	(example:		a	&&	b)
	||		OR	(example:		a	||	b)

Those	operators	are	great	when	working	with	boolean	values.

Compound	assignment	operators
Those	operators	 are	useful	 to	 perform	an	assignment	 and	at	 the	 same	 time
perform	an	arithmetic	operation:

Operator Name Example

	+=	 Addition	assignment 	a	+=	b	

	-=	 Subtraction	assignment 	a	-=	b	

	*=	 Multiplication	assignment 	a	*=	b	

	/=	 Division	assignment 	a	/=	b	

	%=	 Modulo	assignment 	a	%=	b	

Miscellaneous	operators

The	ternary	operator

The	ternary	operator	is	the	only	operator	in	C	that	works	with	3	operands,	and
it’s	a	short	way	to	express	conditionals.

This	is	how	it	looks:

<condition>	?	<expression>	:	<expression>

Example:

23

a	?	b	:	c

If		a		is	evaluated	to	 	true	,	then	the	 	b		statement	is	executed,	otherwise	 	c	
is.

The	 ternary	 operator	 is	 functionality-wise	 same	 as	 an	 if/else	 conditional,
except	it	is	shorter	to	express	and	it	can	be	inlined	into	an	expression.

sizeof

The		sizeof		operator	returns	the	size	of	the	operand	you	pass.	You	can	pass
a	variable,	or	even	a	type.

Example	usage:

#include	<stdio.h>

int	main(void)	{

		int	age	=	37;

		printf("%ld\n",	sizeof(age));

		printf("%ld",	sizeof(int));

}

Operator	precedence
With	 all	 those	 operators	 (and	 more,	 which	 I	 haven't	 covered	 in	 this	 post,
including	 bitwise,	 structure	 operators	 and	 pointer	 operators),	 we	 must	 pay
attention	when	using	them	together	in	a	single	expression.

Suppose	we	have	this	operation:

int	a	=	2;

int	b	=	4;

int	c	=	b	+	a	*	a	/	b	-	a;

24

What's	 the	 value	of	 	c	?	Do	we	 get	 the	 addition	 being	 executed	 before	 the
multiplication	and	the	division?

There	is	a	set	of	rules	that	help	us	solving	this	puzzle.

In	order	from	less	precedence	to	more	precedence,	we	have:

the		=		assignment	operator
the		+		and		-		binary	operators
the		*		and		/		operators
the		+		and		-		unary	operators

Operators	also	have	an	associativity	 rule,	which	 is	always	 left	 to	right	except
for	the	unary	operators	and	the	assignment.

In:

int	c	=	b	+	a	*	a	/	b	-	a;

We	first	execute	 	a	*	a	/	b	,	which	due	to	being	left-to-right	we	can	separate
into		a	*	a		and	the	result		/	b	:		2	*	2	=	4	,		4	/	4	=	1	.

Then	we	can	perform	the	sum	and	the	subtraction:	4	+	1	-	2.	The	value	of	 	c	
is		3	.

In	 all	 cases,	 however,	 I	 want	 to	 make	 sure	 you	 realize	 you	 can	 use
parentheses	to	make	any	similar	expression	easier	to	read	and	comprehend.

Parentheses	have	higher	priority	over	anything	else.

The	above	example	expression	can	be	rewritten	as:

int	c	=	b	+	((a	*	a)	/	b)	-	a;

and	we	don't	have	to	think	about	it	that	much.

25

26

Conditionals
Any	programming	 language	provides	 the	programmers	 the	ability	 to	 perform
choices.

We	want	to	do	X	in	some	cases,	and	Y	in	other	cases.

We	want	to	check	data,	and	do	choices	based	on	the	state	of	that	data.

C	provides	us	2	ways	to	do	so.

The	 first	 is	 the	 	if		statement,	with	 its	 	else		 helper,	and	 the	second	 is	 the
	switch		statement.

	if	

In	 an	 	if	 	 statement,	 you	 can	 check	 for	 a	 condition	 to	 be	 true,	 and	 then
execute	the	block	provided	in	the	curly	brackets:

int	a	=	1;

if	(a	==	1)	{

		/*	do	something	*/

}

You	 can	 append	 an	 	else	 	 block	 to	 execute	 a	 different	 block	 if	 the	 original
condition	turns	out	to	be	false;

int	a	=	1;

if	(a	==	2)	{

		/*	do	something	*/

}	else	{

		/*	do	something	else	*/

}

27

Beware	 one	 common	 source	 of	 bugs	 -	 always	 use	 the	 comparison	 operator
	==		in	comparisons,	and	not	the	assignment	operator	 	=	,	otherwise	the	 	if	
conditional	check	will	always	be	true,	unless	the	argument	is	 	0	,	for	example
if	you	do:

int	a	=	0;

if	(a	=	0)	{

		/*	never	invoked	*/

}

Why	does	this	happen?	Because	the	conditional	check	will	look	for	a	boolean
result	 (the	 result	of	a	comparison),	and	 the	 	0		number	always	equates	 to	a
false	value.	Everything	else	is	true,	including	negative	numbers.

You	 can	 have	 multiple	 	else	 	 blocks	 by	 stacking	 together	 multiple	 	 if	
statements:

int	a	=	1;

if	(a	==	2)	{

		/*	do	something	*/

}	else	if	(a	==	1)	{

		/*	do	something	else	*/

}	else	{

		/*	do	something	else	again	*/

}

	switch	

If	 you	need	 to	 do	 too	many	 if	 /	 else	 /	 if	 blocks	 to	 perform	a	 check,	 perhaps
because	you	need	to	check	the	exact	value	of	a	variable,	then		switch		can	be
very	useful	to	you.

You	can	provide	a	variable	as	condition,	and	a	series	of		case		entry	points	for
each	value	you	expect:

28

int	a	=	1;

switch	(a)	{

		case	0:

				/*	do	something	*/

				break;

		case	1:

				/*	do	something	else	*/

				break;

		case	2:

				/*	do	something	else	*/

				break;

}

We	need	a		break		keyword	at	the	end	of	each	case,	to	avoid	the	next	case	to
be	executed	when	the	one	before	ends.	This	"cascade"	effect	can	be	useful	in
some	creative	ways.

You	can	add	a	"catch-all"	case	at	the	end,	labeled		default	:

int	a	=	1;

switch	(a)	{

		case	0:

				/*	do	something	*/

				break;

		case	1:

				/*	do	something	else	*/

				break;

		case	2:

				/*	do	something	else	*/

				break;

		default:

				/*	handle	all	the	other	cases	*/

				break;

}

29

30

Loops
C	offers	us	three	ways	to	perform	a	loop:	for	loops,	while	loops	and	do	while
loops.	 They	 all	 allow	 you	 to	 iterate	 over	 arrays,	 but	 with	 a	 few	 differences.
Let's	see	them	in	details.

For	loops
The	first,	and	probably	most	common,	way	to	perform	a	loop	is	for	loops.

Using	the		for		keyword	we	can	define	the	rules	of	the	loop	up	front,	and	then
provide	the	block	that	is	going	to	be	executed	repeatedly.

Like	this:

for	(int	i	=	0;	i	<=	10;	i++)	{

		/*	instructions	to	be	repeated	*/

}

The		(int	i	=	0;	i	<=	10;	i++)		block	contains	3	parts	of	the	looping	details:

the	initial	condition	(int	i	=	0)
the	test	(i	<=	10)
the	increment	(i++)

We	 first	 define	 a	 loop	 variable,	 in	 this	 case	 named	 	i	 .	 	i	 	 is	 a	 common
variable	name	 to	be	used	 for	 loops,	along	with	 	j		 for	 nested	 loops	 (a	 loop
inside	another	loop).	It's	just	a	convention.

The	variable	is	initialized	at	the	0	value,	and	the	first	iteration	is	done.	Then	it
is	incremented	as	the	increment	part	says	(i++		in	this	case,	incrementing	by
1),	and	all	the	cycle	repeats	until	you	get	to	the	number	10.

Inside	 the	 loop	main	block	we	can	access	 the	variable	 	i		 to	know	at	which
iteration	we	are.	This	program	should	print		0	1	2	3	4	5	5	6	7	8	9	10	:

31

for	(int	i	=	0;	i	<=	10;	i++)	{

		/*	instructions	to	be	repeated	*/

		printf("%u	",	i);

}

Loops	can	also	start	from	a	high	number,	and	go	a	lower	number,	like	this:

for	(int	i	=	10;	i	>	0;	i--)	{

		/*	instructions	to	be	repeated	*/

}

You	can	also	increment	the	loop	variable	by	2	or	another	value:

for	(int	i	=	0;	i	<	1000;	i	=	i	+	30)	{

		/*	instructions	to	be	repeated	*/

}

While	loops
While	 loops	 is	 simpler	 to	write	 than	a	 	for		 loop,	 because	 it	 requires	 a	 bit
more	work	on	your	part.

Instead	of	defining	all	the	loop	data	up	front	when	you	start	the	loop,	like	you
do	in	the		for		loop,	using		while		you	just	check	for	a	condition:

while	(i	<	10)	{

}

This	assumes	that		i		is	already	defined	and	initialized	with	a	value.

And	this	loop	will	be	an	infinite	loop	unless	you	increment	the	 	i		variable	at
some	 point	 inside	 the	 loop.	 An	 infinite	 loop	 is	 bad	 because	 it	 will	 block	 the
program,	nothing	else	can	happen.

This	is	what	you	need	for	a	"correct"	while	loop:

32

int	i	=	0;

while	(i	<	10)	{

		/*	do	something	*/

		i++;

}

There's	 one	exception	 to	 this,	 and	we'll	 see	 it	 in	 one	minute.	Before,	 let	me
introduce		do	while	.

Do	while	loops
While	 loops	 are	 great,	 but	 there	 might	 be	 times	 when	 you	 need	 to	 do	 one
particular	thing:	you	want	to	always	execute	a	block,	and	then	maybe	repeat	it.

This	 is	done	using	 the	 	do	while		 keyword,	 in	a	way	 that's	 very	similar	 to	a
	while		loop,	but	slightly	different:

int	i	=	0;

do	{

		/*	do	something	*/

		i++;

}	while	(i	<	10);

The	block	that	contains	the		/*	do	something	*/		comment	is	always	executed
at	least	once,	regardless	of	the	condition	check	at	the	bottom.

Then,	until		i		is	less	than	10,	we'll	repeat	the	block.

Breaking	out	of	a	loop	using	 	break	

33

In	all	 the	C	 loops	we	have	a	way	to	break	out	of	a	 loop	at	any	point	 in	 time,
immediately,	regardless	of	the	conditions	set	fo	the	loop.

This	is	done	using	the		break		keyword.

This	 is	 useful	 in	 many	 cases.	 You	 might	 want	 to	 check	 for	 the	 value	 of	 a
variable,	for	example:

for	(int	i	=	0;	i	<=	10;	i++)	{

		if	(i	==	4	&&	someVariable	==	10)	{

				break;

		}

}

Having	this	option	to	break	out	of	a	 loop	 is	particularly	 interesting	for	 	while	
loops	 (and	 	do	while		 too),	 because	we	 can	 create	 seemingly	 infinite	 loops
that	end	when	a	condition	occurs,	and	you	define	this	inside	the	loop	block:

int	i	=	0;

while	(1)	{

		/*	do	something	*/

		i++;

		if	(i	==	10)	break;

}

It's	rather	common	to	have	this	kind	of	loops	in	C.

34

Arrays
An	array	is	a	variable	that	stores	multiple	values.

Every	value	in	the	array,	in	C,	must	have	the	same	type.	This	means	you	will
have	arrays	of		int		values,	arrays	of		double		values,	and	more.

You	can	define	an	array	of		int		values	like	this:

int	prices[5];

You	must	 always	 specify	 the	 size	 of	 the	 array.	C	 does	 not	 provide	 dynamic
arrays	 out	 of	 the	 box	 (you	 have	 to	 use	 a	 data	 structure	 like	 a	 linked	 list	 for
that).

You	can	use	a	constant	to	define	the	size:

const	int	SIZE	=	5;

int	prices[SIZE];

You	can	initialize	an	array	at	definition	time,	like	this:

int	prices[5]	=	{	1,	2,	3,	4,	5	};

But	you	can	also	assign	a	value	after	the	definition,	in	this	way:

int	prices[5];

prices[0]	=	1;

prices[1]	=	2;

prices[2]	=	3;

prices[3]	=	4;

prices[4]	=	5;

Or,	more	practical,	using	a	loop:

35

int	prices[5];

for	(int	i	=	0;	i	<	5;	i++)	{

		prices[i]	=	i	+	1;

}

And	you	can	reference	an	item	in	the	array	by	using	square	brackets	after	the
array	variable	name,	adding	an	integer	to	determine	the	index	value.	Like	this:

prices[0];	/*	array	item	value:	1	*/

prices[1];	/*	array	item	value:	2	*/

Array	 indexes	start	 from	0,	 so	an	array	with	5	 items,	 like	 the	 	prices		 array
above,	will	have	items	ranging	from		prices[0]		to		prices[4]	.

The	interesting	thing	about	C	arrays	is	that	all	elements	of	an	array	are	stored
sequentially,	one	right	after	another.	Not	something	that	normally	happens	with
higher-level	programming	languages.

Another	interesting	thing	is	this:	the	variable	name	of	the	array,		prices		in	the
above	example,	is	a	pointer	to	the	first	element	of	the	array,	and	as	such	can
be	used	like	a	normal	pointer.

More	on	pointers	soon.

36

Strings
In	C,	strings	are	one	special	kind	of	array:	a	string	is	an	array	of		char		values:

char	name[7];

I	 introduced	 the	 	char	 	 type	 when	 I	 introduced	 types,	 but	 in	 short	 it	 is
commonly	used	to	store	letters	of	the	ASCII	chart.

A	string	can	be	initialized	like	you	initialize	a	normal	array:

char	name[7]	=	{	"F",	"l",	"a",	"v",	"i",	"o"	};

Or	 more	 conveniently	 with	 a	 string	 literal	 (also	 called	 string	 constant),	 a
sequence	of	characters	enclosed	in	double	quotes:

char	name[7]	=	"Flavio";

You	can	print	a	string	via		printf()		using		%s	:

printf("%s",	name);

Do	you	notice	how	"Flavio"	is	6	chars	long,	but	I	defined	an	array	of	length	7?
Why?	This	 is	because	the	 last	character	 in	a	string	must	be	a	 	0		value,	 the
string	terminator,	and	we	must	make	space	for	it.

This	is	important	to	keep	in	mind	especially	when	manipulating	strings.

Speaking	of	manipulating	strings,	there's	one	important	standard	library	that	is
provided	by	C:		string.h	.

This	 library	 is	essential	because	 it	 abstracts	many	of	 the	 low	 level	details	of
working	with	strings,	and	provides	us	a	set	of	useful	functions.

You	can	load	the	library	in	your	program	by	adding	on	top:

37

#include	<stdio.h>

And	once	you	do	that,	you	have	access	to:

	strcpy()		to	copy	a	string	over	another	string
	strcat()		to	append	a	string	to	another	string
	strcmp()		to	compare	two	strings	for	equality
	strncmp()		to	compare	the	first		n		characters	of	two	strings
	strlen()		to	calculate	the	length	of	a	string

and	many,	many	more.

38

Pointers
Pointers	are	one	of	the	most	confusing/challenging	parts	of	C,	 in	my	opinion.
Especially	if	you	are	new	to	programming,	but	also	if	you	come	from	a	higher
level	programming	language	like	Python	or	JavaScript.

In	 this	section	I	want	 to	 introduce	them	in	 the	simplest	yet	not-dumbed-down
way	possible.

A	pointer	is	the	address	of	a	block	of	memory	that	contains	a	variable.

When	you	declare	an	integer	number	like	this:

int	age	=	37;

We	can	use	the	 	&		operator	 to	get	 the	value	of	 the	address	 in	memory	of	a
variable:

printf("%p",	&age);	/*	0x7ffeef7dcb9c	*/

I	used	the		%p		format	specified	in		printf()		to	print	the	address	value.

We	can	assign	the	address	to	a	variable:

int	*address	=	&age;

Using	 	int	 *address	 	 in	 the	 declaration,	 we	 are	 not	 declaring	 an	 integer
variable,	but	rather	a	pointer	to	an	integer.

We	can	use	the	pointer	operator		*		to	get	the	value	of	the	variable	an	address
is	pointing	to:

int	age	=	37;

int	*address	=	&age;

printf("%u",	*address);	/*	37	*/

39

This	 time	 we	 are	 using	 the	 pointer	 operator	 again,	 but	 since	 it's	 not	 a
declaration	this	time	it	means	"the	value	of	the	variable	this	pointer	points	to".

In	this	example	we	declare	an		age		variable,	and	we	use	a	pointer	to	initialize
the	value:

int	age;

int	*address	=	&age;

*address	=	37;

printf("%u",	*address);

When	working	 with	 C,	 you'll	 find	 that	 a	 lot	 of	 things	 are	 built	 on	 top	 of	 this
simple	concept,	so	make	sure	you	familiarize	with	it	a	bit,	by	running	the	above
examples	on	your	own.

Pointers	are	a	great	opportunity	because	they	force	us	to	think	about	memory
addresses	and	how	data	is	organized.

Arrays	are	one	example.	When	you	declare	an	array:

int	prices[3]	=	{	5,	4,	3	};

The		prices		variable	is	actually	a	pointer	to	the	first	item	of	the	array.	You	can
get	the	value	of	the	first	item	using	this		printf()		function	in	this	case:

printf("%u",	*prices);	/*	5	*/

The	cool	thing	is	that	we	can	get	the	second	item	by	adding	1	to	the	 	prices	
pointer:

printf("%u",	*(prices	+	1));	/*	4	*/

And	so	on	for	all	the	other	values.

We	 can	 also	 do	many	 nice	 string	manipulation	 operations,	 since	 strings	 are
arrays	under	the	hood.

40

We	also	have	many	more	applications,	 including	passing	the	reference	of	an
object	or	a	function	around,	to	avoid	consuming	more	resources	to	copy	it.

41

Functions
Functions	are	the	way	we	can	structure	our	code	into	subroutines	that	we	can:

1.	 give	a	name	to
2.	 call	when	we	need	them

Starting	 from	 your	 very	 first	 program,	 an	 "Hello,	 World!",	 you	 immediately
make	use	of	C	functions:

#include	<stdio.h>

int	main(void)	{

				printf("Hello,	World!");

}

The		main()		function	is	a	very	important	function,	as	it's	the	entry	point	for	a	C
program.

Here's	another	function:

void	doSomething(int	value)	{

				printf("%u",	value);

}

Functions	have	4	important	aspects:

1.	 they	have	a	name,	so	we	can	invoke	("call")	them	later
2.	 they	specify	a	return	value
3.	 they	can	have	arguments
4.	 they	have	a	body,	wrapped	in	curly	braces

The	 function	 body	 is	 the	 set	 of	 instructions	 that	 are	 executed	 any	 time	 we
invoke	a	function.

42

If	the	function	has	no	return	value,	you	can	use	the	keyword	 	void		before	the
function	name.	Otherwise	you	specify	the	function	return	value	type	(int		for
an	integer,		float		for	a	floating	point	value,		const	char	*		for	a	string,	etc).

You	cannot	return	more	than	one	value	from	a	function.

A	 function	can	have	arguments.	They	are	optional.	 If	 it	does	not	have	 them,
inside	the	parentheses	we	insert		void	,	like	this:

void	doSomething(void)	{

			/*	...	*/

}

In	 this	 case,	 when	 we	 invoke	 the	 function	 we'll	 call	 it	 with	 nothing	 in	 the
parentheses:

doSomething();

If	we	have	one	parameter,	we	specify	the	type	and	the	name	of	the	parameter,
like	this:

void	doSomething(int	value)	{

			/*	...	*/

}

When	we	 invoke	 the	 function,	we'll	 pass	 that	 parameter	 in	 the	 parentheses,
like	this:

doSomething(3);

We	can	have	multiple	parameters,	and	if	so	we	separate	them	using	a	comma,
both	in	the	declaration	and	in	the	invocation:

void	doSomething(int	value1,	int	value2)	{

			/*	...	*/

}

43

doSomething(3,	4);

Parameters	are	passed	by	copy.	This	means	 that	 if	you	modify	 	value1	,	 its
value	 is	modified	 locally,	and	 the	value	outside	of	 the	 function,	where	 it	was
passed	in	the	invocation,	does	not	change.

If	 you	 pass	 a	 pointer	 as	 a	 parameter,	 you	 can	 modify	 that	 variable	 value
because	you	can	now	access	it	directly	using	its	memory	address.

You	 can't	 define	 a	 default	 value	 for	 a	 parameter.	 C++	 can	 do	 that	 (and	 so
Arduino	Language	programs	can),	but	C	can't.

Make	sure	you	define	the	function	before	calling	it,	or	the	compiler	will	raise	a
warning	and	an	error:

➜		~	gcc	hello.c	-o	hello;	./hello
hello.c:13:3:	warning:	implicit	declaration	of

						function	'doSomething'	is	invalid	in	C99

						[-Wimplicit-function-declaration]

		doSomething(3,	4);

		^

hello.c:17:6:	error:	conflicting	types	for

						'doSomething'

void	doSomething(int	value1,	char	value2)	{

					^

hello.c:13:3:	note:	previous	implicit	declaration

						is	here

		doSomething(3,	4);

		^

1	warning	and	1	error	generated.

The	warning	you	get	regards	the	ordering,	which	I	already	mentioned.

The	error	is	about	another	thing,	related.	Since	C	does	not	"see"	the	function
declaration	before	the	invocation,	 it	must	make	assumptions.	And	it	assumes
the	 function	 to	 return	 	int	.	The	 function	however	 returns	 	void	,	hence	 the
error.

If	you	change	the	function	definition	to:

44

int	doSomething(int	value1,	int	value2)	{

		printf("%d	%d\n",	value1,	value2);

		return	1;

}

you'd	just	get	the	warning,	and	not	the	error:

➜		~	gcc	hello.c	-o	hello;	./hello
hello.c:14:3:	warning:	implicit	declaration	of

						function	'doSomething'	is	invalid	in	C99

						[-Wimplicit-function-declaration]

		doSomething(3,	4);

		^

1	warning	generated.

In	any	case,	make	sure	you	declare	the	function	before	using	it.	Either	move
the	function	up,	or	add	the	function	prototype	in	a	header	file.

Inside	a	function,	you	can	declare	variables.

void	doSomething(int	value)	{

		int	doubleValue	=	value	*	2;

}

A	variable	is	created	at	the	point	of	invocation	of	the	function,	and	is	destroyed
when	the	function	ends,	and	it's	not	visible	from	the	outside.

Inside	a	function,	you	can	call	the	function	itself.	This	is	called	recursion	and
it's	something	that	offers	peculiar	opportunities.

45

Input	and	output
C	is	a	small	 language,	and	the	"core"	of	C	does	not	include	any	Input/Output
(I/O)	functionality.

This	 is	 not	 something	 unique	 to	C,	 of	 course.	 It's	 common	 for	 the	 language
core	to	be	agnostic	of	I/O.

In	the	case	of	C,	Input/Output	is	provided	to	us	by	the	C	Standard	Library	via	a
set	of	functions	defined	in	the		stdio.h		header	file.

You	can	import	this	library	using:

#include	<stdio.h>

on	top	of	your	C	file.

This	library	provides	us,	among	many	other	functions:

	printf()	

	scanf()	

	sscanf()	

	fgets()	

	fprintf()	

Before	 describing	 what	 those	 functions	 do,	 I	 want	 to	 take	 a	 minute	 to	 talk
about	I/O	streams.

We	have	3	kinds	of	I/O	streams	in	C:

	stdin		(standard	input)
	stdout		(standard	output)
	stderr		(standard	error)

With	 I/O	 functions	 we	 always	 work	 with	 streams.	 A	 stream	 is	 a	 high	 level
interface	that	can	represent	a	device	or	a	file.	From	the	C	standpoint,	we	don't
have	any	difference	 in	reading	from	a	file	or	reading	from	the	command	 line:

46

it's	an	I/O	stream	in	any	case.

That's	one	thing	to	keep	in	mind.

Some	functions	are	designed	to	work	with	a	specific	stream,	 like	 	printf()	,
which	 we	 use	 to	 print	 characters	 to	 	 stdout	 .	 Using	 its	 more	 general
counterpart		fprintf()	,	we	can	specify	the	stream	to	write	to.

Since	I	started	talking	about		printf()	,	let's	introduce	it	now.

	printf()	

	 printf()	 	 is	 one	 of	 the	 first	 functions	 you'll	 use	 when	 learning	 C
programming.

In	its	simplest	usage	form,	you	pass	it	a	string	literal:

printf("hey!");

and	the	program	will	print	the	content	of	the	string	to	the	screen.

You	can	print	the	value	of	a	variable,	and	it's	a	bit	tricky	because	you	need	to
add	a	special	character,	a	placeholder,	which	changes	depending	on	the	type
of	the	variable.	For	example	we	use		%d		for	a	signed	decimal	integer	digit:

int	age	=	37;

printf("My	age	is	%d",	age);

We	can	print	more	than	one	variable	by	using	commas:

int	age_yesterday	=	37;

int	age_today	=	36;

printf("Yesterday	my	age	was	%d	and	today	is	%d",	age_yesterday,	age_t

oday);

47

There	are	other	format	specifiers	like		%d	:

	%c		for	a	char
	%s		for	a	char
	%f		for	floating	point	numbers
	%p		for	pointers

and	many	more.

We	can	use	escape	characters	 in	 	printf()	,	 like	 	\n		which	we	can	use	 to
make	the	output	create	a	new	line.

	scanf()	

	printf()		is	used	as	an	output	function.	I	want	to	introduce	an	input	function
now,	so	we	can	say	we	can	do	all	the	I/O	thing:		scanf()	.

This	 function	 is	used	 to	get	a	value	 from	the	user	 running	 the	program,	 from
the	command	line.

We	must	first	define	a	variable	that	will	hold	the	value	we	get	from	the	input:

int	age;

Then	we	call		scanf()		with	2	arguments:	the	format	(type)	of	the	variable,	and
the	address	of	the	variable:

scanf("%d",	&age);

If	we	want	to	get	a	string	as	input,	remember	that	a	string	name	is	a	pointer	to
the	first	character,	so	you	don't	need	the		&		character	before	it:

char	name[20];

scanf("%s",	name);

Here's	a	little	program	that	uses	both		printf()		and		scanf()	:

48

#include	<stdio.h>

int	main(void)	{

		char	name[20];

		printf("Enter	your	name:	");

		scanf("%s",	name);

		printf("you	entered	%s",	name);

}

49

Variables	scope
When	you	define	a	variable	in	a	C	program,	depending	on	where	you	declare
it,	it	will	have	a	different	scope.

This	means	that	it	will	be	available	in	some	places,	but	not	in	others.

The	position	determines	2	types	of	variables:

global	variables
local	variables

This	is	the	difference:	a	variable	declared	inside	a	function	is	a	local	variable,
like	this:

int	main(void)	{

		int	age	=	37;

}

Local	 variables	 are	 only	 accessible	 from	 within	 the	 function,	 and	 when	 the
function	 ends	 they	 stop	 their	 existence.	 They	 are	 cleared	 from	 the	memory
(with	some	exceptions).

A	 variable	 defined	 outside	 of	 a	 function	 is	 a	 global	 variable,	 like	 in	 this
example:

int	age	=	37;

int	main(void)	{

		/*	...	*/

}

Global	variables	are	accessible	from	any	function	of	the	program,	and	they	are
available	for	the	whole	execution	of	the	program,	until	it	ends.

I	mentioned	 that	 local	variables	are	not	available	any	more	after	 the	 function
ends.

50

The	reason	is	that	local	variables	are	declared	on	the	stack,	by	default,	unless
you	explicitly	allocate	them	on	the	heap	using	pointers,	but	 then	you	have	to
manage	the	memory	yourself.

51

Static	variables
Inside	 a	 function,	 you	 can	 initialize	 a	 static	 variable	 using	 the	 	 static	
keyword.

I	said	"inside	a	function",	because	global	variables	are	static	by	default,	so
there's	no	need	to	add	the	keyword.

What's	a	static	variable?	A	static	variable	is	initialized	to	0	if	no	initial	value	is
specified,	and	it	retains	the	value	across	function	calls.

Consider	this	function:

int	incrementAge()	{

		int	age	=	0;

		age++;

		return	age;

}

If	we	call	 	incrementAge()		once,	we'll	get	 	1		as	the	return	value.	If	we	call	 it
more	than	once,	we'll	always	get	1	back,	because		age		is	a	local	variable	and
it's	re-initialized	to		0		on	every	single	function	call.

If	we	change	the	function	to:

int	incrementAge()	{

		static	int	age	=	0;

		age++;

		return	age;

}

Now	every	time	we	call	this	function,	we'll	get	an	incremented	value:

printf("%d\n",	incrementAge());

printf("%d\n",	incrementAge());

printf("%d\n",	incrementAge());

52

will	give	us

1

2

3

We	can	also	omit	initializing		age		to	0	in		static	int	age	=	0;	,	and	just	write
	static	int	age;		 because	 static	 variables	 are	 automatically	 set	 to	 0	when
created.

We	can	also	have	static	arrays.	 In	 this	case,	each	single	 item	 in	 the	array	 is
initialized	to	0:

int	incrementAge()	{

		static	int	ages[3];

		ages[0]++;

		return	ages[0];

}

53

Global	variables
In	 this	 section	 I	 want	 to	 mention	 the	 difference	 between	 global	 and	 local
variables.

A	local	variable	is	defined	inside	a	function,	and	it's	only	available	inside	that
function.

Like	this:

#include	<stdio.h>

int	main(void)	{

		char	j	=	0;

		j	+=	10;

		printf("%u",	j);	//10

}

	j		is	not	available	anywhere	outside	the		main		function.

A	global	variable	is	defined	outside	of	any	function,	like	this:

#include	<stdio.h>

char	i	=	0;

int	main(void)	{

		i	+=	10;

		printf("%u",	i);	//10

}

A	global	variable	can	be	accessed	by	any	function	in	the	program.	Access	is
not	limited	to	reading	the	value:	the	variable	can	be	updated	by	any	function.

Due	 to	 this,	global	variables	are	one	way	we	have	of	sharing	 the	same	data
between	functions.

54

The	 main	 difference	 with	 local	 variables	 is	 that	 the	 memory	 allocated	 for
variables	is	freed	once	the	function	ends.

Global	variables	are	only	freed	when	the	program	ends.

55

Type	definitions
The		typedef		keyword	in	C	allows	you	to	defined	new	types.

Starting	 from	 the	 built-in	 C	 types,	 we	 can	 create	 our	 own	 types,	 using	 this
syntax:

typedef	existingtype	NEWTYPE

The	new	type	we	create	is	usually,	by	convention,	uppercase.

This	it	to	distinguish	it	more	easily,	and	immediately	recognize	it	as	type.

For	example	we	can	define	a	new		NUMBER		type	that	is	an		int	:

typedef	int	NUMBER

and	once	you	do	so,	you	can	define	new		NUMBER		variables:

NUMBER	one	=	1;

Now	you	might	ask:	why?	Why	not	just	use	the	built-in	type		int		instead?

Well,	 	typedef	 	 gets	 really	 useful	 when	 paired	with	 two	 things:	 enumerated
types	and	structures.

56

Enumerated	Types
Using	the	 	typedef		and	 	enum		keywords	we	can	define	a	type	that	can	have
either	one	value	or	another.

It's	one	of	the	most	important	uses	of	the		typedef		keyword.

This	is	the	syntax	of	an	enumerated	type:

typedef	enum	{

		//...values

}	TYPENAME;

The	enumerated	type	we	create	is	usually,	by	convention,	uppercase.

Here	is	a	simple	example:

typedef	enum	{

		true,

		false

}	BOOLEAN;

C	comes	with	a		bool		type,	so	this	example	is	not	really	practical,	but	you	get
the	idea.

Another	example	is	to	define	weekdays:

typedef	enum	{

		monday,		

		tuesday,

		wednesday,

		thursday,

		friday,

		saturday,

		sunday

}	WEEKDAY;

57

Here's	a	simple	program	that	uses	this	enumerated	type:

#include	<stdio.h>

typedef	enum	{

		monday,		

		tuesday,

		wednesday,

		thursday,

		friday,

		saturday,

		sunday

}	WEEKDAY;

int	main(void)	{

		WEEKDAY	day	=	monday;

		if	(day	==	monday)	{

				printf("It's	monday!");	

		}	else	{

				printf("It's	not	monday");	

		}

}

Every	item	in	the	enum	definition	is	paired	to	an	integer,	 internally.	So	in	this
example		monday		is	0,		tuesday		is	1	and	so	on.

This	means	 the	conditional	could	have	been	 	if	(day	==	0)		 instead	of	 	if
(day	==	monday)	,	 but	 it's	way	 simpler	 for	 us	 humans	 to	 reason	with	 names
rather	than	numbers,	so	it's	a	very	convenient	syntax.

58

Structures
Using	 the	 	struct	 	 keyword	 we	 can	 create	 complex	 data	 structures	 using
basic	C	types.

A	structure	is	a	collection	of	values	of	different	types.	Arrays	in	C	are	limited	to
a	type,	so	structures	can	prove	to	be	very	interesting	in	a	lot	of	use	cases.

This	is	the	syntax	of	a	structure:

struct	<structname>	{

		//...variables

};

Example:

struct	person	{

		int	age;

		char	*name;

};

You	 can	 declare	 variables	 that	 have	 as	 type	 that	 structure	 by	 adding	 them
after	the	closing	curly	bracket,	before	the	semicolon,	like	this:

struct	person	{

		int	age;

		char	*name;

}	flavio;

Or	multiple	ones,	like	this:

struct	person	{

		int	age;

		char	*name;

}	flavio,	people[20];

59

In	this	case	I	declare	a	single	 	person		variable	named	 	flavio	,	and	an	array
of	20		person		named		people	.

We	can	also	declare	variables	later	on,	using	this	syntax:

struct	person	{

		int	age;

		char	*name;

};

struct	person	flavio;

We	can	initialize	a	structure	at	declaration	time:

struct	person	{

		int	age;

		char	*name;

};

struct	person	flavio	=	{	37,	"Flavio"	};

and	once	we	have	a	structure	defined,	we	can	access	the	values	in	it	using	a
dot:

struct	person	{

		int	age;

		char	*name;

};

struct	person	flavio	=	{	37,	"Flavio"	};

printf("%s,	age	%u",	flavio.name,	flavio.age);

We	can	also	change	the	values	using	the	dot	syntax:

struct	person	{

		int	age;

		char	*name;

};

60

struct	person	flavio	=	{	37,	"Flavio"	};

flavio.age	=	38;

Structures	 are	 very	 useful	 because	 we	 can	 pass	 them	 around	 as	 function
parameters,	 or	 return	 values,	 embedding	 various	 variables	within	 them,	 and
each	variable	has	a	label.

It's	 important	 to	 note	 that	 structures	 are	passed	by	copy,	 unless	 of	 course
you	pass	a	pointer	to	a	struct,	in	which	case	it's	passed	by	reference.

Using		typedef		we	can	simplify	the	code	when	working	with	structures.

Let's	make	an	example:

typedef	struct	{

		int	age;

		char	*name;

}	PERSON;

The	 structure	 we	 create	 using	 	 typedef	 	 is	 usually,	 by	 convention,
uppercase.

Now	we	can	declare	new		PERSON		variables	like	this:

PERSON	flavio;

and	we	can	initialize	them	at	declaration	in	this	way:

PERSON	flavio	=	{	37,	"Flavio"	};

61

Command	line	parameters
In	your	C	programs,	you	might	have	the	need	to	accept	parameters	from	the
command	line	when	the	command	launches.

For	simple	needs,	all	you	need	to	do	to	do	so	is	change	the	 	main()		function
signature	from

int	main(void)

to

int	main	(int	argc,	char	*argv[])

	argc		is	an	integer	number	that	contains	the	number	of	parameters	that	were
provided	in	the	command	line.

	argv		is	an	array	of	strings.

When	 the	 program	 starts,	 we	 are	 provided	 the	 arguments	 in	 those	 2
parameters.

Note	that	there's	always	at	least	one	item	in	the	 	argv		array:	the	name	of
the	program

Let's	take	the	example	of	the	C	compiler	we	use	to	run	our	programs,	like	this:

gcc	hello.c	-o	hello

If	this	was	our	program,	we'd	have	 	argc		being	4	and	 	argv		being	an	array
containing

	gcc	

	hello.c	

	-o	

62

	hello	

Let's	write	a	program	that	prints	the	arguments	it	receives:

#include	<stdio.h>

int	main	(int	argc,	char	*argv[])	{

		for	(int	i	=	0;	i	<	argc;	i++)	{

				printf("%s\n",	argv[i]);

		}

}

If	 the	name	of	our	program	is	 	hello		and	we	run	 it	 like	this:	 	./hello	,	we'd
get	this	as	output:

./hello

If	we	pass	some	random	parameters,	 like	this:	 	./hello	a	b	c		we'd	get	 this
output	to	the	terminal:

./hello

a

b

c

This	system	works	great	for	simple	needs.	For	more	complex	needs,	there	are
commonly	used	packages	like	getopt.

63

Header	files
Simple	 programs	 can	 be	 put	 in	 a	 single	 file,	 but	 when	 your	 program	 grows
larger,	it's	impossible	to	keep	it	all	in	just	one	file.

You	can	move	parts	of	a	program	to	a	separate	file,	then	you	create	a	header
file.

A	header	file	looks	like	a	normal	C	file,	except	it	ends	with		.h		instead	of		.c	,
and	instead	of	the	implementations	of	your	functions	and	the	other	parts	of	a
program,	it	holds	the	declarations.

You	already	used	header	files	when	you	first	used	the	 	printf()		function,	or
other	I/O	function,	and	you	had	to	type:

#include	<stdio.h>

to	use	it.

	#include		is	a	preprocessor	directive.

The	preprocessor	goes	and	looks	up	the	 	stdio.h		file	in	the	standard	library,
because	you	used	brackets	around	it.	To	include	your	own	header	files,	you'll
use	quotes,	like	this:

#include	"myfile.h"

The	above	will	look	up		myfile.h		in	the	current	folder.

You	can	also	use	a	folder	structure	for	libraries:

#include	"myfolder/myfile.h"

Let's	make	an	example.	This	program	calculates	the	years	since	a	given	year:

#include	<stdio.h>

64

int	calculateAge(int	year)	{

		const	int	CURRENT_YEAR	=	2020;

		return	CURRENT_YEAR	-	year;

}

int	main(void)	{

		printf("%u",	calculateAge(1983));

}

Suppose	I	want	to	move	the		calculateAge		function	to	a	separate	file.

I	create	a		calculate_age.c		file:

int	calculateAge(int	year)	{

		const	int	CURRENT_YEAR	=	2020;

		return	CURRENT_YEAR	-	year;

}

And	a		calculate_age.h		file	where	I	put	the	function	prototype,	which	is	same
as	the	function	in	the		.c		file,	except	the	body:

int	calculateAge(int	year);

Now	in	the	main		.c		file	we	can	go	and	remove	the	 	calculateAge()		function
definition,	 and	 we	 can	 import	 	 calculate_age.h	 ,	 which	 will	 make	 the
	calculateAge()		function	available:

#include	<stdio.h>

#include	"calculate_age.h"

int	main(void)	{

		printf("%u",	calculateAge(1983));

}

Don't	forget	that	to	compile	a	program	composed	by	multiple	files,	you	need	to
list	them	all	in	the	command	line,	like	this:

65

gcc	-o	main	main.c	calculate_age.c

And	with	more	 complex	 setups,	 a	Makefile	 is	 necessary	 to	 tell	 the	 compiler
how	to	compile	the	program.

66

The	preprocessor
The	preprocessor	is	a	tool	that	helps	us	a	lot	when	programming	with	C.	It	 is
part	of	 the	C	Standard,	 just	 like	 the	 language,	 the	compiler	and	the	standard
library.

It	parses	our	program	and	makes	sure	 that	 the	compiler	gets	all	 the	things	 it
needs	before	going	on	with	the	process.

What	does	it	do,	in	practice?

For	example,	 it	 looks	up	all	 the	header	 files	 you	 include	with	 the	 	#include	
directive.

It	also	 looks	at	every	constant	you	defined	using	 	#define		and	substitutes	 it
with	its	actual	value.

That's	just	the	start,	and	I	mentioned	those	2	operations	because	they	are	the
most	common	ones.	The	preprocessor	can	do	a	lot	more.

Did	you	notice	 	#include		and	 	#define		have	a	 	#		at	 the	beginning?	That's
common	to	all	the	preprocessor	directives.	If	a	line	starts	with	 	#	,	that's	taken
care	by	the	preprocessor.

Conditionals
One	of	the	things	we	can	do	is	to	use	conditionals	to	change	how	our	program
will	be	compiled,	depending	on	the	value	of	an	expression.

For	example	we	can	check	if	the		DEBUG		constant	is	0:

#include	<stdio.h>

const	int	DEBUG	=	0;

int	main(void)	{

#if	DEBUG	==	0

67

		printf("I	am	NOT	debugging\n");

#else

		printf("I	am	debugging\n");

#endif

}

Symbolic	constants
We	can	define	a	symbolic	constant:

#define	VALUE	1

#define	PI	3.14

#define	NAME	"Flavio"

When	 we	 use	 NAME	 or	 PI	 or	 VALUE	 in	 our	 program,	 the	 preprocessor
replaces	its	name	with	the	value,	before	executing	the	program.

Symbolic	 constants	 are	 very	 useful	 because	 we	 can	 give	 names	 to	 values
without	creating	variables	at	compilation	time.

Macros
With	 	#define		we	can	also	define	a	macro.	The	difference	between	a	macro
and	a	symbolic	constant	is	that	a	macro	can	accept	an	argument	and	typically
contains	code,	while	a	symbolic	constant	is	a	value:

#define	POWER(x)	((x)	*	(x))

Notice	 the	 parentheses	 around	 the	 arguments,	 a	 good	practice	 to	 avoid
issues	when	the	macro	is	replaced	in	the	precompilation	process.

Then	we	can	use	it	in	our	code	like	this:

printf("%u\n",	POWER(4));	//16

68

The	big	difference	with	functions	is	that	macros	do	not	specify	the	type	of	their
arguments	or	return	values,	which	might	be	handy	in	some	cases.

Macros	however	are	limited	to	one	line	definitions,	and

If	defined
We	can	check	if	a	symbolic	constant	or	a	macro	is	defined	using		#ifdef	:

#include	<stdio.h>

#define	VALUE	1

int	main(void)	{

#ifdef	VALUE

		printf("Value	is	defined\n");

#else

		printf("Value	is	not	defined\n");

#endif

}

We	also	have		#ifndev		to	check	for	the	opposite	(macro	not	defined).

We	can	also	use		#if	defined		and		#if	!defined		to	do	the	same	task.

It's	common	to	wrap	some	block	of	code	into	a	block	like	this:

#if	0

#endif

to	temporarily	prevent	it	to	run,	or	to	use	a	DEBUG	symbolic	constant:

#define	DEBUG	0

#if	DEBUG

		//code	only	sent	to	the	compiler

		//if	DEBUG	is	not	0

#endif

69

Predefined	symbolic	constants	you	can
use
The	preprocessor	also	defines	a	number	of	symbolic	constants	you	can	use,
identified	by	the	2	underscores	before	and	after	the	name,	including:

	__LINE__		translates	to	the	current	line	in	the	source	code	file
	__FILE__		translates	to	the	name	of	the	file
	__DATE__		translates	to	the	compilation	date,	in	the		Mmm	gg	aaaa		format
	__TIME__		translates	to	the	compilation	time,	in	the		hh:mm:ss		format

70

Conclusion
Thanks	a	lot	for	reading	this	book.

I	hope	it	will	inspire	you	to	know	more	about	C.

For	more	on	C,	check	out	my	blog	flaviocopes.com.

Send	any	feedback,	errata	or	opinions	at	hey@flaviocopes.com

71

https://flaviocopes.com
mailto:hey@flaviocopes.com

	Preface
	Introduction to C
	Variables and types
	Constants
	Operators
	Conditionals
	Loops
	Arrays
	Strings
	Pointers
	Functions
	Input and output
	Variables scope
	Static variables
	Global variables
	Type definitions
	Enumerated Types
	Structures
	Command line parameters
	Header files
	The preprocessor
	Conclusion

