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Abstract	
  
Modern programming languages such as C#, Ruby and Java have much in common: they support 
(and some require) object-oriented programming, have large, useful libraries, manage memory 
via garbage collection, and to a large degree shield the programmer from low-level details. They 
also tend to be interpreted languages, so while they are applicable to most programming 
problems, they lack the efficiency of systems programming languages like C and C++. The D 
Programming Language is a modern hybrid of C++ and languages like Ruby: it compiles 
statically to native code, but is also garbage collected. It inherits the C and C++ libraries, but has 
its own modern library. Like C++, it is a multi-paradigm language, supporting imperative, 
object-oriented and functional programming styles. Its pure functional subset is suitable for 
teaching the functional paradigm in a survey of languages course. It also supports delegates and 
anonymous functions, and has a number of software engineering features built-in. This paper 
explores how D is suitable for courses at various levels in the CS curriculum as well as in the 
workplace. 

Introduction	
  
Computer Science curricula seek to ground students in the fundamentals of computation while 
also preparing them for graduate study as well as to make meaningful contributions to current 
computing problems in the workplace. But traditional CS curricula have recently proven 
unattractive to many of today’s students resulting in falling CS enrollments, while the need for 
competent software professionals is increasing.[1] Feedback from industry indicates that areas 
such as software security, parallelism, quality, performance, and software engineering best 
practices need more emphasis in CS-related degree programs, while not neglecting the 
foundations of computing. The ACM/IEEE Interim CS Curriculum Report includes the 
following statement from an industrial commentator: 
 
“The thing that we can’t afford to do [on the job] is teach candidates how to think critically, to be 
effective problem solvers, and to have basic mastery of programming languages, data structures, 
algorithms, concurrency, networking, computer architecture, and discrete math / probability / 
statistics. I can’t begin to emphasize the importance of algorithms and data structures to the work 
that we do here … With multi-terabyte disks, bigger broadband pipes, etc., on the way, the big 
data problems demand that these skills … are quickly going to be in need in a huge number of 
programming contexts.”[2].  
 



 

 

 
 

 
 

Programming languages play a crucial role in modern computation. Modern, general-purpose 
programming languages in widespread use include 
 

• Java 
• PHP 
• Python 
• C# 
• Ruby. [3] 

 
All of these are interpreted languages, although Java and C# are statically typed and have a 
compile step that transforms source code to byte-code. The other three languages are 
dynamically typed and are considered to be “scripting languages”, since they excel at quickly 
crafting small software solutions. Both Java and C# employ a Just-in-Time (JIT) compilation 
strategy, which dynamically converts byte-code instructions to native machine code to improve 
runtime performance. The scripting languages are popular for their ease of use but do not 
perform as well as Java or C# at runtime. 
 
All of these languages are known for being “programmer friendly” by virtue of a high-level 
syntax and by supporting such powerful features as: 
 

• Garbage collection 
• Object-orientation 
• Modules 
• Unit Testing 
• Robust Runtime Libraries 

 
PHP, Python, Perl are multi-paradigm languages, while Java and C# force adherence to the 
object-oriented paradigm. All of these, as well as other emerging languages (e.g., Scala, Groovy, 
Lua) have varying degrees of support for the functional programming paradigm, which is 
enjoying somewhat of a resurgence as software developers are rediscovering the utility of 
closures, higher-level functions, and applicative programming. 

What	
  About	
  C++?	
  
The C++ programming language, first released to the public in 1985, has its roots in the C 
language, which become popular in the 1970s and remains in widespread use to this day. These 
two systems programming languages differ markedly from the five languages mentioned earlier 
in that they: 
 

• Support direct access to machine addresses via pointers 
• Compile entirely to native executable code before runtime, and 
• Do not support garbage collection. 

 
The consequences of these differences mean that C and C++ allow direct access to machine 
components and have better runtime performance, but also require programmers to do their own 
manual memory management, which is tedious and error prone. While Java and C# have 
adequate performance, C and C++ are acknowledged as having the best performance of all high-



 

 

 
 

 
 

level languages and are crucial elements in the development of certain types of software systems. 
Embedded systems, for example, require close attention to low-level details, which these 
languages allow, and most embedded software is written in C. It is also common for compilers, 
operating systems, and similar systems to be written in C or C++. The following is a sample list 
of applications developed in C++: 
 

• Sun’s HotSpot Java Virtual Machine 
• Microsoft’s C# Compiler 
• All versions of Microsoft Windows 
• All major Adobe products 
• Amazon’s large-scale e-commerce systems 
• Ericsson’s cell phone network software 
• Google’s search engine and Map-Reduce cluster data processing software 
• Firefox browser 
• NASA’s Mars rover autonomous driving system 
• Nokia mobile communications software 
• U.S Air Force Joint Strike Fighter control systems[4] 

 
C++ programs are also known for their complexity. The popularity of languages such as Java 
and C# are due in part to being more accessible to the average programmer than is C++, which is 
fraught with arcane syntax rules and pointer “gotchas”. It is not uncommon for software projects 
to use a scripting language such as Python whenever possible and C++ only when necessary. 

The	
  D	
  Programming	
  Language	
  
While it is unreasonable to expect a single programming language to be ideal for all purposes, it 
is not unreasonable to envision a language that has the power of a language like C++ and the 
ease of use of a language like Python. Walter Bright, chief architect and implementer of the D 
programming language, explained what led to the creation of this new programming language: 
 

“Amazingly, there is no language that enables precise control over execution while 
offering modern and proven constructs that improve productivity and reduce bugs. What first 
comes to mind is C++, but C++ remains mired in its need to be backward-compatible with 
obsolete, decades old decisions. This makes it very difficult for C++ to adopt new ideas. Then 
there are the languages that compile to virtual machines (VMs) such as Java and C#. But those 
languages never seem to quite be able to shake off their performance problems, and of course a 
VM-based language cannot offer to-the-metal capability. 

“And lastly, there are the scripting languages such as Perl, Ruby, and Python. These offer 
many advanced programming features and are highly productive, but have poor runtime 
performance compared with C++. They also suffer from lingering doubts about their suitability 
for very large projects. 

“Often, programming teams will resort to a hybrid approach, where they will mix Python 
and C++, trying to get the productivity of Python and the performance of C++. The frequency of 
this approach indicates that there is a large unmet need in the programming language department. 

“D intends to fill that need. It combines the ability to do low-level manipulation of the 
machine with the latest technologies in building reliable, maintainable, portable, high-level code. 



 

 

 
 

 
 

D has moved well ahead of any other language in its abilities to support and integrate multiple 
paradigms like imperative, OOP, and generic programming.” [5] 

 
D combines many modern language features with the power of C++. D has a C-like syntax 
(somewhat cleaner than C++), so it is easily grasped by C++, Java, and C# programmers, and 
supports important language features such as 
 

• Garbage collection 
• Function and Operator Overloading 
• Object-oriented Programming (single inheritance) 
• Deterministic destruction of objects 
• Properties 
• Inner classes 
• Function closures (via delegates) 
• Powerful, built-in data structures 
• Generic functions and classes 
• Functional Programming via nested, higher-order, anonymous, and “pure” functions (no 

side effects) 
• Concurrency via critical sections and message passing 
• Contract Programming 
• Unit Testing 
• Modules 
• Documentation Comments 
• Compile-time: function execution, assertions, and metaprogramming 

 
Like C++, D is a lexically scoped language that compiles to native code and is available on most 
major computing platforms. Since it supports multiple paradigms, it is suitable for study in an 
analysis of programming languages course, and will suffice for most any programming 
challenge. Like C#, it supports all of the classical parameter-passing mechanisms (by value, by 
result, by value-result, and by reference) and distinguishes between value types (scalar types and 
structs) and reference types (objects on the heap). Like Java, it has labeled break and continue, 
static initializers, synchronized code for critical sections, anonymous inner classes, and 
delegating constructors. 
 
NOTE: This article introduces D 2.0, which, while widely available and quite stable, is still 
under development at this time. All code samples have been tested with the latest version of D 
(2.047). 

Hello,	
  D	
  
The following D program will serve as a point of departure for discussing the structure and 
features of the D language. 
 
// hello.d: Greet the users or the entire world 
import std.stdio; 
 
void main(string[] args) { 
    if (args.length > 1) 



 

 

 
 

 
 

        foreach (a; args[1..$]) 
            writeln("Hello " ~ a); 
    else 
        writeln("Hello, Modern World"); 
} 
 

To compile this program from the command line, enter the following command: 
 
$ dmd hello.d 
 

If command-line arguments are present, each argument is greeted on a line by itself. Otherwise 
the string “Hello, Modern World” is displayed: 
 
$ hello Hansel Gretel 
Hello Hansel 
Hello Gretel 
 

For those that prefer a graphical development environment, IDEs are available for D and there is 
a D plugin for the Eclipse editing system. 
 
Like Java, C++ and C#, D uses semi-colons to terminate program statements. D uses comment 
syntax similar to Java, including syntax for documentation comments (/**, etc.).  
 
The first non-comment line in hello.d above imports the std.stdio module. Modules are D’s 
code-packaging construct, and, as the dot between std and stdio in hello.d above suggests, they 
can be grouped hierarchically. Like Python, in D there is a one-to-correspondence between a 
module and a text file. For example, a module MyModule would use a module statement and 
reside in a file named MyModule.d: 
 
// MyModule.d 
module MyModule; 
[code follows here] 
 

The writeln function is defined in the stdio module in the std package (i.e., group of modules). 
There is also a write function that does not append a newline to its output string. There are also 
versions of these functions, namely writefln and writef, which use their first parameter as a 
format string in C’s printf style. Note that there is no need to qualify the access to writeln with 
its module name (stdio). D’s name lookup algorithm first searches the current scope, and then 
each imported package in declaration order. Names must be qualified only if they are not 
uniquely defined among the current scope and imported modules. You can also disambiguate 
conflicting names with the alias statement: 
 
alias a.foo foo; // Unqualified references to foo will access a.foo 
 

In those cases where a large number of name conflicts may occur, you can force name 
qualification for all imported names with a static import: 
 
static import std.stdio; 
… 
    std.stdio.writefln("Hello " ~ a); // Qualification required 



 

 

 
 

 
 

 

The variable args is a dynamic array of strings. Dynamic arrays are heap-based, grow on 
demand, and are defined in the language, allowing more robust support and optimization than a 
library approach. 
 
The brackets that identify an array definition can precede or follow the array name, so the 
following are equivalent: 
 
int[] x; 
int x[]; 
 

This accommodates the different styles in common use in other popular languages. 
 
Static arrays are also supported and behave as they do in C and C++, except that all arrays are 
bounds-checked in D, and an exception is thrown when an out-of-bounds access is attempted. 
 
The “..” notation used in hello.d above is a range that denotes an array slice, which refers to a 
contiguous subset of an array. Ranges are inclusive of their first position and exclusive of the 
last. The dollar sign is an abbreviation for the .length property of an array, so the expression 
args[1..$] is equivalent to args[1..args.length], and represents the elements in positions 1 
through args.length-1. The string in args[0] is the program name (“hello”). An important feature 
of slices is that they are not copies; they represent a mutable reference range of the original array, 
and are therefore very efficient. 
 
The foreach construct iterates through all elements of an array; the iteration variable and the 
array are separated by a semi-colon. Note that the type of iteration variable, a, is deduced by its 
context. The ~ operator is the concatenation operator for arrays. Strings are dynamic arrays of 
immutable Unicode characters. 
 
A variation of foreach takes two iteration variables, where the first represents the 0-based index 
of the current array element. The following program illustrates this with foreach_reverse, which 
traverses its array backwards. 
 
// foreach_r.d 
import std.stdio; 
 
void main(string[] args) { 
    foreach_reverse (i, a; args) 
        writefln("%d %s",i,a); 
} 
 
/* Sample execution: 
 
$ foreach one two three 
3 three 
2 two 
1 one 
0 foreach 
*/ 
 



 

 

 
 

 
 

D also supports associative arrays, sometimes called maps, dictionaries, or hashes in other 
languages. Associative arrays in D can use normal array syntax, even in their declaration, since 
they are supported by the language, not a standard library module. The “type” in the declaration 
is the value type, and the key type is placed in brackets, as the following program illustrates. 
 
// assoc.d: Associative arrays 
import std.stdio; 
 
void main() { 
    int[string] keywords; // A string-to-int mapping 
    keywords["foo"] = 3; 
    keywords["bar"] = 2; 
    keywords["baz"] = 1; 
    
    string abc = "foo"; 
    assert(keywords[abc] == 3); 
    abc = "bar"; 
    assert(keywords[abc] == 2); 
    
    foreach (kwd, value; keywords) 
        writefln("%s = %s", kwd, value); 
} 
 
/* Output: 
foo = 3 
bar = 2 
baz = 1 
*/ 
 

Note that foreach supports a special form for associative arrays, where the iteration variables 
represent the key and value, respectively. 
 
The following program illustrates simple file and text processing as well as type inference with 
the auto keyword. 
 
// wc.d: Displays word counts in text files 
import std.stdio, std.string, std.file; 
 
// This function does all the work (Reads words into a list; 
// computes counts; displays results) 
void wc(string filename) { 
    auto words = split(cast(string) read(filename)); 
    int[string] counts; 
    foreach (word; words) 
        ++counts[word]; 
    foreach (w; counts.keys.sort) 
        writefln("%s: %d", w, counts[w]); 
} 
 
// A simple driver: process all file arguments 
void main(string[] args) { 
    foreach (f; args[1..$]) { 
        writefln("\n%s:", f); 
        wc(f); 



 

 

 
 

 
 

    } 
} 
 
/* Abbreviated output from the Gettysburg Address: 
 
But,: 1 
Four: 1 
God,: 1 
It: 3 
Liberty,: 1 
Now: 1 
… 
which: 2 
who: 3 
will: 1 
work: 1 
world: 1 
years: 1 
*/ 
 

The function std.file.read takes a filename string and returns an untyped array of bytes 
(void [ ]), which can be easily cast to a single string object. std.string.split returns an array 
containing all the space-delimited tokens of its string argument. We could have declared words 
as a string array, but auto infers the type from the initializer. auto is heavily used in D code.  
 
The target of the second foreach loop illustrates properties. Associative arrays have a keys 
property that returns a new dynamic array of the keys of each pair in the original array. The sort 
property sorts an array in place, using the < operator to compare elements, and then returns the 
array by reference. You can define your own properties for the new types you create. 

Functions	
  And	
  Parameters	
  
D’s imperative features allow stand-alone functions to be defined at the module level. Functions 
can also be nested in other functions, as in Algol and in functional languages. Some functions 
can even execute at compile time. Consider the following program adapted from the 
documentation on the D website (digitalmars.com): 
 
// ctfe.d: Illustrates compile-time function execution 
import std.stdio, std.conv; 
 
int square(int i) {return i * i;} 
 
void main() 
{ 
    static int n = square(3);       // compile time execution 
    writefln(text(n)); 
    writefln(text(square(4)));   // runtime execution 
} 
 

The first call to square actually runs at compile time because the function argument is a literal, 
and the result is being used to initialize a static integer. C++ guarantees only that n is initialized 
before any function in its module executes, but in D n is already initialized to 9 before main 



 

 

 
 

 
 

begins. The arguments in the function call must be compile-time expressions, such as numeric or 
string literals, and the context must be one of the following: 
 
• initialization of a static variable 
• dimension of a static array 
• argument for a template value parameter 
 
Function parameters can have the following attributes: 
 

• in   (read-only copy of the calling argument) 
• out   (write-only lvalue referring to the calling argument) 
• ref   (pass by reference) 
• lazy   (argument evaluated on demand only in called function) 
• const   (locally read-only, as in C++, but fully transitive (i.e., “deep”)) 
• immutable  (argument allows no changes anywhere, once initialized) 

 
A function parameter defined without one of these attributes defaults to pass-by-value (i.e., the 
function receives a local, mutable copy of the calling argument). While most of these attributes 
are self-explanatory, a couple of them need some attention here. 
 
The lazy storage class defers evaluation of the argument until it is actually used in the called 
function, and the parameter cannot be assigned to. This state of affairs is somewhere in between 
pass-by-name (the argument is evaluated on each access) and pass-by-need (the parameter is 
read-only and only evaluated on the first access). Lazy parameters in D are read-only but are 
evaluated upon each access, as the following program illustrates. 
 
// lazy.d 
import std.stdio; 
 
void printif(bool b, lazy string s) { 
    if (b) { 
        writeln(s); 
        writeln(s); 
    } 
} 
 
string f(string s) { 
    writeln("f called"); 
    return s; 
} 
 
void main() { 
    writeln("first call to printif..."); 
    printif(false, f("this won't print")); 
    writeln("second call to printif..."); 
    printif(true, f("this will print")); 
} 
     
/* Output: 
first call to printif... 
second call to printif... 



 

 

 
 

 
 

f called 
this will print 
f called 
this will print 
*/ 
 

The first call to printif shows that the call to f in its second argument is not evaluated, since the 
first argument is false. The second call to printif evaluates s each time it is accessed.  
 
Reevaluating a lazy argument on each access is significant when the passed expression has side 
effects, as seen in the following example from the online documentation (see 
http://www.digitalmars.com/d/1.0/function.html). 
 
// dotimes.d 
import std.stdio; 
 
void dotimes(int count, lazy void exp) 
{ 
    for (int i = 0; i < count; ++i) 
       exp(); 
} 
 
void foo() 
{ 
    int x = 0; 
    dotimes(10, write(x++)); 
} 
 
void main() { 
    foo(); 
    writeln(); 
} 
 
/* Output: 
0123456789 
*/ 

  
Procedures that return nothing can be passed lazily as type void. The compiler wraps the call to 
writeln above in the thunk passed to f. The expression write(x++) is evaluated 10 times, 
yielding a different value each time. 
 
It may appear that const and immutable are the same thing, but there is a subtle difference. A 
mutable argument can be passed to a const parameter, which merely means that the object is 
const locally, and will therefore not be changed in the called function. When a variable is 
declared in the first instance to be immutable, however, it means that it may never be passed 
into a mutable context, which allows the compiler to make suitable optimizations. The 
immutable parameter attribute is for arguments that are declared immutable originally. 
 



 

 

 
 

 
 

Nested	
  Functions	
  And	
  Delegates	
  
Although Algol and classic functional languages offered the ability to define a function within 
other functions, this feature virtually disappeared with the C family of languages. Java instead 
offers related functionality via inner classes, while C++ and C# support the creation of function 
objects by overloading the function-call operator. D allows both function objects and nested 
functions—the latter in two “flavors”. Anything that be accomplished with function objects can 
be accomplished with nested functions in D. 
 
The following example defines a function, gtn, which returns a function that determines whether 
its argument is greater than the original argument to gtn. 
 
// gtn.d 
import std.stdio; 
 
bool delegate(int) gtn(int n) { 
    bool execute(int m) { 
        return m > n; 
    } 
    return &execute; 
} 
 
void main() { 
    auto g5 = gtn(5); // Returns the "> 5" function 
    writeln(g5(1)); // false 
    writeln(g5(6)); // true 
} 
 

Note that the execute function is defined within gtn, and that it uses gtn’s parameter. n. Since 
the current activation of gtn will disappear before execute is called via g5 in main, there needs to 
be some way for the data in gtn (the integer n) to persist after gtn returns. This is handled by 
delegates in D, a modern name for closures. A delegate consists of two items: 1) a pointer to the 
function to execute, and 2) a pointer to the execution environment for the function (in this case, 
the current activation record for gtn). In the case of execute, the activation record for gtn is 
automatically moved from the stack to the garbage-collected heap so that n can be accessed later. 
The return type of gtn is bool delegate(int), a delegate that executes a function that takes an int 
and returns a bool, which, of course, is the signature of execute. Note also the use of auto in 
main so we don’t have to repeat this signature as the type for g5. The execution environment for 
a delegate can also be a class or an object, as in C#.  
 
The name execute doesn’t serve much of a purpose, so D allows creating function literals, also 
known as lambda expressions. Using a function literal, gtn can be rewritten as 
 
auto gtn(int n) { 
    return delegate bool(int m) {return m > n;}; 
} 
 

In an executable statement, the signature of the nested function completely follows the delegate 
keyword, whereas in the return type of a function declaration the delegate keyword occupies the 
position normally taken by the function name in a signature. Note the use of auto as the return 



 

 

 
 

 
 

type, where the compiler infers the type from the return expression. In fact, the compiler can 
actually infer the complete return type even if we write gtn as follows, which is idiomatic D. 
 
auto gtn(int n) { 
    return (int m) {return m > n;}; // parm list + body 
} 
 

We can go a step further by making gtn generic, polymorphically handling any type that 
supports the > operator. This is achieved by using compile-time parameters in the function 
definition: 
 
// gtn4.d 
import std.stdio; 
 
auto gtn(T)(T n) { 
    return (T m) {return m > n;}; 
} 
 
void main() { 
    auto g5 = gtn(5); 
    writeln(g5(1));  // false 
    writeln(g5(6));  // true 
 
    auto g5s = gtn("baz"); 
    writeln(g5s("bar")); // false 
    writeln(g5s("foo")); // true 
} 
 

Whenever two parameter lists appear in a function definition, the first list represents the 
parameters supplied at compile time, such as types and integral literal expressions, just like 
template parameters in C++. The type for T is inferred from the calls in main (int for g5, string 
for g5s). 
 
If a nested function does not use anything in its enclosing environment, it can be returned as a 
plain function pointer. This is achieved by preceding the nested function definition with the 
keyword static. (So delegates are non-static nested functions). Plain function literals use the 
function keyword in place of delegate. 
 
Lazy parameters, function literals, and functions passed to and returned from functions are the 
“stuff” of functional programming. A pure functional language also does not allow assignment, 
so whenever a function is called with the same parameters, the same result is always returned (a 
quality known as referential transparency). Not allowing a variable to change after it is 
initialized also makes concurrent programming much less of a headache than in imperative 
languages, since race conditions are a non-issue. Referential transparency is enforced in D with 
pure functions. A pure function must have parameters that are immutable or const, and must 
neither read nor write any non-local, mutable state (but local mutables are okay). In addition, a 
pure function cannot call an “impure” function. A function is declared pure with the pure 
keyword, and the compiler ensures that the requirements just listed are met. An iterative version 
of a Fibonacci number function, even though it changes local, private state (see a, b, and t 



 

 

 
 

 
 

below), satisfies the conditions of referential transparency, and so can be declared pure, as 
follows: 
 
pure ulong fib(uint n) { 
    if (n == 0 || n == 1) return n; 
    ulong a = 1, b = 1; 
    foreach (i; 2..n) {  // Reminder: ".." is exclusive of n 
        ulong t = b; 
        b += a; 
        a = t; 
    } 
    return b; 
} 

D’s	
  Software	
  Engineering	
  Support	
  
D supports a number of features that enhance code reliability and maintainability, including 
scope statements, contact programming, unit testing, debug statements, and versioning. The first 
three features will be illustrated here. 
 
Unless carefully planned for, runtime errors due to external forces can easily place a program in 
an inconsistent state. Resource management is a typical example. Consider the following 
function. 
 
void f() { 
    acquire();  // Acquire some resource 
    risky_op(); // Might fail 
    release();  // Release the resource 
    writeln("f succeeded"); 
} 
 

A Java-like solution uses a finally block, similar to the following D code. 
 
void f() { 
    acquire(); 
    try { 
        risky_op(); 
        writeln("f succeeded"); 
    } 
    finally { 
        release(); 
    } 
} 
 

D also lets you explicitly supply specific cleanup code for whenever execution exits a scope: 
 
void f() { 
    acquire(); 
    scope(exit) release(); 
    risky_op(); 
    writeln("f succeeded"); 
} 
 



 

 

 
 

 
 

The scope statement, called a scope guard, activates a code block that may or may not run when 
a scope is exited. The three scope-guard options are: 
 
scope(exit)  the code always runs (like finally) 
scope(failure) the code runs only if an exception occurs 
scope(success) the code runs only if no exception occurs 
 
The utility of the scope statement becomes more obvious with multi-step resource acquisition 
requiring rollback semantics in the case of failure, as in the following function. 
void g() { 
   risky_op1(); 
   risky_op2(); 
   risky_op3(); 
   writeln("g succeeded"); 
} 
 

Here we want all three operations to succeed or fail together. The try-finally approach is quite 
complex: 
 
void g() { 
    risky_op1(); 
    try { 
        risky_op2(); 
    } 
    catch (Exception x) { 
        undo_risky_op1(); // Back-out op1 
        throw x;    // Rethrow exception 
    } 
    try { 
        risky_op3(); 
        writeln("g succeeded"); 
    } 
    catch (Exception x) { 
        // Back-out op1 and op2 in reverse order 
        undo_risky_op2(); 
        undo_risky_op1(); 
        throw x; 
    } 
} 
 

It is much easier to back out of complicated transactions with D’s scope statement: 
 
void g() { 
    risky_op1(); 
    scope(failure) undo_risky_op1(); 
    risky_op2(); 
    scope(failure) undo_risky_op2(); 
    risky_op3(); 
    writeln("g succeeded"); 
} 
 

When execution leaves a scope, all scope-guard blocks that have executed are visited in last-in-
first-out order, so transactions roll back gracefully. 



 

 

 
 

 
 

 
Programming by contract is a technique for validating a program’s internal correctness, and 
involves making explicit the conditions that govern the interactions between client and server 
code.[6,7] These conditions include class invariants, and function preconditions and 
postconditions. Class invariants are conditions concerning the state of an object that hold true 
immediately after the construction of an object, before and after the execution of any public 
method of the class, and immediately before an object’s destructor. Preconditions and 
postconditions apply to a single function and represent conditions that hold true before and after 
the execution of the method, respectively. The following example, which is a first attempt at a 
struct that simulates a rational number type, illustrates a class invariant and a method 
precondition, as well as unit testing and operator overloading. 
 
// rational.d 
import std.math;    // For abs() 
 
struct Rational { 
    int num = 0; 
    int den = 1; 
     
    // Local helper function 
    static int gcd(int m, int n) { 
        m = abs(m); 
        n = abs(n); 
        return n == 0 ? m : gcd(n, m%n); 
    } 
     
    // Class invariants 
    invariant() { 
       assert(den > 0); 
       assert(gcd(num, den) == 1); 
    } 
     
    // Constructor 
    this(int n, int d = 1) 
    in { 
        assert(d != 0); // Constructor precondition 
    } 
    body { 
      num = n; 
      den = d; 
     auto div = gcd(num, den); 
     if (den < 0) 
         div = -div; 
     num /= div; 
     den /= div; 
    } 
     
    // + operator (NOTE: The special "if" is tested at compile time) 
    Rational opBinary(string op)(Rational r) if (op == "+") { 
        return Rational(num*r.den + den*r.num, den*r.den); 
    } 
} 
 
unittest { 



 

 

 
 

 
 

    auto r1 = Rational(1,2); 
    auto r2 = Rational(3,4); 
    auto r3 = r1 + r2; 
    assert(r3.num == 5); 
    assert(r3.den == 4); 
} 
 
void main(){} 
 

To implement function-based conditions, assertions are placed in named blocks as follows: 
 

• in {…}  (for function preconditions) 
• out {…} (for function postconditions) 

 
When either or both of these are present, the function body must itself appear in a body block. 
The constructor above, named this, has the precondition that the denominator must be non-zero. 
If this condition is not met, an exception is thrown. 
 
This particular implementation also requires that the fraction is represented in lowest terms and 
that the denominator is positive at all times. This condition is established by the constructor and 
enforced by the class invariant, which appears in a method named invariant. Since class 
invariants are checked at the end of each constructor automatically, no out block is necessary in 
this case, as there are no other conditions that apply. 
 
The separation of contract conditions from the body of a function is significant. This way the 
compiler can combine conditions properly in inheritance hierarchies. It is well known that 
preconditions are contravariant (i.e., they can be weakened in subclass methods) and the 
invariants and postconditions are covariant (they can be strengthened in subclass methods). D 
therefore automatically checks the at least one of the preconditions is met (searching in top-
down, class-hierarchy order to the current subtype) and that all of the invariants and 
postconditions are satisfied when dispatching polymorphic methods. All of these checks can be 
disabled in deployed code by using the -release compiler option. The code in all unittest blocks 
is executed before main begins if the -unittest compiler option is specified. 

Conclusion	
  
The D programming language combines many valuable and popular features from both classic 
and modern languages. Its design emphasizes a clear, high-level, C-like syntax as well as 
pragmatics important to effective software development. It also offers robust support for the 
imperative, object-oriented, and functional programming paradigms. The author has used it with 
favorable results for years in an upper-division course on the analysis of languages to illustrate 
important programming constructs in a modern, strongly typed language. A reference book 
written by one of the co-designers of the language was released in June 2010.[8] 
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