

Learning D

Leverage the modern convenience and modeling power
of the D programming language to develop software
with native efficiency

Michael Parker

BIRMINGHAM - MUMBAI

Learning D

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-248-1

www.packtpub.com

www.packtpub.com

Credits

Author
Michael Parker

Reviewers
John Loughran Colvin

Jonathan M Davis

Kingsley Hendrickse

David Nadlinger

Steven Schveighoffer

Ilya Yaroshenko

Commissioning Editor
Akhram Hussain

Acquisition Editor
Reshma Raman

Content Development Editor
Merwyn D'souza

Technical Editor
Vivek Arora

Copy Editor
Imon Biswas

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

Foreword

How far things have come! I started D in 1999. The odds of any new programming
language endeavor succeeding were minimal.

But here we are with the latest book on D, Learning D by Michael Parker.

The arc of programming languages I've learned follows a consistent pattern – my
first Fortran code looked a lot like Basic. My first C code looked similar to Fortran.
C++ code looked similar to C, and my early D code looked similar to C++. It takes
some time to get used to a language before learning its own idiomatic style, and this
is what it takes before the source code starts to shine.

After all, if your D code looks similar to C++, what's the point?

Learning D fills the need to get up-to-speed quickly by explaining how to write code
in a way that fits in perfectly with D's combination of characteristics. Far from being a
dry technical specification, Michael writes about D from a more personal perspective,
as you'd expect from someone tutoring you. He lists how to use the features, how
they compare with other languages, and offers best practices. He offers background
anecdotes and explanations for why some things are the way they are, and how D has
evolved, which can be surprisingly helpful in using the language more effectively.

D has been characterized in many ways, but my favorite is that it is designed to be
fun to program in. After all, programming being our profession, isn't it better when
we enjoy our tools?

I know this book is a labor of love from Michael, as the language itself is a labor of love
from myself and the rest of the D community. I hope this joy is successfully imparted
to you, the reader and programmer. I'm sure that Michael and I would be well
rewarded for our endeavors if this is the case.

Enjoy!

Walter Bright
Creator of the D Language and Engineer

About the Author

Michael Parker created the popular D library collection, Derelict, in 2004, and
has been the primary maintainer ever since. He also blogs about the language at
The One with D, and is a coauthor of the book Learn to Tango with D, Apress. He lives
in Seoul, South Korea, with his wife, Mi Kyoung, and their dogs, Charlie, Happy,
Joey, and Toby.

This is the first book on which I've been the sole author, but no author
works alone. Without the professional assistance of my editors,
Merwyn D'souza and Reshma Raman, I would have been lost at sea.
I'd hate to admit how many errors would have persisted without the
expert feedback of the technical reviewers, John Colvin, Jonathan
Davis, Kingsley Hendrickse, David Nadlinger, Steven Schveighoffer,
and Ilya Yaroshenko. They have all helped make this a much better
book than it otherwise would have been; the blame for any remaining
technical errors that may surface rests squarely on my shoulders.

I'd like to offer a great deal of gratitude to all of the active members
of the D community who participate in the D forums, helping both
newbies and old-timers alike in overcoming confusion and solving
problems. I'd especially like to thank Ali Çehreli and Adam D. Ruppe,
whose own writings and posts in the newsgroups helped to clarify
some issues I had in exploring corners of D I had rarely touched
before writing this book. Thanks also to Walter Bright and Andrei
Alexandrescu, both of whom have made a number of sacrifices to
further the development of this wonderful programming language.

Finally, I could never have expended the time and energy on this
book that I did without the support of my wife, Mi Kyoung. I owe
her a great many missed dinners and canceled events, along with my
everlasting thanks and love.

About the Reviewers

John Loughran Colvin is an avid programmer and active member of the D
community with multiple projects in flight, including a collaboration aiming to build
a comprehensive base for scientific programming in D (http://dlangscience.
github.io/).

I would like to thank friends and family who keep me sane while I
do all this!

Jonathan M Davis is the primary author of std.datetime in D's standard library,
Phobos, and is one of Phobos' core contributors. He is a professional developer and
has experience in a number of programming languages, including C++, Haskell,
Java, and D. For better or worse, he's well known in the D community for answering
questions and being long-winded. He currently resides in California.

Kingsley Hendrickse is a polyglot software developer who specializes in
building software using agile principles. His career began in the late '90s where he
focused primarily on functional and automated testing but gradually expanded into
agile and software engineering while working at ThoughtWorks.

After many years programming in Ruby and Java, he was introduced to the D
language while looking for new challenges. He has a wide range of development
interests and is currently focusing on web development using Scala, D, and
JavaScript using a functional programming style.

He has spent the last decade working for a wide range of prominent banking
and financial companies.

http://dlangscience.github.io/
http://dlangscience.github.io/

Steven Schveighoffer has a bachelors degree in computer science from WPI, and
has 16 years of experience working on various systems from small microcontrollers
to enterprise servers. He has been active in the D community since 2007 and has
made several major contributions to the D language and runtime.

Steve is a principal software engineer at National Resource Management Inc.,
an energy savings company (http://www.nrminc.com/).

http://www.nrminc.com/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 xi
Chapter 1: How to Get a D in Programming	 1

Say hello to D	 2
An introductory program	 3
Getting help	 7

The Digital Mars D compiler	 9
Frontends, backends, and linkers	 9
Installing DMD	 11

The Windows installer	 11
Installing from the ZIP	 12

Compiling the example	 13
Documentation and source code	 14

The documentation	 14
The source	 16

Say hello to MovieMan	 16
The problem	 17
The features	 17

DUB – the D build tool and package manager	 18
Getting started	 19
Configuring the MovieMan project	 20

Understanding dub.sdl	 21
Building and running MovieMan	 22
Changing the output directory	 24

Summary	 24
Chapter 2: Building a Foundation with D Fundamentals	 25

The very basics	 26
Identifiers	 26
A note about scope	 26
More on modules	 28

Table of Contents

[ii]

Module declarations	 28
More about import declarations	 30
The special package module	 32

Comments	 33
Variable declaration and initialization	 34

Basic types	 35
The types	 36
Literals	 37

Integer literals	 37
Floating-point literals	 38
Character literals	 39

Conversions	 39
Alias declarations	 41
Properties	 41

Basic operators	 43
Arithmetic operators	 43
Bitwise operators	 44
Relational and logical operators	 45
The cast operator 	 46

Derived data types	 46
Pointers	 46
Arrays	 48

Array basics	 48
Rectangular arrays	 51
Slices	 53
Array literals	 56
Arrays and void	 57
Array operations	 57

Strings	 60
String essentials	 60
Alternative string literals	 62

Associative arrays	 64
Control flow statements	 65

Traditional loops	 66
The foreach loop	 67
Traditional conditionals	 68
The goto statement	 71

Type qualifiers – const and immutable	 72
The contracts	 72
With the basic types	 72
With pointers	 73
With arrays	 75

Table of Contents

[iii]

Conversions	 76
Functions	 76

Overloaded functions	 78
ref and out	 78
inout parameters	 81
lazy parameters	 82
Function attributes	 83
Return statements and memory	 83
Function pointers and delegates	 85

MovieMan – first steps	 87
The io module	 87
The app module	 91

Summary	 92
Chapter 3: Programming Objects the D Way	 93

User-defined types	 93
Enumerations	 93
Unions	 95
Structs and classes	 95

Working with objects	 98
Encapsulation with protection attributes	 98

Public	 98
Private	 99
Package	 100
Voldemort types	 101

Constructors and destructors	 102
Class constructors and destructors	 102
Struct constructors and destructors	 105
Static constructors and destructors	 108

Inheritance and polymorphism	 110
Interfaces	 113
Fake inheritance	 114

Nested classes	 115
Objects with const and immutable	 116

const as a storage class	 118
Error handling	 118

Scope guards	 118
Exception handling	 119

Contract programming and unit tests	 122
Assert contracts	 122
Function contracts	 123
Invariants	 123
Unit tests	 125

Table of Contents

[iv]

MovieMan – adding menus	 126
The Menu base class	 126
The MainMenu class	 128
The DisplayMenu class	 130

Summary	 130
Chapter 4: Running Code at Compile Time	 131

Pragmas	 132
The lib pragma	 132
The msg pragma	 133
The inline pragma	 134

Conditional compilation	 134
The version condition	 134
The debug condition	 137
The static if condition	 138

Compile-time strings	 139
The import expression	 139
String mixins	 140

Compile-time function execution	 141
Odds and ends	 145

static assert	 145
The is expression	 146
Alignment	 147
Compile-time reflection	 153
User-defined attributes	 154

Summary	 157
Chapter 5: Generic Programming Made Easy	 159

Template basics	 160
Templates as code blocks	 160
Struct and class templates	 163
Enum templates	 166
Function templates	 166

Special features	 168
More template parameters	 169

Value parameters	 169
Alias parameters	 170
This parameters	 172

Beyond the basics	 173
Template specializations	 173

Specialization on pointers and arrays	 175
Template constraints	 177
Template mixins	 178

Table of Contents

[v]

Variadic templates	 180
Terminology	 182
More on usage	 184

Operator overloading	 186
Non-templated operator overloads	 186

Comparison overloads – opEquals and opCmp	 186
Function call overloads	 189
Assignment overloads	 190
Index overloads	 191

Templated operator overloads	 192
Unary overloads	 192
Binary overloads	 193
Cast overloads	 195
Operator assignment overloads	 195
Slice operator overloads	 196

Other overloads	 198
opDispatch	 198
opApply	 200
toHash	 201

MovieMan – the database	 202
db.d	 202
Back to the menus	 204

Summary	 206
Chapter 6: Understanding Ranges	 207

Ranges defined	 207
The problem	 208
The solution	 210

The interface	 210
A range for arrays	 212
The implementation of filter	 213
The test	 215

The real ranges	 216
Input ranges	 216
Forward ranges	 218
Bidirectional ranges	 219
Random-access ranges	 219
Output ranges	 220
Optional range primitives	 221

Ranges in use	 223
Custom ranges	 224

Getting a range from a stack	 224
A name generator range	 226
Other considerations	 228

Custom algorithms	 229
Summary	 230

Table of Contents

[vi]

Chapter 7: Composing Functional Pipelines with Algorithms
and Ranges	 231

Functional programming and composable pipelines	 232
A simple example	 233
A more complex example	 236
Sometimes we can't	 238

Navigating Phobos	 239
std.range	 239

Generative ranges	 240
Selective ranges	 242
Compositional ranges	 244

std.algorithm	 247
Comparison	 247
Iteration	 249
Mutation	 251
Searching	 253
Set operations	 254
Sorting	 255

std.array	 257
Appender	 257
assocArray	 258
join	 258

Where to look for more	 259
MovieMan – wrapping up	 259

The db module	 259
The display menu	 263
Making it better	 268

Summary	 268
Chapter 8: Exploring the Wide World of D	 269

Online resources	 270
DWiki	 270
Planet D	 270
reddit and StackOverflow	 270
This Week in D	 271
DConf	 272
DSource	 273

Editors and IDEs	 274
Text editors	 274

Vim and Emacs	 274
Textadept	 274
Sublime Text	 275

IDEs	 276
Visual D	 276

Table of Contents

[vii]

Mono-D	 276
DDT	 276
Code::Blocks	 277

Tools and utilities	 277
DMD	 277

Optimized and debug builds	 277
Changing the default output	 278
Compiling libraries	 278
Using libraries	 279
Warnings	 281
Profiling	 281
Code coverage analysis	 283
Compile and run	 285

GDC and LDC	 285
GDC	 285
LDC	 286

RDMD	 286
DustMite	 287
DCD	 289
DVM	 289

Libraries	 290
code.dlang.org	 290

Using libraries from the DUB registry	 290
Registering libraries with the DUB registry	 293
Browsing the DUB registry	 296

Deimos and DerelictOrg	 296
Summary	 297

Chapter 9: Connecting D with C	 299
Preliminaries	 300

Terminology	 300
Bindings, wrappers, and ports	 300
Dynamic and static – context matters	 302

Object file formats	 305
Linkage attributes	 307

Name mangling	 307
Calling conventions	 308
Putting it together	 309

Binding D to C	 311
Function prototypes	 312

Manually loading shared libraries	 314
Trying it out	 316

C types to D types	 319
Strings and characters	 320
Special types	 320
Enumerations	 321

Table of Contents

[viii]

Structures	 322
Pointers	 325
Type aliases	 326
Function pointers	 327
Defined constants	 329
Function parameters and return types	 329
Symbols	 331
Global variables	 332
Macros	 333
Conditional compilation	 337

Calling C from D	 339
D arrays and C arrays	 339

Basic arrays	 339
Arrays of arrays	 342
Strings	 344

Memory	 346
C callbacks and exceptions	 347

Calling D from C	 349
Summary	 351

Chapter 10: Taking D Online	 353
The software	 354

vibe.d	 354
Package overview	 354
The anatomy of a vibe.d web app	 355

The database library	 357
MovieManWeb	 359

Getting started	 360
The basics of diet templates	 363

Tags and indentation	 364
Including and extending templates	 366
The MovieManWeb layout	 368

Setting up the database	 370
Fleshing out the index page	 374

Mapping web interface functions to URLs	 374
Rendering diet templates	 375
Rewriting index.dt	 376

Adding movies	 377
Implementing the addMovie function	 378
Implementing the postAdd function	 380
Implementing add.dt	 382
Modifying index.dt	 383
Modifying app.d	 385
Modifying layout.dt	 385

Table of Contents

[ix]

Listing movies	 386
Implementing the listMovies function	 386
Modifying the index function	 388
Modifying index.dt	 389

Finding movies	 391
Implementing the postFind function	 391
Implementing find.dt	 392
Modifying index.dt	 393
Modifying app.d and layout.dt	 394
Implementing the findMovie functions	 394

Editing and deleting movies	 397
Expanding on MovieManWeb	 399

Summary	 400
Chapter 11: Taking D to the Next Level	 401

Concurrency	 402
Threads and fibers	 402

Threads	 402
Fibers	 403

Data sharing	 404
__gshared	 405
Shared	 405

Synchronization and atomics	 406
Automatic synchronization	 406
Manual synchronization	 408
Atomics	 408

Message passing	 408
Parallelism	 409
More information	 411

SafeD	 411
Functional purity	 413
The garbage collector	 414
Connecting with C++	 415
More on Phobos	 416

std.container	 416
std.datetime	 417
std.digest	 417
std.experimental	 417
std.getopt	 418
std.process	 419
std.socket	 419
Modules for Unicode and other encodings	 419
System bindings	 420

Table of Contents

[x]

Game development with D	 420
The future of D	 421
Summary	 422

Index	 423

[xi]

Preface
Walter Bright first released the D programming language into the wild on December
8, 2001. Three weeks later, seven more iterations of the compiler had been uploaded
to the Digital Mars website, incorporating fixes for bugs reported by users who had
already begun experimenting with this exciting new language. In the years since,
enthusiasts have continued to actively participate in D's development, pushing the
language through two major versions and numerous compiler releases. D is very
much a community-driven programming language.

This book aims to bring you up to speed with D to the degree that you can be
confident in developing your own D programs and, if you are so motivated,
participate in activities that drive the language forward. It is assumed that you
already have some familiarity with other languages similar to D, such as C++ or
Java, and have some familiarity with working with the command line. With this in
mind, fewer details will be given for the features of D that are similar to those of
other C-family languages and no instructions will be given on how to perform basic
command-line tasks, such as changing directories or setting the system path.

What this book covers
Chapter 1, How to Get a D in Programming, introduces you to the D programming
language and provides instructions for setting up the DMD compiler and the DUB
build tool and package manager.

Chapter 2, Building a Foundation with D Fundamentals, gives an overview of all of D's
foundational features, such as basic types, loop constructs, flow control, and more.

Chapter 3, Programming Objects the D Way, discusses D's support for object-oriented
programming, including aggregate types and interfaces.

Preface

[xii]

Chapter 4, Running Code at Compile Time, provides a tutorial on the compile-time
aspects of D, including its support for Generative Programming and CTFE
(Compile-Time Function Evaluation).

Chapter 5, Generic Programming Made Easy, explores the basics of D's support for
Generic Programming, including templates, template constraints, and mixins.

Chapter 6, Understanding Ranges, introduces the Range concept, which serves
as the core of D's support for functional programming.

Chapter 7, Composing Functional Pipelines with Algorithms and Ranges, explores
several range-based functions in the standard library that can be used to write
functional-style code and reduce memory allocations.

Chapter 8, Exploring the Wide World of D, looks at the D ecosystem, highlighting
specific websites, tools, and third-party libraries.

Chapter 9, Connecting D with C, references how to create D bindings for C libraries to
take advantage of existing codebases.

Chapter 10, Taking D Online, introduces the asynchronous, event-driven networking
and web app framework, vibe.d, through the development of a sample project.

Chapter 11, Taking D to the Next Level, provides a quick look at other language and
library features that can serve as a starting point for further exploration of the D
programming language.

What you need for this book
To compile the code examples in this book, you will need DMD 2.068 or a later
version. To compile the sample projects, you will also need DUB 0.9.24 or a later
version. Installation instructions for both are provided in the first chapter.

In order to download dependencies, the color example in Chapter 8, Exploring the
Wide World of D, and the sample project in Chapter 10, Taking D Online, requires an
Internet connection the first time they are compiled.

Preface

[xiii]

Who this book is for
This book is intended for those with some background in a C-family language who
want to learn how to apply their knowledge and experience to D. Perhaps you're
a college student looking to use D for hobby projects, or a career programmer
interested in expanding your skillset. This book will help you get up to speed
with the language and avoid common pitfalls that arise when translating C-family
experience to D.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"An anonymous enum declaration does not declare a new type."

A block of code is set as follows:

void healthBasedSwap(int[] squad1, int[] squad2) {
 import std.algorithm : sort, SwapStrategy;
 import std.range : chain;
 squad1.chain(squad2).sort!((a,b) => a > b,
 SwapStrategy.unstable)();
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

void healthBasedSwap(int[] squad1, int[] squad2) {
 import std.algorithm : sort, SwapStrategy;
 import std.range : chain;
 squad1.chain(squad2).sort!((a,b) => a > b,
 SwapStrategy.unstable)();
}

Any command-line input or output is written as follows:

dmd hello.d

Preface

[xiv]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

How to Get a D in
Programming

Before diving into the core features of the D programming language, some laying of
groundwork is in order. This first chapter serves as a gentle introduction to D and
as a guide to installing the prerequisite tools of the trade we'll be using throughout
the book. The example program shown here isn't anything earth-shatteringly
amazing, but it does demonstrate a couple of features of D that do not exist in other
languages. The sample project that is developed over the course of the book is also
introduced here, with a look at the motivation behind it and the features that will be
implemented. Here's what you can expect to see:

•	 Say hello to D: This examines a simple D program and gives you advice on
where to go for help with D

•	 The Digital Mars D compiler: This covers how to install and run DMD
•	 Say hello to MovieMan: This is an introduction to the two versions of the

sample project developed throughout the book
•	 DUB—the D build tool and package manager: This covers how to install

DUB and configure it to build the first version of MovieMan

How to Get a D in Programming

[2]

Say hello to D
The D programming language is a multi-paradigm language that belongs to the C
family. Out of the box, it supports aspects of procedural, object-oriented, generic,
generative, and functional programming. That's not to say that it's an OOP language
or a functional programming language, or that it can accurately be pigeonholed into
any specific paradigm. The philosophy of D is to provide a range of tools that allow
the programmer to have efficiency, control, and modeling power while ensuring that
all of the disparate parts work smoothly together. Use object orientation where you
need it, but forgo it for procedural or functional programming in other areas of your
code base and be assured that it will all work together as a cohesive whole. Many
D programmers will tell you that there isn't one specific feature of D that, taken in
isolation, makes the language a pleasure to use. Rather, it's the sum of all the parts
that keeps them writing D code.

New users coming to D from other C-family languages will find a great deal that looks
familiar. That can be reassuring and makes for a good head start on learning some of
D's features; caution is warranted, however. It's tempting to take that familiarity for
granted and try to write D as if it were a more familiar language. For the most part,
things will work as expected. D is, after all, a member of the C family. But in some
cases, this is certain to lead to unexpected compiler errors, or the realization that
some blocks of code aren't behaving in the manner the new D user thinks they should.
In other cases, there is a more idiomatic D approach that can improve readability or
maintainability, particularly when working with the standard library.

To learn a new language effectively, it's necessary to come at it with as close to a
blank slate as possible. Just because features look the same on the surface as they
do in another language, doesn't mean they are the same underneath. Given that
premise, a consistent theme in this book is that D is not C++, Java, C#, or any
language other than D. When you are writing D code, you should be thinking
in D. Several of the code snippets in the book are intended not just to introduce
D features, but to demonstrate explicitly how certain features differ from other
languages. You are encouraged to enter such snippets into an editor yourself,
especially if C++ is already in your muscle memory. Implementing the snippets
as you encounter them and seeing the differences in action makes it more likely
that you'll think in D instead of C++ when working on your own D projects.

Chapter 1

[3]

D started life as the Mars programming language, but Walter's friends
kept calling it D. Eventually, he began to do so as well and the name
stuck (see the D FAQ at http://dlang.org/faq.html#q1 for
background). Neither name lends itself to productive web searches,
but search engines are able to recognize the keyword dlang. Use that in
your list of search terms rather than simply using D and you should be
rewarded with a number of relevant hits.

An introductory program
This section presents a simple D program demonstrating a handful of language
and library features. A brief description of each feature is then given, along with a
reference to the chapter in which it is explained in more detail. Anyone familiar with
C should be able to follow the code rather easily, though there might be a couple of
features that seem unusual. If you happen to find any of it confusing, don't worry
about it for now. Each feature will be explained later in the book.

In preparation for implementing all of the code snippets and examples in this book,
it's a good idea to create a directory somewhere that's easy to navigate to from the
command line—for example C:\LearningD or ~/learningd. However you choose
to name this directory, it will be referred to as $LEARNINGD throughout the book.
Each chapter should have its own subdirectory. The example in this section should
be saved as $LEARNINGD/Chapter01/hello.d.

Note that I prefer to use forward slashes when I type source paths,
unless I'm talking specifically about Windows, which means
Windows users should convert them to backslashes as needed.

Let's look at the example now:

import core.thread;
import std.stdio;
void main() {
 import std.range : iota, retro;
 write("Greeting in ");
 foreach(num; iota(1, 4).retro) {
 writef("%s...", num);
 stdout.flush();
 Thread.sleep(1.seconds);
 }
 writeln();
 writeln("Hello world!");
}

http://dlang.org/faq.html#q1

How to Get a D in Programming

[4]

The first thing to understand is that all D source files serve a purpose beyond just
being text files on your computer. A D source file is also a D module. Most D users
use the terms source file and module interchangeably. A module is one of several
levels of encapsulation in a D program (we'll talk more about encapsulation in
Chapter 3, Programming Objects the D Way). If you compile a D source file named
hello.d, then the compiler will read it into memory and your program will
contain a single module named hello. This is the default behavior. Since we are
implementing a simple one-module program, we'll just accept the default and put off
learning how to override it until Chapter 2, Building a Foundation with D Fundamentals.

The first two lines of the example look like this:

import core.thread;
import std.stdio;

An import declaration tells the compiler to look up a given module, specified by
the name immediately following the import keyword, and then make some or
all of its symbols available within a specific section of the current module. In the
format we use here, in which no symbols are specified, all publicly visible symbols
in the imported module are made available. The location of the declaration is what
determines the section, or scope, in which the symbols will be available. In this case,
since the declarations are in module scope and no specific symbols are listed, the
net effect is that every publicly visible symbol in the core.thread and std.stdio
modules is available for use throughout the entirety of our hello module.

Consider the module name std.stdio. Each part of the name has a defined
meaning. Although the term module name is used to refer to the full name, the
part to the right of the dot, stdio, is the actual module name. The part to the left
of the dot, std, is the name of a package. Packages are used to group modules into
hierarchies. A module can belong to only one package, but that package can be a
subpackage of another package, which can be a subpackage of another package, and
so on. This means you can have multiple package names on the left side of the dot,
such as mylib.data.formats.json. Here, we have three packages and are referring
to a module called json. The package named formats is a subpackage of data,
which is a subpackage of the top-level, or root, package called mylib. There's more to
say about modules and import declarations in Chapter 2, Building a Foundation with D
Fundamentals.

The std and core packages are available with any D compiler; the former is part of
Phobos, the D standard library, and the latter is part of the runtime library, DRuntime.
std.stdio makes available everything needed for basic file I/O, including reading
from standard input (stdin) and writing to standard output (stdout). The module
core.thread provides facilities for creating new threads and affecting the execution of
the current thread.

Chapter 1

[5]

Now take a look at the next line:

void main() {

Every D program requires a function named main. When a program is first launched,
control passes from the operating system to the C runtime and from there to the D
runtime. Finally, main is called and the program takes control. We'll look at this in a
little more detail in Chapter 3, Programming Objects the D Way, when we'll also see that
it's possible to execute code before main is called.

There are four fundamental alternatives for declaring a main function. Which one to
choose is entirely dependent on the requirements of the program:

void main() {}
void main(string[] args) {}
int main() { return 0; }
int main(string[] args) { return 0; }

The first two versions are ultimately equivalent to the latter two; the compiler will
ensure that they actually return 0 upon successful execution. Execution is considered to
fail when an exception is thrown (exceptions are introduced in Chapter 3, Programming
Objects the D Way). For most of the examples in this book, the first signature is all we
need. Except for a couple of snippets later on, we aren't going to parse any command
line arguments, so we can dispense with forms that accept an array of strings. We
also aren't writing any programs that need to pass a return value to the OS on exit, so
we have no need of the versions with the int return.

Windows programmers might be wondering how D handles
WinMain. DRuntime knows only of main, so if WinMain is used
as the program entry point, then all of the initialization normally
carried out by DRuntime must be handled manually. We'll learn
more about DRuntime later.

Let's get back to the code. The next line is another import declaration, one which
differs from the two declarations at the top of the module:

import std.range : iota, retro;

Because this declaration is inside a function, it is called a scoped import. Symbols
made visible by scoped imports are only visible inside the scope in which the
declaration is made. In this case, the symbols are visible only inside main. There's
more to this declaration, though. Notice the colon, followed by iota and retro. In
an import declaration, a colon followed by a comma-separated list of symbols means
that only the listed symbols will be visible. In this case, no symbols from std.range
are visible in main other than iota and retro. We'll see what they do shortly.

How to Get a D in Programming

[6]

It's time for a line that actually puts something on the screen. For that, we're going to
invoke a handy and very flexible function from the std.stdio module:

write("Greeting in ");

The write function is one of a handful of functions that print text strings to standard
output. It's analogous to the C standard library function puts, but it differs in that
it can take any number of arguments of any type. Each argument will be printed in
the order they are given to the function, with no spaces added between them. For
example:

write("Happy ", 100, "th birthday to", "you!")

This prints the text Happy 100th birthday to you!.

The next line introduces three items:

foreach(num; iota(1, 4).retro) {

The foreach loop is a loop construct that can be used to iterate over a range. iota is
a function that returns a range of numbers, in this case from 1 to 3. retro is a function
that takes a range as input and returns a new one containing the elements of the
original range in reverse order. The ultimate result of this line is a loop iterating over
the numbers 3, 2, 1. The foreach loop is described in Chapter 2, Building a Foundation
with D Fundamentals. The entirety of Chapter 6, Understanding Ranges, is devoted
to explaining ranges, an integral part of D. Both the iota and retro functions are
described in Chapter 7, Composing Functional Pipelines with Algorithms and Ranges.

It's worth noting here that iota(1, 4).retro is the same as retro(iota(1, 4)).
The former syntax is possible because of a feature called Uniform Function Call
Syntax (UFCS). Given a function func and a function argument arg, func(arg)
can be written as arg.func(). You'll learn more about UFCS in Chapter 2, Building
a Foundation with D Fundamentals.

Next up are the three lines of the foreach loop:

writef("%s...", num);
stdout.flush();
Thread.sleep(1.seconds);

The writef function is a variation of write that prints a formatted text string to
standard output. It's analogous to the C standard library function printf; with
.stdout is a global instance of a type called File, both of which are declared in
std.stdio.

Chapter 1

[7]

When writing to a file handle, the operating system buffers text internally for
efficiency. Normally, when the handle belongs to a console or terminal, line buffering
is enabled. This means that the buffer is flushed when a newline character is printed
to the output stream. In this example, calling flush manually flushes the buffer in
order to achieve the effect of having one number printed per second; otherwise, it
would all be printed at once after the loop exits and the first call to writeln executes.
This effect is regulated by the call to Thread.sleep, which causes execution of the
process to pause for one second.

Note that the call to Thread.sleep is not using UFCS. Thread is a class, and sleep is a
static member function. 1.seconds, however, does use UFCS. The function seconds is
declared in a runtime module named core.time. This module is imported indirectly
by core.thread such that all of its symbols are visible. 1.seconds is the same as
seconds(1) (parentheses on function calls are sometimes optional). This function
returns an instance of the Duration type, which sleep uses to determine how long
to pause the current thread. Public imports and function call syntax are discussed in
Chapter 2, Building a Foundation with D Fundamentals. Classes and member functions are
introduced in Chapter 3, Programming Objects the D Way.

Finally, the last two lines of the example:

writeln();
writeln("Hello world!");

The writeln function is identical to write, but has one additional feature: it appends
a newline character to the output. Here, we call it twice. The first call appends a
newline to the text that was written in the loop, while the second prints the greeting.
This could be condensed to one line as writeln("\nHello world!"). Note that
there is also a formatting version of this function called writefln.

In order to verify that this program works as expected, it will need to be compiled
and executed. Instructions on how to do so will be discussed later in the chapter.

Getting help
In your journey with D, you're inevitably going to need assistance. There are a
couple of primary online locales where experienced D users can be found answering
questions from not-so-experienced D users and having fierce debates about language
features, as passionate programmers are known to do.

How to Get a D in Programming

[8]

The first place any new D user should look is http://forum.dlang.org/. This isn't
a self-contained forum as the URL implies, but rather a web interface to a newsgroup
server maintained by Digital Mars. If you ever find yourself wondering why you
can't edit or delete posts in the D forums, this is why. The forum targeting new users
is digitalmars.D.learn, project and major news announcements are made in
digitalmars.D.announce, while digitalmars.D is where you can go to witness or
participate in discussions about the state of the language and its future direction. As
you become more familiar with D and its ecosystem, some of the other forums might
start to be of interest to you.

The web interface called DFeed was developed in D by an active
community member named Vladimir Panteleev. You can find the
source for DFeed at https://github.com/CyberShadow/DFeed.

If the web interface doesn't do it for you, there are other options to access the forums.
Given that the primary backend is a newsgroup, you can set up an account in a
newsgroup reader for news.digitalmars.com and select the newsgroups you're
interested in following. Alternatively, you can point your browser at http://lists.
puremagic.com/mailman/listinfo and subscribe to forums of interest via the
mailing list interface. Again, the mailing lists are collectively an alternative interface
to the newsgroups and not a completely independent entity.

The D community is generally helpful and friendly to those asking
questions in the digitalmars.D.learn forum. You should never
feel hesitant about asking questions in the D forums. Experienced
users drop by regularly, willing to answer the most basic questions.
You can also find a number of D users idling in the #D IRC channel.
If you have an IRC client, #D is located at http://freenode.net/.
Anyone there can answer your questions about D. I've never been
much of an IRC user, but I do drop by #D now and again. Whenever
I'm around, I'll be happy to answer questions about this book or any
of my other D projects. I'm usually found under the handle aldacron
in IRC and my real name in the forums.

http://forum.dlang.org/
https://github.com/CyberShadow/DFeed
http://lists.puremagic.com/mailman/listinfo
http://lists.puremagic.com/mailman/listinfo
http://freenode.net/

Chapter 1

[9]

The Digital Mars D compiler
DMD is the reference compiler for the D programming language. Created by Walter
Bright, it is still maintained by him with the help of a handful of talented volunteers.
It's not the only D compiler out there. GDC is built on top of the GNU Compiler
Collection (GCC) and LDC uses the LLVM toolchain. Both compilers were created,
and continue to be maintained, by members of the D community. As you write
more D code, you'll find that DMD has blazingly fast compile times, while GDC and
LDC produce highly optimized executables that tend to have better performance
(though they are far from slow in terms of compilation speed). Because of this, it's not
uncommon for D programmers to use DMD during development of a new project
to take advantage of the faster compile times, then use one of the other compilers to
build the final release and benefit from the more advanced optimizations. That said,
we're going to be focused exclusively on DMD in this book. The code snippets and the
sample project should compile with GDC or LDC just fine, but any compiler-specific
instructions in the text will be for DMD.

There is nothing complex about installing DMD. Before we make that happen, it's
important to understand a couple of things about how DMD works.

Frontends, backends, and linkers
One of the primary goals Walter established during D's early development was that it
must be binary-compatible with C. Essentially, this means that it should be possible to
compile a C source file with a C compiler and combine the output into a program that
is written in D and compiled with a D compiler, or vice versa. To achieve this goal,
output from a D compiler has to be in a format that C toolchains can understand. An
in-depth discussion of compiler technology is quite a long way beyond the scope of
this book, but it's necessary to have a minimal understanding of a small part of it in
order to make DMD work for you more effectively.

Compilers typically have two major components that work together to create the
final output: the frontend and the backend. The frontend is tied directly to a specific
language. It takes source code as input and transforms it into an intermediate,
language-agnostic format as output. The backend is tied to a specific platform.
It takes the transformed code from the frontend as input and generates machine
code as output, typically in the form of object files. Once the object files are created,
ultimately one of two things will happen: either they are passed to a tool that
links them into a final executable or they are passed to a tool that packs them into
a library. The former tool is called a linker and the latter is called a librarian or
archiver, though it's possible for one tool to perform both tasks.

How to Get a D in Programming

[10]

For Walter to achieve his goal of binary compatibility with C, he opted to make
use of existing toolchains where possible. This way, he could expend most of his
effort on the frontend, the part that actually deals with D source code, and leave the
rest to existing, tried-and-tested tools. He was already in the C and C++ compiler
business—the company he owns, Digital Mars, distributes the Digital Mars C and
C++ Compiler (DMC)—so he had his own existing backend and linker sitting on
his hard drive. Appropriately, he began to implement a D frontend and hooked it
up with the DMC backend to create DMD. Since the Digital Mars C(++) toolchain
is Windows-specific, other options needed to be considered when it came time to
port DMD to additional platforms. Walter's solution was to modify the backend to
generate the appropriate output for each target platform, then have the compiler
make use of each platform's system linker and librarian to generate the final binaries.

Running DMD on POSIX systems is a straightforward process. Since the compiler
uses the system toolchain to create the final output on each system it supports, things
tend to work smoothly without any conflicts. This includes support for both 32- and
64-bit output. The story on Windows isn't quite so rosy.

In this book, POSIX is used to describe any non-Windows,
Unix-like system supported by DMD, whether they are 100
percent POSIX-certified or not. That includes Linux, Mac OS X,
and the various BSDs.

The problem is that the Digital Mars linker, OPTLINK, is ancient. It uses an object file
format that is incompatible with most modern C and C++ toolchains. We'll explore
this issue in more detail in Chapter 9, Connecting D with C, because it's an important
thing to understand when interacting with C. Another point about OPTLINK is
that it only supports 32-bit output. 64-bit support was implemented on Windows
by giving DMD the ability to generate object files in a format understood by the
Microsoft toolchain.

The major upside of this approach is that it eliminates the annoyances that come
from conflicting object file formats on Windows, at least when compiling 64-bit
binaries with the -m64 command line switch. The downside is that compiling 64-bit
binaries with DMD now requires the installation either of a version of Windows
SDK that includes the MS tools, or a non-Express version of Microsoft Visual Studio.
DMD cannot be a completely self-contained distribution for 64-bit development
on Windows. As of DMD 2.067, the Microsoft tools can also be used in place of the
default Digital Mars toolchain to generate 32-bit binaries by passing a command line
switch, -m32mscoff, to DMD.

Chapter 1

[11]

Installing DMD
Installing the very latest release of DMD is always dead easy. Simply point your
browser to http://dlang.org/download.html and pick your poison. Several
options are available, including an installer for Windows, a DMG file for Mac OS X,
deb packages for Ubuntu and Debian, RPM files for Fedora, CentOS and openSuse,
and ZIP files for each of those platforms plus FreeBSD.

DMD is also available from the package repositories of most Linux systems, as
well as through homebrew and macports for OS X users and the ports tree for BSD
systems. If it isn't available in your platform's package repository, or if it's outdated,
choose the appropriate package for your platform from the download page. The
ZIP file is a good choice when you want more control over where the compiler is
installed. Here, we're going to note a couple of specific points related to the Windows
installer, then we'll see how to install from the ZIP file.

The Windows installer
Either a version of the Windows SDK that ships with the Microsoft linker or a non-
Express version of Microsoft Visual Studio must be installed in order to compile
64-bit apps (or to use the -m32mscoff option) with DMD on Windows. It will help
a great deal if one of these is installed before installing DMD. This way, the DMD
installer can automatically find where the MS tools are located and configure the
compiler to use them. If DMD is installed first, then its configuration file, sc.ini,
must be manually edited for it to find them.

Older versions of the Windows SDK shipped with a complete
compiler toolchain. Since the release of the Windows 8 SDK, that is
no longer the case. The Express versions of Visual Studio include the
toolchain, but do not ship with the system libraries needed by DMD.
Installing the Windows 8, 8.1, or 10 SDKs with a version of Visual
Studio Express will provide everything necessary. When using an
older version of the SDK, no additional software needs to be installed.
A better option is to install a non-Express version of Visual Studio.
The Community versions are available for free. These include
everything DMD needs in one package. Support for VS 2015 was
added in DMD 2.069.

The DMD installer will also ask if you want to install Visual D. This is a Visual
Studio plugin developed by Rainer Schuetze. While I strongly recommend that you
use a text editor and the command line to work through the code samples in this
book in order to better familiarize yourself with DMD, you might find Visual D quite
useful later on, especially if you enjoy using Visual Studio.

http://dlang.org/download.html

How to Get a D in Programming

[12]

Installing from the ZIP
Installing from the ZIP file isn't difficult, but requires a bit of manual manipulation
for things to work easily from the command line. The required steps differ across
platforms. We'll start with how to install from the zip on Windows before looking
at installation on the supported POSIX platforms.

The Windows ZIP
Unzip the files into any directory. I recommend something short and easy to
remember, such as C:\D (this is the default location used by the installer). Optionally,
add the windows\bin subdirectory to the system PATH. Assuming you've unzipped
in C:\D, the full path would be C:\D\dmd2\windows\bin.

The Windows version of DMD is distributed as a 32-bit program and can compile
both 32-bit and 64-bit binaries. By default, it is configured to compile 32-bit using
OPTLINK. If you're happy with that, there's nothing else to do. 64-bit binaries
can be compiled by passing -m64 on the command line when invoking DMD but,
as described, the MS toolchain will have to be installed for it to work. After the
MS tools are installed, open the C:\D\dmd2\windows\bin\sc.ini file in a text
editor. There, you'll find a block of instructions on how to configure DMD to use
the Microsoft tools. Several of the standard Windows SDK and Visual Studio
paths are already preconfigured, with most of them commented out. If the default,
uncommented paths do not match your version of the Microsoft toolchain, it should
be enough to comment out those lines by adding a semicolon, ;, in front of each
and uncommenting the lines that match your installation by deleting the existing
semicolons from in front of them. At this point, I'd like to remind you that the DMD
installer takes care of all of this for you.

On every supported platform except Windows, the DMD
configuration file is called dmd.conf. On Windows, it's called
sc.ini to maintain compatibility with the Digital Mars toolchain
that DMD uses by default.

The POSIX ZIPs
On the three POSIX systems supported by DMD (Mac OS X, Linux, and FreeBSD),
it's not uncommon to extract the ZIP in the home directory. This will result in a ~/
dmd2 directory. The easiest thing to do with this is to leave the binaries where they
are and add the appropriate subdirectory to the system PATH variable.

Chapter 1

[13]

The Linux ZIP file contains both 32-bit and 64-bit versions of DMD; the Mac OS X
ZIP file contains a 64-bit version of DMD; for FreeBSD, there are two ZIP files, one
for 32-bit and one for 64-bit DMD. Choose the appropriate path from among the
following to add to your system PATH variable:

•	 ~/dmd2/linux/bin32

•	 ~/dmd2/linux/bin64

•	 ~/dmd2/osx/bin

•	 ~/dmd2/freebsd/bin32

•	 ~/dmd2/freebsd/bin64

A 32-bit DMD will compile 32-bit apps by default, and a 64-bit DMD will compile
64-bit by default. For all versions of DMD, the command line flag -m32 will force
32-bit compilation and -m64 will force 64-bit compilation.

Compiling the example
With all of that background out of the way, it's time to get down to business. Open
a command prompt and navigate to the directory where you saved the example. If
you followed my advice, that should be $LEARNINGD/Chapter01. Now execute the
following command:
dmd

If the PATH variable is properly configured, you should see the compiler print a
header containing copyright information and the compiler version, followed by a list
of supported command line options and a brief description of each (you might need
to scroll up to see all of it). Now try this:
dmd hello.d

If you see errors or are unable to get DMD to run, head to the digitalmars.D.learn
forum introduced earlier and ask for help. Otherwise, you should find yourself the
proud parent of a brand new executable binary, called either hello or hello.exe,
in the current directory. This is what its output looks like for me from the Windows
Command Prompt:

How to Get a D in Programming

[14]

You've now successfully compiled and executed a D program. It took you two
commands to do so, but it doesn't have to be that way. DMD has a number of useful
command line options, some of which are tied closely to language features. Other
options are independent of language features and instead control the location or
format of the final output, or instruct the compiler to perform a specific task. One
such option, -run, is useful for trying out short examples like the ones you'll see in
this book.

When DMD is executed with the -run option, it creates an executable in the current
directory as normal. The difference is that -run causes the compiler to immediately
execute the program and then delete the executable after the program exits. Try it on
the hello.d example and see. This will save you from the execution step every time
you want to compile and run an example.

Documentation and source code
In addition to several useful tools, the DMD distribution ships with some HTML
documentation and the source code for the compiler, DRuntime, and Phobos. Both
docs and source can be beneficial even after becoming familiar with D, but especially
so while learning it.

The documentation
In the root directory where you installed or unzipped DMD, you'll find a subdirectory
called html. Open the html/d/index.html file in a web browser and you'll see the
front page of the documentation for your version of the compiler. The documentation
for the latest compiler release is also available online at http://dlang.org/. In the
navigation bar on the left-hand side of the page, as seen in the following screenshot,
look for the links named D Reference and Standard Library; the former is the place
to look up information about language features, the latter is the documentation for the
DRuntime and Phobos libraries:

Chapter 1

[15]

Now and again, you might find that the documentation for a function or a language
feature isn't clear. Sometimes, it isn't as descriptive as it could be, or refers to
functionality that has changed. Keep in mind that D is a community-driven language
that relies on users to help by reporting problems or contributing fixes. If you'd like
to contribute, documentation fixes can be submitted as pull requests at https://
github.com/D-Programming-Language/dlang.org, and bug reports can be filed
at https://issues.dlang.org/ under the websites component. Once that's out of
the way, you still need to solve the problem that caused you to look in the docs in
the first place. You can do that by visiting the forums and asking for help, or often by
going right to the source.

https://github.com/D-Programming-Language/dlang.org
https://github.com/D-Programming-Language/dlang.org
https://issues.dlang.org/

How to Get a D in Programming

[16]

The source
At the same level as the html directory lives another directory labelled src. Open
it up and you'll see subdirectories called dmd, druntime, and phobos. In each is the
source code for the eponymous project. I don't expect readers of this book to start
modifying the compiler just yet, but you might want to read the files src/dmd/
readme.txt and src/dmd/backendlicense.txt to understand the licenses of
the DMD frontend and backend source. More immediately useful is the source for
DRuntime and Phobos, which is all released under the Boost Software License.

As you're learning D, taking a peek at a function's implementation can help clarify
its usage if the documentation comes up short. Later, studying the Phobos source can
be a great way to learn some D idioms and other useful tricks. At some point in your
D career, you might be interested in exploring what DRuntime does under the hood
to manage your program. In the beginning, you'll likely find more benefit from the
source in the core package. core is the primary DRuntime package, the part of the
runtime that users directly interact with. We won't spend a lot of time on core in this
book, but there will be brief discussions about a few of the modules it exposes as the
need arises.

The source that ships with each DMD release is the source for that specific version
of the compiler. Once a new version is out the door, development continues toward
the next release. All such development happens at GitHub, specifically in the D
Programming Language organization at https://github.com/D-Programming-
Language. Here, you can find projects for the compiler, Phobos, Druntime, the
website, and several tools and utilities, including the Windows installer, Visual D,
and DUB (which we'll look at shortly). If you enjoy contributing to open source
projects and also enjoy using D, there are many ways to contribute aside from
committing your own source modifications. The quickest way to get started is to
report bugs at https://issues.dlang.org/, or to review contributions at GitHub.
The more users contribute, the faster the language moves forward.

Say hello to MovieMan
Example code and snippets are quite suited to the role they play in a book such as this:
highlighting the usage of a language feature in the context of an explanation about that
feature. What they aren't ideal for is showing the big picture, or reinforcing how all the
disparate language features work together. That role is best played by a sample project
that is developed over the course of the book.

Chapter 1

[17]

In deciding what sort of program to develop as the sample project, I had a few
goals in mind. Most importantly, it should be easy for the reader to follow,
shouldn't be too time-consuming to implement, shouldn't have any third-party
library dependencies, and should serve as a demonstration of as many D features
as possible. I finally settled on something that I think fits each requirement to some
degree. Few readers will find it immediately useful in its final form, but that's no
problem. A practical post-book D project is to modify or extend the sample to tailor it
to a specific, customized use case.

The problem
A few months before I started on this book, my wife and I moved house. Though I
rarely buy new DVDs these days, I've assembled a modest collection of them over
the years. I was more than a little obsessive about keeping them in their original
cases, so I kept them lined up on a number of shelves, loosely organized around
genre or leading actor/actress. That is just untenable in the long run. They take up
too much space and they're a pain to pack when relocating. Even so, I'm reluctant to
rip them to cloud storage and throw them all out. Motivated by the move, I bought
several multi-disc cases (the kind with a zipper on the outside and several CD/DVD
sleeves on the inside) and transferred each disc from its original case into one of the
new ones.

This was something I just wanted to get done, so I only made a meager effort to
organize the cases. The result is that it's no easy thing to find a particular DVD.
Since the move, I've had it in the back of my mind to whip up a program I can use
to organize things, but I've continually put it off as it isn't a big priority. This book is
the perfect excuse to get it done. So you and I are going to create a program that can
allow me to organize my DVDs. I'm going to call it MovieMan (for Movie Manager)
because that sounds much better to me than DVDMan.

The features
We're going to develop two versions of the program. In order to keep the size and
complexity of the program manageable, the first version will be a command-line
program with a limited number of features. The user will be able to:

•	 Enter a movie title, a case ID, and a page (sleeve) number
•	 Find and display movies by title
•	 List all movies in a given case
•	 List all movies on a given page of a given case
•	 List all movies

How to Get a D in Programming

[18]

We'll implement this first version piece by piece, adding new functionality as we
learn about the language features we'll use to implement it. We'll complete the
program in Chapter 7, Composing Functional Pipelines with Algorithms and Ranges.

In Chapter 10, Taking D Online, we'll spend the entire chapter developing a different
version of the program as a web application using a library called vibe.d. The
purpose of this version isn't to demonstrate language features, but to show how
to develop web apps with vibe.d. We'll relax our requirement about third-party
libraries (vibe.d is a library, after all) and make use of a database API to store the
movie data. We'll also add support for editing movies and deleting them from
the database. By the end of the book, you'll have two fairly simple programs that
illustrate how several D features work together.

DUB – the D build tool and package
manager
There is nothing challenging about compiling simple D programs with DMD on the
command line, but things can get a bit out of hand as a project grows. A complex D
program will be composed of numerous modules and can be dependent on several
third-party libraries. There are a number of approaches that users have taken to
compile their D projects. Some use makefiles or existing tools that have some form
of support for D, such as CMake or SCons, and a few have even created their own
build tools from scratch. For several years, I used a custom build script written in
D for most of my projects.

In the past, having so many different approaches for building D code could
sometimes be a bit of an annoyance for users of D libraries, particularly when
using multiple libraries that each had a different build system. Users of a library I
maintain often asked me to add support for different build systems to better match
their own workflow, something I was extremely reluctant to do since learning,
implementing, and maintaining such support would cut into my already scarce free
time. Thankfully, this is one growing pain that the D community has left behind. In
this section, I'm going to introduce you to DUB, which has fast become a central part
of the D ecosystem.

Created by Sönke Ludwig, DUB provides a unified approach to building D projects.
To facilitate this, it also serves as a distribution platform. Anyone with a D library
can share it with the world by creating a DUB configuration for it and registering
it in the DUB registry. Subsequently, any DUB user can use the library by adding
a single line to her project's DUB configuration file. It can also be used to easily
distribute open source executables. Potential users can use one DUB command to
download, compile, and run a D program.

Chapter 1

[19]

In Chapter 8, Exploring the Wide World of D, we're going to look at the DUB registry
and see how to use DUB-enabled libraries in your own projects as we take a tour of
the D ecosystem. Now, we're going to set up a DUB configuration specifically for
MovieMan, but the same steps can be applied to any new project you create.

Getting started
DUB is available in most of the common package repositories and the latest
release can always be found at http://code.dlang.org/download. Download the
appropriate tarball, installer, or ZIP file for your platform. Installing from ZIP or
tarball generally requires no special steps beyond unzipping the files to a directory
of your choice (such as C:\dub or ~\dub) and ensuring the directory is on your PATH.
POSIX systems will also need to have some prerequisites installed, so be sure to read
the instructions on the download page. The Windows installer and ZIP both come
bundled with all dependencies.

Once the program is installed and PATH is properly configured, open a command
prompt and type the following command:

dub -h

If all goes well, you'll see a list of commands and command-line options (you will
likely have to scroll up to see the whole thing). The command-line options are
generic, meaning they can be passed to dub with any DUB command.

DUB usage revolves around commands. The default behavior when no commands
are specified is to build and run any DUB project in the current directory. Unlike
command-line options, DUB commands have no preceding dash. You can get
help on any DUB command by passing its name to dub followed by -h or --help
(the former is a synonym for the latter). For example, to get help with the build
command, type the following:

dub build -h

This will print a brief description of the command, along with any command-specific
arguments it accepts, followed by the same list of common command-line options
you saw with dub -h. Much of what you need to know to get started with DUB on
the command line can be gleaned from using the -h option. If you get stuck, you can
ask for help in the DUB forums at http://forum.rejectedsoftware.com/groups/
rejectedsoftware.dub/.

http://forum.rejectedsoftware.com/groups/rejectedsoftware.dub/
http://forum.rejectedsoftware.com/groups/rejectedsoftware.dub/

How to Get a D in Programming

[20]

Configuring the MovieMan project
It's possible to set up a new project by hand, but DUB can set up a common directory
structure and an initial configuration with a simple command called init. By
default, with no arguments, init will create a new project using the current working
directory as the project root and the name of that directory (not the full path) as the
project name. If an argument is given to init, DUB will use it as the project name
and create a new subdirectory of the same name in the current directory. Let's do
that now for MovieMan.

Navigate to $LEARNINGD/Chapter01 and execute the following command:

dub init MovieMan

Listing the contents of the MovieMan directory shows the following:

09/20/2015 12:31 PM <DIR> .

09/20/2015 12:31 PM <DIR> ..

09/20/2015 12:31 PM 38 .gitignore

09/20/2015 12:31 PM 120 dub.sdl

09/20/2015 12:31 PM <DIR> source

DUB has generated three files and one subdirectory in the project directory tree. You
can see two of the files in the preceding output. The third file, app.d, is inside the
source subdirectory.

DUB is tightly integrated with Git, a distributed source control system. The
.gitignore file is used to tell Git to pay no attention to files whose names match
certain patterns. DUB is helping out by generating this file and including some file
types that aren't commonly included in source control, but that might be created as
part of the build process. For our purposes, we can ignore .gitignore.

By default, when running DUB in a project directory, it searches for the project
source files in the source subdirectory. Also by default, it expects to find the
source/app.d file. If this file exists, an executable will be built; if not, DUB compiles
a library. The app.d that dub init generates for us isn't empty. It contains a main
function that prints a line of text to the screen.

Sometimes, you might want to add DUB support to an existing project where it
might be problematic to change the directory structure or rename the main module
to app.d, or perhaps you just don't want to follow the convention that DUB expects.
No matter your reasons, all of the defaults in the preceding paragraph can be
overridden in the configuration file, dub.sdl. As you gain more experience with
DUB, you'll learn how to go beyond the simple configurations we use in this book.

Chapter 1

[21]

Understanding dub.sdl
DUB supports two formats for its project configuration files: Simple Declarative
Language (SDLang) and JavaScript Object Notation (JSON). The former is the
default format output by the init command (the command dub init -fjson
will create dub.json instead). Originally, JSON was the only format supported.
As of DUB 0.9.24, SDLang is the preferred format, though JSON will be supported
indefinitely. Go to http://semitwist.com/sdl-mirror/Language+Guide.html
for more about SDLang and http://json.org/ for JSON.

DUB requires a configuration file to be present in any project it is intended to
manage. It supports a number of predefined fields for defining metadata that
provide information about the project, such as its name and description, and
instructions for DUB to follow when building the project. The documentation at
http://code.dlang.org/package-format is the place to visit to keep informed
on supported DUB configuration options.

You've already seen the term package in reference to a hierarchical
grouping of D modules. It's common to use the term DUB package
to refer to a DUB project.

The configuration generated by the init command is entirely metadata. The metadata
in a DUB package configuration comprises the first few lines by convention. None
of the entries are required to be in any particular order. Take a look at the complete
contents of the dub.sdl file generated by dub init for the MovieMan project:

name "movieman"
description "A minimal D application."
copyright "Copyright © 2015, Mike Parker" authors "Mike Parker"

Every DUB package must have a name that can be used as a unique identifier.
The name should be comprised of lowercase alphanumeric characters. Dashes and
underscores are also permitted. When generating a project, DUB will always use
lowercase letters. If the configuration file is manually edited to include uppercase
characters in the package name, DUB will internally convert them to lowercase
when it loads the file.

The name field is the only one that is required. The other fields can be deleted and the
project will build just fine. However, if there is any intention to register the package
with the online DUB registry, then it's a good idea to always include the generated
metadata fields at a minimum. There are other useful metadata fields that are not
generated by default, such as license and homepage. The more metadata provided,
the more potential users can learn about the project from the DUB registry.

http://semitwist.com/sdl-mirror/Language+Guide.html
http://json.org/

How to Get a D in Programming

[22]

Most of the metadata items are only visible from the package-specific page in the
registry. The name and description fields are the only two that are displayed in
the list of all registered packages. As such, the description shouldn't be very long or
overly vague. What you want is a short, succinct summary of the package so that
anyone browsing the registry can determine whether it's something he might be
interested in. We aren't going to register MovieMan in the DUB registry, but if we
were, then we might use something like the following to describe it:

description "A command-line DVD database."

The name used in the copyright and authors fields for a generated dub.json
comes from the name of the user account under which dub init was executed.
Multiple authors can be listed as follows:

authors "Bjarne Gosling" "Brian Pike"

Several configuration fields recognized by DUB require a list of values.

The majority of DUB directives are not simply metadata, but they directly influence
the build process. There are directives for specifying library dependencies, compiler
flags, which compiler to use, and more. We'll add one to the MovieMan configuration
shortly.

Building and running MovieMan
DUB allows you to build a project and run the resulting executable in two separate
steps, or to do it all at once. To build the project without running it, you use the
aptly-named build command. To both build and execute the project, you can
use the run command, which is the default behavior when invoking dub without
specifying any commands (so both dub and dub run are the same thing).

Let's give DUB a go at building the project, first by specifying the build command.
Here's what I see on my system:

C:\LearningD\Chapter01\MovieMan>dub build

Building movieman ~master configuration "application", build type debug.

Compiling using dmd...

Linking...

You can see that, by default, DUB isn't very verbose about what it's doing. It tells
you which build configuration it's building and the build type, lets you know when
it starts compiling and which compiler it's using, and then tells you that it's creating
(linking) the executable. The build configuration, build type, and compiler can all be
specified in the configuration file.

Chapter 1

[23]

Now that the executable is built, it's just sitting there waiting to be executed. Let's
make use of the run command to do so:

C:\LearningD\Chapter01\MovieMan>dub run

Target movieman ~master is up to date. Use --force to rebuild.

Running .\movieman.exe

Edit source/app.d to start your project.

If you haven't yet examined the generated app.d in your text editor, it might not be
immediately obvious to you that the last line is the actual output of the generated
code and the previous lines are from DUB itself. Look at the first line of output in
particular. This is telling you that the executable is already built and that, if you want
to build it again, you should use the --force option to do so. That might seem like
an odd message to see when running the program. To understand it, try running the
build command again:

C:\LearningD\Chapter01\MovieMan>dub build

Target movieman ~master is up to date. Use --force to rebuild.

As you can see, DUB refused to build the project and is telling you why and what to
do. Try again, this time with the --force option and it will build successfully. Also,
see what happens when you invoke dub and dub --force.

So the take away here is that DUB isn't going to rebuild your project if it is already
up-to-date and it will always check whether a rebuild is needed before executing the
program. We can define "up-to-date" to mean that the timestamp of the executable
is more recent than the last modification time of any of the source files. If you edit
any source file in the source directory, then trying to build again will succeed.
To demonstrate that, let's edit app.d to look like the following:

import std.stdio;
void main() {
 writeln("Hi! My name is MovieMan.");
}

Now, executing either dub or dub run will cause DUB to notice that app.d has
a more recent timestamp than the executable. In response, it will rebuild the
application before executing it.

How to Get a D in Programming

[24]

To build or not to build
The build command comes in handy when you invoke it as you add
new code to a project. I like to do so after adding several new lines, or a
new function, just to make sure everything still compiles. DMD is so fast
that, even as a project gets larger, this does not impede development.
Only when I've completed adding or modifying a feature do I invoke
dub run to make sure the app is working as expected.

Changing the output directory
Executable programs often ship with a number of resources. These generally should be
located either in the same directory as the executable or in subdirectories. By default,
the binary that DUB builds, whether it is a library or an executable, is output to the
same directory in which the dub.json file resides (which we can call the project or
package root). When there are resources to worry about, this can look a little cluttered.
Even without resources, I prefer my binaries to be written in their own directory.
This can be accomplished with one simple addition to dub.sdl:

targetPath "bin"

targetPath is a build directive that tells DUB where to write the binary. It can
be placed anywhere in the file, but convention dictates that it follow the metadata.
Here, I've used a relative path that will cause DUB to create a subdirectory named
bin (if it doesn't already exist) and write the binary there. Absolute paths, such as
C:\dev\MovieMan or /~/bin/MovieMan, are also acceptable. However, you should
prefer relative paths to keep your DUB packages completely self-contained if you
are going to distribute them.

Summary
In this chapter, you've taken an introductory look at the D programming language,
including a line-by-line breakdown of a simple D source file. You've learned how to
install and run DMD, the Digital Mars D Compiler. You've become acquainted with
the sample project you'll be working on throughout this book, called MovieMan, by
looking at the feature requirements of the two different versions you'll create. Finally,
you've had an overview of DUB and how you'll use it to manage the sample project.

Now that you know enough about the tools to get some work done, we can dig
into the language and start using it in the next chapter. There, we'll look at the
basic features that form the building blocks of any D program.

[25]

Building a Foundation with
D Fundamentals

In this chapter and the next, we're going to look at the fundamental building blocks
of D programming. There's a lot of information to cover, so our focus in both
chapters will primarily be on the syntax, differences from other C-family languages,
and how to avoid common beginner mistakes.

If you enter the code snippets into a text editor and try to compile them as you work
through this chapter and the rest of the book, please keep the following in mind.
Many of the snippets make use of one or more functions from std.stdio. In order to
be successfully compiled, they all require a main function. However, both declarations
are often missing from the snippets listed in the book in the interest of saving space.
Use the following as a template to implement any such snippets yourself:

import std.stdio;
void main() {
 // Insert snippet here
}

Here's how this chapter is going to play out:

•	 The very basics: Identifiers, scope, modules, comments, variable declarations,
and initialization

•	 Basic types: Integral and floating-point types, aliases, properties,
and operators

•	 Derived data types: Pointers, arrays, strings, and associative arrays
•	 Control flow statements: Loops, conditionals, scope, and go to statements
•	 Type qualifiers: Immutable and const
•	 Functions: Everything to do with functions
•	 MovieMan: The first steps

Building a Foundation with D Fundamentals

[26]

The very basics
With the exception of source code comments, everything in this section is required
knowledge for anyone who intends to successfully compile a D program.

Identifiers
The names of variables, functions, user-defined types, and so on, are all identifiers.
Identifiers are case-sensitive and can consist of any combination and number of
Universal Character Names (UCN), underscores, and digits. D does not itself define
what constitutes a valid UCN. Instead, it refers to the list of valid UCNs specified
in Annex D of the C99 standard. Aside from the English alphabet, characters from
several languages are valid UCNs. Henceforth, I will refer to UCNs as letters.
Identifiers in this book will be constrained to the English alphabet.

There are a few rules to follow when choosing identifiers:

•	 The first character in an identifier can only be a letter or an underscore.
•	 The use of two leading underscores is reserved for the compiler

implementation. This is currently not enforced by the compiler; barring
any conflicts, it will happily compile any symbols that begin with two
underscores. However, this raises the chance that such code will stop
compiling with future compiler releases.

•	 Certain keywords are reserved by the language and attempting to use them
as identifiers will cause compilation to fail. A list of all reserved identifiers
can be found at http://dlang.org/lex.html under the Keywords section.

•	 The standard library defines several identifiers in the global namespace,
which precludes using them as custom identifiers.

Source file encoding
D source files can be in any one of the ASCII, UTF-8, UTF-16,
or UTF-32 encodings. Both big- and little-endian versions of the
latter two are accepted.

A note about scope
As we work through this chapter and the next, we'll see several types of declaration.
We saw one already in the first chapter: import declarations, where module scope
was also mentioned. There are a couple of things to keep in mind about scope
when making any declaration.

http://dlang.org/lex.html

Chapter 2

[27]

First, anything declared in module scope is visible anywhere in that module no
matter at what point in the module it is declared. Consider the following:

void main() {
 writeln("Scope this!");
}
import std.stdio;

Putting the import declaration before or after main makes no difference. The writeln
function is visible inside main either way. This also applies to type and variable
declarations.

Some with C or C++ experience may sometimes refer to D's module
scope as global scope. Others will argue that this is inaccurate. A myVar
variable declared in the mymod module can be accessed as mymod.myVar,
so the module name (and package name) can serve as a namespace.
However, this syntax is not generally enforced, so the variable can also be
accessed simply as myVar. Just understand that, when you see someone
use the term global scope in D, they are probably using it as a synonym
for module scope.

Drilling down to a lower level, every function has an associated function scope.
Then there are block scopes, which are automatically created by some statements,
such as foreach, and can also be created manually inside a function scope or
another block scope using braces: { and }. Almost any declaration that can be made
in module scope can also be made in a local scope, but the declaration must come
before the point of use.

void main() {
 writeln("Scope this!");
 import std.stdio;
}

Try to compile this and the compiler will complain that writeln is not defined.
Declarations can be made at any point in a local scope—top, middle, or bottom—as
long as they are not used before the point of declaration. We'll revisit scope when we
go through aggregate types in Chapter 3, Programming Objects the D Way.

Building a Foundation with D Fundamentals

[28]

More on modules
D's module system is very simple to understand once you've taken the time to
do so. Unfortunately, new D users often expect D modules to behave like C headers,
or imports to be Java-like. The purpose of this section is to disabuse you of any
such notions. This is not the last we'll see of modules. We'll revisit them in the
next chapter.

Module declarations
In the first chapter, we saw that a D source file saved as hello.d automatically
becomes a module named hello when the compiler parses it. We can explicitly
name a module using a module declaration. If present, the module declaration
must be the first declaration in the file. There can be only one module declaration
per file. By convention, module names are all lowercase.

Module declarations are optional, but they become a necessity when packages are
involved. Let's experiment with D's package feature now. Create a subdirectory
in $LEARNINGD/Chapter02 called mypack. Then save the following as mypack/
greeting.d:

module mypack.greeting;
import std.stdio;
void sayHello() {
 writeln("Hello!");
}

Now save the following as Chapter02/hello2.d:

import mypack.greeting;
void main() {
 sayHello();
}

Open a command prompt, cd to $LEARNINGD/Chapter02, and try to compile
hello2.d. Here's what it looks like for me on Windows:

Chapter 2

[29]

The very first word of the output starts with OPTLINK, indicating a linker error.
The phrase Symbol Undefined is another hint that it's a linker error. This tells us
that the compile stage was successful; both hello2.d and, because it was imported,
greeting.d, were parsed just fine, and then hello2.d was compiled into an object
file. The compiler then passed the object file to the linker, but the linker could not
find a symbol. Specifically, the missing symbol is sayHello, which is the function
in greeting.d.

This is a common mistake made by many new D programmers, especially those
who are well acquainted with Java. There's a misconception that simply importing
a module will cause it to automatically be compiled and linked into the final
executable. Import declarations are solely for the compiler to know which symbols
are available for use in the module it is currently compiling. The compiler does not
automatically compile imported modules. In order for imported modules to be
compiled and linked, they should be passed to the compiler as well.

dmd hello2.d mypack/greeting.d

So how did the compiler find greeting.d when we didn't pass it on the command
line? The compiler works on the assumption that package names correspond to
directory names and module names are filenames. By default, it will search the
current working directory for any packages and modules it encounters in import
statements. Since the current working directory in our example is $LEARNINGD/
Chapter02 and it has a subdirectory, mypack, which matches the package name in
the import declaration mypack.greeting, the compiler easily finds greeting.d
in the mypack subdirectory. If you change the name of greeting.d to say.d and
compile only hello2.d again, you'll get a compiler error instead of a linker error:

hello2.d(1): Error: module greeting is in file 'mypack\greeting.d' which
cannot be read

Again, passing both modules to the compiler will eliminate the error. Before
checking the file system, the compiler will first check all of the modules passed
on the command line to see if any of them match the name in an import declaration.
In this case, as long as there is a module declaration, the name of the file plays no
role. This breaks when you are compiling source files individually (with the -c
command-line option), or using third-party libraries, so when using packages it's
best to always put module declarations in every source file and match the module
names to the filenames. It doesn't matter in which order source files are fed to the
compiler, but by default the name of the first file will be used as the name of the
executable. This can be overridden with the -of command line switch.

Building a Foundation with D Fundamentals

[30]

More about import declarations
We introduced standard import declarations, selective imports, and local imports
in the first chapter. There are other options for import declarations. First up:
public imports.

hello2 imports mypack.greeting, which imports std.stdio. Imports are private
by default, so nothing from std.stdio is visible inside hello2. You can verify
this by adding a writeln function to main in hello2.d. Compiling will yield the
following error:

hello2.d(4): Error: 'writeln' is not defined, perhaps you need to import
std.stdio; ?

The compiler will often make recommendations for specific symbols
when it encounters one that it doesn't know about—which is a good way
to catch spelling errors—but it doesn't generally recommend imports.
writeln and friends are a special case.

Make one small modification to mypack/greeting.d: put public in front of
the import.

public import std.stdio;

Now, when hello2 imports mypack.greeting, it also makes all the symbols from
std.stdio visible in hello2. There are three syntax options for public imports,
which are shown in the following code:

public import std.stdio;
public {
 import std.stdio;
}
public:
 import std.stdio;

In the first line, public applies only to that declaration. In the second line, it applies
to everything between the braces. The last one applies to everything in the module
until a new protection attribute is encountered. In any of those lines, you can replace
public with private to explicitly replicate the default behavior. Note that public
imports can only be declared in module scope.

Chapter 2

[31]

Not just for protection
The three different syntaxes seen here with protection attributes can
also be used with other D attributes that we will see later in this and
subsequent chapters, even if it is not explicitly mentioned. Regarding
the colon syntax, there is one key point to be aware of. If a public: is
followed by a private:, all subsequent declarations will be private,
that is, the public is "turned off." This is not the case with all attributes,
as many are independent and do not have a counter attribute to "turn
them off." In those cases, the colon syntax makes the attribute valid until
the end of the scope in which it is declared.

Now let's change hello2.d:

import mypack.greeting;
void main() {
 mypack.greeting.sayHello();
}

Here, we're calling sayHello with its Fully Qualified Name (FQN). This is always
possible, but it's only a requirement when two imported modules contain conflicting
symbols. The FQN can be used to specify the symbol that is desired. One way to
minimize the chance of conflict is to use static imports.

static import mypack.greeting;

Static imports force the use of the FQN on symbols. Calling sayHello without the
FQN will fail to compile unless there is another symbol with the same name in scope.
Another approach is to use named imports.

import greet = mypack.greeting;

Essentially, this works the same as the static import, except that now symbols in
the imported module are accessed through an identifier of your choosing. In this
example, calls to sayHello must now be made as greet.sayHello.

Public imports and FQNs
When a module that contains public imports is imported, symbols in
the publicly imported module gain an alternate FQN. When mypack.
greeting publicly imports std.stdio, then mypack.greeting.
writeln becomes an alias for std.stdio.writeln. Both can be used
in modules that import mypack.greeting.

Building a Foundation with D Fundamentals

[32]

Finally, all import declarations except selective imports support multiple, comma-
separated module names. A single selective import can follow other imports, but
it must be at the end. Multiple modules in a static import are all static. Standard
imports and named imports can be mixed freely.

import std.stdio, std.file, // OK
 std.conv;
import IO = std.stdio, std.file, // OK: Two named imports and
 Conv = std.conv; // one standard import
import std.stdio : writeln, std.conv; // Error: selective import
 // in front
import std.file, std.stdio : writeln; // OK: selective import at
 // at the end
import std.stdio : writeln, writefln; // OK: Selective import with
 // multiple symbols
static import std.stdio, std.file, // OK: All three imports
 std.conv; // are static

The special package module
package.d is D's approach to importing multiple modules from a package in one
go. In it, the package maintainer can publicly import modules from the package
as desired. Users may then import all of them at once using the package name.
The compiler will load package.d as if it were any other module. Given a package
somepack, with the modules one, two, and three, we can save the following as
somepack/package.d:

module somepack;
public import somepack.one, somepack.two, somepack.three;

With this in place, all three modules can be imported at once with the following
declaration:

import somepack;

Any modules that are not imported in package.d are not visible unless imported
explicitly. package.d is still a D source module, so any valid D code is allowed.

Chapter 2

[33]

Comments
D supports the same types of comment syntax found in other C-family languages.
C-style block comments open with /* and close with */, with any number of lines
in between. They are not allowed to nest. Single-line comments open with // and
terminate with the end of the line.

/* Hi! I'm a C-style,
 block comment. */
// I'm a single-line comment.
/* Nested block comments… /* like this one */ are illegal */

D also has a block comment syntax that supports nesting. This is great for quickly
commenting out multiple lines of code that might already contain block comments.
This syntax opens with /+ and closes with +/. Any number of lines and any number
of comments can fall in between. The first +/ encountered matches the most
recent /+.

/+ This is the first line of the comment.
 /* This is a nested comment. */
 /+ This is another nested comment. +/
The is the last line +/

Finally, D allows documentation comments, or Ddoc comments. This type of
comment opens with /** and closes with */, or the equivalent /++ and +/. The
single-line version is ///. Ddoc is used to generate source code documentation.
When placed before any declaration in module scope, the comment becomes the
documentation for that declaration. The Ddoc output, which is HTML file by default,
can be generated with DMD by passing -D on the command line.

/**
The function to which control is passed from DRuntime.

This implementation prints to stdout the command used to execute this
program. It ignores errors.

Params:
 args - the command line arguments passed from DRuntime.
*/
void main(string[] args) {
 writeln(args[0]);
}

Building a Foundation with D Fundamentals

[34]

You can head over to http://dlang.org/ddoc.html when you're
ready to begin writing source code documentation. It covers everything
you need to know to get started. Refer to the Phobos source for examples.

Variable declaration and initialization
Variables in D must be declared somewhere before they can be used. Variable
declarations generally take the same form as in other C-family languages: the name
of a type followed by an identifier. The following two lines declare four variables
named someNumber, a, b, and c, all of which are of type int:

int someNumber;
int a, b, c;

Earlier in this chapter, we looked at how scopes affect declarations. With variable
declarations, one thing that must be kept in mind is shadowing. This occurs when
a variable in a given scope is named the same as a variable in a parent scope.
Shadowing module scope variables is legal; every reference to the symbol before
the local declaration refers to the module scope variable and every reference after
the local declaration (within the same local scope) refers to the local variable.
It is an error for a local variable to shadow a variable in any outer scope except
module scope.

int x;
void main() {
 writeln(x); // OK: refers to module scope x
 int x; // OK: shadowing module scope variables allowed
 writeln(x); // OK: refers to local x
 int y; // Function scope
 // Opening a new scope
 {
 int y; // Error: local y is shadowing main.y
 int z;
 }
 // Opening a new scope
 {
 // OK: This scope and the one above are independent of
 // each other.
 int z;
 }
}

http://dlang.org/ddoc.html

Chapter 2

[35]

Variables in any function or block scope can be declared static, causing the value
of the variable to persist beyond the lifetime of the scope. Such variables are only
accessible within the scope in which they are declared. Applying static to a
variable in module scope has no meaning.

Static variables and variables in module scope can be explicitly initialized to any
value that can be known at compile time. This includes literals and constant values
(along with any expression that can be evaluated at compile time, as you'll learn
in Chapter 4, Running Code at Compile Time). Variables in function and block scopes
can additionally be initialized to runtime values. Variables that are not explicitly
initialized are default-initialized to a type-specific value. In explicit initialization,
the type name can be replaced with auto to trigger type inference. Consider the
following example:

auto theAnswer = 42;
int noMeaning, confused = void;

Here, theAnswer is explicitly initialized to the integer literal 42 and the compiler
infers it to be of type int. The variable noMeaning is initialized to the default value
for the int type, which is 0. Poor confused is not initialized at all. The keyword
void instructs the compiler to turn off default initialization for this variable.
However, it's still going to refer to whatever happens to be living at its address when
the program starts up. Forgetting to initialize variables is a common source of bugs
in many C programs. With default initialization, D makes it easy to either avoid such
bugs completely, or track them down when they do appear.

One last thing to keep in mind about variable declarations is that all module scope
variables are thread-local by default. This is very, very different from how other
C-family languages do things. This means that, if you are using multiple threads,
every thread gets its own copy of the variable. One thing that will certainly surprise
C and C++ programmers is that even static variables in a function or block scope are
thread-local. Typically in C, functions intended to be used in multiple threads have
to avoid static variables like the plague. This is not the case in D. We'll come back to
static declarations when we go through functions later in this chapter.

Basic types
Most of D's basic data types will be familiar to C-family programmers. In this section,
we're first going to look at what the basic data types are. Then we'll discuss a couple
of features that are related not only to the basic types, but to all types.

Building a Foundation with D Fundamentals

[36]

The types
First up, D includes the special type void to mean no type. There is no such thing
as a variable of type void. As in C, void is used to indicate that a function does not
return a value. void pointers can be declared to represent pointers to any type.

Instances of the bool type are guaranteed to be eight bits in size and can hold one
of two possible values: true and false. In any expression that expects a Boolean
value, any zero value is converted to false and non-zero is converted to true.
Conversely, in any expression that expects a numeric type, false and true are
converted to 0 and 1. Variables of type bool are initialized to false by default.

D supports signed and unsigned versions of integral types in 8-, 16-, 32-, and
64-bit flavors. The default initialization value of each is 0. The following table lists
the size in bits along with the minimum and maximum values for each integral
type. Note that the unsigned types are named by prefixing a u to the name of their
signed counterparts.

Name Size Minimum Value Maximum Value
byte 8 -128 127
ubyte 8 0 255
short 16 -32,768 32,767
ushort 16 0 65,535
int 32 -2,147,483,648 2,147,483,647
uint 32 0 4,294,967,295
long 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807
ulong 64 0 18,446,744,073,709,551,615

D supports three floating-point types. In addition to the traditional 32-bit float
and 64-bit double, there is a third type called real. The latter is known to be of the
largest floating point size representable in hardware. On x86, that is either 80-bits or
the size of a double, whichever is larger. In reality, all floating point operations in D
may be performed in the largest hardware size even when the operands are declared
as float or double. Floating point computations and representations in D follow
the IEEE Standard for Floating-Point Arithmetic (IEEE 754). The pages http://
dlang.org/float.html and http://dlang.org/d-floating-point.html are
recommended reading.

http://dlang.org/float.html
http://dlang.org/float.html
http://dlang.org/d-floating-point.html

Chapter 2

[37]

Floating-point types are default-initialized to a type-specific value representing
NaN (Not a Number). When a floating-point variable is assigned a value too high
or too low for it to represent, it is set to a value representing infinity or negative
infinity respectively.

There are three types in D which are intended to represent UTF code units.
The default initialization value for each type is an invalid Unicode value. The
following table lists each character type, its size in bits, its Unicode encoding,
and its initialization value in hexadecimal notation.

Name Size Encoding Init Value
char 8 UTF8 0xFF
wchar 16 UTF16 0xFFFF
dchar 32 UTF32 0x0000FFFF

Literals
D supports several different formats for basic type literals. We'll look at each in turn.

Integer literals
Integer literals can take three forms: decimal, hexadecimal, and binary. Hexadecimal
numbers are denoted by the 0x or 0X prefixes and binary numbers by 0b or 0B.
Any leading 0s after the prefix can be omitted. For example, 0x00FF and 0xFF are
identical, as are 0b0011 and 0b11. Any other integer literal, as long as it does not
begin with 0, is interpreted as decimal. Each format also allows for any number
of underscores in any position except the first.

int d1 = 1000000;
int d2 = 1_000_000;
int h1 = 0x000000FF; // Hexadecimal for 255
int h2 = 0X00_00_00_FF; // Ditto
int h3 = 0xFF; // Ditto
int b1 = 0b01010101; // Binary for 85
int b2 = 0B0101_0101; // Ditto
int b3 = 0b101_0101; // Ditto

Octal literals are supported in Phobos via the std.conv.octal function.

import std.conv : octal;
int oct = octal!377;

Building a Foundation with D Fundamentals

[38]

The ! in octal!377 is the syntax for template instantiation, which we'll examine in
Chapter 5, Generic Programming Made Easy.

By default, all integer literals are inferred as int unless they require more than
32 bits, in which case they are inferred as long. Literals too big for long refuse to
compile without help. That comes in the form of the uL and UL suffixes, which both
force a literal to be interpreted as ulong. There are also the suffixes u and U to force
uint, and L to force long. All of these suffixes work with decimal, hexadecimal,
and binary literals, as well as the octal template (octal!377uL). In the following
example, the typeid expression is used to obtain a textual version of each literal's
type, which writeln then prints to stdout. Can you guess what the output of
each is going to be? One of these lines will cause a signed integer overflow error.

writeln(typeid(2_147_483_647));
writeln(typeid(2_147_483_648));
writeln(typeid(2_147_483_648U));
writeln(typeid(9_223_372_036_854_775_807));
writeln(typeid(9_223_372_036_854_775_808));
writeln(typeid(9_223_372_036_854_775_808UL));
writeln(typeid(10));
writeln(typeid(10U));
writeln(typeid(10L));
writeln(typeid(10UL));

Floating-point literals
Floating-point literals can be represented in both decimal and hexadecimal forms.
They are interpreted as double by default. Appending f or F will force a float and
appending L will force a real. Note that 3.0, 3.0f, and 3f are all floating point
literals, but 3 and 3L are integrals.

writeln(typeid(3.0));
writeln(typeid(3.0f));
writeln(typeid(3.0F));
writeln(typeid(3.0L));
writeln(typeid(3f));

Exponential notation is also supported as is the rarely-used hexadecimal format for
floating point. The latter takes some getting used to if you aren't familiar with it. A
description of both can be found on my D blog at http://dblog.aldacron.net/
floating-point-literals-in-d/.

http://dblog.aldacron.net/floating-point-literals-in-d/
http://dblog.aldacron.net/floating-point-literals-in-d/

Chapter 2

[39]

Character literals
The type of a character literal depends on how many bytes are required to represent
a single code unit. The byte size of each code unit depends on the encoding
represented by the type. The difference can be seen here:

char c1 = 'a'; // OK: one code unit
char c2 = 'é'; // Error: two code units
wchar wc = 'é'; // OK: one code unit

In UTF-8, which is what the char type represents, one code unit is eight bits in size.
The literal 'a' fits nicely in eight bits, so we can store it in a variable of type char.
The literal 'é' requires two UTF-8 code units, so it cannot be represented by a single
char. Since it's only one code unit in UTF-16, the type of the literal is wchar.

Conversions
D has some rules that make it easy to know when one type can be converted to
another through implicit conversion, and when a cast needed to force explicit
conversion. The first rule we'll see concerns integral types: narrowing conversions
are never implicit. Exhibit A:

int a = 100;
ubyte b = a;

Because int is a 32-bit value and ubyte is an 8-bit value, it doesn't matter that 100
will fit into a ubyte; it's a narrowing conversion and D just doesn't allow those
implicitly. It can be coerced with a cast:

ubyte b = cast(ubyte)a;

In this case, the value 100 will be assigned to b successfully. However, if it were
a value that does not fit in eight bits, such as 257, the cast would cause all but the
eight least significant bits to be dropped, resulting in b having a completely different
value. Note that going from an unsigned type to the signed type of the same size is
not considered a narrowing conversion. The compiler will always implicitly convert
in this case, and vice versa. Just be aware of the consequences. For example:

ubyte u = 255;
byte b = u; // b is -1

Next we can say that floating point types are never implicitly converted to integral types,
but integral types are always implicitly converted to floating point.

float f1 = 3.0f;
int x1 = f1; // Error
int x2 = 2;
float f2 = x2; // OK: f2 is 2.0

Building a Foundation with D Fundamentals

[40]

You can cast f1 to int and the assignment to x will compile, but in doing so you'll
lose the fractional part of the float.

When a literal is assigned to a variable, the compiler uses a technique called value
range propagation to determine whether or not to allow compilation without a cast.
Essentially, if the literal can be represented by the type it's being assigned to, then
the assignment (or initialization) will compile. Otherwise, the compiler produces an
implicit conversion error, which can be eliminated by a cast. Some examples of this
are as follows:

ubyte ub = 256; // Error
byte b1 = 128; // Error
byte b2 = 127; // OK
float f = 33; // OK
int i = 3.0f; // Error

The last scenario to consider is when multiple types are used in binary expressions,
which are expressions that have two operands. Take the addition expression as an
example. What type is a?

byte b = 10;
short s = 1024;
auto a = b + s;

Answering this question requires knowing the rules for arithmetic conversions. If
either operand is real, double, or float, then the other operand is converted to that
type. If the operands are both integral types, integer promotion is applied to each of
them. Types smaller than int (bool, byte, ubyte, short, ushort, char, wchar) are
converted to int; dchar is converted to uint; however, int, uint, long, and ulong
are left untouched. Once integer promotion is complete, the following steps are taken
in order:

•	 If both operands are the same type, no more conversions are necessary
•	 If both are signed or both are unsigned, the smaller type is converted to

the larger
•	 If the unsigned type is smaller than the signed type, it's converted to the

signed type
•	 The signed type is converted to the unsigned type

Applying these rules to the snippet above, neither b nor s are floating-point types, so
integer promotion takes place. Both types are smaller than int, so both are promoted
to int. Next, we find that, since both types are now int, no further conversions are
necessary and the operation can take place. So a is of type int. Change all three
variables to ubyte and the same rules apply, a common source of confusion for new
D users who don't understand why they get a compiler error in that case.

Chapter 2

[41]

Alias declarations
An alias declaration allows an existing type (and other symbols, as we'll see later)
to be referred to by a different name. This does not create a new type. Consider
the following:

alias MyInt = int;
MyInt mi = 2.0;

The second line will fail to compile, producing an error message telling you that
double cannot be implicitly converted to int. There's no mention of MyInt at all,
because to the compiler, it isn't a type. It's simply a synonym for int.

Two aliases that are declared by default are size_t and ptrdiff_t. The former is
defined to be an unsigned integral type large enough to represent an offset into all
addressable memory. The latter is defined to be a signed basic type the same size
as size_t. In practice, that means the respective types are uint/int in 32-bit and
ulong/long in 64-bit.

Properties
You can think of properties as values that can be queried to divine information
about types or type instances. Some properties are common to all types, others are
type-specific. Some are context-dependent, meaning they can return different values
depending on whether the query is made on a type, a variable, or a literal. Others are
context-neutral, meaning they always return the same value for any given type and
instances of that type. The following snippet demonstrates accessing a property:

writeln(int.sizeof);
writeln(3.sizeof);
int a;
writeln(a.sizeof);

Properties are accessed using dot notation on a type, a literal, or a variable, with
the name of the property following the dot. The .sizeof property is one of those
properties common to all types. It's also one that is context-neutral. Run the snippet
and you'll find that the same value is printed for .sizeof on the type int, the
integer literal 3, and the variable a.

There are five common properties that are available on every type. The two we
most often care about are .init and .sizeof. The former tells you the default
initialization value of a given type; the latter tells you the size, in bytes, of a given
type as size_t. You can read about all the basic type properties, including those
not shown anywhere in this section, at http://dlang.org/property.html.

http://dlang.org/property.html

Building a Foundation with D Fundamentals

[42]

Most built-in types have a few type-specific properties. The integral types all
have properties called .min and .max that return the minimum and maximum
values representable by variables of that type. Floating-point types have a number
of properties, most of which are only of interest to people doing fairly involved
floating-point work. Of general interest may be .nan and .inf, which return the
values of NaN and infinity. .max returns the maximum value representable and
its negation is the minimum.

writeln(float.max); // Maximum float value
writeln(-float.max); // Minimum float value

We're not going to go into all floating-point properties here. We will, however, take a
look at an example of a program that reproduces the integral types table from earlier
in this section.

auto formatStr = "%10-s %10-s %20-s %20-s";
writefln(formatStr, "Name", ".sizeof", ".min", ".max");
writefln(formatStr, "byte", byte.sizeof, byte.min, byte.max);
writefln(formatStr, "ubyte", ubyte.sizeof, ubyte.min, ubyte.max);
writefln(formatStr, "short", short.sizeof, short.min, short.max);
writefln(formatStr, "ushort", ushort.sizeof, ushort.min,
ushort.max);
writefln(formatStr, "int", int.sizeof, int.min, int.max);
writefln(formatStr, "uint", uint.sizeof, uint.min, uint.max);
writefln(formatStr, "long", long.sizeof, long.min, long.max);
writefln(formatStr, "ulong", ulong.sizeof, ulong.min, ulong.max);

writefln was introduced in the previous chapter. It uses the same format specifiers
that C uses, most of which have the same meaning. You'll find that %s is quite
different, though. In C, it indicates that an argument is a string. In D, it means the
default formatting for the given type should be used. For example:

writefln("Float.max is %s and int.max is %s", float.max, int.max);

Here, the compiler will substitute the value of float.max for the first %s and use the
default float formatting. Similarly, int.max replaces the second %s with the default
formatting for int. If you make a mistake and have more specifiers than arguments,
you'll have no trouble compiling but will get a FormatException at runtime. If you
have more arguments than specifiers, the extra arguments will be ignored.

Chapter 2

[43]

We aren't using plain old %s in our program. We've added 10 and - between % and
s. Format specifiers begin with % and end with a character. Several things can go in
between. The 10 indicates that we want an argument to be printed in a field at least
ten characters wide. The - means we want to left-justify the text within the field.
%-10s and %10-s are the same. In other words, the string Name has four characters.
Left justified in a field of ten characters, it will be followed by six spaces. The actual
output looks like this:

You can read more about format strings and format specifiers at http://dlang.
org/phobos/std_format.html.

Basic operators
This section is a whirlwind tour of the basic operators D supports. For the most part,
things are the same as they are in C. There are a few minor differences that will be
highlighted as we come to them. More operators will appear later in this chapter and
throughout the book. You can read more about D's operators at http://dlang.org/
expression.html.

Arithmetic operators
All of the common arithmetic operators are available: +, -, *, / and %, representing
addition, subtraction, multiplication, division, and modulus respectively.
Additionally, D has an exponentiation operator, ^^, which raises the left operand
to an exponent (power) represented by the right operand. For example, 22 can be
expressed as 2 ^^ 2.

http://dlang.org/phobos/std_format.html
http://dlang.org/phobos/std_format.html
http://dlang.org/expression.html
http://dlang.org/expression.html

Building a Foundation with D Fundamentals

[44]

D also supports the standard increment and decrement operators. In the prefix
form (++x and --x), the result of the expression is the new value. In the postfix form
(x++ and x--), the result is the original value of the operand. To be more explicit,
under the hood D is doing something like this for the prefix version:

x = x + 1;
return x;

And this for the postfix version:

auto temp = x;
x = x + 1;
return temp;

In the postfix form, if the resulting value is never used, then the compiler can
optimize temp away and it will effectively be the same as the prefix version.
For example:

int x = 2;
x++; // Identical to ++x – no temporary

Like C++, D allows the increment and decrement operators to be overloaded by
custom types. Unlike C++, D guarantees that the temporary variable in a postfix
expression can always be optimized away when it isn't needed, even if the operand
is a user-defined type. Even so, it's considered best practice to use the prefix form
unless the behavior of the postfix expression is desired.

Bitwise operators
I assume you already know that there are eight bits in a byte, that bits can be 1 or 0,
and that bitwise operators can be used to selectively turn bits on or off, reverse their
state, or move them around. D supports the binary bitwise operators &, |, and ^,
representing binary AND, OR, and XOR, and the unary operator ~, representing the
one's complement. The left and right shift operators, << and >>, are also supported.

Additionally, D has the unsigned right shift operator, >>>. Anyone with a Java
background will be familiar with this. When the left operand is an unsigned type,
>> and >>> behave identically. When operating on a signed type, the right shift
operator, >>, preserves the sign bit. This means that right shifting a positive value
will yield a positive value and right shifting a negative value produces a negative
value. The unsigned right shift operator treats the sign bit as any other bit and does
not preserve it. Essentially, it's the same as casting the signed type to an unsigned
type and performing a right shift.

int a = -3;
writeln(a >> 4); // -1

Chapter 2

[45]

writeln(a >>> 4); // 268_435_455
writeln(cast(uint)a >> 4); // 268_435_455

You've already learned about the assignment operator, =. Although the same
operator is used for both assignment and initialization, the language does make
a distinction when overloading operators on user-defined types. Additionally, all
of the binary arithmetic operators and the bitwise operators have compact forms,
referred to as opAssign operators, that store the result of the expression in the left
operand. These are +=, -=, *=, /=, %=, ^^=, &=, |=, ^=, <<=, >>= and >>>=.

Relational and logical operators
Relational operators determine the relationship between two operands in terms of
equality and ordering (greater than and less than). Relational expressions evaluate
to true or false. D supports the same relational operators found in other C-family
languages: ==, !=, <, >, <=, >=, representing equal, not equal, less than, greater than,
less than or equal, and greater than or equal. Due to the potential for rounding
errors and the existence of special values such as NaN and infinity, floating-point
comparisons can be tricky. The Phobos module std.math provides functions
such as isIdentical, isInfinity, isNaN, and approxEquals to help.

The binary is operator is similar to the equality operator ==. More technically, x is
y is referred to as the identity expression. For value types, this is usually the same
as x == y, though this isn't always true for floating point values and struct
instances. For example:

float f; // Initialized to float.nan
writeln(f == f); // false
writeln(f is f); // true

Instances of a struct type that has overridden the equality operator will usually
cause == and is to produce different results. Otherwise, the default behavior of
struct equality is the same as is, which is to make a bit-by-bit comparison (structs
are introduced in Chapter 3, Programming Objects the D Way, and operator overloading
in Chapter 5, Generic Programming Made Easy). The difference between == and is
becomes most apparent when working with reference types, as we'll observe later.

Logical operators produce true or false. For anyone with C-family experience,
there is nothing special or surprising about them in D: x && y evaluates to true
if both operands are true; x || y evaluates to true if either operand is true; !x
evaluates to true if the operand is false.

Building a Foundation with D Fundamentals

[46]

The cast operator
The cast operator converts a variable from one type to another. It looks like this:

auto y = cast(T)x;

Here, T represents the type to which x is cast. If the cast is not legal, the compiler will
emit an error. The traditional C-style cast, which is (T) without the cast keyword, is
not supported. Additionally, D does not support multiple cast operators for different
types of casts as C++ does. Though, as we'll see in the next chapter, D's cast has a
special feature when x is a class instance and T is a class or interface.

Derived data types
In this section, we're going to observe D's take on pointers, arrays, strings, and
associative arrays. Much of what we'll cover here is very different from other
C-family languages.

Pointers
As in other languages that support them, pointers in D are special variables intended
to hold memory addresses. Take a moment to compile and run the following:

int* p;
writeln("p's value is ", p);
writeln("p's type is ", typeid(p));
writeln("p's size is ", p.sizeof);	

First, look at the declaration. It should look very familiar to many C-family
programmers. All pointer declarations are default initialized to null, so here the
first call to writeln prints "null" as the value. The type of p printed in the second
writeln is int*. The last line will print 4 in 32-bit and 8 in 64-bit.

So far so good. Now look at the following line and guess what type b is:

int* a, b;

No, b is not an int, it is an int*. The equivalent C or C++ code would look like this:

int *x, *y;

Chapter 2

[47]

In D, x would be interpreted as int* and y as int**, causing a compiler error. Every
symbol in a declaration must have the same type. No matter how many identifiers are
in a pointer declaration, only one * is needed and it applies to each of them. As such,
it's considered best practice to put the * next to the type, as in the first declaration,
rather than next to the identifiers. Otherwise, pointers in D function much as they do
elsewhere. The unary & operator can be used to take the address of any variable and
the * operator can be used to dereference a pointer to fetch the value it's pointing
at. Pointer types can be inferred like any other type. Changing the value to which a
pointer points will be reflected when the pointer is next dereferenced.

auto num = 1;
auto numPtr = #
writefln("The value at address %s is %s", numPtr, *numPtr);
num = 2;
writefln("The value at address %s is %s", numPtr, *numPtr);

Here, the address of num is assigned to numPtr. Since num is inferred to be int,
the type of numPtr is inferred as int*. Both calls to writeln first print the value
of numPtr, which is the address of num, then dereference numPtr to print the value
of num. Memory addresses are printed as hexadecimal numbers by default. The
following is the output:

The value at address 18FE34 is 1

The value at address 18FE34 is 2

void pointers are used to represent pointers to any type, but it's rare to use them in
D except when interfacing with C APIs. Dereferencing a void pointer directly is an
error; it must first be cast to the appropriate pointer type. Pointers to other types can
be implicitly converted to void*, though the reverse is not allowed.

auto num = 1; // int
void* voidPtr = # // OK: int* converts to void*
writeln(*voidPtr); // Error: void has no value
writeln(*cast(int*)voidPtr); // OK: dereferencing int*.

All of the pointers we've seen so far point to values on the stack. Pointers can also
point to blocks of heap memory. We can allocate heap memory using the new
expression (you'll learn how to allocate multiple values with new when we take
a look at arrays).

int* intPtr = new int; // Allocate memory for a single int
*intPtr = 10;

Building a Foundation with D Fundamentals

[48]

The heap and the stack work as they do in C, except that D has a garbage collector
involved. Memory allocated with new is managed by the GC. Additionally, using
certain language features can implicitly cause GC memory to be allocated. We'll
discuss those cases when we come across them.

It's also possible to bypass the garbage collector completely and use alternative
allocators such as C's malloc.

import core.stdc.stdlib : malloc, free;
int* intsPtr = cast(int*)malloc(int.sizeof * 10); // Ten ints
free(intsPtr);
auto dontDoThis = malloc(int.sizeof);
auto thisIsOK = cast(int*)malloc(int.sizeof);

The variable dontDoThis is inferred to be void*, which usually isn't what you
want. Always pay attention when using type inference. Another point of note is
that allocating memory in this manner loses the benefit of default initialization.
Any memory allocated through malloc should be treated just as it would be in C.
It's also worth noting here that D supports pointer arithmetic, which you could use
to iterate intsPtr. You can also use the array index operator, [], to access elements
of intsPtr. Both approaches are frowned upon in D, however. It's much safer to
convert intsPtr to an array.

Arrays
Arrays in D are a popular feature, slices in particular. They aren't your grandpa's
arrays, though. D does things a bit differently than elsewhere in the C family.
We're going to spend a few pages digging into them so that you can avoid
common beginner mistakes.

Array basics
The first thing to understand about arrays in D is that they are fat pointers; each
array carries around both a length and a pointer to the memory block where its
elements are stored. Conceptually, you can think of an array as a struct that
looks like this:

struct(T) {
 size_t length;
 T* ptr;
}

T is the type of the array elements. On every array, both .length and .ptr are
accessible as properties.

Chapter 2

[49]

Static arrays are allocated on the stack. They have a fixed length that does
not change.

int[3] stat1;
writeln(stat1);

Compile this snippet and the writeln will print [0, 0, 0]. Three int values were
allocated on the stack and have all been initialized to int.init. A dynamic array
can grow and shrink as required. The syntax of a dynamic array declaration looks
like this:

int[] dynArray1;

Unlike stat1, this array is empty. No space is allocated for any elements, only
enough stack space to hold the metadata. The default initializer for a dynamic array
is the empty array, []. Its .length will be 0 and its .ptr will be null. We can allocate
space for the array elements using new.

dynArray1 = new int[3];
int[] dynArray2 = new int[10];

Some D users think the syntax auto arr = new int[3] is too
similar to the static array declaration auto arr = int[3]. D now
supports an alternative syntax, new int[](3). This new syntax is
recommended, but old habits die hard. There is a large body of D code
that uses the older syntax.

The first array will now have three int values, the second will have ten, and all
of the values will be default initialized to int.init. Actually, the runtime will
probably have allocated more room than necessary. You can see this with the
.capacity property.

writeln("#1:", dynArray1.capacity);
writeln("#2:", dynArray2.capacity);

.capacity returns the maximum length the array can grow to before reallocation is
needed. The two writeln calls above print 3 and 15 for me. This first number tells us
that new int[3] allocated exactly enough space for three int values. If we append
a new value to dynArray1, a reallocation will take place. The second number tells us
that new int[10] allocated enough space for fifteen int values. Since we only used
ten, there's still space for five more elements to be appended before a reallocation is
needed. The allocation algorithm is an implementation detail, so you can't rely on
fifteen elements always being allocated when you request ten. What you can rely on
is that enough space will be allocated for the number of elements you requested.

Building a Foundation with D Fundamentals

[50]

This default behavior is fine in many situations, but when you know you're going to
be appending numerous items to an array, you can use the reserve function to be
more efficient.

int[] dynArray3;
dynArray3.reserve(20);
writefln("%s, %s", dynArray3.length, dynArray3.capacity);

We've asked the runtime to reserve enough space for twenty int values, but none of
that space is being used. This is an important difference between new and reserve.
The former will allocate the space and return an array containing the number of
elements you requested, that is, the new memory is not empty. The latter only
allocates the space if the current capacity is smaller than the size requested, but the
newly allocated space is empty. You can see this when writefln prints 0, 31 to the
screen. There are no elements in the array, but a total of 31 can be appended before a
reallocation is needed.

This brings us to the append operator. Using this, you can append individual
elements to an array. dynArray3 is empty, so let's give it some values.

dynArray3 ~= 2;
dynArray3 ~= 10;
writeln(dynArray3);

This will print [2, 10]. Now let's combine dynArray3 with dynArray1 to create a
new array. To do this, we can use the concatenation operator, ~.

auto dynArray4 = dynArray3 ~ dynArray1;
writeln(dynArray4);

Remember that dynArray1 contains three int values that were initialized to 0, so the
writeln in this snippet will print [2, 10, 0, 0, 0]. Since both operands of the
concatenation operator are of type int[], the type inferred for dynArray4 is int[].
We can also add elements to a dynamic array by manipulating .length directly.

dynArray1.length += 10;

If there is enough capacity to hold all ten values, no reallocation takes place. Otherwise,
more space is allocated. If the current memory block cannot be extended, then a new
block is allocated and the existing elements are copied to it. Finally, ten new elements
are default initialized in the newly allocated space. Conversely, you can shrink the
array by decreasing the length. Be aware that, when you do so, you're causing the
capacity to be reset to 0. This has a special significance that will be explained soon in
this chapter.

Chapter 2

[51]

To get at a specific value in any array, use the index operator, []. Arrays use
zero-based indexes. The special operator $ is a synonym for array.length; it's
only defined inside the brackets and always applies to the array being indexed.

writeln(dynArray4[0]); // Print the first element
writeln(dynArray4[2]); // Print the third element
writeln(dynArray4[$-1]); // Print the last element

The index operator works on both static and dynamic arrays. By default, D will do
bounds checking at runtime to make sure that you don't read or write past either
end of the array, a common source of exploits and other bugs in C and C++ software.
Doing so will result in a runtime error reporting a range violation. You can turn
bounds checking off by passing -boundscheck=off to the compiler.

Rectangular arrays
A rectangular array (sometimes called a jagged array) is an array of arrays. As we'll
soon see, new D programmers often find them confusing. The thing to keep in mind
is that they are no different from normal arrays. Declaring them has the same form
of elementType[numberOfElements] that is used with any array. It's just that, in
a rectangular array, the type of the array elements happens to be another array.
Consider the following declaration of a normal array:

int[3] arr;

The arr array is a static array of three int elements, visually clarified by putting
parentheses around the type:

(int)[3] arr;

Now look at the following declaration of a rectangular array:

int[3][2] ra1;

The ra1 array is a static array of two int[3] elements. Again, putting parentheses
around the type makes it clear.

(int[3])[2] ra1;

Fetching the element at any index in arr, such as arr[0], returns an int. In the
same manner, ra1[0] returns an int[3]. We can, in turn, get at its first element
with [0], which when implemented as a single statement looks like: ra1[0][0].
I want to stress that none of this is special syntax; we have two index operators in
the declaration solely because the type of arr is itself an array type. Since ra1[0]
returns an array, then an the additional [0] indexes into the returned array.

Building a Foundation with D Fundamentals

[52]

Now, about that confusion I mentioned. Many programmers are familiar with C's
multidimensional arrays. There's a major difference in how they are declared in C
and how rectangular arrays are declared in D. To help illustrate this, consider the
following grid:

One way to describe this is as a grid of three rows and four columns. In C, this could
be expressed in code like so:

int cgrid[3][4];
cgrid[1][0] = 10; // Set the first element of the second row

In D, we have to look at it a bit differently. In order to access the array elements the
same way as in C, where [1][0] is the second row and first column, we have to
envision each row as an array of four elements. Given that the [4] is part of the array
type, the order of the indexes in the declaration will be the reverse of those in C.

int[4][3] dgrid;
dgrid[1][0] = 10;

To be clear, the declaration is not creating a column-major array; it's still row-major
exactly like the C array, so that [1][0] is the second row and first column in both.
The only difference is that the [4] is part of the array type. Keep that in mind and
you should have no trouble keeping things straight.

Here's another example of a rectangular array:

int[][3] ra2 = [
 [0, 1],
 [2, 3, 4, 5],
 [6, 7, 8]
]
writeln(ra2[0].length);
writeln(ra2[1].length);
writeln(ra2[2].length);

Chapter 2

[53]

This is a static array of three int[]s, where each element array has a different length.
In a C multidimensional array, all of the elements are stored in a contiguous block
of memory. In D, this is true when all parts of a rectangular array are static, such
as int[3][3]. Any dynamic component in a rectangular array can point to its own
separate block of memory, in which case you can't rely on it being contiguous. It's
possible to create a dynamic array of dynamic arrays: int[][]. It's also possible to
have more than two components, such as int[][][3].

Slices
When thinking about slices, it helps to consider that dynamic arrays are slices and
slices are dynamic arrays.

auto tenArray = [5,10,15,20,25,30,35,40,45,50];
auto sliced = tenArray[0 .. 5];

Here, tenArray is an array of ints. It's initialized with an array literal, a feature
we'll examine shortly. I've taken a slice from tenArray and assigned it to a variable.
The slice operator looks like this: [m .. n], where the first element of the slice is
source[m] and the last is source[n-1]. So the first value of sliced is tenArray[0]
and the last is tenArray[4]. Pass it to writeln and you'll see [5, 10, 15, 20].
Print the length of sliced and you'll see 5, but the capacity may surprise you.

writeln(sliced.capacity);

This will print 0. When a slice begins life, no new memory is allocated. Instead, it is
backed by the source array. Continuing from the preceding snippet:

tenArray[0] = 10;
writeln(sliced);
writeln(tenArray);

Running this will show that tenArray[0] and sliced[0] are both set to 10.
The same thing works the other way; any changes made to sliced will be reflected
in tenArray. To reinforce this point, add the following lines to the example:

writeln(sliced.ptr);
writeln(tenArray.ptr);

Both pointers are pointing to the same memory block. Now, what do you think
would happen if we were to append a new item to sliced, either by increasing
the .length or through the ~= operator? The answer lies in that .capacity of 0.

Building a Foundation with D Fundamentals

[54]

The zero capacity indicates that appending to this slice in place may overwrite the
existing elements in memory, that is, those belonging to the original array. In order
to avoid any potential overwrite, attempting to append will cause the relationship
between the two arrays to be severed. A new memory block will be allocated, which
is large enough to hold the existing elements plus the appended one, and all of the
elements copied over. Then the .ptr property of the slice will be set to the address of
the new memory and its .capacity to a non-zero value.

sliced ~= 55;
writefln("Pointers: %s %s", tenArray.ptr, sliced.ptr);
writefln("Caps: %s %s", tenArray.capacity, sliced.capacity);

Running this code will print two different memory addresses. sliced is no longer
backed by the memory of tenArray and now has a capacity of 7. We can say that
sliced has become its own array. Sometimes, this isn't the desired behavior. I
mentioned earlier that decreasing the .length of an array will reset its capacity to 0.
To demonstrate, here's a little slicing trick that has the same effect as decreasing the
array length:

auto shrink = [10, 20, 30, 40, 50];
shrink = shrink[0 .. $-1];
writeln(dontShrink);

Four elements are sliced from shrink and then the slice is assigned back to shrink.
This is the same as decreasing shrink.length by one and also results in a zero
capacity. Either way, the last element in the original array, the number 50, still exists
at the same location in memory. The reason .capacity gives us a 0 here is that, if
we were to append to shrink, we would overwrite the 50. If another slice is still
pointing to the same memory block, it would be affected by any overwrites. To avoid
any unintended consequences, D will play it safe and reallocate if we append.

Sometimes it doesn't matter if anything is overwritten. In that case, it's wasteful to
reallocate each time the slice shrinks. That's where assumeSafeAppend comes in.

assumeSafeAppend(shrink);

Calling this after decreasing the length will maintain the original capacity, allowing
all appends to use the existing memory block. Decreasing the length again will also
reset the capacity to 0, requiring another call to assumeSafeAppend if we want to
continue reusing the same memory block.

Chapter 2

[55]

It's possible to remove an element from the middle of an array by taking a slice
from in front of it and another from behind it, then concatenating them together.
As concatenation allocates a new array, this isn't the most efficient way to go about it.
A much better alternative is a function from std.algorithm called remove. Let's say
we want to remove the 30 from shrink above. It's at the index 2, so:

import std.algorithm : remove;
shrink = shrink.remove(2);

Now shrink contains the elements [10, 20, 40, 50]. We'll look at the details of
remove in Chapter 7, Composing Functional Pipelines with Algorithms and Ranges.

Sometimes, you want to slice an entire array. There's a shortcut for that. Instead
of slicing with [0..$], you can use empty brackets, or no brackets at all.

auto aSlice = anArray[];
auto anotherSlice = anArray;

It's possible for static and dynamic arrays to be implicitly converted both ways.
When going from dynamic to static, the lengths must match exactly. When going
from static to dynamic, the compiler achieves the conversion by taking a slice of
the static array:

int[] dyn = [1,2,3];
int[3] stat1 = dyn; // OK: lengths match
int[4] stat2 = dyn; // Error: mismatched array lengths
int[] sliced1 = stat1; // OK: same as stat1[]

The memory for dyn is allocated on the heap, but stat1 lives on the stack. When we
initialize stat1, the elements of dyn are copied over and we now have two distinct
arrays. In the last line, sliced1 is just like any other slice we've seen so far, no matter
that it's a slice of a static array. Its .ptr property will be identical to stat1.ptr and
it will have a capacity of 0, so we can append to or expand it without worrying about
any impact on stat1. However, if stat1 goes out of scope while sliced1 still points
to its memory, bad things can happen. If you can't guarantee that stat1 is going to
stick around, you can use the .dup property to copy it.

int[] sliced1 = stat1.dup;

This allocates memory for a dynamic array and copies into it all of the elements from
stat1. A similar property, .idup, creates an immutable copy of an array. The details
of immutable arrays will be discussed later in the chapter.

Building a Foundation with D Fundamentals

[56]

D arrays aren't the only things you can slice. Imagine that you've been given an array
of integers, but as an int* and an associated length variable rather than an int[]. If
you want to stay with your C roots, you can go ahead and use pointer arithmetic to
your heart's content. If, on the other hand, you'd prefer the convenience of a D array,
the language has got you covered: just slice the pointer. Assuming a C-style int*
array called parray, the length of which is stored in a variable named len:

int[] array = parray[0 .. len];

How convenient is that? Be careful, though. As when slicing an array, the slice here
is backed by the original pointer. In fact, array.ptr is exactly the same address as
parray. This comes with the same potential consequences of slicing a static array. If
parray is freed behind your back, or otherwise becomes an invalid memory location,
array isn't going to be valid anymore, so the slice of parray should be .duped.

auto array = parray[0 .. len].dup;

Array literals
Take a look at the following array declarations, all initialized with array literals:

auto arr1 = [1.0f,2.0f,3.0f]; // float[]
auto arr2 = [1.0f,2.0,3.0]; // double[]
auto arr3 = [1.0,2.0f,3.0f]; // double[]

This snippet demonstrates that array literals are inferred as dynamic arrays by
default. It also shows how the base type of an array is inferred. We see that arr1
contains three floats, so it is of type float[] as one would reasonably expect. In the
other arrays, we first see a float followed by two doubles, then a double followed
by two floats, yet both arrays are inferred as double[]. The compiler looks at the
type of each element and determines their common type. This type becomes the type
of the array and all elements are implicitly converted. For example, given an array
comprised of shorts and chars, the common type is int; in an array that contains
one or more longs and a mix of smaller integer types, the common type is long.

We can use array literals with the append and concatenation operators.

int[] buildMe;
buildMe ~= [1, 2, 3, 4] ~ 5;

Static arrays can also be initialized with array literals, as long as the lengths match.

int[3] arr4 = [1,2,3];	 // OK
int[3] arr5 = [1,2,3,4]; // Error: mismatched array lengths

Chapter 2

[57]

Arrays and void
We've seen that void can be used to turn off default initialization for a variable.
This is true for static arrays as well. Normally, every element of a static array will be
initialized at the point of declaration. If the array is in global scope, this isn't such a
big deal, but if it's in a function that is frequently called, the time taken to initialize
all of the array elements can be a performance drain if the array is large.

float[1024] lotsOfFloats = void;

This will allocate 1,024 float values on the stack, but they will not be initialized to
nan. Normally, you shouldn't turn off default initialization unless profiling shows
it helps.

Uninitialized dynamic arrays
Allocating a dynamic array with new, such as new float[10],
will always initialize the elements with their .init value. Default
initialization can be avoided in this case by allocating through std.
array.uninitializedArray instead of calling new directly:

auto arr = uninitializedArray!(float[])(10)

It's also possible to declare arrays of type void[]. Like the universal pointer, this is
the universal array. A couple of use cases can be found in the Phobos module std.
file. The read function there returns a void[] array representing the bytes read
from a file. The write function accepts a void[] buffer of bytes to write. You can
cast from void[] to any array type and all array types are implicitly convertible
to void[].

Array operations
To close our array discussion, we're going to look at how arrays can serve as
operands for many of the operators we discussed earlier. First up, let's take a
look at a couple of special cases of the assignment operator.

We've seen .dup always allocates a new array, which is wasteful when the goal is
to copy elements from one array into an existing one. In an assignment expression,
if both arrays are the same type, or the right operand is implicitly convertible to the
left, we can add empty brackets to the left operand.

int[] a1 = new int[10];
int[] a2 = [0,1,2,3,4,5,6,7,8,9];
a1[] = a2;

Building a Foundation with D Fundamentals

[58]

We know that the first line allocates ten integers and initializes them all to 0. We
know that the array literal assigned to a2 allocates memory for ten integers and
initializes them to the values in the bracket. We know that a1 = a2 would cause
both arrays to share the same memory. By adding the empty index operator to the
left operand, we're telling the compiler to do the equivalent of going through a2 and
assigning each element to the corresponding position in a1. In other words, a1[0]
= a2[0], a1[1] = a2[1], and so on. Although the end result looks the same as
a1 = a2.dup, there is a major difference. Calling .dup will cause a1.ptr to point
to the memory allocated by .dup; with the bracketed assignment, a1.ptr will be
unchanged. The first two calls to writeln in this snippet will print the same address
and the last one will print something different.

int[] a1 = new int[10];
writeln(a1.ptr);
int[] a2 = [0,1,2,3,4,5,6,7,8,9];
a1[] = a2;
writeln(a1.ptr);
a1 = a2.dup;
writeln(a1.ptr);

Two big caveats here. First, even when the target of the assignment is a dynamic
array, the lengths of both arrays must exactly match. The second caveat is that the
memory of the two arrays cannot overlap. Consider the following:

int[] a4 = [1,2,3,4,5];
int[] a5 = a4;
a5[] = a4;

This will give you a runtime error complaining about overlapping memory. This is
an obvious case, as we know that the assignment of a4 to a5 will result in both arrays
pointing to the same location. Where it isn't so obvious is with slices from pointers,
or allocating your own array memory outside the GC via malloc. Vigilance is
a virtue.

The empty index operator also allows us to assign a single value to every index in an
array. Consider the following:

int[10] sa1 = 10;
sa1[] = 100;

Chapter 2

[59]

Here, every element of sa1 is initialized to 10. In the next line, all ten elements are
assigned the value 100. This also shows that the empty index operator works with
static arrays equally as well as dynamic arrays. We can apply several other operators
to arrays. For example:

int[] a = [2,3,4];
a[] ^^= 2;
writeln(a);
int[] b = [5,6,7];
int[3] c = a[] + b[];
writeln(c);

If you try something like writeln(a[] + b[]) you'll get a compiler error telling
you that such operations on arrays require destination memory to write the result.
There's no such thing as an implicit temporary for this sort of thing. I encourage you
to experiment with the basic operators from earlier in this chapter to see what works
with arrays and what doesn't. For example, the shift operators do not accept arrays
as operands.

Finally, let's talk about array equality. This is our first opportunity to see the
difference between == and is with reference types. Examine the following snippet:

auto ea1 = [1,2,3];
auto ea2 = [1,2,3];
writeln(ea1 == a2);
writeln(ea1 is a2);

Here we have two dynamic arrays with identical elements. The first writeln
contains an equality expression. This will do an element-by-element comparison to
see if each is the same value and evaluate to true if so. The is operator in the second
writeln tests if the two arrays have the same identity. It doesn't care about the
elements. So what's our snippet going to print?

Given that both a1 and a2 have the same number of elements and each element
has the same value, it's rather obvious that the first writeln will print true. The is
operator in the second writeln is going to look at the pointer and length of each
array. If they are pointing to the same place and the length is the same, the result is
true. In this case, a1 and a2 are pointing to different memory blocks, so we have
a result of false.

The gist of it is that == on an array is related to its elements, while is on an array is
related to its metadata. Both can be used to compare an array to null: a == null
will return true if a.length is 0; a is null will return true if a.length is 0 and
a.ptr is null.

Building a Foundation with D Fundamentals

[60]

Strings
There are three string types in D: string, wstring, and dstring. They aren't actual
types, but rather are each an alias to an immutable array of char, wchar, and dchar
respectively. The D documentation says that strings are a special case of arrays. We
can sum it up by saying that the compiler has some awareness of the string types, but
they are not built-in types and they are, at heart, simply arrays. They are also treated
specially by many functions in the standard library.

String essentials
Because strings are arrays, any properties available on arrays are also available on
strings, but the .length property doesn't tell you how many letters are in a string;
it tells you the number of Unicode code units. Remember from our discussion on
basic types that each character type in D represents a single Unicode code unit. One
or more code units can form a code point. In UTF-8, where each code unit is only
eight bits, it's common for code points to be composed of multiple code units. A code
point that requires two code units in UTF-8 could be represented as one code unit in
UTF-16. The following example introduces D's string literals to demonstrate the code
unit/code point dichotomy:

string s = "soufflé";
wstring ws = "soufflé"w;
dstring ds = "soufflé"d;

String literals in D are indicated by opening and closing double quotes (""). By
default, they are understood by the compiler to be of type string. Appending a w to
the end makes a wstring and a d similarly forces a dstring. The word soufflé has
seven letters, but if you query s.length, you'll find it returns 8. Both ws.length and
ds.length return 7 as expected. This discrepancy is because the letter é requires two
code units in UTF-8. In both UTF-16 and UTF-32, a single code unit is large enough
to hold it. In fact, a single code unit in UTF-32 is always equivalent to a single code
point, as 32 bits is large enough to hold any Unicode character.

Unicode is an important component in modern software development,
yet is often misunderstood. For details, a great place to start is the
Unicode FAQ at http://unicode.org/faq/. There are also a number
of informative introductory articles that can be found through a quick
web search.

http://unicode.org/faq/

Chapter 2

[61]

Double-quoted string literals in D are always parsed for the standard escape
sequences such as the end-of-line character ('\n'), the tab character ('\t'), and the
null-terminator ('\0'). A single string literal declared over multiple lines will cause
any newlines to be embedded in the string.

auto s1 = " Hi
I
 am a multi-line
 string";
writeln(s1);

Multiple strings declared in succession with no terminating semicolon between them
are concatenated into a single string at compile time.

auto s2 = "I am" " a string which is"
 " composed of multiple strings"
 " on multiple lines.";

Many of the operations you'll commonly perform on strings are scattered throughout
Phobos. Most of what you want is found in the std.string module. Other modules
include std.ascii, std.uni, std.utf, std.format, std.path, std.regex, std.
encoding, and std.windows.charset. Because strings are dynamic arrays, you can
also use them with the functions in std.array. Since dynamic arrays are also ranges,
many functions in std.algorithm also accept strings.

Another useful module for strings is std.conv. There you'll find a number of
functions for converting from one type to another. Two particularly useful functions
are to and parse. The former takes almost any type and converts it to almost any
other. For example, given an int that you want to convert to a string, you can do
the following:

import std.conv : to;
int x = 10;
auto s = to!string(x);

We've already seen the template instantiation operator, !,when we looked at
std.conv.octal. Here, we're telling the template to take the runtime parameter x
and turn it into the type indicated by the compile time parameter following the !
operator. We'll see more about the difference between runtime and compile-time
parameters in Chapter 5, Generic Programming Made Easy.

Building a Foundation with D Fundamentals

[62]

Conversely, sometimes you have a string from which you want to extract another
type. You can do this with to, but it will throw an exception if there are inconvertible
characters in the string. An alternative that doesn't throw an exception is parse.
When it encounters inconvertible characters, it will stop parsing and return
whatever it has parsed so far:

import std.conv : to, parse;
int s1 = "10";
int x1 = to!int(s1); // OK
int s2 = "10and20";
int x2 = parse!int(s2); // OK: x2 = 10
int x3 = to!int(s2); // ConvException

If you have one or more values that you want to insert into specific places in a
string, you can use std.format.format. The std.format module includes several
functions, such as format, that assist in creating formatted strings.

auto height = 193;
auto weight = 95;
auto fs = format("Bob is %s cm and weighs %s kg", height, weight);

The syntax and specifiers are the same used with writef. The format function
always allocates a new string from the GC heap, but another version, sformat,
allows you to pass a reusable buffer as a parameter and returns a slice to the buffer.

The empty string, "", has a length of zero. Its .ptr property, however, is not null.
For compatibility with C, all string literals in D are null-terminated, so even the
empty string points to a piece of memory containing a '\0'. Going with what we
know about arrays, this means "" == null is true and "" is null is false.

Alternative string literals
In addition to the double-quoted string literals we've gone through, D supports the
following string literals:

WYSIWYG strings
Any character in a WYSIWYG (What You See is What You Get) string is part of the
string, including escape sequences. There are two WYSIWYG syntaxes, r"wysiwyg"
and `wysiwyg` (these are backticks, not single quotes). Because the former uses
double quotes and does not allow escape sequences, it's impossible to include double
quotes in the string itself. The backtick syntax allows you to do that, but then you
can't have backticks in the string.

writeln(r"I'm a WYSIWYG string'```'\t\n");
writeln(`me, too!\n\r"'''""`);

Chapter 2

[63]

Delimited strings
Delimited strings allow you to choose how to denote the beginning and end of a
string, but there are some special rules. These literals begin with q" and end with
". Any delimiter you choose must immediately follow the opening quote and
immediately precede the ending quote. There are a few nesting delimiters that are
recognized by default: [],(),<> and {}. Because these nest, you can use the same
characters inside the string. Any nested delimiters must be balanced.

writeln(q"(A Delimited String (with nested parens))");
writeln(q"[An [Unbalanced nested delimiter]");
writeln(q"<Another unbalanced> nested delimiter>");
writeln(q"{And }{again!}");

In the first line, the nested parentheses are balanced and so become part of the string.
The second line has an opening delimiter, but no closing delimiter to balance it. The
opposite is true in the third line, while the last line has an unbalanced pair.

You can also use a custom identifier as the delimiter with the following guidelines:

•	 The opening and closing identifier must be the same
•	 A newline must immediately follow the opening identifier
•	 A newline must immediately precede the closing identifier
•	 The closing identifier must start at the beginning of the line

The first newline is not part of the string, but all subsequent newlines are, including
the one preceding the closing identifier:

auto s = q"STR
I'm a string with a custom delimiter!
STR";

Strings delimited by identifiers are sometimes referred to as heredoc strings.
Delimited strings are useful when long blocks of text need to be included in the
source. They behave just like WYSIWYG strings, with the addition that they allow
the use of both backticks and double quotes in the string.

Building a Foundation with D Fundamentals

[64]

Token strings
Token strings are string literals that must contain valid D tokens. These are great
to use when generating code at compile time. Text editors that can perform syntax
highlighting on D can highlight the code inside the string. Token strings open with
q{ and close with }. Any newlines inside the literal are part of the string and the
nesting of braces is allowed.

auto code = q{
int x = 10;
int y = 1;
};

Associative arrays
Associative arrays allow you to map keys of any type to values of any type.

int[string] aa1; // int values, string keys
string[int] aa2; // string values, int keys

The default initialization value for an associative array, if you print it, looks like
the empty array, []. They may look the same, but they are two different beasts.
Associative arrays have no .ptr or .capacity, though they do have a .length that
is 0 by default. You can't call reserve, modify .length, or use the concatenation
operator on an associative array. What you can do is add values like this:

aa1["Ten"] = 10;
aa2[10] = "Ten";

If the key already exists in the array, its existing value will be overwritten. If it
doesn't exist, it will be added. Although aa2[10] looks like a regular array index
operation, it is not. With an array, the indexes are sequential. If the index 10 does not
exist, you've earned a range violation. With an associative array, you've added a new
key and value pair. You can also initialize an associative array with literals, like this:

auto aa3 = ["x":22.0, "y":3.0f, "z":5.0f, "w":1.0];

Literals take the form of a bracketed sequence of comma-separated KeyType
: ValueType pairs. In this particular declaration, the type of aa3 is inferred as
double[string]. The type of double is inferred in the same way it would be
with standard arrays; it's the common type of all of the values.

Chapter 2

[65]

To remove an item from an associative array, use the remove function. This is not the
same as std.algorithm.remove for arrays; no imports are required. If the key does
not exist, it does nothing and returns false, otherwise it removes the key and its
associated value and returns true.

aa3.remove("w");

There are two options for reading values from associative arrays. The most obvious
is to read a key index directly.

auto x = aa1["x"]; // OK: key exists
auto w = aa1["w"]; // We removed it -- range violation

If you want to avoid the range violation for a nonexistent key, you can use the
in operator instead. This takes a key as the left operand and an associative array as
the right operand. If the key exists, it returns a pointer to the value. Otherwise, it
returns null.

auto px = "x" in aa3; // type double*, valid address
auto pw = "w" in aa3; // type double*, null

Once a pointer is received from the in operator, it needs to be dereferenced to get at
the value. We haven't looked at the if statements yet, but I assume you know what
they are. So I'm going to show you a common D idiom. It's possible to combine the
in operator with an if statement to perform an action on a value if a key is present.

if(auto px = "x" in aa3)
 writeln(*px);

You can fetch all of the keys and values in two ways. The efficient way is to call .byKey
and .byValue. Both of these return ranges without allocating any heap memory or
making any copies. We will explore ranges in Chapter 6, Understanding Ranges, at which
point you'll understand how they can be efficient. Sometimes, you really do need to
make a copy. For those situations, there are the .keys and .values properties. These
each allocate a dynamic array and copy the keys and values respectively.

Control flow statements
D includes the traditional loop and conditional statements found in other C-family
languages. It also supports the infamous goto statement. It has a couple of other
useful statements, such as a built-in foreach statement and a rather unique scope
statement. In this section, we're going to look at examples of each of the first two.
Because of their relation with exceptions, scope statements are included in detail
in the next chapter.

Building a Foundation with D Fundamentals

[66]

Traditional loops
In terms of looping constructs, we have for, do, and do-while. The syntax and
behavior should be familiar. Here is an example of each iterating over an array:

auto items = [10,20,30,40,50];
for(int i=0; i<items.length; ++i)
 writeln(items[i]);

int i = 0;
while(i < items.length)
 writeln(items[i++]);

i = 0;
do {
 writeln(items[i++]);
} while(i < items.length);

No surprises there. The braces are optional with for and while when they only
contain one statement. When a loop with an empty body is desired, the following
syntax is not allowed in D:

int sum;
for(int i=0; i<10; sum += i++)
 ;

Replace the semicolon with {} and it will compile.

You can also find the traditional break and continue statements in D. The latter
stops the current loop iteration and goes back to the top and the former exits the
current loop completely. To break out of nested loops, D supports labeled breaks:

auto array = [10,20,30,40,50];
EXIT_LOOPS: for(int i=0; i<array.length; ++i) {
 for(int j=array.length - 1; j>=0; --j) {
 auto val = array[i] + array[j];
 if(val == 100) break EXIT_LOOPS;
 writeln(val);
 }
}

A labeled break will break out of the loop associated with the given label. In
this snippet, the outer loop is the closest one to the label, so that's the loop we're
breaking out of.

Chapter 2

[67]

The foreach loop
The foreach loop is a special loop construct that does some things behind the scenes
so you don't have to. First, let's see what it looks like, and then I'll tell you how it
works. Reusing the same items array from above, we can do this:

foreach(elem; items)
 writeln(elem);

Essentially, foreach maintains the index for us and infers the type of elem,
streamlining the syntax. You can specify a type for the element, as in foreach(uint
elem; items). You can also do this:

foreach(elem; 0..10)
 writeln(elem);

The 0..10 is a sequence of numbers that is only valid in specific contexts, such as in
the slice operator and the foreach loop. This loop will print from 0 to 9 because, just
as with the slice operator, the end number is exclusive. Since we're iterating an array,
the loop can also tell us the current index. Simply add another variable and a comma.

foreach(index,elem; items)
 items[index] = elem+10;

By default, the index is of type size_t, but you can declare it to be int or uint. If the
only reason you want the index is to modify the array elements, there's another way
to do it. Use ref.

foreach(ref elem; items)
 elem += 10;

While it's fine to modify the individual elements of the iteration target in the foreach
loop via a reference or the index operator, you should never modify its structure. For
example, you cannot append or remove elements to or from an array, or otherwise
modify its length in any way and expect no problems to arise. This holds true for any
sort of range or container you are iterating. The compiler may let you get away with
it, but you're entering undefined territory at runtime and can be certain something's
going to break.

As hinted earlier, foreach doesn't operate only on arrays. It can iterate over any
type that implements either the opApply function or, if that isn't present, the input
range interface. We'll see the former in the next chapter and the latter in Chapter 6,
Understanding Ranges. There is another statement called foreach_reverse that
works like foreach, except that it iterates backwards, starting with the last element
and ending with the first. It works with arrays and any type that implements either
the opApplyReverse function or the bidirectional range interface.

Building a Foundation with D Fundamentals

[68]

There is some special behavior when iterating over arrays of characters and
associative arrays. Character arrays, be they of the string family or of a mutable
variety, can be decoded on the fly. Consider the following example:

foreach(c; "soufflé") {
 writeln(c);
}

Every character up through the letter 'l' will print as expected, but the letter 'é'
is never printed. What actually does get printed depends on the platform.
Never forget that characters in D are Unicode code units. By default, c is of type
immutable(char) because soufflé is a string literal, or immutable(char)[]. In
this case, since we know that the é requires two code units, we can fix this either by
appending a w to soufflé to make it a wstring literal, or by declaring c as a wchar.
By taking the latter approach, every character of the string will automatically be
decoded from UTF-8 to UTF-16. When working with variables instead of literals and
a suffix can't be appended, it's better to declare c as dchar. This way, no matter how
many bytes are required to represent a letter, c will be big enough to hold them all.
Just keep in mind that there is a cost associated with decoding each character.

It's also possible to use foreach on associative arrays. In this case, if you declare only
one identifier, you are iterating the values. Declare two identifiers and the first one
becomes the key. Types can be inferred as follows:

auto aa = ["One":1, "Two":2, "Three":3];
foreach(key,val; aa)
 writefln("%s = %s", key, val);

Alternatively, you can iterate on one of the following: byValue(), byKey(), .keys,
or.values. You'll recall from the discussion of associative arrays that the first two
return ranges and the remaining two each allocate a new array and copy over the
keys or values. The first two are more efficient, but when using them you're iterating
the associative array directly. In this case, attempting to modify the associative
array during iteration by adding or removing elements will almost certainly cause
something to break. When iterating on .keys or .values, it's a separate, copied array
that is being iterated, so the associative array can be freely modified during iteration.

Traditional conditionals
First up, we have the traditional if statement. It looks and behaves like if statements
in other C-family languages.

int x = 100;
if(x >= 200)
 writeln("200 or higher!");

Chapter 2

[69]

else if(x >= 100)
 writeln("100 or higher!");
else
 writeln("Less than 100!");

Next up is the conditional expression, also referred to as the ternary operator. If its
condition is true, it returns the second operand, otherwise it returns the third.

string isFour = (2 + 2 == 4) ? "It's a 4!" : "It's not a 4!";

The D documentation specifies that the expression in the condition of if statements
and conditional expressions must produce a type that can be converted to bool. This
isn't the same as a normal implicit conversion. For example, the expression someBool
= somePointer will fail, because pointers are not implicitly convertible to bool.
However, if(somePointer) is valid, as the conversion in this case is achieved via a
cast inserted by the compiler. The same holds for the conditions in loops.

Finally, we have the traditional switch statement. In D, you must have a default
case. Leaving it out will fail to compile.

int x = 10;
switch(x) {
 case 2:
 writeln("It's 2!");
 break;
 case 4:
 writeln("It's 4!");
 break;
 case 10:
 writeln("It's 10!");
 break;
 default:
 writeln("It's something else!");
 break;
}

Sometimes you want to cover case statements with one block. The C way is to list
each case statement explicitly.

int i = 2;
switch(i) {
 case 1:
 case 2:
 case 3:
 writeln("OK");
 break;
 default: break;
}

Building a Foundation with D Fundamentals

[70]

You can do this in D too, and it works as expected. However, adding the highlighted
line in the following code is a problem.

switch(i) {
 case 1:
 case 2:
 writeln("Warning!");
 case 3:
 writeln("OK");
 break;
 default: break;
}

This will give you an implicit fall-through warning if warning messages are enabled
(with -wi) and an error if warnings are treated as errors (-w). It is intended to be a
deprecated feature at some point. If you really want to fall through to the third case,
then you can do so explicitly with goto case.

case 2:
 writeln("No Warning!");
 goto case;

It's also possible to jump to any specific case. For example:

switch(i) {
 case 1:
 goto case 3;
 case 2:
 writeln("No Warning!");
 goto case;
 case 3:
 writeln("OK");
 break;
 default: break;
}

D also supports the case range statement when the case values are sequential.

switch(i) {
 case 1: .. case 3:
 writeln("OK");
 break;
 default: break;
}

Chapter 2

[71]

Leave out the .. and you're only covering two cases. Additionally, switch
statements in D accept strings.

string s = "Yadda Yadda";
switch(s) {
 case "Yadda": writeln("One Yadda"); break;
 case "Yadda Yadda": writeln("Two Yaddas"); break;
 default: break;
}

You can also use return in place of break to exit the current function, and use
continue when the switch is inside a loop. There is also a special form of switch,
called a final switch, which can be useful in specific circumstances. We'll take a
look at that in the next chapter, since it's closely related to enumerations.

The goto statement
Whether or not you think goto is evil, it is supported in D. It's the familiar C-style
goto you're used to, not the old style that lets you jump around anywhere in your
code base.

int x;
INC: writeln(x++);
if(x < 10) goto INC;

A do-it-yourself loop is one of the worst examples of goto there is, despite its
ubiquity. However, it's short and easy to understand. One of the use cases of goto
that most people agree is legitimate, that of cleaning up resources in a function, is
quite useful in C, but is made mostly obsolete in D by the scope statement. It's still
useful for explicit fall-through in switch statements.

The D goto has one important difference from the one in C: it is an error to skip
variable initialization.

goto SKIP_I; // Skipping initialization of i -- error!
int i = 2;
SKIP_I:
writeln(i);

Building a Foundation with D Fundamentals

[72]

Type qualifiers – const and immutable
Both const and immutable are type qualifiers. This means that, when applied to
any type, they actually create a new type. For example, the following equivalent
declarations all create a type that is called const(int).

const int x = 10;
const(int) y = 11;
const z = 12;

In the declaration of z, the compiler will infer the type. For a basic type such as int,
it makes no difference which syntax is used. However, we'll see shortly that things
can be a bit confusing with derived data types, so you may want to get into the habit
of using the syntax in the second line when you need to explicitly specify the type.
In the rest of this section, we're going to explore the contracts of both const and
immutable, then take a look at how they apply to the types we've seen so far.

The contracts
When you declare a variable as immutable, you are stating unequivocally that it is
never, ever going to change throughout the lifetime of the program. This is a very
strong contract and the compiler is going to run on the assumption that you really
mean what you say. This allows the potential for optimizations that otherwise would
not have been possible.

Anything declared as const is making a guarantee that no data will be modified
through that particular reference. This is less strict than the contract of immutable,
because it's still possible for the data to be modified through another, non-const
reference.

Another property of const and immutable is that they are both transitive. This
means that, if you apply them to a thing, then anything else that is reachable through
that thing is also const or immutable. You'll get a basic sense of this in this chapter,
but you'll achieve full clarity in the next chapter when you learn how to qualify
user-defined types.

With the basic types
Applying const and immutable to one of the basic types is straightforward. Despite
the difference in the contracts, there is effectively no difference between them in this
case as the basic types are all value types. When one is assigned to another, the right
operand is copied to the left operand. There's no way to change the original value
through the new one.

Chapter 2

[73]

immutable x = 10;
const y = 11;
const int z;
z = 12; // Error

All three variables are completely protected from mutation beyond the point
of declaration. x is forever 10, y is forever 11, and z is doomed to remain 0, the
value of int.init.

With pointers
When applying const or immutable to a pointer declaration, you first need to decide
if it should apply only to the data, or to the pointer as well.

const(int)* q; // Mutable pointer to const data
const(int*) r; // const pointer to const data
const int* s; // const pointer to const data

Without parentheses, it's easy to forget which kind of pointer you have. Also, note
that none of these guys are initialized; two of them are forever null. In the first
declaration, q is a mutable pointer. It need not point at the same location forever. It
can be assigned a new address at any time, but the data stored at that address can
never be mutated. r and s are const pointers, yielding an error if you try to point
them somewhere else.

int x = 10;
q = &x; // OK: mutable pointer
r = &x; // Error: const pointer
*q = 11; // Error: const data

Where the contract of const comes into play is that it's possible mutate const data
through a different pointer where const is not involved, as shown in this example:

const(int)* cp;
int* p;
int x = 10;
cp = &x; // OK
p = &x; // OK

There are two ways to modify x behind cp's back. First, you can assign a value to x
directly. Second, you can do it through the pointer p. const pointers are often used
as function parameters, where the function is promising it won't modify your data
through the pointer during the function's lifetime.

Building a Foundation with D Fundamentals

[74]

The syntax for immutable is the same. The difference is in the contract. If you
have a pointer to immutable data, then the data must be immutable through all
other pointers to that data. The original data must also be immutable. Consider
the following:

immutable(int)* ip;
int x = 10;
ip = &x; // Error: x is not immutable
immutable int y = 11;
ip = &y; // OK

You cannot assign ip a pointer to x because then there are no guarantees that x will
never be mutated elsewhere in the program. It works for y because y is immutable
data and cannot be modified directly. That said, you could always cast immutable
away. Consider the following two lines:

immutable int y = 10;
immutable(int*) py = &y;

We know that it's an error to assign a new address to py because the pointer, not just
the data, is declared as immutable (the * is inside the parentheses). Attempting to
assign the address of a mutable int to py will result in a compiler error, but take a
look at this:

writeln(py);
int** ppy = cast(int**)&py;
int j = 9;
*ppy = &j;
writeln(py);

This prints two different addresses, showing a successful violation of immutable's
contract. Doing something like this could lead to corrupt data, a segfault, an access
violation, or who knows what else. In fact, here's a demonstration of "who knows
what else":

immutable int x = 10;
int* px = cast(int*)&x;
*px = 9;
writeln(x);

Chapter 2

[75]

This snippet takes the same approach used to modify py above. Compiling and
running this, though, actually prints 10. The compiler, assuming that an immutable
int is never going to be modified, has changed writeln(x) to writeln(10). This is
one of the optimizations enabled by immutable. Taken together, these two examples
demonstrate why casting away immutable is never a good idea. It is undefined
behavior and anything can happen.

The same can be said for const. It's not a violation of the const contract to
modify source data through another reference, but it certainly is a violation to cast
const away and modify it. There's more to the const story, but it's more clearly
demonstrated in the context of user-defined types in the next chapter.

With arrays
The general idea with arrays is the same as with pointers. For example:

const(int)[] t; // Mutable array, const data
const(int[]) u; // const array, const data
const int[] v; // const array, const data

Here, none of the metadata associated with u or v can be modified through u or v.
Not the pointer, the length, the capacity, nothing. As with pointers, it's still possible
for another, mutable slice to reference the same data. What about t?

t[0] = 1; // Error: const data
t ~= [3,2,1]; // OK: mutable array
t.length = 30; // OK: mutable array

The first line fails as one would expect; you can't modify const data. The last two
lines show what it means to have a mutable array. Tacking a slice onto the end of it
does not violate the contract, since none of the original elements are mutated and
they are all still reachable from their original indexes in the array, no matter that they
may have been copied elsewhere during a reallocation. The only modification was
to the array metadata. Ditto for the assignment to length. This all also holds true for
immutable. I trust you can work out how its contract would apply if you swap it in
for const in this example.

You can also apply const and immutable to associative arrays and strings. Recall
that strings are declared as arrays with immutable data. If you want to further make
the array metadata immutable or const, you can do it as with any other data type,
such as immutable(string), which is effectively immutable(immutable(char)[]).
This is exactly the same as immutable(char[]).

Building a Foundation with D Fundamentals

[76]

Conversions
Types that are passed around by value are implicitly convertible between immutable,
const, and unqualified; immutable and unqualified are both implicitly convertible to
const, but not the other way around.

immutable int x = 10;
int y = x; // OK: value types
immutable(int)* ipx = &x;
const(int)* cpx = ipx; // OK: immutable to const
const(int)* cpy = &y; // OK: unqualified to const
int* px = ipx; // Error

You can think of const as a bridge between the three. This is particularly helpful
with function parameters if the mutability of the source variable is irrelevant.

Functions
The following two statements are true about D function declarations:

•	 Functions can be declared in module scope or as members of an
aggregate type

•	 There's no need to separate the declaration of a function from its
implementation, though it is still possible to do so

We've seen two functions already in the form of main and sayHello, both of which
had a void return type. Here's one that takes three unsigned bytes representing
red, green, blue, and alpha color components and returns a packed 32-bit RGBA
value as a uint.

uint packRGBA(ubyte r, ubyte g, ubyte b, ubyte a = 255) {
 return (r << 24) + (g << 16) + (b << 8) + a;
}

As you can see, D isn't shaking things up in the world of function declaration syntax.
We have a return type, uint, the function name, packRGBA, and a parenthesized
parameter list. The last parameter has a default value of 255, so the function can be
called with only three arguments instead of four. Both the following are valid:

auto white = packRGBA(255, 255, 255);
auto transWhite = packRGBA(255, 255, 255, 127);

Chapter 2

[77]

Default arguments in D work as they do in C++. Parameters with default arguments
can only be followed in the parameter list by other parameters with default
arguments. When calling a function with multiple default arguments, any
arguments provided by the caller are applied in order.

int illegal(int a = 1, int b); // Error
int legal(int a = 1, int b = 10); // OK
legal(); // OK a = 1, b = 10
legal(2); // OK a = 2, b = 10
legal(2,11); // OK: a = 2, b = 11

Like most other declarations, functions can be declared in any scope. The same
scoping rules apply.

void manyFuncs() {
 int innerNumber1() {
 writeln("Number1");
 return 1;
 }
 {
 void innerNumber2() {
 writeln("Number2");
 }
 innerNumber2();
 }
 for(int i=0; i<10; ++i) {
 void innerNumber3() {
 writeln(i);
 }
 innerNumber3();
 }
 innerNumber1();
}

Yes, you can declare functions in for loops. When calling a function with no
arguments, the parentheses can be omitted.

manyFuncs();
manyFuncs;

What's more, if a module-scope function has only one parameter, then Universal
Function Call Syntax can be used and the parentheses can still be dropped.

auto inc(int x) { return ++x; }

Building a Foundation with D Fundamentals

[78]

Both of the following are valid:

auto n1 = 2.inc;
auto n2 = n1.inc();

Again, the parentheses are optional in both cases. What's the difference? Nothing
that is enforced by the compiler. It's useful for implementing properties. In fact,
when you access the .capacity of an array, you're really calling a module-scope
function that takes an array as the first parameter. It isn't a built-in property as
.length or .ptr are.

One place where the parentheses are often dropped is function chaining.

auto n3 = 2.inc.inc.inc.inc.inc;

This is a common idiom when working with ranges and algorithms, as you'll learn in
Chapter 7, Composing Functional Pipelines with Algorithms and Ranges, although you're
usually chaining several functions together rather than multiple calls to one. Later in
the book, we'll also take a look at D's support for variadic functions.

Overloaded functions
Any function in D can be overloaded by declaring another function with the same
return type, same name, and different parameters. A simple example is as follows:

void print(int i) { writeln(i); }
void print(string s) { writeln(s); }

When the compiler encounters a call to one of these functions, such as print(10),
it goes through a defined process to determine the best match. It looks at each
parameter in the parameter lists to determine how well the types of the arguments
match the types of the parameters by assigning match levels to each function. The
function with the highest match level wins. In this case, that would be the int
version of print because the type of the literal 10 makes an exact match with the
type of the function's single parameter. For more on how overload matches are
determined, refer to http://dlang.org/function.html#function-overloading.

ref and out
In D, it's impossible to declare a variable as a reference. However, it is possible to
declare function parameters and return types as references. We do so with ref.

void swap(ref int x, ref int y) {
 auto tmp = x;
 x = y;
 y = tmp;

http://dlang.org/function.html#function-overloading

Chapter 2

[79]

}
void main() {
 int x = 10;
 int y = 20;
 swap(x, y);
 writeln(x, ", ", y);
}

One important thing to know about ref is that it is a storage class, not a type
qualifier, so it does not become part of the type. It's illegal to use parentheses,
like ref(int).

It's also important to understand the effect of ref on arrays. Consider the following:

void append(int[] arr, int val) {
 arr ~= val;
}

And to test it:

auto a1 = [10,20,30];
a1.append(40);
writeln(a1);

You'll see that the appended value was not printed. This sometimes confuses new D
programmers who may be under the impression that arrays are passed around by
reference. It's an easy assumption to make, especially since modifying the existing
elements as we did in update is reflected in the original array. But recall our discussion
about slices. The array itself is conceptually a length and a pointer. While a slice can
share memory with its source array, its length and pointer are completely independent.
As such, a slice is passed by value to a function. Inside a function, any modification to
the length or pointer of a slice parameter is modifying the metadata of the parameter,
not that of the source array. To enable modification of the source array's metadata, the
parameter must be declared ref. Change append to look like this:

void append(ref int[] arr, int val) {
 arr ~= val;
}

With this version, writeln prints the appended value. There's a side-effect of adding
ref here, though. Recall that static arrays are implicitly convertible to dynamic
arrays. With ref, the function will no longer accept slices of static arrays.

int[3] a2 = [10, 20, 30];
append(a2, 40); // Error!

Building a Foundation with D Fundamentals

[80]

This call to append causes a compiler error. Remember, the length of a static array
is fixed; a2 will contain exactly three elements for the entirety of its existence. The
compiler isn't going to allow you to pass a slice of a static array into a function
where it is possible to modify the length of the source array through the slice.

When the parameter itself is a static array, the entirety of the array, including its
elements, is copied into the function.

void setArrayIndex1(int[3] copy) {
 copy[1] = 2; // Changes second element only of copy.
}

The second element of the source array is unchanged by this function; only the
second element of copy is modified. To modify the source array, once again use ref.

void setArrayIndex1(ref int[3] copy) {
 copy[1] = 2; // Changes second element of source array.
}

You can also have references to const or immutable data.

void silly(ref const(int) a, ref const(int) y) {}

This function is named silly because it really is silly to have a reference to
const(int). It's effectively the same as int. This really only has meaning
when used with user-defined types, as we'll see in the next chapter.

When the purpose of applying ref to a function parameter is solely to pass a value
back to the call site, out can replace ref. An out parameter's only purpose in life is
to hold an output value from a function. A key difference is that an out parameter
is initialized to the .init value of its type when the function is entered. Using it
in place of ref clearly documents that the value of any argument passed in that
parameter slot is ignored.

You can also return values by ref, but it doesn't work the way a C++ programmer
might expect. Consider this:

void main() {
 int y;
 ref int getRef() {
 return y;
 }
 auto i = getRef();
 i = 10;
 writeln(y);
}

Chapter 2

[81]

Compile and execute the preceding code and you'll find it prints 0, not 10.
The reason is best illustrated by attempting to compile this line:

ref int ri;

This results in the following compiler error (assuming a source file named foo.d):

Error: variable foo.main.ri only parameters or foreach declarations
can be ref

To be clear, a ref return value is actually returned from the function by reference,
but if it's stored in a variable, that variable cannot be declared ref. Unlike const and
immutable, ref is not a type qualifier; it's a storage class only. So in this example, if
assigning 10 to i has no effect on y, then what good is a ref return value? Replace
the two highlighted lines with this one.

getRef() = 10;

Now the writeln at the end will show you that y has actually been set to 10. You
can also declare a function to return auto ref. In that case, the compiler will use
the function's return statement(s) to infer if the return value can be ref or not. For
example, a local variable would be returned by value, but a local static variable
by reference.

inout parameters
Sometimes, the mutability of a function return type needs to match the mutability
of one of the parameters. For example:

const(int)[] writeAndReturn(const(int)[] arr) {
 write(arr);
 return arr;
}

To support the same function for both immutable and unqualified arrays, it's
necessary to write one overload for each. This is such a common requirement
that there's a keyword to handle it automatically: inout

inout(int)[] writeAndReturn(inout(int)[] arr) {
 writeln(arr);
 return arr;
}

Building a Foundation with D Fundamentals

[82]

Now, no matter which type of array is passed to the function, the return type will
match it. Internally, the function will treat it as const.

immutable(int)[] ia = [10,20,30];
int[] a = [1,2,3];
writeln(typeid(writeAndReturn(ia)));
writeln(typeid(writeAndReturn(a)));

lazy parameters
When a parameter is declared lazy, then any expression passed in that position is
not evaluated immediately when the function is entered, but when the parameter is
used. The difference can be seen in the following complete program:

import std.stdio;
void normalParam(int x) {
 writeln("Entered normalParam");
 writeln(x);
}
void lazyParam(lazy int x) {
 writeln("Entered lazyParam.");
 writeln(x);
}
int getInt() {
 writeln("Entered getInt");
 return 10;
}
void main() {
 normalParam(getInt());
 lazyParam(getInt());
}

Here's the output:

A great example of its usage is with string parameters intended to be used for
logging. If a function is passed the output of std.format.format, or a string
concatenation, you'll save some work if the string is never used.

Chapter 2

[83]

Function attributes
There are a number of attributes that can be applied to a function declaration as a
contract statement. A discussion of each is better suited to different parts of the book,
but this is a good place to discuss the syntax. The attributes nothrow and @nogc will
serve to demonstrate. The former prevents the throwing of exceptions in a function;
the latter similarly prohibits garbage collection.

One thing that will certainly leap out right off the bat is that one of these has an @
in front and the other doesn't. This is largely an artifact of history. D supports
user-defined attributes (which are explored in Chapter 4, Running Code at Compile
Time), a feature that makes use of the @ symbol in attribute names. Attributes defined
by the language since the introduction of UDAs take the same form. The nothrow
attribute predates this.

Function attributes can be applied at the beginning or end of a function declaration.
You can apply one or all of them, in any order.

void func1() pure nothrow @nogc;
pure nothrow @nogc void func2();

You can also apply them to several functions at once using the attribute syntax we
saw back at the beginning of the chapter:

// Valid until the closing brace
pure nothrow {
 void func1() {};
 void func2() {}
}
// Valid until the end of the current scope
pure nothrow:
 void func3() {};
 void func4() {};

Return statements and memory
When using the return statement in a function, be very careful about what it is that
you're returning. Anything that lives on the stack will no longer be available once
the function exits. If a pointer or reference to such data is returned, you're looking
at undefined behavior. Anything returned by value, including the basic types, is
fine. Slices are no problem as long as they are not backed by a local static array or
any other memory allocated on the stack. Just make sure you've got the function
declaration straight and that you remember that static arrays live on the stack.

int[3] returnAStaticArray1() {

Building a Foundation with D Fundamentals

[84]

 int[3] statArray;
 return statArray;
}
int[] returnAStaticArray2() {
 int[3] statArray;
 return statArray; // Error: escaping reference to local
}

The first function here is on solid ground. Because the return type is a static array,
the return statement will cause the entire array, including its contents, to be copied
to the call site. If statArray had been declared with a different length, like int[4],
this would fail to compile. The return type and the actual type returned must
match exactly.

The second function fails to compile because the memory for statArray exists on the
function stack. The return statement causes the static array to be sliced. Because the
slice would be pointing to stack memory, its .ptr would become invalid as soon as
the function stack is overwritten. You can fix this with the .dup property.

int[] returnAStaticArray2() {
 int[3] statArray;
 return statArray.dup; // OK
}

This will allocate a copy of statArray on the heap, making it safe to access outside
the function. The same sort of caution is needed in any function that returns a pointer
or reference to any value on the local stack.

int* returnAnIntPointer1() {
 int x = 10;
 return &x; // Error escaping reference to local
}

The solution, again, is to allocate space on the heap. This time there's no .dup
property.

return new int(x);

The compiler is smart enough to catch many instances of this for you, but it can't
catch them all. It pays to be vigilant.

Chapter 2

[85]

Function pointers and delegates
Function pointers can be declared as variables. They look like this.

void function(int) funcPtr;

Function pointers are default initialized to null. In this example, only the type of the
parameter is listed, but you can give it a name if you want. Like any other variable,
function pointers can be explicitly initialized and you can assign values to them. In
C, the address of a pointer is taken by simply using the name of the function. This is
one aspect of C that D did away with; taking the address of a function requires an &
just as it does with a variable. The function can be called through the pointer using
the normal syntax.

void myFunc(int x) { writeln(x); }
void main() {
 void function(int) funcPtr = &myFunc;
 funcPtr(22); // call MyFunc
}

You can pass a function pointer around like any other variable. The function pointed
to can only access non-static variables declared in its own scope or in module scope.
If you need multiple function pointers with the same signature, use alias.

alias MyFuncPtr = void function(int);

Let's rewrite the myFunc example given in the preceding code so that it's an
inner function:

void main() {
 void myFunc(int x) { writeln(x); }
 void function(int) funcPtr = &myFunc;
 funcPtr(22); // call MyFunc
}

Try to compile this and you'll get an implicit conversion error. This is because
taking the address of an inner function does not give you a function pointer, but
a delegate. An inner function is declared in a function or block scope. Sometimes,
inner functions may need access to other static local variables or variables declared
in a parent scope. Consider the following:

void proxy(void delegate() dg) {
 dg();
}

Building a Foundation with D Fundamentals

[86]

void main() {
 int x = 100;
 void myDel() {
 writeln(x);
 }
 proxy(&myDel);
}

Here, a delegate is passed as a function parameter. Note that the delegate declaration
looks like a function pointer declaration, except that it uses delegate in place of
function. When the address of myDel is passed to proxy, it completely leaves
the scope of main. Since x is declared in main's scope, it is not accessible outside
that function. But our delegate is called in proxy and it must be able to access x.
Furthermore, what would happen if the address of a delegate is stored in a variable
to be called later on, well after the scope in which it was declared has exited? The
stack memory where it was declared would no longer exist. When a delegate needs
to reference such a variable, the compiler allocates some memory, saves in it the state
of the local stack, and gives the delegate a pointer to it (this is called a closure).

Place the static keyword in front of the myDel declaration and things are different.
A static inner function, like a static variable, exists outside the local stack. It's still
only visible in the local scope, but it is stored elsewhere. Taking the address of a
static inner function results in a regular function pointer. It only has access to global
variables and any static variables declared before itself in the local scope.

You can also create function pointers and delegates from literals.

auto fp1 = function int(int i) { return i * 2; };
auto d1 = delegate void { writeln(fp1(10)); };
auto fp2 = function (int i) => i + 1; ;
auto d2 = delegate () => "Hello";

fp1 is a normal function literal. It is a function that returns int and accepts a single
integer parameter i. d1 is a normal delegate literal. It returns void and has no
parameters (optional empty parentheses could follow the return type). The bottom
two are a shorthand form called lambdas. For both, the return type is inferred (int
for fp2, string for d2). fp2 takes an int parameter, d2 takes none. In this case, the
empty parentheses are required.

There are even shorter lambda forms, as shown in the following snippet:

void performTest(int a, int b, bool function(int, int) test) {
 writeln("The result is ", test(a, b));
}
performTest(1, 2, (a, b) { return a == b; });
performTest(1, 2, (a, b) => a < b);

Chapter 2

[87]

The first call to performTest uses a lambda syntax that looks like a full function
literal minus the function keyword and return type. The second call uses the
shortest form. In both cases, empty parentheses indicate no parameters, but are
not optional. Both of these syntaxes can be used anywhere a function pointer or
delegate is expected.

MovieMan – first steps
A lot of features have been covered in this chapter, but only a small handful are
needed for the MovieMan module we're about to implement. We'll put more of
them to use as we add to the project in later chapters. Throughout the book, the full
path of any example source module is referred to as $LEARNINGD/ChapterNum/
filename.d. This is impractical for the MovieMan code listings, as the project will be
implemented across multiple chapters. When referring to MovieMan source modules,
the form $MOVIEMAN/filepath/filename.d will be used, where $MOVIEMAN is the
root directory of either the DUB project we created in the first chapter or of any other
location you choose to initialize the MovieMan project with DUB.

The io module
Create an empty file in your text editor and save it as $MOVIEMAN/source/movieman/
io.d. This module will consist of a few module-scope functions that read text from
standard input and print text to standard output. We're going to implement the entire
module in this chapter so that we don't need to revisit it later on. We'll start with the
module declaration and an import of std.stdio as the first two lines.

module movieman.io;
import std.stdio;

There are two primary forms of input that MovieMan requires. strings are used
to input movie titles and uints are for case numbers, page numbers, and menu
commands. To read strings, we'll implement readString, the primary workhorse
of the io module.

string readString() {
 import std.string : chomp;
 return readln().chomp;
}

Building a Foundation with D Fundamentals

[88]

readString calls two functions that we haven't seen. std.stdio.readln is what
does the work of reading a line of text from stdin. It returns a string containing the
text along with the platform-specific line terminator. Retaining the line terminator
would cause extra work later on to avoid breaking the format of the program's
output, so we turn to std.string.chomp to handle it here instead. This function can
be given any delimiter, which it will look for at the end of a string. It the delimiter is
found, it returns the string without the delimiter; otherwise, it returns the original
string. When no delimiter is specified, it looks for several non-text characters. Refer
to http://dlang.org/phobos/std_string.html#.chomp for details.

The next function will be readUint. It takes a string returned from readString and
parses it for a uint value via std.conv.to. Recall from the discussion of strings that
to throws an exception if the string cannot be converted. Any number that the user
types in will represent either a case number, a page number, or a menu command,
none of which can ever be 0. To handle the exception, we can make use of a feature
that we won't discuss until the next chapter, though it's one that many readers will
be familiar with: the try…catch block. If to throws an exception, we can catch it and
simply return 0.

uint readUint() {
 import std.conv : to;
 try {
 return readString().to!uint;
 }
 catch(Exception e) {
 return 0;
 }
}

readString and readUint are the building blocks of the rest of the module. The first
higher-level function we'll implement is called readTitle. It asks the user to enter a
movie title, then calls readString to get the input, which it immediately returns.

string readTitle() {
 writeln("\nEnter a movie title:");
 return readString();
}

There's no check to see if we have an empty string here. This will be handled at a
higher level in the program. Next is a function we'll call readNumber. It asks the user
to enter a case or page number, then calls readUint to read the input. The function
takes one argument, a string whose value should either be "case" or "page", which
it inserts into the output.

uint readNumber(string label) {

http://dlang.org/phobos/std_string.html#.chomp

Chapter 2

[89]

 writefln("\nEnter a %s number:", label);
 return readUint();
}

Next, we have a pair of overloaded functions that will be used when a user needs
to choose one or more actions, both named readChoice. The functions display one
or more options, asking the reader to choose one or to press Enter for the default
option. These functions will only be called in specific circumstances, such as when
the user has made a selection from the main menu and needs to decide on how to
proceed. The default option can be defined as aborting the current action. No action
that moves the program forward or makes a change in the program state should be
the default. The name of the default option is specified in the second parameter, the
default value of which is "abort".

bool readChoice(string msg1, string msg2 = "abort") {
 writefln("\nEnter 1 to %s.", msg1);
 writefln("Press Enter to %s.", msg2);
 return readUint() == 1;
}
uint readChoice(string[] msgs, string msg2 = "abort") {
 writeln();
 foreach(i, msg; msgs)
 writefln("Enter %s to %s.", i+1, msg);
 writefln("Press Enter to %s.", msg2);
 return readUint();
}

When the user types any input, she must press Enter in order for readln to pick it
up. If Enter is pressed without any input, the line returned from readString will
only contain a line terminator. This will cause an exception to be thrown inside
readUint, which will catch it and return 0. The downside is that there is no way
to tell if the user simply pressed Enter or typed in a bunch of gibberish. We could
parse the input string to see if it only contains a line terminator, or use the operating
system API to check if the Enter key was pressed, but there's really no reason to do
so. Since the default option in any call to readChoice is to abandon whatever action
is in progress, it doesn't matter what the input is, if it wasn't one of the possible
options. On invalid input, the program can go back to a previous screen and the
user can start again if a mistake was made.

Building a Foundation with D Fundamentals

[90]

We could conceivably do without the first version of readChoice, as the second one
can handle a single action just fine. But this is a good opportunity to demonstrate
one aspect of thinking in D. The second version takes an array as the first parameter.
Using only one option with this function would require one of the following
approaches:

readChoice(["Option"]); // Approach 1
string[1] option = ["Option"]; // Approach 2
readChoice(option);

The first approach allocates a dynamic array on the GC heap every time it is executed.
A D programmer should always be aware of which language features are allocating
GC memory. For a simple little project like MovieMan, this isn't likely to ever be an
issue, but readChoice could still be called numerous times in a normal run of the
program. It isn't going to hurt to avoid gratuitous allocations from the GC heap. The
second approach avoids the repeated allocation, but (for me, at least) it's just plain
annoying to use a single-element array for what really should be a single variable.

The final function in the io module prints a header, followed by a list of numbered
options. In the next chapter, we'll use this function to print menus.

void printList(string header, string[] list) {
 writeln("\n", header);
 foreach(i, line; list)
 writefln("\t%s. %s", i+1, line);
 writeln();
}

On the surface, there doesn't appear to be much difference in the output of
readChoice and printList, but they are used in different contexts. In the next
chapter, we'll implement a class called Menu that manages its own array of options and
uses printList simply for display. The format of the output is different between the
two functions as a visual cue to distinguish between primary menus and submenus

Chapter 2

[91]

The app module
The file $MOVIEMAN/source/app.d was generated by DUB when the project was
initialized. Open this file and replace its contents with the following code:

import std.stdio;
import movieman.io;
void main() {
 auto title = readTitle();
 writeln("The title is: ", title);

 auto number = readNumber("page");
 writeln("The number is: ", number);

 auto bchoice = readChoice("continue", "abort");
 writeln("You chose to: ", bchoice ? "continue" : "abort");

 auto choices = ["Eat Pizza", "Sleep",
 "Watch 'Game of Thrones'", "Play Skyrim"];
 auto uichoice = readChoice(choices, "do nothing");
 if(uichoice == 0)
 writeln("You chose to do nothing.");
 else
 writeln("You chose to ", choices[uichoice-1]);

 printList("What do you feel like doing?", choices);
 uichoice = readUint();
 writeln("You chose option #", uichoice);
}

Now you can cd to $MOVIEMAN, type dub, and follow the instructions. In the next
chapter, we'll work further on the UI.

Building a Foundation with D Fundamentals

[92]

Summary
In this chapter, you've learned the basic building blocks of the D Programming
Language. We've examined the basic types and operators, complex types, control
flow statements, the type qualifiers const and immutable, and functions. We've also
taken the first steps toward implementing MovieMan, our sample project.

In the next chapter, we'll continue our journey through the basic features and take a
look at the different user-defined types that D supports. Most of the chapter will be
focused on object-oriented programming in D and you'll learn how to apply some
OOP features to MovieMan.

[93]

Programming Objects
the D Way

In this chapter, we're going to build upon the foundation established in the previous
chapter by looking at D's user-defined types, its support for object-oriented
programming, and some peripherally related features. By the end of the chapter,
we'll be finished with the basics of D and ready for more advanced topics. Here's
our checklist:

•	 User-defined types: enumerations, unions, structs, and classes
•	 Working with objects: protection attributes, constructors, and destructors
•	 Contract programming: contracts and invariants
•	 Error handling: exceptions and asserts
•	 MovieMan: adding menus via user-defined types

User-defined types
This section shows how to define custom types using enum, union, struct, and
class. The latter two will be the focus for most of the remainder of the chapter.

Enumerations
The anonymous enumeration in D declares a set of immutable values. A major
difference from C is that it's possible to specify the underlying type. When no fields
are explicitly assigned a value, the underlying type of an enum defaults to int. Note
that user-defined type declarations in D do not require a semicolon at the end:

enum {top, bottom, left, right} // type is int
enum : ubyte {red, green, blue, alpha} // type is ubyte

Programming Objects the D Way

[94]

The members of each will be initialized with sequential values starting at 0. In the
second declaration, the underlying type is explicitly set to ubyte by appending
a colon and the type name to the enum keyword. enum values aren't restricted to
integrals, or even just the basic types. Any type that D supports, be it one of the
derived data types or even a user-defined type, can back an enum. Where possible,
the compiler will infer the type:

enum {one = "One", two = "Two"} // type is immutable(char)[]

An anonymous enum with only one member is eligible for some special treatment:

enum {author = "Mike Parker"}
enum author = "Mike Parker";
enum string author = "Mike Parker";

As shown in the second line, the braces can be dropped. The third line explicitly
specifies a type, but in this form there's no colon. An enum declared without braces
is called a manifest constant.

An anonymous enum does not create a new type, but a named enumeration does:

enum Side {top, bottom, left, right}
enum Color : ubyte {red, green, blue, alpha}

The name is used as a namespace and the members are accessed via the dot operator.
Printing the typeid of one of these produces a fully-qualified name that includes the
enum name (Side or Color, in this case). All user-defined types get this treatment.

Named enums have properties. .init equates to the value of the first member of the
enum; its .sizeof is that of the underlying type. The type-specific properties .min
and .max return the lowest and highest member values respectively.

One special feature designed to work specifically with enums is the final switch
statement. For example, to switch on a value of the Side type:

auto s = Side.bottom;
final switch(s) {
 case Side.top: writeln("On top"); break;
 case Side.bottom: writeln("On the bottom"); break;
 case Side.left: writeln("On the left"); break;
 case Side.right: writeln("On the right"); break;
}

A big benefit is that the compiler will give you an error if you forget to add a case
for one of the enum members. It also adds a default case that asserts if a non-member
value somehow slips through, making it an error to add a default case. If two or
more members have the same value, only one need appear in a final switch.

Chapter 3

[95]

Unions
For the most part, unions in D work as they do in C:

union One {
 int a = 10;
 double b;
}

The members of a union share the same memory, which is large enough to hold the
biggest type. In this declaration, the biggest type is double, so an instance of One
takes up 8 bytes. D diverges from C in terms of initialization. Every variable in D
is by default initialized and a union instance is no exception. By default, the first
member is initialized to its .init value if not explicitly initialized, as in the previous
example. It is an error to initialize other members.

To explicitly initialize an instance of a union, you can use the name:value syntax
with braces. Given the nature of unions, it's an error to initialize more than one field:

One o2 = { b:22.0 };

Unions are great for compatibility with C, but there is an alternative in the
standard library that offers better type safety. The module std.variant
exposes the Variant type. See http://dlang.org/phobos/std_
variant.html for details.

Structs and classes
D's implementations of the struct and class types are a major source of
misunderstanding for C-family programmers new to D. Here are declarations
of each:

struct MyStruct {
 int a, b;
 int calculate() { return a + b; }
}
class MyClass {
 int a, b;
 int calculate() { return a + b; }
}

The declarations have the same syntax. The biggest difference is hidden here:

MyStruct ms;
MyClass mc;

http://dlang.org/phobos/std_variant.html
http://dlang.org/phobos/std_variant.html

Programming Objects the D Way

[96]

In D, a struct is a value type. It's enough to declare an instance for it to be created
on the stack and ready to go. At this point, a call to ms.calculate will successfully
compile. The same cannot be said for mc. A class is a reference type. It isn't enough
to declare an instance, as that only produces an uninitialized reference, or handle.
It is a common error for new D programmers coming from C++ to try using
uninitialized class references. Before mc.calculate can be called, an instance
must be allocated:

mc = new MyClass;
auto mc2 = new MyClass;

This has implications for how instances are passed to and returned from functions.
Since a struct is a value type, instances are copied. ms.sizeof is 8 bytes, the size of
two ints, which means passing ms to a function will cause 8 bytes to be copied:

void modMS(MyStruct ms1, ref MyStruct ms2, MyStruct* ms3) {
 ms1.a = 1; // Modifies local copy
 ms2.a = 2; // Modifies original
 ms3.a = 3; // Ditto.
}

Since the first argument is passed by value, any modifications to ms1 only affect the
function's copy, but modifications to ms2 and ms3 will be reflected in the original
variable. It's different with mc:

void modMC(MyClass mc) {
 mc.a = 1; // Modifies original.
}

As MyClass is a reference type, there's no need to declare a pointer or ref parameter
to modify the original variable. mc.sizeof is 4 on 32-bit architectures and 8 on
64-bit. This is the size of the reference, not the size of the instance itself.

Struct pointers
A struct pointer can be obtained by taking the address of an instance or
allocating an instance on the heap. C and C++ programmers take note: in
D, there's no -> for any type of pointer. There is only the dot operator.

Chapter 3

[97]

When a class or struct instance is instantiated, it gets its own copy of any member
variables. If a member variable is declared as static, only one thread-local copy of it
exists. Each member is by default initialized to its .init value unless an initialization
value is specified. Member functions are normal functions that accept a hidden this
argument as the first parameter (accessible inside the function scope), representing
the instance. Taking the address of a member function produces a delegate. Static
member functions have no this parameter and taking the address of one yields
a function pointer:

struct MembersOnly {
 static int x;
 int y;
 int z = 10; // Initialized to 10 for all instances
 static void printX() {
 writeln(x);
 }
 void printYZ() {
 writefln("%s, %s", this.y, z); // this.y is the same as y
 }
}

Non-static members may only be accessed using an instance name as a namespace:

MembersOnly mo;
writeln(mo.z);
mo.printYZ();

Static members must be accessed using the type name as a namespace:

MembersOnly.x += 1;
MembersOnly.printX();

The with Statement
Any time a namespace is required, it can be temporarily bypassed via
the with statement. It works with all of the types described here, as well
as with static imports:

MembersOnly mo;
with(mo) {
 printYZ(); // Same as mo.printYZ().
}

Programming Objects the D Way

[98]

Working with objects
If you have experience with object-oriented programming, you'll find much of D's
OOP support familiar. As such, I need to reiterate my warning from before: D is
not C++, Java, or C#. Familiarity can help you pick some things up more quickly,
but it can also lead you to take other things for granted. This section introduces
D's OOP features.

Encapsulation with protection attributes
There are four levels of protection in D: public, package, private, and protected.
The first three apply to classes, structs, and modules, but protected only has
meaning with classes. We'll examine it later when we talk about inheritance.

Public
Anything declared public in a module, whether it's in module scope or as part of a
class or struct declaration, is visible anywhere it's imported. With the exception
of import declarations, all declarations in a module, class or struct are implicitly
public. Save the following as $LEARNINGD/chapter03/protection1.d:

module protection1;
import std.stdio; // private, only visible in this module
class MyClass {
 void sayHello() { writeln("Hello"); }
}
struct MyStruct {
 void sayHello() { writeln("Hello"); }
}

Now create a new file in the same directory, let's call it importer1.d, and add this:

void main() {
 import protection1;
 auto mc = new MyClass;
 mc.sayHello();
 MyStruct ms;
 ms.sayHello();
}

Compile both files. Every symbol declared in protection1.d is visible in
importer.d, so there are no errors on compilation.

Chapter 3

[99]

Private
Go back to protection1.d and add this right after the module declaration:

private:

As this uses the colon syntax rather than braces, every symbol following this
line—until another protection attribute is encountered—is now private to the
protection module. The import of std.stdio was already private, so this has
no effect on it. Compile both modules again. Now two compiler errors are produced
reporting that MyClass and MyStruct are private. That's just what one would expect.
Now save the following as protection2.d in the same directory:

module protection2;
import std.stdio;
class MyClass {
 private void sayHello() { writeln("Hello"); }
}
struct MyStruct {
 void sayHello() {
 MyClass mc = new MyClass;
 mc.sayHello(); // calls private member function of MyClass
 }
}

Then save this as importer2.d, compile, and run:

void main() {
 import protection;
 MyStruct ms;
 ms.sayHello();
}

This will be a big surprise to most folks. In D, anything declared private is private
to the module. In other words, MyClass.sayHello is accessible everywhere inside the
protection module. There's no such thing as private to the type in D. Unlike C++, D
does not have the concept of a friend function, as the same behavior arises via the
private and package attributes.

Programming Objects the D Way

[100]

Package
Any symbol-declared package is accessible only to modules in the same package
or in any of its subpackages. To demonstrate, create two packages, encap and
encap.internal, and populate them with a few modules. Filenames are commented:

// $LEARNINGD/chapter03/encap/support.d
module encap.support;
package void supportFunction() {
 import std.stdio: writeln;
 writeln("Providing support!");
}
// $LEARNINGD/chapter03/encap/base.d
module encap.base;
void primaryFunction() {
import encap.support;
 supportFunction();
}
// $LEARNINGD/chapter03/encap/internal/help.d
module encap.internal.help;
void helperFunction() {
 import encap.support;
 supportFunction();
 import std.stdio: writeln;
 writeln("Helping out!");
}

There are three modules: encap.base, encap.support, and encap.internal.help.
Each module declares one function, two of which are public and one of which is
package. Now create $LEARNINGD/chapter03/packtest.d, like so:

void main() {
 import encap.base;
 primaryFunction();
}

Finally, compile it all with the following command:

dmd packtest.d encap/base.d encap/support.d encap/internal/help.d

Chapter 3

[101]

Ideally, the only function in the encap package that should be accessible to the outside
world is primaryFunction. However, encap.internal.help.helperFunction
is public. The default package protection does not extend accessibility to super
packages, so helperFunction has to be public in order for it to be accessible inside
encap. This comes with the consequence that it's also accessible outside the package.
Actually, something can be done about that. Go back to encap.internal.help and
change the declaration of helperFunction to look like this:

package(encap) void helperFunction() {…}

Specifying a package name with the package attribute makes the symbol accessible in
that package and all of its subpackages. With this, helperFunction is still accessible in
encap.base and is no longer accessible outside the encap package hierarchy.

Voldemort types
The preceding paragraphs use the terms accessible and accessibility quite a bit.
We saw that, when the declarations of MyStruct and MyClass are private, instances
cannot be instantiated in another module; the symbols are inaccessible. There's more
to the story. Save the following as $LEARNINGD/chapter03/priv.d:

module priv;
private struct Priv {
 int x, y;
}
Priv makeAPriv(int x, int y) {
 return Priv(x, y);
}

You might assume that public members in a private struct declaration are
meaningless. Test that assumption with $LEARNINGD/chapter03/privtest.d:

import std.stdio;
import priv;
void main() {
 auto priv = makeAPriv(10, 20);
 writeln(priv.x);
}

Pass both files to the compiler; not only will it compile them, but running the
resulting executable will print 10, the correct value of priv.x. The symbol may
not be accessible, but the type itself is. Change the highlighted line to the following:

Priv priv = makeAPriv(10, 20);

Programming Objects the D Way

[102]

This yields a compiler error similar to the one we saw earlier with MyStruct and
MyClass. This is another benefit of type inference; a type can be completely hidden
while only exposing its interface.

We can take this a couple of steps further. The type is still exposed in the function
declaration, but, by replacing Priv with auto, the compiler will infer the return
type. Also, since types can be declared inside a function, the declaration of Priv can
be moved out of module scope and into the function's scope. In this case, we have to
use auto to infer the return type, since the type does not exist outside the function
scope and cannot be part of the declaration:

auto makeAPriv(int x, int y) {
 struct Priv {
 int x, y;
 }
 return Priv(x, y);
}

With these changes to the priv module, the original privtest.d will still compile.
The Priv symbol is not accessible anywhere outside makeAPriv. We can refer to
Priv as a type that shall not be named, or a Voldemort type.

Constructors and destructors
Constructors and destructors can be implemented for classes, structs, and even
modules. However, there are differences with each that need to be accounted for.

Class constructors and destructors
We've not explicitly declared any constructors in any class declarations so far,
but we've still been able to construct new instances. That's because the compiler
automatically adds a default constructor if no constructors are implemented.
A default constructor is one that takes no arguments:

class OneCon {
 private int x;
 this(int x) { this.x = x; }
}

OneCon has an explicitly implemented constructor, so new OneCon() will not compile.
To create a new instance of OneCon, a constructor argument must be provided:

auto oc = new OneCon(10);

Chapter 3

[103]

Before the constructor is run, x will be initialized by default. Since no default
initialization value was specified in the declaration, it will be initialized to int.init.
After that, the constructor is executed and the parameter x is assigned to the member
x. Note this.x is used to specify the member variable, which is legally shadowed by
the parameter of the same name. The this reference is accessible in every non-static
function of both classes and structs. To avoid the need to use this so often in member
functions, I prefer to prefix private member variable names with an underscore.

To enable default construction when another constructor is defined, a default
constructor must also be provided. That would look like this:

class TwoCon {
 private int _x;
 this() { this(10); }
 this(int x) { _x = x; }
}

The default constructor here sets x to 10 by calling the single-argument constructor.
Note that, unlike Java, D places no restrictions on where such a call can take place
inside a constructor, meaning it need not be the first line. To invoke a default
constructor, parentheses are optional:

auto tc1 = new TwoCon();
auto tc2 = new TwoCon;

Perhaps the biggest issue for C++ programmers in D is the class destructor:

class Decon {
 this() { writeln("Constructed!"); }
 this() { writeln("Destroyed!"); }
 void print() { writeln("Printing."); }
}
void printDecon() {
 auto d = new Decon;
 d.print();
}
void main() {
 printDecon();
 writeln("Leaving main.");
}
static ~this() {
 writeln("Module destructor.");
}

Programming Objects the D Way

[104]

Running this shows that the message in the class destructor is printed after the one
in the static module destructor (more on that soon). Remember, the new expression
allocates memory from the GC heap. That means the garbage collector is managing the
memory behind the Decon instance. The GC will call the destructor when the memory
is released, but not before. The language does not specify when the memory is released.
In fact, the language says there is absolutely no guarantee that a class destructor will ever
be executed. Let me repeat: you cannot depend on a class destructor ever being run. It's
better to think of a class destructor in D as a closer relative of the Java finalizer than the
C++ destructor. Attempting to use them for C++ style RAII is going to be painful.

In practice, the GC implementation that is used as I write runs in two scenarios:
when new memory is allocated, and during the shutdown phase of DRuntime. In
the previous example, the GC is never run once the Decon instance is allocated until
the app terminates. The current implementation of DRuntime happens to run static
destructors before terminating the GC, but that may not always be true. Nor is there
any guarantee that the GC will call any destructors during termination.

Replacing the single call to printDecon with a loop that calls it ten times prints ten
destructor messages on termination. The GC will only release memory, and therefore
call destructors, as needed, and it never needs to during runtime in this case. Call
it a thousand times in a loop and the GC will need to do some work; some of the
destructors are called inside printDecon, with others called at termination.

One more potential problem spot is that class destructors in D are nondeterministic,
meaning that their order of execution is unpredictable. The GC can call destructors in
any order. A direct consequence of this is that manipulating GC-managed memory
inside a class destructor will inevitably cause an abrupt termination of the program:

class Innocent {
 void bye() { writeln("Bye!"); }
}
class Boom {
 Innocent _inno;
 this() { _inno = new Innocent(); }
 ~this() { _inno.bye(); }
}

It's quite easy to believe that because _inno is a member of Boom, it will always be
valid when the destructor is run. That's just not the case. From the garbage collector's
perspective, the only notable fact about _inno being a member of Boom is that, if any
given Boom instance is no longer accessible (that is, it's eligible for collection), then
_inno is also no longer accessible. As long as no other references to that instance of
Innocent exist, it can be collected at any time. It is quite possible for the instance
behind _inno to be destroyed before the destructor is run on the Boom instance. In that
case, you'll see a segfault when _inno.bye() is eventually called in the destructor.
Never access GC-managed memory inside a class destructor.

Chapter 3

[105]

Struct constructors and destructors
A struct instance can be explicitly initialized using struct literals or C-style
initializers:

auto ms1 = MyStruct(10, 11);// struct literal
MyStruct ms2 = {10, 11}; // C-style, not preferred
MyStruct ms3 = {b:11, a:10};// Named initializers

In the first two lines, the members are initialized in the order they were declared,
so 10 goes to a and 11 goes to b. If there are fewer initializers than members, the
remaining members will be default-initialized using the .init value for the relevant
type. If there are more initializers than members, a compiler error results.

Struct literals are convenient for simple types (though they can become an annoyance
if the type declaration changes), but they only allow for direct initialization of
member variables. If more complex initialization is required, struct constructors
should be used. A struct does not have a default constructor. It doesn't have one
generated for it, nor can one be explicitly implemented. Default construction for a
struct is the same as setting it to its .init value. Look at the following declaration:

struct StructCon {
 int x, y;
 this(int val) { x = y = val; }
}

This type has two publicly accessible members and a constructor that sets each
member to the same value. Here are different ways to declare a StructCon instance:

StructCon s1; // .init: x = 0, y = 0
auto s2 = StructCon(); // .init literal: x = 0, y = 0
auto s3 = StructCon(12); // constructor: x = y = 12

In the first declaration, s1 is default initialized. In the second, s2 is explicitly
initialized with the default .init value, making it equal to s1. In the declaration
of s3; both x and y are assigned the value 12. When a struct constructor is defined,
struct literals can no longer be used to initialize any instances of that type.

Default initialization can be turned off completely:

struct StructCon {
 int x, y;
 this(int val) { x = y = val; }
 @disable this();
}

Programming Objects the D Way

[106]

The highlighted line tells the compiler that instances of StructCon cannot be
implicitly default initialized; they must be explicitly initialized with the .init
value or through the constructor. Be aware that this has far-reaching consequences.
Consider the following example:

struct Container {
 StructCon sc;
}

Container container; // Error: default construction disabled

In order for container to be default constructed, its member sc must be as well,
but default construction is disabled for StructCon. To fix it, initialize sc explicitly:

StructCon sc = StructCon.init;

A struct in D can have a special constructor called the postblit constructor. On
the surface, it looks much like a C++ copy constructor, but it isn't. When a struct
instance is copied in D, a bitwise copy, or blit, is performed. If the type has a
postblit constructor, it is invoked after the copy is complete. They can be used
to fix up anything that needs fixing up after the copy. The following example is
a good use case:

struct PostBlit {
 int[] foo;
}
void printPtr(PostBlit cpb) {
 writeln("Inside: ", cpb.foo.ptr);
}
void main() {
 auto pb = PostBlit([10,20,30]);
 writeln("Outside: ", pb.foo.ptr);
 printPtr(pb);
}

When pb is passed into printPtr, a copy is made, meaning the array member foo is
copied as well. Recall that, when arrays are passed around, only the metadata, and
not the elements, gets copied. As such, the two writeln calls in this example print
the same address. Pass pb into a function that operates on the array and it will be
subject to the same array issues discussed in the previous chapter. To prevent the
original elements from being accessed, a deep copy of the array is needed. Using the
postblit constructor:

this(this) { foo = foo.dup; }

Chapter 3

[107]

Add this to the PostBlit declaration and two different addresses will be printed.
Remember, the struct bits have already been copied by the time the postblit
constructor is run, so duping the slice creates a deep copy of the original array. By
assigning the new slice to foo, cbp inside printPtr is fixed up with a completely
separate array from the original.

Let's try one more thing. Replace the postblit constructor with the following line:

@disable this(this);

Recompiling produces an error. Disabling the postblit constructor completely
prevents any instance of PostBlit from being copied.

Disable anything
Not only constructors, but any function can be annotated with @disable,
be they free functions or members of a class or struct. You can even
apply it to destructors, though good luck with compiling your program if
you do. @disable is most often used to prevent default construction and
copying of struct types.

Now that you've seen so much that likely appears foreign to you, it may be a relief
to know that struct destructors behave more like they do in C++:

struct Destruct {
 ~this() { writeln("Destructed!"); }
}
void doSomething() {
 writeln("Initializing a Destruct");
 Destruct d;
 writeln("Leaving the function");
}
void main() {
 doSomething();
 writeln("Leaving main");
}

Compiling and running this example should demonstrate that the destructor is
run on the Destruct instance as soon as doSomething exits. In this case, a struct
destructor is both reliable (it will always be called) and deterministic—if you declare
multiple struct instances in any scope, they will be destroyed in the reverse order of
declaration when the scope is exited.

Programming Objects the D Way

[108]

Static constructors and destructors
Consider the following example:

module classvar;
class A {}
A anInstance = new A;

Adding an empty main function to this module and compiling produces this error:

classvar.d(3): Error: variable classvar.anInstance is mutable. Only
const or immutable class thread local variables are allowed, not
classvar.A

As anInstance is mutable and thread-local, we can't initialize it with a runtime
value (which is exactly what we get from the new expression). Were it declared
immutable, const, shared or __gshared (more on these later), it would compile,
but it can be made to compile without them if the assignment of new A is moved
to a static constructor:

A anInstance;
static this() {
 anInstance = new A;
}

When the program is executed, DRuntime will call the static constructor before main
is entered. Let's do a little experiment. Create two modules: stat1.d and stat2.d.
Here's the implementation of stat1:

module stat1;
static this() { writeln("stat1 constructor"); }

stat2.d should look the same (with the name changed, of course). Now create
a module, let's call it statmain.d, consisting solely of an empty main function.
Compile it like so:

dmd statmain.d stat1.d stat2.d

When you run the executable, you should see that stat1 constructor is printed
first, followed by stat2 constructor. Now let's change the compilation order:

dmd statmain.d stat2.d stat1.d

Running this will show you that the order of the output has also been reversed.

Although neither stat1 nor stat2 was imported anywhere, their constructors
are still run. In this case, the order of execution is not specified and is
implementation-dependent. Now add the following line to the top of stat1.d:

import stat2;

Chapter 3

[109]

Compile again, using both of the above command lines. This time, you'll see that
the stat2 constructor is executed first in both cases. This is because the language
guarantees that the static constructors of any imported modules will be executed
before the static constructor, if any, of the importing module. Since stat1 imports
stat2, then the latter's constructor is always executed before that of stat1.

Static destructors are always executed in the reverse of the order in which the static
constructors were called. Let's add destructors to both stat1 and stat2:

static ~this() { writeln("stat1 destructor"); }

When stat1 imports stat2, the destructor for stat1 is always run first. Remove the
import and the destructor execution order is always the opposite of the constructor
execution order, whatever that may be.

Static constructors and destructors can also be declared in class or struct scope:

class Stat {
 private static Stat anInstance;
 static this() {
 writeln("Stat constructor");
 anInstance = new Stat;
 }
 static ~this() { writeln("Stat destructor") }
}

Add this to stat1 and you'll find the previous order of execution depends on the
order of declaration: multiple static constructors in a module are executed in lexical
order, with destructors executed in the reverse order. The reason to use a static
class or struct constructor is the same as that for using module constructors: to
initialize variables that can't be initialized at compile time. Since private variables
are visible in the entire module, a module constructor can do the job as well:

static this() { Stat.anInstance = new Stat; }

Static constructors and destructors are always executed once per thread. We'll
skip the details for now but, to guarantee that a static constructor or destructor is
executed only once for the lifetime of the program, use the shared storage class:

shared static this() { }

All static constructors marked shared are executed before those that aren't.

Programming Objects the D Way

[110]

Inheritance and polymorphism
In D, inheritance is only available for class types. It looks much like Java's: multiple
inheritance is prohibited and there is no such thing as public or private inheritance. All
classes inherit from a DRuntime class called Object. Take this empty class declaration:

class Simpleton {}

One of the member functions in Object is the toString function. You can invoke
it manually when you need it, but any time a class instance is passed to one of the
write or format functions, toString will be invoked inside it. Try the following:

module inherit;
import std.stdio;
class Simpleton {}
void main() {
 writeln(new Simpleton);
}

This will print inherit.Simpleton. The Object.toString implementation always
prints the fully qualified name of the class. By default, class member functions in
D are virtual, meaning that they can be overridden by subclasses. Let's make a class
that overrides the toString method to print a message:

class Babbler {
 override string toString() {
 return "De do do do. De da da da.";
 }
}

Instantiate a Babbler instead of a Simpleton in the example and it prints the
message from Babbler.toString. The override keyword must be applied to
any member function that overrides a super class function. To call the super class
implementation, prefix super to the function name:

override string toString() {
 import std.format : format;
 return format("%s: %s", super.toString(),
 "De do do do. De da da da.");
}

Chapter 3

[111]

Structs and the Object functions
Although a struct cannot be extended and does not descend from Object,
it is still possible to implement some of the Object functions for the
runtime and library to make use of. For example, if you add a toString
function to a struct declaration, it will work with writeln, the same as
it does for classes. override isn't used here, since there's no inheritance.

Let's add a new function to generate a message and have toString call that instead:

protected string genMessage() {
 return " De do do do. De da da da.";
}
override string toString() {
 import std.format : format;
 return format("%s says: %s", super.toString(), genMessage());
}

Notice how genMessage is protected. This makes the function accessible only to
subclasses of Babbler. Let's extend Babbler and override genMessage:

class Elocutioner : Babbler {
 protected override string genMessage() {
 return super.genMessage() ~
 " That's all I want to say to you.";
 }
}

Now you can take an Elocutioner and use it anywhere a Babbler is expected,
such as an argument to a function that takes a Babbler parameter, or in an array
of Babbler. OOP programmers will know this as polymorphism:

void babble(Babbler babbler) {
 writeln(babbler);
}
void main() {
 babble(new Elocutioner);
}

Only public and protected functions can be overridden. Although private and
package functions are still accessible to subclasses declared in the same module
and package respectively, they are implicitly final. A member function explicitly
declared final, no matter its protection level, cannot be overridden by subclasses,
though it can still be overloaded. Adding final to a class declaration prevents the
class from being extended.

Programming Objects the D Way

[112]

One point that often bites new D programmers is that overriding a function hides all
overloads of the overridden function in the super class. An example:

class Base {
 void print(int i) {
 writeln(i);
 }
 void print(double d) {
 writeln(d);
 }
}
class Sub : Base {
 override void print(int i) {
 super.print(i * 10);
 }
}
void main() {
 auto s = new Sub;
 s.print(2.0);
}

This produces a compiler error saying that Sub.print is not callable using double.
To fix it, add an alias inside Sub:

class Sub : Base {
 alias print = super.print;
 override void print(int i) {
 super.print(i * 10);
 }
}

Note that the name of the super class, in this case Base, can be substituted for super.

Calling functions outside the class namespace
Imagine a class or struct with a member function named writeln.
Inside any other functions in the class scope (or that of its subclasses)
a call to writeln will always call the member function, and not the
function in std.stdio. To break out of the class namespace, prepend
a dot to the function call: .writeln.

Chapter 3

[113]

D also supports abstract classes, as in the following two declarations:

abstract class Abstract1{}
class Abstract2 {
 abstract void abstractFunc();
}

Abstract1 is explicitly declared abstract, whereas Abstract2 is implicitly so,
since it has at least one abstract member function. Neither class can be instantiated
directly. Further, any class that extends Abstract2 must either provide an
implementation for abstractFunc or itself be declared abstract:

class Subclass : Abstract2 {
 override void abstractFunc() { writeln("Hello"); }
}

It's always possible to upcast an instance of a subclass to a super class. For example:

auto eloc = new Elocutioner;
Babbler babb = eloc;

However, it's not always possible to go in the other direction, or downcast. Given
an instance of Babbler, explicitly casting it to an Elocutioner will succeed only if
the original instance was an Elocutioner. If it was created directly as a Babbler,
or perhaps another subclass called Orator, the cast will fail. In that case, the result
is null:

if(cast(Elocutioner)babb) {
 writeln("It's an elocutioner!");
}

Interfaces
So far, we've been talking about implementation inheritance. D also supports
interface inheritance. Again, this only works for classes. As in Java, an interface in
D is declared with the interface keyword and can contain member functions that
have no implementation. Any class that implements an interface must implement
each function or declare them abstract. In this case, the override keyword is not
needed. Interfaces cannot be instantiated directly:

interface Greeter {
 void greet();
}
class EnglishGreeter : Greeter {
 void greet() { writeln(this); }
 override string toString() { return "Hello"; }
}

Programming Objects the D Way

[114]

An instance of EnglishGreeter can be passed anywhere a Greeter is wanted.
Be careful, though:

void giveGreeting(Greeter greeter) {
 greeter.greet();
 writeln(greeter); // Error!
}

Remember that, when given a class instance, writeln calls its toString function.
While EnglishGreeter does have a toString overriding the one that it inherited
from Object, inside giveGreeting the instance is being viewed as a Greeter, not an
EnglishGreeter. In D, interfaces do not inherit from Object, so there is no toString
function for the writlen to call.

An interface can have static member variables and functions (the functions must
have an implementation). These behave exactly as they do in a class or a struct.
They can be accessed using the interface name as a namespace and the functions
cannot be overridden. An interface can also have implementations of per-instance
member functions, but these must be marked with final and cannot be overridden:

interface Boomer {
 final string goBoom() { return "Boom!"; }
}
class BoomerImp : Boomer {
 override string toString() { return goBoom(); }
}

A single class can implement multiple interfaces. Additionally, extending any
class that implements any interface causes the subclass to inherit the interfaces,
for example subclasses of EnglishGreeter are also Greeters.

Fake inheritance
One interesting feature of D is called alias this. Although it works with classes,
the biggest benefit is to be seen with struct types, since they can't use inheritance:

struct PrintOps {
 void print(double arg) { writeln(arg); }
}
struct MathOps {
 PrintOps printer;
 alias printer this;
 double add(double a, double b) { return a + b; }
}

Chapter 3

[115]

Notice the syntax of the highlighted line. It differs from the standard alias syntax.
This indicates that, when a function is called on MathOps that is not part of the MathOps
declaration, the compiler should try to call it on the printer member instead:

MathOps ops;
auto val = ops.add(1.0, 2.0); // Calls Mathops.add
ops.print(val); // Calls Printer.print

Here, the call to ops.print in the highlighted line is the same as calling
ops.printer.print. Obviously this isn't exactly the same thing as inheritance,
but it's a simple way to reuse code. It's also handy when working with template
functions. As I write, the language only allows one alias this per struct or
class declaration, but multiple alias this may be supported in the future.

Nested classes
It's possible to nest one class declaration inside another:

class Outer {
 private int _x;
 this(int x) { _x = x; }
 Inner createInner() { return new Inner; }
 override string toString() { return "Outer"; }
 class Inner {
 override string toString() {
 writeln(_x);
 return this.outer.toString ~ ".Inner";
 }
 }
}

The first highlighted line shows that an instance of an inner class can be allocated
from inside an outer class. The bottom two highlighted lines demonstrate that Inner
has access to the members of Outer. As Inner has no member named _x, it can
access the _x member of Outer directly. However, both classes have a toString
method, so we have to use this.outer.toString to call outer's implementation.
This is like using super to call a super class function from a subclass.

Since the declaration of Inner is public, the createInner function isn't needed to get
a new Inner instance; it can be allocated directly. An instance of Outer is needed
to do so:

auto outer = new Outer(1);
auto inner1 = outer.new Inner; // OK
auto inner2 = new Outer.Inner; // Error -- need Outer 'this'
auto inner2 = new outer.Inner; // Error -- same as above

Programming Objects the D Way

[116]

By prefixing the name of the outer class instance variable to new, that instance is
associated with the inner class instance.

When a nested class is declared as static, an instance of the outer class is no longer
needed. However, a static nested class no longer has an associated outer class instance,
which means that there is no .outer property. Change the declaration of Inner to be
static and it can no longer access the _x and toString members of Outer. In other
words, a static inner class is just a normal class with an additional namespace:

class Outer2 {
 static class StaticInner {}
}

To get an instance of StaticInner:

auto inner = new Outer2.StaticInner;

Structs can also be nested, but in this case the type name of the outer struct simply
becomes an additional namespace for the inner one, for example Outer.Inner oi;.
The inner struct is just like any other struct, with no .outer property.

Objects with const and immutable
In the context of class and struct instances, it's easier to understand the relationship
const and immutable have with data. Here's a simple example:

struct ModMe {
 int x;
}
void main() {
 immutable ModMe mm;
 immutable(ModMe)* pmm;
 mm.x = 1; // Error
 pmm.x = 2; // Error
}

The declaration of mm creates an instance of type immutable(ModMe). Not only
can no assignments be made to mm, mm.x cannot be modified. pmm is a pointer to
immutable data, so the pointer can be reassigned, but pmm.x cannot be modified.
Now look at this:

struct ModMeHolder {
 ModMe mm;
}

Chapter 3

[117]

void main() {
 immutable ModMeHolder mmh;
 mmh.mm.x = 1;
}

As immutable is transitive, applying it to mmh causes mm to also be immutable. If,
in turn, it had any class or struct instance members, they would also become
immutable. As they say, it's turtles all the way down. The same is true for const,
but recall that its contract is not as strict as that of immutable:

ModMe mm;
const(ModMe)* pmm = &mm;
mm.x = 10;
writeln(pmm.x);

Attempting to modify pmm.x would be an error, since pmm is a pointer to const data,
but it's perfectly legal to modify the original data behind pmm's back.

Changing the previous ModMeHolder example to use const instead of immutable
will not change the outcome. This sometimes causes consternation for C++
programmers experimenting with D. Imagine you want to implement a class that
increments an internal counter every time a function is called. Pass an instance
of that class to a function that attempts to call its incrementing member function
through a const reference and a compiler error will result. In C++, programmers
can get around this by declaring the counter as mutable. Not so in D.

D const is strictly physical const. This can be seen as a guarantee that not a single
bit of an instance can ever be modified through a const reference, internally or
externally. The alternative is logical const. With this definition, a reference
appears const to the outside world, but the instance is able to modify its internal
structure. While this may seem quite useful to the programmer, it completely breaks
any guarantee of transitivity. If the compiler cannot guarantee transitivity, then any
assumptions it makes about the state of an instance are invalid. This could have
wide-ranging consequences. For example, it could be a source of race conditions in a
multi-threaded program. The short of it is, in order to guarantee transitivity, logical
const does not exist in D as I write. Who can say, though, what the future holds.

const and immutable can be applied to class and struct declarations, but any
instances of such types must still be declared as const or immutable.

Programming Objects the D Way

[118]

const as a storage class
We've only seen const used as a type qualifier thus far, but when applied to a
function it is a storage class. As in C++, this is used to allow member functions
to be called from a const or immutable reference:

class CallMe {
 void foo() {}
 void bar() const {}
 }
void main() {
 const CallMe cm = new CallMe;
 cm.foo(); // Error – mutable function on const reference
 cm.bar(); // OK
}

const can be applied to the front of the function declaration as well as at the end.
This has implications for how const return values are declared:

const AStruct returnSomething() {}

It's easy to assume this is returning a constant struct instance, but that is not the case.
This is a function with a const storage class. For clarity, it's good practice to apply
const at the end of a function declaration when needed and to declare const return
values using the type qualifier syntax, const(AStruct).

Error handling
D includes support for exception-based error handling. Another option is a popular
feature called the scope statement.

Scope guards
In a C function that manipulates a locally allocated buffer, it's not unusual to see a
series of if…else blocks where, after the failure of some operation, either the buffer
is freed directly or via a goto statement. In D, we need neither idiom:

void manipulateData() {
 import core.stdc.stdlib : malloc, free;
 auto buf = cast(ubyte*)malloc(1024);
 scope(exit) if(buf) free(buf);
 // Now do some work with buf
}

Chapter 3

[119]

Here, memory is allocated outside the GC with malloc and should be released when
the function exits. The highlighted scope(exit) allows that. Scope statements are
executed at the end of any scope in which they are declared, be it a function body,
a loop body, or any block scope. exit says the statement should always be executed
when the scope exits. There are two other possible identifiers to use here: success
means to execute only when the scope exits normally; failure executes only after an
uncaught exception. Braces were not used here since this is a one-liner but, as with
any other block statement, they can be. Multiple scope guard blocks can be declared
in any scope. They are executed in the reverse order of declaration.

Exception handling
DRuntime declares three globally accessible classes that form the bedrock of the
exception mechanism: Throwable, Error, and Exception. The latter two are
both subclasses of the first. Instances of the Error class are intended to represent
unrecoverable errors, while the Exception class represents errors are potentially
recoverable. I'll refer to both as exceptions throughout the book except when I need
to talk specifically about the types.

Exceptions can be thrown and caught. Only instances of classes in the Throwable
hierarchy can be thrown, including subclasses of Error and Exception. To throw
an exception, use the throw statement:

throw new Exception("Very bad things have happened here.")

The text given to the constructor is accessible via the .msg property. The toString
function of an exception includes the message, along with the fully qualified class
name of the instance and a backtrace showing where the exception occurred.
Normally, the backtrace only shows memory addresses but if the source is
compiled with the -g option, a more human-readable backtrace is generated.

To catch an exception, use the standard try followed by one or more catch blocks,
a finally block, or both. Each has its own scope and optional braces:

void main() {
 import std.exception : ErrnoException;
 try {
 auto file = File("log.txt", "w");
 file.writeln("Hello, file!");
 }
 catch(ErrnoException ee) {
 // Do something specific to the ErrnoException
 writeln(ee);
 }

Programming Objects the D Way

[120]

 catch(Exception e) {
 // Do something specific to the Exception
 writeln(e);
 }
 finally
 writeln("Good bye!");
}

Since file is declared in the try block, it is not visible in either the catch or
finally blocks. The catch blocks are only run when the corresponding exception
is thrown inside the try, while the finally is always run when the try block exits.
Scope statements are syntactic sugar for try…catch blocks (and scope(exit) adds
a finally). With multiple catch blocks, any subclasses having super classes in the
chain should be declared first. Since ErrnoException is a subclass of Exception, it
has to come first; if Exception were first, ErrnoException would never be caught.

When you find yourself wanting to catch specific exceptions, the
Phobos documentation lists the exceptions a function may throw (they
aren't listed in function declarations as in Java; there are no checked
exceptions in D). It does so via the Throws: field in Ddoc comments.
When releasing your own APIs to the public, you should do the same
for your documentation. For our previous example, you can look at
the documentation for std.stdio.File at http://dlang.org/
phobos/std_stdio.html#.File to see which functions throw
which exceptions.

Exceptions that are not caught will filter up the call stack and ultimately cause
the program to exit, with the result of its toString implementation printed to
the console. Generally, you should only catch Exception or its subclasses. When
Exception is thrown, things that normally run as a scope are exited, such as
struct destructors and scope statements, are still guaranteed to run; there is no
such guarantee when Error is thrown, meaning the program could possibly be in
an invalid state by the time the catch block runs. As a general rule, never catch
Throwable (you can't know whether it's an Error or Exception until after it's
caught) and only catch Error if you really know what you are doing. When you do,
rethrow it as soon as you're finished with it. A program should never attempt to
recover when Error is thrown.

http://dlang.org/phobos/std_stdio.html#.File
http://dlang.org/phobos/std_stdio.html#.File

Chapter 3

[121]

When a function is annotated with nothrow, the compiler requires that any function
it calls also be marked nothrow. Exceptions cannot be thrown from inside such a
function, but Errors are still allowed. Try to compile this:

void saveText(string text) nothrow {
 auto file = File("text.txt", "w");
 file.writeln(text);
}

You should see four errors. Three of them tell you that the constructor and destructor
of the File type, as well as its writeln method, are not marked nothrow. The last
one says that saveText is marked nothrow even though it may throw. In order to
live up to the promise of nothrow, the function body should be wrapped up in a
try…catch block:

try {
 auto file = File("text.txt", "w");
 file.writeln(text);
}
catch(Exception e) { /* Log the message */ }

Exception and Error can be subclassed to create custom exceptions. When doing
so, at least one of the super class constructors must be called from the subclass.
Exception has constructors with the following signatures:

this(string msg, string file = __FILE__, size_t line = __LINE__,
 Throwable next = null)
this(string msg, Throwable next, string file = __FILE__,
 size_t line = __LINE__)

The next parameter is used to set up a chain of exceptions, but is primarily used
internally. Most notable here are the __FILE__ and __LINE__ identifiers. C and
C++ programmers will reflexively think of preprocessor macros that have the same
name. If you happen to be one of them, please push that thought from your mind
right now. The purpose of these identifiers is the same as the C macros, but they
are implemented as special constants that the compiler substitutes directly where
encountered. Moreover, using the macros as default values in C++ would cause the
line number and filename of the function declaration to be inserted. In D, it's the line
number and filename of the call site. When extending Exception (Error constructors
don't have the same signatures), be sure to add the same parameters to your own
constructor(s) and pass the values on to the super class constructor. The feature is
useful elsewhere, particularly for custom logging functions intended to log the file
name and line number of the caller.

Programming Objects the D Way

[122]

Contract programming and unit tests
D has built-in support for contract programming and unit testing. D's contract
programming implementation consists of two loosely related features: invariants
and function contracts. None of these features would be as useful as they are
without the assert expression.

Before we dig into the details, I'd like to point out that all of these features, except unit
tests, are enabled by default. Passing -release to the compiler will disable asserts,
function contracts, and invariants. Typically, you'll want to leave that flag out during
development and use it when you are ready to start testing the release version.

Assert contracts
The assert expression evaluates a Boolean expression and throws an AssertError
when the result is false. The basic syntax takes two forms:

assert(10 == 10);
assert(1 > 0, "You've done the impossible!");

Both of these examples will always evaluate to true since the Boolean expressions
use constants. If the second one did somehow fail, the text message following the
expression would be printed as part of the AssertError message.

When the assert condition can be evaluated to 0 at compile time, the expression
is always compiled in, even when -release is enabled. This is useful in code you
expect to be unreachable, such as in the default case of a switch statement that
covers a limited number of cases. All of the following forms trigger the special
behavior:

assert(0);
assert(false);
assert(10 - 10);
assert(1 < 0);

The D reference documentation explicitly says that assert is the most basic contract.
As such, it allows the compiler the freedom to assume that the condition is always
true and to use that information to optimize any subsequent code, even when
asserts are disabled. The rationale is that the assert expression establishes a contract
and, since contracts must be satisfied, an assert failure means the program has not
satisfied the contract and is in an invalid state. In practical terms, this means that the
language allows the compiler to behave as if assert expressions are being used as
intended: to catch logic errors. They should never be used to validate user input or
test anything that is subject to failure at runtime; that's what exceptions are for.

Chapter 3

[123]

Function contracts
Function contracts allow a program's state to be verified before and after a function
is executed. A contract consists of three parts: in, body, and out. Of the three, only
body is required, as it's the actual implementation of the function. For example:

void explicitBody() body { writeln("Explicit body."); }
void implicitBody() { writeln("Implicit body"); }

Every function has a body, but the keyword is not necessary unless either in or out,
or both, is also used. The declarations can appear in any order:

enum minBuffer = 256;
size_t getData(ubyte[] buffer)
in {
 assert(buffer.length >= minBuffer);
}
out(result) {
 assert(result > 0);
}
body {
 size_t i;
 while(i < minBuffer)
 buffer[i++] = nextByte();
 return i;
}

This example shows a function, getData, that has both in and out contracts. Before
the body of the function is run, the in contract will be executed. Here, the length
of buffer is tested to ensure that it is large enough to hold all of the data. If the in
contract passes, the body is run. When the function exits normally, the out contract is
executed. The syntax out(result) makes the return value accessible inside the out
contract as a variable named result (it's worth noting that function parameters can
be used in an out contract). This implementation just makes sure the return value is
greater than 0.

Invariants
Invariants are added to a struct or class declaration in order to verify that
something about the state of an instance, which must be true, is actually true.
For example:

class Player {
 enum MaxLevel = 50;
 private int _level;

Programming Objects the D Way

[124]

 int level() { return _level; }
 void levelUp() {
 ++_level;
 if(_level > MaxLevel)
 _level = MaxLevel;
 }
 invariant {
 assert(_level >= 0 && _level <= MaxLevel);
 }
}

In this example, _level cannot be modified directly outside the module; it's a read-
only property. It can only be modified through levelUp. By adding an invariant
that verifies _level is within the expected range, we guarantee that any accidental
modification will be caught. For example, what if we modify the levelUp function
and accidentally remove the > maxLevel check, or if we do some work elsewhere in
the module and modify _level directly? The invariant is a safeguard.

Invariants are run immediately after a constructor, unless the instance was implicitly
constructed with .init, and just before a destructor. They are run in conjunction with
function contracts, before and after non-private, non-static functions, in this order:

•	 In contract
•	 Invariant
•	 Function body
•	 Invariant
•	 Out contract

Something that's easy to overlook is that invariants are not run when a member
variable is accessed directly, or through a pointer or reference returned from a
member function. If the variable affects the invariant in any way, it should be
declared private and access should only be allowed through getter and setter
functions, always returning by value or const reference.

Non-private and non-static member functions cannot be called from inside an
invariant. Attempting to do so will enter an infinite loop, as the invariant is run
twice on each function invocation. Additionally, the invariant can be manually
checked at any time by passing a class instance, or the address of a struct
instance, to an assert:

auto player = new Player;
assert(player);
assert(&structInstance);

Chapter 3

[125]

Unit tests
Unit tests are another tool to verify the integrity of a code base. They are implemented
in unittest blocks. Any number of unittest blocks can be added at module scope
and in class, struct, and union declarations. It is idiomatic to place a unittest
block immediately after the function it is testing. Anything valid in a function body
can go into them, as they are functions themselves. Here's a simple example:

int addInts(int a, int b) { return a + b; }
unittest {
 assert(addInts(10, 1) == 11);
 assert(addInts(int.max, 1) == int.min);
}

To enable unittests in an executable, pass the -unittest flag to the compiler.
This will cause DRuntime to run each unit test when the program is executed after
static constructors and before main. All unit tests in a given module are run in lexical
order, though the order in which modules are selected for execution is unspecified.
However, it is often more convenient to compile and test a single module, rather than
an entire program. To facilitate this, DMD provides a switch that will automatically
generate a main function if one does not already exist. This creates an executable from
a single module that can be used to specifically run the unittests in that module.

Save the previous snippet in a file called utest.d. Then execute the following
command:

dmd -unittest --main -g utest.d

Run the resulting binary and you shouldn't see any output. Note –g on the command
line. When running unittests, it's always helpful to generate debug info to get the
full stack trace. Let's look at that now. Change the 11 to 12 so that the first assert fails.
You should get an AssertError with a stack trace pointing to the failure. --main tells
the compiler to generate a main function for the module. This is useful to test modules
in isolation.

The unittest blocks can be decorated with function attributes, such as nothrow.
This really comes in handy when testing template functions, for which the compiler
is able to infer attributes. They can also be documented with Ddoc comments. This
will cause the code inside the block to become an example in the documentation for
the preceding function or type declaration. To prevent this behavior, the unittest
can be declared private. There is also a feature available at compile time to
determine whether unittests are currently enabled, but we'll save that for the
next chapter.

Programming Objects the D Way

[126]

MovieMan – adding menus
It's time now to take some of the features covered in this chapter and apply them to
MovieMan. The code listings here will, unfortunately, be incomplete in the interests of
keeping the page count down. However, the complete implementation can be found
in the Chapter03/MovieMan directory of the downloadable source code.

The MovieMan menus are implemented as a small set of classes: Menu, MainMenu,
and DisplayMenu. We could debate composition versus inheritance, or the
use of classes to implement such simple menus, but my priority is to provide
a demonstration of D features.

The Menu base class
To get started, save a file called $MOVIEMAN/source/movieman/menu/menu.d. At the
very top, add the following lines:

module movieman.menu.menu;
import std.stdio;
import movieman.io;

Next, we'll make an empty class declaration that we'll fill in a little at a time:

class Menu {
}

The Menu class will have three private members:

private:
 string _header;
 string[] _items;
 bool _shouldExit;

_header is the title of the menu and _items is the text specifying the available
actions, each of which will be displayed in a numbered list for the user to input a
selection. _shouldExit is a flag that will be set when a subclass is ready to exit the
menu loop. Now we've got a few protected functions, starting with the constructor:

protected:
 this(string header, string[] items) {
 _header = header;
 _items = items;
 }

Chapter 3

[127]

A protected constructor is normally used to allow subclasses access while
preventing instances of the class from being instantiated outside the class scope.
That's the exact behavior we want for Menu, but it isn't necessary to make the
constructor protected in this case as the very next function is abstract; I simply
prefer to make all constructors in an abstract class protected:

abstract void handleSelection(uint selection);

Subclasses will override handleSelection in order to respond to the user's selection
of a menu item. The next function, exitMenu, is called when a subclass is ready to
give up control and terminate the loop that prints the menu and reads the user's
selection:

void exitMenu() { _shouldExit = true; }

The next two functions ensure that a title or number entered by the user is valid
and print an "abort" message if not. The former only checks whether title is null
for now and the latter if the number is 0. The label parameter is used in the
error message:

bool validateTitle(string title) {…}
bool validateNumber(uint number, string label) {…}

The last function in Menu is the one that drives things:

public:
 final void run() {
 do {
 printList(_header, _items);
 auto selection = readUint();
 if(!selection || selection > _items.length)
 writefln("Sorry, that's an invalid selection. Please try
 again.");
 else
 handleSelection(selection);

 } while(!_shouldExit);
 }
}

Programming Objects the D Way

[128]

The public: keyword before the function declaration "turns off" the protected:
added previously. The final in the declaration prevents subclasses from overriding
run. The implementation is a loop that begins with a call to movieman.io.printList
to display the header and the numbered menu items. It then asks the user to enter a
number, which it sends to the subclass to handle if it is in the range of valid options
(which is 1 to items.length, inclusive), then the loop goes back up to the top and
the menu is displayed again, unless exitMenu is called.

The MainMenu class
Save a new file as $MOVIEMAN/source/movieman/menu/main.d. Add the following
lines to the top:

module movieman.menu.main;
import movieman.menu.menu;
final class MainMenu : Menu {
}

Note that the class is declared final. Given that there's no need to ever subclass
MainMenu, we can use this not just as a preventative measure, but also as an
optimization hint. For example, the compiler can be sure that none of the member
functions will ever be overridden and can safely inline calls to them. Now, inside
MainMenu:

private:
enum Options : uint {
 addMovie = 1u,
 displayMovie,
 exit,
}
Menu _displayMenu;

The Options enumeration will be used to determine the action to take in
handleSelection. The user can choose to add a new movie, display one or
more movies, or exit the program. The _displayMenu member is an instance of
DisplayMenu, declared as an instance of the Menu base class. It is created in one of
two private functions, onDisplayMovie, when the user chooses to display a movie:

void onDisplayMovie() {
 import movieman.menu.display : DisplayMenu;
 if(_displayMenu is null)
 _displayMenu = new DisplayMenu;
 _displayMenu.run();
}

Chapter 3

[129]

A local selective import is used since DisplayMenu is not used anywhere else in the
module. _displayMenu is allocated only if it's null, then its run function is called.
The second private function adds a movie to the database:

void onAddMovie() {
 import movieman.io;
 import std.stdio : writeln;
 auto title = readTitle();
 if(!validateTitle(title))
 return;
 auto caseNumber = readNumber("case");
 if(!validateNumber(caseNumber, "case"))
 return;
 auto pageNumber = readNumber("page");
 if(!validateNumber(pageNumber, "page"))
 return;
 if(readChoice("add this movie to the database"))
 writeln("Adding movie!");
 else
 writeln("\nDiscarding new movie.");
}

This function asks the user to enter a title, case number, and page number. If any one
of these is invalid, the function returns without making any changes. Finally, it gives
the user a chance to verify the information is correct via readChoice. If the user
approves, a message is printed saying the movie has been added. Later in the book,
this will be changed to add a movie to the database. Next:

protected:
 override void handleSelection(uint selection) {
 final switch(cast(Options)selection) with(Options) {
 case addMovie:
 onAddMovie();
 break;
 case displayMovie:
 onDisplayMovie();
 break;
 case exit:
 exitMenu();
 break;
 }
 }

Programming Objects the D Way

[130]

This function uses a final switch to cover every member of the Options
enumeration. with(Options) is used as a convenience to avoid adding the namespace
in every case. Notice that there's no private function to handle the exit option.
Instead, the exitMenu function implemented in the base class is called. Finally,
the public constructor:

public:
 this() {
 auto options = [
 "Add Movie",
 "Display Movie(s)",
 "Exit"
];
 super("Select one of the following actions.", options);
 }
}

When a class has no default constructor, either implicit or explicit, then any
subclasses must call one of the constructors that have been implemented. The
MainMenu class must call Menu's sole constructor. Before doing so, an array of
menu items is allocated as options with an array literal. Using the literal directly
in the constructor call would have been somewhat less readable. Finally, the Menu
constructor is called via super.

The DisplayMenu class
This DisplayMenu class will eventually print movie data to the screen and
provide the option to edit movies in the database. The implementation is similar
to the MainMenu class, though the only function currently implemented is
handleSelection, which does the work of reading input and printing responses
(there's no movie data yet to display or edit). Before looking at the implementation in
the downloadable source, consider how you might implement DisplayMenu, using
MainMenu as a guide.

Summary
In this chapter, we've taken an introductory look at D's support for user-defined
types and object-oriented programming. We've looked at how these features differ
from other C family languages. We've also learned about scope guards, exception
handling, contract programming, and unit tests. Finally, we've added some menu
classes to MovieMan.

In the next chapter, we look at features that allow you to do neat stuff at compile time.

[131]

Running Code at
Compile Time

The title of this chapter refers to Compile Time Function Execution (CTFE). This is
primarily what makes D's generative programming capability as powerful as it is.
Given that a function meets certain constraints, the compiler can execute it in order
to produce values at compile time. These can then be used to generate new code.
The very basics of CTFE can be explained with a couple of paragraphs, but there are
a number of related features that can be used to increase its benefits. These features
can also be used independently to conditionally control which parts of the program
are compiled, or to generate code without ever running a function. We're going to
spend the entire chapter examining these features in preparation for the next chapter
on templates; D's compile-time features coupled with templates make for amazing
possibilities.

•	 Pragmas: Compile-time messages, libraries, and function inlining hints
•	 Conditional compilation: version, debug, and static if conditions
•	 Compile-time strings: The import expression and string mixins
•	 Compile-time function execution
•	 Odds and ends: static assert, alignment, compile-time reflection,

and user-defined attributes

Running Code at Compile Time

[132]

Pragmas
A pragma statement is a directive for the compiler to perform a specific task at
compile time. In C and C++, it's a preprocessor directive, but in D it's an actual
statement. At the time of writing, there are five predefined pragmas. We'll go
through three of them here; the other two are for more advanced usage. The
language also allows for vendor-specific pragmas. When a compiler encounters
one that it doesn't recognize, such as one from a different compiler vendor, it is
required to emit an error. Vendor-specific pragmas can be used by versioning them,
something you'll learn how to do in the next section. For more on pragmas, refer to
http://dlang.org/pragma.html.

The lib pragma
The lib pragma is a way to instruct the compiler in code as to which libraries should
be linked at compile time. Here's an example.

pragma(lib, "OpenGL32.lib");

This will cause the compiler to insert a directive into the object file that the linker can
then use to link a library into the executable, OpenGL32.lib in this case. While it's a
useful feature, there are some potential issues to be aware of.

First, the library names are always going to be platform-specific. The preceding
example is specific to Windows. Later in this chapter, I'll show you how to version
sections of your code to target specific platforms, but bear in mind that you'll generally
need at least two lib pragmas for a multi-platform project: one for Windows and one
for POSIX.

Second, just as when passing the name of a library on the command line, any
libraries passed through the lib pragma will be searched for on the global search
path, including any paths specified on the command line. While there is no way
to specify a search path via a pragma, it's possible to specify a complete path to a
library, like so:

pragma(lib, `C:\dlang\libs\MyLib.lib`);

Notice the format of the string. When compiling using DMD on Windows with the
OPTLINK linker (the default 32-bit configuration), it's necessary to specify paths
using backslashes, as OPTLINK doesn't understand forward slashes. To avoid the
need to escape the backslashes ('\\'), I've used a WYSIWYG string. When using
the MS linker, forward slashes suffice.

http://dlang.org/pragma.html

Chapter 4

[133]

Third, you might one day have the idea of adding a lib pragma in one of the source
modules of a library you distribute, hoping to make it more convenient for users by
having it link to itself. In my experience, this tends to cause more trouble than it's
worth. The potential for conflict with the user's preferred build system is high. I've
actually seen a couple of libraries distributed with full paths specified in lib pragmas,
something that's almost guaranteed to cause a build failure out of the box. It's
generally a better idea to let the user, or the user's preferred build tool, decide how to
link with your library and any of its dependencies so that conflicts can be avoided. An
exception will be if the library depends on a system library that should be generally
available on most systems. Adding a lib pragma in one of your modules for that
library should be safe if it's properly versioned.

Finally, when linking multiple libraries via lib pragmas, the order in which they are
declared matters when linking with the GNU linker. The compiler will queue them
up in lexical order and pass them all to the linker, but the GNU linker requires that
dependencies be ordered after dependents. For example, if a hypothetical libA3
depends on libA2, and libA2 depends on libA1, then they need to be passed along
in the following order: libA3, libA2, and libA1. To ensure DMD does the right
thing, the lib pragmas must be ordered the same way.

pragma(lib, "A3");
pragma(lib, "A2");
pragma(lib, "A1");

This also holds true when passing libraries on the command line. When using lib
pragmas, it's quite easy to get a working program on Windows that fails to link on
Linux or Mac. The lesson here is to always familiarize yourself with the system tools
you're working with before using any features that depend on the toolchain.

The lib pragma is most useful when compiling your own executables. The format
for specifying global library search paths varies across compilers and systems (we'll
take a look at some examples later in the book), so including the full path to a library
in the source is one option that may be preferable to specifying it in the build system,
except when using libraries that are managed by DUB.

The msg pragma
When generating code at compile time, it's sometimes necessary to output error or
debug messages. writeln and friends are not executable at compile time, so they
aren't going to help. Enter the msg pragma.

pragma(msg, "Hi! I'm a compile-time message.");

Running Code at Compile Time

[134]

When the compiler encounters this pragma, it will immediately print the message
to the console. This usually isn't the desired behavior; it's often more useful to have
it printed out only in specific circumstances. Very soon, we'll take a look at other
compile time features that make that possible.

The inline pragma
The compiler does not attempt to inline function calls unless -inline is passed on
the command line. The inline pragma can be used to affect its behavior.

pragma(inline, false) void dontInlineMe() {...}
pragma(inline, true):
 void pleaseInlineMe() {...}
 int meToo() {...}
pragma(inline): // go back to the default behavior

Here, dontInlineMe will never be inlined, even when the compiler thinks it's a good
idea to do so. If the compiler is unable to inline either of the next two functions, it
will generate an error. Finally, pragma(inline) restores the default behavior, so
any functions declared from that point on in the module will be inlined or not, at the
compiler's discretion. To be very clear, none of these have any effect if -inline is not
passed on the command line.

Conditional compilation
The C preprocessor makes it possible to conditionally compile certain blocks of code
using #define and related directives. Once again, D achieves similar results using
built-in compile-time statements, such as version, debug, and static if.

The version condition
A version condition is used to instruct the compiler to generate code for anything in
the version block only if the specific condition is defined. Here's an example:

version(Windows)
 pragma(msg, "We are compiling on Windows.");
else version(OSX)
 pragma(msg, "We are compiling on a Mac OS X system.");
else version(Posix)
 pragma(msg, "We are compiling on a Posix system.");

Chapter 4

[135]

This example uses the predefined versions Windows, OSX, and Posix. Swap the order
of the Posix and OSX versions and the Posix block, not the OSX block, will run on
Mac OS X. Remove the else statements and then both the Posix and OSX blocks will
compile on Mac. Posix is defined on all POSIX systems, which includes Linux, Mac
OS X, and the various BSDs. In addition to Windows and OSX, other system-specific
versions include linux, FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, BSD (for other
flavors of BSD), Solaris, and more. You can find a list of predefined versions at
http://dlang.org/version.html#predefined-versions.

The fact that the linux version isn't capitalized is sort of an accident
of history. linux is a predefined preprocessor symbol with the GCC
compiler. Back in the D1 days, the same symbol was included in D under
the assumption that Linux programmers would find it familiar. Over the
years, some users have asked that it be deprecated and replaced with
the capitalized form, but that hasn't happened as a great deal of D code
already uses it. As such, it remains an anomaly among the predefined
versions. It's also an occasional source of bugs. One such bug actually
made it into Phobos, where some Linux-specific networking code was
versioned with Linux instead of linux!

version does not create a new scope; anything declared inside a version block
belongs to the enclosing scope. For example:

module timestuff;
// These imports are at global scope.
version(Windows) import core.sys.windows.windows;
else import core.sys.posix.time;

void doSomeTimeStuff() {
 // These variables are in function scope
 version(Windows) {
 SYSTEMTIME sysTime;
 // Do something with sysTime
 } else {
 timeval tv;
 // Do something with tv
 }
 int hour = sysTime.wHour; // Compiles only on Windows!
}

http://dlang.org/version.html#predefined-versions

Running Code at Compile Time

[136]

New D programmers are often surprised that they are unable to use version with
Boolean expressions, for example version(Windows || linux). Such a feature has
been requested, but was rejected on the grounds that it leads to error-prone code.
One way to handle this is to use a version specification. These can be declared in
module scope, never in a local scope, and allow you to specify new versions in code.

version(Windows)
 version = WindowsOrLinux;
else version(linux)
 version = WindowsOrLinux;

Now version(WindowsOrLinux) can be used with one major caveat: version
specifications only exist within the module in which they are declared. To use
WindowsOrLinux in multiple modules, the preceding code must be included at
the top of every module that needs it; it can't be implemented once and imported
everywhere. Note that using a version before it is set is an error.

version(DoIt) pragma(msg, "DoIt!");
version = DoIt; // Error

In addition to predefined operating system versions, there are versions for the
currently recognized D compilers, CPU architectures, endianness, feature availability,
and more. Additionally, version(unittest) is enabled only when -unittest has
been passed to the compiler, version(assert) is satisfied only when asserts are
enabled, and version(none) can be used to disable a block of code.

D allows custom versions to be specified on the command line with the –version
compiler switch. For example:

dmd -version=SayHello foo.d

With this command line, the following snippet will print Hello, World!.

version(SayHello) writeln("Hello, World!");
else writeln("I have nothing to say.");

It's also possible to specify an integer version, which the compiler interprets as a
version level. Any code in such a block will only be compiled when the number is
greater than or equal to the number specified.

version(10) pragma(msg, "Ten is enabled!");

Chapter 4

[137]

This form must use integer literals and can be specified either on the command line
or with a version specification in code. To see the preceding message:

dmd -version=10 foo.d

Anything in a version block must be syntactically valid D. This can have
unexpected consequences. It's possible when using different compilers, or even
different versions of the same compiler, that code in a version block will not be
syntactically valid, causing a compiler error. For this reason, some prefer to use
version(none) to disable unused code rather than commenting it out; it helps
ensure the code will not go stale.

The debug condition
Where version is intended to be used to facilitate porting across different platforms
and configuring different program features, debug is intended to enable the
inclusion of code used for debugging. It's only available when -debug is passed on
the command line. Here's a simple example. Note that it uses no identifiers and no
numeric debug level.

debug writeln("Debugging enabled.");
else writeln("Debugging disabled.");

Compile this with -debug and the first line will print; compile without that flag
and the second line will print. If you need them, you can also use identifiers and
numeric levels.

debug(Graphics)
 writeln("Graphics debugging enabled.");
debug(10)
 writeln("Debug level 10 enabled.");

Identifiers and levels can be specified in code using a debug specification, for
example debug=10, where they do not create a new scope, or on the command
line, for example -debug=Graphics. A debug specification is only valid for the
module in which it is declared, but using the command-line flag enables it for the
entire program. The meaning of a debug identifier or level is entirely up to you;
that is, specifying –debug=Graphics does not enable any automatic debugging for
a graphics package or module; any code you'd like enabled only in that case must
be wrapped in debug(Graphics) blocks. -debug is shorthand for -debug=1 and, in
source code, debug means debug(1).

Running Code at Compile Time

[138]

The static if condition
The static if condition is a compile time version of the if statement. It can be
used in any scope, including module scope, and can contain multiple else static
if branches and a single, optional else at the end. When the condition of any branch
is met, any code inside its block will be included in the final binary. No branch in a
static if chain creates a new scope, so any variables declared inside will belong
to the enclosing scope. As with other statements, if the block contains a single
expression or statement, the braces can be omitted.

There are many uses for static if, but one that I've found particularly
helpful is to create Boolean conditions for version combinations. Let's redo the
version(WindowsOrLinux) example from earlier. Since conditions in a static if
are evaluated at compile time, they need to be compile-time expressions. For that,
we'll enlist the help of a couple of manifest constants.

version(Windows) {
 enum sysWindows = true;
 enum sysLinux = false;
}
else version(linux) {
 enum sysWindows = false;
 enum sysLinux = true;
}
else {
 enum sysWindows = false;
 enum sysLinux = false;
}

The preceding snippet is implemented once at module scope and that module is
then imported anywhere these constants are needed. A static if statement with
a logical OR condition is used to test if the platform is Windows or Linux.

void main() {
 static if(sysWindows || sysLinux)
 writeln("Windows or Linux!");
 else
 writeln("Neither Windows nor Linux!");
}

Chapter 4

[139]

Any compile-time expression can be used as a static if condition. Don't forget
that most of the built-in type properties are compile-time values. For example, the
following configures a struct based on the host platform's architecture.

struct SomethingSilly {
 static if(size_t.sizeof == 8) // 64-bit
 double value;
 else static if(size_t.sizeof == 4) // 32-bit
 float value;
 else // Future proof
 pragma(msg, "Unsupported architecture.");
}

Compile-time strings
Literals, const and immutable variables in module scope (that aren't initialized
in a static constructor), static const and immutable variables in function scope, and
manifest constants and enum members, can all be known at compile time. In this
section, the focus is specifically on compile-time strings. We're first going to see one
more way to initialize them, then we'll see how any compile-time string can be used
to generate code.

The import expression
The import expression is quite different from the import declaration that pulls
module symbols into the current scope. This expression is used to specify any file
name for the compiler to read into memory at compile time. The file will be read as
text and treated as a string literal, making it possible to assign it to any variable that
can be initialized at compile time.

import std.stdio;
immutable fileData1 = import("myfile1.txt");
enum fileData2 = import("myfile2.txt");
void main() {
 writeln(fileData1);
 writeln(fileData2);
}

Save this as $LEARNINGD/Chapter04/impexp.d. Now create a couple of text files.
First up is $LEARNINGD/Chapter04/myfile1.txt with the following content:

Hello from the executable directory!

Running Code at Compile Time

[140]

And then $LEARNINGD/Chapter04/files/txt/myfile2.txt with the following
content:

Hello from files/txt/myfile2.txt!

Try to compile this with the following command line:

dmd impexp.d

You should see a couple of errors saying that you need the -Jpath switch. As a
security precaution, the compiler requires you to specify one or more paths where
it is allowed to search for files named in import expressions. The compiler is also
free to disallow any path components from the filename. The path can be absolute
or relative to the directory in which the compiler is invoked. For this example, this
command line works:

dmd -J. -Jfiles/txt impexp.d

We've passed two paths with -J. The . character represents the compiler's
working directory, allowing it to find myfile1.txt. Next we pass files/txt so
that myfile2.txt can be found. Running the executable now prints the text from
each file.

Although the result of an import expression is a string, it can be cast to an array of
any type. Care should be taken when doing so to avoid problems with endianness or
alignment. A typical use case is to load a binary file as a ubyte array. I've used this in a
little ASCII game project to make sure a default font is always available. For example:

enum defFont = cast(ubyte[])import("deffont.png");

With that, defFont can be passed to a function that knows how to load PNG images
from memory. This is a simple case, but imported files often need to be massaged
into a different format. In some cases, it may be possible to manipulate the data at
compile time using CTFE.

String mixins
The string mixin exists for one purpose and one purpose only: to generate source
code from strings. This is a powerful feature that opens the door for all sorts of
compile-time configuration without any external tools or a preprocessor. While
they really shine when used in conjunction with CTFE and templates, neither
feature is needed to demonstrate their functionality. Add the following content
to $LEARNINGD/Chapter04/version.txt:

struct AppVersion {
 int major;

Chapter 4

[141]

 int minor;
 int patch;
}
enum appVersion = AppVersion(1, 0, 1);
enum appVersionString = "1.0.1";

In the same directory, create a file named mixin.d and add the following content:

import std.stdio;
mixin(import("version.txt"));
void main() {
 writeln(appVersion);
 writeln(appVersionString);
}

Compiling with -J. and running will show that version.txt was compiled into
the binary. The import expression pulled the file in as a string, then mixin took that
string and inserted it into the source code at the point of declaration. After that, the
compiler compiled it along with the rest of the module. String mixins often come in
handy. They were used to aid in the transition from D1 to D2; they have been used
in creating DSLs (Domain-Specific Languages), in compile-time reflection, and
more. In every case, they are doing nothing more than what you see here, which is
generating source code from strings.

Compile-time function execution
Phobos ships with one of the fastest regular expression engines available. This is
possible in part because of its ability to make use of CTFE and other compile-time
features to compile regular expressions and generate native machine code for matching
(Dmitry Olshansky's DConf 2014 talk gives insight into the regular expression engine;
refer to http://dconf.org/2014/talks/olshansky.html). Keep in mind that the
performance benefit doesn't come for free; the cost is paid for as an increase in compile
time and the potential for code bloat. Still, CTFE can often prove to be a big enough
win in terms of performance and/or maintenance costs to outweigh the drawbacks.

Any D function can be executed at compile time as long as it doesn't depend on
runtime data. As an example, let's revisit the packRGBA function from earlier in
the book.

uint packRGBA(ubyte r, ubyte g, ubyte b, ubyte a = 255) {
 return (r << 24) + (g << 16) + (b << 8) + a;
}

http://dconf.org/2014/talks/olshansky.html

Running Code at Compile Time

[142]

This function is a candidate for compile-time execution because all of the data can
be known at compile time. The default value of a is a compile-time value, as are
the literals used in the function body. This leaves the other parameters, r, g, and b.
Whether or not they are compile-time values depends on the context. Consider the
following invocations:

int red = 255, blue, green;
auto col = packRGBA(red, blue, green);
col = packRGBA(255, 0, 0);

There is no possibility whatsoever for the first call to occur at compile time; the
arguments are all runtime values. The second invocation uses integer literals, so it
meets the requirement that the function use only compile-time values. However, the
return value is assigned to a runtime variable. In this case, the compiler doesn't need
to execute the function at compile time, so it doesn't. More generally, if a function
must be run at compile time, it will be; if it doesn't have to be executed at compile
time, it won't be. The following examples all force the function to be called at
compile time:

enum red = packRGBA(255, 0, 0); // manifest constant
immutable green = packRGBA(0, 255, 0); // module-scope immutable
const blue = packRGBA(0, 0, 255); // module-scope constant
int white = packRGBA(255, 255, 255); // module-scope mutable
enum Color : uint { // enum members
 red = packRGBA(255, 0, 0),
 green = packRGBA(0, 255, 0),
 blue = packRGBA(0, 0, 255),
}
struct FooColor {
 // Set default init value for user-defined type fields
 uint r = packRGBA(255, 0, 0);
 // Initialize static user-defined type members
 static uint green = packRGBA(0, 255, 0);
}
void someFunc() {
 // Initialize local static variables
 static auto red = packRGBA(255, 0, 0);
}

Chapter 4

[143]

In each case, integer literals are used as parameters and the result is assigned in a
variable or constant declaration. The compiler will pick up on all of that and execute
the function at compile time without any further coercion. If CTFE is not possible in
any given context, the compiler will emit an error. When the compiler does execute
a function, it is acting as a D interpreter. Consider:

string makeID(string s, string suffix = null) {
 auto ret = "ID_" ~ s;
 ret ~= suffix;
 return ret;
}
enum ID : string {
 One = makeID("One"),
 OneEx = makeID("One", "Ex"),
}
pragma(msg, ID.One);
pragma(msg, ID.OneEx);

When the compiler encounters the calls to makeID in the declaration of the ID
members, it determines that the function can be executed at compile time and goes
into interpreter mode to do so. From inside the function, this essentially looks like
any other runtime execution, and it basically is. The difference is only in the context
in which it is executed. Let's modify makeID a little.

string prefix = "ID_";
string makeID(string s, string suffix = null) {
 auto ret = prefix ~ s;
 ret ~= suffix;
 return ret;
}

Now the function makes use of a mutable, module-scope variable. Although the
variable is initialized with a compile time value, prefix itself is a runtime variable;
it cannot be known in a compile-time context. Execute makeID at runtime and all is
well, but execute it at compile-time and an error is produced saying that the static
variable prefix cannot be read at compile time. Change makeID one more time.

enum usePlatformPrefix = true;
string makeID(string s, string suffix = null) {
 static if(usePlatformPrefix) {
 version(Windows) enum prefix = "WIN_ID_";
 else enum prefix = "NIX_ID_";
 }
 else enum prefix = "ID_";

Running Code at Compile Time

[144]

 auto ret = prefix ~ s;
 ret ~= suffix;
 return ret;
}

This version still uses an external variable, but this time it's a manifest constant that
can be known at compile time. It's also got some new compile-time constructs inside.
Here's where some people get confused. The static if and version blocks are
evaluated before the function is executed by the interpreter, not during CTFE. Again,
inside makeID there is no difference whether the function is executed at compile
time or at runtime; the same code is run either way. Another way to look at it is
that a function body is not a compile-time construct such as a static if block or a
manifest constant. In a compile-time context, the function is run and its result is used
in a compile-time construct; in a runtime context, the function is run and its result is
used in runtime construct. To the function itself, there is absolutely no difference.

Sometimes, we really do want the implementation of a function to behave somewhat
differently in compile-time and runtime contexts. To facilitate this, the language
provides a special variable, __ctfe, which is true when the function is being
executed by the built-in interpreter at compile time and false during normal
runtime execution. A common mistake new D users make is to try and use __ctfe
with static if, but it's a runtime variable. Here's an example of __ctfe being
used to produce context-dependent output.

string genDebugMsg(string msg) {
 if(__ctfe)
 return "CTFE_" ~ msg;
 else
 return "DBG_" ~ msg;
}
pragma(msg, genDebugMsg("Running at compile-time."));
void main() {
 writeln(genDebugMsg("Running at runtime."));
}

Some may cringe at the idea of introducing a runtime branch just to distinguish
between the two contexts, but there's no need to worry. Because __ctfe is always
false at runtime, the branch will never make it into the binary even when
optimizations are not enabled.

Chapter 4

[145]

Odds and ends
In this section, we're going to look at several compile-time features that don't fit
snugly in the preceding sections.

static assert
static assert is a compile-time assertion that is always enabled. It can't be
turned off with -release like a normal assert can. It is not affected by runtime
conditionals. When its condition is evaluated to false, an error is generated and
compilation halted. The following static assert always errors out because its
condition is 0.

void main() {
 if(0) static assert(0);
}

Like a normal assert, it's possible to give a static assert a message to be printed
on failure. The following example is a good use of that feature:

version(Windows)
 enum saveDirectory = "Application Name";
else version(Posix)
 enum saveDirectory = ".applicationName";
else
 static assert(0, "saveDirectory not implemented.");

The line number at which the assert was encountered is always included in the
output, but adding a custom message makes it easy to tell at a glance what caused
the problem.

The examples above use 0 as the assert condition, but any Boolean expression that
can be evaluated at compile time is eligible to fill that role. Consider the case where
you want to restrict compilation to 64-bit. One approach would be to use a version
condition like so.

version(D_LP64) {
 // implement code
} else static assert(0, "32-bit not supported.");

D_LP64 is predefined when compiling with the -m64 command-line switch. It means
that pointers are 64-bits. The following is a single-line alternative:

static assert((void*).sizeof == 8, "32-bit not supported.");

Running Code at Compile Time

[146]

The is expression
The previous chapter introduced the is operator, which performs an identity test on
two variables. D also has a compile-time is expression, which can be used in a few
different ways. First, let's look at the most basic form.

enum alwaysTrue = is(int);

This checks that the argument is a well-formed type. If so, it returns true. Directly
pass a value or an expression, and the result is false. However, both can be used
with typeof.

enum alwaysTrueToo = is(typeof(1+1));

The == operator can be used to test for a specific type.

enum isFloat = is(typeof(1+1) == float);

As written, this is going to set isFloat to false since the type of 1+1 is int.
An alternative is to test if one type is convertible to another.

enum canBeFloat = is(typeof(1+1) : float);

This evaluates to true because int is implicitly convertible to float. Let's see a more
complex example:

struct AType {
 int x;
 int addXTo(double d) {
 return x + cast(int)d;
 }
}
void main() {
 static if(is(typeof(AType.addXTo(30.0)))) {
 import std.stdio : writeln;
 AType t;
 writeln(t.addXTo(30.0));
 }
}

Accessing members at compile time
Don't let AType.addXTo confuse you. It may look like we're calling a
static member function with no static in sight, but this isn't what's
happening. This is the syntax used to access any member of a struct or
class that can be known at compile time; it's happening at compile time.

Chapter 4

[147]

The is(typeof()) operator doesn't check if code will compile; it only determines if
the code produces a well-formed type. This is something that's often misunderstood,
especially when considering that it's possible to put complex code in an is expression.

static if(is(typeof({
 AType t;
 t.addXTo(30.0);
 }))) { ... }

Notice the opening and closing braces inside the parentheses. With this syntax, any
syntactically valid D code can be used with is(typeof()), though it need not be
semantically valid. This is an important distinction.

In addition to checking for types, the is expression can be used to check against
certain language constructs. For example, this static if block determines if AType
is a struct or a class.

static if(is(AType == struct)) {
 writeln("It's a struct!");
} else static if(is(AType == class)) {
 writeln("It's a class!");
}

With the preceding declaration of AType, the first writeln is compiled into the
executable. Change the declaration of AType so that it's a class, and the second line
is compiled in. Other specifiers can be used, such as function, delegate, const,
immutable, and so on. For more on is, refer to http://dlang.org/expression.
html#IsExpression.

It may be difficult to see exactly how is can be useful, given that in each of the above
examples the type is already known. Where it really comes in handy, and where it's
most often used, is when working with generic types. In the next chapter, where we
cover templates, we'll start putting the is expression to use.

Alignment
Many C and C++ programmers will be familiar with data alignment and data structure
padding given the emphasis placed on cache-friendly code these days. For those who
aren't familiar with the topics, a good introduction for a broader understanding can be
found at http://en.wikipedia.org/wiki/Data_structure_alignment. Here, we're
going to focus on what it looks like in D. Consider the following example:

struct Packed {
 double x;
 float y;

http://dlang.org/expression.html#IsExpression
http://dlang.org/expression.html#IsExpression
http://en.wikipedia.org/wiki/Data_structure_alignment

Running Code at Compile Time

[148]

 byte z;
 byte w;
}
void main() {
 import std.stdio : writeln;
 writeln(Packed.x.offsetof);
 writeln(Packed.y.offsetof);
 writeln(Packed.z.offsetof);
 writeln(Packed.w.offsetof);
}

The Packed data structure has its members ordered from largest to smallest. The
result is that the compiler is able to align each member on byte boundaries that are
tightly packed. This can be verified by querying the .offsetof property available
on all struct and class member variables. The preceding example results in the
following output:

0

8

12

13

The first member of a struct will always have an offset of 0. Since x is a double
and double.sizeof is 8, then the address of the variable y is going to be the address
of x plus eight bytes. The following snippet shows this clearly.

Packed p;
writeln(cast(void*)&p.y - cast(void*)&p.x);

Note that the casts to void* are needed here, as float* and double* are
incompatible types. This will print 8 to the console, matching the value of
Packed.y.offsetof.

Continuing on this line, since y is a four-byte value, the offset of z is four bytes past
y, or 12. Since z is a one-byte value, the offset of w is one byte past z, or 13. But this
is not really the full story. Change the type of w from byte to int and the output
becomes the following:

0

8

12

16

Chapter 4

[149]

Even though z is only a one-byte value, w now begins four bytes past it rather than
one. A more dramatic demonstration of this behavior can be seen in the following
example, where the NotPacked data structure has a different set of types.

struct NotPacked {
 int x;
 long y;
 byte z;
 double w;
}
void main() {
 import std.stdio : writeln;
 writeln(NotPacked.x.offsetof);
 writeln(NotPacked.y.offsetof);
 writeln(NotPacked.z.offsetof);
 writeln(NotPacked.w.offsetof);
}

For this, the output is the following:

0

8

16

24

Ultimately, the offset of a member depends not only on the size of the preceding
type, but on the default alignment of the member's type. In this example, x is still
four bytes in size but, more importantly, the default alignment of long is 8. We
can see this by querying its .alignof property (available on all types).

writeln(long.alignof);

This will print 8. What it means is that the memory address of any long variable
must be a multiple of 8. When the compiler generates the code for any instance of
NotPacked, the address four bytes past x is not going to be divisible by 8, so it puts y
another four bytes further on to satisfy that requirement. byte.alignof gives us 1,
so it can always immediately follow whatever is in front of it. Therefore, the offset of
z is 16, which is at the very end of y. Finally, double.alignof is 8, so it's impossible
for the offset of w in NotPacked to be 17. Instead, the compiler moves it to the next
address that is a multiple of 8, so its offset becomes 24.

Running Code at Compile Time

[150]

The result of all of this is that there are four unused bytes between x and y, with
a further seven unused bytes between z and w. These unused bytes are called
padding and, though they inflate the size of the data structure, they make it much
more efficient for the CPU to access members in memory. NotPacked.sizeof is
32, but reorder things so that the long and double are at the top, followed by the
int, then the byte last, and the size becomes 24 (there will still be three padding
bytes following the byte at the end). Then it can be called a packed data structure,
meaning there is no padding in the interior.

There are times when it may be desirable to pack a data structure without reordering
the members. One common example is when reading and writing chunks from or to
a file that follows a predefined format. Rather than reading or writing each member
one at a time, it can be more efficient to transfer the entire structure in one go.
Imagine a file format that specifies a header consisting of a byte value, followed by
a four-byte value and ending with another byte, for a total of six bytes. As a struct,
it looks like:

struct FileHeader {
 byte version;
 int magic;
 byte id;
}

Try to read or write an instance of FileHeader directly and there's a problem. You
can see it clearly in the following image:

There are three padding bytes between fmtVersion and magic, with another three
padding bytes past id, yielding a total of twelve bytes instead of six. Writing the
entire structure directly means that the file header no longer follows the predefined
format, as all the padding bytes will be written, too. Conversely, reading a properly
formatted file will cause the first three bytes of magic to go into the three padding
bytes after fmtVersion and id to go into the second byte of magic, resulting in all
three fields having incorrect values.

Chapter 4

[151]

Given that a struct is a type, it has an .alignof property like any other built-in
type. However, the property has no predefined value; it takes on the alignment
value of its largest member type. In FileHeader, the largest member type is int,
with an alignment of 4, so FileHeader also has an alignment of 4. The alignment
of a struct type does not just affect how instances of that type are aligned in relation
to other variables, but also how memory is allocated for the instance itself. This is
why FileHeader.sizeof is 12: its alignment is 4, so members must be allocated on
four-byte boundaries.

As the earlier image demonstrates, the number of four-byte blocks that need to
be allocated in this case is three. fmtVersion takes up only one of the bytes it was
allocated. The next member is an int, which requires four bytes and, therefore,
another block of memory; its alignment of 4 dictates that it can't use the three free
bytes of the first block. Finally, because magic fills its entire block, a third block is
allocated for id, which again only needs one byte, leaving three unused. If a short
is added between fmtVersion and magic, the size of FileHeader does not change.
Since short has an alignment requirement of two bytes and also a size of two bytes,
it fits snugly in the last two bytes of the first memory block. Similarly, another short
could be tacked on to the end and the size would remain twelve bytes.

In C or C++, the padding bytes could be eliminated by packing the data structure
via a compiler-specific #pragma preprocessor directive. In D, we get something that's
defined by the language instead: align. It can apply to one declaration or, using a
colon or braces, multiple declarations. Let's make all of the FileHeader members
byte-aligned.

struct FileHeader {
align(1):
 byte fmtVersion;
 int magic;
 byte id;
}

Now all of the members directly follow each other in memory, with no padding
between.

Running Code at Compile Time

[152]

However, notice that there are still two empty bytes at the end. This is because
FileHeader.sizeof is still 4, so memory for its members is still allocated on
four-byte boundaries. To completely eliminate the padding bytes, it's necessary
to add an align attribute to the FileHeader type as well.

align(1) struct FileHeader {
align(1):
 byte fmtVersion;
 int magic;
 byte id;
}

FileHeader.sizeof now gives us 6 instead of 8 or 12, meaning we have eliminated
the padding bytes completely. We can now safely read and write entire arrays of
FileHeader instances in one go without fear of data becoming corrupt because of
padding. Note, however, that FileHeader.alignof is still 4; we have not changed
how instances of the type are aligned, only how memory is allocated for its members.
As with any other variable, the alignment of struct instances is changed by
including an align attribute in the variable declaration.

There's a big, giant caveat to go with align. Data structures with erratic alignment
are going to be more expensive to manipulate. Accessing a member at an odd
boundary in memory can cause more work for the CPU. This is great for improving
the speed of I/O, but the alignment of any data structures that are to be manipulated
frequently throughout the life of a program should only be changed with great care,
if at all. It's better to manually pack things by changing the order of declaration.
Finally, align is not exclusively for use with data structures; it can be prefixed to any
variable declaration in any scope. It's rare to do so, however, and using it with data
structures is more common.

Classes and .alignof
Remember that querying properties on a class type or instance is
returning values for a class reference, not an entire data structure.
.alignof for a class is always 4 in 32-bit and 8 in 64-bit, no
matter the alignment of the members.

Chapter 4

[153]

Compile-time reflection
Several existing languages, particularly those that run on a virtual machine,
have support for runtime reflection. If you aren't familiar with the concept, see
http://en.wikipedia.org/wiki/Reflection_(computer_programming) for
an introduction. D has some support for runtime reflection now and there are
plans afoot to expand upon it. More interesting for many D users is its support for
compile-time reflection. This enables a number of possibilities for both generative
and generic programming that wouldn't otherwise be possible.

A language feature that exists exclusively for compile-time reflection is the __traits
expression. It takes at least two arguments. The first is a keyword indicating the type
of trait to query, followed by one or more types or expressions. Some examples:

enum a = __traits(isUnsigned, uint);
enum b = __traits(isUnsigned, 10 + 11);
enum c = __traits(isUnsigned, 10u + 11u);
enum d = __traits(isUnsigned, uint, 10u + 11u, 10.0 - 9.0);

In the declaration of a, the second argument to __traits is a type. Since uint is
unsigned, a is initialized to true. The initialization of b uses an expression. The
literals 10 and 11 are both of type int, so the result of the expression is also an int.
That means b is set to false. c is initialized to true, as the result of the expression
is uint, thanks to the u suffix on the literals. Finally, in the declaration of d, multiple
arguments are passed after isUnsigned. In this case, all of the arguments must pass
the test in order for the entire expression to return true. Since the last argument,
10.0 – 9.0, results in a double, d is set to false.

There are a number of Boolean traits, but there are others that return something
completely different. Take, for example, the getMember trait. This can be used to
indirectly set or get a member variable in a struct or class.

struct Point {
 int x, y;
}
void main() {
 auto p = Point(10, 20);
 writeln(__traits(getMember, p, "x"));
 __traits(getMember, p, "y") = 33;
 writeln(p.y);
}

http://en.wikipedia.org/wiki/Reflection_(computer_programming)

Running Code at Compile Time

[154]

Remember, __traits is evaluated at compile time, so the two highlighted lines
ultimately cause code to be generated that is the same as is generated when
writeln(p.x) and p.y = 33 are used. Some traits return a set of values; for
example, allMembers returns a set of strings containing the names of each
member of a struct, class, or enum.

pragma(msg, __traits(allMembers, Point));

Compiling this with the Point type prints:

tuple("x", "y")

There is a Phobos module, std.traits, providing alternative implementations of
several built-in traits. Generally, it's encouraged to use these over the built-ins. We'll
take a look at std.traits in the next chapter (and one convenience function before
the end of this chapter). For more on built-in traits, refer to http://dlang.org/
traits.html.

User-defined attributes
User-defined attributes, or UDAs, allow you to associate metadata with your
variables and functions. The attributes can be examined at compile time to generate
different code paths. There are different ways to implement a UDA. The simplest is
to use a literal, such as the integer literal in this example.

@(1) int myVal;

To determine at compile time what attributes myVal has, use the getAttributes
trait.

pragma(msg, __traits(getAttributes, myVal));

This will print the following:

tuple(1)

Integer literals aren't really the best option for implementing UDAs. There's
absolutely no scoping for a literal and two libraries may interpret 1 quite differently.
It's more appropriate to declare UDAs that have a name with some special meaning.
Here's one possible approach:

enum NoPrint;
struct Foo {
 int x;
 @NoPrint int y;
}

http://dlang.org/traits.html
http://dlang.org/traits.html

Chapter 4

[155]

A function (preferably a template) could be implemented that only prints data that
isn't annotated with @NoPrint. Literals and manifest constants can become UDAs
because they are known at compile time. Aggregate types work as well.

struct NoPrint {}
struct NoSave {}
enum Decoration {
 none,
 italics,
 bold,
}
struct Decorated {
 Decoration decoration;
}
struct Data {
 @Decorated(Decoration.Bold) string name;
 @Decorated(Decoration.Italics) string occupation;
 @NoSave @NoPrint int temporary;
}

All the attributes of a single member of a data structure can be examined
with __traits.

pragma(msg, __traits(getAttributes, Data.temporary));

Compile time reflection can be used to grab the attributes of every member.

foreach(member; __traits(allMembers, Data)) {
 enum name = "Data." ~ member;
 writef("Attributes of %s: ", name);

 foreach(attr; __traits(getAttributes, mixin(name))) {
 static if(is(typeof(attr) == Decorated)) {
 Decoration dec = __traits(getMember, attr, "decoration");
 writef("Decoration.%s", dec);
 } else {
 writef(" %s", attr.stringof);
 }
 }
 writeln();
}

Running Code at Compile Time

[156]

First up, a foreach loop is being run on the members of Data. It's worth noting that,
because the return value from __traits is a compile-time value, the loop is actually
being unrolled at compile time. The same is true for the inner loop. In order to get
the attributes of any specific member of Data, the qualified form of the name must be
used, such as Data.occupation. The names returned by allMembers are not qualified,
so the qualified names have to be constructed manually: "Data." ~ member.

When it's time to fetch the attributes, the qualified member name must be passed
to __traits as an identifier, and not as a string. It needs the name of the member as
it is written in code, e.g. Data.occupation and not "Data.occupation". A string
mixin is used to generate an identifier from the string value of name. As the attributes
are iterated, a test is performed on each with is(typeof(attr) == Decorated).

Attributes can be types or values. This has consequences when a struct is used
to define the attribute. @NoSave is a type attribute, whereas @NoSave() is a value
attribute. The former can be tested with is(attr == NoSave). The latter will fail
that test, since a value can't be compared with a type. Therefore, the test in that case
must be is(typeof(attr) == NoSave). Notice that Decorated is used as a value
attribute, initialized in each case with a member of the Decoration enumeration. The
loop uses static if to determine if the current property is an instance of Decorated
and, if so, uses the getMember trait to fetch the value of its decoration member.

If the attribute is not a Decorated instance, then the .stringof property is used to
get the name of the attribute as a string. A type can't be printed at runtime (though
it can be at compile time with a msg pragma), so each type must be converted to a
string via .stringof. This is the opposite of the problem solved by string mixins,
where strings are converted to symbols.

When writing a function that looks for multiple attributes, the type/value dichotomy
can make for some convoluted code. Thankfully, std.traits provides a template
function to hide all of the complexity.

import std.traits : hasUDA;
static if(hasUDA!(Data.temporary, NoSave))
 writeln("Data.temporary can't be saved!");

This will return true no matter if Data.temporary was annotated with @NoSave or
@NoSave(). As of DMD 2.069, std.traits also includes the functions getUDAs and
getSymbolsByUDA.

Chapter 4

[157]

Summary
In this chapter, we have examined several different, independent compile-time
features. You've learned how to use the pragma statement to print compile-time
messages and link with libraries in code. You've taken a look at how to implement
conditional compilation with version, debug, and static if. You've gone
through the basic usage of the import expression and string mixins, and learned
how to force functions to be evaluated at compile time. Finally, we've examined
static assert, the is expression, data alignment, compile-time reflection, and
user-defined attributes.

The purpose of this chapter is to set the stage for the next chapter, which introduces
templates. Using templates with the compile-time features covered here opens the
door to a whole new world.

[159]

Generic Programming
Made Easy

One of the benefits of generic programming is that it enables the implementation of
type-independent code. A single function can be written once to support multiple
types, rather than once for each supported type. Several languages allow for generic
programming to one degree or another. Some implementations are easy to use, but
not very powerful; others are powerful, but difficult to learn. Throughout my time in
the D community, I have seen numerous remarks in the newsgroups, reddit threads,
and elsewhere, praising the simplicity and power of D templates. Combined with
the compile-time features covered in the previous chapter, even novice programmers
can quickly learn to do things that might seem daunting in other languages.

I have to work from the assumption that many readers will not be as familiar with
generic programming as others. With that in mind, we're going to start with a look
at the very basics of using templates in D and progressively work our way through
to more advanced usage. We aren't going to cover everything there is to know about
templates, but we'll cover enough that you'll be able to use them to great effect in
your own code. The flow of the chapter looks like this:

•	 Template declarations: templates as code blocks, struct, class, enum,
and function templates

•	 Template parameters: value, alias, and this parameters
•	 Beyond the basics: template specializations, template constraints,

template mixins, and variadic templates
•	 Operator overloads: several overloadable operators
•	 MovieMan: the database

Generic Programming Made Easy

[160]

Template basics
As a barebones definition, we might say that a template is a block of code that
doesn't exist until it is used. A template can be declared in a source module, but if it
is never instantiated, it doesn't get compiled into the final binary. Further, there are
different ways to declare a template and several ways to control how it is compiled
into the binary. In this section, we're going to explore the former.

Templates as code blocks
A template declaration looks somewhat like a function declaration. It opens with the
template keyword, followed by an identifier, a parameter list, and then a pair of
braces for the body. The body may contain any valid D declaration except module
declarations, as the following example demonstrates:

template MyTemplate(T) {
 T val;
 void printVal() {
 import std.stdio : writeln;
 writeln("The type is ", typeid(T));
 writeln("The value is ", val);
 }
}

The first line declares a template named MyTemplate that takes one parameter, T.
This isn't the same as a function parameter. There are different kinds of template
parameters, but in this case T is intended to refer to a type. It can be any type: int,
float, a user-defined type, and so on. Most templates are parameterized.

After the template parameter list, multiple declarations can appear inside a pair of
braces. This example declares a variable of type T named val and a function called
printVal that uses val. If compiled at this point, neither val nor printVal would
be present in the binary. For that to happen, the template must be instantiated
at least once.

When a template is instantiated, any declarations inside it are compiled, with
the given template arguments replacing its parameters. The following snippet
instantiates two instances of MyTemplate using two different types and two
different approaches:

MyTemplate!(int).val = 20;
MyTemplate!int.printVal();
alias mtf = MyTemplate!float;
mtf.printVal();

Chapter 5

[161]

Taken together, the two snippets yield the following output:

The type is int

The value is 20

The type is float

The value is nan

The first line of main instantiates MyTemplate with int. This is accomplished by
putting the template instantiation operator, !, after the template name, followed by
the type argument list. In the same line, val is set to 20. MyTemplate!(int) acts
as a namespace for each declaration in the body. Both members are accessed with
the dot operator.

The second line demonstrates two points. First, the parentheses around the type
parameter have been dropped. When a template declaration takes only one parameter,
the parentheses are usually optional in the instantiation, though sometimes they
are required; for example, the brackets in an array type such as int[] make the
parentheses mandatory. Second, when printVal is called, it shows that the type of T
is int and its value is 20. This verifies that it refers to the same instance of the template
that was instantiated in the first line, where val is set to 20. If this were part of a larger
program, then any usage of MyTemplate!int, in any module, is referring to the same
instance of val and the same implementation of printVal.

The third line sets up for a different approach to instantiation by creating
an alias. This both instantiates the template and makes mtf a synonym for
MyTemplate!float. The very next line calls printVal through the alias. This prints
the type as float and the value as nan, since val was never set for the float version
of MyTemplate.

Template instantiation happens in the same scope as the declaration, not that of the
instantiation. Consider this module, declscope, with its addTwo function:

module declscope;
int addTwo(int x) {
 return x + 2;
}
template NumTemplate() {
 enum constant = addTwo(10);
}

Generic Programming Made Easy

[162]

It should be obvious that addTwo(10) is calling the function declared here, but what
happens when NumTemplate is instantiated in the following intscope module,
which has its own addTwo?:

module intscope;
int addTwo(int x) {
 // We lied, we're adding 20
 return x + 20;
}
void main() {
 import declscope, std.stdio;
 writeln(NumTemplate!().constant);
}

It's easy to believe that the body of the template is being pasted somewhere around
the instantiation, but that isn't the case. Compiling this and running it results in 12,
not 20, meaning declscope.addTwo is being called inside the template. Remember,
a template is only instantiated once for each set of arguments and the same
instantiation can be repeated in multiple modules throughout a program. If each
instantiation were scoped locally, the template would no longer work as expected.

It's also worth noting that the template in the previous example takes no parameters.
When it's instantiated, the instantiation operator and parentheses are required and
the parentheses have to be empty. It may appear to be pointless to have a typeless
template; after all, supporting multiple types with a single block of code is a major
benefit of generic programming. We'll see later that typeless templates can be put
to good use.

If one instance of val per instantiation is not sufficient, the template body can be
rewritten so that val and printVal are wrapped inside a struct or class:

template MyTemplate(T) {
 struct ValWrapper {
 T val;
 void printVal() {
 import std.stdio : writeln;
 writeln("The type is ", typeid(T));
 writeln("The value is ", val);
 }
 }
}
void main() {
 MyTemplate!int.ValWrapper vw1;
 MyTemplate!int.ValWrapper vw2;
 vw1.val = 20;

Chapter 5

[163]

 vw2.val = 30;
 vw1.printVal();
 vw2.printVal();
}

Although it looks like MyTemplate is instantiated twice here, that's not what's
happening. The template is still instantiated only once. Instead, two instances of
MyTemplate!int.ValWrapper are declared. The instantiation effectively creates a
new ValWrapper declaration as if the following had been explicitly declared:

struct ValWrapper {
 int val;
 void printVal() {...}
}

If the template is instantiated with a different type, it creates a new declaration
of ValWrapper. If it's never instantiated, then ValWrapper never exists as a type.
Although multiple declarations can go inside a template body, it's quite common to
declare a single struct, class, function, or even a manifest constant. In that case,
we can do away with the tediousness of the dot operator and take some shortcuts.

Struct and class templates
In 1975, Fleetwood Mac released an album titled Fleetwood Mac. Six years later,
it was in reference to that album that the 10-year-old me first made the connection
between the words eponymous and self-titled while listening to the radio. In D,
self-titled templates are a thing. Let's rewrite MyTemplate once more, this time
making it eponymous:

template ValWrapper(T) {
 struct ValWrapper {
 T val;
 void printVal() {
 writeln("The type is ", typeid(T));
 writeln("The value is ", val);
 }
 }
}

Now that the template and struct declarations have the same name, the
dot operator can be dropped from instantiations and instances of ValWrapper
declared directly:

ValWrapper!int vw;

Generic Programming Made Easy

[164]

That's much nicer syntax, isn't it? The language also allows for a shortcut in the
template declaration. By simply adding the parameter list to the struct declaration,
the template block is eliminated completely. The declaration then becomes:

struct ValWrapper(T) {
 T val;
 void printVal() {
 writeln("The type is ", typeid(T));
 writeln("The value is ", val);
 }
}

This is a struct template. The instantiation syntax is the same as it was for the first
version of the eponymous template. If it is expected to be used often, alias declarations
can be added at module scope to help make the instantiation syntax even cleaner:

alias ValWrapperI = ValWrapper!int;
alias ValWrapperF = ValWrapper!float;

A class template is similar:

class ValClass(T) {
private:
 T _val;
public:
 this(T val) {
 _val = val;
 }
 T val() @property {
 return _val;
 }
}

It can be instantiated like this:

auto vc = new ValClass!int(10);

When multiple type parameters are involved, the parentheses in the instantiation
are no longer optional and two pairs are needed when invoking the constructor. The
following partial implementation of a wrapper for associative arrays demonstrates:

class HashMap(K,V) {
 V[K] _map;
 string _name;
 this(string name) {

Chapter 5

[165]

 _name = name;
 }
}

When instantiating one of these, it's going to look a bit more cluttered:

auto map = new HashMap!(string, int)("NameMap");

Always remember that the first pair of parentheses contains the template arguments
and the second the constructor arguments.

It's also possible to inherit from a template class or interface:

interface Transformation(T) {
 T transform(T t);
}
class Double(T) : Transformation!T {
 T transform(T t) {
 return t * 2;
 }
}

When an instance of Double is instantiated, it in turn instantiates the Transformation
interface with the same type. Then, a Double!int can be passed anywhere a
Transformation!int is expected:

struct Value(T) {
 T val;
 Transformation!T transformation;
 T transform() {
 val = transformation.transform(val);
 return val;
 }
}
void main() {
 import std.stdio : writeln;
 auto = Value!int(10, new Double!int);
 writeln(intVal.transform());
}

When Value is instantiated with int, its member transformation is expected to
be of type Transformation!int, which is exactly what it is initialized with when
new Double!int is used in the struct literal. Note that, since Value is a template, the
literal form must also be a template instantiation. Though not covered here, it's also
possible to declare union templates.

Generic Programming Made Easy

[166]

Enum templates
An enum template is a templated manifest constant. Let's look at the long form first:

template isLongOrInt(T) {
 enum isLongOrInt = is(T == long) || is(T == int);
}

Dig around the source for Phobos and you'll find several declarations like this,
all written before the shortened syntax was introduced for enum templates.
Now we can do this:

enum isLongOrInt(T) = is(T == long) || is(T == int);

Instantiating an enum template causes the value of the manifest constant in the
template body to be substituted at the point it is used at:

writeln(isLongOrInt!long);
writeln(isLongOrInt!float);

In this snippet, the first instantiation will be replaced at compile time by true
and the second by false. It's conceptually the equivalent of the following:

enum isLongOrInt_Long = true;
enum isLongOrInt_Float = false;
writeln(isLongOrInt_Long);
writeln(isLongOrInt_Float);

These really come in handy when working with repetitive static if conditions or,
as we'll see later in this chapter, template constraints. When a compile-time condition
needs frequent use, consider turning it into an enum template.

Function templates
We've already made use of a few function templates in the book, such as std.conv.
to and, believe it or not, std.stdio.writeln. Before we look into why the former
requires the template instantiation operator and the latter doesn't, let's first take a
look at what a function template declaration looks like. First, the long form:

template sum(T) {
 T sum(T lhs, T rhs) {
 return lhs + rhs;
 }
}

Chapter 5

[167]

And now, the more common short form:

T sum(T)(T lhs, T rhs) {
 return lhs + rhs;
}

There are two pairs of parentheses in the declaration. As is obvious in the long
form, the first pair holds the template parameters and the second is for the function
parameters. Instantiating and calling a function template can be done in two ways,
as seen here:

auto doubles = sum!double(2.0, 3.0);
auto floats = sum(2.0f, 3.0f);
writeln(typeid(floats));

The first line instantiates the template in the same way we've seen for every case
we've examined so far, by specifying the types in the argument list. Again, the
parentheses are optional on a single argument, but are required if there are more.
The second line is more interesting in this example. Notice that there is neither an
instantiation operator nor a template argument anywhere to be found (the same is
true for writeln). This is because the compiler is able to infer T from the function
arguments, so there's no need to specify them. This is called Implicit Function
Template Instantiation (IFTI). IFTI is quite convenient, but isn't always possible.
Consider this example that wraps std.conv.to in order to convert a struct
member variable into a different type:

struct Value {
 private int _val;
 T getAs(T)() {
 import std.conv : to;
 return to!T(val);
 }
}

First, note that the member function getAs is a template, but Value itself is not.
Member function templates are instantiated like any other function template, except
that they must be called through the dot operator on the type instance like a normal
member function:

auto value = Value(100);
auto valstr = value.getAs!string();

Generic Programming Made Easy

[168]

Take out the !string bit and there is no way for the compiler to know that value.val
should be converted to a string and not a double, a bool, or anything else. In that
case, IFTI will fail with a compiler error. Modify getAs to take an argument to use as a
default value, then the situation changes:

T getAs(T)(T defVal) {
 import std.conv : to;
 try {
 return to!T(val);
 } catch(Exception e) {
 return defVal;
 }
}

Now the compiler has enough information to implicitly deduce the type of T from
the type of defVal in the function call, for example value.getAs("DefaultVal").

Reducing dependencies
In the getAs example, std.conv : to is a local import. As it is inside
a template, std.conv will never be imported if the template is never
instantiated. Keeping imports local when writing templated code is
a great way to reduce dependencies and good practice even in non-
templated code.

Special features
There are a couple of special features of function templates that are not available
to normal functions. First, consider the following:

int addTwo()(int x) {
 return x + 2;
}
int addTwoInt(int x) nothrow {
 return addTwo(x);
}

Recall that a function marked nothrow can only call other functions marked nothrow.
There is no guarantee that the compiler will always have the source available for
a normal function, but the source for a template must always be available. Due to
this, the compiler can safely use the source of any function template to infer certain
function attributes (@safe, pure, nothrow, and @nogc). In this case, when addTwoInt
calls addTwo, the compiler verifies that addTwo can't throw anything and allows
compilation. If addTwo were to directly throw an Exception or call a function that
isn't nothrow, then it would no longer be inferred as nothrow itself.

Chapter 5

[169]

Another feature of function templates is auto ref parameters. Consider this:

void printLargeStruct (const(LargeStruct) p) {…}
void printLargeStruct(ref const(LargeStruct) p) {…}

If the first version of printLargeStruct were the only one, it would accept both
l-values and r-values. The l-values would be copied, something that's inefficient for
a large struct. By also declaring a ref version of the function, we ensure that l-values
will be passed by reference. However, maintaining two versions of the same function
is error-prone. With a function template that takes auto ref parameters, one
implementation can handle both:

void printLargeStruct()(auto ref const(LargeStruct) p) {…}

Note that both addTwo and printLargetStruct have empty template parameter
lists. Function templates with empty parameter lists are sometimes used in place of
normal functions solely to get the benefits of auto ref.

One last thing to say about function templates: they cannot be virtual. All member
functions in a class declaration are virtual by default and can be overridden by
subclasses, but templated member functions cannot be.

More template parameters
While types are perhaps the most common form of template parameter, there are
others. We're going to examine three of them, beginning with value parameters.

Value parameters
The following example is a partial implementation of a wrapper for D's array type:

struct Array(T, size_t size = 0) {
 static if(size > 0)
 T[size] elements;
 else
 T[] elements;
 enum isDynamic = Size == 0;
}

Generic Programming Made Easy

[170]

Array is a struct template that has two parameters, a type parameter T and a value
parameter size. We know that T is a type parameter because it's a single identifier.
Whether it's called T, or Type, or Foo, or whatever, a solitary identifier in a template
parameter list represents a type. size is identifiable as a value parameter because
it is composed of a specific type followed by an identifier, just as if it were in the
parameter list of a function. A value parameter binds to any expression that can be
evaluated at compile time, such as literals and function calls. Notice that size is
assigned a default value. This means an argument corresponding to size is optional
during instantiation, meaning Array can be instantiated with one argument for T.

Template parameters are always compile-time entities. The implementation of Array
makes use of that fact to decide whether it should be a static or a dynamic array.
This is accomplished at compile time with a static if. If size is greater than 0, the
member variable elements is declared as a static array with length size; otherwise,
elements is a dynamic array. The manifest constant isDynamic is initialized as a
Boolean with size == 0, causing any read of its value to be replaced by the compiler
with true or false directly.

Here are two possible instantiations of Array:

Array!int arr1;
assert(arr1.isDynamic);
Array!(float, 10) arr2;
assert(!arr2.isDynamic);

As the asserts verify, the first instantiation yields an instance of Array wrapping
a dynamic array. Since size is an optional argument, it's still possible to drop the
parentheses when only the first argument is specified in the instantiation. The second
instantiation results in an instance containing a static array of type float and length
10. Though the example uses a literal to specify size, any compile-time expression
that results in a size_t can be used. For example, given this function:

double getADouble() { return 100.0; }

We can use CTFE to instantiate the template like so:

Array!(float, cast(size_t)getADouble()) arr3;

Alias parameters
While types and values as template parameters open the door to a variety of
possibilities, D goes further and allows the use of symbols as template parameters.
This is possible through the use of alias parameters.

Chapter 5

[171]

The following function template takes any symbol and prints its string
representation to standard output:

void printSymbol(alias Name)() {
 writeln(Name.stringof);
}

Here the template is instantiated with several different symbols:

int x;
printSymbol!x(); // Variable name
printSymbol!printSymbol(); // Function template name
printSymbol!(std.conv.to)(); // FQN of function template
printSymbol!(std.stdio)(); // Module name

Note that the parentheses around the solitary template arguments are required
for the last two instantiations due to the dots in the symbol names. The output
looks like this:

x

printSymbol(alias Name)()

to(T)

module stdio

In addition to symbols, alias parameters can also bind to any expression that can be
evaluated at compile time, including literals:

enum number = 10;
printSymbol!number();
printSymbol!(1+3)();
printSymbol!"Hello"();
printSymbol!(addTwo(3))();

Together with the following function:

int addTwo(int x) { return x + 2; }

This yields the following output:

10

4

"Hello"

5

As I write, D does not support any of the keyword types as template alias
parameters, so instantiations such as printSymbol!int and printSymbol!class
will not compile.

Generic Programming Made Easy

[172]

This parameters
Recall that every class instance has a reference to itself called this. The following
class declaration includes a function that prints the type of this:

class Base {
 void printType() { writeln(typeid(this)); }
}
class Derived : Base {}

Now let's see what it prints in two specific circumstances:

Derived deri = new Derived;
Base base = new Derived;
deri.printType();
base.printType();

Running this will show that, in both cases, the printed type is Derived, which is the
actual type of both instances. Most of the time, this is exactly the desired behavior,
but now and again it might be useful to know the static (or declared) type of an
instance, rather than the actual type. The static type of base is Base, as that is the
type used in the declaration. A this parameter can be used to get the static type.
These are special in that they can only be used with member functions. Change the
declaration of Base to this:

class Base {
 void printType(this T)() { writeln(typeid(T)); }
}

Calling this version of printType will print Derived for deri and Base for base.
This is most useful in template mixins, which we'll see later in the chapter.

Template this parameters can also be used in struct declarations, though their
usefulness is more limited given that structs in D are not polymorphic. However,
a possible use case is demonstrated in the following declaration:

struct TypeMe {
 void printType(this T)() const {
 writeln(T.stringof);
 }
}

Chapter 5

[173]

As printType is declared as const, it can be called on any instance of TypeMe,
whether it was declared as const, immutable, or unqualified. The template this
parameter can be used to determine which:

const(TypeMe) ct;
immutable(TypeMe) it;
TypeMe t;
ct.printType();
it.printType();
t.printType();

Beyond the basics
A lot can be accomplished using the template features we've examined so far. In
this section, we're going to see how to make our templates more powerful, through
features that are easy to learn and use. We'll start with template specializations.

Template specializations
All instantiations of a template get the same implementation of the template body.
Parameters may be substituted in different places, but the overall implementation
doesn't change. However, there are times when it's useful for a template to behave
differently when instantiated with different types. Simple cases, where one or two
lines are different for one or two types, are easy to configure at compile time with
static if, but sometimes the code is hard to read. In more complex cases, such as
when different types require completely different implementations, static if is
not practical.

Template specializations allow us to implement multiple versions of the same
template for different types. Earlier, we implemented a function template called
sum that takes two arguments and adds them together. Let's assume for the sake of
this example that, when dealing with floating point types, we'd like to round to the
nearest whole number. Such a simple case can be implemented with static if and
std.traits.isFloatingPoint:

T sum(T)(T lhs, T rhs) {
 import std.traits : isFloatingPoint;
 T ret = lhs + rhs;
 static if(isFloatingPoint!T) {
 import std.math : round;
 ret = round(ret);
 }
 return ret;
}

Generic Programming Made Easy

[174]

Easily done, but look at the tradeoff; the simple one-line function body is now seven
lines long. Also, there's a new dependency on std.traits just to determine whether
we're dealing with a floating point type. We can do better. A template can be made
to specialize on a type by declaring the type identifier as normal, followed by a colon
and the name of the specialized type. The following version of sum specializes on all
floating point types:

T sum(T : real)(T lhs, T rhs) {
 import std.math : round;
 return round(lhs + rhs);
}

Since all floating point types are implicitly convertible to real, this will catch them
all. Unfortunately, this won't quite do the trick by itself:

T sum(T)(T lhs, T rhs) {
 return cast(T)(lhs + rhs);
}
T sum(T : real)(T lhs, T rhs) {
 import std.math : round;
 return round(lhs + rhs);
}
void main() {
 import std.stdio : writeln;
 writeln(sum(10, 20));
}

Save this as $LEARNINGD/Chapter05/sum.d. Attempting to compile should produce
the following compiler errors:

sum.d(9): Error: cannot implicitly convert expression
(round(cast(real)(lhs + rhs))) of type real to int

sum.d(12): Error: template instance sum.sum!int error instantiating

The second error indicates that the template failed to instantiate. The first error,
which comes from inside the template body, shows the reason instantiation failed.
Recall that integrals are implicitly convertible to floating point types, but the reverse
is not true. In the example, sum is instantiated with int, since that's the type of both
10 and 20. This matches the specialization because int is implicitly convertible to
real. The error happens because the instantiation of sum expects to return int, but
it's actually trying to return real, which is the return type of round. Since real is
not implicitly convertible to int, the compiler errors out and the template fails to
instantiate. To fix this, add a new specialization to catch only integrals.

Chapter 5

[175]

Since all integrals are implicitly convertible to ulong, and since it's a better match for
integrals than real, it can be used to get the job done. With two specializations to catch
floating point and integral types, the original will pick up anything remaining, such
as arrays, pointers or user-defined types. To disallow those, simply delete the original
template and keep the two specializations:

import std.stdio;
T sum(T : ulong)(T lhs, T rhs) {
 writeln("Integral specialization.");
 return cast(T)(lhs + rhs);
}
T sum(T : real)(T lhs, T rhs) {
 writeln("Floating-point specialization.");
 import std.math : round;
 return round(lhs + rhs);
}
void main() {
 writeln(sum(10, 20));
 writeln(sum(10.11, 3.22));
}

Specialization on pointers and arrays
When sum is instantiated, it isn't necessary to explicitly specify a type; the type is
implicitly deduced from the function arguments. Unfortunately, when a type is
implicitly deduced, it's possible that no specialization will match. In practice, this
isn't a problem for most types. While it works just fine for the sum template with
integrals and floating point types, you would be in for a surprise if you tried to
specialize on a pointer or array.

Let's leave sum behind and implement a new function template called printVal.
This will take a single argument of any type and print it to standard output. The
base form of the template looks like this:

void printVal(T)(T t) {
 writeln(t);
}

Try to instantiate this with any type and it will work flawlessly. The only potential
issue is what to do about pointers. By default, writeln prints the address of a pointer.
If that's the desired behavior, then nothing further need be done. What if, instead, we
want to print the value the pointer is pointing to? In that case, we need a specialization.
Specializing on a specific type of pointer is no different than doing so for any type:

void printVal(T : int*)(T t) {
 writeln(*t);
}

Generic Programming Made Easy

[176]

But who wants to write a version of printVal for every conceivable pointer type?
To specialize on any pointer, no matter the base type, the following syntax is used:

void printVal(T : U*, U)(T t) {
 writeln(*t);
}

The second template parameter, U, is what allows this function to specialize on any
pointer. Whatever type U is, then T is specialized on a pointer to that type. Explicit
instantiation can look like either of the following lines:

printVal!(int*, int)(&x);
printVal!(int*)(&x);

When there are multiple template parameters, it's not necessary to pass an argument
for all of them if the remainder can be deduced. In the second declaration, the
compiler can deduce that, if T is int*, then U must be int. This can be verified
by adding writeln(U.stringof) to printVal. IFTI also works:

printVal(&x);

The same form can be used to specialize on arrays:

void printVal(T: U[], U)(T t) {
 foreach(e; t)
 writeln(e);
}
void main() {
 printVal([10, 20, 30]);
}

Note that, as I write, the documentation says that IFTI will not work
with templates that use type specialization. That came as a surprise to
several users involved in a forum discussion, since it's been working in
the compiler for quite a while. Given the history of D development, it is
more likely that the documentation will be changed to match the behavior
than the other way around, but the possibility does exist that the behavior
could change at some point. Anyway, for now it works and code in the
wild is using it.

Chapter 5

[177]

Template constraints
Template specialization is useful, but it can be hard sometimes be difficult to get
right and doesn't fit every use case. Template constraints offer a more comprehensive
alternative. The following two implementations of sum achieve the same result as the
two specializations from earlier:

import std.traits;
T sum(T)(T lhs, T rhs) if(isFloatingPoint!T) {
 import std.math : round;
 return round(lhs + rhs);
}
T sum(T)(T lhs, T rhs) if(isIntegral!T) {
 writeln("Integral");
 return cast(T)(lhs + rhs);
}

These can be instantiated using implicit type deduction:

writeln(sum(10,20));
writeln(sum(22.11,22.22));

A template constraint is an if statement where the condition is any expression that
can be evaluated at compile time. When the compiler finds a potential match for
a set of template arguments, then the condition must evaluate to true in order
for the match to succeed. Otherwise, the match fails and the compiler will try
to find another.

The conditions in this example are isFloatingPoint and isIntegral, both
of which are templates found in std.traits. Using this approach, there's no
ambiguity; an int can only match the template with the isIntegral condition.
These are essentially shortcuts for what would be, if implemented manually, a string
of is expressions. For example, a test for floating point would look like: if(is(T ==
float) || is(T == double) || is(T == real)). Imagine doing the same for all
the integral types.

The constraints could be rewritten to if(is(T : real)) and if(is(T : ulong)),
to test whether T is implicitly convertible to real or ulong. On the surface, this looks
similar to template specialization. However, there's a big difference in the result. When
a type matches more than one specialization, the one that is more specialized wins
and becomes the match. Conversely, when constraints are matched on more than one
template, a compiler error is produced instead; constraint matching is more precise.

Generic Programming Made Easy

[178]

Template constraints aren't just an alternative to specialization. They are also a
means of limiting a template to specific instantiations. Consider the case where
it's desirable to define a function interface intended to be used among a number
of different class and struct types. If it were only restricted to classes, then each
class could extend and implement an actual interface, but that's not possible
with structs in D. Constraints can be used to make sure that any class or struct
instance provides a specific interface.

As a simple example, imagine a function called printOut that is defined to take
no parameters, to return void, and to print a class or struct instance to standard
output. In any given template, we want to know that it's actually possible to call
printOut on an instance, either as a member function or via UFCS. Since this is
something that is likely to be repeated in multiple templates, it will be useful to
implement an enum template that checks whether printOut exists on any given
type. A good name for it would be hasPrintOut. It might look like this:

enum hasPrintOut(T) = is(typeof(T.printOut));

We saw the is(typeof()) idiom in the previous chapter. Here, we're only checking
whether the given type has a member function named printOut, but not whether
the return type matches that of the expected interface. For a simple example like
this, that doesn't matter. Now, with hasPrintOut in hand, a constraint can be
implemented on any template that wants to call printOut on any type. For example:

void print(T)(T t) if(hasPrintOut!T) {
 t.printOut();
}

Template constraints can be as simple or as complex as they need to be. A proper
implementation of hasPrintOut would verify that the return type and function
parameter list match the interface. Such complex constraints, or those used often,
should generally be wrapped up in a separate template such as hasPrintOut or
isFloatingPoint to keep the declaration clean and readable.

Template mixins
Earlier, we saw that template instantiations have the scope of the declaration, not the
instantiation. Template mixins turn that upside down. A template mixin is a special
kind of template that can essentially be copied and pasted into a different scope.
On the surface, they appear to be identical to the string mixins we saw in Chapter 4,
Running Code at Compile Time. Digging a little deeper shows they aren't quite the same:

mixin template Mixalot() {
 int count = 10;
 int increase(int x) {
 return x + count;

Chapter 5

[179]

 }
}

First up, note that the declaration is a regular template declaration with the mixin
keyword in front. It can have any number of valid declarations in the body,
excluding module declarations. Although this particular mixin has no parameters,
they can be parameterized like other templates. To instantiate a mixin, we again use
the mixin keyword. When the mixin has no parameters, the instantiation operator
and parentheses can be elided, as in the following example:

int count = 100;
mixin Mixalot;
writeln(increase(20));
writeln(count);

Here, the declarations inside Mixalot are inserted directly into the current context.
increase can be called without the need to prefix it with a Mixalot namespace.
However, compile and run this and you'll find that the first writeln prints 30,
not 120, and the second prints 100 instead of 10. As mixins have their own scope,
increase sees the count declared inside Mixalot, not the one declared in main.
Inside main, the local count declaration overrides the one in Mixalot. Let's see
what happens if we change Mixalot to be a string mixin:

enum Mixalot = q{
int count = 10;
int increase(int x) {
 return x + count;
}
};
void main() {
 import std.stdio : writeln;
 int count = 100;
 mixin(Mixalot);
 writeln(increase(20));
 writeln(count);
}

This yields an error to the effect that main.count is already defined. String mixins
don't have their own scope.

When a template mixin is parameterized, it must be instantiated with the
instantiation operator. The following example does so, while demonstrating a
common use case of template mixins: implementing a common interface among
different struct declarations:

mixin template ValueImpl(T) {
 private T _value;

Generic Programming Made Easy

[180]

 T value() {
 return _value;
 }
 void value(T val) {
 static bool isSet;
 if(!isSet) {
 _value = val;
 isSet = true;
 }
 }
}
struct Value {
 mixin ValueImpl!int;
}
struct ExtendedValue {
 mixin ValueImpl!int;
 float extendedValue;
}
void printValue(T)(T t) if(is(typeof(T.value))) {
 import std.stdio : writeln;
 writeln(t.value);
}
void main() {
 Value val;
 val.value = 20;
 printValue(val);
 ExtendedValue exval;
 exval.value = 100;
 printValue(exval);
}

Variadic templates
A variadic template is one that accepts any number of template parameters as types,
expressions, or symbols, from none to many. The following is an example:

void printArgs(T...)() if(T.length != 0) {
 foreach(sym; T)
 writeln(sym.stringof);
}

Chapter 5

[181]

T... is a compile-time list of arguments generated from any instantiation of the
template. T is the alias used to refer to the list inside the template body. Some
prefer to use Args... instead, but any legal identifier is allowed. There are no
function parameters here, as this particular function doesn't need them. The
template argument list can be manipulated much like an array; it can be indexed
and sliced, and the .length can be read (though not written to). Again, this all
happens at compile time. The template constraint in this example ensures that the
template cannot be instantiated with an empty template argument list, meaning
printArgs!() will fail to compile.

The body of printArgs consists of a foreach loop that iterates every item in the
argument list. A special property of foreach is that it can iterate a compile-time
argument list like this at compile time. This means that the loop is unrolled; code
is generated for the loop body for each item in the list. In this case, the only thing
generated per iteration is a single call to writeln. Here's some code to clarify this:

printArgs!(int, "Pizza!", std.stdio, writeln);

When the compiler encounters this line, the template is instantiated with a
compile-time argument list that consists of a type, a compile-time value, and
two symbols (a module name and a function name). The result of the loop in the
function body will be to generate the equivalent of the following (the output of
each is shown in comments):

writeln(int.stringof); // int
writeln("Pizza".stringof); // "Pizza"
writeln((std.stdio).stringof); // module stdio
writeln(writeln.stringof); // writeln()

This is what is executed at runtime. If the writeln calls were replaced with a msg
pragma, then the template would have no runtime component at all.

T... is only visible inside the template. However, it's possible to get a handle to an
argument list outside an eponymous alias template:

template ArgList(T...) {
 alias ArgList = T;
}

Alternatively, the short form:

alias ArgList(T...) = T;

Generic Programming Made Easy

[182]

With this, it's possible to generate a compile-time list of types, expressions, or symbols
that can be used in different ways, some of which we'll see shortly. For now:

printArgs!(ArgList!(int, string, double));

This results in the same output as if int, string, and double had been passed
directly to printArgs. Any function that accepts T... can accept the result of an
alias template. It's not necessary to implement your own generic alias template,
however, as the std.meta module in Phobos provides one in the form of AliasSeq.
The Seq part means sequence.

That's the basic functionality of variadic templates. There's more to cover in order
to fully understand their power, but before we dive into more usage we first have
to take an unfortunate, but necessary, detour to discuss terminology.

Terminology
If you visit http://dlang.org/template.html#TemplateTupleParameter,
you'll find that the documentation refers to T... as a template tuple parameter.
Dig around some more and you may find other references in the documentation,
tutorials, forums, and blog posts to the terms type tuple and expression tuple (or
value tuple). AliasSeq!(int, string, double) produces a type tuple, as all of the
arguments are types; AliasSeq!(42, "Pizza!", 3.14) results in an expression
tuple, where all of the members are expressions (values). T... can also be a list of
symbols, but it's rare to refer to a symbol tuple. When the members are mixed, as in
printArgs!(int, "Pizza!", std.stdio), there is no special name.

There is an obvious discrepancy in the name AliasSeq and the term tuple. There
is some history here that is still playing out as I write. Shortly after I wrote the first
draft of this chapter, there was a debate in the forums regarding the naming of std.
typetuple.TypeTuple. The debate resulted in the name change of both the module
and the template, to std.meta.AliasSeq. The discussion arose in the first place
because there has always been some confusion around the use of tuple in D.

Some readers may be familiar with tuples from other languages, where they
are often used as a runtime list that can hold multiple values of differing types.
Phobos provides such a construct in the form of std.typecons.Tuple, instances
of which can be created with the convenience function std.typecons.tuple
(note the lowercase t):

auto tup1 = tuple!(int, string, double)(42, "Pizza", 3.14);
auto tup2 = tuple!("name", "x", "y")("Position", 3.0f, 2.0f);

http://dlang.org/template.html#TemplateTupleParameter

Chapter 5

[183]

The first version creates a Tuple with three members. The types of the members
are specified as template arguments and the optional initial values as function
arguments. Each member can be accessed with the index operator, so tup1[0] is
42. In the second form, the template arguments give names to each member and the
types are deduced from the function arguments. This produces a Tuple instance on
which tup2[1] and tup2.x both return 3.0f.

Tuple is implemented as a struct and is useful for returning multiple values
from a function, or in any place where multiple values of different types need to
be packaged together. Talking about tuples in D, though, has always been a bit
problematic. Does it mean std.typecons.Tuple or T...? Another issue has been
that TypeTuple could create not only type tuples, but expression tuples, symbol
tuples, and any possible compile-time tuple. The name certainly wasn't conducive
to easy understanding.

Now that we have std.meta.AliasSeq to create compile-time tuples and
std.typecons.Tuple to create runtime tuples, that doesn't mean all is well quite
yet. People still refer to T... as a tuple, and sometimes as a compile-time argument
list, a sequence, and now even an AliasSeq. In Chapter 4, Running Code at Compile
Time, I explicitly avoided the use of tuple when talking about __traits, even though
the documentation for some of the traits declares the return value to be a tuple.
For example allMembers returns a tuple of string literals. Then there's the use of
Template Tuple Parameters in the template documentation, and the .tupleof property
of structs (which we'll look at soon).

So we have a situation where a movement has begun to make tuples less confusing,
but has only just gotten started. As I write, no one has yet agreed on how exactly
to refer to T... in a discussion, but I must choose a term to use in this book. It is
certainly now discouraged to use tuple in this context, but any other term I select
may be made obsolete if the community eventually settles on a different term. Given
that the documentation still uses tuple in many places and that the .tupleof struct
property still exists, I will use tuple for the remainder of this discussion to refer to
T... or any compile-time argument list, such as that returned by the allMembers
trait. I have the benefit of formatting, so tuple and Tuple will refer to the symbols
in std.typecons, while tuple will refer to the compile-time version. Keep yourself
up to date by reading the latest documentation and following the forum threads to
know how to map the term tuple used here to the term being used at the time you
read the book. Now, back to the usage of variadic templates and tuple parameters.

Generic Programming Made Easy

[184]

More on usage
Instances of a type tuple (no expressions or symbols allowed in this case) can be
declared using an alias template as the type, or an alias to the template:

import std.meta : AliasSeq;
AliasSeq!(int, string, double) isdTuple1;
alias ISD = AliasSeq!(int, string, double);
ISD isdTuple2;

Instances are runtime constructs, which are given special field names for the
members. As implemented, printArgs will not print the field names of a tuple
instance. Instead, it will print sym, the name of the alias in the foreach, for each
member. No problem. Let's make a new function called printTuple:

void printTuple(T...)() if(T.length != 0) {
 foreach(i, _; T)
 writeln(T[i].stringof);
}

The point of this loop is to avoid using the alias, so _ is used as a visible indication
that it won't be used. Instead, the current index is used to access tuple items directly.
This will properly print the field names. printTuple!isdTuple1 produces this:

__isdTuple1_field_0

__isdTuple1_field_1

__isdTuple1_field_2

This explicitly shows the difference between a tuple instance and the compile-time
entity; printTuple!ISD will print the type names. Moreover, the instance will have
been initialized with the .init values of each type in the tuple. This can be verified
with the following runtime loop:

foreach(item; isdTuple1)
 writeln(item);

It prints:

0

nan

Chapter 5

[185]

The default initializer for a string is the empty string, so nothing is printed in the
second line. Values can be assigned to the instance just like any other variable:

isdTuple1[0] = 42;
isdTuple1[1] = "Pizza!";
isdTuple1[2] = 3.14;

Tuple instances can also be expanded, or unpacked, anywhere a comma-separated
list of values is expected. Consider this function:

void printThreeValues(int a, string b, double c) {
 writefln("%s, %s, %s", a, b, c);
}

Given that isdTuple1 and isdTuple2 each have three members that match the
types of the function arguments (in the same order), either can be passed to the
function like so:

printThreeValues(isdTuple1);

Structs have the property .tupleof, which can be used to convert all of a struct's
members to a tuple. It can then also then be unpacked:

struct UnpackMe {
 int meaningOfLife;
 string meaningOfFood;
 double lifeOf;
}

Instead of passing each member individually to printThreeValues:

auto um = UnpackMe(42, "Pizza!", 3.14);
printThreeValues(um.tupleof);

Unpacking also works for compile-time tuples:

void printThreeTemplateParams(T, string U, alias V)() {
 writefln("%s, %s, %s", T.stringof, U, V.stringof);
}

The following tuple matches the parameter list:

printThreeTemplateParams!(AliasSeq!(int, "Hello", std.stdio));

Generic Programming Made Easy

[186]

Instances can also be declared as function parameters:

void printTuple2(T...)(T args) {
 foreach(i, _; T)
 pragma(msg, T[i].stringof);
 foreach(item; args)
 writeln(item);
}

This can be called like a normal function and the members of T... will be deduced:

printTuple2(42, "Pizza!", 3.14);

As you can see, there are a number of different ways to use tuples. The instances
described in this section seem quite similar to the std.typecons.Tuple type
mentioned earlier, but they have very different implementations. At this point,
I hope you understand why there is a movement afoot to change the tuple
terminology.

Operator overloading
The time has come to return to user-defined types and see how to implement
operator overloads. It's important to note before we get started that D does not
support operator overloads as free functions; they must be part of a class or
struct declaration. We'll be turning away from templates for part of this discussion;
some operator overloads are required to be templates, but others can either be
templates or normal member functions. We'll look at the latter group first. For the
official documentation on operator overloading, pay a visit to http://dlang.org/
operatoroverloading.html.

Non-templated operator overloads
There are a handful of operator overloads that are not required to be templates.
These cover the comparison operators, the function call operator, and the assignment
operator, as well as the index, index-assign, and dollar operators. We'll visit them
each in that order.

Comparison overloads – opEquals and opCmp
The equality operators == and != are overloaded with opEquals. The comparison
operators >, <, >= and <= are all overloaded with opCmp. There are some important
considerations to keep in mind when implementing these overloads, but before we
dig into that, let's look at the syntax and usage of each.

http://dlang.org/operatoroverloading.html
http://dlang.org/operatoroverloading.html

Chapter 5

[187]

opEquals
The signature of opEquals is going to differ, depending on whether it's being
implemented for a class or a struct. For classes, it's an override of a default
implementation in Object. It should look like this:

class EqualClass {
 override bool opEquals(Object o) {...}
}

In a class, the very first thing any opEquals implementation ought to do is to test
whether the argument can be cast to the enclosing type, in this case EqualClass:

if(auto ec = cast(EqualClass)o) {
 // Return true if both refer to the same instance.
 if(ec is this) return true;
 // Now test any members here.
}
return false;

There are multiple possible signatures for opEquals on a struct. Some possibilities:

struct EqualStruct {
 bool opEquals(const(EqualStruct) es) {...}
 bool opEquals(ref const(EqualStruct) es) {...}
 bool opEquals(const(EqualStruct) es) const {...};
}

Note that, if the type is intended to be used in an associative array, one of the first
two versions must be used. All of these could be replaced with a template form that
takes no template parameters and uses auto ref on the function parameter:

struct EqualStruct {
 bool opEquals()(auto ref const(EqualStruct) es) const {...}
}

Given two instances a and b, when either a == b or a != b is encountered,
the following sequence is initiated:

•	 If the expression is a != b, it is rewritten as !(a == b).
•	 If both operands are class instances, the expression is rewritten as .object.

opEquals(a, b), which has the following implementation:
bool opEquals(Object a, Object b) {
 if (a is b) return true;
 if (a is null || b is null) return false;

Generic Programming Made Easy

[188]

 if (typeid(a) == typeid(b)) return a.opEquals(b);
 return a.opEquals(b) && b.opEquals(a);
}

•	 For non-class instances, a.opEquals(b) and b.opEquals(a) are both
attempted. If both resolve to the same opEquals implementation, then
a.opEquals(b) is selected; if one is a better match than the other, it is
selected; if one compiles and the other doesn't, it is selected.

•	 No match has been found and an error is emitted.

opCmp
opCmp should be declared like this for a class:

class CmpClass {
 override int opCmp(Object o) {...}
}

This again, is overriding a default implementation in Object. As with opEquals,
a struct can have a number of possible overloads, such as:

struct CmpStruct {
 int opCmp(const(CmpStruct) es) {...}
 int opCmp(ref const(CmpStruct) es) {...}
 int opCmp(ref const(CmpStruct) cs) const {...}
}

Alternatively, the condensed template form:

struct CmpStruct {
 int opCmp()(auto ref const(CmpStruct) es) const {...}
}

opCmp should return a negative value if the ordering of this is lower than that
of the argument, a positive number if it is higher, and 0 if they are equal. Given
objects a and b, when an expression containing one of the comparison operators is
encountered, each is rewritten twice as shown in the following table:

Expression Rewrite 1 Rewrite 2
a < b a.opCmp(b) < 0 b.opCmp(a) > 0

a <= b a.opCmp(b) <= 0 b.opCmp(a) >= 0

a > b a.opCmp(b) > 0 b.opCmp(a) < 0

a >= b a.opCmp(b) >= 0 b.opCmp(a) <= 0

Chapter 5

[189]

Both rewrites are tried and:

•	 If only one compiles, it is selected
•	 If both resolve to the same function, the first rewrite is selected
•	 If they resolve to different functions, the best match is selected
•	 An error is emitted

Considerations
When an object does not have an opEquals, a default implementation is used for
any equality comparisons. For structs, this implementation does a member-wise
comparison on each instance; for classes, it's a simple identity comparison, for
example a is b. Attempting an ordering comparison on any struct instance for
which opCmp is not defined results in a compiler error; it's a runtime error for classes.

Often, the behavior of the default opEquals is exactly what is required for a
struct type. Consider a 2D point object, or an RGB color object. Both are types
where it makes sense for equality to mean member-wise comparison. More
importantly, neither type has any standard concept of ordering. For classes,
an identity comparison is rarely the desired behavior, so opEquals should
usually be implemented for any class that requires comparison.

When ordering is necessary, it's important to ensure that opCmp and opEquals are
consistent. For example if a.opCmp(b) returns 0, then a.opEquals(b) should return
true. If not, this can introduce subtle bugs that can be difficult to track down. Best
practice dictates that, when implementing one, you should implement the other.

Function call overloads
opCall allows a user-defined type to be callable like a function. It can be declared to
have any return type, and any number and combination of parameters. It can also be
static. Here's an example:

struct PrintAction {
 void opCall(string arg1, int arg2) {
 import std.stdio : writefln;
 writefln(`Taking action on "%s" and %s`, arg1, arg2);
 }
}
void main() {
 PrintAction print;
 print("A Number", 42);
}

Generic Programming Made Easy

[190]

Imagine a function template that accepts, and calls in certain circumstances, anything
that is callable: a function pointer, a delegate, or a struct or class with opCall. Such
a template opens up many options in how you design your program; you aren't
restricted to only using delegates, or only using classes that extend an interface.
Note that implementing opCall on a struct disables all struct literals for that type.

Assignment overloads
The assignment operator is overloadable with opAssign. Generally, it can take
any sort of parameter, with one restriction. On classes, the identity assignment is
prohibited. In other words, given a class C, it is illegal to declare an opAssign that
accepts another C or any type that is implicitly convertible to C. This is because
classes have reference semantics, meaning that the reference on the left-hand side
would rebind to the reference on the right-hand side. In other words, in myC =
yourC, the original instance referred to by myC would have its opAssign run, but myC
would no longer refer to it; myC and yourC now refer to the same instance. Structs,
being value types, have no such restriction:

class C {
 private int _x;
 void opAssign(int x) { _x = x; } // OK
 // Error: Identity assignment overload is illegal
 // void opAssign(C c) { _x = c._x; }
}
struct S {
 private int _x;
 void opAssign(int x) { _x = x; } // OK
 void opAssign(S s) { _x = s._x; } // OK
}
void main() {
 S s1, s2;
 s1 = 10;
 s2 = s1;
 writeln(s2);
 auto c = new C;
 c = 10;
 writeln(c._x);
}

In this example, the opAssign declarations all return void, but it's often a good idea
to return this in structs to enable assignment chaining: a = b = c.

Chapter 5

[191]

Index overloads
When a user-defined type needs to behave like an array, there are a handful of
overloads that can be implemented. We'll look at two of them here: opIndex and
opIndexAssign.

opIndex
There are different ways to use opIndex, two of which we'll cover here. First,
we'll consider the form that takes one or more integral parameters, preferably of
type size_t. When there is only one parameter, it corresponds to the index of a
one-dimensional array, while two parameters are the indexes of a two-dimensional
array, and so on. As we saw in Chapter 2, Building a Foundation with D Fundamentals,
D does not have built-in support for multi-dimensional arrays, but opIndex allows
adding multi-dimensional access to user-defined types. The syntax is [m,n] rather
than [m][n].The function can return whatever type is appropriate, preferably by
reference to allow direct modification:

struct Matrix3 {
 double[3][3] values;
 ref double opIndex(size_t i, size_t j) {
 return values[i][j];
 }
}

The second use case of opIndex is to add support for the empty slice operator. Given
a type T that needs to support slicing, the empty slice operator can be overloaded by
implementing opIndex with no arguments. The following example does just that:

struct Numbers(T) {
 T[] _values;
 T[] opIndex() {
 return _values[];
 }
}

This following snippet slices a Numbers instance in order to iterate over it:

auto nums = Numbers!int([10, 20, 30, 40]);
foreach(n; nums[]) {
 writeln(n);
}

Of course, there's more to slicing than just the empty slice. For that, we have the
opSlice function. When we cover it later in the chapter, we'll also see a third use
case for opIndex.

Generic Programming Made Easy

[192]

opIndexAssign
When a user-defined type needs to accept assignment to an index, it can implement
opIndexAssign. This allows assignments of the form t[i] = x. Like opIndex,
multiple indexes are supported, but the first parameter is the assigned value.
Revisiting the Matrix example, here's an implementation that takes two indexes:

double opIndexAssign(double val, size_t i, size_t j) {
 return _values[i][j] = val;
}

With this, it's now possible to assign a value to a matrix such as m[0, 1] = 10.0.
We're going to revisit both opIndex and opIndexAssign later in the chapter when
we discuss opSlice.

opDollar
This is not an index overload, but it's closely related. Recall that inside the array
and slice operators, $ is a shortcut for the .length property of the current array.
User-defined types can override this with opDollar:

struct Numbers(T) {
 T[] _values;
 T[] opIndex() {
 return _values[];
 }
 size_t opDollar() { return _values.length; }
}

Templated operator overloads
With the power of templates, it's possible to configure a single function at compile
time to overload multiple operators, or to take different code paths for different
operators. We're going to cover unary operators, binary operators, the cast operator,
the op-assign operators, and the slice operator.

Unary overloads
In any expression with a unary operator applied to an object a, the expression is
rewritten as a.opUnary!"op"(), where op is one of -, +, ~, *, ++, and --. This takes
no function parameters and can return any value (even void, but that diminishes
its usefulness). It requires one template value parameter, a string representing the
overloaded operator.

Chapter 5

[193]

A common approach to implement this is to use template constraints on the value.
This example does just that to implement everything but the pointer dereference
operator, *:

struct Number(T) {
 T value;
 T opUnary(string op)() if(op != "*") {
 mixin("return " ~ op ~ "value;");
 }
}

Notice the string mixin in the function body. This is used in order to generate the
actual code for the correct expression. Without that, it would be necessary to use
a static if chain to compare op against each supported operator and manually
implement the expression for each. To verify it works as expected:

auto num = Number!int(10);
writeln(-num);
writeln(++num);
writeln(--num);
writeln(+num);
writeln(~num);

As opUnary is a template, all of the template options are at your disposal. Don't like
having a single implementation for all of those operators? No problem. Go ahead
and implement multiple versions of opUnary with different constraints. Or maybe
forgo constraints altogether and use static if inside the body, or use specialization
instead: opUnary(string op : "*")(). There's no one right way to do it. Note
that the compiler uses opUnary for both prefix and postfix increment and decrement
operators. It's not possible, nor is there a need, to distinguish between them inside
opUnary.

Binary overloads
Given two objects in an expression a op b, where op is one of +, -, *, /, %, ^^, &, |,
^, <<, >>, >>>, ~, or in, the expression is rewritten as both a.opBinary!"op"(b)
and b.opBinaryRight!"op"(a), and the best match selected. If both equally match,
there is an error. They can return any value and the function parameter can be any
type. As they are templates, everything that held true in the discussion of opUnary
applies here as well. Consider this partial implementation of a 3D vector:

struct Vector3 {
 float x, y, z;
 Vector3 opBinary(string op)(auto ref const(Vector3) rhs)
 if(op == "+" || op == "-")

Generic Programming Made Easy

[194]

 {
 mixin(`return Vector3(
 x` ~ op ~ `rhs.x,
 y` ~ op ~ `rhs.y,
 z` ~ op ~ `rhs.z);`
);
 }
 Vector3 opBinary(string op : "/")(float scalar) {
 return this * (1.0f/scalar);
 }
 Vector3 opBinary(string op : "*")(float scalar) {
 return Vector3(x*scalar, y*scalar, z*scalar);
 }
 Vector3 opBinaryRight(string op : "*")(float scalar) {
 return this * scalar;
 }
}

The first opBinary handles both addition and subtraction with Vector3. For this
case, it doesn't make sense to implement opBinaryRight. That would actually
cause both rewrites to match equally and lead to a compiler error. The body is
implemented using a WYSIWYG string in a simple string mixin. The second
and third implementations handle division and multiplication by scalars. A single
implementation could have handled both operators using a static if block, but
that is more verbose. Finally, opBinaryRight is implemented only for the scalar
multiplication. It's reasonable to accept 2.0f * vec to be the same as vec * 2.0f.
The same does not hold for division. The following verifies that all works as expected:

auto vec1 = Vector3(1.0f, 20f, 3.0f);
auto vec2 = Vector3(4.0f, 2.0f, 5.0f);
writeln(vec1 + vec2);
writeln(vec1 - vec2);
writeln(vec2 * 2.0f);
writeln(2.0f * vec2);
writeln(vec1 / 2.0f);

Chapter 5

[195]

Cast overloads
Given a cast of any user-defined type a to any type T, the compiler rewrites the
expression to a.opCast!(T). Additionally, given any circumstance where a user-
defined type can be evaluated to bool, such as if(a) or if(!a), the compiler will
attempt to cast the type to bool with a.opCast!(bool) and !a.opCast!(bool).
Implementations of opCast should take no function parameters and return a value
of a type that matches that of the template parameter. The following is a simple
Number type that supports casting to bool and any numeric type:

struct Number(T) {
 import std.traits : isNumeric;
 T value;
 bool opCast(C)() if(is(C == bool)) const {
 return value != 0;
 }
 C opCast(C)() if(isNumeric!C) const {
 return cast(C)value;
 }
}

The following snippet shows opCast in action:

auto num1 = Number!int(10);
Number!int num2;
writeln(cast(bool)num1);
writeln(cast(bool)num2);
writeln(cast(byte)num1);

Operator assignment overloads
Given two objects in an expression a op= b, where op is one of +, -, *, /, %, ^^, &, |,
^, <<, >>, >>>, ~, or in, the expression is rewritten as a.opOpAssign!"op"(b). As an
example, let's add support for +=, -=, *=, and /= to the previous Vector3:

struct Vector3 {
 float x, y, z;
 ref Vector3 opOpAssign(string op)(auto ref Vector3 rhs)
 if(op == "+" || op == "-")
 {
 mixin("x" ~ op ~ "= rhs.x;
 y" ~ op ~ "= rhs.y;
 z" ~ op ~ "= rhs.z;");
 return this;
 }
}

Generic Programming Made Easy

[196]

opAssign versus opOpAssign
That these two operator overloads have such similar names makes
it easy to mix them up. More than once I have unintentionally
implemented opAssign when I really wanted opOpAssign. I
even did it while implementing the Vector3 example. When your
opOpAssign isn't working properly, the first thing to check is that
you didn't type opAssign by mistake.

Slice operator overloads
Overloading the slice operator in D requires two steps: add an opSlice
implementation, and a special version of opIndex. Before describing how the
functions should be implemented, it will help to show how they are used. The
following lines show both a one-dimensional slice and a two-dimensional slice:

auto slice1 = oneD[1 .. 3];
auto slice2 = twoD[0 .. 2, 2 .. 5];

The compiler will rewrite them to look like this:

oneD.opIndex(opSlice!0(1, 3));
twoD.opIndex(opSlice!0(0, 2), opSlice!1(2, 5));

opSlice must be a template. The single-template parameter is a value representing
the dimension that is currently being sliced. The two function parameters represent
the boundaries of the slice. They can return anything the implementation requires in
order to perform the slice.

opIndex is a normal function as before and should be declared to accept one
parameter per supported dimension. What's different now is that the type of the
parameter no longer needs to be an integral; it can be any type required to produce
a slice. Additionally, the return value should be whatever type is produced from
slicing this type.

Let's look at a one-dimensional array wrapper as a simple example:

struct MyArray(T) {
 struct SliceInfo {
 size_t start, end;
 }
 private T[] _vals;
 T opIndex(size_t i) {
 return _vals[i];
 }

Chapter 5

[197]

 T[] opIndex(SliceInfo info) {
 return _vals[info.start .. info.end];
 }
 SliceInfo opSlice(size_t dim)(size_t start, size_t end) {
 return SliceInfo(start, end);
 }
}

The internally declared SliceInfo is the key to making the slice work. opSlice
simply returns an instance initialized with the beginning and end indexes it's given.
The slice overload of opIndex then takes that data and produces a slice:

auto ma = MyArray!int([10, 20, 30, 40, 50]);
writeln(ma[1 .. 3]);

This prints [20, 30] as expected. Support for multidimensional arrays works
the same way, just with extra dimensions. Here's a custom two-dimensional array
to demonstrate:

struct My2DArray(T) {
 struct SliceInfo {
 size_t start, end;
 }
 private T[][] _vals;
 this(T[] dim1, T[] dim2) {
 _vals ~= dim1;
 _vals ~= dim2;
 }
 T opIndex(size_t i, size_t j) {
 return _vals[i][j];
 }
 auto opIndex(SliceInfo info1, SliceInfo info2) {
 return My2DArray(
 _vals[0][info1.start .. info1.end],
 _vals[1][info2.start .. info2.end]
);
 }
 SliceInfo opSlice(size_t dim)(size_t start, size_t end) {
 return SliceInfo(start, end);
 }
}

Generic Programming Made Easy

[198]

Notice that the template parameter in opSlice is never used at all; it's just not
needed in this simple case. Also notice that opIndex is defined to return a My2DArray
instance containing the sliced array data. That is likely the best return type to use in
this specific case (after all, slicing T[] returns T[]), but there is enough flexibility to
tailor the behavior for specific circumstances. We could just as easily implement it
like this:

auto opIndex(SliceInfo info1, SliceInfo info2) {
 return _vals[0][info1.start .. info1.end] ~
 _vals[1][info2.start .. info2.end];
}

This concatenates the two slices into a single slice, which it then returns. It could also
return a range (which we will get to in the next chapter), or any other type that we
need a slice to represent.

Other overloads
The aforementioned overloads are called every time a specific symbol in the source
code is encountered, such as * or cast or (). This subsection covers overloads that
are called in more narrow circumstances.

opDispatch
Given a variable t of type T and a call to a member function t.func, the compiler
will report an error if T does not implement func. The templated opDispatch acts
as a catch-all when an attempt is made to access any member that doesn't exist on a
type. The name of the member is passed as a template value parameter in a process
called forwarding:

struct NoMembers {
 void opDispatch(string s)() {
 import std.stdio : writeln;
 writeln("Attempted to access member ", s);
 }
}
void main() {
 NoMembers nm;
 nm.doSomething();
 nm.someProperty;
}

Chapter 5

[199]

This gives the following output:

Attempted to access member doSomething

Attempted to access member someProperty

With a good mix of D's compile-time features, some creative things can be done with
this. Take a look at the HodgePodge type:

struct HodgePodge {
 void printTwoInts(int a, int b) {
 writefln("I like the ints %s and %s!", a , b);
 }
 int addThreeInts(int x, int y, int z) {
 return x + y + z;
 }
}

The following snippet has an opDispatch implementation that can take any number
of arguments and return any type. It uses compile-time reflection to determine
whether the member function in the template argument exists in HodgePodge,
ensures the number of function arguments match, and calls the function if they do:

struct Dispatcher {
 private HodgePodge _podge;
 auto opDispatch(string s, Args...)(Args args) {
 static if(__traits(hasMember, HodgePodge, s)) {
 import std.traits : ParameterTypeTuple;
 alias params =
 ParameterTypeTuple!(mixin("HodgePodge." ~ s));
 static if(params.length == args.length)
 mixin("return _podge." ~ s ~ "(args);");
 }
 }
}

auto allows for any type to be returned. The first template parameter s is bound
to the missing member name. If the function call includes arguments, they will be
passed after s. In this case, a tuple parameter is declared to catch all of them. In the
body, static if and __traits are used to determine whether HodgePodge has
a member named s. If so, ParameterTypeTuple from std.traits is used to get a
tuple containing the types of all of the function parameters. A string mixin generates
HodgePodge.memberName for the template instantiation. It's not the types we're
interested in, but the number of them, so it checks whether the number of function
arguments matches the number given to opDispatch. If so, a string mixin generates
both the function call and return.

Generic Programming Made Easy

[200]

Note that this implementation doesn't support member variables or variadic member
functions. Trying to access any of these through this implementation of opDispatch
leads to an error message saying that Dispatcher doesn't have that missing member.
Fixing that is left as an exercise for the reader.

opApply
In order to directly iterate a user-defined type in a foreach loop, it must either
implement the opApply function or a range interface (something we'll see in the next
chapter). opApply must be declared to return int and to take a delegate as its only
parameter. The delegate should also return int, but can have multiple parameters
of any type. The delegate is provided to the function from the runtime. The
implementation of opApply should do whatever internal iteration it needs, call the
delegate at each step of iteration, and if the delegate returns non-zero, immediately
return that value. If the internal iteration runs its course, the function should return 0:

struct IterateMe {
 enum len = 10;
 int[len] values;
 void initialize() {
 foreach(i; 0..len) {
 values[i] = i;
 }
 }
 int opApply(int delegate(ref int) dg) {
 int result;
 foreach(ref v; values) {
 result = dg(v);
 if(result)
 break;
 }
 return result;
 }
}
void main() {
 IterateMe im;
 im.initialize();
 foreach(i; im)
 writeln(i);
}

Chapter 5

[201]

Here's an example using multiple parameters with the delegate:

struct AA {
 int[string] aa;
 void initialize() {
 aa = ["One": 1, "Two":2, "Three": 3];
 }
 int opApply(int delegate(string, ref int) dg) {
 int result;
 foreach(key, val; aa) {
 result = dg(key, ref val);
 if(result)
 break;
 }
 return result;
 }
}
void main() {
 import std.stdio : writefln;
 AA aa;
 aa.initialize();
 foreach(k, v; aa)
 writefln("%s: %s", k, v);
}

To iterate the type with foreach_reverse, implement opApplyReverse in the same
manner, but iterate over the internal array in the opposite direction.

toHash
toHash isn't an operator overload, but it's a function that any user-defined type can
implement and it's tightly connected with opEquals. It's called on any type that is
used as an associative array key, takes no parameters, and must return size_t.
The signature for classes is:

override size_t toHash() @trusted nothrow;

And for structs or unions:

size_t toHash() const @safe pure nothrow;

Generic Programming Made Easy

[202]

The only requirement is that toHash and opEquals be consistent. Given objects a
and b, if calling opEquals on them returns true, then their toHash functions must
return the same value. If this requirement is not met, the object will not behave
properly as an associative array key. All objects, even structs and unions, have a
default toHash that is used when a custom version is not implemented; however,
when overloading opEquals, it's best to also implement a custom toHash to ensure
that they remain consistent.

MovieMan – the database
MovieMan does not use any database software, but it still needs to store the movie
data the user enters. Ideally, the data would be stored on disk, preferably in a
platform-specific, per-user, application data directory, but the goal behind MovieMan
is to demonstrate D language features, not to develop a fully featured program. To
keep things simple, the book implementation will keep the movie data in memory.
A good exercise for the reader after finishing the book could be to implement the
saving and loading of the movie data to and from disk.

This section lays out the database API. It won't be fully implemented at this point;
we'll complete the implementation later with features from the next two chapters.
Using the skeleton API we develop here, we'll also flesh out the menu classes we
implemented back in Chapter 3, Programming Objects the D Way.

db.d
$MOVIEMAN/source/movieman/db.d is the home of the Movie type and the database,
a simple array wrapped by a custom type. The following two lines go at the top of
the file:

module movieman.db;
import std.stdio;

Next is the declaration of the Movie type. It's a simple POD (Plain Old Data)
type with no member functions. Later, we'll add an opCmp implementation to
use for sorting:

struct Movie {
 string title;
 uint caseNumber;
 uint pageNumber;
}

Chapter 5

[203]

Before we see the DB API, let's add the following to the bottom of the file:

private:
 DBTable!Movie _movies;

 struct DBTable(T) {
 T[] _items;
 }

DBTable is a template, though in the book it's only ever going to be instantiated with
one type. As an exercise, you might expand the program to manage audio CDs or
books, in which case the templated type will come in handy. For now, we're going to
add only one member function to DBTable: an overload of the append operator that
we'll use to add new movies to the database. Later we'll add logic to this function to
indicate the array should be sorted:

void opOpAssign(string op : "~")(auto ref T t) {
 _items ~= t;
}

The last function we'll implement fully in this module is addMovie. Go back up
and add the following below the declaration of Movie but above the private:,
as it needs to be a public function:

void addMovie(Movie movie) {
 _movies ~= movie;
 writefln("\nMovie '%s' added to the database.", movie.title);
}

The deleteMovies function will eventually remove one or more movies from the
database, but for the moment all it does is pretend:

void deleteMovies(Movie[] movies) {
 writeln();
 foreach(ref movie; movies)
 writefln("Movie '%s' deleted from the database.",
 movie.title);
}

movieExists will be used to determine whether a movie has already been added
to the database. It does a simple comparison of the titles, as it's possible for multiple
movies to exist on the same page in the same case. It's also possible for more than
one movie to have the same title, but that will be accounted for in the menu handler.
For now, this function always returns false:

bool movieExists(string title) {
 return false;
}

Generic Programming Made Easy

[204]

Finally, there are four versions of getMovies: one to get all movies, one to fetch
movies by title, one to fetch by case, and one to fetch by case and page number.
For now, each simply returns the entire movie array:

auto getMovies() {
 return _movies._items;
}
auto getMovies(string title) {
 return _movies._items;
}
auto getMovies(uint caseNumber) {
 return _movies._items;
}
auto getMovies(uint caseNumber, uint pageNumber = 0) {
 return _movies._items;
}

Back to the menus
The menu classes can be updated to use the new database API, but before doing
so we're going to need a utility function to print a movie to the screen. Idiomatic
D encourages the use of generic functions that can be used with multiple types.
From that perspective, something like this might be useful:

void printObject(T)(T obj) {
 import std.uni : asCapitalized;
 foreach(mem; __traits(allMembers, T)) {
 writefln("%s: %s", mem.asCapitalized, __traits(getMember, obj,
 mem));
 }
}

This uses compile time reflection to get a tuple of all of an object's member names
and values, printing each pair on its own line to standard output. Note that it uses
the function std.uni.asCaptialized to capitalize the member name without
allocating any memory. That's an aesthetic touch, but doesn't really look that good
with the Movie type, given that caseNumber is transformed into Casenumber. We
can't change the name to case, since that's a keyword, but something such as folder
could work. Change pageNumber to page and you're good to go. Or, you could forgo
genericity in this case and simply do this:

import movieman.db;
void printMovie(Movie movie) {
 writeln("Title: ", movie.title);
 writeln("Case: ", movie.caseNumber);

Chapter 5

[205]

 writeln("Page: ", movie.pageNumber);
}

With this in place, we can go back to $MOVIEMAN/source/movieman/menu/main.d
and add the highlighted lines to the onAddMovie member function of MainMenu:

void onAddMovie() {
 import movieman.db : Movie, addMovie;
 import movieman.io;
 import std.stdio : writeln;

 auto title = readTitle();
 if(!validateTitle(title))
 return;

 auto caseNumber = readNumber("case");
 if(!validateNumber(caseNumber, "case"))
 return;

 auto pageNumber = readNumber("page");
 if(!validateNumber(pageNumber, "page"))
 return;

 auto movie = Movie(title, caseNumber, pageNumber);
 printMovie(movie);

 if(readChoice("add this movie to the database"))
 addMovie(movie);
 else
 writeln("\nDiscarding new movie.");
}

All of the highlighted lines are new, but the call to addMovie replaces the call to
writeln that was used as a placeholder. Next, open display.d from the same
folder. Add the following highlighted line to the top of the page:

import movieman.io,
 movieman.db,
 movieman.menu.menu;

Then go down to the handleSelection member function. We're only going to make
one modification so that you can display any movie data you enter. We'll finalize the
implementation when we come back to it later in the book. Replace the code in the
all case of the switch with the highlighted lines:

override void handleSelection(uint selection) {
 final switch(cast(Options)selection) with(Options) {
 case byTitle:

Generic Programming Made Easy

[206]

 auto title = readTitle();
 writeln("Displaying ", title);
 break;
 case allOnPage:
 auto caseNumber = readNumber("case");
 auto pageNumber = readNumber("page");
 writefln("Displaying all on page %s of case %s", pageNumber,
 caseNumber);
 break;
 case allInCase:
 auto caseNumber = readNumber("case");
 writeln("Displaying all in case ", caseNumber);
 break;
 case all:
 auto movies = getMovies();
 foreach(movie; movies) {
 printMovie(movie);
 if(!readChoice("show the next movie"))
 break;
 }
 break;
 case exit:
 exitMenu();
 break;
 }
}

Now, when you run the program, you can add movie data, then select 2. Display
Movie(s) from the main menu, and finally choose 4. Display All Movies from the
display menu to see the data you've entered. In Chapter 7, Composing Functional
Pipelines with Algorithms and Ranges, we'll finish off this version of MovieMan.

Summary
This has been a heavy chapter. We've covered the basics of templates in D, such
as how to declare them, and have seen the different types of templates and
template parameters available. We then got a little more advanced with template
specializations, template constraints, template mixins, and variadic templates with
tuples. After that we saw how to implement operator overloading for user-defined
types and closed out with some additions to MovieMan.

In the next chapter, we're going to begin the final stretch of the language feature
discussion. We'll dig into ranges—what they are, how to create them, and the basics
of using them—in preparation for putting them to good use with functional pipelines
in the subsequent chapter.

[207]

Understanding Ranges
Since they were first introduced, ranges have become a pervasive part of D. It's
possible to write D code and never need to create any custom ranges or algorithms
yourself, but it helps tremendously to understand what they are, where they are used
in Phobos, and how to get from a range to an array or another data structure. If you
intend to use Phobos, you're going to run into them eventually. Unfortunately, some
new D users have a difficult time understanding and using ranges.

The aim of this chapter and the next is to present ranges and functional style in D
from the ground up, so the you can see they aren't some arcane secret understood
only by a chosen few. Then, you can start writing idiomatic D early on in your
journey. In this chapter, we lay the foundation with the basics of constructing and
using ranges in two sections:

•	 Ranges defined
•	 Ranges in use

Ranges defined
In this section, we're going to explore what ranges are and examine concrete
definitions of the different types of ranges recognized by Phobos. First, we'll dig into
an example of the sort of problem ranges are intended to solve and, in the process,
develop our own solution. This will help form an understanding of ranges from the
ground up.

Understanding Ranges

[208]

The problem
As part of an ongoing project, you've been asked to create a utility function,
filterArray, that takes an array of any type and produces a new array containing all
of the elements from the source array that satisfy a Boolean condition. The algorithm
should be nondestructive, meaning it should not modify the source array at all. For
example, given an array of integers as the input, filterArray could be used to
produce a new array containing all of the even numbers from the source array.

It should be immediately obvious that a function template can handle the requirement
to support any type. With a bit of thought and experimentation, a solution can soon
be found to enable support for different Boolean expressions, perhaps a string mixin,
a delegate, or both. After browsing the Phobos documentation for a bit, you come
across a template, std.functional.unaryFun, that looks like it will help with the
implementation. Its declaration is as follows:

template unaryFun(alias fun, string parmName = "a");

The alias fun parameter can be a string representing an expression, or any callable
type that accepts one argument. If it is the former, the name of the variable inside the
expression should be the value of parmName, which is "a" by default. The following
snippet demonstrates this:

int num = 10;
assert(unaryFun!("(a & 1) == 0")(num));
assert(unaryFun!("x > 0", "x")(num));

If fun is a callable type, then unaryFun is documented to alias itself to fun and the
parmName parameter is ignored. The following snippet calls unaryFun first with a
struct that implements opCall, then calls it again with a delegate literal:

struct IsEven {
 bool opCall(int x) {
 return (x & 1) == 0;
 }
}
IsEven isEven;
assert(unaryFun!isEven(num));
assert(unaryFun!(x => x > 0)(num));

With this, you have everything you need to implement the utility function to spec:

import std.functional;
T[] filterArray(alias predicate, T)(T[] source)
 if(is(typeof(unaryFun!predicate(source[0])))
{

Chapter 6

[209]

 T[] sink;
 foreach(t; source) {
 if(unaryFun!predicate(t))
 sink ~= t;
 }
 return sink;
}
unittest {
 auto ints = [1, 2, 3, 4, 5, 6, 7];
 auto even = ints.filterArray!(x => (x & 1) == 0)();
 assert(even == [2, 4, 6]);
}

The unittest verifies that the function works as expected. As a standalone
implementation, it gets the job done and is quite likely good enough. But what if,
later on down the road, someone decides to create more functions that perform
specific operations on arrays in the same manner? The natural outcome of that
is to use the output of one operation as the input for another, creating a chain of
function calls to transform the original data.

The most obvious problem is that any such function that cannot perform its
operation in place must allocate at least once every time it's called. This means that
chain operations on a single array will end up allocating memory multiple times.
This is not the sort of habit you want to get into in any language, especially in
performance-critical code, but in D you have to take the GC into account. Any given
allocation could trigger a garbage collection cycle, so it's a good idea to program to
the GC; don't be afraid of allocating, but do so only when necessary and keep it out
of your inner loops.

In filterArray, the naïve appending can be improved upon, but the allocation
can't be eliminated unless a second parameter is added to act as the sink. This allows
the allocation strategy to be decided at the call site rather than by the function, but
it leads to another problem. If all of the operations in a chain require a sink and the
sink for one operation becomes the source for the next, then multiple arrays must be
declared to act as sinks. This can quickly become unwieldy.

Another potential issue is that filterArray is eager, meaning that every time the
function is called, the filtering takes place immediately. If all of the functions in a
chain are eager, it becomes quite difficult to get around the need for allocations or
multiple sinks. The alternative, lazy functions, do not perform their work at the time
they are called, but rather at some future point. Not only does this make it possible
to put off the work until the result is actually needed (if at all), it also opens the door
to reducing the amount of copying or allocating needed by operations in the chain.
Everything could happen in one step at the end.

Understanding Ranges

[210]

Finally, why should each operation be limited to arrays? Often, we want to execute
an algorithm on the elements of a list, a set, or some other container, so why not
support any collection of elements? By making each operation generic enough to
work with any type of container, it's possible to build a library of reusable algorithms
without the need to implement each algorithm for each type of container.

The solution
Now we're going to implement a more generic version of filterArray, called
filter, that can work with any container type. It needs to avoid allocation and
should also be lazy. To facilitate this, the function should work with a well-defined
interface that abstracts the container away from the algorithm. By doing so, it's
possible to implement multiple algorithms that understand the same interface. It
also takes the decision on whether or not to allocate memory completely out of the
algorithms. The interface of the abstraction need not be an actual interface type.
Template constraints can be used to verify that a given type meets the requirements.

You might have heard of duck typing. It originates from the old
saying, If it looks like a duck, swims like a duck, and quacks like a duck,
then it's probably a duck. The concept is that if a given object instance
has the interface of a given type, then it's probably an instance of
that type. D's template constraints and compile-time capabilities
easily allow for duck typing. We've already seen some of this in
Chapter 5, Generic Programming Made Easy. We're going to see more
here, as it's a key component of range-based programming in D.

The interface
In looking for inspiration to define the new interface, it's tempting to turn to other
languages such as Java and C++. On the one hand, we want to iterate the container
elements, which brings to mind the iterator implementations in other languages.
However, we also want to do a bit more than that, as demonstrated by the following
chain of function calls:

container.getType.algorithm1.algorithm2.algorithm3.toContainer();

Conceptually, the instance returned by getType will be consumed by algorithm1,
meaning that, inside the function, it will be iterated to the point where it can produce
no more elements. But then, algorithm1 should return an instance of the same type,
which can iterate over the same container, and which will in turn be consumed by
algorithm2. The process repeats for algorithm3. This implies that instances of the
new type should be able to be instantiated independent of the container they represent.

Chapter 6

[211]

Moreover, given that D supports slicing, the role of getType could easily be played
by opSlice. Iteration need not always begin with the first element of a container
and end with the last; any range of elements should be supported. In fact, there's
really no reason for an actual container instance to exist at all in some cases. Imagine
a random number generator. We should be able to plug one into the preceding
function chain just by eliminating the container and replacing getType with the
generator instance. As long as it conforms to the interface we define, it doesn't matter
that there is no concrete container instance backing it.

The short version of it is, we don't want to think solely in terms of iteration, as
it's only a part of the problem we're trying to solve. We want a type that not only
supports iteration, of either an actual container or a conceptual one, but one that
also can be instantiated independently of any container, knows both its beginning
and ending boundaries, and, in order to allow for lazy algorithms, can be used to
generate new instances that know how to iterate over the same elements.

Considering these requirements, Iterator isn't a good fit as a name for the
new type. Rather than naming it for what it does or how it's used, it seems more
appropriate to name it for what it represents. There's more than one possible
name that fits, but we'll go with Range (as in, a range of elements). That's it for the
requirements and the type name. Now, let's move on to the API.

For any algorithm that needs to sequentially iterate a range of elements from
beginning to end, three basic primitives are required:

•	 There must be a way to determine whether or not any elements are available
•	 There must be a means to access the next element in the sequence
•	 There must be a way to advance the sequence so that another element can be

made ready

Based on these requirements, there are several ways to approach naming the three
primitives, but we'll just take a shortcut and use the same names used in D. The first
primitive will be called empty and can be implemented either as a member function
that returns bool or as a bool member variable. The second primitive will be called
front, which again could be a member function or variable and which returns T,
the element type of the range. The third primitive can only be a member function
and will be called popFront, as conceptually it is removing the current front element
from the sequence to ready the next element.

Understanding Ranges

[212]

A range for arrays
Wrapping an array in the Range interface is quite easy. It looks like this:

auto range(T)(T[] array) {
 struct ArrayRange(T) {
 private T[] _array;
 bool empty() {
 return _array.length == 0;
 }
 ref T front() {
 return _array[0];
 }
 void popFront() {
 _array = _array[1 .. $];
 }
 }
 return ArrayRange!T(array);
}

By implementing the iterator as a struct, there's no need to allocate GC memory for
a new instance. The only member is a slice of the source array, which again avoids
allocation. Look at the implementation of popFront. Rather than requiring a separate
variable to track the current array index, it slices the first element out of _array so
that the next element is always at index 0, consequently shortening the length of the
slice by one so that, after every item has been consumed, _array.length will be 0.
This makes the implementation of both empty and front dead simple.

ArrayRange can be a Voldemort type because there is no need to declare its type in
any algorithm it's passed to. As long as the algorithms are implemented as templates,
the compiler can infer everything that needs to be known for them to work. Moreover,
thanks to UFCS, it's possible to call this function as if it were an array property. Given
an array called myArray, the following is valid:

auto range = myArray.range;

Next, we need a template to go in the other direction. This needs to allocate a new
array, walk the iterator, and store the result of each call to front in the new array.
Its implementation is as follows:

T[] array(T, R)(R range) {
 T[] ret;
 while(!range.empty) {
 ret ~= range.front;
 range.popFront();
 }
 return ret;
}

Chapter 6

[213]

This can be called after any operation that produces any Range in order to get an
array. If the range comes at the end of one or more lazy operations, this will cause
all of them to execute simply by the call to popFront (we'll see how shortly). In that
case, no allocations happen except as needed in this function when elements are
appended to ret. Again, the appending strategy used here is naïve, so there's room
for improvement in order to reduce the potential number of allocations. Now it's
time to implement an algorithm to make use of our new range interface.

The implementation of filter
The filter function isn't going to do any filtering at all. If that sounds
counterintuitive, recall that we want the function to be lazy; all of the work should
be delayed until it is actually needed. The way to accomplish that is to wrap the
input range in a custom range that has an internal implementation of the filtering
algorithm. We'll call this wrapper FilteredRange. It will be a Voldemort type,
which is local to the filter function. Before seeing the entire implementation, it will
help to examine it in pieces as there's a bit more to see here than with ArrayRange.

FilteredRange has only one member:

private R _source;

R is the type of the range that is passed to filter. The empty and front functions
simply delegate to the source range, so we'll look at popFront next:

void popFront() {
 _source.popFront();
 skipNext();
}

This will always pop the front element from the source range before running the
filtering logic, which is implemented in the private helper function skipNext:

private void skipNext() {
 while(!_source.empty && !unaryFun!predicate(_source.front))
 _source.popFront();
}

This function tests the result of _source.front against the predicate. If it doesn't
match, the loop moves on to the next element, repeating the process until either a
match is found or the source range is empty. So, imagine you have an array arr of
the values [1,2,3,4]. Given what we've implemented so far, what would be the
result of the following chain?:

arr.range.filter!(x => (x & 1) == 0).front;

Understanding Ranges

[214]

As mentioned previously, front delegates to _source.front. In this case, the source
range is an instance of ArrayRange; its front returns _source[0]. Since popFront
was never called at any point, the first value in the array was never tested against the
predicate. Therefore, the return value is 1, a value which doesn't match the predicate.
The first value returned by front should be 2, since it's the first even number in
the array.

In order to make this behave as expected, FilteredRange needs to ensure the
wrapped range is in a state such that either the first call to front will properly return
a filtered value, or empty will return true, meaning there are no values in the source
range that match the predicate. This is best done in the constructor:

this(R source) {
 _source = source;
 skipNext();
}

Calling skipNext in the constructor ensures that the first element of the source range
is tested against the predicate before front is ever called; however, it does mean that
our filter implementation isn't completely lazy. In an extreme case, when_source
contains no values that match the predicate; it's actually going to be completely eager.
The source elements will be consumed as soon as the range is instantiated. Not all
algorithms will lend themselves to 100 percent laziness. No matter. What we have
here is lazy enough. Wrapped up inside the filter function, the whole thing looks
like this:

import std.functional;
auto filter(alias predicate, R)(R source)
 if(is(typeof(unaryFun!predicate))) {
 struct FilteredRange {
 private R _source;
 this(R source) {
 _source = source;
 skipNext();
 }
 bool empty() { return _source.empty; }
 auto ref front() { return _source.front; }
 void popFront() {
 _source.popFront();
 skipNext();
 }
 private void skipNext() {
 while(!_source.empty &&
 !unaryFun!predicate(_source.front))
 _source.popFront();

Chapter 6

[215]

 }
 }
 return FilteredRange(source);
}

It might be tempting to take the filtering logic out of the skipNext method and add
it to front, which is another way to guarantee that it's performed on every element.
Then no work would need to be done in the constructor and popFront would
simply become a wrapper for _source.popFront. The problem with that approach
is that front can potentially be called multiple times without calling popFront in
between, meaning the predicate will be tested on each call. That's unnecessary work.
As a general rule, any work that needs to be done inside a range to prepare a front
element should happen as a result of calling popFront, leaving front to simply
focus on returning the current element.

The test
With the implementation complete, it's time to put it through its paces. Here are a
few test cases in a unittest block:

unittest {
 auto arr = [10, 13, 300, 42, 121, 20, 33, 45, 50, 109, 18];
 auto result = arr.range
 .filter!(x => x < 100)
 .filter!(x => (x & 1) == 0)
 .array!int();
 assert(result == [10,42,20,50,18]);

 arr = [1,2,3,4,5,6];
 result = arr.range.filter!(x => (x & 1) == 0).array!int;
 assert(result == [2, 4, 6]);

 arr = [1, 3, 5, 7];
 auto r = arr.range.filter!(x => (x & 1) == 0);
 assert(r.empty);

 arr = [2,4,6,8];
 result = arr.range.filter!(x => (x & 1) == 0).array!int;
 assert(result == arr);
}

Assuming all of this has been saved in a file called filter.d, the following will
compile it for unit testing:

dmd -unittest -main filter

Understanding Ranges

[216]

That should result in an executable called filter that, when executed, should print
nothing to the screen, indicating a successful test run. Notice the test that calls empty
directly on the returned range. Sometimes, we might not need to convert a range
to a container at the end of the chain. For example, to print the results, it's quite
reasonable to iterate a range directly. Why allocate when it isn't necessary?

The real ranges
The purpose of the preceding exercise was to get a feel of the motivation behind D
ranges. We didn't develop a concrete type called Range, just an interface. D does
the same, with a small set of interfaces defining ranges for different purposes. The
interface we developed exactly corresponds to the basic kind of D range, called an
input range, one of two foundational range interfaces in D (the upshot of
that is that both ArrayRange and FilteredRange are valid input ranges, though,
as we'll eventually see, there's no reason to use either outside of this chapter). There
are also certain optional properties that ranges might have that, when present, some
algorithms might take advantage of. We'll take a brief look at the range interfaces
now, then see more details regarding their usage in the next section.

Input ranges
This foundational range is defined to be anything from which data can be sequentially
read via the three primitives empty, front, and popFront. The first two should be
treated as properties, meaning they can be variables or functions. This is important to
keep in mind when implementing any generic range-based algorithm yourself; calls
to these two primitives should be made without parentheses. The three higher-order
range interfaces, we'll see shortly, build upon the input range interface.

To reinforce a point made earlier, one general rule to live by when crafting input
ranges is that consecutive calls to front should return the same value until popFront
is called; popFront prepares an element to be returned and front returns it. Breaking
this rule can lead to unexpected consequences when working with range-based
algorithms, or even foreach.

Input ranges are somewhat special in that they are recognized by the compiler.
Recall the coverage of opApply in the previous chapter; it's what enables iteration of
a custom type with a foreach loop. An alternative is to provide an implementation
of the input range primitives. When the compiler encounters a foreach loop, it first
checks to see if the iterated instance is of a type that implements opApply. If not,
it then checks for the input range interface and, if found, rewrites the loop.
For example, given a range someRange:

foreach(e; someRange) { ... }

Chapter 6

[217]

This is rewritten to something like this:

for(auto __r = range; !__r.empty; __r.popFront()) {
 auto e = __r.front;
 ...
}

This has implications. To demonstrate, let's use the ArrayRange from earlier:

auto ar = [1, 2, 3, 4, 5].range;
foreach(n; ar) {
 writeln(n);
}
if(!ar.empty) writeln(ar.front);

The last line prints 1. If you're surprised, look again at the for loop that the compiler
generates. ArrayRange is a struct, so when it's assigned to __r, a copy is generated.
The slices inside, ar and __r, point to the same memory, but their .ptr and .length
properties are distinct. As the length of the __r slice decreases, the length of the ar
slice remains the same. This behavior was covered in the discussion of slices back
in Chapter 2, Building a Foundation with D Fundamentals, and again when we talked
about postblit constructors in Chapter 3, Programming Objects the D Way, but it's
easy to forget.

When implementing generic algorithms that loop over a source range, it's not a
good idea to rely on this behavior. If the range is a class instead of struct, it will be
consumed by the loop, as classes are references types. Furthermore, there are no
guarantees about the internal implementation of a range. There could be struct-based
ranges that are actually consumed in a foreach loop. Generic functions should
always assume this is the case.

To test if a given range type R is an input range:

import std.range : isInputRange;
static assert(isInputRange!R);

There are no special requirements on the return value of the front primitive.
Elements can be returned by value or by reference, they can be qualified or
unqualified, they can be inferred via auto, and so on. Any qualifiers, storage classes,
or attributes that can be applied to functions and their return values can be used with
any range function, though it might not always make sense to do so.

Understanding Ranges

[218]

Forward ranges
The most basic of the higher-order ranges is the forward range. This is defined as
an input range that allows its current point of iteration to be saved via a primitive
appropriately named save. Effectively, the implementation should return a copy of the
current state of the range. For ranges that are struct types, it could be as simple as:

auto save() { return this; }

For ranges that are class types, it requires allocating a new instance:

auto save() { return new MyForwardRange(this); }

Forward ranges are useful for implementing algorithms that require lookahead.
For example, consider the case of searching a range for a pair of adjacent elements
that pass an equality test:

auto saved = r.save;
if(!saved.empty) {
 for(saved.popFront(); !saved.empty;
 r.popFront(), saved.popFront()) {
 if(r.front == saved.front)
 return r;
 }
}
return saved;

Because this uses a for loop and not a foreach loop, the ranges are iterated directly
and are going to be consumed. Before the loop begins, a copy of the current state
of the range is made by calling r.save. Then, iteration begins over both the copy
and the original. The original range is positioned as the first element, and the call
to saved.popFront in the beginning of the loop statement positions the saved
range as the second element. As the ranges are iterated in unison, the comparison is
always made on adjacent elements. If a match is found, r is returned, meaning that
the returned range is positioned at the first element of a matching pair. If no match
is found, saved is returned—since it's one element ahead of r, it will have been
consumed completely and its empty property will be true.

The preceding example is derived from a more generic implementation in Phobos,
std.range.findAdjacent. It can use any binary (two-argument) Boolean condition
to test adjacent elements and is constrained to only accept forward ranges.

Chapter 6

[219]

It's important to understand that calling save usually does not mean a deep copy, but
it sometimes can. If we were to add a save function to the ArrayRange from earlier,
we could simply return this; the array elements would not be copied. A class-based
range, on the other hand, will usually perform a deep copy because it's a reference
type. When implementing generic functions, you should never make the assumption
that the range does not require a deep copy. For example, let's assume a range r:

auto saved = r; // INCORRECT!!
auto saved = r.save; // Correct.

If r is a class, the first line is almost certainly going to result in incorrect behavior.

To test if a given range R is a forward range:

import std.range : isForwardRange;
static assert(isForwardRange!R);

Bidirectional ranges
A bidirectional range is a forward range that includes the primitives back and
popBack, allowing a range to be sequentially iterated in reverse. The former should
be a property, the latter a function. Given a bidirectional range r, the following forms
of iteration are possible:

foreach_reverse(e; r) writeln(e);
for(; !r.empty; r.popBack)
 writeln(r.back);
}

Like its cousin foreach, the foreach_reverse loop will be rewritten into a for loop
that might not consume the original range; the for loop shown here does consume it.

To test whether a given range type R is a bidirectional range:

import std.range : isBidirectionalRange;
static assert(isBidirectionalRange!R);

Random-access ranges
A random-access range is a bidirectional range that supports indexing and is
required to provide a length primitive if it isn't infinite (two topics we'll discuss
shortly). For custom range types, this is achieved via the opIndex operator overload.
It is assumed that r[n] returns a reference to the (n+1)th element of the range, just as
when indexing an array.

Understanding Ranges

[220]

To test whether a given range R is a random-access range:

import std.range : isRandomAccessRange;
static assert(isRandomAccessRange!R);

Dynamic arrays can be treated as random-access ranges by importing std.array.
This pulls functions into scope that accept dynamic arrays as parameters and allows
them to pass all the isRandomAccessRange checks. This makes our ArrayRange from
earlier obsolete. Often, when you need a random-access range, it's sufficient just to
use an array instead of creating a new range type. However, char and wchar arrays
(string and wstring) are not considered random-access ranges, so they will not
work with any algorithm that requires one.

Getting a random-access range from char[] and wchar[]
Recall that a single Unicode character can be composed of multiple
elements in a char or wchar array, which is an aspect of strings that
would seriously complicate any algorithm implementation that needs to
directly index the array. To get around this, the thing to do in the general
case is to convert char[] and wchar[] into dchar[]. This can be done
with std.utf.toUTF32, which encodes UTF-8 and UTF-16 strings into
UTF-32 strings. Alternatively, if you know you're only working with
ASCII characters, you can use std.string.representation to get
ubyte[] or ushort[] (on dstring, it returns uint[]). This will also
avoid auto-decoding in algorithms that work with input ranges, as calling
popFront on any string will decode the next front element into UTF-32.

Output ranges
The output range is the second foundational range type. It's defined as anything
that can be sequentially written to via the primitive put. Generally, it should be
implemented to accept a single parameter, but the parameter could be a single
element, an array of elements, a pointer to elements, or another data structure
containing elements. When working with output ranges, never call the range's
implementation of put directly; instead, use the Phobos utility function std.range.
put. It will call the range's implementation internally, but it allows for a wider range
of argument types. Given a range r and element e, it would look like this:

import std.range : put;
put(r, e);

Chapter 6

[221]

The benefit here is that, if e is anything other than a single element, such as an array
or another range, the global put does what is necessary to pull elements from it and
put them into r one at a time. With this, you can define and implement a simple
output range that might look something like this:

MyOutputRange(T) {
 private T[] _elements;
 void put(T elem) {
 _elements ~= elem;
 }
}

Now you need not worry about calling put in a loop, or overloading it to accept
collections of T. For example:

MyOutputRange!int range;
auto nums = [11, 22, 33, 44, 55];
import std.range : put;
put(range, nums);

Note that using UFCS here will cause compilation to fail, as the
compiler will attempt to call MyOutputRange.put directly, rather
than the utility function. However, it's fine to use UFCS when the first
parameter is a dynamic array.

To test whether a given range R is an output range:

import std.range : isOutputRange;
static assert(isOutputRange!(R, E));

Here, E is the type of element accepted by R.put.

Optional range primitives
In addition to the five primary range types, some algorithms in Phobos are designed
to look for optional primitives that can be used as an optimization or, in some cases,
a requirement. There are predicate templates in std.range that allow the same
options to be used outside of Phobos.

Understanding Ranges

[222]

hasLength
Ranges that expose a length property can reduce the amount of work needed to
determine the number of elements they contain. A great example is the std.range.
walkLength function, which will calculate and return the length of any range,
whether it has a length primitive or not. Given a range that satisfies the std.range.
hasLength predicate, the operation becomes a call to the length property; otherwise,
the range must be iterated until it is consumed, incrementing a variable every time
popFront is called. Generally, length is expected to be a O(1) operation. If any
given implementation cannot meet that expectation, it should be clearly documented
as such. For non-infinite random-access ranges, length is a requirement. For all
others, it's optional.

isInfinite
An input range with an empty property which is implemented as a compile-time
value set to false, is considered an infinite range. For example:

struct IR {
 private uint _number;
 enum empty = false;
 auto front() { return _number; }
 void popFront() { ++_number; }
}

Here, empty is a manifest constant, but it could alternatively be implemented
as follows:

static immutable empty = false;

The predicate template std.range.isInfinite can be used to identify infinite
ranges. Any range that is always going to return false from empty should be
implemented to pass isInfinite. Wrapper ranges (such as the FilterRange we
implemented earlier) in some functions might check isInfinite and customize an
algorithm's behavior when it's true. Simply returning false from an empty function
will break this, potentially leading to infinite loops or other undesired behavior.

Other options
There are a handful of other optional primitives and behaviors, as follows:

•	 hasSlicing: This returns true for any forward range that supports slicing.
There are a set of requirements specified by the documentation for finite
versus infinite ranges and whether opDollar is implemented.

Chapter 6

[223]

•	 hasMobileElements: This is true for any input range whose elements can
be moved around in memory (as opposed to copied) via the primitives
moveFront, moveBack, and moveAt.

•	 hasSwappableElements: This returns true if a range supports swapping
elements through its interface. The requirements differ depending on the
range type.

•	 hasAssignableElements: This returns true if elements are assignable
through range primitives such as front, back, or opIndex.

At http://dlang.org/phobos/std_range_primitives.html, you can find specific
documentation for all of these tests, including any special requirements that must be
implemented by a range type to satisfy them.

Ranges in use
The key concept to understand ranges in the general case is that, unless they are
infinite, they are consumable. In idiomatic usage, they aren't intended to be kept
around, adding and removing elements to and from them as if they were some sort
of container. A range is generally created only when needed, passed to an algorithm
as input, then ultimately consumed, often at the end of a chain of algorithms. Even
forward ranges and output ranges with their save and put primitives usually aren't
intended to live beyond an algorithm.

That's not to say it's forbidden to keep a range around; some might even be designed
for long life. For example, the random number generators in std.random are all
ranges that are intended to be reused. However, idiomatic usage in D generally
means lazy, fire-and-forget ranges that allow algorithms to operate on data from any
source and minimize memory allocations.

For most programs, the need to deal with ranges directly should be rare; most code
will be passing ranges to algorithms, then either converting the result to a container
or iterating it with a foreach loop. Only when implementing custom containers and
range-based algorithms is it necessary to implement a range or call a range interface
directly. Still, understanding what's going on under the hood helps in understanding
the algorithms in Phobos, even if you never need to implement a range or algorithm
yourself. That's the focus of the remainder of this chapter.

http://dlang.org/phobos/std_range_primitives.html

Understanding Ranges

[224]

Custom ranges
When implementing custom ranges, some thought should be given to the primitives
that need to be supported and how to implement them. Since arrays support a
number of primitives out of the box, it might be tempting to return a slice from a
custom type, rather than a struct wrapping an array or something else. While that
might be desirable in some cases, keep in mind that a slice is also an output range
and has assignable elements (unless it's qualified with const or immutable, but those
can be cast away). In many cases, what's really wanted is an input range that can
never be modified; one that allows iteration and prevents unwanted allocations.

A custom range should be as lightweight as possible. If a container uses an array or
pointer internally, the range should operate on a slice of the array, or a copy of the
pointer, rather than a copy of the data. This is especially true for the save primitive
of a forward iterator; it could be called more than once in a chain of algorithms, so an
implementation that requires deep copying would be extremely suboptimal (not to
mention problematic for a range that requires ref return values from front).

Now we're going to implement two actual ranges that demonstrate two different
scenarios. One is intended to be a one-off range used to iterate a container, and one
is suited to sticking around for as long as needed. Both can be used with any of the
algorithms and range operations in Phobos.

Getting a range from a stack
Here's a barebones, simple stack implementation with the common operations push,
pop, top, and isEmpty (so named to avoid confusion with the input range interface).
It uses an array to store its elements, appending them in the push operation and
decreasing the array length in the pop operation. The top of the stack is always
_array[$-1]:

struct Stack(T) {
 private T[] _array;
 void push(T element) {
 _array ~= element;
 }
 void pop() {
 assert(!isEmpty);
 _array.length -= 1;
 }
 ref T top() {
 assert(!isEmpty);
 return _array[$-1];
 }
 bool isEmpty() { return _array.length == 0; }
}

Chapter 6

[225]

Rather than adding an opApply to iterate a stack directly, we want to create a range
to do the job for us so that we can use it with all of those algorithms we'll look at in
the next chapter. Additionally, we don't want the stack to be modified through the
range interface, so we should declare a new range type internally. That might look
like this:

private struct Range {
 T[] _elements;
 bool empty() { return _elements.length == 0; }
 T front() { return _elements[$-1]; }
 void popFront() { _elements.length -= 1; }
}

Add this anywhere you'd like inside the stack declaration. Note the implementation
of front. Effectively, this range will iterate the elements backwards. Since the end of
the array is the top of the stack, that means it's iterating the stack from the top to the
bottom. We could also add back and popBack primitives that iterate from the bottom
to the top, which would require adding a save primitive since bidirectional ranges
must also be forward ranges.

Now, all we need is a function to return a Range instance:

auto elements() { return Range(_array); }

Again, add this anywhere inside the Stack declaration. A real implementation might
also add the ability to get a range instance from slicing a stack. Now, test it out:

Stack!int stack;
foreach(i; 0..10)
 stack.push(i);
writeln("Iterating...");
foreach(i; stack.elements)
 writeln(i);
stack.pop();
stack.pop();
writeln("Iterating...");
foreach(i; stack.elements)
 writeln(i);

One of the great side-effects of this sort of range implementation is that you can
modify the container behind the range's back and the range doesn't care:

foreach(i; stack.elements) {
 stack.pop();
 writeln(i);
}
writeln(stack.top);

Understanding Ranges

[226]

This will still print exactly what was in the stack at the time the range was created,
but the writeln outside the loop will cause an assertion failure because the stack
will be empty by then. Of course, it's still possible to implement a container that can
cause its ranges not just to become stale, but to become unstable and lead to an array
bounds error, an access violation, or something similar. However, D's slices used in
conjunction with structs give a good deal of flexibility.

A name generator range
Imagine that we're working on a game and need to generate fictional names. For
this example, let's say it's a music group simulator and the names are those of group
members. We'll need a data structure to hold the list of possible names. To keep the
example simple, we'll implement one that holds both first and last names:

struct NameList {
private:
 string[] _firstNames;
 string[] _lastNames;
 struct Generator {
 private string[] _first;
 private string[] _last;
 private string _next;
 enum empty = false;
 this(string[] first, string[] last) {
 _first = first;
 _last = last;
 popFront();
 }
 string front() {
 return _next;
 }
 void popFront() {
 import std.random : uniform;
 auto firstIdx = uniform(0, _first.length);
 auto lastIdx = uniform(0, _last.length);
 _next = _first[firstIdx] ~ " " ~ _last[lastIdx];
 }
 }
public:
 auto generator() {
 return Generator(_firstNames, _lastNames);
 }
}

Chapter 6

[227]

The custom range is in the highlighted block. It's a struct called Generator
that stores two slices, _first and _last, which are both initialized in its only
constructor. It also has a field called _next, which we'll come back to in a minute.
The goal of the range is to provide an endless stream of randomly generated names,
which means it doesn't make sense for its empty property to ever return true. As
such, it is marked as an infinite range by the manifest constant implementation of
empty that is set to false.

This range has a constructor because it needs to do a little work to prepare itself
before front is called for the first time. All of the work is done in popFront, which
the constructor calls after the member variables are set up. Inside popFront, you
can see that we're using the std.random.uniform function. By default, this function
uses a global random number generator and returns a value in the range specified
by the parameters—in this case 0 and the length of each array. The first parameter
is inclusive and the second is exclusive. Two random numbers are generated, one
for each array, and then used to combine a first name and a last name to store in
the _next member, which is the value returned when front is called. Remember,
consecutive calls to front without any calls to popFront should always return the
same value.

std.random.uniform can be configured to use any instance of one of
the random number generator implementations in Phobos. It can also be
configured to treat the bounds differently. For example, both could be
inclusive, exclusive, or the reverse of the defaults. See the documentation
at http://dlang.org/phobos/std_random.html for details.

The generator property of NameList returns an instance of Generator. Presumably,
the names in a NameList would be loaded from a file on disk or, from a database, or
perhaps even imported at compile-time. It's perfectly fine to keep a single Generator
instance handy for the life of the program as implemented. However, if the NameList
instance backing the range supported reloading or appending, not all changes would
be reflected in the range. In that scenario, it's better to go through generator every
time new names need to be generated.

Now, let's see how our custom range might be used:

auto nameList = NameList(
 ["George", "John", "Paul", "Ringo", "Bob", "Jimi",
 "Waylon", "Willie", "Johnny", "Kris", "Frank", "Dean",
 "Anne", "Nancy", "Joan", "Lita", "Janice", "Pat",
 "Dionne", "Whitney", "Donna", "Diana"],
 ["Harrison", "Jones", "Lennon", "Denver", "McCartney",
 "Simon", "Starr", "Marley", "Dylan", "Hendrix", "Jennings",
 "Nelson", "Cash", "Mathis", "Kristofferson", "Sinatra",

http://dlang.org/phobos/std_random.html

Understanding Ranges

[228]

 "Martin", "Wilson", "Jett", "Baez", "Ford", "Joplin",
 "Benatar", "Boone", "Warwick", "Houston", "Sommers",
 "Ross"]
);
import std.range : take;
auto names = nameList.generator.take(4);
writeln("These artists want to form a new band:");
foreach(artist; names)
 writeln(artist);

First up, we initialize a NameList instance with two array literals, one of first names
and one of last names. Next, the highlighted line is where the range is used. We call
nameList.generator and then, using UFCS, pass the returned Generator instance
to std.range.take. This function creates a new lazy range containing a number of
elements, four in this case, from the source range. In other words, the result is the
equivalent of calling front and popFront four times on the range returned from
nameList.generator. However, since it's lazy, the popping doesn't occur until the
foreach loop. That loop produces four randomly generated names that are each
written to standard output. One iteration yielded the following names for me:

These artists want to form a new band:
Dionne Wilson
Johnny Starr
Ringo Sinatra
Dean Kristofferson

Other considerations
The Generator range is infinite, so it doesn't need length. There should never
be a need to index it, iterate it in reverse, or assign any values to it. It has exactly
the interface it needs. But it's not always so obvious where to draw the line when
implementing a custom range. Consider the interface for a range from a queue
data structure.

A basic queue implementation allows two operations to add and remove
items—enqueue and dequeue (or push and pop if you prefer). It provides
the self-describing properties empty and length. What sort of interface should
a range from a queue implement?

Chapter 6

[229]

An input range with a length property is perhaps the most obvious, reflecting the
interface of the queue itself. Would it make sense to add a save property? Should
it also be a bidirectional range? Should the range be random-access? There are
queue implementations out there in different languages that allow indexing, either
through an operator overload or a function such as getElementAt. Does that make
sense? Maybe. More importantly, if a queue doesn't allow indexing, does it make
sense for a range produced from that queue to allow it? What about slicing? Or
assignable elements? For our queue type at least, there are no clear-cut answers to
these questions.

A variety of factors come into play when choosing which range primitives to
implement, including the internal data structure used to implement the queue, the
complexity requirements of the primitives involved (indexing should be a O(1)
operation), whether the queue was implemented to meet a specific need or is a more
general-purpose data structure, and so on. A good rule of thumb is that, if a range
can be made a forward range, then it should be. Other than that, which range options
should be applied is wholly dependent on context.

In the next chapter, we'll add a range interface to the custom Array type in MovieMan.
It's an example of drawing the line at a minimal interface that meets a specific need.

Custom algorithms
When implementing custom, range-based algorithms, it's not enough to just drop
an input range interface onto the returned range type and be done with it. Some
consideration needs to be given to the type of range used as input to the function
and how its interface should affect the interface of the returned range. Consider the
FilteredRange we implemented earlier, which provides the minimal input range
interface. Given that it's a wrapper range, what happens when the source range is
an infinite range? Let's look at it step by step.

First, an infinite range is passed in to filter. Next, it's wrapped up in a
FilteredRange instance that's returned from the function. The returned range is
going to be iterated at some point, either directly by the caller or somewhere in a
chain of algorithms. There's one problem, though: with a source range that's infinite,
the FilteredRange instance can never be consumed. Because its empty property
simply wraps that of the source range, it's always going to return false if the source
range is infinite. However, since FilteredRange does not implement empty as a
compile-time constant, it will never match the isInfiniteRange predicate itself.
This will cause any algorithm that makes that check to assume it's dealing with a
finite range and, if iterating it, enter into an infinite loop. Imagine trying to track
down that bug.

Understanding Ranges

[230]

One option is to prohibit infinite ranges with a template constraint, but that's too
restrictive. A better way around this potential problem is to check the source range
against the isInfinite predicate inside the FilteredRange implementation. Then,
the appropriate form of the empty primitive of FilteredRange can be configured
with conditional compilation:

import std.range : isInfinite;
static if(isInfinite!T)
 enum empty = false;
else
 bool empty(){ return _source.empty; }

With this, FilteredRange will satisfy the isInfinite predicate when it wraps an
infinite range, avoiding the infinite loop bug.

Another good rule of thumb is that a wrapper range should implement as many of
the primitives provided by the source range as it reasonably can. If the range returned
by a function has fewer primitives than the one that went in, it is usable with fewer
algorithms. But not all ranges can accommodate every primitive.

Take FilteredRange as an example again. It could be configured to support the
bidirectional interface, but that would have a bit of a performance impact as the
constructor would have to find the last element in the source range that satisfies the
predicate in addition to finding the first, so that both front and back are primed to
return the correct values. Rather than using conditional compilation, std.algorithm
provides two functions, filter and filterBidirectional, so that users must
explicitly choose to use the latter version. A bidirectional range passed to filter will
produce a forward range, but the latter maintains the interface.

The random-access interface, on the other hand, makes no sense on FilteredRange.
Any value taken from the range must satisfy the predicate, but if users can randomly
index the range, they could quite easily get values that don't satisfy the predicate.
It could work if the range were made eager rather than lazy. In that case, it would
allocate new storage and copy all the elements from the source that satisfies the
predicate, but that defeats the purpose of using lazy ranges in the first place.

Summary
In this chapter, we've taken an introductory look at ranges in D and how to
implement them in containers and algorithms. For more information on ranges and
their primitives and traits, see the documentation at http://dlang.org/phobos/
std_range.html. In the next chapter, we're going to continue looking at ranges by
exploring more of std.range and std.algorithm in order to get comfortable with
using ranges and algorithms in a functional style.

http://dlang.org/phobos/std_range.html
http://dlang.org/phobos/std_range.html

[231]

Composing Functional
Pipelines with Algorithms

and Ranges
A frequent source of difficulty for new D users with no background in functional
programming is that making sense of the range-based functions from Phobos can
be rather daunting, particularly when looking at a long chain of function calls with
names that seem as if they come from an alien language. As an old C programmer
myself, I still think of hash maps when I see std.algorithm.map, and the C function
itoa pops into my head when I see std.range.iota. Until that "eureka" moment
where it all falls into place, knowing which functions are used for what, and where
to find them in Phobos, can be a challenging task. It's for this reason that some new
D programmers tend to avoid ranges and algorithms altogether.

In this chapter, we're going to work on getting past that first hurdle with range-based
functions in Phobos. We're going to look into how to use D ranges in a functional
style and, in the process, explore the standard library modules that make it possible.
We'll begin with an introduction to composable pipelines and then, through the rest
of the chapter, take a look at a variety of functions from Phobos that can be combined
in interesting ways. By the end of the chapter, you should be able to understand the
idiomatic D snippets that people post in the community forums, know where to look
in Phobos for the algorithms you need, and understand how to compose functional
pipelines yourself. The chapter is shaped like so:

•	 Functional programming and composable pipelines: an introduction and
some examples

•	 Navigating Phobos: std.range, std.algorithm, and std.array
•	 Wrapping up MovieMan

Composing Functional Pipelines with Algorithms and Ranges

[232]

Functional programming and
composable pipelines
A major goal of functional programming is functional purity. This means that
functions should be implemented such that they have no side effects. A pure
function does not modify any global state or mutate any data structures in place.
Take the example of appending an item to a list. In C, it might look like this:

list_append(list, item);

This will add item to list in place. When list_append returns, the state of list
has been mutated. This is a side effect, making it an impure function. In a functional
language, it would look more like this:

list2 = list_append(list1, item);

In this form, list1 is immutable; new items cannot be added or inserted. Instead,
this function returns a new list, list2, containing all of the elements of list1
followed by the new addition, item. Immutability coupled with purity can make
it easier to reason about a program's behavior. It also leads naturally to functions
which are self-contained, tightly-sealed units, with no dependency on external state.
This in turn makes it natural to string multiple functions together in a pipeline,
where the output of one becomes the input of the next (sometimes, even a function
can become the input of another).

The idea of chaining function calls together in a program is not new or particularly
special. It's been a common idiom in Java for years, where the member functions
of a class are often implemented to return a reference to the class instance, making
something like the following possible:

myClass.operation1(10).operation2(30).process();

We can call this sort of operation chaining a pipeline, but it isn't very composable.
The process function (or method, as member functions are called in Java) most likely
depends on the state modified by operation1 and operation2, both of which
might also be dependent on the order in which they will be compiled. This makes it
impossible to swap their positions in the call chain, or replace either of them with a
different implementation. It would be necessary to read the documentation to know
for sure, but class methods written with chaining in mind aren't usually designed
for composability.

Chapter 7

[233]

Composable pipelines are more flexible than regular function chains in that each
operation is independent of the others. This allows them to be placed at any point in
a pipeline; the order of operations is dictated not by the operations themselves, but
usually by the format of the desired output or other external constraints. The benefits
are so great that support for them has begun to appear in non-functional languages,
though usually without the strict guarantees that functional languages provide.
Another difference is that functions in non-functional languages generally are not
first-class citizens. In a functional language, a function can be passed as an argument
to another function, or returned as the result of a function, with each instance
carrying its own state (this sort of stateful function instance is often called a closure).
Contrast this with C, in which function pointers can be passed to and returned from
functions, but pointers to the same function all share the same state.

While variables in D are not immutable by default, we have observed that they can
be made so. D also has the concept of functional purity, though we will only go
through it briefly in Chapter 11, Taking D to the Next Level. Functions are not first-class
citizens in D, but the language does have closures in the form of delegates. While it's
possible to conceive of a composable pipeline implementation using D's delegates,
ranges present a much more flexible alternative. With the variety of range interfaces
available, and the ease with which they can be implemented to perform lazily, they
provide a great abstraction for the inputs and outputs in composable pipelines.

There's a lot more to functional programming than composable pipelines. Refer to
the article at https://en.wikipedia.org/wiki/Functional_programming for
a more in-depth introduction.

A simple example
You're working on a tactical combat game where squads of robot warriors duke
it out on a battlefield. You decide to implement a function that allows the AI to
reorganize two squads such that the members with the most health remaining
are placed in one, while those with the least are placed in the other. A naïve
implementation follows:

class Robot {
 int health;
 this(int health) { this.health = health; }
 // Other members
}

// Assumes a squad size of 5 for simplicity
void healthBasedSwap(ref Robot[] squad1, ref Robot[] squad2) {
 import std.algorithm : sort;

https://en.wikipedia.org/wiki/Functional_programming

Composing Functional Pipelines with Algorithms and Ranges

[234]

 auto tmp = squad1 ~ squad2;
 tmp.sort!((a,b) => a.health > b.health)();
 squad1 = tmp[0 .. 5];
 squad2 = tmp[5 .. $];
}

This function first concatenates the two arrays, then sorts the elements of the
resulting array in descending order with std.algorithm.sort. Finally, the sorted
array is sliced such that the first five elements, the robots with the highest health,
are assigned to squad1 and the remainder to squad2. In order for this to work
properly, both squad1 and squad2 must be declared with the ref storage class.
Remember that any changes to the existing elements of an array function parameter
are reflected in the source array, except for those made to the length or ptr
properties. This function modifies the ptr property of each array when it assigns the
slices, so without ref the changes would only be local. The ref requirement could
be eliminated, but this would require copying the data, for example, squad1[] =
temp[0 .. 5].

The following unittest verifies that the function works as expected. Note that the
test declares an inner function to help assemble the Robot arrays and includes a local
import. This serves as a reminder that a unittest is just a special kind of function.

unittest {
 Robot[] makeRobots(int[] healthVals) {
 Robot[] bots;
 foreach(val; healthVals)
 bots ~= new Robot(val);
 return bots;
 }
 import std.algorithm : equal;
 auto squad1 = makeRobots([10, 76, 22, 67, 55]);
 auto squad2 = makeRobots([33, 94, 17, 27, 16]);
 healthBasedSwap(squad1, squad2);
 assert(squad1.equal!((a,b) => a.health == b.health)
 (makeRobots([94, 76, 67, 55, 33])));
 assert(squad2.equal!((a,b) => a.health == b.health)
 (makeRobots([27, 22, 17, 16, 10])));
}

Chapter 7

[235]

This implementation gets the job done, but it's not an ideal solution. Every time
it's called, the concatenation allocates new memory. This can add up if it's called
frequently. Not only that, it's considered best practice in D to minimize memory
allocations using lazy ranges. The idea is to avoid allocation completely where possible
and, where it's not, only allocate at the point where the memory is actually needed.
As it turns out, the allocation in healthBasedSwap can easily be done away with.

Walter Bright gave a talk on the topic of memory allocation avoidance
using lazy ranges at DConf 2015. You can watch the video, and download
the slides at http://dconf.org/2015/talks/bright.html.

A D newcomer who is unfamiliar with ranges may attempt to avoid allocation by
looping through the two arrays and swapping values as needed, perhaps using a
static array to help out. This approach can be efficient and the algorithm, depending
on its implementation, could likely be made generic so that it can be used elsewhere.
On the other hand, a D user who understands ranges and uses them on a regular
basis would likely never consider such an approach. Instead, he would reach for
Phobos and the many range utilities suited to his purpose. Consider the following
reimplementation of healthBasedSwap:

void healthBasedSwap(Robot[] squad1, Robot[] squad2) {
 import std.algorithm : sort;
 import std.range : chain;
 squad1.chain(squad2).sort!((a,b) => a.health > b.health)();
}

The most obvious property of this version is that it's shorter than the original. If it
were in a module where other functions from std.algorithm and std.range are
used, the imports could be moved to the top of the module and the function would
become a one-liner. It's also true to say that the reduced number of statements
makes it easier to reason about what the code is doing, but this is predicated on the
assumption that the reader understands std.range.chain.

In this particular case, the name of std.range.chain is fairly descriptive and the
pipeline is short, so it may look more like a familiar Earthly language rather than
Martian. chain takes any number of input ranges and returns a range that presents
them all as a single sequence. So, we've managed to replace the concatenation in
the original implementation with something that effectively has the same end result
without the allocation. Nothing is copied, nothing is moved. In fact, no action is
taken at all, other than constructing and returning the output range; chain results
in a lazy range.

http://dconf.org/2015/talks/bright.html

Composing Functional Pipelines with Algorithms and Ranges

[236]

std.algortithm.sort, on the other hand, is eager. In the function above, its return
value is never used. This is because the input to sort is sorted in place; its output is
only needed if it is to be handed off to another algorithm. Sorting in place can avoid
allocation. It's also the reason the parameters in this version of healthBasedSwap
are not declared ref; only the content of each array is modified, not the length or
ptr properties.

To sum up, sort is passed given the output of chain and sees a single random-
access range rather than two separate ones. Because squad1 is the first parameter
to chain, it corresponds to indexes 0–4, while indexes 5–9 map to squad2. Because
the delegate passed as a predicate to sort specifies descending order (the default is
ascending), the end result is that squad1 contains the five highest values and squad2
the five lowest. This can be verified with the same unittest used with the first
implementation. Now, squad1 can carry on the fight while squad2 withdraws
for repairs.

A more complex example
You are making a word search game. You download the English Open Word
List, a set of words provided freely by Ken Loge, from http://dreamsteep.com/
projects/the-english-open-word-list.html. Your plan is to load the words
into memory at startup, randomly shuffle them, then for each new round select 10
of them to hide in the puzzle space. You also decide to constrain the length of the
selected words based on the size of the puzzle space (there are no words longer
than 10 characters in the EOWL).

An imperative implementation of the pickWords function might look like this:

string[] pickWords(string[] words, size_t maxLen, string[] sink) {
 size_t matches;
 foreach(s; words) {
 if(s.length <= maxLen) {
 sink[matches] = s;
 if(++matches == sink.length)
 break;
 }
 }
 return sink[0 .. matches];
}

http://dreamsteep.com/projects/the-english-open-word-list.html
http://dreamsteep.com/projects/the-english-open-word-list.html

Chapter 7

[237]

This implementation does not allocate memory. It takes an array to use as a sink. It
returns a slice of sink, allowing the calling code to recognize the number of elements
assigned to the array. To see why this is a good idea, consider the following code:

static string[10] arr;
arr[0] = "Hello";
writeln(arr);

This will print Hello followed by nine empty strings. sink might be the same length as
the source array, or it might only be a slice of it. In the latter case, the .length property
of the source array will always report the number of allocated elements, but not the
number actually assigned to it in pickWords. By returning a slice of sink, the caller can
read .length on the return value to get the actual number of elements assigned.

This function isn't bad, but let's rework it to use a range-based functional pipeline.

string[] pickWords(string[] words, size_t maxLen, string[] sink) {
 import std.algorithm : filter, copy;
 import std.range : take;
 auto remaining = words
 .filter!(s => s.length <= maxLen)
 .take(sink.length)
 .copy(sink);
 return sink[0 .. sink.length - remaining.length];
}

The highlighted lines have replaced the foreach loop, resulting in a code that looks
cleaner and can be easier to follow. We can read it from top to bottom: iterate words;
only consider strings whose length is less than or equal to maxLen; take up to sink.
length of those; copy them all to sink. The return value assigned to remaining
comes from the last call in the chain, copy. It's always of the same type as the target
range, which in this case is string[], and its .length is the number of empty slots
remaining in the target range. So if sink is filled up, it will return 0. The number
of elements copied is determined by subtracting remaining.length from sink.
length, which is what happens at the end to generate the returned slice.

This function looks more like idiomatic D, but an idiomatic D programmer probably
isn't going to stop there. Two things stand out about it. First, words and sink aren't
just arrays, they're ranges, too. That's why they can be used with the functions
from std.algorithm and std.range. Second, the words themselves are just range
elements, meaning that the algorithm could apply to any elements of any range. All
that would be required is a way to specify the predicate, which right now compares
the length of each word. From that perspective, a more generic pickElements
function could be envisioned, but that will be left as an exercise for the reader.

Composing Functional Pipelines with Algorithms and Ranges

[238]

Sometimes we can't
In the downloadable source code for the book, under Chapter07, you'll find the
modules words1.d and words2.d. These files contain the implementations of
pickWords, along with a main function that loads the word list, shuffles it, then
calls pickWords and prints the selected strings to standard output. In both files,
the following lines load and shuffle the word list:

import std.array : split;
import std.file : readText;
import std.random : randomShuffle;
auto wordList = readText("words.txt").split();
wordList.randomShuffle();

There are two things that are worth noting about this snippet. First off, the two
highlighted lines are just screaming to be combined, but they can't be. The reason is
that randomShuffle has a return value of void, so it can't be used in any pipeline
that's making an initialization or an assignment.

Second, std.array.split is an eager function. When given a string, it splits on
whitespace by default and returns an array of strings. Another function, std.
algorithm.splitter, will lazily split strings on whitespace, but if you replace the
call to split above with a call to splitter, it will no longer compile. This is because
splitter returns an input range. If the source range is a forward or bidirectional
range, the returned range will have those properties as well. randomShuffle,
however, requires a random-access range as input. In other words, a range returned
from splitter cannot be used with randomShuffle until it is first converted to a
random-access range, which is usually accomplished by calling std.array.array.

Ultimately, it doesn't matter in this case whether the splitting operation is lazy or
eager; the end result still needs to be an array of strings, which can be obtained
equally well by split and splitter.array. The point of this little diversion is
that when first learning your way around range-based functions in Phobos, it's
not uncommon to run into situations where you can't get some of them to work
together. Always pay attention to the documented inputs and outputs for any
functions you use. For example, the documentation for the single-argument version
of randomShuffle has this as a header:

void randomShuffle(Range)(Range r) if (isRandomAccessRange!Range);

Chapter 7

[239]

The void return value is a quick indication that it can't be used directly in a pipeline.
The template constraint shows that the type Range must be a random-access range,
so we know that we can pass arrays to it directly, but other types of ranges must
first be converted. There has been discussion in the D forums about the proliferation
of template constraints in the Phobos documentation and how it can look like
gibberish to new users. The flipside is that if you understand the meaning of the
predicates in those constraints, then you can understand at a glance what sort of
input a function requires.

Navigating Phobos
Although there are range-based functions in many modules in Phobos, the focus of
this section is on those found in std.range, std.algorithm, and std.array. The
functions in these modules are often central to composable pipelines. We aren't going
to cover all of them, just enough to give you a taste of what is possible and where to
find the functions you might need. An in-depth treatment of these modules would
span more pages than we have room for.

Note that while many of the functions in these modules are usable in
function pipelines, some of them are not, either because they have a
return type of void, or they do not take a range as the first parameter.
Although this chapter is focused on composable pipelines, we will
still take a look at a few of these misfit functions as they can be quite
useful to initialize a range before pipelining or to do something with
the result of a pipeline.

std.range
The std.range package exposes two modules, std.range.interfaces and std.
range.primitives, and a number of functions are located in its package.d file.

The interfaces module provides a number of object-based interfaces that can
be used for special cases when runtime polymorphism is required for ranges. For
example, if it were necessary to store instance of a number of different input range
types in an array, then the InputRange interface could be used as the array type.
We can safely ignore this module for now, as it plays no special role in composable
pipelines.

The templates for testing range properties that we saw in the previous chapter, such
as isInputRange and hasLength, all live in the primitives module, along with some
utility functions for directly manipulating ranges. These are useful for implementing
range-based algorithms, but are irrelevant to our purposes in this chapter.

Composing Functional Pipelines with Algorithms and Ranges

[240]

The bulk of the functions in the std.range package that typically play a role in
composable pipelines are found in the std.range module itself (package.d). The
documentation at http://dlang.org/phobos/std_range.html says the following:

"… this module provides a rich set of range creation and composition templates
that let you construct new ranges out of existing ranges…"

Actually, most range-based functions create new ranges from existing ranges,
including many of those in std.algorithm. We saw this sort of thing first-hand
when we implemented our own custom filter function in Chapter 6, Understanding
Ranges. The key difference is that the only purpose of these functions in std.range
is to create a new range. They aren't used to apply any sort of transformation to the
elements, or otherwise manipulate the elements, in any way. Any work carried out
inside the range is done to produce values, not transform them.

At the time of writing, the documentation does not divide the std.range functions
into different categories, but it's helpful to do so for our purposes. It's also helpful
to think of them not in terms of functions, but rather in terms of the ranges they
produce. We can roughly categorize them into three groups: generative ranges,
selective ranges, and compositional ranges. Not all of the functions from std.range
will be covered here, but enough to serve as a foundation for learning more from
the documentation.

Generative ranges
The functions in this group do not get their elements from other ranges, but rather
generate them on the fly. These are used to create ranges from scratch, often to
contain a sequence of numbers. It's much more convenient to call one of these
functions than to implement a new range, or fill out an array literal, when all
that is needed is a quick, one-off sequence.

iota
This function is the simplest in this category. The word iota is the name of a letter
from the Greek alphabet. It has been used in some programming languages to
represent a consecutive sequence of integers. The range returned by this function
is a consecutive sequence, but it need not be of integers. All of the built-in numeric
types are supported, as well as any user-defined type that overloads the ++, < and ==
operators. It takes up to three parameters. The following lines demonstrate
this function:

import std.range : iota;
// Prints 0 - 9
foreach(i; iota(10)) writeln(i);
// Prints 1 - 10

http://dlang.org/phobos/std_range.html

Chapter 7

[241]

foreach(i; iota(1, 11)) writeln(i);
// Prints all even numbers from 2 - 20
foreach(i; iota(2, 21, 2)) writeln(i);

The two-argument version takes a start value and an end value as parameters.
The single-argument version is equivalent to iota(0, arg), where arg is 10 in the
example. The third parameter represents the step value, or the amount by which
to increment the current element on each iteration. The step value is 1 when it isn't
specified. As with the slice operator, the start value is inclusive and the end value is
exclusive, hence iota(1, 3) yields a range that starts with 1 and ends with 2. The
type of range returned by iota depends on the type of the inputs. For built-in types,
the return type is a random access range, but for user-defined types it is a basic
input range.

recurrence
A recurrence equation recursively defines a sequence of numbers. Given an initial
number to begin the sequence, subsequent numbers are each defined as a function
of the preceding numbers. A well-known example of this is the Fibonacci sequence.

std.range.recurrence takes one or more function arguments that represent the
initial state of the new range. As a template parameter, it accepts the recurrence
relation in the form of a string, delegate or other callable type. The returned range
is a forward range. This example generates the first 20 Fibonacci numbers.

import std.range : recurrence, take;
auto r1 = recurrence!("a[n-1] + a[n-2]")(0, 1).take(20);

When using a string as the recurrence equation, a represents the current state and n
represents the current index. The following example uses a delegate to achieve the
same result as iota(2, 21, 2).

auto r2 = recurrence!((a,n) => a[n-1] + 2)(2).take(10);

sequence
This function is similar to recurrence, but the numbers are generated differently.
Instead of an equation where the value of n depends on the previous values,
sequence uses a closed form expression, where the nth value is a function of the
initial value and n itself. The following example generates a sequence of the first
10 even numbers.

import std.range : sequence, take, dropOne;
auto r = sequence!("n*2").dropOne.take(10);

The call to dropOne (the description of which is coming up shortly) ensures the
generated sequence doesn't start with zero. sequence returns a random-access range.

Composing Functional Pipelines with Algorithms and Ranges

[242]

Selective ranges
A selective range is produced from a source range to selectively iterate the source
elements. This group includes the take and drop families of ranges, stride,
and retro.

take
The take function and a variation called takeExactly both accept two arguments,
a range and the number of elements to take from it. They both return a new range
containing the elements taken. It is the equivalent of calling front and popFront on
the source range n times and storing the result of front each call to in the new range.
The difference between the two is that take will happily succeed if the source range
does not contain enough elements, while the same circumstance in takeExactly will
trigger an assertion failure.

import std.range : iota, take, takeExactly;
// OK -- returned range has 10 elements
auto r1 = iota(10).take(12);
// Assertion failure -- takeExactly requires 12 elements
auto r2 = iota(10).takeExactly(12);

The type of range returned by take is dependent on the properties of the source
range. The documentation only specifies that if the source range has a length
property, so does the returned range, but a look at the source shows that other
properties will be configured based on the type of the source range. The same
holds true for takeExactly, with the exception that the returned range will
always support .length, even when the source range does not.

There are two other variations of this function. takeOne returns a range that
contains, at the most, one element. If the source range is empty, the returned range
will also be empty, otherwise it contains the first element of the source. The returned
range is always a random-access range with .length, no matter the properties of the
source range. This sets it apart from take. takeNone will always return an empty
range. It's possible to call takeNone with no source range at all, so it can be used to
create an empty range from scratch. The returned range is always a random-access
range with .length.

Chapter 7

[243]

drop
The drop family of selective ranges are the inverse of the take family. drop,
dropExactly and dropOne, given a source range, will return a range that contains
all of the elements of the source except the first n elements. It's the equivalent of
popFront on the source range n times to discard n elements. For example, the
following snippet fills a range with 20 elements, then discards the first 10. It prints
the numbers 11 – 20.

import std.range : iota, drop;
auto r = iota(1, 21).drop(10);
foreach(i; r) writeln(i);

There are three other variants called dropBack, dropBackExactly, and dropBackOne
that work with the back and popBack primitives of bidirectional ranges.

stride
This function produces a range that iterates its elements according to a step value.
Given a step of n, each call to popFront is the equivalent of calling popFront on the
source range n times. If the source range is random-access, iteration is performed via
indexing. The following prints all even numbers from 0 to 20.

import std.range : iota, stride;
auto r1 = iota(21).stride(2);
foreach(i; r) writeln(i);

Multiple calls to stride on the same range results in a step that is a product of the
two steps all of the arguments. For example, the following prints all the numbers
divisible by 32 from 0 to 256:

auto r2 = iota(257).stride(2).stride(16);
foreach(i; r2) writeln(i);

The returned range is of the same type as the source.

retro
A significant number of range-based functions iterate their arguments based on
the assumption that they are only input ranges. This means they always iterate a
source range from front to back. Few functions are designed to iterate bidirectional
ranges from back to front. retro allows any range that supports the bidirectional
range interface to be iterated in reverse with any range-based function. Consider
the following:

import std.range : iota, retro;
auto r = iota(1, 21).retro();
foreach(i; r) writeln(i);

Composing Functional Pipelines with Algorithms and Ranges

[244]

Remember that iota returns a random-access range when its arguments are built-
in types. Since random-access ranges are bidirectional, we can use retro on the
returned range to iterate it in reverse without the need for foreach_reverse. If
the source is a random-access range, so will be the returned range. Note that two
consecutive calls to retro on the same range cancel each other out; the returned
range will be the source range.

Compositional ranges
This category of ranges takes any number of ranges and returns a range that treats
them all as a single range. Calling front on the range returned from one of these
functions will result in front being called on one of the composed ranges, though
which range is selected and the pattern used for multiple calls to front is different
for each function. These functions can accept ranges with different properties. The
return value of each is dependent on the properties of the source ranges. When in
doubt, always consult the source.

chain
This function takes multiple ranges and produces a range that iterates each in
sequence, effectively treating them as a single, concatenated range. Once front/
popFront have gone through the first range, they pick up with the second, and so on.
The following chains three ranges, each containing ten integers, then prints them all
from 0 to 29:

import std.range : iota, chain;
auto r = chain(iota(10), iota(10, 20), iota(20, 30));
foreach(i; r) writeln(i);

The returned range is a simple input range unless the sources are all random-access
ranges with .length, in which case the returned range will have the same properties.

roundRobin
This function takes any number of ranges and alternates between them on each
successive call to front. Given the ranges r1 and r2, the first call to front returns
the first element of r1, the second returns the first element of r2, the third returns the
second element of r1, and so on. The following takes the sequences [0, 1, 2], [3,
4, 5], and [6, 7, 8], and prints 0, 3, 6, 1, 4, 7, 2, 5, 8.

auto rr = roundRobin(iota(3), iota(3, 6), iota(6, 9));
foreach(i; rr) writeln(i);

If the sources are all forward ranges, the returned range will be, too. If all of the
source ranges have .length, so will the returned range. Otherwise, it's a simple
input range.

Chapter 7

[245]

transposed
Consider the following array of int[]:

int[][] arr = [[1, 2, 3], [4, 5, 6]];

We can refer to this as an array of arrays, but since std.array exposes the range
interface for dynamic arrays, we can also refer to it as a range of ranges. transposed
takes a range of ranges and transforms it into a new range of ranges that looks like
[[1, 4], [2, 5], [3, 6]]. In other words, the ith range in the result contains
the ith elements of each range in the source.

import std.range : transposed;
auto arr = [[1, 2, 3], [4, 5, 6]];
auto r = transposed(arr);
foreach(a; r) writeln(a);

The source range must be a forward range with assignable elements. The returned
range is a forward range that supports slicing.

zip
Given multiple ranges, zip allows them to be iterated in lockstep. Rather than
returning an individual element, each call to front on a zipped range returns a
tuple containing the corresponding elements from each source range. This allows
transformations to be applied to the elements of each source range in parallel. The
following iterates a zipped range and prints each tuple whose first item is even:

import std.range : iota, zip;
import std.algorithm : filter;
auto r = zip(iota(1, 11), iota(11, 21))
 .filter!(t => (t[0] & 1) == 0);
foreach(i; r) writeln(i);

The output looks like the following:

Tuple!(int, int)(2, 12)

Tuple!(int, int)(4, 14)

Tuple!(int, int)(6, 16)

Tuple!(int, int)(8, 18)

Tuple!(int, int)(10, 20)

Composing Functional Pipelines with Algorithms and Ranges

[246]

The returned range shares the common properties of all the source ranges. For
example, given three ranges, if one is a forward range, one is bidirectional, and
one is random-access, the returned range will be a forward range, since it is the
lowest common property among them all. This holds true for optional primitives
like .length.

zip supports an optional template parameter that is expected to be a value from
the StoppingPolicy enumeration. This is used to specify how to handle ranges of
different length. StoppingPolicy.shortest will stop iteration as soon as empty
returns true from any of its source ranges, while StoppingPolicy.longest will
continue until all ranges are consumed. StoppingPolicy.requireSameLength will
cause an exception to be thrown if any range is consumed while any of the others
has elements remaining. The default is StoppingPolicy.shortest.

lockstep
This function works like zip, except that it is intended to be used in foreach loops
and not as part of a pipeline. As such, its return value is not a range, but an object
with an opApply implementation. This allows for an index variable to be used in
the loop, something not normally possible with ranges by default (std.range.
enumerate returns a range that allows index variables in foreach loops).

import std.range : iota, lockstep;
foreach(i, x, y; lockstep(iota(1, 11), iota(11, 21)))
 writefln("%s. x = %s and j = %s", i, x, y);

This results in the following output:

0. x = 1 and j = 11

1. x = 2 and j = 12

2. x = 3 and j = 13

3. x = 4 and j = 14

4. x = 5 and j = 15

5. x = 6 and j = 16

6. x = 7 and j = 17

7. x = 8 and j = 18

8. x = 9 and j = 19

9. x = 10 and j = 20

lockstep also accepts an optional StoppingPolicy template argument, with
StoppingPolicy.shortest as the default. However, StoppingPolicy.longest
is not supported and will cause an exception to be thrown if used.

Chapter 7

[247]

std.algorithm
It is probably accurate to call this package the workhorse of Phobos. The range-based
functions found here are used to solve a variety of problems in the D world and
make up the bulk of the composable pipelines you'll see in the wild. The algorithms
are split among several modules called comparison, iteration, mutation,
searching, setops, and sorting. Again, there's no room for us to cover all of the
functions these modules expose, but by the end of this subsection you'll have a good
feel for the layout of the package and a better understanding of where to find what
you need. All of the functions described here, and many more, can be found in the
documentation at http://dlang.org/phobos/std_algorithm.html.

Comparison
The comparison algorithms take two or more ranges and return a result based on
a one-by-one comparison of the elements. The result could be a range, a numeric
value, a bool, or a tuple, depending on the algorithm. Here, we take a look at four of
these functions: equal, cmp, mismatch, and levenshteinDistance. It's also worth
noting that there are a few functions in this module that are not range-specific. For
example, min, max, and clamp can be used with any built-in or user-defined type that
supports opCmp comparisons.

equal
This function iterates two ranges in lockstep and applies a predicate to the
corresponding elements of each, the default being "a == b". It returns bool, making
it convenient to use as a predicate to other algorithms. It's also useful for unit testing
functions that return ranges.

import std.range : iota, take;
import std.algorithm : equal;
assert(equal(iota(51).take(20), iota(20)));

cmp
Given two ranges, this function compares the corresponding element of each range
using the given predicate. The default predicate is "a < b". Given an element e1
from the first range and e2 from the second, if predicate(e1, e2) is true, then
the function returns a negative value; if predicate(e2, e1) is true, the function
returns a positive value. If one of the ranges is consumed, the return will be negative
if the first range has fewer elements than the second, positive for the opposite case,
and 0 if both ranges are the same length.

http://dlang.org/phobos/std_algorithm.html

Composing Functional Pipelines with Algorithms and Ranges

[248]

Recall that strings are iterated by Unicode code point, so comparison will happen
one code point at a time after the strings have been decoded.

import std.algorithm : cmp;
auto s1 = "Michael";
auto s2 = "Michel";
assert(cmp(s1, s2) < 0);

mismatch
This function iterates two ranges, comparing corresponding elements using the given
predicate. When two elements are found that fail the predicate, the function returns
a tuple of the two reduced ranges. The ranges begin with the elements that failed
the predicate.

import std.algorithm : mismatch, equal;
auto s1 = "Michael";
auto s2 = "Michel";
auto t1 = mismatch(s1, s2);
assert(equal(t1[0], "ael"));
assert(equal(t1[1], "el"));

If all elements match, the tuple will contain empty ranges.

auto arr = [1, 2, 3];
auto t2 = mismatch(arr, arr);
assert(t2[0].length == 0);
assert(t2[1].length == 0);

levenshteinDistance
Given two forward ranges r1 and r2, this function returns the number of edits
necessary to transform r1 into r2. This is most useful with strings, but can be used
with any forward range. The following example uses levenshteinDistance
to suggest a command to the user when an incorrect command is entered:

import std.algorithm : levenshteinDistance;
auto commands = ["search", "save", "delete", "exit"];
auto input = "safe";
size_t shortest = size_t.max, shortestIndex;
foreach(i, s; commands) {
 auto distance = levenshteinDistance(input, s);
 if(distance < shortest) {
 shortest = distance;
 shortestIndex = i;
 }
}

Chapter 7

[249]

if(shortest != size_t.max)
 writefln("\"%s\" is an unknown command. Did you mean \"%s\"?",
 input, commands[shortestIndex]);

Iteration
While most of the comparison algorithms may be best suited to the end of a pipeline
or to be used in isolation, the iteration algorithms tend to form the bulk of a function
chain. It is not uncommon to see the same algorithm more than once in the same
pipeline. Here, we look at three of them: group, map, and reduce. The filter and
splitter functions we saw earlier also live in this module.

group
This function iterates a range, looks at the number of times an element appears
consecutively in sequence, and returns a range containing a tuple of each element
and the number of times it appears in the sequence. If you're familiar with
run-length encoding, then you should easily understand group.

import std.algorithm : group;
auto arr = [1, 1, 1, 1, 2, 3, 3, 6, 6, 4, 3, 3, 3, 3];
auto r = arr.group();
foreach(val, count; r)
 writefln("%s appears %s times", val, count);

This snippet produces the following output:

1 appears 4 times

2 appears 1 times

3 appears 2 times

6 appears 2 times

4 appears 1 times

3 appears 4 times

map
Given a range as a function argument and a string or callable as a template
argument, map applies the given callable to each element of the range. The return
value is a range containing the transformed elements. The following example
outputs the even numbers from 2 to 40.

import std.algorithm : map;
import std.range : iota;
auto r = iota(1, 21).map!(x => x * 2);
foreach(n; r) writeln(n);

Composing Functional Pipelines with Algorithms and Ranges

[250]

map can accept multiple template arguments as callables. Instantiating it in this manner
causes it to return a tuple containing one range for each callable. The following returns
a tuple whose first element is a range containing all of the elements of the source range
multiplied by 2 and the second a range containing all of the elements of the source
range divided by 2.

import std.algorithm : map;
 import std.range : iota;
 auto r = iota(100, 111).map!("a", "a * 2", "a / 2");
 foreach(t; r) {
 writefln("%s * 2 = %s", t[0], t[1]);
 writefln("%s / 2 = %s", t[0], t[2]);
 }

Although map is most commonly used to directly transform the elements of a
range, it can be used in other ways. The English Open Word List we used earlier is
distributed as a set of separate text files, one for each letter of the alphabet. The name
format follows the pattern A Words.txt. I used the following script to combine all
of them into a single file:

void main() {
 import std.stdio : File;
 import std.range : iota;
 import std.algorithm : map;
 import std.file : readText;
 import std.string : chomp;
 auto file = File("words.txt", "w");
 auto text =
 iota('A', cast(char)('Z'+1))
 .map!(c => readText(c ~ " Words.txt")
 .chomp());
 foreach(s; text)
 file.writeln(s);
}

The lines most relevant to this chapter are highlighted. iota is used to generate a
range of characters from 'A' to 'Z'. I used 'Z' + 1 rather than '[' (which follows
Z in the ASCII chart) as the end of the range because it's more readable. However,
adding an int and a char results in an int, which would cause the element type
of the range returned by iota to be int; hence the cast.

It's important to understand that map performs its transformations in front and
never caches the result. When using it to read files or perform other potentially
expensive operations, care should be taken that the operations are not performed
multiple times. Remember that due to the way the foreach loop is rewritten by the
compiler, text in the above example is never actually consumed. It's possible to
iterate it once more, reading all of the files into memory a second time.

Chapter 7

[251]

reduce
reduce takes a string or a callable as a template argument, and a range and optional
initial seed value as function arguments. The seed value is used to initialize an
accumulator; if no seed is specified, then the first element of the range is used. Given
the call range.reduce!(fun), for every element e of range, the following evaluation
is made: accumulator = fun(accumulator, e). Once all elements have been
iterated, the value of accumulator is returned. Unfortunately, the two-argument
form of the function accepts the seed value as the first parameter, rather than the
range, which precludes it from being used with UFCS call chains in which each
step returns a range. The single argument form fits right in, though. The following
example sums all of the numbers in the range 0–5:

import std.algorithm : reduce;
import std.range : iota;
assert(iota(6).reduce!("a + b") == 15);

Like map, reduce can accept multiple template arguments that can be applied to the
range elements. In that case, it returns a tuple containing the accumulated results
of each.

Mutation
Functions in this module modify a range in some way, either by adding or removing
elements. There are many properties that allow a range to be modified. All output
ranges are modifiable, some ranges may allow modification through opIndexAssign,
and others may have an assignable front property. The functions in this module
look for one or more of these properties in order to carry out their work. We'll look
at three: copy, fill, and remove.

copy
This function takes an input range as its first parameter and an output range as its
second, copying all of the elements from the former into the latter. The copy happens
eagerly, so it's great to use at the end of a pipeline and avoid the need to allocate an
array, for which it was used earlier in the words2 example. The target range must
have enough room to hold all of the elements of the source range, or else an assertion
failure will result. The function returns the remaining, unfilled portion of the target
range when the copy is complete, as demonstrated by the following example:

import std.algorithm : copy;
import std.range : iota;
int[20] sink;
auto r = iota(10).copy(sink[]);
iota(10, 20).copy(r);
writeln(sink);

Composing Functional Pipelines with Algorithms and Ranges

[252]

Static arrays and templates
When passing a static array to a normal function, slicing happens
implicitly. When passing it to a template function where the types of
the parameters are not explicitly specified in the instantiation, the slice
needs to be explicit.

fill
Given an input range that has assignable elements and a single value, this function
fills the range with the value. The following example fills a static array of 20 elements
with the value 100:

import std.algorithm : fill;
int[20] sink;
fill(sink[], 100);
foreach(n; sink)
 writeln(n);

remove
This function removes one or more elements from a bidirectional range that
has assignable elements. It is the recommended way to remove items from an
array. Elements are specified for removal by offset, not by value. In other words,
r.remove(0, 2) removes the first and third elements of the range. The function
returns the shortened range. The length of the source array is untouched, though
its contents can be shuffled or stomped. In order for the original to reflect the
shortened length, it must be assigned the return value of remove. The following
prints [2, 4, 5]:

import std.algorithm : remove;
auto arr = [1, 2, 3, 4, 5];
arr = arr.remove(0, 2);
writeln(arr);

The function accepts a template parameter to specify the strategy to use regarding
the order of the remaining elements in the range. The default, SwapStrategy.
stable, maintains the order of the remaining elements. Specifying SwapStrategy.
unstable allows a more performant version of the algorithm, in which the last
element in the range is swapped to the newly emptied location. The following
prints [5, 2, 4]:

import std.algorithm : remove, SwapStrategy;
auto arr = [1, 2, 3, 4, 5];
arr = arr.remove!(SwapStrategy.unstable)(0, 2);
writeln(arr);

Chapter 7

[253]

Searching
std.algorithm.searching contains a number of functions that provide different
ways to find elements or ranges inside other ranges. We are going to discuss three of
them: find, count, and any.

find
This function searches for a single element in any input range. It takes a template
argument of a string or callable to use as a predicate, the default being "a == b".
There are five overloads of the function, all of which take a range in which to search
(the haystack), as the first function argument and a second argument that specifies
what to search for (the needle). If a match is found, the haystack is returned,
advanced to the point where the match is in the front position. If no match is found,
the returned range is empty. The following example shows the most basic form,
looking for an element in a range of elements. It prints [7, 8, 9]:

import std.algorithm : find;
import std.range : iota;
auto r = iota(10).find(7);
writeln(r);

Another form searches for a range of elements inside a range of elements. It can serve
as a D equivalent of the C standard library function strstr.

import std.algorithm : find;
auto s = "Like Frankie said I did it my way.";
auto r = s.find("Frankie");
if(!r.empty) // s contains "Frankie"
 writeln(r);

count
This function is all about counting occurrences of needles in haystacks. If the needle
is a single element, the haystack must be an input range and cannot be infinite. If
the needle is a forward range, the haystack must be a forward range and cannot
be infinite. In both cases, a predicate specified as a template argument is applied
to every element of the haystack. The default predicate is "a == b", where a is an
element from the haystack and b is either the needle or an element from the needle
(when the needle is a range). If the predicate passes, the count is incremented. If no
needle is specified, the predicate is applied to each element in isolation. In that case,
the default predicate is simply "true".

import std.algorithm : count;
// How many 2s?
auto arr1 = [1, 2, 3, 5, 2, 6, 3, 2];

Composing Functional Pipelines with Algorithms and Ranges

[254]

assert(arr1.count(2) == 3);
// How many occurrences of "ke"?
auto s = "Mike Parker";
assert(s.count("ke") == 2);
// How many even numbers?
auto arr2 = [2, 3, 1, 4, 5, 10, 7];
assert(arr2.count!("(a & 1) == 0") == 3);

any
This function returns true if any elements of a range satisfy the given predicate and
false if none of them do. The default predicate, simply "a", results in the use of
each element's implicit Boolean value. The following checks if any of the elements
multiplied by 2 is greater than 50:

import std.algorithm : any;
import std.range : iota;
assert(iota(50).any!("(a * 2) > 50"));

Set operations
In mathematics, a set is a collection of objects which is treated as a distinct object
itself. For example, the set {1, 2, 3} consists of three objects, 1, 2, and 3, but we
can refer to it as a set of size three. A set operation (setop) is used to combine two sets
in a particular way to produce a new set. This module provides a number of such
operations, where ranges serve as the sets. We are going to look at three, based on
common set operations: setIntersection, setDifference, and setUnion.

Each of these functions requires their source ranges to have the same element
type. Each function also assumes each range is sorted by the predicate "a < b".
A different predicate can be specified as a template parameter.

setIntersection
This function accepts any number of source ranges and returns a lazy range
containing every element that is common between all of the source ranges.
The following prints [1, 2, 5, 8, 10]:

import std.algorithm : setIntersection;
auto a1 = [0, 1, 2, 5, 6, 8, 9, 10];
auto a2 = [1, 2, 3, 4, 5, 7, 8, 10, 11, 12];
auto a3 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
writeln("Intersection: ", setIntersection(a1, a2, a3));

Chapter 7

[255]

setDifference
This function takes two source ranges and returns a lazy range containing elements
that only appear in one, but not in the other. The following prints [0, 6, 9]:

import std.algorithm : setDifference;
auto a1 = [0, 1, 2, 5, 6, 8, 9, 10];
auto a2 = [1, 2, 3, 4, 5, 7, 8, 10, 11, 12];
writeln(setDifference(a1, a2));

setUnion
This function takes any number of ranges and returns a lazy range containing every
element of every source range, sorted according to the predicate. Elements in the
returned range are not unique. This is a divergence from the mathematical notion of
sets, where members are expected to be locally unique. The following prints [0, 0,
1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 6, 6]:

import std.algorithm : setUnion;
auto a1 = [0, 1, 2, 4, 6];
auto a2 = [1, 3, 4, 6];
auto a3 = [0, 1, 2, 3, 4];
writeln(setUnion(a1, a2, a3));

Sorting
This module contains several functions used to manipulate the order of a range.
We are only going to examine two of them: sort and partition.

sort
This is an eager function that modifies the original range. It requires a random-access
range and sorts its elements according to a template predicate, the default being
"a < b". The function expects the predicate to behave in a particular manner. If
predicate(a, b) and predicate(b, c) are true, then predicate(a, c) should
also be true. Furthermore, if the former two are false, so should be the third. In
many cases, such transitivity comes naturally, but care should be taken when using
floating point types. Any user-defined types should have properly behaving opCmp
and opEquals overloads when using the default predicate, otherwise a custom
predicate should be provided.

sort supports stable and unstable sorting, with SwapStrategy.unstable being the
default. In that case, Introsort is used as the sorting algorithm. When SwapStrategy.
stable is specified, the Timsort algorithm is used. The former makes no allocations,
while the latter will make one or more per call.

Composing Functional Pipelines with Algorithms and Ranges

[256]

The following loads the words.txt file from an earlier example, randomly shuffles
the words, sorts them with the default stable sort, and prints the first ten words
from the list:

import std.algorithm : sort;
import std.range : take;
import std.array : split;
import std.file : readText;
import std.random : randomShuffle;
auto wordList = readText("words.txt").split();
wordList.randomShuffle();
writeln(wordList.sort().take(10));

For this specific example, an alternative would be to use std.algorithm.sorting.
topN, which would replace sort().take(10) with a single call.

An error of omission
It's not uncommon for D programmers to omit the parentheses on
functions called in a pipeline. Be careful about that when using std.
algorithm.sort. As a remnant from the D1 days, arrays still have a
built in sort property that uses quicksort. It internally uses a function
pointer to make comparisons, calls to which cannot be inlined. If the
parameter to std.algorithm.sort is an array and the parentheses are
omitted, the compiler will pick up the old array property instead of the
algorithm. This could be bad news for performance.

partition
Given a predicate as a template argument and a range as a function argument, this
function reorders the range such that all elements that pass the predicate come first,
followed by all that fail. The default swap strategy is SwapStrategy.unstable.

Let's revisit the robot health example from earlier in this chapter. Remember that
we wanted to take two squads and reorganize them such that the five bots with the
highest health are in one squad and those with the lowest in the other. Let's change
that up a bit and say that we want five bots with health no lower than 30. Here's
one approach:

void healthBasedSwap(Robot[] squad1, Robot[] squad2) {
 import std.algorithm : partition;
 import std.range : chain;
 squad1.chain(squad2).partition!("a.health >= 30");
}

Chapter 7

[257]

This won't guarantee that we'll always have the five bots with the highest health,
or that the result will be sorted, but it still works as a nice variation for one of the
game AIs. With this implementation, the following prints [94, 76, 33, 67, 55]:

auto squad1 = [10, 76, 22, 67, 55];
auto squad2 = [33, 94, 17, 27, 16];
healthBasedSwap(squad1, squad2);
foreach(robot; squad1)
 writeln(robot.health);

std.array
This module provides several functions that operate on arrays and associative arrays.
We've already seen array and split. Now we'll look at just a few more: Appender,
assocArray, and join. The docs at http://dlang.org/phobos/std_array.html
describe them all.

Appender
While D's array appending operator is quite convenient, it can unfortunately be
inefficient if used often. Appender is a struct that can be used to efficiently append
elements to an array. An Appender can be constructed directly, or one can be created
via the appender convenience function. Once created, the put member function,
or the append operator, is used to append individual items or entire ranges to the
backing array.

There are a small number of member functions and properties that can be used
on the Appender instance, such as reserve to preallocate additional space, or
capacity to determine how many elements can be appended before triggering a
reallocation. Appender also exposes the backing array via the data property, so it
can be accessed directly to initiate a pipeline. Another potential use is to append
the result of a pipeline to an Appender, rather than allocating a new array. When an
instance is used multiple times, this approach can cut down on memory allocations.
The following example creates a range of 50 integers and appends all of the even
numbers to an Appender instance:

import std.array : appender;
import std.algorithm : filter, copy;
import std.range : iota;
auto app = appender!(int[]);
iota(50).filter!("(a & 1) == 0").copy(app);
foreach(n; app.data) writeln(n);

http://dlang.org/phobos/std_array.html

Composing Functional Pipelines with Algorithms and Ranges

[258]

The put member function makes Appender an output range, allowing it to be used as
the target in the call to copy.

assocArray
This function allocates a new associative array and populates it from an input range
of key/value tuples. The zip algorithm is good for this, but the following example
uses the range returned from group:

import std.array : assocArray;
import std.algorithm : group;
auto arr = [1, 1, 1, 2, 2, 3, 3, 3, 3, 4];
auto aa = arr.group().assocArray();
writefln("The number 3 appears %s times.", aa[3]);

join
This function is like a cousin of the array function. It takes a range of ranges and
concatenates all of their elements into a single array, with the option to specify a
separator to place between each element. The optional separator can be a range or
an element. Let's do something with the word list example again. This time, rather
than sorting it, we'll pull 10 strings from the list and join them all into a single string
where each word is partitioned by a pipe character.

import std.range : take;
import std.array : split, join;
import std.file : readText;
import std.random : randomShuffle;
auto wordList = readText("words.txt").split();
wordList.randomShuffle();
auto arr = wordList.take(10).join("|");
writeln(arr);

In the std.algorithm.iteration module there is a function called joiner which is
a lazy version of join. The following would achieve the same result:

auto arr = wordList.take(10).joiner("|").array;

Chapter 7

[259]

Where to look for more
We've only covered a small fraction of the range-based functions in std.range, std.
algorithm and std.array. In addition, there are a number of range-based functions
scattered throughout Phobos. As I write, new range-based versions of older functions
are being added, and new APIs are expected to provide a range-centric interface.
Some of these functions can be used directly in a pipeline, others cannot. Some can
be used with any kind of range, others require specific features. Some return a range
configured based on the source range, others always return a specific type of range.
In short, look for range-based functions throughout Phobos and always pay careful
attention to the function signature and the documentation to learn how to make the
most of them. Don't be afraid to look directly at the source to learn how a range-based
function is implemented. Not only will it help you to better understand the function,
but it will also help you learn techniques to implement your own composable,
range-based functions.

MovieMan – wrapping up
Now that we've covered all of the language and standard library features we're
going to cover, it's time to add the finishing touches to MovieMan. There are two
modules that need to be modified: movieman.db and movieman.menu.display.

The db module
Open up $MOVIEMAN/source/movieman/db.d. We'll start with fleshing out DBTable.
At the top of its declaration, add the highlighted line as follows:

T[] _items;
bool _sortRequired;

In order for the movies to display in a sensible order, they'll need to be sorted.
We could perform the sort every time a movie is added or every time the movies
are displayed. The problem with this is that sorting is going to become an expensive
operation as more and more movies are added. There are different solutions to
make it more efficient, but to keep things simple, we're only going to sort when it's
actually needed. This is tracked by _sortRequired. It should be set each time a
new movie is added to the database, so the opOpAssign member function needs to
be updated.

void opOpAssign(string op : "~")(auto ref T t) {
 _items ~= t;
 _sortRequired = true;
}

Composing Functional Pipelines with Algorithms and Ranges

[260]

Previously, the getMovies overloads were all implemented simply to return the
_items member of DBTable. It's time to implement the means to change that by
giving DBTable the ability to produce a range. The range will be a simple wrapper
of a slice, much like the ArrayRange we implemented in Chapter 6, Understanding
Ranges. We'll use opIndex to get the range, allowing calling code to use the slice
operator with no indexes. Before the range is returned, the function will check if
sorting is required and, if so, call std.algorithm.sort on the _items array.
Here's the function in its entirety:

auto opIndex() {
 import std.algorithm : sort;
 struct Range {
 T[] items;
 bool empty() {
 return items.length == 0;
 }
 ref T front() {
 return items[0];
 }
 void popFront() {
 items = items[1 .. $];
 }
 size_t length() {
 return items.length;
 }
 }
 if(_sortRequired) {
 _items.sort();
 _sortRequired = false;
 }
 return Range(_items);
}

In order for this to compile, the Movie type needs an opCmp implementation.
We could, instead, use a custom predicate for the sort, but what we need is a bit
more complex than would be feasible in that case. Movies should be displayed by
case number, then by page number, and finally, for movies on the same page, in
alphabetical order. So scroll up to the top of the file and add the following to the
Movie declaration.

int opCmp(ref const(Movie) rhs) {
 import std.algorithm : cmp;
 if(this == rhs)
 return 0;

Chapter 7

[261]

 else if(caseNumber == rhs.caseNumber && pageNumber ==
 rhs.pageNumber)
 return title.cmp(rhs.title);
 else if(caseNumber == rhs.caseNumber)
 return pageNumber - rhs.pageNumber;
 else
 return caseNumber - rhs.caseNumber;
}

If all fields of both instances are equal, there's nothing to do but return 0. If the case
and page numbers are the same, there's nothing to do but to sort by title (same case,
same page). This can be done with std.algorithm.cmp and its result returned
directly. Otherwise, if only the case numbers are the same, there's nothing left but to
sort by page number. This is done with a subtraction: if this.pageNumber is higher,
the return value will be positive; if it's lower, the return value is negative. If the case
numbers are not equal, the page numbers don't need to be tested (the movies are in
different cases), so a subtraction is performed on the case numbers to sort by case.
This implementation of opCmp is compatible with the default opEquals for structs (it
will never return 0 when opEquals returns false), so there's no need to implement
our own.

Now let's turn back to DBTable, where we need to implement removeItems,
which allows us to delete an array of movies from the database. Like sorting, this
is also a potentially expensive operation. Using std.algorithm.remove with
SwapStrategy.stable (the default) would require looping through the array of
movies, calling remove for each one, and paying the price of copying some of the
elements around, in the worst case, on each iteration. Another option would be
to use SwapStrategy.unstable and set the _sortRequired flag. A third option
would be to figure out how we could make use of some of the many tools available
in std.algorithm.

void removeItems(T[] ts) {
 import std.algorithm : find, canFind, copy, filter;
 auto dirty = _items.find!(m => ts.canFind(m));
 auto tail = dirty.filter!(m => !ts.canFind(m)).copy(dirty);
 _items = _items[0 .. $ - tail.length];
}

This uses a function we haven't discussed yet, std.algorithm.searching.canFind,
which, given a range as a haystack and an optional needle, returns true if the needle
exists in the haystack.

Composing Functional Pipelines with Algorithms and Ranges

[262]

If it's not immediately obvious what's happening here, don't worry. This sort of thing
takes a lot of getting used to. I encourage you to work through it step-by-step. It
helps to copy it out of the project into a separate source file and work with data
that's easy to manipulate manually. Something like this:

import std.stdio;
int[] _items;
void removeItems(int[] ts) {
 import std.algorithm : find, canFind, copy, filter;
 auto dirty = _items.find!(m => ts.canFind(m));
 auto tail = dirty.filter!(m => !ts.canFind(m)).copy(dirty);
 _items = _items[0 .. $ - tail.length];
}
void main() {
 _items = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
 removeItems([20, 50, 90, 30]);
 writeln(_items);
}

This allows you to work with the function in isolation, adding writelns where
necessary and experimenting as needed until you fully understand it.

That's it for DBTable. Now let's turn our attention to the deleteMovies function.
The only thing that needs to be done here is to add the highlighted line.

void deleteMovies(Movie[] movies) {
 _movies.removeItems(movies);
 writeln();
 foreach(ref movie; movies)
 writefln("Movie '%s' deleted from the database.",
 movie.title);
}

Next are the overloaded versions of getMovies. First up is the overload that returns
all movies. We'll change it from returning _movies._items to returning the new
input range we added. It can provide the range by slicing.

auto getMovies() {
 return _movies[];
}

Chapter 7

[263]

The second overload takes a movie title. Because it's possible for more than one
movie with the same title to be in the database, we need to use an algorithm that
allows us to build a range containing all movies with the given title. That sounds
like a job for std.algorithm.filter.

auto getMovies(string title) {
 import std.algorithm : filter;
 return _movies[].filter!(m => m.title == title);
}

Next up is the overload that takes a case number. It also uses filter.

auto getMovies(uint caseNumber) {
 import std.algorithm : filter;
 return _movies[].filter!(m => m.caseNumber == caseNumber);
}

Finally, getMovies by case and page number:

auto getMovies(uint caseNumber, uint pageNumber) {
 import std.algorithm : filter;
 return _movies[].filter!(m => m.caseNumber == caseNumber &&
 m.pageNumber == pageNumber);
}

That's all we're going to implement for the db module in the book. There is one other
function skeleton that we added back in Chapter 5, Generic Programming Made Easy, and
that is the movieExists function. It's intended be called from the main menu before
adding a movie to the database. It should return true if a movie with that title already
exists, and false if not. Currently, it always returns false, which is fine since it isn't
actually called from anywhere. Here's a challenge for you: implement movieExists
using one of the algorithms we've already used here in the db module. Then, update
$MOVIEMAN/source/movieman/menu/main.d to call the function and, if a movie title
does already exist, ask the user if he really wants to add it to the database.

The display menu
Very little has been implemented here, so we'll be making several additions. Open
up $MOVIEMAN/source/movieman/menu/display.d. Add the highlighted import
at the top of the module.

import std.stdio,
 std.array;

Composing Functional Pipelines with Algorithms and Ranges

[264]

We need this because we're going to use std.array.Appender to keep track of
movies that need to be deleted. We can add an instance of it to the DisplayMenu
declaration, immediately following the Options enumeration.

enum Options : uint {
 byTitle = 1u,
 allOnPage,
 allInCase,
 all,
 exit,
}
Appender!(Movie[]) _pendingDelete;

Next, we have three member functions to implement in the private: section
of DisplayMenu. The first, displayRange, takes a range of movies returned from
the getMovies functions, iterates it, and prints each movie to the screen.

void displayRange(R)(R range) {
 import std.range : walkLength;
 if(range.empty) {
 write("\nSorry, there are no movies in the database that match
 your query.");
 return;
 }

 auto len = range.walkLength();
 writefln("\nFound %s matches.", len);

 foreach(ref movie; range) {
 if(!displayMovie(movie, --len >= 1))
 break;
 }
 writeln("\nThat was the last movie in the list.");
}

First, note that this is implemented as a template. That's because the range is a
Voldemort type, so there's no way to use its type directly in a function parameter
list. Using a template lets the compiler deduce the type. The first line is an import of
walkLength, which will be used to determine how many movies are available. Next,
a check is made to see if the range is empty. If so, a message to that effect is printed
and we abort. After that, the number of available movies is obtained and printed,
then the range is iterated with a foreach loop, and displayMovie, which we'll
implement next, is called for each element. As the second argument to the function,
the local copy of the range length is decremented to determine if any movies follow
the current one; displayMovie will use this in order to decide if the user should be
given the option to display the next movie.

Chapter 7

[265]

Note that the movie variable in the foreach is declared as ref. This is because the
user will be able to edit movies from the display menu. Using a ref variable allows
us to take a shortcut and edit the movie data directly through the instance, rather
than adding a new function to update the database.

displayMovie prints the movie data, then shows a submenu that allows the user to
choose additional actions: edit or delete the current movie, or show the next movie
(if any are available).

bool displayMovie(ref Movie movie, bool showNext = false) {
 static choices = [
 "edit this movie",
 "delete this movie",
 "display the next movie"
];

 printMovie(movie);
 auto choiceText = showNext ? choices : choices[0 .. $-1];
 auto choice = readChoice(choiceText);

 if(choice == 1) {
 editMovie(movie);
 return displayMovie(movie, showNext);
 }
 else if(choice == 2) {
 _pendingDelete ~= movie;
 writefln("\nMovie '%s' scheduled for deletion.", movie.title);
 return showNext;
 }
 else if(choice != 3) return false;
 return true;
}

The choices array is a list of options for the submenu, which is displayed using
readChoice. If no movies follow the current one, the third option is not shown. If
option one is selected, the editMovie function, coming up next, is called; after that,
the updated movie info is displayed. If the second option is selected, the movie is
appended to _pendingDelete. Later, when control returns to handleSelection,
any movies added to _pendingDelete will be removed from the database. Finally,
if option three is selected, the function returns false, causing control to go back to
handleSelection; otherwise, the return value is true, indicating that displayRange
should continue iterating its range of movies.

Composing Functional Pipelines with Algorithms and Ranges

[266]

The next private function is editMovie. This function simply asks the user to enter
the new information, then, after asking for verification, either updates the movie
instance with the new info directly or aborts.

void editMovie(ref Movie movie) {
 enum skipIt = "skip it";
 auto title = "";
 auto msg = "No changes committed to the database.";
 uint caseNumber, pageNumber;

 scope(exit) {
 writeln("\n", msg);
 writeln("Press 'Enter' to continue.");
 readUint();
 }

 if(readChoice("to edit the movie's title", skipIt)) {
 title = readTitle();
 if(!validateTitle(title))
 return;
 }

 if(readChoice("to edit the movie's case number", skipIt)) {
 caseNumber = readNumber("case");
 if(!validateNumber(caseNumber, "case"))
 return;
 }

 if(readChoice("to edit the movie's page number", skipIt)) {
 pageNumber = readNumber("page");
 if(!validateNumber(pageNumber, "page"))
 return;
 }

 if(title != "") movie.title = title;
 if(caseNumber > 0) movie.caseNumber = caseNumber;
 if(pageNumber > 0) movie.pageNumber = pageNumber;
 msg = "Database updated.";
}

A few points of note. Before asking for each item, readChoice is called with the
option to skip entering that item. When an item is entered, it is checked for validity
against one of the two validation functions in the base Menu class. At the end of the
function, only the fields for which data has been entered are modified.

Chapter 7

[267]

Finally, handleSelection needs to be updated to call the new functions.
The highlighted lines show the changes.

override void handleSelection(uint selection) {
 final switch(cast(Options)selection) with(Options) {
 case byTitle:
 auto movies = readTitle.getMovies();
 displayRange(movies);
 break;
 case allOnPage:
 auto caseNumber = readNumber("case");
 auto pageNumber = readNumber("page");
 auto movies = getMovies(caseNumber, pageNumber);
 displayRange(movies);
 break;
 case allInCase:
 auto movies = readNumber("case").getMovies();
 displayRange(movies);
 break;
 case all:
 auto movies = getMovies();
 displayRange(movies);
 break;
 case exit:
 exitMenu();
 break;
 }

 if(_pendingDelete.data.length > 0) {
 deleteMovies(_pendingDelete.data);
 _pendingDelete.clear();
 }
}

The block at the end will remove any movies that are pending deletion.

Composing Functional Pipelines with Algorithms and Ranges

[268]

Making it better
There are a number of ways to improve upon MovieMan in its current form. Perhaps
the most important is adding the ability to write the database to file. The menu
handling code introduced early in the book could be rewritten to use features that
came later, like templates. It could perhaps even be converted to a range-based
implementation to be more idiomatic. New features could be added, like a database
of movie directors, actors and actresses. Support could be added to accommodate
music CDs in addition to DVDs. I intend to do that with my own copy of the
program, as I have hundreds of music CDs in cases as well.

MovieMan is intended to be your playground. Experiment with it, play with it,
and see what you can do with it. Use it to practice your D skills. Anything goes.

Summary
In this chapter, you've learned how to use composable pipelines to craft cleaner
and potentially more efficient code by replacing traditional loops. We took a quick
jaunt through the heart of the range-based modules in Phobos to get a feel of some
of the functions and where to find others that are useful for working with ranges.
Finally, we made our final updates to the desktop version of MovieMan.

In the next chapter, we're off to explore the wide world of the D ecosystem, where
we'll take a look at libraries, tools, and other resources to help you on your journey.

[269]

Exploring the Wide World
of D

Anyone learning a new programming language benefits tremendously when the
language has an active and vibrant community. Learning resources such as blog
posts, articles, and books help speed up the process; software such as build tools
and IDEs make it easier to get new projects off the ground; libraries and language
bindings reduce the amount of new code that needs to be written. D has been around
long enough now that an ever-maturing ecosystem has grown up around it, making
it easier than ever to jump in and start writing D programs.

In this chapter, we're going to take a tour of that ecosystem. We'll look at online
resources that can be used to keep up with D's development, and you will learn
more about the language, some of the tools that aid in building and debugging, a few
of the text editor and IDE plugins many D users rely on, and some of the popular
third-party libraries and bindings used in D programs. We're also going to dig more
deeply into DMD command line options and you will learn how to add third-party
dependencies to a DUB project. By the end of this chapter, you'll have a good idea
of the sort of resources that are available and where to go to find more of them. The
layout of this chapter is as follows:

•	 Online resources: A sampling of websites for enhancing your D knowledge
and keeping up with D development.

•	 Editors and IDEs: An overview of some of the options available to D
programmers.

•	 Tools and utilities: Software that can aid with different aspects of
development with D, including a closer look at DMD.

•	 Libraries: An overview of the DUB package repository, how to use it, and
how to register new packages, plus a peek at two collections of bindings to
popular C libraries.

Exploring the Wide World of D

[270]

Online resources
A handful of online resources, like the forums and the #D IRC channel at freenode.
net, were introduced in Chapter 1, How to Get a D in Programming, and links to the
D documentation have been sprinkled throughout the book. http://dlang.org/
should be located prominently in your bookmark list. Not only is it the gateway to
the language reference and standard library documentation, but also to the official
compiler releases, the forums, and the issue tracker. Additionally, there are sections
in the sidebar where other useful resources can be found, such as articles on specific
D topics (templates, arrays, floating point, and so on). It's also the host of a couple
of subdomains we haven't yet discussed, one of which belongs to the DWiki, our
first stop in this section. The following are a handful of resources any beginning D
programmer should find helpful:

DWiki
The DWiki at http://wiki.dlang.org/ is a portal to a wealth of D resources. Most
of the items covered in this chapter are linked somewhere from this wiki. Tools,
libraries, tutorials, books, videos, and more can be found there. A section titled Core
Development lists a number of links for those interested in following the development
of D itself. Some sections of the wiki are more current than others, but these days
there are changes and updates on a near-daily basis. One page that may be worth
keeping an eye on is at http://wiki.dlang.org/Jobs, which is a list of current job
openings for D programmers.

Planet D
Planet D is an aggregator of D-related blog feeds. It doesn't cover every D-related
blog post in existence, only those sites that have registered with the service, but
it's still a useful stream to point your feed reader toward. A number of active D
community members write blog posts now and again about the projects they're
working on, things they like or dislike about the language, and new tricks they've
discovered. These blogs are a great way to hear about new projects or learn things
about the language that can help make you a better D programmer. Planet D lives
at http://planet.dsource.org/.

reddit and StackOverflow
Not everyone using D makes use of the official forums for help and project
announcements. Two alternatives are reddit and StackOverflow.

http://dlang.org/
http://wiki.dlang.org/
http://wiki.dlang.org/Jobs
http://planet.dsource.org/

Chapter 8

[271]

The d_language subreddit at https://www.reddit.com/r/d_language/ isn't as
active as others, but people do announce projects and post questions there now and
again. Additional D-related posts can be found at https://www.reddit.com/r/
programming/. Personally, I've found the former to occasionally be a source for
learning of projects I might not otherwise have heard of, and the latter to be a place
for spirited discussion about D.

There are a number of questions about D at StackOverflow, a visit to which may
prove fruitful when you encounter your own D-related issues. A quick search may
yield a solution. You can always see an up-to-date list of D-related questions at
http://stackoverflow.com/questions/tagged/d.

This Week in D
Adam Ruppe maintains a blog with weekly updates on the latest goings-on in the
world of D. He highlights the biggest forum discussions, the latest GitHub statistics,
and often has a Tip of the Week or an interview with someone from the D community.
For those who are too busy to keep up with all of the forum activity, this is a
timesaver. You can find This Week in D at http://arsdnet.net/this-week-in-d/.

https://www.reddit.com/r/d_language/
https://www.reddit.com/r/programming/
https://www.reddit.com/r/programming/
http://stackoverflow.com/questions/tagged/d
http://arsdnet.net/this-week-in-d/

Exploring the Wide World of D

[272]

DConf
DConf is an annual D-centric conference that first launched in 2013. The conference
consists of three days of presentations, mingling, and discussions about the language
and how to make it better. While it's certainly nice to be able to attend the conference
in person, it's sometimes live-streamed so that those who are unable to attend can
still participate. More importantly, presentation slides and videos are linked directly
from the DConf site at http://dconf.org/. They are available for any given
year. To find them, click on the year of the conference in the menu bar at the top
of the page and then on the Schedule menu item. From there, you'll find links to a
summary of each presentation, where further links lead to the slides and videos.

http://dconf.org/

Chapter 8

[273]

The first D conference was actually held in 2007 in Seattle, though it
wasn't called DConf. Some of the slides are still available at http://d.
puremagic.com/conference2007/index.html. The videos
have since been archived on YouTube by Brad Roberts. I've created
a playlist for anyone interested at https://www.youtube.com/
playlist?list=PLz50A_by6eUdcH4yL06c_XrHiIHWJNGLC.

DSource
A long time ago, in a galaxy far, far away, there was a website that offered free
project hosting for open source D projects. It was maintained by a volunteer from
the D community and served on a box provided by his employer. That was then.
Today, DSource is a graveyard of old D projects dating from the D1 era. In a perfect
world, there would be no reason to even mention it in a modern book about D2.
Unfortunately, the internet is not a perfect world.

A handful of long-lived projects that used to be hosted at DSource are still alive
and well at GitHub (and most of those have a message on the project's wiki page at
DSource indicating such). A persistent source of confusion for new D users, however,
is that old pages referring to the old projects at DSource still pop up in search results
now and again. Some of those confused new users manage to find their way to
the forums or the #D channel, but there's no way to know how many turned away,
thinking D is a dead or dying language, citing DSource as the evidence for it.

Though DSource sat abandoned for a very long time, another D user was ultimately
able to contact the right people in order to move the entire site to his own server and
take over its maintenance. It now exists in archive mode; no updates can be made to
any of the projects, no posts made on the forums, no comments posted in Trac, and
so on. While some in the D community would like to see it gone, there are others
who see value in keeping it around as an archive of D's history.

The site is included here for two reasons. First, and most importantly, so that when
DSource shows up in your search results for anything related to modern D, you can
safely ignore it. The second is to let you know that there is a potential treasure trove
of D history available for you to peruse. Given that most of the projects on DSource
were written with D1, it can help anyone interested in observing how the language
has changed and, perhaps, get some perspective on why some features are the way
they are. Moreover, there is still some useful code there that could be put to good use
with a bit of work to make it compatible with modern D.

http://d.puremagic.com/conference2007/index.html
http://d.puremagic.com/conference2007/index.html
https://www.youtube.com/playlist?list=PLz50A_by6eUdcH4yL06c_XrHiIHWJNGLC
https://www.youtube.com/playlist?list=PLz50A_by6eUdcH4yL06c_XrHiIHWJNGLC

Exploring the Wide World of D

[274]

Editors and IDEs
Most programmers have a preferred text editor or integrated development
environment. Take a look inside the D community and you'll find a variety of
preferences. This has led to a number of volunteer efforts to add support for D
syntax highlighting to existing editors, or plugins for existing IDEs that provide
a complete D building and debugging environment. This section highlights some
of the cross-platform options used in the D community, but it is by no means an
exhaustive list. More options can be found at the DWiki.

Text editors
There are a number of text editors, both commercial and free, which support D
syntax highlighting either natively or through community-driven plugins.

Vim and Emacs
Many D programmers come from the Linux world, where editors like Vim and
Emacs have a long tradition. Users of these editors coming to D need not fret, as
support exists for both. A DWiki page at http://wiki.dlang.org/D_in_Vim lists
a few resources for Vim users and a package for syntax highlighting can be found
at https://github.com/JesseKPhillips/d.vim. The package is already included
in Vim, but the latest updates can always be found on the GitHub page. Another
interesting package for Vim users is Dutyl, a collection of D utilities, which is
available at http://www.vim.org/scripts/script.php?script_id=5003.

Emacs users can find a major mode for D at https://github.com/Emacs-D-Mode-
Maintainers/Emacs-D-Mode. Additionally, there is a version of MicroEmacs that
supports D. It's maintained (and used) by D's creator, Walter Bright, at http://www.
digitalmars.com/ctg/me.html.

Textadept
Textadept is an open source text editor with built-in support for D syntax
highlighting. It also ships with built-in support for compiling with DMD. It's highly
configurable via the Lua scripting language and comes in the form of multiple
executables, one of which is a terminal version of the editor. You can read more
about Textadept and download a copy for your platform at http://foicica.com/
textadept/.

http://wiki.dlang.org/D_in_Vim
https://github.com/JesseKPhillips/d.vim
http://www.vim.org/scripts/script.php?script_id=5003
https://github.com/Emacs-D-Mode-Maintainers/Emacs-D-Mode
https://github.com/Emacs-D-Mode-Maintainers/Emacs-D-Mode
http://www.digitalmars.com/ctg/me.html
http://www.digitalmars.com/ctg/me.html
http://foicica.com/textadept/
http://foicica.com/textadept/

Chapter 8

[275]

Sublime Text
Sublime Text is a commercial multi-platform text editor with support for a number
of programming languages, including D. Syntax highlighting for D is built-in, along
with support for compiling with DMD. Plugins adding auto-completion exist and
the editor can be further extended with Python, adding support for other compilers
or build tools like LDC or DUB. It's available at http://www.sublimetext.com/. If
Sublime Text is your editor of choice, be sure to ask around in the #D IRC channel
for information about useful plugins for D.

http://www.sublimetext.com/

Exploring the Wide World of D

[276]

IDEs
In the past, Integrated Development Environments tended to support only one
language. Today, most popular open source and commercial IDEs support multiple
languages, usually through a plugin system. Sometimes the plugins ship with the
IDE, sometimes they must be downloaded separately, and often they are developed
by third-parties. Here, we're going to look at three plugins for three major IDEs, plus
one open-source IDE that ships with support for D included.

Visual D
If you work for a company that develops any sort of software for Windows,
chances are you are using a version of Microsoft Visual Studio at the office, perhaps
even at home. Support for D can be added to several versions of Visual Studio
through the Visual D plugin available at https://github.com/D-Programming-
Language/visuald. It supports DMD, GDC, and LDC. It also comes with two
debugging options. One is the Mago debugger, a tool developed specifically to work
with D-style debug output. The other is a conversion tool, called cv2pdb, which
translates DMD's CodeView debug output into the PDB format recognized by the
modern Microsoft debugger. Both options allow debugging directly in the IDE.
On a side note, DUB supports generating Visual D project files from a DUB project
configuration.

Mono-D
Mono-D is a plugin for MonoDevelop/XamarinStudio. It supports a number of
toolchains, including DMD, GDC, LDC, DUB, RDMD, and Make. DUB projects
can be opened directly in the IDE. It also supports loading Visual D projects.
You can read more about it and find download links and installation instructions
at http://wiki.dlang.org/Mono-D.

DDT
DDT is a plugin for the open source Eclipse IDE. It has built-in support for DUB
such that elements of the package configuration are listed in the Project Explorer.
Debugging with GDB is supported via integration with the Eclipse CDT plugin
(for C and C++ development). Eclipse users moving to D should point their browsers
at http://ddt-ide.github.io/ for more info on obtaining and using DDT.

https://github.com/D-Programming-Language/visuald
https://github.com/D-Programming-Language/visuald
http://wiki.dlang.org/Mono-D
http://ddt-ide.github.io/

Chapter 8

[277]

Code::Blocks
Code::Blocks is an open source, cross-platform IDE. Though it's billed as an IDE
for C, C++, and Fortran development, it also supports D. This includes support
for debugging with GDB. For instructions on how to configure Code::Blocks for D
development, refer to http://wiki.dlang.org/CodeBlocks.

Tools and utilities
Throughout the book we've been using DMD to compile examples and DUB to
manage the MovieMan project. Now it's time to look at some additional tools that
can be part of a productive D workflow. The first tool on the list, though, is actually
DMD. We're going to take a look at some of the compiler options that can be helpful
during the development of D programs.

DMD
Thus far, we haven't used many options when compiling D programs, but there are
quite a few of them. As demonstrated in Chapter 1, How to Get a D in Programming,
the list of compiler options can be displayed by invoking DMD with no command-
line options. Each option is accompanied by a brief description of what it does. Here
are a few of those that you may find most useful.

Optimized and debug builds
There are a few DMD options that control optimizations and debugging. The -g
switch adds debugging information in a D-specific format. For debuggers that
don't support D debug symbols, -gc can be used to make the compiler use C-style
debug output. The -O switch turns on optimizations; -inline will activate function
inlining; -release will turn off contracts and asserts, cause assertion failures to be
classified as undefined behavior, and disable array bounds checking in functions
not annotated with @safe (more on that in Chapter 11, Taking D to the Next Level).
Additionally, the –boundscheck= switch can be used to have a little more control
over array bounds checking. It takes one of three possible arguments: on, safeonly,
and off. The first is the default in the absence of –release, the second the default
with it.

http://wiki.dlang.org/CodeBlocks

Exploring the Wide World of D

[278]

Changing the default output
The default behavior of DMD is to name the binary output the same as the first input
source or object file it is given, and to write it in the current working directory, using
the appropriate platform-specific file extension. The output directory for object files
and library files can be changed with the -od command-line switch. The name of the
target library or executable file can be changed with the –of switch. The argument
here can be a file name or a path. For example, the following line writes main.obj
to the out/obj subdirectory and creates an executable named app (or app.exe on
Windows) in a subdirectory named bin. The directories out, out/obj and bin will
be created if they do not exist.

dmd –odout/obj –ofbin/app main.d

Compiling libraries
Creating a library requires compiling several source files into object files, then
handing the object files off to a tool that packs them all into the target library.
DMD allows you to condense these separate steps into a single command line
with the –lib switch. With this option, any source files, object files, or library files
fed to the compiler will all be combined into a single library. Let's experiment.

In $LEARNINGD/Chapter08/libs, create two modules, hello.d and goodbye.d.
The former should look like this:

module hello;
void sayHello() {
	 import std.stdio : writeln;
	 writeln("Hello");
}

And the latter should look this:

module goodbye;
void sayGoodbye() {
	 import std.stdio : writeln("Goodbye!");
}

First, let's create two separate libraries, named hello and goodbye with the
following two command lines:

dmd -lib -odseparate hello.d

dmd -lib -odseparate goodbye.d

Chapter 8

[279]

This will create two libraries (hello.lib and goodbye.lib on Windows,
libhello.a and libgoodbye.a elsewhere) in a subdirectory named separate.
Let's say we want to combine them into a single library. There are multiple ways
to go about this. If all we have is the source code, we would do this:

dmd -lib -odcombined -ofgreets hello.d goodbye.d

Now we have greets.lib or libgreets.a in the combined subdirectory.
What if we have the two libraries and no source?

dmd -lib -odcombined -ofgreets separate/hello.lib
separate/goodbye.lib

Same result. You could also pass, for example, hello.d and goodbye.lib, or
hello.lib and goodbye.d, or compile the source modules into object files and pass
those to the compiler instead. Each case will have the same result.

Dropping extensions
When passing files to DMD, pay attention to the file extensions. If no
extension is specified, then the compiler will treat it as a source file.
Forgetting to add the proper extension for a library or object file will
not generate an error if a source module exists with the same path and
filename.

Using libraries
Using a library with DMD can be as easy as making one, but there are some potential
pain points. For the simplest cases, you can pass a library directly on the command
line along with one or more source files, object files, or other libraries. As long as a
main function exists somewhere in the mix, the compiler will make sure everything
is passed to the linker to generate the executable. For example, given a module
main.d in $LEARNINGD/Chapter08/libs, which looks like this:

void main() {
	 import hello, goodbye;
	 sayHello();
	 sayGoodbye();
}

As we saw in Chapter 4, Running Code at Compile Time, we can add a lib pragma to
the top of main.d and forgo the need to pass the library on the command line at all,
but if we do decide to use the command line, there are some differences between
Windows and other platforms.

Exploring the Wide World of D

[280]

On Windows, we can compile the preceding code and link with combined/greets.
lib like so:

dmd main.d combined/greets.lib

This command line hides the linker flags from the user. Whether we're using the
Digital Mars linker or the Microsoft linker, the compiler will do what needs to be
done to link the binary. DMD allows flags to be passed directly to the linker with
the –L switch. On Linux, Mac, and the BSDs, this is used to specify any libraries that
should be linked with. On those platforms, the GNU linker expects libraries to be fed
to it with the –l (lowercase L) switch. For example, given libgreets.a in the same
directory as main.d, we would link with it like so:

dmd –L-lgreets main.d

The –L tells the compiler that what immediately follows is not for the compiler itself,
but for the linker. So, now we have two different command lines for linking with
libraries, one for Windows and one for other platforms. If we want to pass a common
directory in which to find libraries, it gets a bit messier.

Whether we're passing libraries on the command line or using lib pragmas, when
we are using multiple libraries from the same path, it can help keep things neat and
concise if we tell the linker to look for the libraries in a specific directory. Moreover,
due to the nature of the linker on Linux and other platforms, you typically don't
want to be passing a full library name (such as libhello.a) to the linker. This is
where the pain starts to set in if you are using a make file or custom build script
to compile on multiple platforms, or on Windows with multiple compilers or
architectures.

To specify a common directory, we have to explicitly pass the appropriate flag to the
linker via –L, but the DM linker and the MS linker take different options. Not only that,
if you throw in other platforms, you've got a third option to deal with. In short, telling
the linker to search for libraries in the separate subdirectory and link with both the
hello and goodbye libraries looks like the following with the different linkers:

•	 With the Digital Mars linker:
dmd -L+separate\ main.d hello.lib goodbye.lib

•	 With the Microsoft linker:
dmd -m64 -L/LIBPATH:separate main.d hello.lib goodbye.lib

•	 With the GNU linker:

dmd –L-Lseparate –L-lgoodbye –L-lhello main.d

Chapter 8

[281]

This is where something like DUB really comes in handy. No matter which compiler,
which platform, or which linker, it abstracts away all these differences so that you
never have to worry about them.

Finally, it's worth noting that DMD looks for the LIB environment variable when it's
time to link. If you have any special paths where you like to store libraries, you can
add that path to LIB, either on the command line, via a shell script, or in the DMD
configuration file.

Warnings
Warnings in DMD are not enabled by default. There are two ways to turn them on.
With the –w switch, warnings will be treated as errors and cause compilation to halt.
The –wi switch will allow compilation to continue, printing each warning to stderr
as they are encountered. Whichever approach you prefer, it's a good idea to compile
your project with these once in a while, if not all the time, to try and squelch any
warnings that may arise.

Profiling
There are a number of profiling tools out there that may be usable with D when
working with the GCC or Microsoft toolchains, but DMD ships with an easy-to-use
option that allows you to get an idea of where your D program is spending its time.
It's a simple command-line switch, -profile, which results in a binary that generates
profiling information on execution.

In the $LEARNINGD/Chapter08/profile directory, you'll find a source file, main.d:

uint calc(uint x, uint y) {
 return x + y;
}
uint select() {
 import std.random : uniform;
 return uniform(1u, 1001u);
}
void main() {
 import std.stdio : writeln;

 for(size_t i=0; i<100; ++i) {
 writeln("Starting calculations...");
 uint result;
 for(size_t j=0; j<20; ++j)
 result += calc(select(), select());
 writeln("The accumulated result: ", result);
 }
}

Exploring the Wide World of D

[282]

Compile this file with the following command:

dmd -profile main.d

Executing the resulting binary will produce two new files, trace.def and trace.
log. The former is intended to be passed to the linker, telling it the optimal order
in which to link the program's functions. The latter has two sections that display
information about the program's call tree and the function timings.

The first section appears to be a jumbled mess of mangled function names and
numbers, but there is a method to the madness: it's a call tree. Each entry is separated
by dashed lines, with the first function called in the program (the main function)
listed at the very bottom of the tree. Scroll down until you see the last few sections
that look like this:

	 4000	 _Dmain

_D4main6selectFZk	 4000	 2736	 471

	 4000	 _D3std6random27__T7uniformVAyaa2_5b29TkTkZ7uniformFNfkkZk

	 1	 main

_Dmain	1	 119380	464

	 100	 _D3std5stdio16__T7writelnTAyaZ7writelnFNfAyaZv

	 4000	 _D4main6selectFZk

	 2000	 _D4main4calcFiiZk

	 100	 _D3std5stdio18__T7writelnTAyaTkZ7writelnFNfAyakZv

main	 0	 0	 0

	 1	 _Dmain

The entry at the bottom tells us that the main function (which is actually internal to
DRuntime) calls _Dmain exactly one time (_Dmain is the name by which DRuntime
knows our main function in main.d). Moving up to the next entry, we see 1 main in
the first line. This tells us this entry is for a function that's called one time from main.
Next we have the name of that function (_Dmain), followed by all of the functions
that it calls and how many times it calls each of them. Next to _Dmain we see three
numbers, 1, 119380 and 464. The first is the number of times it is called, in this
case by main, the next two are timings in ticks, or the number of times the timer has
incremented. The first timing is the total number of ticks taken by _Dmain, including
the tick count of the functions it calls (call tree time).

Chapter 8

[283]

The second is the tick count of _Dmain minus that of the functions it calls (function
call time). Moving up, we see an entry for one of the functions that _Dmain calls 4000
times, select, along with the functions it calls. Select has tick counts of 2736 and 471.
Every function call in the program will have an entry in the same format as those
shown here.

The second section, just below the bottom entry in the call tree, starts off like this:

======== Timer Is 3320439 Ticks/Sec, Times are in Microsecs ========

This is arguably the part of the file you'll usually be most interested in. It is a table
listing the number of calls and timings for each function. The headers of the table are,
as shown:

Num Tree Func Per

Calls Time Time Call

Tree Time is the total amount of time spent inside the function, including any
function calls it makes. Func Time is the total amount of time spent in the function
minus any function calls it makes. Per Call is Func Time / Num Calls. Following
the headers is an entry for every function, most of which are listed in their
demangled forms. The entry for the select function looks like this:

4000 823 141 0 uint main.select()

A total of 4000 calls, a total time of 823 microseconds, a total function time of 141
microseconds, and a per call time of 0 (meaning less than one microsecond per call).

Code coverage analysis
Code coverage analysis is useful to find dead code in a program, to make sure that
all code paths intended to be taken actually are and, when used in conjunction with
unit testing, to ensure all of the code is tested. Essentially, it means analyzing the run
time of a program to determine what percentage of the total number of lines of code
is actually touched. DMD has built-in support for code coverage analysis via
the –cov switch.

Save the following code snippet as $LEARNINGD/Chapter08/cov/main.d:

import std.stdio;
void dontCallMe() {
 writeln("Not covered.");
 writeln("Me neither");
}
void callMe() {
 writeln("Covered.");

Exploring the Wide World of D

[284]

}
void main() {
 callMe();
 callMe();
}

Compile it with the following command line:

dmd -cov main.d

Execute the resulting binary and a new file, main.lst, will be created in the same
directory. It contains the same source code found in main.d, but annotated with the
number of times each line of code is executed. At the end of the file, it lists the total
percentage of code coverage. In our case, with five total lines of code two of which
are never executed, we have achieved only 60% coverage.

 |import std.stdio;

 |

 |void dontCallMe() {

0000000| writeln("Not covered.");

0000000| writeln("Me neither");

 |}

 |

 |void callMe() {

 2| writeln("Covered.");

 |}

 |

 |void main() {

 1| callMe();

 1| callMe();

 |}

main.d is 60% covered

The –cov switch takes an optional argument specifying a target coverage percentage.
If the target is not met, an error will be thrown at the end of execution, letting you
know before you ever look at the output file if your target is met. For example,
execute the following in the same directory:

dmd -cov=100 main.d

Chapter 8

[285]

This yields a binary, whose output is this:

Covered.

Covered.

Error: main.d is 60% covered, less than required 100%

Compile and run
When compiling an executable with the –run switch, DMD will launch the binary
as soon as it has been compiled and linked. Any files generated during the process
are temporary and will be cleaned up once execution has completed. The syntax is
as follows:

dmd <options> -run <srcfile> <args>

Here, <options> is any number of DMD options, including source files. However,
one source file must follow the –run switch in <srcfile>. Any arguments passed in
<args> will be treated as command-line arguments for the executed program.

GDC and LDC
The GDC and LDC D compilers were mentioned briefly in Chapter 1, How to Get a D
in Programming. Here, you'll learn more about what they are and where to get them.

GDC
The GNU D Compiler is a community-driven, GPL implementation that integrates
the D front end with the GNU Compiler Collection. This integration opens the door
to compiling for platforms and targets not officially supported by DMD through
the use of the existing GCC toolchain to generate output. It's available through the
package managers of several systems, but the latest can always be found at
http://gdcproject.org/downloads.

At the time of writing, the Linux versions of GDC are well-tested and suitable for
production code. They are often used to produce the final release version of software
due to GDC's ability to better optimize than DMD. The Windows versions require
installation of the w64-mingw32 compiler, but as I write this, they are considered
alpha-quality and not quite ready for production.

http://gdcproject.org/downloads

Exploring the Wide World of D

[286]

Most, if not all, of the supported DMD command-line options have GCC-style
equivalents supported by GDC (the common GCC options are also supported).
Code generated by GDC can be debugged with GDB. Iain Buclaw, the primary GDC
maintainer, is also the official maintainer of D support in GDB. It is expected that
GDC will one day become part of the GCC distribution. The source for GDC can
be found at https://github.com/D-Programming-GDC/GDC. There is also a GDC-
specific forum at http://forum.dlang.org/group/gdc.

LDC
LDC is an open-source, community-driven compiler that integrates the D frontend
with the LLVM core libraries. It is available for several different platforms supported
by LLVM. Where it can't be obtained through a package manager, binaries of
the latest version can always be downloaded at https://github.com/ldc-
developers/ldc/releases and the source is available at https://github.com/
ldc-developers/ldc. At the time of writing, Windows binaries require the Visual
Studio runtime, though past releases have also supported w64-mingw32.

In addition to LLVM-related command-line options, LDC has equivalents for many
of the options supported by DMD. Output on most platforms can be debugged
with GDB and with Visual Studio on Windows. Like GDC, LDC is also better at
optimizing D code than DMD, so it's another alternative used for release versions of
software. The LDC forum at http://forum.dlang.org/group/ldc is a good source
of help.

RDMD
When compiling with DMD or any other D compiler, every module intended to be
part of the final binary must be passed on the command line, either in the form of
source code for compilation or as object or library files for linking. DUB eliminates
that requirement by managing everything itself. DUB will compile all of the modules
in a project's source directory into the output binary, though a directive can be
added to the project configuration to exclude one or more files.

RDMD is a build tool that works a bit differently. First off, it has no concept of a
project. All it cares about are source files, no matter where they may be located.
Given a single source file, RDMD will determine all of the modules it imports,
all of the modules imported by those modules, and so on, and pass all imported
modules on to the compiler. In other words, if a module is not imported anywhere
in a program, it is not compiled into the final binary. Once compilation is complete,
RDMD will launch the newly created executable. All generated files are cached in
a temporary directory so that each invocation of rdmd will only compile new or
changed source files.

https://github.com/D-Programming-GDC/GDC
http://forum.dlang.org/group/gdc
https://github.com/ldc-developers/ldc/releases
https://github.com/ldc-developers/ldc/releases
https://github.com/ldc-developers/ldc
https://github.com/ldc-developers/ldc
http://forum.dlang.org/group/ldc

Chapter 8

[287]

RDMD recognizes a handful of command-line options. Options not recognized by
RDMD will be passed on to the compiler. For a list of supported command line-
options, execute rdmd with no arguments. An important one is --build-only, which
saves the compiled executable and does not run it. It also accepts a switch, --eval,
which takes a string of code as an argument to compile and execute. Try this:

rdmd --eval="import std.stdio; writeln(`Hello World`);"

Another very useful option on systems that understand shebang lines (#!) in text
files is the --shebang switch. This allows RDMD to be used to execute a D source
file as if it were a script file, for example, ./myscript.d. Such scripts require the
very first line in the file to be a shebang line that contains the command line for the
program that should be invoked to execute the script. RDMD requires --shebang to
be the first option in the command-line string. For example:

#!/usr/bin/rdmd --shebang -release -O

import std.stdio;

void main() {

 writeln("I'm a D script!");

}

The same can be done with DMD using the –run switch, but since RDMD will
automatically compile all imported modules and only those that need compiling,
it's the preferable choice. RDMD ships with DMD.

DustMite
You're hacking away at your keyboard one afternoon when you decide to take a quick
break and check the D forums. You see an announcement for a new release of DMD,
so you decide to upgrade. A short while later, you're neck-deep in D code again and
it's time to compile. You pull up a command prompt, invoke DMD, and find yourself
staring at an ICE (Internal Compiler Error). Congratulations! You've just discovered a
compiler bug, potentially a regression introduced by the new release.

The thing to do in this situation is to head over to https://issues.dlang.org/ and
file a bug report, but in order to do that you need to be able to provide a minimal test
case that someone else can compile to reproduce the problem. Your program consists
of dozens of modules and thousands of lines of code; you obviously can't upload it all.
You need to reduce it somehow, but this ICE is the sort of error that makes it almost
impossible to whittle things down manually. This is where DustMite comes in.

https://issues.dlang.org/

Exploring the Wide World of D

[288]

DustMite, which ships with DMD, takes two arguments: a path to a source directory
and a string that serves as a test for a specific error. The string should contain
one or more shell commands that have a return code of 0 to indicate that an error
persists. The source directory should be cleaned of all files except D source modules
and DustMite should be executed in the parent directory. With this information,
DustMite will enter a cycle of removing portions of the source code and recompiling,
looking for the minimal set of code that matches the command string it was given.

As an example, given a source file main.d in a clean directory named projects/
myproject, we can navigate to the projects directory and execute the following
command to get a minimal test case for an internal compiler error. The reduced
source tree will be output to the projects/myproject.reduced directory.

dustmite myproject 'dmd main.d 2>&1 | grep -qF "Internal error"'

Linux users will be instantly familiar with the test string. First, it compiles main.d
with DMD and redirects the output of stderr to stdout. The pipe then executes
grep, using the output of stdout as its input. grep will search for "Internal error"
and return 0 if it is found. The q in –qF tells grep not to print anything to stdout and
the F tells it that its input is a newline-separated list of strings.

DustMite and Windows
grep is a utility that is not installed on Windows by default. There is
a similar tool, called findstr, but I've been unable to get it to work
with DustMite. Windows users might choose to use a custom script
(perhaps written in D) or batch file, but it's probably more convenient
to install a Windows version of grep and either execute DustMite in
an MSYS or Cygwin command shell or, when using DUB to manage a
project, simply invoke DustMite through DUB.

When you are using DUB to manage your project, you can also use it to call
DustMite for you. Pass it the dustmite command, an output directory, and a string
to use as a regex against which to test the compiler output. Here's an example:

dub dustmite ./output --compiler-regex="Internal error"

You can read more about DustMite and learn other ways to use it at https://
github.com/CyberShadow/DustMite/wiki. For more about using DustMite
through DUB, execute the following command:

dub dustmite –help

https://github.com/CyberShadow/DustMite/wiki
https://github.com/CyberShadow/DustMite/wiki

Chapter 8

[289]

DCD
The D Completion Daemon is a client-server program that provides an
auto-completion service for text editors and IDEs that support D. Many of the
editors and IDEs listed earlier in the chapter are either configured to use DCD out
of the box or have plugins available that support it. Essentially, the DCD server
runs continuously in the background. The editor uses the client to communicate
with the server, sending it all the information it needs to determine auto-completion
possibilities, or suggestions for function calls, which the server then sends back to
the client for display to the user. You can read more about DCD and download the
source of the latest release at https://github.com/Hackerpilot/DCD.

DVM
When installing DMD with the Windows installer or one of the Linux packages, the
compiler is automatically added to the system path for convenience (it's optional
with the Windows installer). However, it's sometimes necessary to install multiple
versions of DMD. Perhaps you want to test the latest beta, or you want to compile
an older project with an older version of DMD and still use a newer version for
your new projects. There are different ways to handle this on different systems, but
they require varying degrees of effort in getting set up every time you want to add
a different version of the compiler to your system. This is the problem DVM was
created to solve.

When you download a DVM binary or build one yourself, you must first tell DVM to
install itself like so:

dvm install dvm

This will cause DVM to do whatever it needs to ensure that your system is ready to
start handling multiple versions of DMD. From that point, getting a new version of
DMD is as simple as this:

dvm install 2.068.2

This will install version 2.068.2 of DMD. Nothing is added to the path at this point.
You can install more versions of DMD as needed. Then, when you're ready to use
version 2.068.2, open up a command prompt and type the following:

dvm use 2.067.1

You can find DVM at https://github.com/jacob-carlborg/dvm.

https://github.com/Hackerpilot/DCD
https://github.com/jacob-carlborg/dvm

Exploring the Wide World of D

[290]

Downloading the DVM binary on Windows
The link to the DVM GitHub page will, if you choose not to build
from source, ultimately lead you to the page where all DVM releases
are listed. There, you will find a few binaries and a couple of source
archives available for download. The Windows binary is named in a
format similar to this: dvm-0.4.3-win.exe. This looks like it could
be an installer, but it is not. When running the install command,
be sure to use the actual name of the binary in place of dvm.
Alternatively, save the downloaded file as dvm.exe.

Libraries
There was a time when D libraries were scattered all over the internet, on several
different project hosting sites and private servers. Today, though there are still some
rogue projects out there that have yet to jump on the bandwagon, the DUB Registry
has become the hub of D library activity. In this section, we're first going to talk
about the registry itself, specifically about how to use registered projects and how to
register new ones.

code.dlang.org
The DUB registry lives at http://code.dlang.org/. Its primary purpose is to serve
as the main database for DUB-enabled projects. Although the registry is not restricted
to libraries, they are where our attention will be directed. A library in the DUB registry
is globally available as a dependency to any DUB-enabled project. When you have a
need in your project that is not covered by the standard library, this is the first place to
look before rolling up your sleeves to develop your own solution.

Using libraries from the DUB registry
As a demonstration of how to use libraries from the DUB registry as project
dependencies, we're going to develop a short little program called colors. It takes
any command line-arguments you feed it and displays it to the console with random
foreground and background colors and in a random style. To do this, it uses a library
developed by Pedro Tacla Yamada, called colorize, as a dependency.

http://code.dlang.org/

Chapter 8

[291]

On the main page of the DUB repository, linked above, you can find a link to
the registry page for the colorize library. Following that will bring up the project
information page, as shown here:

The top section of the page displays information mostly taken from the library's
package configuration file. The link to GitHub was provided when the project
was registered. Following that is an example of how to include the library as a
dependency in your project. Finally, the last part of the page is the README file from
the project's GitHub repository.

Exploring the Wide World of D

[292]

Note that although the project is registered as colorize in the
DUB registry, it is d-colorize on GitHub. The part that most
concerns us right now is the Installation section.

Version numbers in DUB packages follow the Semantic Version (or SemVer) format
(see http://semver.org/). The basic format is MajorVersion.MinorVersion.
PatchLevel. Additional information can be tagged on to the end, for example
1.1.0+2.068 might indicate version 1.1.0 of a library, which required version 2.068
of DMD. When adding dependencies to the DUB project configuration, a version
number must be specified. There is more than one way to do it, each having different
meanings.

>=1.0.5 means any version greater than or equal to version 1.0.5, while <1.1.0
means any version less than version 1.1.0, and >=1.0.5 <1.1.0 constrains the
version to the anything greater than or equal to 1.0.5 and less than 1.1.0. The latter
form has a shortcut in the form of ~>1.0.5, which is the recommended format for
most projects. See the section titled Version specifications at http://code.dlang.org/
package-format?lang=sdl#version-specs for more details.

For our little example project, the first thing to do is to create a dub.sdl file in
$LEARNINGD/Chapter08/colors. It looks like this:

name colors
description "Print randomly colored text to stdout."
copyright "Copyright © 2015, Mike Parker"
authors "Mike Parker"
dependency "colorize" version="~>1.0.5"

Next, create a source subdirectory in the same location. There, create a file app.d.
At the top of the file, we need two imports.

import colorize;

The enumerations fg and bg in the colorize module represent foreground and
background colors, respectively. mode represents different text styles. There is
an overload of std.random.uniform which takes an enumeration as a template
argument and returns a random member from the enum. We can use that to
randomly select colors and modes in the function coloredPrint.

void coloredPrint(string msg) {
 import std.random : uniform;
 auto fore = uniform!fg;
 auto back = uniform!bg;
 auto style = uniform!mode;
 cwriteln(msg.color(fore, back, style));
}

http://semver.org/
http://code.dlang.org/package-format?lang=sdl#version-specs
http://code.dlang.org/package-format?lang=sdl#version-specs

Chapter 8

[293]

The function cwriteln is part of colorize. It takes the place of writeln. Finally,
a main function which ties it all together.

void main(string[] args) {
 import std.stdio : writeln, readln;
 writeln("Enter some text to colorize:");
 auto input = readln();
 coloredPrint(input);
}

The output of one run looked like this for me:

That's all there is to it. No matter how complex the library, if it's in the DUB
registry, DUB will manage everything for you with one simple addition to the
project configuration.

Registering libraries with the DUB registry
To create a library for the DUB registry, there's a major point to keep in mind for
the project configuration: do not provide an app.d in the project's source directory
unless you explicitly add the line "targetType": "library" to the project
configuration. If no target type is specified, DUB will compile an executable when it
encounters an app.d in the source directory. If there is no app.d, it will generate a
library instead. Let's try it.

First, let's create a dub.sdl in the directory $LEARNINGD/Chapter08/mylib, which
has the following content:

name "mylib"
description "An example DUB-enabled library."
copyright "Copyright © 2015, Mike Parker"
authors "Mike Parker"
dependency "colorize" version="~>1.0.5"

Exploring the Wide World of D

[294]

The target path is never required for any DUB project. This is just
a habit I've gotten into with my own projects: executables go in a
bin subdirectory and libraries in a lib subdirectory. Feel free to
follow your own convention. By default, DUB uses the project's root
directory as the output location.

Now, let's create a file in the source subdirectory called mylib.d. It has a single
function:

module mylib;
void sayIt() {
 import std.stdio : writeln;
 writeln("I don't care what you say anymore, this is my lib.");
 writeln("Go ahead with your own lib. Leave me alone!");
}

Now, we can execute dub in the project directory, with or without the build
command, and we'll see a shiny new library in the lib subdirectory. If you were
really going to register the new library with the DUB registry, you would first need
to create a project either at GitHub or BitBucket (which are the only two supported
providers at the time of writing), push everything in the project directory to the
remote repository, and then tag a new release.

If you've never used git before, it will be useful to start picking up the
basics. It has become a big part of the D ecosystem and, at the time
of writing, is the only source control system that DUB knows how to
work with. You can find an introductory tutorial to git at https://
git-scm.com/book/en/v2/Getting-Started-Git-Basics.

Once the repository is set up, you would head over to http://code.dlang.org/
and register a new account if you don't have one already. After registering and
logging in, you would then go to the My packages link in the menu bar (http://
code.dlang.org/my_packages). At the top of that page is a button labelled Register
new package.

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
http://code.dlang.org/
http://code.dlang.org/my_packages
http://code.dlang.org/my_packages

Chapter 8

[295]

Clicking on that button leads to a page that has a choice box and two text fields.

At the time of writing, the choice box offers two options: GitHub and BitBucket.
After making the appropriate selection, you would fill in the first field with your
GitHub or BitBucket account name, the second with the name of the repository, and
finally click on the Register package button. After that, the newly registered library
would show up at the top of the registry's main page on its next update (and updates
happen fairly frequently).

Once a package is registered, new tagged releases in the git repository will
automatically be picked up by the registry. This may take some time though, as not
all packages are checked for updates at one time. To help speed things along, you can
log in, go to My packages, click on the link for the updated library, and then click on
Trigger manual update. If that button is greyed out and you are not able to click on it,
it means that the package is already scheduled for an update.

It's inevitable that the interface will be updated at some point, making these
instructions obsolete, but the basic functionality should remain consistent.

Testing DUB-enabled libraries
When developing a DUB-enabled library, there are different ways to
test it without registering in the DUB registry. The simplest and easiest
to explain is to execute the following: dub add-local path/to/
library/project 0.0.1. The version specified at the end can
be anything you want it to be. With this done, you can now create a
separate DUB project, configured as an executable, and include version
0.0.1 of your library as a dependency. This is all local to your machine.

Exploring the Wide World of D

[296]

Browsing the DUB registry
At the time of writing, in mid-October of 2015, there are nearly 600 packages in the
DUB registry and it's growing every week. The majority of the packages are libraries
that scratch one itch or another. To more efficiently browse the registry and find
the libraries you need, there is a mechanism that package maintainers can use to
categorize their projects.

At the top of the main registry page is a choice box labeled Select category. There are
two options, Development library and Stand-alone applications. Select the former.
This will display a new choice box that allows you to select a category. Some of these
may open up a third choice box to select a sub-category.

Categories can be added for your own DUB packages by logging in, clicking on My
packages in the menu bar, and selecting the project you want to categorize. There,
on the project page, you will find choice boxes allowing you to associate up to four
categories with the package.

Deimos and DerelictOrg
Deimos is an organization at GitHub that serves as an umbrella for a number of
static bindings to C libraries. Similarly, DerelictOrg (commonly referred to as
Derelict) is an umbrella organization for dynamic bindings to C libraries. We're
going to cover the difference between static and dynamic bindings in detail in the
next chapter, but it can be summed up by saying that the former always has at
least a compile-time dependency on a C library and the latter only has a run-time
dependency on a C library.

Deimos is an all-encompassing collection of libraries; anyone with a static binding
to a C library can have it added to Deimos, no matter the library's arena. All you
need do is contact Walter Bright and request to have your library added. Some of
the packages are DUB-enabled and in the DUB registry, but not all of them. The
members of the Deimos group are curators.

Chapter 8

[297]

Maintenance is handled by the community. Users can submit pull requests for the
curators to apply, and request that packages be added to the DUB registry.

Derelict is a more narrowly-focused collection of bindings, primarily targeting
libraries that are useful for game development and multimedia applications. The
group is not as open as Deimos. New projects are rarely allowed in. While pull
requests are happily accepted, the primary responsibility to maintain and develop
the packages rests with the members of the organization (I created Derelict in 2004
and have been the primary maintainer ever since). Anyone is welcome to use the
DerelictUtil package (which all Derelict packages depend on) to create their own
dynamic bindings using the Derelict name, even if the packages are never added to
the organization. Every package in Derelict is DUB-enabled and in the DUB registry.

There is some overlap between the two collections, where a static binding to
a library exists in Deimos and a dynamic binding to the same library is in Derelict.
Which you choose is quite often a matter of preference, but may sometimes be
dictated by project requirements. I mention them here primarily because there are
some useful bindings in Deimos that are not in the DUB registry, but also because
both projects turn up in discussions in the D community on a regular basis. Deimos
is located at https://github.com/D-Programming-Deimos, and DerelictOrg at
https://github.com/DerelictOrg.

Summary
In this chapter, we've taken a brief tour of the D ecosystem. We've seen a few web
sites that can help in your D journey, discussed DMD a little more in-depth, seen
some other useful tools, and gotten a glimpse into the DUB registry and how to make
use of it.

In the next chapter, we take a look in detail at a feature of D that enables it to make
use of an even wider world of existing software: its ability to communicate directly
with libraries that know how to speak C.

https://github.com/D-Programming-Deimos
https://github.com/DerelictOrg

[299]

Connecting D with C
There are many reasons a programming language may fail to gain traction, but a
surefire way to discourage adoption is to make it incompatible with C, whose ABI is
the lingua franca of programming languages. Even if the creators of a new software
project are in a position to choose any language they'd like to work with, it's unlikely
that they would be willing to take the time to port or recreate the popular battle-tested
C libraries they are sure to need, such as image loaders, graphics interfaces, or database
drivers. The easier it is to interface with C, the better.

Binary compatibility with C was a priority with D from the beginning. This means
it's possible for code written in D to directly call functions written in C (or any
language that exposes a C ABI-compatible interface), and vice versa. There's no need
for any intermediate layer to bridge the two languages together. This means it's easy,
and often quick, to get a D and C program up and running. In this chapter, we're
going to take a fairly comprehensive look at how to make D and C work together.
It's impossible to cover every possible corner case that may be encountered in the
pantheon of C arcana, but it's still going to be heavy on details. This chapter can
serve as a reference to connect the two languages in the majority of cases. The layout
looks like this:

•	 Preliminaries: terminology, object file formats, and linkage attributes
•	 Binding D to C: function prototypes and type translation
•	 Calling C from D: handling arrays, memory, and exceptions
•	 Calling D from C: how to manage DRuntime

Connecting D with C

[300]

Preliminaries
The bulk of this chapter is about C code and D code, and what you need to do
in order for the two to communicate. There are a few prerequisites that need
to be established before we roll up our sleeves. First, there needs to be a clear
understanding of the key terminology used in this chapter, both in order to
understand the content and to discuss it with others. An understanding of the
different types of binary output from the different compiler toolchains is key to
getting D and C binaries to link. Second, it's beneficial to know at least a little of
what's going on under the hood when D and C are combined in the same program.
We'll cover all of that here in this section.

Terminology
In order to avoid the potential for misunderstanding in this chapter and in
conversations with other D programmers, we're going to clearly define certain terms
that pop up in any discussion of connecting D with C. There are those for whom the
meanings of some of these words blur together, but we're focusing strictly on how
they are generally used in the D community at large.

Bindings, wrappers, and ports
The primary focus of this chapter is how to create a binding between D and C. A
binding is a bit of code that allows one language to communicate with another.
There are two other terms that sometimes get mixed up in the same context: wrapper
and port. If you ever create a binding to a C library and intend to make it publicly
available for others, you want to make sure you're using the correct terminology.

Different languages have different approaches to creating language bindings. Java
programmers bind to foreign-language libraries through the Java Native Interface
(JNI). An intermediate layer, which sits between the Java code and the library, is
created as a C or C++ library. The JNI is used to translate Java types and function calls
to something understood by the foreign library. In this scenario, the Java code does not
bind to the foreign library itself, but rather to the intermediate layer. This means there
need not be a one-to-one correspondence between the types and function signatures
in the library and those on the Java side. In fact, the intermediate layer can hide the
library interface completely and expose an entirely new interface to the Java code, one
that wraps the library. In that situation, the result can be called a wrapper.

Chapter 9

[301]

C++ has the advantage that C++ compilers can understand C header files. No
bindings need to be created to use a C library in C++. However, some C++
programmers prefer to create an object-oriented interface over a C library, using C++
features that aren't present in C. Again, this can be called a wrapper. When going
the other way, from C++ to C, the terminology isn't so obvious. Much of the C++
API is hidden behind C functions. The interface has to be different simply because C
does not support many C++ features. Is this a binding or a wrapper? Both terms are
sometimes used in this case.

Like C++, D can communicate directly with C without the need for a JNI-like layer
in the middle. However, D compilers do not know how to parse C header files.
That means the function prototypes and type declarations in a C header need to be
translated to D. The result is a module full of aliases, type declarations, and function
prototypes that can be called a binding. The new D module can be imported in any
D project and, once compiled and linked with the C library, will allow D code to call
into the C API directly.

Several great examples of this can be found in the DRuntime source that ships with
DMD. The core.stdc package is a collection of modules that, together, form a
binding to the C library. In it you'll find function prototypes such as this one from
core.stdc.stdlib:

extern(C) void exit(int status);

That comes with a companion set of manifest constants, which are the result of
translating the C definitions for the possible values of status:

enum EXIT_SUCCESS = 0;
enum EXIT_FAILURE = 1;
enum MB_CUR_MAX = 1;

When you compile any D program, the standard C library is automatically linked,
so you can call exit and any other standard C functions any time you like. All you
need is to import the correct module.

In D, there is a clear distinction between bindings and wrappers. Bindings provide
no implementation of the functions in an API, only the signatures; they link directly
with the equivalent symbols in a C library. A wrapper can be implemented on top
of a binding to give it a more D-like interface, but the functions in a wrapper must
have an implementation. As an example, you can find a binding to the 2D graphics
library, SDL, at https://github.com/DerelictOrg/DerelictSDL2. Then at
https://github.com/d-gamedev-team/gfm/tree/master/sdl2/gfm/sdl2 is an
API that uses the binding internally, but wraps the SDL interface in something more
D-friendly.

https://github.com/DerelictOrg/DerelictSDL2
https://github.com/d-gamedev-team/gfm/tree/master/sdl2/gfm/sdl2

Connecting D with C

[302]

That brings us to the word port. Typically, this term is used to indicate that a
program has been translated from one language, platform, or CPU architecture to
another. Looking at core.stdc again, some might say that the headers of the C
standard library have been ported to D, but that's misleading; we cannot say that the
entire library has been ported. Translating the headers is what is necessary to create a
binding; translating the source is creating a port. As an example, the colorize package
that we used in the previous chapter is a port of a Ruby library to D. Bindings
have a number of constraints which ports don't have, perhaps the biggest being a
dependency on the original C library.

Once, I was scrolling through the DUB registry looking at new
packages that had been added and found one that was described
as a port of a C library. Clicking through and looking at the source
showed it to be a binding, not a port. It may seem like a small matter
to confuse terminology like that, but inaccurate terminology can lead
to a surprising number of support requests and issue reports from
people who don't bother to click through to the source first.

Dynamic and static – context matters
From personal experience in maintaining the Derelict bindings over several years,
more confusion arises from the terms dynamic binding and static binding than from
any other related terms. There are four other terms that include dynamic or static and
which are often used in any discussion about compiling, linking, and using bindings:
dynamic linking, static linking, dynamic libraries, and static libraries. Even if
you are familiar with these terms and what they describe, you are encouraged to
read through this subsection to fully understand the difference between static and
dynamic bindings.

Static libraries and static linking
Static libraries are a link-time dependency. They are archives of object files that are
handed off to the linker along with any other object files intended to be combined
to form an executable or shared library. On Windows, they tend to have the .lib
(Library) extension, while on other platforms (and Windows versions of GCC)
they usually have the .a (Archive) extension. When a static library is created, no
linking takes place. The compiled objects are gathered into a single library file,
and there they stay until the library is ultimately handed off to a linker during
the build process of an executable or shared library. This means that if the library
has any other link-time or runtime dependencies, the final binary will have those
dependencies as well.

Chapter 9

[303]

The job of the linker, in addition to creating the final binary, is to make sure that any
reference to a symbol in any of the object files it is given, be it a function call or a
variable access, is matched up with the symbol's memory offset. With a static library,
everything needed is right there for the linker to make use of. It's just the same as if
every object file in the library were given to the linker individually on the command
line. Linking with a static library is known as static linking.

Dynamic libraries and dynamic linking
Dynamic libraries (I will use shared library and dynamic library interchangeably
in this book) are often a link-time dependency, but are always a runtime dependency.
On Windows, they have the .dll (Dynamic Link Library) extension, while on
Unix-based systems they have the .so (Shared Object) extension (Mac OS X
additionally supports .dylib, or Dynamic Library files). Dynamic libraries are
created by a linker, not by a library tool. This means that any link-time dependencies
a shared library has are part of the library itself; any executable using the shared
library need not worry about them. Runtime dependencies, by definition, still need
to be available when the program is executed.

Any program that uses a dynamic library needs to know the address of any symbols
it needs from the library. There are two ways to make this happen. The first, and
most common, is dynamic linking. With this approach, the linker does the work
of matching up the offsets of the library symbols with any points of access in the
executable. This is similar to what it does with static linking, but in this case the
library is not combined with the executable. Instead, when the executable is loaded
into memory at runtime, the dynamic library is loaded by the system's dynamic
linker (or runtime linker), which I'll refer to as the system loader. The preliminary
work done by the linker allows the loader to match function calls and variable
accesses with the correct memory addresses.

On Unix-based systems, dynamic linking takes place by giving the shared object file
directly to the linker, along with any object files and static libraries intended to form
the final executable. The linker knows how to read the library and find the memory
offset of each symbol that is used by the other files it is given. On Windows, when a
DLL is created, a separate library, called an import library, is also created. This file,
somewhat confusingly, has the same .lib extension as a static library. The import
library contains all of the offsets for every symbol in the DLL, so it is passed to the
linker in place of the DLL itself. Some C and C++ linkers on Windows know how to
fetch the memory offsets directly from a DLL, so they can be given either the import
library or the DLL.

Connecting D with C

[304]

The second way to make use of a dynamic library is for the program to load
it manually at runtime (often called dynamic loading, but we've got enough
dynamics to deal with here already, so I'll use the term manual loading). Essentially,
the programmer must do in code what the system loader would have done at
application start up: match any use of a dynamic library's symbols in a program with
the addresses of the symbols after the library is loaded into memory. This requires
all functions and variables declared and used in the program to be pointers (more on
that shortly). Using an API exposed by the operating system, the dynamic library is
loaded into memory with a function call, then another function is used to extract the
address of every required symbol, which is then assigned to an appropriate pointer.

In order for the system to load a dynamic library at runtime, it must know where
the library can be found. Every operating system defines a search path for dynamic
libraries. Though there are normally several locations on the search path, there
are typically only one or two directories on any given system where most shared
libraries live. On Windows, it's normal for any non-system libraries required by
a program to ship in the same directory as the executable, with the result that
multiple copies of the same library may be installed with multiple programs. On
Unix-based systems, it's preferred for dependencies to be installed on the system
search path through a package manager so that every program can share the same
copy of the library. This is supported on OS X, but it additionally supports packing
dependencies with the executable in an application bundle.

Dynamic and static bindings
Now we get to the underlying theme of this chapter. When setting out to create a
D binding to a C library (or vice versa), a decision must be made on what type of
binding it is going to be: a static binding or a dynamic binding. Unfortunately, static
and dynamic used in this context can sometimes lead to the erroneous conclusion that
the former type of binding requires static linking and the latter requires dynamic
linking. Let's nip that misconception in the bud right now.

A static binding is one that always has a link-time dependency on the bound library,
but that dependency can be in the form of a static library or a dynamic (or import)
library. In this scenario, functions and global variables are declared on the D side,
much as they would be in any C header file. The core.stdc package in DRuntime
is a static binding to the standard C library. Let's look again at the declaration of the
exit function:

extern(C) void exit(int status);

Chapter 9

[305]

In order for this to compile, one of two things must happen: either the static version
or the dynamic version of the C library must be passed to the linker. Either way,
there is a link-time dependency. Failure to pass a library to the linker would cause it
to complain about a missing symbol. If the dynamic library is linked, then there is an
additional runtime dependency as well. DMD will automatically link the C standard
library, though whether it does so statically or dynamically depends on the platform.

With a dynamic binding, we completely eliminate the link-time dependency, but
take a guaranteed runtime dependency as a trade-off. With this approach, normal
function declarations are out the window. Instead, we have to declare function
pointers. In a dynamic binding to the C standard library, the declaration of the exit
function on the D side would look like this:

extern(C) alias pexit = void function(int);
pexit exit;

Then, somewhere in the program, the standard C library needs to be loaded into
memory, and the address of the exit symbol must be fetched and assigned to the
function pointer.

Just to drive the point home, because it is so often the source of misunderstanding:
static bindings can link with either static or dynamic libraries, but they must always
link with something; dynamic bindings have no link-time dependencies at all, but
the dynamic library must always be loaded manually at runtime.

Object file formats
One potential sore spot when working with static bindings is object file formats. Any
given linker knows how to deal with a specific format, which means any object files
and libraries it is given must be in that format. On Linux, Mac, and other Unix-based
platforms, this isn't such a big deal. The compiler backends on all of these platforms
output the same object file format, such as elf on Linux and the BSDs, or mach-o on
OS X. On Windows, the picture isn't so rosy.

Among the three major D compilers on Windows, there are three linkers to contend
with: the DMC linker that DMD uses by default, the MinGW linker used by GDC
and one flavor of LDC, and the Microsoft linker used by DMD in 64-bit mode (and
32-bit with the –m32mscoff switch) and another flavor of LDC. Among these three
linkers are two primary object formats: OMF and COFF. The DMC linker outputs
object files in the ancient OMF format, whereas everything else outputs COFF.
This is an issue that affects both static and import libraries.

Connecting D with C

[306]

Another potential thorn arises when dealing with static libraries generated by
MinGW. Sometimes, it's possible for them to work with the Microsoft toolchain, as
they use the COFF format and link with the Microsoft C Runtime. Unfortunately,
there are a number of incompatibilities that can crop up in the form of linker errors.
Even static libraries compiled directly with Microsoft Visual Studio can sometimes
result in linker errors when given to DMD, depending on the options that were used
to compile the library.

The bottom line is that, with a static binding, all static libraries, import libraries,
and object files given to the linker must be in the file format the linker understands.
Preferably, the libraries and object files will all have been compiled by the same
toolchain. Generally, you want to follow these guidelines when compiling any C
library intended to be used with a static binding in a program compiled by DMD:

•	 On Windows, when compiling the program with the –m32 switch
(the default), all C libraries should be compiled with DMC

•	 On Windows, when compiling the program with –m64 or –m32mscoff,
all C libraries should be compiled with the Microsoft compiler

•	 On other platforms, all C libraries can be compiled with either GCC or clang

If you're coming to D from a language such as Java and have never compiled a C
library before, most popular C library projects for which D bindings exist provide
binary distributions for different platforms and compiler toolchains. You may
never need to compile any C at all. However, it's still useful to learn about some of
the different build tools many C projects use. There may be times when no binary
distribution is available and you have no choice but to compile it yourself.

Conversion tools
When compiling with DMD on Windows using the default
architecture (–m32), COFF files can be converted to OMF using
a conversion tool such as Agner Fogg's free object file converter
(http://agner.org/optimize/#objconv) or the coff2omf
utility that is part of the commercial Digital Mars Extended Utility
Package (EUP) (http://www.digitalmars.com/eup.html).
The EUP also contains a tool, coffimplib, which will create an import
library in OMF format from a DLL compiled as COFF. For all three
tools, the results may not be perfect.

http://agner.org/optimize/#objconv
http://www.digitalmars.com/eup.html

Chapter 9

[307]

Linkage attributes
The fundamental mechanism that affects how D and C symbols interact with one
another is the Application Binary Interface (ABI). This defines such things as how
types are laid out in memory, what their sizes are, and so on. Most of that we don't
have to worry about when creating a binding, as the compiler takes care of it for us.
However, there are two aspects of the ABI to which active attention should be paid
in order to ensure the binding matches up with the C library. Get this wrong and
any binding you create becomes nothing more than a pile of linker errors or access
violations waiting to happen. One mechanism is that of name mangling, the other is
calling conventions.

Name mangling
With a language that supports function overloading, a linker needs to be able to
distinguish between different overloads of a function. It also needs to be able to
distinguish between any symbols of the same name in different namespaces. This
is where name mangling comes into play. The compiler takes symbols declared
in source code and mangles, or decorates, them with a set of characters that have
predefined meanings. We can see this in D by calling the mangleof property on any
symbol. Save the following as $LEARNINGD/Chapter09/mangle.d:

module mangle;
import std.stdio;
int x;
void printInt(int i) { writeln(i); }
void main() {
 writeln(x.mangleof);
 writeln(printInt.mangleof);
}

Running this results in the following output:

_D6mangle1xi

_D6mangle8printIntFiZv

A linker need not know or care what the mangled names indicate, but a tool that
understands D mangling can make use of it. In both lines, _D indicates that this is the
D name-mangling format. The 6 immediately after it says that the symbol following
the number, mangle, has six characters. Being that mangle is the first symbol in the
name, we know it's the name of the module. It acts as a namespace. In the first line,
mangle is followed by 1xi. The 1 indicates a one-character symbol name, x is the
name, and the i tells us it's an int.

Connecting D with C

[308]

Similarly, the second line tells us that the symbol name has 8 characters and the
name is printInt. F lets us know that it's a function, i that it takes an int parameter,
and Z, in this case, indicates that the next character represents the return type of the
function. Since that happens to be v, we know the return type is void. You can read
more about D's name mangling at http://dlang.org/abi.html.

Not all languages define a name-mangling format as D does. C++, for example, does
not; each compiler has its own approach to name mangling, which is one of several
aspects of the C++ ABI that makes it extremely difficult to bind to C++ libraries
(though, as we'll see in Chapter 11, Taking D to the Next Level, there is ongoing work
to make it possible in D). C, on the other hand, is the lingua franca of programming
languages for a reason: it has a well-defined ABI that does not include function
overloading or namespaces.

That's not to say that C compilers don't use any sort of decorations. It's still necessary
to distinguish between variables that are declared locally to a compilation unit rather
than globally, but this has no impact on bindings. Some compilers may decorate a
C symbol in a static library with an underscore, but this is usually not an issue in
practice. The short of it is that when a C header is translated into D, any symbols that
need to link up on both sides cannot be declared with the default D name mangling.
The C side knows nothing about D's name-mangling scheme, so nothing would ever
match up unless it's disabled. We'll see how to do this soon, but first we need to talk
about calling conventions.

Calling conventions
When a function is called, there are a number of steps that must be taken, both at
the beginning of the call and at the end. During compilation, the compiler generates
the appropriate instructions to carry out those steps. This includes instructions to
preserve the contents of the CPU registers if needed, pushing function parameters
on the stack or copying them into registers before the call, looking in the correct
location for a return value once a function call has ended, and other low-level details
that we programmers never have to manage ourselves unless we are programming
in assembly. In order for the correct instructions to be generated, the requirements
must be detailed somewhere of how to carry out any given function call, including
whether it expects any parameters in registers, in what order stack parameters
should be pushed, and so on. That's the role played by a calling convention.

A calling convention defines how every aspect of a function call should be handled.
When a function is compiled, the compiler determines which calling convention
is associated with the function and generates the appropriate instructions to fetch
parameters and return a value. When any code calling that function is compiled, the
compiler must be made aware of the calling convention originally used to compile
the function so that it can generate the appropriate instructions for the call.

http://dlang.org/abi.html

Chapter 9

[309]

By default, all functions in D are assumed to have the D calling convention. As I
write, the D calling convention on non-Windows systems is documented to be the
same as the C calling convention supported by the system C compiler. In practice,
there are undocumented discrepancies, but this isn't an issue for general use. The
convention for Windows is described at http://dlang.org/abi.html.

Putting it together
When binding to any C library from D, it's important to know exactly which calling
convention the library uses. On non-Windows systems, this is almost always the C
calling convention. On Windows, it is usually either the C calling convention or the
system calling convention, stdcall (standard call). Often, the calling convention
used is not described anywhere in a library's documentation and it's necessary to
look at the headers. If you find __stdcall defined in any of the headers, such as
something like this:

#define DLL_CALLCONV __stdcall

Then you know any functions annotated with DLL_CALLCONV have the standard call
calling convention. The C calling convention might also be defined explicitly with
a __cdecl. If no convention is declared, you can assume the C calling convention,
which is the default for all C compilers.

Changing the default
Some C compilers allow changing the default calling convention
through a command line switch. For people using Visual C++, this is
easily done in a project's properties window. This is a potential issue
when using precompiled libraries with bindings.

D allows you to specify both the name-mangling scheme of any symbol and the
calling convention of any function by using a linkage attribute. Here's an example:

module linkage;
extern(C) int cint;
extern(D) int dint;
extern(C) int aFuncWithCLinkage() { return 1; }
extern(D) int aFuncWithDLinkage() { return 2; }
void main() {
 import std.stdio;
 writeln(cint.mangleof);
 writeln(dint.mangleof);
 writeln(aFuncWithCLinkage.mangleof);
 writeln(aFuncWithDLinkage.mangleof);
}

http://dlang.org/abi.html

Connecting D with C

[310]

extern(C) is a linkage attribute that turns off name mangling (to match C) and
specifies that a function has the C calling convention. extern(D) specifies the D
name mangling and calling convention. The output looks like this:

cint

_D7linkage4dinti

aFuncWithCLinkage

_D7linkage17aFuncWithDLinkageFZi

That's a big difference. It's easy to forget that linkage attributes affect more than
calling conventions. Of course, since D is the default name-mangling scheme and
calling convention, the need to specify it in code is rare (in the previous example,
main has D linkage). However, linkage attributes can be declared with a colon (:)
and with braces ({}), so it may sometimes be needed. For example:

extern(C):
 // A bunch of stuff with C linkage
extern(D):
 // Enable D linkage again

In addition to C and D, there are also the Windows, System, and Pascal linkage
attributes. extern(Windows) is used for functions that have the standard call calling
convention. extern(System) defaults to extern(Windows) on Windows and
extern(C) elsewhere. There are some cross-platform libraries out there that use the
default C calling convention on most platforms, but use standard call on Windows.
extern(System) eliminates the need to declare two sets of function declarations to
match the different calling conventions. The need for extern(Pascal) is extremely
rare, if not nonexistent. It was the system calling convention for Windows back in the
16-bit days.

Linkage attributes have no effect on type declarations. We can see that in this example:

module types;
extern(C) struct CStruct {
 int x, y;
}
struct DStruct {
 int x, y;
}
void main() {
 import std.stdio;
 writeln(CStruct.mangleof);
 writeln(DStruct.mangleof);
}

Chapter 9

[311]

The output:

S5types7CStruct

S5types7DStruct

Some new D programmers think that types must always be declared as extern(C)
when binding to C, but that's not the case. The types in D don't even need to have the
same name as the C types, as the type names will never be emitted to the binary. All
that matters is that the D types are binary compatible with the C types. More on this
in the next section.

Another point of confusion comes from function implementations with C linkage.
Functions in a C library binding have no implementation, only declarations.
However, when using a binding, it is sometimes necessary to implement an
extern(C) function to use as a callback. Sometimes, new D users have the
impression that D features cannot be used in such a function. This is not the case.
Remember, the linkage attribute only affects the mangling of the function's name and
its calling convention. There are no restrictions on the features that can be used in the
function body. On the other hand, there can be negative consequences when it comes
to throwing exceptions and allocating GC memory, but that has nothing to do with
the linkage attribute. We'll cover those issues later in the chapter when we talk about
calling C from D.

Binding D to C
The first step that must be taken when implementing a binding to a C library is to
decide whether it will be a static or dynamic binding. The former requires nothing
more than the translation of all of the C types, global variables, and function
signatures. The latter additionally requires a supporting API to load a shared library
into memory. We'll cover both approaches in this section.

Once the type of binding has been settled, then begins the work of translating the
C headers. This requires enough familiarity with C to understand not just the types
and function signatures, but also the preprocessor definitions. While we'll cover
some common preprocessor usage to look out for and how to translate it to D, there's
not enough room here to provide a full tutorial on C preprocessor directives. Those
readers unfamiliar with C are strongly advised to take the time to learn some of the
basics before taking on the task of translating any C headers.

Connecting D with C

[312]

There are two tools in the D ecosystem that provide some amount of automated
translation from C headers to D modules. htod is available at http://dlang.
org/htod.html. It's built from the frontend of DMC, the Digital Mars C and
C++ compiler. Another option is DStep, which uses libclang. It can be found at
https://github.com/jacob-carlborg/dstep. Neither tool is perfect; it is often
necessary to manually modify the output of both, which makes the information in
this chapter relevant. Furthermore, both tools only generate static bindings.

Function prototypes
As we saw earlier, the declaration of function prototypes differs for static and
dynamic bindings. The one trait they have in common is that they both need to be
declared with a linkage attribute. Given that the functions are implemented in C, it's
also normally safe to declare them with the @nogc and nothrow attributes. With that,
in any module where the C function signatures are declared, you can first set aside a
block like so:

extern(C) @nogc nothrow {
 // Function signatures go here
}

Replace extern(C) with extern(System) or extern(Windows) as required.

Now, consider the following hypothetical C function declaration in a C header:

extern int some_c_function(int a);

Let's put a declaration in our extern(C) block for a static binding:

extern(C) @nogc nothrow {
 int some_c_function(int a);
}

A key thing to remember in a static binding is that the function names on the D side
must exactly match the function names on the C side. The linker will be doing the
work of matching up the function symbols (either via static or dynamic linking)
and it isn't smart enough to guess that someCFunction declared in D is the same
as some_c_function declared in C. It doesn't know or care that they came from
different languages. All it knows about is object files and symbols, so the symbols
must be the same.

http://dlang.org/htod.html
http://dlang.org/htod.html
https://github.com/jacob-carlborg/dstep

Chapter 9

[313]

Another thing to consider is that the parameter names are optional. These only have
meaning in the function implementation. In the function prototypes, only the types
of the parameters matter. You can omit the parameter names completely, or change
them to something else. Both of the following will happily link to the C side:

int some_c_function(int bugaloo);
int some_c_function(int);

If you intend to add Ddoc comments to your binding, it's a good idea to keep the
parameter names to make the documentation more clear. It's also best practice to use
the same parameter names as the original C library, though I doubt anyone would
fault you for changing the names for clarity where appropriate. Additionally, keeping
the parameter names makes it possible to use them with compile-time reflection.

If the original C library is well documented, it's reasonable to point users of your
binding to the original documentation rather than providing your own. After all,
implementing Ddoc comments for the C API means you have to make sure that you
don't contradict the original documentation. Then you have to make sure it all stays
in sync. That seems like a waste of effort when a perfectly good set of documentation
already exists. Ideally, users of your binding would never need to look at its
implementation to understand how to use it. They can get everything they need from
the C library documentation and examples.

In a dynamic binding, the declaration might look like this:

extern(C) @nogc nothrow {
 int function(int) someCFunction;
}

Here, we've declared a function pointer instead of a function with no body. Again,
the parameter name is not required and, in this case, we've left it out. Moreover, we
don't need to use the original function name. In a dynamic binding, the linker plays
no role in matching symbols. The programmer will load the shared library, fetch the
function address, and assign it to the function pointer manually. That said, you really
don't want to use the real function name in this case.

Connecting D with C

[314]

The problem is that the variable that holds the function pointer is also declared as
extern(C), which means the symbols for the function pointer and the C function will
be identical. It may work most of the time on most platforms, but there is potential for
things to blow up. I can tell you from experience that with many libraries it will cause
errors during application startup. on Linux If you want to keep the same name, use
an alias:

extern(C) @nogc nothrow {
 alias p_some_c_function = int function(int);
}
__gshared p_some_c_function some_c_function;

We'll see why __gshared is used here shortly.

If we were making a static binding to this single-function C library, we would be
finished. All we would need to do is import the module containing the function
declaration and link with the C library, either statically or dynamically, when we
build the program. For a dynamic binding, however, there's still more work to do.

Manually loading shared libraries
A function pointer is useless until it has been given the address of a function. In order
to get the address, we have to use the system API to load the library into memory.
On Windows, that means using the functions LoadLibrary, GetProcAddress, and
FreeLibrary. On the other systems DMD supports, we need dlopen, dlsym, and
dlclose. A barebones loader might look something like this, which you can save as
$LEARNINGD/Chapter09/clib/loader.d (we'll make use of it shortly):

module loader;
import std.string;
version(Posix) {
 import core.sys.posix.dlfcn;
 alias SharedLibrary = void*;
 SharedLibrary loadSharedLibrary(string libName) {
 return dlopen(libName.toStringz(), RTLD_NOW);
 }
 void unload(SharedLibrary lib) {
 dlclose(lib);
 }
 void* getSymbol(SharedLibrary lib, string symbolName) {
 return dlsym(lib, symbolName.toStringz());
 }
}
else version(Windows) {
 import core.sys.windows.windows;

Chapter 9

[315]

 alias SharedLibrary = HMODULE;
 SharedLibrary loadSharedLibrary(string libName) {
 import std.utf : toUTF16z;
 return LoadLibraryW(libName.toUTF16z());
 }
 void unload(SharedLibrary lib) {
 FreeLibrary(lib);
 }
 void* getSymbol(SharedLibrary lib, string symbolName) {
 return GetProcAddress(lib, symbolName.toStringz());
 }
}
else static assert(0, "SharedLibrary unsupported on this
platform.");

Error handling
This implementation does no error handling, but a more robust
implementation would throw exceptions with a system-generated
error message as the exception message. See the functions std.
windows.syserror.sysErrorString and std.posix.dlfcn.
dlerror.

With that in hand, we can do something like this to load a library:

auto lib = loadSharedLibrary(libName);
if(!lib) throw new Error("Failed to load library " ~ libName);

To load a function pointer that is not aliased, such as someCFunction which we saw
previously, we can't just call getSymbol and assign the return value directly to the
function pointer. The return type is void*, but the compiler requires a cast to the
function pointer type. However, the type used with the cast operator must include
the linkage and function attributes used in the declaration of the function pointer.
It's not possible to include all of that directly in the cast. There are different ways to
handle it.

The simplest thing to do in our case is to call typeof on someCFunction and use the
result as the type in the cast:

someCFunction =
cast(typeof(someCFunction))lib.loadSymbol("some_c_function");

Connecting D with C

[316]

Things are different when the aliased form is used:

extern(C) @nogc nothrow {
 alias p_some_c_function = int function(int);
}
__gshared p_some_c_function some_c_function;

With this, we can then load the function like so:

some_c_function =
cast(p_some_c_function))lib.loadSymbol("some_c_function");

One issue with this approach is that some_c_function, being a variable, has thread-
local storage like any other variable in D. This means that in a multi-threaded app,
every thread will have a copy of the pointer, but it will be null in all of them except
for the one in which the library is loaded. There are two ways to solve this. The hard
way is to make sure that getSymbol is called once in every thread. The easy way is to
add __gshared to the declaration as we have done.

We'll dig into this a little more in Chapter 11, Taking D to the Next Level, but there are
two ways to make a variable available across threads in D: __gshared and shared.
The former has no guarantees. All it does is put the variable in global storage,
making it just like any global variable in C or C++. The latter actually affects the type
of the variable; the compiler is able to help prevent the variable from being used in
ways it shouldn't be.

Trying it out
In the $LEARNINGD/Chapter09/clib directory of the book's sample source
distribution, you'll find a C source file, clib.c, which looks like this:

#include <stdio.h>
#ifdef _MSC_VER
__declspec(dllexport)
#endif
int some_c_function(int a) {
 printf("Hello, D! From C! %d\n", a);
 return a + 20;
}

This is accompanied by four Windows-specific binaries: clib32.lib,
clib32.dll, clib64.lib, and clib64.dll. The library files are import libraries,
not static libraries, intended to be linked with the static binding. Because they are
import libraries, each has a runtime dependency on its corresponding DLL.

Chapter 9

[317]

If you are working on a platform other than Windows, you can use GCC (or clang,
if it is your system compiler) to compile the corresponding version of the shared
library for your system. The following command line should get the job done:

gcc -shared -o libclib.so -fPIC clib.c

You'll also find loader.d, the implementation of which we saw previously, and a
D module named dclib.d. The top part of this module provides both a static and
dynamic binding to some_c_function. The rest shows how to use the two versions
of the binding. The implementation is:

extern(C) @nogc nothrow {
 version(ClibDynamic)
 int function(int) some_c_function;
 else
 int some_c_function(int);
}
void main() {
 version(ClibDynamic)
 {
 import loader;
 version(Win64) enum libName = "clib64.dll";
 else version(Win32) enum libName = "clib32.dll";
 else enum libName = "libclib.so";

 auto lib = loadSharedLibrary(libName);
 if(!lib) throw new Exception("Failed to load library " ~
 libName);

 some_c_function =
 cast(typeof(some_c_function))lib.loadSymbol
 ("some_c_function");
 if(!some_c_function) throw new Exception("Failed to load
 some_c_function");
 }
 import std.stdio : writeln;
 writeln(some_c_function(10));
}

The command line used to compile all of this depends on the platform and linker
you are using. Compiling to use the static binding in the default 32-bit mode on
Windows:

dmd dclib.d clib32.lib -oftestStatic

Connecting D with C

[318]

This uses the static binding, links with clib32.lib, and creates an executable
named testStatic.exe. To see the sort of error a user would get when the DLL
is missing, temporarily rename clib32.dll and execute the program. To test the
dynamic binding, use this command line:

dmd -version=ClibDynamic dclib.d loader.d -oftestDynamic

This time, we don't link to anything, but need to compile loader.d along with
the main module. We specify the version ClibDynamic to trigger the correct code
path and we output the binary as testDynamic.exe to avoid mixing it up with
testStatic. Once again, temporarily rename clib32.dll and see what happens.
When manually loading a shared library like this, the loader also needs to manually
handle the case where loading fails. One benefit of this approach is that it provides
the opportunity to display a message box with a user-friendly message instructing
the user on how to solve the problem, or provide a link to a web page that does.

Compiling in 64-bit mode with the MS linker is similar:

dmd -m64 dclib.d clib64.lib -oftestStatic64

dmd -m64 -version=ClibDynamic dclib.d loader.d -oftestDynamic64

Again, we're using distinct file names to avoid overwriting the 32-bit binaries.

When compiling the static binding with GCC on other platforms, we need to tell the
linker to look for the library in the current directory, as it is not on the library search
path by default. -L-L. will make that happen. Then we can use -L-lclib to link
the library:

dmd -L-L. -L-lclib dclib.d -oftestStatic

Compiling the dynamic binding is almost the same as on Windows, but on Linux
(not Mac or the BSDs) we have to link with libdl to have access to dlopen and
friends:

dmd -version=ClibDynamic -L-ldl dclib.d loader.d -oftestDynamic

When executing either version at this point, you will most likely see an error telling
you that libclib.so can't be found. Unlike Windows, Unix-like systems are
generally not configured to search for shared libraries in the executable's directory.
In order for the library to be found, you can copy it to one of the system paths (such
as /usr/lib) or, preferred for this simple test case, temporarily add the executable
directory to the LD_LIBRARY_PATH environment variable. Assuming you are working
in ~/LearningD/Chapter09/clib, then the following command will do it:

export LD_LIBRARY_PATH=~/LearningD/Chapter09/clib:$LD_LIBRARY_PATH

Chapter 9

[319]

With that, you should be able to execute ./testStatic and ./testDynamic
just fine.

No matter the platform or linker, a successful run should print these lines to
the console:

Hello, D! From C! 10

30

C types to D types
Getting from C to D in terms of types is rather simple. Most of the basic types are
directly equivalent, as you can see from the following table:

C types D types
void void

signed char byte

unsigned char ubyte

short short

unsigned short ushort

int int

unsigned int uint

long core.stdc.config.c_long

unsigned long core.stdc.config.c_ulong

long long long

unsigned long long ulong

float float

double double

long double core.stdc.config.c_long_double

There are a few entries in this table that warrant explanation. First, the translation
of signed char and unsigned char to byte and ubyte applies when the C types
are used to represent numbers rather than strings. However, it's rare to see C code
with char types explicitly declared as signed. The reason it appears in this table is
because the C specification does not specify that the default char type be signed or
unsigned, but rather leaves it implementation defined. In practice, most C compilers
implement the default char as a signed type, which matches the default for other
types (short, int, and long), but it's still possible to encounter libraries that have
been compiled with the default char type to be unsigned; GCC supports the
-funsigned-char command line switch that does just that. So while it's generally
safe to treat the default C char as signed, be on the lookout for corner cases.

Connecting D with C

[320]

The size of the C long and unsigned long types can differ among C compilers.
Some implement them as 32-bit types and others as 64-bit. To account for that
difference, it's best to import the DRuntime module core.stdc.config and use the
c_long and c_ulong types, which match the size of the long and unsigned long
types implemented by the backend. When it comes to long double, you may come
across some documentation or an old forum post that recommends translating it to
real in D. Once upon a time, that was the correct thing to do, but that has not been
true since DMD gained support for the Microsoft toolchain. There, the size of long
double is 64 bits, rather than 80. To translate this type, import core.stdc.config
and use c_long_double. This list of special cases could grow as support is added
for more compilers and platforms.

Don't define your own
If, for whatever reason, you're tempted to avoid importing core.
stdc.config and declare your own alias for c_long_double to
treat it as a double when using the MS backend, please don't. The
compiler specially recognizes c_long_double when it's used with the
MS backend and generates special name mangling for instances of that
type. Using anything else could break ABI compatibility.

Strings and characters
There are two character types in C, char and wchar_t. Strings in C are represented
as arrays of either type, most often referred to as char* and wchar_t* strings. The
former can be translated to D directly as char*, although some prefer to translate it
as ubyte* to reflect the fact that the D char type is always encoded as UTF-8, while
there is no such guarantee on the C side. In practice, this is more of an issue for how
the instances of the type are used, more than how they are translated.

The wchar_t type can't be directly translated. The issue is that the size and encoding
of wchar_t is not consistent across platforms. On Windows, it is a 2-byte value
encoded as UTF-16, while on other platforms it is a 4-byte value encoded as UTF-32.
There is no wrapper type in core.stdc.config, but in this case it's easy to resolve:

version(Windows) alias wchar_t = wchar;
else alias wchar_t = dchar;

Special types
The types size_t and ptrdiff_t are often used in C. These are types that are not
part of the language, but are defined in the standard library. D also provides aliases
that correspond exactly to the type and size of each as defined in the relevant C
compiler, so a direct translation is appropriate. They are always globally available,
so no special import is required.

Chapter 9

[321]

Complex types have been a part of C since C99. There are three types,
float _Complex, double _Complex, and long double _Complex. In D, these
translate to, respectively, cfloat, cdouble, and creal. The functions found in the
C header file complex.h are translated to D in the DRuntime module core.stdc.
complex. It's expected that these three complex types will be deprecated at some point
in the future, to be replaced by the type std.complex.Complex, which is usable now.

C99 also specifies a Boolean type, _Bool, which is typedefed to bool in stdbool.h.
The specification requires only that the type be large enough to hold the values 0
and 1. The C compilers we need to worry about for DMD implement _Bool as a
1-byte type. As such, the C _Bool or bool can be translated directly to D bool. Older
versions of GCC implemented it as a 4-byte type, so be on the lookout if you're ever
forced to compile a D program against C libraries compiled with GCC 3.x.

C99 also introduced stdint.h to the C standard library. This provides a number
of typedefs for integer types of a guaranteed size. For example, int8_t, uint8_t,
int16_t, uint16_t, and so on. When you encounter these in a C header, you have
two options for translation. One option is just to translate them to the D type of the
same size. For example, int8_t and uint8_t would translate to byte and ubyte.
The other option is to import core.stdc.stdint and use the C types directly.

Enumerations
The C enum and the D enum are equivalent, so that a direct translation is possible.
An example:

// In C
enum {
 BB_ONE,
 BB_TWO,
 BB_TEN = 10
};
// In D
enum {
 BB_ONE,
 BB_TWO,
 BB_TEN = 10
}

Some thought needs to be given toward how to translate named enums. Consider
the following:

typedef enum colors_t {
 COL_RED,
 COL_GREEN,
 COL_BLUE
}

Connecting D with C

[322]

It may seem that a direct translation to D would look like this:

enum colors_t {
 COL_RED,
 COL_GREEN,
 COL_BLUE
}

However, that isn't an accurate translation. There is no notion of enum namespaces
in C, but to access the members of this enum in D would require using the colors_t
namespace, for example, colors_t.COL_RED. The following would be more
appropriately called a direct translation:

alias colors_t = int;
enum {
 COL_RED,
 COL_GREEN,
 COL_BLUE
}

Now this can be used exactly as the type is used on the C side, which is important
when you want to maintain compatibility with existing C code. The following
approach allows for both C and D styles:

enum Colors {
 red,
 green,
 blue,
}
alias colors_t = Colors;
enum {
 COL_RED = Colors.red,
 COL_GREEN = Colors.green,
 COL_BLUE = Colors.blue,
}

Structures
The D struct is binary compatible with the C struct, so here too, most translations
are direct. An example is:

// In C
struct point {
 int x, y;
};
// In D

Chapter 9

[323]

struct point {
 int x, y;
}

The only difference between these two types shows up in usage. In C, anywhere
the point type is to be used, the struct keyword must be included, for example, in
the declaration struct point p. Many C programmers prefer to use a typedef for
their struct types, which eliminates the need for the struct keyword in variable
declarations and function parameters by creating an alias for the type. This typically
takes one of two forms:

// Option 1
typedef struct point point_t;
struct point {
 int x, y;
};
// Option 2
typedef struct {
 int x, y;
} point_t;

Option 2 is shorthand for Option 1, with the caveat that point_t is not usable inside
the braces. A good example of where this comes into play is a linked list node:

typedef struct node_s node_t;
struct node_s {
 void *item;
 node_t *next;
};
typedef struct node_s {
 void *item;
 struct node_s *next;
} node_t;

Note that in the first version of node_s, the the typedefed name is used.. This is
perfectly legal when using an external typedef, but it isn't possible in the second
version. There, since node_t is not visible inside the braces, the struct keyword
cannot be omitted in the declaration of the member next. In D, the two types look
like this, regardless of which approach was used in their C declarations:

struct point_t {
 int x, y;
}
struct node_t {
 void* item;
 node_t* next;
}

Connecting D with C

[324]

When any C struct has a typedefed alias, the alias should always be preferred in
the D translation.

It's possible to have multiple type aliases on a single C struct. This is most often
used to declare both a value type and a pointer type:

typedef struct {
 int x, y;
} point_t, *pointptr_t;

In D, we would translate this as:

struct point_t {
 int x, y;
}
alias pointptr_t = point_t*;

Sometimes, a C struct is aliased only to a pointer and without a struct name.
In that case, only pointers to that type can be declared:

typedef struct {
 int i;
} *handle_t;

Most often, when this form is used, the members of the struct are only intended
to be used internally. If that's the case, the struct can be declared like this on
the D side:

struct _handle;
alias handle_t = _handle*;

We could declare _handle as an empty struct, but by omitting the braces we
prevent anyone from declaring any variables of type _handle. Moreover, no
TypeInfo is generated in this case, but it would be with an empty struct. These
days, most C programmers would likely not implement a handle type like this.
A more likely implementation today would look like this:

typedef struct handle_s handle_t;

In the public-facing API, there is no implementation of handle_s. It is hidden away
inside one of the source modules. Given only the header file, the compiler assumes
that struct handle_s is implemented somewhere and will let the linker sort it
out. However, without the implementation handy, the compiler has no way of
determining the size of a handle_t. As such, it will only allow the declaration of
pointers. The C API will then contain a number of functions that look like this:

Chapter 9

[325]

handle_t* create_handle(int some_arg);
void manipulate_handle(handle_t *handle, int some_arg);
void destroy_handle(handle_t *handle);

In D, we can declare handle_t the same way we declared _handle previously:

struct handle_t;

Another C idiom that isn't so common these days, but may still be encountered now
and again, is the inclusion of an array declaration in the declaration of the struct
type itself. For example:

struct point {
 int x, y;
} points[3] = {
 {10, 20},
 {30, 40},
 {50, 60}
};

D does not support this syntax. The array must be declared separately:

struct point {
 int x, y;
}
point[3] points = [
 point(10, 20),
 point(30, 40),
 point(50, 60)
];

Pointers
While C pointers are directly translatable to D, it pays to keep in mind the difference
in declaration syntax. Consider the declarations of these two variables in C:

int* px, x;

This is not a declaration of two int pointers, but rather one int pointer, px, and one
int. In a perfect world, all C programmers would conform to a style that brings a
little clarity:

int *px, x;

Connecting D with C

[326]

Or, better still, declare the variables on separate lines. As it stands, there are a variety
of styles that must be interpreted when reading C code. At any rate, the previous
declarations in D must be separated:

int* px;
int x;

Always remember that a pointer in a variable declaration in D is associated with the
type, not the variable.

Type aliases
It's not uncommon to see type aliases in C libraries. One common use is to define
fixed-size integers. Since the C99 standard was released, such types have been
available in stdint.h, but not all C compilers support C99. A great many C libraries
are still written against the C89 standard for the widest possible platform support, so
you will frequently encounter typedefed and #defined aliases for integer types to
hide any differences in type sizes across platforms. Here are a couple of examples:

typedef signed char Sint8;
typedef unsigned char Uint8;

Despite the name, the C typedef does not create a new type, only an alias. Whenever
the compiler sees Sint8, it effectively replaces it with signed char. The following
defines have the same effect, but are handled by the preprocessor rather than the
compiler:

#define Sint8 signed char
#define Uint8 unsigned char

The preprocessor parses a source module before the compiler does, substituting
every instance of Sint8 and Uint8 with signed char and unsigned char.
The typedef approach is generally preferred and is much more common. Both
approaches can be translated to D using alias declarations:

alias Sint8 = sbyte;
alias Uint8 = ubyte;

It is not strictly necessary to translate type aliases, as the actual types, byte and
ubyte in this case, can be used directly. But again, maintaining conformance with
the original C library should always be a priority. It also minimizes the risk of
introducing bugs when translating function parameters, struct members,
or global variables.

Chapter 9

[327]

Function pointers
In C libraries, function pointers are often declared for use as callbacks and to
simulate struct member functions. They might be aliased with a typedef,
but sometimes they aren't. For example:

typedef struct {
 void* (*alloc)(size_t);
 void (*dealloc)(void*);
} allocator_t;
void set_allocator(allocator_t *allocator);

And using type aliases:

typedef void* (*AllocFunc)(size_t);
typedef void (*DeallocFunc)(void*);
typedef struct {
 AllocFunc alloc;
 DeallocFunc dealloc;
} allocator_t;
void set_allocator_funcs(AllocFunc alloc, DeallocFunc dealloc);

Sometimes, they are declared as function parameters:

void set_alloc_func(void* (*alloc)(size_t));

There are a couple of things to remember when translating these to D. First, callbacks
should always follow the same calling convention they have in the C header, meaning
they must be given the appropriate linkage attribute. Second, they should probably
always be marked with the nothrow attribute for reasons that will be explained later in
the chapter, but it isn't always quite so clear whether or not to use @nogc.

Function pointers intended for use as callbacks aren't intended to be called in D
code. The pointers will be handed off to the C side and called from there. From
that perspective, it doesn't matter whether they are marked @nogc or not, as the
C side can call the function through the pointer either way. However, it makes a
big difference for the user of the binding. @nogc means they won't be able to do
something as common as calling writeln to log information from the callback.
In our specific example, it's not a bad thing for the user to want the AllocFunc
implementation to allocate GC memory (as long as he or she keeps track of it).
Consider carefully before adding @nogc to a callback, but, as a general rule,
it's best to lean toward omitting it.

Connecting D with C

[328]

Careful consideration should also be given to function pointers that aren't callbacks,
but are intended for use as struct members. These may actually be called on the
D side and may need to be called from @nogc functions. In this case, it might make
sense to mark them as @nogc. Doing so prevents any GC allocations from taking
place in the implementations, but not doing so prevents them from being called
by other @nogc functions. Consider how the type is intended to be used, and what
tasks the function pointers are intended to perform, and use that to help guide your
decision. Of course, if the function pointers are set to point at functions on the C side,
then go ahead and add @nogc and nothrow to your heart's content.

With that, we can translate each of the previous declarations. The first looks like this:

struct allocator_t {
extern(C):
 void* function(size_t) alloc;
 void function(void*) dealloc;
}

The function set_allocator can be translated directly. From the second snippet,
allocator_t and set_allocator_funcs can be translated directly. AllocFunc
and DeallocFunc become aliases:

extern(C) nothrow {
 alias AllocFunc = void* function(size_t);
 alias DeallocFunc = void function(void*);
}

Finally, the function set_alloc_func could be translated like this (using the form
for a static binding):

extern(C) @nogc nothrow {
 void set_alloc_func(void* function(size_t));
}

In this situation, a function pointer declared as a function parameter picks up the
extern(C) linkage, but does not pick up the two function attributes. If you want the
callback implementation to be nothrow, you'll have to declare it like this:

extern(C) @nogc nothrow {
 void set_alloc_func(void* function(size_t) nothrow);
}

It may be preferable to go ahead and alias the callback anyway:

extern(C):
alias AllocFunc = void* function(size_t) nothrow;
void set_alloc_func(AllocFunc) @nogc nothrow;

Chapter 9

[329]

Defined constants
Despite the presence of an enum type in C, it's not uncommon for C programmers
to use the preprocessor to define constant values. A widely used library that does
this is OpenGL. Just take a peek at any implementation of the OpenGL headers and
you'll be greeted with a massive list of #define directives associating integer literals
in hexadecimal with names such as GL_TEXTURE_2D. Such constants need not be in
hexadecimal format, nor do they need to be integer literals. For example:

#define MAX_BUFFER 2048
#define INVALID_HANDLE 0xFFFFFFFF
#define UPDATE_INTERVAL (1.0/30.0)
#define ERROR_STRING "You did something stupid, didn't you?"

All of these can be translated to D as manifest constants:

enum MAX_BUFFER = 2048;
enum INVALID_HANDLE = 0xFFFFFFFF;
enum UPDATE_INTERVAL = 1.0/30.0;
enum ERROR_STRING = "You did something stupid, didn't you?";

Function parameters and return types
When translating function parameters and return types to D, everything that has
been said about types so far in this chapter applies. An int is an int, a float is a
float, and so on. As mentioned earlier, parameter names can be included or omitted
as desired. The important part is that the D types match the C types. However, there
is one type of parameter that needs special attention: the static array.

Consider the following C function prototype:

void add_three_elements(float array[3]);

In C, this signature does not cause three floats to be copied when this function is
called. Any array passed to this function will still decay to a pointer. Moreover, it
may contain fewer than or more than three elements. In short, it isn't different from
this declaration:

void add_three_elements(float *array);

A little-known variation is to use the static keyword inside the array brackets:

void add_three_elements(float array[static 3]);

This tells the compiler that the array should contain at least three elements.

Connecting D with C

[330]

To translate the first function to D, we could get away with treating it as taking
a float pointer parameter, but that would be misleading to anyone who looks
at the source of the binding. The C code is telling us that the function expects
three parameters, even though it isn't enforced. For the form that uses the static
keyword, the float* approach is an even worse idea, as that would allow the caller
to pass an array containing fewer elements than the function expects. In both cases,
it's best to use a static array.

We can't just declare an extern(C) function in D that takes a static array and be done
with it, though. Recall from Chapter 2, Building a Foundation with D Fundamentals,
that a static array in D is passed by value, meaning all of its elements are copied. Try
passing one to a C function that expects a C array, which decays to a pointer, and
you'll corrupt the stack. The solution is to declare the static array parameter to have
the ref storage class:

extern(C) @nogc nothrow void add_three_floats(ref float[3]);

Be careful with static arrays that are aliased. Take, for example, the following C
declarations:

typedef float vec3[3];
void vec3_add(vec3 lhs, vec3 rhs, vec3 result);

When we translate the vec3 to D, it's going to look like this:

alias vec3 = float[3];

Once that is done and work begins on translating the function signatures, it's easy
to forget that vec3 is actually a static array, especially if it's used in numerous
functions. The parameters in vec3_add need to be declared as ref.

One more thing to consider is when const is applied to pointers used as function
parameters and return types. For the parameters, the C side doesn't know or care
anything about D const, so from that perspective it doesn't matter if the parameter is
translated as const on the D side or not. But remember that const parameters serve
as a bridge between unqualified, const, and immutable variables, allowing all three
to be passed in the same parameter slot. If you don't add the const on the D side,
you'll needlessly force callers to cast away const or immutable in some situations.
This is particularly annoying when dealing with strings. The short of it is, always
translate const function parameters as const.

Chapter 9

[331]

It's also important to keep the const around when it is applied to return types. The C
function is expecting that the contents of the pointer will not be modified. If const is
not present on the D side, that contract is easily broken:

// In C
int const *; // mutable pointer to const int
const int *; // ditto
int * const; // const pointer to mutable int
int const * const; // const pointer to const int
// In D
const(int)* // The first two declarations above
const(int*) // The second two -- const pointer to
 // mutable int isn't possible in D.

Symbols
Function parameters, struct members, and type aliases need to be named according
to the rules set out in Chapter 2, Building a Foundation with D Fundamentals. It's not
uncommon to see names in C that are keywords in D. For example, the previous
add_vec3 function could easily look like this:

void vec3_add(vec3 lhs, vec3 rhs, vec3 out);

Since out is a D keyword, it can't be used in the translation. The options are to drop
the name entirely, or to use a different name. For struct members, dropping it is
not an option, so the only choice is to change the name. For example, _out, out_,
or anything that can distinguish it from the keyword. If you're trying to maintain
conformance with the original C code, you'll want to make it as close to the original
as possible.

That solution works for member variables and function parameters, but sometimes C
functions might have a D keyword as a name. In this case, prepending an underscore
isn't going to work if you're implementing a static binding. D defines a pragma,
mangle, which solves the problem. Simply name the function anything you'd like
and give the desired name to the pragma. Consider a C function named body.
Translated to D:

pragma(mangle, "body") extern(C) void cbody();

We use cbody to avoid conflict with the D keyword body, but the pragma instructs
the compiler to use body instead of cbody for its generated output.

Connecting D with C

[332]

Global variables
Just as a function in C is usually separated into a prototype in a header and an
implementation in a source module, so is a global variable. This is because anything
that is implemented in a header file will be copied directly into every source module
that includes that header. In order to have only one global instance, the prototype
and implementation must be separate. Here's what a global variable might look like:

// foo.h
extern int g_foo;
// foo.c
int g_foo = 0;

For a static binding, there are three things that need to be accounted for in the
translation of g_foo. One is the linkage attribute, since it affects the mangling of the
symbol. If the variable is declared to have D linkage, the linker will never be able
to find it. Another is the extern keyword. Note that extern(C) indicates a linkage
attribute, but extern by itself, with no parentheses, tells the compiler that the symbol
is not implemented in the current compilation unit, so it can leave it to the linker to
sort things out.

The last thing at issue is something we touched on earlier in this chapter. Recall
that variables in D have thread-local storage by default. This is not the case in C.
Any global variable declared in C is accessible to all threads. This can't be forgotten
when translating. In this case, shared is not an option, since it actually affects the
type of the variable. The type must be the same as it is in C. So, once again, we turn
to __gshared.

With all of that in mind, the translation of g_foo from C to D should look like this:

__gshared extern extern(C) g_foo;

Substitute System or Windows for C as needed. If there are multiple global variables
to declare, a colon or a pair of brackets could be used:

__gshared extern extern(C) {
 int g_foo;
}
__gshared extern extern(C):
 int g_foo;

Chapter 9

[333]

For dynamic bindings, the variable must be declared as a pointer. In this case, the
linkage attribute is not necessary. Since the symbol is going to be loaded manually,
having D linkage isn't going to hurt. Also, extern does not apply here. Since the
variable is a pointer, it really is implemented on the D side. We can use the same
getSymbol implementation we used for loading function pointers to load the
address of the actual g_foo into the pointer.

The __gshared attribute isn't a strict requirement in this case, but it ought to be used
to make things easier and faster. Remember, space will be reserved for a thread-local
pointer in each thread, but it will not be set automatically to point at anything. If
you don't want the complexity of calling getSymbol every time a thread is launched,
use __gshared. Bear in mind that if it is not used and the pointer is thread-local, that
does not affect what the pointer actually points to. Implementing a bunch of thread-
local pointers to a global C variable may very well be begging for trouble.

There's one last thing to consider with global variables in dynamic bindings.
Because the variable is declared as a pointer, the user will inevitably have to take
this into account when assigning a value to it. After all, to set the value of a pointer,
the dereference operator has to be used: *g_foo = 10. Not only does this break
compatibility with any existing C code, it's very easy to forget. One solution is to
use two wrapper functions that can be used as properties. Another is to use a single
function that returns a reference.

So, our global variable in a dynamic binding could look like this:

private __gshared int* _foo;
int g_foo() { return *_foo; }
void g_foo(int foo) { *_foo = foo; }

Users can then do:

g_foo = 20;
writeln(g_foo);

This also makes for consistency between the static and dynamic version of a binding,
if both are implemented.

Macros
Macros are a common sight in C headers. Here's an example:

#define FOURCC(a,b,c,d) ((d)<<24) | ((c)<<16) | ((b)<<8) | (a)))

Connecting D with C

[334]

Technically, anything implemented with #define is referred to as
a macro, but in this text I'm using the term to refer to any #defined
bit of code that doesn't establish type aliases or constant values,
simply to differentiate between the various types of usage.

There are two options for translating a macro like this: make it a function, or make
it a function template. Which approach is taken often boils down to personal
preference. The only issue to be wary of is whether the template can be instantiated
without the instantiation operator. If not, then existing C code can't be copied
verbatim into D. For most macros, like the previous one, that shouldn't be an issue.

Sometimes macros include a cast to a specific type so that it's obvious what the
translated function should return. Other times, it must be deduced. It may be
possible to derive hints by looking at the C source or examples, or by using existing
tools (such as gcc -E), though frequently we are left to figure things out on our own.
In this case, given that the macro makes use of the full range of a 32-bit integer, we
should choose uint. Then the translated function becomes:

uint FOURCC(uint a, uint b, uint c, uint d) {
 return ((d)<<24) | ((c)<<16) | ((b)<<8) | (a)));
}

Note that a static binding that only includes type and function declarations does
not need to be linked at compile time; its modules only need be present on the
import path. Adding function bodies means the binding now becomes a link-time
dependency. This would not happen if FOURCC were implemented as a template.

Not all macros are this straightforward. Sometimes you have to follow a chain of
nested macros to figure out what's going on. That might mean implementing one
function for each macro, or perhaps combining them all into one. It largely depends
on how they are used on the C side. Sometimes, a macro is not intended to be used
by users of the library, but is instead used only in other macros. Ultimately, this sort
of thing is a judgment call.

Some macros can't be translated to functions easily. Consider the following:

#define STRINGIFY(s) #s
#define CASESTRING(c) case c: return STRINGIFY(c)

A hash (#) in front of a macro argument expands to the string form of whatever was
given to the macro. Some C programmers would prefer to use return #c in the
CASESTRING macro, but others would prefer to make it as clear as possible that a
symbol is being converted into a string by using a helper such as STRINGIFY.

Chapter 9

[335]

CASESTRING is a fairly common macro, the purpose of which is to take an
enum member, use it in a case statement inside a switch, and return its string
representation. Something like this:

switch(enumValue) {
 CASESTRING(BB_ONE);
 CASESTRING(BB_TWO);
 CASESTRING(BB_THREE);
 default: return "Undefined";
}

Macros such as CASESTRING and STRINGIFY are surely intended primarily for
internal use in the C library. When they are in the public-facing headers, users of the
library can make use of them, but they shouldn't be considered part of the library's
API. Given that, and that they have no use in D, there's normally no need to try to
translate them when creating a binding.

Sometimes macros are used to give a semblance of inheritance to C struct types:

#define OBJECTBASE \
 int type; \
 const char *name; \
 size_t size;
typedef struct {
 OBJECTBASE
} object_base_t;
typedef struct {
 OBJECTBASE
 int x, y, z;
} extended_object_t;

The backslash (\) at the end of the first three lines tells the compiler that the macro
continues on the next line. We could choose not to implement an equivalent of
OBJBASE on the D side and just manually add each field to every struct declaration
that needs them, but that's error prone. It's better to go ahead and declare a template
or string mixin and use that instead:

mixin template OBJBASE() {
 int type;
 const(char)* name;
 size_t size;
}
struct base_object_t {
 mixin OBJBASE;
}

Connecting D with C

[336]

struct extended_object_t {
 mixin OBJBASE;
 int x, y, z;
}

Sometimes, arguments to a macro are pasted together to form something new. This
is akin to D's string mixins, though nowhere near as flexible. Most often, such macros
are used for convenience, but sometimes they are used for a specific purpose, such
as hiding implementation details. For example, the Win32 API makes use of many
different types of object handles. Normally, these handles are aliased to void* with
a #define, but when compiled with the preprocessor definition STRICT, they are
aliased to something else completely:

#define DECLARE_HANDLE(n) typedef struct n##__{int i;}*n

When this macro is called with something like this:

DECLARE_HANDLE(HMODULE);

It expands to this:

typedef struct HMODULE__ {
 int i;
} *HMODULE;

The __ is pasted on to the macro argument with ## to form the struct name.
Translating to D:

struct HMODULE__ {
 int i;
}
alias HMODULE = *HMODULE__;

Here, the struct name need not be HMODULE__. It can effectively be anything. The
important bit is the alias. At any rate, whenever pasting with ## is encountered in
a macro, careful attention needs to be given to what the macro is doing in order to
decide if and how it needs to be translated.

There are so many creative ways to use (or abuse) the C preprocessor that even
someone who has been programming in C for more than 20 years can still learn new
tricks. Thankfully, it's rare to encounter arcane preprocessor magic, so most of the
macros you encounter will be fairly easy to translate. For those cases where you can't
figure out quite what's going on, try looking up a tutorial on the C preprocessor or
asking for help in the D forums.

Chapter 9

[337]

Conditional compilation
In D we have version blocks and static if, but C programmers use the
preprocessor for conditional compilation. This takes the form of #if, #ifdef,
and #if defined. The #if directive is used to test the value of a defined constant:

#define DEBUG_MODE = 1
#if DEBUG_MODE
// Debug code
#else
// Non-debug code
#endif

In this specific case, we could likely get away with debug {} in the D translation,
while in others we'd want to use a version block with the same name as the C code.
The #if directive can also be used with the > and < operators:

#if DEBUG_MODE > 2
// Debug mode code
#endif

This translates nicely to D as debug(3) {}.

The #ifdef directive tests whether something has been defined. It's frequently used
to test for platform, CPU architecture, and even debug mode:

#ifdef _WIN32
// Windows code
#else
// Other platforms
#endif

_WIN32 is predefined by most C compilers when compiling on Windows. It's easily
translatable as version(Windows). Keep in mind that _WIN32 is defined by C
compilers even when compiling in 64-bit mode on Windows, while version(Win32)
in D means compilation is targeting 32-bit Windows specifically.

#if defined allows multiple checks to be combined into one:

#if defined(linux) || defined(__FreeBSD__)
// Code specific to Linux and FreeBSD
#endif

Connecting D with C

[338]

Recall from Chapter 4, Running Code at Compile Time, that D does not allow Boolean
version blocks. There, we saw a way to use static if to achieve the same result,
but using version blocks, the previous code would look like this:

// Add this to the top of every module that needs it
version(linux) version = LinuxOrFreeBSD;
else version(FreeBSD) version = LinuxOrFreeBSD;
// Then elsewhere in the module...
version(LinuxOrFreeBSD) { }

Alternatively, the code could be duplicated for each platform.

It's often obvious how to translate predefined preprocessor macros like these to D,
but it still helps to familiarize yourself with the predefined macros found in DMC,
GCC, and the Microsoft compiler. Tests for custom defines, such as ENABLE_LOGGING,
or ALLOW_PNG, are always translated to use version blocks.

One potential source of trouble to be aware of is something like this:

typedef struct {
 float x, y;
#ifdef ENABLE_3D
 float z;
#endif
} vertex_t;

The D translation is straightforward:

struct vertex_t {
 float x, y;
 version(ENABLE_3D) float z;
}

With this type, anything compiled with ENABLE_3D is going to be binary incompatible
with anything that isn't. For a C library you control, this is a non-issue. On Windows,
it's easy to compile the C library exactly how you want it and, if linking dynamically
or using a dynamic binding, ship the DLL with your app. With a widely distributed
library, particularly on a system such as Linux where a number of libraries are
preinstalled and users often compile their own versions, the potential for breakage is
high. Especially when using a dynamic binding. The best thing to do in that scenario is
to determine what the most common compile configuration is for the C library and use
that as the default for your binding.

Chapter 9

[339]

Calling C from D
Once a binding is complete, there are potential crash-inducing bugs to be on the
lookout for. Incorrect linkage attributes, the wrong number of function parameters,
or any given function parameter declared with the wrong size can all bring the house
down when the problem function is called. These are issues on the implementation
side. There are other potential problems on the user's side that can also cause crashes
or unexpected behavior. That's the focus of this section.

D arrays and C arrays
The inherent difference between C arrays and D arrays is a potential source of both
compile-time and runtime errors. Here, we'll see the major issues to be aware of.

Basic arrays
When a C function expects to take an array as an argument, the corresponding
parameter is declared as a pointer. Take the following example:

#include <stdio.h>
void printThreeInts(int *ints) {
 int i;
 for(i=0; i<3; ++i)
 printf("%i\n", ints[i]);
}

It's common practice in C to require an array length to be passed along with the array
pointer in functions that have array parameters. In this case, a length parameter
is omitted since the expected length of the array is in the name of the function, a
practice that, while dangerous and error-prone, isn't exactly uncommon.

C programmers really have to be on their toes, but that means D programmers also
have to pay close attention when interacting with C. It's so easy to get used to the
safety of D's arrays and forget that calling C functions often requires extra vigilance.
Any array you pass to this function must have at least three elements. What happens
when you pass a shorter array depends entirely on what exists in the memory
locations beyond the end of the array at the time the function is called.

Connecting D with C

[340]

There are two ways to call printThreeInts that require no copying or conversions.
One is to use a cast, something that is not recommended. The other, recommended,
way is to use the .ptr property common to all arrays:

extern(C) @nogc nothrow void printThreeInts(int*);
void main() {
 int[] ints = [1, 2, 3];
 printThreeInts(cast(int*)ints);
 printThreeInts(ints.ptr);
}

Knowing that a D array is a data structure that contains a length and a pointer,
it may appear baffling that we can legally cast it to a pointer. Consider this:

struct IntArray {
 size_t length;
 int* ptr;
}
auto ia = IntArray(ints.length, ints.ptr);
auto pi = cast(int*)ia;

If you were to insert this at the end of main and try to compile, the compiler would
rightly complain that you can't cast ia of type IntArray to int*. But that's because
your IntArray type doesn't have the privileges given to built-in arrays.

When we cast our ints array to int*, the compiler is smart enough to pick up on
the fact that all we really want to do is substitute ints.ptr in place of the cast. That's
essentially what it does. Often, new D programmers tend to use the cast, probably
because that's the sort of thing they're used to in other languages, and there is some
existing D code out there that does that. Veteran D programmers tend to prefer
using the .ptr property directly. Not only is it fewer characters to type and makes it
clear exactly what's going on, but there's no room for getting the type wrong. Using
the cast, you could inadvertently do something like cast away immutable or const.
Always prefer passing the .ptr.

If you save the previous C example as $LEARNINGD/Chapter09/threeints/arrc.c
and the D example as arr.d in the same directory, you can compile with
the following commands. Using DMD with the default Digital Mars linker:

dmc -c arrc.c

dmd arr.d arrc.obj

Chapter 9

[341]

Using DMD with the Microsoft linker (be sure to use the x64 Native Tools Command
Prompt shortcut in the Visual Studio installation directories):

cl /c arrc.c

dmd -m64 arr.d arrc.obj

Using DMD on platforms other than Windows:

gcc -c arrc.c

dmd arr.d arrc.o

Wrapping array functions
One way to avoid making mistakes in calling C functions such
as printThreeInts is to use a wrapper function. The wrapper
accepts a D array as a parameter and verifies it's of the correct
length:

void printThreeInts(int[] arr) {

 assert(arr.length >= 3);

 printThreeInts(arr.ptr);

}

When a C function takes a pointer parameter to which it intends to write data, it's
important that the destination array has enough space to hold all of the elements it
will be assigned. For example, this function writes three integers to an int array:

void storeThreeInts(int *ints) {
 int i;
 for(i=0; i<3; ++i)
 ints[i] = i+100;
}

With the appropriate binding, we can call it like so:

auto threeInts = new int[3];
storeThreeInts(threeInts.ptr);
writeln(threeInts);

Here, we've used a dynamic array allocated to hold three elements, but it could be a
static array as well. As long as the array has enough space allocated to hold at least
three elements, we're good.

Connecting D with C

[342]

Arrays of arrays
Sometimes, a C function takes a pointer-to-a-pointer, such as int**, to represent
either a single array or an array of arrays. How to handle this depends on the
context. Let's first consider the case of a pointer to an array. The following C function
takes an array of int arrays and prints the members of each:

void printIntArrays(size_t count, int **arrays, size_t *sizes) {
 size_t i, j;
 for(i=0; i<count; ++i) {
 printf("Array #%d:\n", i + 1);
 for(j=0; j<sizes[i]; ++j)
 printf("\t%i\n", arrays[i][j]);
 }
}

The first parameter, count, is necessary for the function to know how many arrays
it has to work with. The second parameter is the array of arrays, and the third is an
array containing the size of each int array. The prototype for a static D binding is:

extern(C) @nogc nothrow
void printIntArrays(size_t, int**,size_t*);

Though it may seem odd, it's possible to pass a single array to this function. Let's
look at that case first, since less work needs to be done than when we pass an array
of arrays:

auto fourInts = [10, 20, 30, 40];
auto fourIntsSize = fourInts.length;
auto pfi = fourInts.ptr;
printIntArrays(1, &pfi, &fourIntsSize);

The highlighted lines are important here. It's not possible to take the address of either
.length or .ptr. The only way to get the pointers we need is to first assign them to
temporary variables and take the addresses of those. Still, this is easy compared to
what we have to do for an array of arrays:

auto intArrays = [[10, 20, 30], [1, 3, 5, 7, 9], [100, 101]];
auto ptrs = new int*[3];
auto sizes = new size_t[](intArrays.length);
foreach(i, ia; intArrays) {
 ptrs[i] = ia.ptr;
 sizes[i] = ia.length;
}
printIntArrays(intArrays.length, ptrs.ptr, sizes.ptr);

Chapter 9

[343]

The two highlighted lines show that we have to allocate two arrays for this case.
It's not possible to cast a D rectangular array to a C pointer-to-a-pointer.

In a different context, a function might always expect a pointer-to-a-pointer to
actually be a pointer to a single array, rather than to multiple arrays, perhaps to
assign the array variable a new address. For example, the following function takes
an int** and reassigns the pointer to a local static array. It then returns the size of
the local array so that the calling code knows how many elements it's pointing to:

size_t getIntList(int** parray) {
 static int localArray[3] = {10, 20, 30};
 *parray = localArray;
 return 3;
}

Given what we've seen so far, your first instinct might be to try this:

int*[] ipa = new int*[](1);
auto size = getIntList(ipa.ptr);

Since an array of pointers is just like any other array, it makes sense that we should
be able to allocate an array of them large enough to hold the number of elements
the function wants to write to it. This is no different than what we did for the
storeThreeInts example. We know we're getting one array element, so we allocate
space to hold one element.

If you think about it, the allocation is wasteful. There's no reason to allocate space
on the GC heap to hold any C array pointers. If we're worried about the contents of
the array changing out from under us on the C side, or perhaps the original array
address becoming invalid, allocating space to store the pointer buys us nothing. We
would need to allocate space for the elements, then copy them all over to guarantee
we can hang on to them for as long as we want. So we can do away with the
allocation and just do this:

int* pi;
auto size = getIntList(&pi);

Now we can take this pointer and slice it to get a D array:

auto intList = pi[0 .. size];

At this point, we still haven't allocated any GC memory. If we want, we can call
.dup on the array to allocate space for a new array and copy all the elements over,
or we can just work with the slice directly. If you don't want to modify the original
elements, or to manually manage their lifetime, or if you're concerned about
something happening to them on the C side, just go for the .dup.

Connecting D with C

[344]

Strings
We know that D strings are also D arrays, so it's reasonable to expect that they
behave the same when interacting with C. To a large extent, they do. However, the
compiler does give string literals some special treatment that normal arrays just don't
get. Try to compile and run the following program and see what happens:

void main() {
 import core.stdc.stdio : puts;
 puts("Giving a D string literal to a C function.");
}

Here, we are calling the standard C library function puts with a D string literal as
an argument. puts is not a D wrapper, but a direct binding to the C function. It takes
a C string, const char*, as an argument. So, what gives? How does this compile
and run?

The compiler treats string literals specially. A string literal is implicitly convertible
to a const or immutable pointer to char. This is true of function parameters and
variable declarations. The same does not hold for regular array literals, nor is it true
of string variables:

void main() {
 import core.stdc.stdio : puts;
 auto str = "Giving a D string to a C function.";
 puts(str);
}

This will fail to compile. From what we've seen so far about passing D arrays to C,
we know we can work around this:

puts(str.ptr);

In this particular case, this works and causes no harm, but it isn't a general-purpose
solution. This is another point where D strings differ from other array types.

There's no getting around the fact that C strings are expected to be null-terminated,
meaning the last character in the string should be '\0' (or 0). The D compiler will
let you pass D string literals directly to C functions because all string literals in D are
null-terminated. This feature exists specifically to make them directly compatible
with C. However, D does not require all strings to be null-terminated. Strings
received from external sources, such as files or network packets, are not guaranteed
to have a trailing '\0'; they will only have one if they've been initialized with a
literal. For that reason, the compiler does not allow string variables to be implicitly
converted to C-style strings, treating them just like any other array.

Chapter 9

[345]

In this specific case, we know that str was assigned a literal, so we know that it
is null-terminated. In the general case, however, when we cannot guarantee the
original source of a string variable was a literal, we need to turn to the Phobos
function std.string.toStringz.

We've already seen this function and its cousin, std.utf.toUTF16z, in the loader
module presented earlier in the chapter. Given a string str, toStringz ensures that
it is null-terminated. This usually means that a new string is allocated with space for
the null-terminator. The UTF variations perform the same task, while also converting
the input to the appropriately UTF-encoded string type.

Memory and toStringz
As I write, str.ptr is sometimes returned by toStringz, meaning
no allocation is made if the null-terminator is already present.
Unfortunately, bugs can arise in specific situations that create a false
positive, so this is almost certain to change at some point unless D gains
the ability to detect string literals through compile-time introspection.

When implementing a function that accepts a D string and hands it off to a C
function, you should always use toStringz or, if the C API requires it, one of the
UTF versions, before passing the string on to C. If you don't, then you've not only
allowed the potential for a crash, you've also opened a pretty big security hole.
Even if you think you're 100% sure that the function will only take literals, perhaps
because it's private to the module and you completely control the types of strings it
gets, you should still use toStringz.

Another thing to watch out for is what the C function does with any strings you
give it. I have actually seen someone recommend that a C function declared to take a
char* be translated to D to accept a const(char)* instead, solely to make it easier to
pass a D string to it. When using a binding that you didn't create, always familiarize
yourself with the original C API before you get started. You certainly don't want a C
function to attempt to modify your immutable(char)[] strings in D. Nothing good
can come of that. If you do need to pass a string to a C function that will be modified,
just dup it to a variable of type char[] and then pass that on to the C function. Note
that there's no guarantee that duping a string will preserve the null-terminator in
the copy.

auto s = "Dup me!";
char[] cstr = s.dup ~ '\0';
modifyString(cstr.ptr);

Connecting D with C

[346]

If the C function is treating the string as a buffer and doesn't need to read it first, just
do as you would with any array; allocate an array of characters large enough to hold
the output, then pass it on:

auto cstr = new char[1024];
writeToBuffer(cstr.length, cstr.ptr);

Sometimes, such a function might be documented to require that the array contain
the null-terminator, even though it's empty. In that case, keep in mind that the .init
value of a char is 0xFF, not 0, so you'll have to set the value yourself.

Memory
When interacting with C, never forget that D has a garbage collector. The potential
for nasty bugs is high here. Any memory allocated by the GC that is passed off to C
could cause problems down the road. Consider this function:

void dFunction() {
 auto ints = [1, 2, 3];
 cFunction(ints);
}

ints is allocated on the GC heap from an array literal and then passed to a C
function. Once dFunction returns, what happens depends on what cFunction does
with the pointer. If it is stored in a stack variable, all is well as the GC knows how to
scan the stack. If, on the other hand, it's stored somewhere in the C heap, such as in a
struct instance allocated via malloc, all bets are off; the GC has no way of knowing
that an active reference to the allocated memory still exists. At any point, the GC
could collect the memory it allocated for ints. If a reference to it still exists in the
C heap, then the next attempt to access it on the C side will be accessing an invalid
memory location.

There are different options for ensuring that things don't blow up in this situation.
The first that might come to mind is to keep a reference to the GC-allocated memory
somewhere on the D side. Another option is to just use C's malloc to handle the
allocation and forget about the GC issues completely. A third option is to inform the
GC to always consider the memory block as live and never bother to collect it. This is
done by importing std.memory and calling GC.addRoot, something we'll look at in
Chapter 11, Taking D to the Next Level.

Unfortunately, it isn't always obvious when GC memory is being allocated.
Sometimes, the allocation might be hidden. Earlier, we saw the function
std.string.toStringz and learned that it sometimes allocates memory,
but not always. You'll see a great deal of D code calling C functions like this:

some_c_function(myString.toStringz());

Chapter 9

[347]

There's no way of knowing just by looking at this function call whether or not
toStringz is allocating. That's perfectly fine as long as it's certain that some_c_
function isn't going to keep a pointer to the string hanging around for later use
(or even if it will call realloc or free on your pointer, which is just bad news for
GC-allocated memory). If there's no way of knowing for sure what the C function is
going to do, then it's best to be safe and store a reference to or call, GC.addRoot with,
the return value of toStringz.

Thankfully, the majority of C functions that handle strings do not need to keep them
locally. If they do, well-written functions will copy the string to a locally allocated
buffer so that the calling code need not worry about it. It's the corner cases you have to
watch out for. The same holds true for any pointer to GC-allocated memory that you
pass to a C function. Always read the documentation for the C library first. If it isn't
clear, check the source if it's available. Never pass GC-allocated memory into C blindly.

C callbacks and exceptions
Earlier in the chapter, I recommended that you annotate every C callback in a
binding with nothrow. Now we're going to see why. To do so, save the following C
file as $LEARNINGD/Chapter09/exceptions/call.c:

void callCallback(void (*callback)(void)) {
 callback();
}

Then, save the following as except.d in the same directory:

extern(C) @nogc nothrow void callCallback(void function());
extern(C) void callbackImpl() {
 throw new Exception("Testing!");
}
void main() {
 try {
 callCallback(&callbackImpl);
 }
 catch(Exception e) {
 import std.stdio : writeln;
 writeln("Caught it!");
 }
}

Connecting D with C

[348]

To compile, use the same command lines we used a few pages back with the array
examples. For example, compiling with the DMC toolchain:

dmc -c call.c

dmd except.d call.obj

I compiled and executed the program on both Windows and Linux with the DMC,
64-bit Microsoft, and GCC linkers. I even tried it out with the 32-bit MinGW-backed
and 64-bit Microsoft-backed versions of ldc2 on Windows. In every test run except
for one, the exception was printed to the screen, meaning that it was never caught;
it completely bypassed the exception handler. The odd man out was the 64-bit ldc2
version, which only managed to crash.

In effect, any exception thrown in a D implementation of a function that is called
from C is either an unrecoverable exception or, potentially, the cause of a crash. If
you are creating a binding to a C library that makes use of callbacks, marking the
callbacks as nothrow will prevent users of the binding from unwittingly allowing
recoverable exceptions to become unrecoverable.

As a user, whether the binding annotates the callbacks as nothrow or not, you should
never throw, or allow to be thrown, an exception from a C callback. There's just no
guarantee that it won't corrupt the program state. Neither is it a good idea to litter
your callbacks with try...catch blocks which just swallow the exception and move
on. Doing that could eventually cause your program to become unstable.

One way to work around this issue is to collect any exceptions thrown inside a
callback and tuck them away in a variable that can be tested at a convenient time.
This means every callback that does anything that could potentially throw will
need a try...catch block that, in the catch, adds the caught exception to the array.
Elsewhere in the program, at a point after the callbacks have run, the program can
test for specific recoverable exceptions and continue if any of those are encountered.
Otherwise, the first unrecoverable exception is thrown.

In this example, saved as $LEARNINGD/Chapter09/exceptions/except2.d, the
exception is generated manually rather than caught. This is what you would need
to do anyway if you wanted to throw from a callback. The exception is stored in an
array, which is checked after the callback is called, where it is compared against a
fictitious RecoverableLibraryException. Since it isn't an instance of that type, it is
immediately thrown after a message is printed:

extern(C) nothrow alias CallbackFunc = void function();
extern(C) @nogc nothrow void callCallback(CallbackFunc);
extern(C) nothrow void callbackImpl() {
 _callbackExceptions ~= new Exception("Testing!");
}

Chapter 9

[349]

class RecoverableLibraryException : Exception {
 this(string msg) {
 super(msg);
 }
}
Exception[] _callbackExceptions;
void main() {
 import std.stdio : writeln;
 callCallback(&callbackImpl);
 foreach(ex; _callbackExceptions) {
 if(auto arle = cast(RecoverableLibraryException)ex)
 writeln(arle.toString);
 else {
 writeln("Not recoverable!");
 throw ex;
 }
 }
}

A more sophisticated implementation would chain all caught exceptions together
and forgo the array. For a real-world example, see an article I wrote on the
topic at http://www.gamedev.net/page/resources/_/technical/general-
programming/d-exceptions-and-c-callbacks-r3323. Note that the example
there does not use nothrow, but really should.

Calling D from C
There's very little new to bring to the table when discussing how to call D from C. On
the D side, any functions and global variables that should be available for C should
be declared extern(C). You could use extern(Windows) or extern(System) for
special cases, but generally extern(C)is what you want. On the C side, all that needs
to be done is to create a standard C header with the appropriate type declarations
and function prototypes, or global variables. As long as the linkage attributes are
correct, any C code linked with the D code will think it's talking to C.

At the time of writing, shared library support for DMD is not complete. It isn't
implemented at all on OS X. Now and again, someone asks for help in the forums
when having trouble compiling shared libraries on other platforms. In the interest of
saving space, we won't cover how to build them here. You can find information on
how to compile shared libraries with DMD on Windows at http://wiki.dlang.
org/Win32_DLLs_in_D and instructions for Linux at http://dlang.org/dll-
linux.html#dso7. If you run into trouble, please head to the forums for help.

http://www.gamedev.net/page/resources/_/technical/general-programming/d-exceptions-and-c-callbacks-r3323
http://www.gamedev.net/page/resources/_/technical/general-programming/d-exceptions-and-c-callbacks-r3323
http://wiki.dlang.org/Win32_DLLs_in_D
http://wiki.dlang.org/Win32_DLLs_in_D
http://dlang.org/dll-linux.html#dso7
http://dlang.org/dll-linux.html#dso7

Connecting D with C

[350]

Regardless of how a D library is used in C, through static or dynamic linking, or
manual loading, it is critical that DRuntime be initialized somewhere. When linking
with static D libraries, this can be done on the C side. The runtime exposes two C
functions, rt_init and rt_term, which do what needs to be done. Simply declare
prototypes for them in C and call them during initialization and shutdown:

#include <stdlib.h>
#include <stdio.h>
extern int rt_init(void);
extern void rt_term(void);
void initialize() {
 // Initialize D runtime.
 if(rt_init() == 0) {
 fputs("Failed to initialize D runtime.", stderr);
 exit(EXIT_FAILURE);
 }
}
void terminate() {
 // Shutdown D runtime.
 rt_term();
}

When using D shared libraries on Linux, either through dynamic linking or manual
loading, the C program can link with libphobos2.so and do the same thing.
Multiple calls to rt_init are harmless, so don't worry about whether or not the
shared libraries are doing the same.

When using D shared libraries on Windows, the responsibility to initialize the
runtime lies with the DLLs, since they each have their own copy and there is no DLL
version of Phobos. One way to do this is to give each DLL its own initialize and
terminate functions, but it's probably easier just to do it in the DLLMain function. In
this case, the D code has access to the Runtime struct, so it need not use rt_init or
rt_term:

import core.sys.windows.windows;
extern (Windows)
BOOL DllMain(HINSTANCE hInstance, ULONG ulReason, LPVOID pvReserved)
{
 import core.runtime : Runtime;
 switch (ulReason)
 {
 case DLL_PROCESS_ATTACH:
 dll_process_attach(hInstance, true);
 Runtime.initialize();
 break;

Chapter 9

[351]

 case DLL_PROCESS_DETACH:
 Runtime.terminate();
 dll_process_detach(hInstance, true);
 break;

 case DLL_THREAD_ATTACH:
 dll_thread_attach(true, true);
 break;

 case DLL_THREAD_DETACH:
 dll_thread_detach(true, true);
 break;

 default:
 }
 return true;
}

As the highlighted lines demonstrate, the calls should happen when handling the
DLL_PROCESS_ATTACH and DLL_PROCESS_DETACH events. We only need to call
the functions once per process, not once per thread. Again, if you make a mistake
and do it in the _THREAD_ cases, no harm will be done.

Aside from managing the runtime, the only other thing that you should be cognizant
of on the D side is how you handle pointers to memory allocated on the GC heap.
Don't try to free memory in C that was allocated in D; don't store pointers to GC
memory for the life of the program unless it really needs to be around that long; and
so on. Most of the work that needs to be done to prevent crashes and unexpected
behavior has to happen on the D side.

Summary
In this chapter, we've defined the terminology that we should use when talking
about how to get D and C to interact, we've examined some of the low-level details
involved in getting bindings to work, we've seen how to translate C headers into D,
and we've looked at how to call C functions from D and vice versa. With this chapter
as a reference, you have all you need to create a binding to almost any C library.

In the next chapter, we're going to get back to writing D code and recreate
MovieMan as a web application.

[353]

Taking D Online
Looking back at the version of MovieMan we developed over the course of the first
seven chapters of this book, its console-based interface is far from user-friendly and
its array-based database doesn't have much in the way of scalability. It serves its
purpose as a playground for D language features, but if anyone wanted to seriously
consider a more appealing application, they would want to provide a user-friendly
GUI of one form or another. To support multiple users (or extremely large DVD
collections), an actual database should replace the simple arrays in db.d. A web-
based version of MovieMan would fit the bill nicely. That's quite convenient for us,
given that this chapter is about web development with D.

This chapter presents a brief introduction to vibe.d, an asynchronous I/O framework
often used to develop web applications in D. It begins with a look at what vibe.d
offers, then demonstrates the basics by showing one way to implement MovieMan
as a web app. The end result is much nicer than the primitive command line app
presented in previous chapters and serves as a better foundation for expansion and
exploration, ideas for which are presented at the end of the chapter. The flow of the
chapter looks like this:

•	 Introduction: an overview of key vibe.d packages, the anatomy of a vibe.d
web app, and a look at potential database APIs to use with MovieManWeb

•	 MovieManWeb: a step-by-step walkthrough showing one possible
implementation of MovieMan as a vibe.d web app, and ideas for
how to expand the project

Taking D Online

[354]

The software
Although the web app framework provided by vibe.d is a major selling point of the
project, it's not the only reason vibe.d exists. In this section, we'll explore some of the
key features vibe.d offers for different types of client-server applications. We'll close
with a quick look at d2sqlite3, the database library we'll use in the MovieManWeb
example project.

vibe.d
The vibe.d project, located at http://vibed.org/, is billed as "Asynchronous I/O
that doesn't get in your way". Strip away the web app and REST layers, the HTTP
and database packages, plus all the accompanying utilities, and you're left with a
fast, event-based, asynchronous I/O framework suitable for just about any sort of
client-server application you can imagine. Here, we'll take a quick look at some of
the key vibe.d packages to see how things break down, followed by a brief overview
of what a vibe.d web app looks like.

Package overview
vibe.d contains several packages that provide a variety of functionality for different
layers of web development. From low-level socket handling to the high-level web
framework, the packages can be used as needed to meet the needs of a server
application. Following is a brief introduction to some of the packages:

•	 The vibe.core package is the heart of vibe.d and the foundation upon
which the rest of the framework is built. Here live the modules for fiber-
aware concurrency, asynchronous event handling, file handling, TCP and
UDP sockets, and logging. Any project that requires an asynchronous I/O
framework can make use of this package in isolation.

•	 vibe.http provides HTTP 1.1/1.0 client and server implementations, an
HTTP file server, web sockets, a URL router, session management, a form
data handler, an HTTP-based logger, and more. Sitting on top of vibe.core,
vibe.http is somewhat analogous to the Java Servlet API. It's a barebones
web-app framework with a few bells and whistles. At this level, the user
must explicitly verify HTTP POST and GET parameters, set the content type,
throw exceptions on bad requests, and generally do all of the work that is
handled internally by the higher-level vibe.web package.

•	 vibe.web is built atop vibe.http to allow for convenient declarative web
and REST interfaces. It also has modules for validating HTTP parameters and
handling internationalization. The MovieManWeb application makes uses of
the declarative web interface to simplify the implementation.

http://vibed.org/

Chapter 10

[355]

•	 vibe.mail provides a single module that contains an SMTP client
implementation. vibe.db contains interfaces for the Mongo and Redis
database APIs. Most of the remaining packages are utilities used internally
by the other framework packages. There are packages for cryptography,
data serialization, data streams, text parsing, data structures, and more.

As a demonstration of a vibe.d based server that expands on what vibe.d provides,
take a look at vibenews at https://github.com/rejectedsoftware/vibenews.
The project includes a web forum, but also implements an NNTP server using the
vibe.core and vibe.stream packages.

The anatomy of a vibe.d web app
Getting started with vibe.d is extremely easy with DUB. In fact, DUB began life as a
tool for generating and building vibe.d projects and distributing vibe.d extensions.
Only later did it morph into a more generic build tool and package manager. Its roots
as a vibe.d specific tool live on in the init command that we first saw way back in
Chapter 1, How to Get a D in Programming. It takes an optional argument, -t, to specify
the type of project to create. There are three options:

•	 minimal: This is the default when -t is not specified. It creates a standard
D application with a main function.

•	 vibe.d: This creates a vibe.d project that implements a minimal
HTTP server.

•	 deimos: This generates a skeleton for a Deimos-like static binding to
a C library.

To get a look at a simple vibe.d app, open up a command prompt to any directory
and execute the following command:

dub init MyWebApp -t vibe.d

This creates a MyWebApp directory with the layout shown in the following screenshot:

https://github.com/rejectedsoftware/vibenews

Taking D Online

[356]

The first file in the list, .gitignore, is a convenience for those working with the git
source control program. Quite a number of D projects live on GitHub and private
git servers. .gitignore is a text file that contains a list of file patterns git should not
consider when evaluating local changes. dub.sdl is the DUB project configuration
we're already familiar with. For this vibe.d based project, it looks like this:

name "mywebapp"
description "A simple vibe.d server application."
copyright "Copyright © 2015, Mike Parker"
authors "Mike Parker"
dependency "vibe-d" version="~>0.7.23"
versions "VibeDefaultMain"

The only thing here that should warrant explanation at this point is the
VibeDefaultMain version. When this version is specified, vibe.d apps need not
implement a main function; the implementation in the vibe.appmain module will be
used instead. This is a simple implementation that does some logging, runs the event
loop, and catches all exceptions. It can be overridden by specifying VibeCustomMain
as a version in the configuration file.

As I write, an alpha version of vibe.d 0.7.26 is available for testing. In
previous releases, if neither VibeDefaultMain nor VibeCustomMain
were specified, the former would be the default. With the latest alpha,
which will likely be released by the time this book is complete, the default
is the latter. Regardless, DUB explicitly configures VibeDefaultMain in
the generated dub.sdl.

The public folder is where publicly accessible files, such as static HTML pages and
style sheets, should be saved. The source folder is for the source code and, just as
with a normal DUB app, the tool looks for source/app.d by default. Finally, the
views folder is for Diet templates, an HTML template engine based on Jade (much
of the documentation at http://jade-lang.com/ serves for Diet templates as well).
We'll dig a bit into the details when we implement MovieManWeb.

Peek into the source directory and you'll find that DUB has generated a default
app.d. It does everything necessary to set up a minimal HTTP server that accepts
connections and perpetually serves a plain text document that says, "Hello,
World!". The unmodified output of that file follows:

import vibe.d;

shared static this()
{
 auto settings = new HTTPServerSettings;

http://jade-lang.com/

Chapter 10

[357]

 settings.port = 8080;
 settings.bindAddresses = ["::1", "127.0.0.1"];
 listenHTTP(settings, &hello);

 logInfo("Please open http://127.0.0.1:8080/ in your browser.");
}

void hello(HTTPServerRequest req, HTTPServerResponse res)
{
 res.writeBody("Hello, World!");
}

First off, notice the import of vibe.d at the top of the file. Although any D
programmer should know that this indicates a file with the path vibe/d.d, it is all
too easy for the human brain to subconsciously interpret it as a file named vibe.d
(full disclosure: it happens to me every time I see it). Since the module does nothing
more than publicly import vibe.vibe, then anyone bothered by vibe.d can directly
import vibe.vibe instead.

The next thing to point out is that there is no main function in sight. We already
know that vibe.d has its own implementation of main. When using the default main,
all of the initialization the app requires should happen in a module constructor. As
you can see, getting a minimal HTTP server up and running with vibe.d requires
very little initialization. This generated implementation uses the low-level API
from vibe.http. First, the connection settings for the server are set up in an
HTTPServerSettings instance, then listenHTTP is called to start listening for active
connections. The function is given a pointer to the hello function, which accepts
HTTPServerRequest and HTTPServerResponse objects. Since this particular function
isn't interested in any input from the request, it only concerns itself with the response
by printing a plain text message, which is sent back to the browser.

There are more complex examples of how to use the low-level API in the project's
source repository at https://github.com/rejectedsoftware/vibe.d, as well
as in the documentation at the project home page.

The database library
There are a number of database options available for any vibe.d app. As shown
previously, bindings for MongoDB and Redis ship with the project in the vibe.db
package. More packages can be found in the DUB registry for other database
distributions. Some of those libraries can automatically make use of the vibe.d
networking layer when it is available. Some of them are native D APIs with no
external dependencies, while others are bindings to C libraries.

https://github.com/rejectedsoftware/vibe.d

Taking D Online

[358]

A handful of database options were considered for the MovieManWeb project we'll
develop in this chapter. The primary goal was to select a database that requires
minimal effort to install and set up. The focus of this chapter is on programming a
vibe.d app, not on setting up and managing database servers. A softer requirement
was that the database have either a pure D interface, or an easy-to-use wrapper on
top of a C binding. Dealing with a C API and translating from database types to D
types would just be too distracting. Fortunately, one database and API combo was
found that meets both requirements exceedingly well.

sqlite3 is a popular and easy-to-use library for embeddable databases that can exist
in memory or on disk. There are no executables required and no server connections
to configure and launch; it can be used just like any other C library. There is also no
need to set up database users or create a database with SQL. Databases are created
programmatically when the app launches. Tables still need to be created with SQL
statements, but it is easy to do this during initialization.

d2sqlite3 (http://code.dlang.org/packages/d2sqlite3) is a library that
provides both a binding and a wrapper for sqlite3. The wrapper provides a
convenient interface over the C API, including a range-based interface to the result
sets returned by database queries. It takes just a few lines to get a database created
and ready for use, and queries can also be implemented concisely and cleanly.

Phobos ships with an sqlite3 binding in the etc.c.sqlite3 module,
but it is often a few releases behind the official sqlite3 distribution. The
binding in d2sqlite3 is updated more frequently.

The only downside to d2sqlite3 is its unavoidable dependency on the sqlite3 C
library. Linux and Mac users should be able to easily get the development version of
the library through their system package manager and, if not, the sqlite3 download
page at https://www.sqlite.org/download.html has binaries for multiple
platforms. It's quite possible that your system package manager has an older version
of the library that will not compile with MovieManWeb, in which case you'll need to
download and install the binaries for your platform or compile from source yourself.
The d2sqlite3 project configuration has a directive telling DUB to link with the sqlite3
library, so nothing need be done beyond installing the binaries where the linker can
find them. On Windows, it's a different story entirely.

http://code.dlang.org/packages/d2sqlite3
https://www.sqlite.org/download.html

Chapter 10

[359]

The sqlite3 download page provides a ZIP file with a precompiled 32-bit DLL. By
itself, this isn't actually very useful for DMD users. Some work needs to be done to
get an import library in the appropriate object file format. To make things easier,
I've generated a 32-bit import library in OMF format for the default DMD linker,
and have compiled 32-bit and 64-bit static libraries in COFF for those who want
to compile with the -m64 and -m32mscoff compiler switches. To hide all of this, a
few version statements and a pragma can be added to one of the source modules.
We're getting a bit ahead of ourselves here, though, as we haven't yet set up the
MovieManWeb project. That's right around the corner in the next section, so let's
get to it.

MovieManWeb
The purpose behind MovieManWeb as presented here is to provide an easy-to-follow
example of how to use vibe.d. The focus should be largely on vibe.d itself, not on the
vagaries of web development, aspects of good database design, or how to make the
app as robust and feature-rich as possible. Toward that end, there are a few constraints
we'll keep in mind as we go along that wouldn't apply to most vibe.d apps:

•	 The application is intended to run on the desktop for a single user. There
is no need to handle login credentials, hash passwords, sanitize input,
or implement any such security features an application intended for
deployment on the web would normally require.

•	 The only data the application is concerned with are movie titles, case
numbers, page numbers, disc numbers and, for television shows, season
(or series) number. This constraint allows for a simple, single-table database,
with no need to worry about efficient database design.

•	 The output of the application is pure HTML5, with no scripting or fancy
effects. No attempt is made to accommodate older browsers. A stylesheet
is provided with the downloadable source code to give the user interface a
more pleasing appearance, but it is not covered in the chapter. Given the first
constraint, the default stylesheet assumes a desktop monitor and does not
apply any responsive web design techniques.

Taking D Online

[360]

These constraints may make MovieManWeb sound like it isn't a web app, but it
absolutely is. With the implementation of the proper security precautions, a more
flexible stylesheet, more user-friendly features in the UI and, optionally, more data to
store (such as movie directors, actors and actresses, and so on), MovieManWeb could
serve as the core of a more feature-complete, multi-user web application. Here's a
look at the finished product:

Getting started
Before generating the dub project, Linux and Mac users will have to go through
some preliminary steps. On Linux, you'll probably need to install libevent through
your package manager (sudo apt-get install libevent libevent-dev on
Debian-based systems) if it isn't already installed. On Mac, you'll have to get the
source from https://github.com/libevent/libevent and follow the instructions
to build using autoconf in the README file. If you get compiler errors on Mac and
have no access to a Windows or Linux system, an alternative is to install Linux
on a VM and follow along that way.

The first step in setting up the project is to tell DUB to initialize a new vibe.d app.
Navigate to $LEARNINGD/Chapter10 and execute the following command:

dub init MovieManWeb -t vibe.d

https://github.com/libevent/libevent

Chapter 10

[361]

That will create the MovieManWeb directory and populate it with the default contents
we saw earlier. To make sure there aren't any networking issues on your system, cd
into the MovieManWeb directory and execute dub with no arguments to compile and
run the program (or dub -ax86_64 for a 64-bit build). Then open up your preferred
web browser and enter either localhost:8080 or 127.0.0.1:8080 into the address
bar. If you see the default "Hello, World!" output, then all is well.

Windows and the loopback address
127.0.0.1, or localhost, is known as the loopback address. In
Windows 10, typing 127.0.0.1 into a browser address bar will work as
expected, but typing localhost will not. This is because it is disabled
by default. If you want to enable it, you'll need to open the file C:\
Windows\System32\drivers\etc\hosts and uncomment one or
both of these lines:

127.0.0.1 localhost
::1 localhost

To uncomment, delete the hash tags (#) from the front of each line.
Because this is a system file, you will need administrator privileges to
save the changes. If you have an administrator account, you can right-
click on the shortcut to a text editor and choose Run as administrator.
Alternatively, you can drag a copy of the file from Windows Explorer
to the desktop, edit the copy, and then drag it back to the original
location. Windows will prompt you for administrative permission before
completing the copy.

Next, open up MovieManWeb/source/app.d in your text editor. You'll want to
replace the default low-level example function with the initial version of the
high-level web interface we'll be using. Delete the following highlighted lines:

import vibe.d;

shared static this()
{
 auto settings = new HTTPServerSettings;
 settings.port = 8080;
 settings.bindAddresses = ["::1", "127.0.0.1"];
 listenHTTP(settings, &hello);

 logInfo("Please open http://127.0.0.1:8080/ in your browser.");
}

void hello(HTTPServerRequest req, HTTPServerResponse res)
{
 res.writeBody("Hello, World!");
}

Taking D Online

[362]

Soon, we'll change listenHTTP to do something a bit different. Now it's time to
create the web interface. Create a new directory, MovieManWeb/source/mmweb, and
inside of it a new source file, web.d. The content of this file should look like this:

module mmweb.web;
import vibe.vibe;

final class MovieMan {
 void index() {
 render!("index.dt");
 }
}

Here, index.dt is the name of a diet template that we'll create in the views folder.
We'll have an introduction to the mechanics of the web interface and diet templates
shortly. For now, let's focus on getting something up and running. Create a new file
and save it as MovieManWeb/views/index.dt. Implement the following:

doctype html
html
 head
 title MovieManWeb
 body
 h3 Hello, MovieManWeb!

That's much nicer to look at than raw HTML, isn't it?

We're almost ready to launch. To put the last pieces in place, go back to app.d and
make the following highlighted changes:

shared static this()
{
 import mmweb.web : MovieMan;
 auto router = new URLRouter;
 router.registerWebInterface(new MovieMan);

 auto settings = new HTTPServerSettings;
 settings.port = 8080;
 settings.bindAddresses = ["::1", "127.0.0.1"];
 listenHTTP(settings, router);
}

Chapter 10

[363]

Now you've got a customized minimal vibe.d HTTP web app. Execute dub in the
MovieManWeb directory and reload 127.0.0.1:8080 to see the following result:

To stop the server, you'll need to go back to the console window and press the
Ctrl + C key combination on your keyboard. The server will then cleanly shut down.

The basics of diet templates
Looking at the index.dt presented in the previous subsection, one thing stands
out quite clearly. Each line begins with a tag that maps directly to an HTML tag,
only there are no brackets and no corresponding closing tags. The template engine
is able to understand how to properly generate HTML tags from the input through
indentation and new lines. Add the following highlighted lines to index.dt, then
recompile the app and reload the web page:

doctype html
html
 head
 title MovieManWeb
 body
 h3 Hello, World!
 p This is a paragraph.
 p This is a new paragraph with a link to
 a(href="http://google.com")Google
 | and more text following the link.

Taking D Online

[364]

The reason we need to recompile before seeing the changes is because diet templates
are parsed at compile time. The generated HTML is then loaded into memory when
the application launches, so that nothing is ever loaded from disk at runtime. It's still
possible to serve static files from disk, as we'll see a bit later in the chapter, but most,
if not all, of the UI in a vibe.d app will usually be generated at compile time. The
result of the two new lines can be seen in the following screenshot:

In this subsection, we're going to talk first about the interaction between tags and
indentation, then we'll see how to combine multiple diet templates into a single
generated HTML page. We'll finish off by setting up a common layout for every
page MovieManWeb generates. Later in the chapter, when we actually have data
to display, we'll look at another feature of Diet templates that allows us to generate
output at runtime.

Tags and indentation
The parser uses indentation to determine when to insert a closing tag for any open
tags that require them. Indentation can be via tabs or spaces and there is no required
number of either; one space works equally as well as four, and two tabs work equally
as well as one. When the parser first encounters an indented line, it will determine
the type of indentation and will use that as the basis to understand the rest of the
file. Whatever approach you choose for indentation, just be consistent. You can't use
four spaces on one line and five on the next; the first indented line sets the pattern
for each successive indented line and any deviation from the pattern will result in a
compiler error.

Consider the very first line, doctype html. The parser understands that the
equivalent HTML tag, <!DOCTYPE html>, has no corresponding closing tag and
does not wrap any content. Therefore, the line following it need not be indented.
However, the tag on the next line, html, corresponds to <html> and </html>, two
tags between which all of the page content must exist. Every line following the
second is indented, telling the parser that the content goes between those tags.

Chapter 10

[365]

The third line is head, which corresponds to the HTML <head> and </head> tags.
The parser sees that the fourth line, title, is indented, so it knows the output
belongs between those two tags. It then encounters body, which is on the same
indentation level as head. This is an indication to first insert the </head> tag in the
generated content, followed by the opening <body> tag. The same logic is used when
the p tags are on the same indentation as the h3 tag. By the end of the file, the parser
sees that the body and html tags are still open, so it generates the </body> and </
html> closing tags automatically.

Only tags need to be indented. Text content intended for output can appear on the
same line as any tags to which they correspond. We can see this with the title and
h3 tags, as well as the first p tag. The second paragraph contains a link to http://
www.google.com. As such, the tag for the link needs to be indented. If you put it on
the same line as the p tag, like so:

p Go to a(href="http://google.com")Google

Then the output will look like this:

The same thing applies to the paragraph text that follows the a tag. If it is on the
same line as the tag, it will be included as part of the link, so we have to put it
on the next line. However, if we just do this:

p This is a new paragraph with a link to
 a(href="http://google.com")Google
 and more text following the link.

The first word of the last line will not appear in the output. The parser treats the first
word on every line as a tag. If it doesn't understand the tag, it just ignores it. In order
to let the parser know that this is a line of text belonging to the preceding p tag and
not a completely new tag, we have to use the pipe (|) character:

p This is a new paragraph with a link to
 a(href="http://google.com")Google
 | and more text following the link.

http://www.google.com
http://www.google.com

Taking D Online

[366]

The indentation is also important. If the line is not one indentation level beyond the p
tag, the parser will assume the paragraph should be closed, so it will generate a </p>
HTML tag to make a new paragraph with the text. In effect, this…:

p This is a new paragraph with a link to
 a(href="http://google.com")Google
| and more text following the link.

…results in this:

Including and extending templates
If it were necessary to rewrite the same common tags for every diet template in the
program, then the benefits of using the templates would be dramatically reduced.
There are two ways to combine multiple templates to generate a single web page:
we can include one template in another, and one template can extend another.

To include one template in another, the include directive should be used at the
point in which the included template should appear. For example, given the
template head.dt:

head
 title MovieManWeb

We can insert it into any other template like so, perhaps one called content.dt:

doctype html
html
 include head.dt
 body
 h3 Hello, World!

Chapter 10

[367]

Don't forget about indentation rules; the include should be at the same indentation
level at which the content would appear if it were typed in directly. When using
includes, the included template is not given to the parser. In this example, the
program would tell vibe.d to render content.dt.

Extending a template is like including one in reverse. Given a module sub.dt,
which extends base.dt, sub.dt is fed to the parser. The parser will then take the
entire content of the sub.dt and include it in base.dt to generate the final output.
This requires two steps to be taken. For one, the extending template must include
an extends directive at the top of the file. For example, the very first line of sub.dt
should be:

extends base.dt

Additionally, the parser must be told where to insert the content of sub.dt into
base.dt. Doing so requires block directives in both files. This implementation
of base.dt shows how to do it in the template that is being extended:

doctype html
 head
 block title
 body
 block body

Block names need not be the same as the tags they belong to, nor are they required to
be lowercase, but it's a convention I prefer.

Any template that extends base.dt will now need to include two blocks, one
implementing the content that will replace the title block in base.dt, and another
that will replace the body block. These blocks must be named the same as those in
base.dt. Our sub.dt implementation might look like this:

block title
 title MovieManWeb - Page One
block body
 h3 Hello, MovieManWeb!

Again, the indentation rules apply at the point where all content from sub.dt is
pasted into base.dt.

Taking D Online

[368]

The MovieManWeb layout
While it's possible to use one diet template to represent multiple pages by inserting
D code to generate different content for each page (as we'll see later), it's more
manageable to use multiple templates. This is the approach taken in MovieManWeb.
We will have one template for each page, with an additional layout.dt template
that all of the others will extend. We will not use any includes. The complete
implementation of layout.dt follows:

doctype html
html
 head
 title MovieManWeb
 link(href='/reset.css', rel='stylesheet')
 link(href='/style.css', rel='stylesheet')
 body
 nav
 ul
 li
 a(href='/') Home
 li Add New Movie
 li Find Movie(s)
 article
 block article

The stylesheets referenced in the link tags are located in the MovieManWeb/public
directory of the downloadable source package. reset.css is a file released in the
public domain and is available at http://meyerweb.com/eric/tools/css/reset/.
It sets the properties of all HTML tags to a common state, allowing for custom styles
to have a more consistent appearance across browsers. The file style.css is where
the custom properties for MovieManWeb are implemented. When creating your own
styles for the application, that is the file you should edit.

We are using the HTML5 nav and article tags, which are not supported by older
browsers. An alternative is to use div tags with unique IDs. These can be generated
with the long form div(id='nav'), or using the shortcut #nav, which generates the
same output. Alternatively, div.nav and .nav are the same as div(class='nav'). If
you choose to use div tags, then style.css will need to be edited appropriately.

With this in place, we can change index.dt to look like this:

extends layout
block article
 h3 Hello, MovieManWeb!

http://meyerweb.com/eric/tools/css/reset/

Chapter 10

[369]

This file is going to become bigger as we progress. In the end, it will be the most
complex template in the program, but will still be easy to follow.

In order for the stylesheets to be applied to the page, vibe.d has to be told the
location from which it should serve static content. There are two functions in the
module vibe.http.fileserver that can help with this. Both return a delegate
that can be passed to a URLRouter during startup. One, serveStaticFile, is for
associating a specific file with a URL. The other, serveStaticFiles (note the 's' at
the end), is for associating a directory. The latter function works for our purposes.
Modify app.d to include the following highlighted line:

shared static this()
{
 import mmweb.web : MovieMan;
 auto router = new URLRouter;
 router.registerWebInterface(new MovieMan);
 router.get("*", serveStaticFiles("./public/"));

 auto settings = new HTTPServerSettings;
 settings.port = 8080;
 settings.bindAddresses = ["::1", "127.0.0.1"];
 listenHTTP(settings, router);
}

The asterisk (*) tells the router that any URLs not already associated with any
web interfaces or delegates should be handed off to the delegate returned by
serveStaticFiles. The argument to that function, "./public/", means that any
files in a URL the delegate handles should be searched for in the public directory.

With these changes in place, you can compile and run the app again to see the
effect. Make sure to copy reset.css and style.css from the downloadable source
package and place them in the MovieManWeb/public directory. Once that is done,
reloading 127.0.0.1:8080 in the browser will produce the following output:

Taking D Online

[370]

Setting up the database
Now that we've got the basic layout configured, it's time to turn our attention toward
the database layer. We need two things before we can continue: a data structure that
can hold all of the data associated with a given DVD when going to and from the
database layer, and a database with a table in which to store the data.

We're going to be storing more data for each movie than we did in the console
version of MovieMan. This means that if we choose to represent each movie as
a struct, it's going to be a few bytes larger, which can have an impact on the
efficiency of passing instances around by value. In a large application, it would force
careful consideration of whether any given function argument of that type should
be passed by value or reference. If we choose instead to use a class, we will be
required to instantiate new instances for every movie we pull from the database. In
an application with heavy database usage, that could add quite a bit of garbage for
the GC to clean up.

Realistically, it doesn't matter which approach we take for our single-user desktop
web app. The number of database queries will be measured per minute at most,
rather than per second, meaning the likelihood of generating enough garbage to
clog up the GC is near zero. For the same reason, we need not worry about passing
around high numbers of large struct instances by value. Regardless, we still need
to choose one or the other.

As a general rule of thumb, any aggregate type that is intended to be a POD (Plain
Old Data) type is better suited to be a struct than a class. Our Movie type is
most certainly a POD type; it will consist of a number of member variables, with no
member functions at all, and serves the sole purpose of carrying data between the
database and the UI.

Now we have enough to create MovieManWeb/source/mmweb/db.d and enter
the following:

module mmweb.db;
import d2sqlite3;
struct Movie {
 long id;
 string title;
 int caseNumber;
 int pageNumber;
 int discNumber;
 int seasonNumber;
}

Chapter 10

[371]

The sole database table will contain fields corresponding to each member of this
structure. Notice that we're importing the d2sqlite3 module here so that we
can use its symbols throughout the db module.

Creating the database is as easy as calling a class constructor. Here's how it's
implemented:

_db = Database("./movieman.db");

Database is a struct type in d2sqlite3 that wraps a sqlite3 database handle.
Creating the table for the database requires a bit of SQL. Since SQL is the focus of
neither this chapter nor this book, we will not indulge in any explanations of the SQL
statements we see. If you aren't familiar with SQL, the Kahn Academy tutorial is a
good place to start. You can find it at https://www.khanacademy.org/computing/
computer-programming/sql.

The SQL statements need to be strings. To make them more manageable and to keep
the readability of db.d nice and clean, we'll declare a number of manifest constants
in a separate module. Create a new module, MovieManWeb/source/mmweb/sql.d,
and add the following:

module mmweb.sql;
package:
 enum createTableSQL =
 `CREATE TABLE IF NOT EXISTS movie (
 movieID INTEGER NOT NULL PRIMARY KEY,
 title TEXT NOT NULL,
 caseNum INTEGER NOT NULL,
 pageNum INTEGER NOT NULL,
 discNum INTEGER,
 seasonNum INTEGER
);`;

This is the SQL statement needed to create our database table. Because it spans
multiple lines, note that it's implemented as a WYSISWYG string using backticks (`).
We'll add more SQL statements to this module as we go along.

We'll implement a module constructor to do the work of creating both the database
and the table. sqlite3 allows for database transactions, meaning that we can set things
up such that any changes we make to the database can be rolled back on error. We will
use transactions in every function that modifies the database to minimize the chance of
database corruption. d2sqlite3 exposes the transaction API through the database object.
The begin, commit, and rollback functions are what we are interested in. The first
one starts a transaction, the latter two complete and abort it respectively. We can use
scope statements to guarantee the appropriate functions are called.

https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql

Taking D Online

[372]

With all of that in hand, we can add the following to db.d:

shared static this() {
 import mmweb.sql;

 // Create the database if it doesn't exist
 _db = Database("./movieman.db");

 // Begin a database transaction
 _db.begin();

 // Only commit the changes if no errors occur
 scope(success) _db.commit();

 // Abort on error
 scope(failure) _db.rollback();

 // Create the movie table if it doesn't exist
 _db.execute(createTableSQL);
}

Next, add the following to the bottom of the file:

private:
 Database _db;

There is at least one thing to do before this can compile, and more for those on
Windows. First, we have to add the d2sqlite3 dependency to dub.sdl:

dependency "d2sqlite3" version="~>0.7.3"

This can go anywhere in the file, but I prefer to keep all dependencies grouped
together, so I've inserted this right under the vibe.d dependency. If you are on any
platform other than Windows, you can execute dub build now to make sure there
are no errors and move on to the next subsection, Fleshing out the index page.

d2sqlite3 contains a line in its project configuration that will cause sqlite3 to
automatically be linked in if it is on the system path. Under the hood, DUB
will handle the compiler command line and make sure the appropriate naming
convention is used. This is why users on Mac or Linux need not manually link with
the library; no matter whether you're compiling for 32-bit or 64-bit architectures, the
library will be installed to a location where the linker can find it. On Windows, the
linker will be looking for sqlite3.lib on the system library path, but it's not going
to be there unless you've put it there yourself (not recommended). The Windows
ecosystem is not like that of other platforms.

Chapter 10

[373]

To accommodate two different object file formats (COFF versus OMF) and two
different architectures (32-bit and 64-bit), we need three different builds of the sqlite3
library on Windows. Windows users should open up app.d and add the following to
the top of the file. It can go above or below the import statement:

version(Windows) {
 // When compiling with -m64
 version(Win64)
 enum sqliteLib = "lib\\sqlite3-ms64.lib";
 // When compiling with -m32mscoff
 else version(CRuntime_Microsoft)
 enum sqliteLib = "lib\\sqlite3-ms32.lib";
 // The default, or when compiling with -m32
 else
 enum sqliteLib = "lib\\sqlite3-dm-dll.lib";

 pragma(lib, sqliteLib);
}

This will allow you to link to the appropriate build of sqlite3, no matter the linker or
architecture you are compiling for. The first two are static libraries, but sqlite3-dm-
dll.lib is an import library. It's used when compiling with the default architecture
(32-bit) and linker (OPTLINK). All three libraries can be found in the MovieManWeb/
lib directory of the downloadable source package. Additionally, sqlite3.dll is
in the root MovieManWeb directory. Copy all four files over to your own project into
the same locations. Now you can execute dub build to ensure everything is set up
correctly for OPTLINK.

There's one more thing Windows users need to be aware of. DMD will issue a
warning about the lib directive in d2sqlite3's project configuration, saying that
sqlite3.lib cannot be found. No problem. The MS linker, unfortunately, is
more strict and will issue a linker error instead. We can work around that, though.
d2sqlite3 ships with two project configurations, one that includes the lib directive
(the default) and one that does not (called without-lib). To specify the latter, add
this to MovieManWeb's dub.sdl:

subConfiguration "d2sqlite3" "without-lib"

Now, you'll see no warning from DMD and no error from the MS linker when
compiling with dub build –ax86_64. As I write, there is no command line flag to
tell DUB to use the –m32mscoff switch telling DMD to link with the 32-bit MS linker.
Adding it to the project configuration manually only results in errors. It will certainly
be supported in a future version of DUB, hopefully one released not too long after
this book.

Taking D Online

[374]

Fleshing out the index page
The index page is always going to be used to display a list of movies. If there are no
movies available in the database, it will simply display a message to inform the user
that there are no movies to display. In order to make this happen, we need to embed
some D code into the diet template.

To tell the parser to treat a given line in the template as code, we prefix the line with
a dash (-):

-if(movies.length == 0)
 p There are no movies to display.

This snippet will only output the header if the movies array is empty. That raises
the question, where does the movies array come from? To answer that, let's go back
to our MovieMan web interface in web.d and modify the index function:

final class MovieMan {
 void index() {
 Movie[] movies;
 render!("index.dt", movies)();
 }
}

We've added two things. First, we've declared an empty array of Movie instances.
Next, we've given that array to the render function. For completeness, we'll need
to add this line to the top of the file:

import mmweb.db;

We'll need all of the database API to be available in the web module before we're
through. Now let's look at what's going on with the index function.

Mapping web interface functions to URLs
When we give an instance of MovieMan to the registerWebInterface function in
app.d, vibe uses compile-time reflection to map each member function to a URL.
Any public function named index is mapped to the root URL /. Other public
functions are mapped according to the format of their names. The URL will be
/name, and the type of HTTP request it is mapped to is dependent upon the
presence of any prefixes or @property annotations:

•	 Functions annotated with @property that are getters (no parameters,
return a value) are mapped to GET requests

•	 Functions annotated with @property that are setters (one parameter,
no return value) are mapped to PUT requests

Chapter 10

[375]

•	 Functions prefixed with get or query are mapped to GET requests
•	 Functions prefixed with set or put are mapped to PUT requests
•	 Functions prefixed with add, create, post, or no prefix at all are mapped

to POST requests
•	 Functions prefixed with remove, erase, or delete are mapped to

DELETE requests
•	 Functions prefixed with update or patch are mapped to PATCH requests

By far, the most common HTTP requests are GET and POST. The latter is normally
used to submit form data, while the former is normally what is used when you type
a URL in the browser's address bar or click on a link.

Be careful with case
In my testing, I was unable to determine how camel-cased function
names, such as addMovie or postAddMovie, are mapped by default.
The URLs /addMovie, /addmovie, and /AddMovie all resulted in 404
errors at runtime. However, addmovie and postAddmovie will map to
/addmovie. In the end, I opted for one-word names in the web interface
to keep it simple.

So, now we know that when vibe.d receives a request for the root page, it will call
the index function on its instance of MovieMan to handle the request. In order for
index.dt to have a movie array to work with, we need to pass one to the render
template function.

Rendering diet templates
The vibe.web.web.render function template is a high-level wrapper of the
lower level function template vibe.http.server.render. The latter requires an
HTTPServerResponse as a parameter. When working with the low-level API, you
have an HTTPServerResponse instance passed as a parameter to functions mapped
to a URL. Using the web interface approach, the request and response objects are
hidden behind the scenes, so vibe.web.web.render handles the response object
for us.

Look again at the modifications to the index function:

Movie[] movies;
render!("index.dt", movies)();

Taking D Online

[376]

Here, I've added empty parentheses to the end of the function call to make it as clear
as possible that "index.dt" and movies are template arguments and not function
arguments. Recall that the HTML output of index.dt is generated at compile time.
Internally, vibe.d uses D's string mixins to take any lines of D code it finds in the
template to turn it into compilable D code. All of this takes place when the compiler
encounters this call to the render function and instantiates the template with the
given parameters. Take this line out of the function, and the index page will never
be generated.

Any variables that need to be handed off to the Diet template can be passed to the
render function as template alias parameters after the filename. The name of the
argument as it is passed to the function is the name that needs to be used in the
Diet template. In this case, because the variable we are passing to render is named
movies, then any D code in index.dt that needs to manipulate it must use the
same name.

It's easy to forget during development what is and isn't visible inside a diet template.
If you ever get confused, just keep two simple things in mind. First, if a variable is
never passed to render together with the name of a Diet template, then that variable
isn't visible in that template. Second, to make use of any D symbol, such as a function
or an enum, a Diet template can import any module. For example:

-import std.string;

Rewriting index.dt
Now we've got almost all of the information we need to begin the real implementation
of index.dt. As a first pass, it looks like this:

extends layout
block article
 h3 MovieMan Database
 -if(movies.length == 0)
 p There are no movies to display.

Note that the p tag is indented one level past that of the -if statement. Just as with
everything else in a Diet template, indentation plays a major role in how the parser
interprets lines of D code. If we did not indent the p line, the parser would assume it
is not part of the –if statement, thereby including it in the final output no matter the
state of the movies array.

Chapter 10

[377]

To test this, go ahead and compile and run the server, then reload the page in the
browser. The output looks like this:

We're going to be using index.dt to display movies in multiple circumstances. For
example, when simply accessing the root URL, we will pull the first ten movies from
the database and display them without any input from the user, providing links to
show the next ten and, when appropriate, the previous ten. We will also use it to
show the result of search queries and to display the result of adding a new movie or
updating an existing one. That will require more programming logic in the template
and a little more information to pass to the render function. We'll keep coming back
to index.dt as we add more features.

Adding movies
Every feature we add to MovieManWeb is going to be more interesting to test if we
have some actual data to test it with, so the first feature we'll implement is adding
movies to the database. This will consist of the following steps:

•	 Implement a function in db.d to add a movie to the database.
•	 Implement a function in web.d that can map to a POST request handling

data from an input form.
•	 Implement a diet template that displays an input form where the user can

enter movie data.

Taking D Online

[378]

•	 Modify index.dt to display the new movie.
•	 Modify app.d to handle requests for the input form's URL.
•	 Add a link to the input form in layout.dt.

Let's get to work.

Implementing the addMovie function
The addMovie function we'll add to db.d is going to require some support. We'll
need to add an SQL statement to sql.d. In order to make the database queries more
efficient (and our code a bit cleaner), we'll be using prepared statements, so we need
to implement one for adding a movie. Let's start with the SQL.

Open up sql.d and add the following line:

enum insertSQL = "INSERT INTO movie(title, caseNum, pageNum,
discNum, seasonNum) VALUES(?1, ?2, ?3, ?4, ?5);";

The numbers prefixed with question marks are placeholders for the variables we will
insert into the prepared statement.

In d2sqlite3, prepared statements take the form of a struct type named Statement.
Statements are created by calling the prepare member function of a database
instance and passing it a string containing an SQL statement. When the Statement
is ready to be used, variables are bound to the placeholders via their bind function,
then the SQL is executed with the execute function. When all this is done, the
Statement's reset function should be called before attempting to bind any variables
to it again.

First, we need to declare a Statement instance in the private section of db.d.
Add the highlighted line:

private:
 Database _db;
 Statement _insert;

Now we need to turn our attention to the module constructor in db.d. Here, we need
to set _insert with a call to _db.prepare. Add the highlighted lines to the end of
the module constructor:

 // Create the movie table if it doesn't exist
 _db.execute(createTableSQL);
 // Create the prepared statements
 _insert = _db.prepare(insertSQL);

Chapter 10

[379]

Now we can implement the addMovie function. Because this function will modify
the database, we'll want to use a database transaction. That calls for two scope
statements. Here is the function in its entirety:

long addMovie(Movie movie) {
 _db.begin();
 scope(success) _db.commit();
 scope(failure) _db.rollback();

 _insert.reset();
 _insert.bind(1, movie.title);
 _insert.bind(2, movie.caseNumber);
 _insert.bind(3, movie.pageNumber);
 _insert.bind(4, movie.discNumber);
 _insert.bind(5, movie.seasonNumber);
 _insert.execute();

 return _db.lastInsertRowid();
}

The very first thing we do is begin the database transaction, then we set up the scope
blocks just as we did in the module constructor. After that, the prepared statement is
reset to prepare it for new values. Next, we bind the value of each member of Movie,
excluding id (the database will generate one for us) to the corresponding placeholder
in the prepared statement. After that, we execute the statement. Finally, we return
the result of _db.lastInsertRowid. This will be used later in the web interface to
fetch and display the newly added movie.

Those familiar with SQL but not sqlite3 may have noticed in the
createTableSQL constant that AUTO INCREMENT was missing from
the declaration of the movieID field as a PRIMARY KEY. sqlite3 will
automatically assign what it calls the rowid to any primary key field
in a table if AUTO INCREMENT is not specified. If AUTO INCREMENT
is specified, the database has to do a little more work. Therefore, it is
recommended to only use AUTO INCREMENT when you absolutely
cannot reuse any value as a primary key. Once an item is deleted from a
table, its rowid may be recycled.

Taking D Online

[380]

Implementing the postAdd function
The web interface function that handles the form for adding new movies is called
postAdd. This means that when we implement the form, we will need to configure
it to send its data to the /add URL using the POST method. It's a short function that
essentially performs two tasks: it calls addMovie, then renders the index page with
the appropriate information to display the newly added movie.

One of the conveniences of the web interface is that any form data or URL
parameters are automatically pulled from the request and mapped to function
parameters via compile-time reflection. This means that fields in the form should
have names that match the parameters of the function that will handle the data.
With that in mind, open up web.d and add the following to the MovieMan class:

void postAdd(string title, int caseNumber, int pageNumber,
int discNumber, int seasonNumber)
{
 auto id = addMovie(Movie(0, title, caseNumber, pageNumber,
 discNumber, seasonNumber));
}

By the time we're finished, index.dt is going to have a handful of variables it
needs to properly render the movie list. Each function that calls render with "index.
dt" as a template argument will need to pass all of those variables along. We can
save ourselves some annoyance by wrapping them all in a struct, which we'll
call ListInfo.

ListInfo contains four fields, only two of which we need to concern ourselves with
right now, and one convenience constructor. Its implementation follows. It should be
added to the top of web.d:

struct ListInfo {
 long offset;
 long limit = 10;
 Movie[] movies;
 ListType type;

 this(ListType type) { this(0, type); }

 this(long offset, ListType type) {
 this.offset = offset;
 this.type = type;
 }
}

Chapter 10

[381]

We'll worry about the offset and limit fields later. For now, the two members of
interest are movies and type. The former is the array from which index.dt will pull
all of the movies it needs to display. The latter is an enum that tells index.dt why it is
being called. The code in the template will use this value to display a context-specific
header. ListType, which you can also add to the top of web.d, looks like this:

enum ListType {
 generic,
 addMovie,
 findMovie,
 updateMovie,
}

With these two types in place, we can now complete the postAdd function by adding
the following highlighted lines:

void postAdd(string title, int caseNumber, int pageNumber,
 int discNumber, int seasonNumber)
{
 auto id = addMovie(Movie(0, title, caseNumber, pageNumber,
 discNumber, seasonNumber));
 auto info = ListInfo(ListType.addMovie);
 info.movies = [Movie(id, title, caseNumber, pageNumber,
 discNumber, seasonNumber)];
 render!("index.dt", info);
}

info is initialized with the single argument constructor to set the type of the list
for index.dt to read. We give info.movies a Movie instance constructed with the
same parameters we added to the database. Technically, that's cheating. While it
lets the user verify the information was entered into the form correctly, it doesn't
allow for any corruption of the data that may have occurred when it was handed
off to addMovies. The proper thing to do here is to use id to fetch the newly added
information from the database and send that to index.dt for rendering. Since we
don't have that functionality yet, this will do. Later, once we've added the ability to
find a movie by ID, we'll come back and make the change.

While we're here in web.d, we also will need to modify the index function. Recall
that we adjusted it earlier to pass an array of Movies to the render function. Since
index.dt is going to be modified to work with ListInfo instances instead, index
will also need to send one. If we don't change it, we won't be able to compile. Here,
the ListType we need is ListType.generic:

void index() {
 auto info = ListInfo(ListType.generic);
 render!("index.dt", info);
}

Taking D Online

[382]

Implementing add.dt
The input form consists of five pairs of input fields and labels in a simple table,
with a button at the bottom. Create a file MovieManWeb/views/add.dt. Here's
the boilerplate that goes on top:

extends layout
block article
 h3 Add a New Movie

Every Diet template we create for this application will have the same three lines
at the top, with the text in the h3 tag being context specific. Next up is the form
tag, which sits at the same indentation level as the h3 tag. We need to specify the
action and method properties to trigger the postAdd function that we implemented
previously:

 form(action='/add', method='post')

This is followed by the table tag, one indentation level beyond the form tag. For
our implementation, we've given it a class called Form so that we can style it in
style.css. In HTML, classes are specified as a property of the tag, such as action
and method properties on the form tag, but in Diet templates we append classes
to the tag name with a dot (.):

 table.Form

Finally, we have a series of six table rows (tr tags). The first five rows contain two
cells (td tags) each. The first of each pair of cells contains a label identifying the
input field in the second cell. The first input field is a text field; the remainder are
all number fields. Each input field is given a size property for aesthetics. The
final row contains a single cell that spans two columns. This cell contains the form's
submit button.

It's important when viewing the content of add.dt to make sense of the indentation,
given that it directly affects how the template is parsed. Unfortunately, formatting
such things in a book can distort the text to a degree that makes it difficult to follow the
original formatting. So to make sure you get the full picture, the content of add.dt is
displayed here as an image, rather than as copy-and-pasted text. Other Diet templates
will be displayed this way as we work through the chapter, where necessary. If you
want to copy the text yourself, refer to the downloadable source code:

Chapter 10

[383]

Note that each input field has an id property to match the for property of its
corresponding label. This is a feature of HTML5 that allows focus to shift to an
input when its corresponding label is clicked, but is also important for usability
and accessibility, for example, screen readers.

Modifying index.dt
Now we need to add two pieces of functionality to index.dt. First, is a check for the
ListType it is intended to display. This will allow it to show the appropriate header.
Next, we'll need to implement the logic to set up a table in which all of the movie
data will be displayed. First up is the header. The highlighted lines are new:

extends layout
block article
 -import mmweb.web;
 -if(info.type == ListType.addMovie)
 h3 Sucessfully Added Movie
 -else

Taking D Online

[384]

 h3 MovieMan Database
 -if(movies.length == 0)
 p There are no movies to display.

Note that the existing h3 tag, which reads MovieMan Database, has been indented
one level past the else. Also note that we've imported mmweb.web. This is so we can
have access to the members of the ListType enumeration.

The table we're going to implement has one column for each member of the Movie type
and an additional column for the Edit and Delete links, for a total of seven columns.
The first row consists of seven table headers (th tags), indicating the purpose of each
column. We'll generate a new row for each Movie instance in the movies array via a
foreach loop. For each instance, the value of each member is extracted and placed
into the output via the !{} syntax, for example, to extract the value of the title field:
!{movie.title}. Using the id field of each movie, links to the /edit and /delete
URLs, the handlers for which we'll implement later, are generated and placed in the
last cell of each row. All of the following highlighted code is new:

-if(info.movies.length == 0)
 p There are no movies to display.
-else
 table.MovieList
 tr
 th ID
 th Title
 th Case
 th Page
 th Disc
 th Season
 th Action
 -foreach(i, movie; info.movies)
 tr
 td !{movie.id}
 td.Title !{movie.title}
 td !{movie.caseNumber}
 td !{movie.pageNumber}
 td !{movie.discNumber}
 td !{movie.seasonNumber}
 td
 a(href='/edit?movieID=!{movie.id}') Edit
 br
 a(href='/delete?movieID=!{movie.id}') Delete

Chapter 10

[385]

The first line, not highlighted since it isn't new, was modified so that the -if tests
info.movies.length instead of movies.length. The table tag is given the
MovieList class so that it can be styled to taste in style.css. Notice the second of
the last three lines is a break (br) tag. Break tags should always be inserted at the
same indentation level as the text they apply to. In this case, we want the Edit link to
appear on one line and the Delete link to be on the next, so the br tag is at the same
indentation level as both.

Modifying app.d
We've got everything in place to get the work done, but as yet the server has no
idea how to display the input form. We don't have a function in the web interface
to render it. The postAdd function is for handling the data from the form, not for
displaying the form itself. We could add a new function to MovieMan to render
add.dt, but there's another approach that works equally well and helps us keep
MovieMan clear of functions that don't need any logic.

What we need to do is to tell the server how to associate a URL with a function that
knows how to render add.dt. We can do that by registering a delegate with the get
function of URLRouter, just like we did when we configured it to serve static files.
The vibe.http.server module has a function, staticTemplate, which takes the
name of a template and returns a delegate that will render it. So open up app.d and
add the highlighted line:

router.registerWebInterface(new MovieMan);
router.get("/forms/add", staticTemplate!"add.dt");
router.get("*", serveStaticFiles("./public/"));

We could choose anything for the URL except / or /add, since those already map
to the index and postAdd functions of MovieMan. However, since the form in add.
dt is associated with the postAdd function that handles the /add URL, it's a good
convention to keep add in the form URL so that we never lose track of how the
related parts of the app match up. /forms/add allows us to do that.

Modifying layout.dt
Now the only step remaining is to give the user a way to access the input form. This
requires one minor modification of layout.dt. We need to convert the second list
item into a link that points at /forms/add. The following highlighted lines show the
modifications:

ul
 li
 a(href='/') Home

Taking D Online

[386]

 li
 a(href='/forms/add') Add New Movie
 li Find Movie(s)

All we've done is move the text of the second list item to a new line, add an anchor
tag in front of it that points to the form URL, and indented it one level beyond the
preceding li tag.

That's the last of the changes to add a movie to the database. Now you can launch
the server, reload the page in the browser, click on the Add New Movie link, and
add as many movies to the database as you like.

Invisible tables
If the table doesn't appear after adding a movie, try increasing the size
of the browser window. If it still isn't visible, you'll probably need to
tweak the stylesheet to be more flexible. Or, while testing, just remove the
stylesheet links from layout.dt.

Listing movies
Recall that the intended default behavior of index.dt is to show a list of ten movies
from the database. That's the ListType.generic flag. When the user loads the page
for the first time, the index function in MovieMan should fetch the first ten movies
from the database and hand them off to the render function. index.dt will display
each movie and, depending on the context, add Next and/or Previous links to
display more. To implement this functionality, the following steps are required:

•	 Implement a function in the database layer that can fetch a certain number of
movies, given a row offset and a count

•	 Modify the index function to fetch movies from the database and pass them
off to the render function

•	 Modify index.dt to display Next and Previous links when appropriate

Implementing the listMovies function
The first thing to do on the database side is to set up an SQL statement to fetch a
number of movies from the DB. Open up sql.d and add the following:

enum listSQL = "SELECT * FROM movie LIMIT ?1 OFFSET ?2;";

Chapter 10

[387]

Again, we're going to use a prepared statement for this query. We have two
parameters that we'll need to bind. The first is the limit, which specified how many
database rows to return in the result set; the second is the row offset, namely, which
row to pull first. An offset of 0 is the first row, an offset of 10 the first 10 rows, and
so on. Although we won't implement it in this book, the database layer, the index
function, and the table logic in index.d support limits other than 10. Adding the
ability for the user to select the number of movies to display at once is a potential
post-book exercise.

Next up, we need to get the prepared statement ready. Add the highlighted line
to the private section of db.d:

Statement _insert;
Statement _list;

Then add a line to the module constructor to set it up:

// Create the prepared statements
_insert = _db.prepare(insertSQL);
_list = _db.prepare(listSQL);

Next, we're going to implement a helper function. listMovies isn't the only function
in the DB layer that will need to return an array of Movies. Extracting all of the data
from a d2sqlite3 ResultRange into a Movie instance is repetitive. To make it easier
to manage, add the getResults function to the private section of db.d:

Movie[] getResults(Statement statement) {
 auto results = statement.execute();
 Movie[] movies;

 if(!results.empty) {
 movies.reserve(10);
 foreach(row; results) {
 movies ~= Movie(
 row.peek!long(0),
 row.peek!string(1),
 row.peek!int(2),
 row.peek!int(3),
 row.peek!int(4),
 row.peek!int(5)
);
 }
 }
 return movies;
}

Taking D Online

[388]

The statement is executed and, if the result range is not empty, a new Movie instance
is populated with data and added to an array. The ResultRange is a range that
contains Rows. A Row is a range that contains ColumnData, and those contain the data
we are interested in. The Row type has a convenience function, peek, which takes an
index as a function argument and a type as a template argument. It grabs the data at
that index and converts it to the desired D type. Without peek, this loop would be
much uglier, as we'd have to iterate over every Row and manually extract the data.

Finally, add the listMovies function to the public section of db.d:

Movie[] listMovies(long limit, long offset) {
 _list.reset();
 _list.bind(1, limit);
 _list.bind(2, offset);
 return _list.getResults();
}

The helper function allows listMovies to be nice and compact.

Modifying the index function
Now that listMovies is implemented, we can go ahead and use it in the index
function. We're going to need to do more than just call listMovies, though. The
function will always need to know which row offset should be the starting point of
the list. We can't just always start with the first row. This means the index function
will need to have a parameter.

For those not familiar with HTTP GET and POST methods, each can
send parameters to the server. For POST methods, the parameters are
part of the packet of data the browser sends to the server and are never
seen by the user. For GET methods, the parameters are appended to the
URL like so: http://mysite.com?param1=2;x=3.

The parameter for the root page should always be optional, so that when you
browse to http://127.0.0.1:8080 to see your app, you don't need to specify
any parameters manually. To make that work, we can give the index function a
parameter, which we'll call offset, and give it a default value of 0. That way, if the
URL contains no parameters, vibe.d will see that we have assigned a default value to
the function parameter and won't error out on us. When a parameter with no default
value is missing from the request, vibe.d will always throw an exception (when
using the web interface API).

Chapter 10

[389]

With that information, we can open up web.d and modify the index function to look
like this:

void index(long offset=0, long limit = 10) {
 auto info = ListInfo(offset, ListType.generic);
 info.limit = limit;
 info.movies = listMovies(limit, offset);
 render!("index.dt", info);
}

Modifying index.dt
Now all that remains is to add the Next and Previous links to index.dt. The way it
works is this: We first test whether the ListType is ListType.generic, as other list
types (in this book's implementation of MovieManWeb) aren't concerned with limits
or Next and Previous links. If it is a generic list, we'll add another row to the table
with a total of five cells, two of which span two columns. Inside the two longer cells,
we'll implement some logic to either display the links or display nothing. This time,
I'll show both an image and the new code. The image is shown first, so you can get a
frame of reference, as follows:

Taking D Online

[390]

And now for the code:

-if(info.type == ListType.generic)
 tr
 td.NextPrev
 td.NextPrev
 -if(info.movies.length == info.limit)
 a(href='/?offset=!{info.offset + info.limit}') Next
 td.NextPrev(colspan='3')
 td.NextPrev
 -if(info.offset >= info.limit)
 a(href='/?offset=!{info.offset - info.limit}') Previous
 td.NextPrev

The new addition begins immediately after the code for the loop. The -if is on the
same indentation level as the -foreach, because it follows it and is not part of it.
Just to be clear, in normal D code it would look as follows:

foreach(i, movie; info.movies) {
 ...
}
if(info.type == ListType.generic) {
 ...
}

Putting the -if one indentation level beyond the -foreach would be the same as
putting the if statement inside the foreach block.

The td tags all have the NextPrev class applied. Like the other CSS classes we've
seen so far, this is to allow styling that's specific to these cells. Again, if you aren't
happy with the style, modify style.css as much as you like.

The part that does the work is in the two -if lines inside the cells. The first one
checks whether info.movies.length is greater than or equal to info.limit. This is
a fairly good indicator that the Next link can be shown. If the test passes, a link will be
generated with info.offset + info.limit as the offset parameter for the index
function. Similar logic is used to decide whether or not to show the Previous link,
testing info.offset against info.limit rather than the length of the movie array.

With all of that completed, you can recompile and relaunch the server, then reload
the browser at 127.0.0.1:8080 to see all of the movies you added to the database
after completing the previous subsection.

Chapter 10

[391]

Finding movies
There are a few different keys we might like to use to search for a movie in the
database. Internally, it can be useful to search by ID (to edit or delete a movie, or
fetch a movie that has just been added), though that probably isn't of much interest
to the user. The user would be more interested to search by title, case number, or
perhaps case and page number or case and title. We'll implement a search feature
that accounts for all of these, following these steps:

•	 Implement a function in the web interface to handle the processing of form
data containing the search criteria

•	 Implement a Diet template that displays an input form where the user can
enter search criteria

•	 Modify index.dt to support the listing of search results
•	 Modify app.d to map the input form's URL to the new Diet template
•	 Modify layout.dt with a link to the new input form
•	 Implement support for multiple search criteria in the database layer

Notice that we're modifying the database layer last this time. This is because db.d is
going to require a lot of new code, which we will implement a chunk at a time. By
completing the other steps first, we can test each chunk as we add it.

Implementing the postFind function
The postFind function will receive three parameters from the input form: a movie
title, a case number, and a page number. A page number can never be a search key
by itself, but other than that any combination of the three form fields can be filled
out to search for a movie. If the user only enters a title, the search is by title; if case
number and page number are filled out, then the search is by case number and
page number. The job of postFind is to figure out which fields have values and call
findMovie in the database layer with the appropriate flag. So, for the first step, let's
add the following enumeration to the top of db.d:

enum Find {
 none = 0x0,
 byTitle = 0x1,
 byCase = 0x2,
 byTitleCase = 0x3,
 byCasePage = 0x4,
 byAll = byTitle | byCase | byCasePage,

}

Taking D Online

[392]

One of Find's members will be the first argument passed to findMovie. Now let's
turn to web.d and add postFind to MovieMan.

The first line initializes a local variable, params. After that, the function tests each
parameter to determine which of the Find flags apply. If a title was provided,
Find.byTitle is set. If there is a case number but no page number, Find.byCase
is set, otherwise if there is both a case number and a page number, Find.byCasePage
is set:

void postFind(string title, int caseNumber, int pageNumber) {
 Find params;
 if(title !is null && title != "N/A")
 params |= Find.byTitle;
 if(caseNumber && !pageNumber) params |= Find.byCase;
 else if(caseNumber && pageNumber) params |= Find.byCasePage;

 auto info = ListInfo(ListType.findMovie);
 info.movies = findMovie(params, title, caseNumber, pageNumber);
 render!("index.dt", info);
}

These few lines cover all the cases we are interested in. Finally, if params is still equal
to the default value after the checks, then the index method is called to render the
index page with the default parameters. Otherwise, findMovie is called to perform
the search and the resulting array is stored in a ListInfo instance, which is then
handed off to the render function to list all of the movies on the index page. Notice
that info.type is set to ListType.findMovie.

Implementing find.dt
The diet template find.dt looks very much like the add.dt we implemented earlier.
The only difference is that it has three input fields and posts its data to /find. Once
again, here's a screenshot of the code:

Chapter 10

[393]

Modifying index.dt
We only need to do a little work in index.dt. First, add two lines to check for
ListType.findMovie and display a context-specific header:

-if(info.type == ListType.addMovie)
 h3 Sucessfully Added Movie
-else if(info.type == ListType.findMovie)
 h3 The Following Movies Were Found
-else
 h3 MovieMan Database

Next, we want to also display a context-specific message if the movie array is empty.
The default message looks like this already:

-if
 p There are no movies in the database.

Let's change it to this:

-if(info.movies.length == 0 && info.type == ListType.findMovie)
 p No movies match your search criteria.
-else if(info.movies.length == 0)
 p There are no movies in the database.

Taking D Online

[394]

Modifying app.d and layout.dt
Let's kill two birds with one stone. First, a new line in app.d:

router.get("/forms/add", staticTemplate!"add.dt");
router.get("/forms/find", staticTemplate!"find.dt");
router.get("*", serveStaticFiles("./public/"));

And second, the addition of a link to the form in layout.dt:

ul
 li
 a(href='/') Home
 li
 a(href='/forms/add') Add New Movie
 li
 a(href='/forms/find') Find Movie(s)

Now we're ready to try out all the pieces we'll add to db.d as we add them.

Implementing the findMovie functions
We're going to implement two versions of the findMovie function. One simply
takes an ID to search for; the other takes four parameters, one to indicate which
of the other three to use as search criteria. Since the former is shorter and easier
to implement, that's where we'll begin.

findMovie the first
Here's the SQL that needs to be added to sql.d:

enum byIDSQL = "SELECT * FROM movie WHERE movieID=?1";

In the interests of saving space, I'll trust that you know by now where and how to
add and initialize a Statement named _findByID in db.d. Once you've done that,
you can add the following version of findMovie:

Movie[] findMovie(long id) {
 _findByID.reset();
 _findByID.bind(1, id);
 return _findByID.getResults();
}

Chapter 10

[395]

Even though we're only looking for a single movie here, we're still returning an
array. Given that everything else deals with an array of Movies, it fits right in.
Now let's go back to web.d and modify postAdd as shown by the highlighted line:

void postAdd(string title, int caseNumber, int pageNumber,
int discNumber, int seasonNumber)
{
 auto id = addMovie(Movie(0, title, caseNumber, pageNumber,
 discNumber, seasonNumber));
 auto info = ListInfo(-1, ListType.addMovie);
 info.movies = findMovie(id);
 render!("index.dt", info);
}

findMovie the second
The second function for db.d is a little long to show all at once. So what we'll do
is look at the basic skeleton first, then we'll implement it one case at a time in the
switch statement:

Movie[] findMovie(Find by, string title, int caseNumber,
int pageNumber)
{
 Statement sql;
 scope(exit) sql.reset();
 final switch(by) with(Find) {
 case byTitle:
 break;
 case byCase:
 break;
 case byTitleCase:
 break;
 case byCasePage:
 break;
 case byAll:
 break;
 case none:
 return [];
 }
 return sql.getResults;
}

Taking D Online

[396]

Since we're going to have multiple prepared statements for the different search
criteria, we start off by declaring a Statement instance to which we will assign the
Statement we need in the switch. For convenience, we'll call reset on it when the
function exits. We're using a final switch to guarantee we cover every member of
Find, and a with statement to save some keystrokes. Finally, we call getResults on
the instance we've assigned to sql.

Each case in the switch will first assign the appropriate Statement to sql, bind
the appropriate parameters, then break. The tedious bit is setting up the prepared
statements. Again, I'll show you the SQL each statement requires and give you a
variable name, then you can add the necessary lines to db.d for each Statement.
The first one we'll need is _selectTitleStmt, the SQL for which is:

enum byTitleSQL= "SELECT * FROM movie WHERE title=?1 ORDER BY
caseNum, pageNum;";

Following is the case statement to search by title:

case byTitle:
 sql = _findByTitle;
 sql.bind(1, title);
 break;

At this point, you can compile and launch, then click on the Find Movie(s) link
to test out searching by title. Next up, we'll need a statement called _findByCase,
which requires this SQL:

enum byCaseSQL = "SELECT * FROM movie WHERE caseNum=?1 ORDER BY
pageNum";

And the case statement:

case byCase:
 sql = _findByCase;
 sql.bind(1, caseNumber);
 break;

Run DUB again and perform a couple of searches based on case number. Next in line
are the _findByTitleCase and the following SQL:

enum byTitleCaseSQL= "SELECT * FROM movie WHERE title=?1 AND
caseNum=?2 ORDER BY caseNum, pageNum;";

Chapter 10

[397]

The implementation:

case byTitleCase:
 sql = _findByTitleCase;
 sql.bind(1, title);
 sql.bind(2, caseNumber);
 break;

There are only two case statements left. Once you've tried searching by title and
case number, go ahead and get them both implemented. We'll need two statements,
_findByCasePage and _findByAll. The SQL for each:

enum byCasePageSQL = "SELECT * FROM movie WHERE caseNum=?1 AND
pageNum=?2 ORDER BY pageNum;";
enum byAllSQL = "SELECT * FROM movie WHERE title=?1 AND caseNum=?2
AND pageNum=?3";

And the code:

case byCasePage:
 sql = _findByCasePage;
 sql.bind(1, caseNumber);
 sql.bind(2, pageNumber);
 break;
case byAll:
 sql = _findByAll;
 sql.bind(1, title);
 sql.bind(2, caseNumber);
 sql.bind(3, pageNumber);
 break;

Editing and deleting movies
In order for this book version of MovieManWeb to become feature complete, it needs
to have support for editing and deleting movies. The links to the appropriate URLs
are already configured in index.dt and are displayed alongside each movie in the
table. We're not going to implement them together, however. Should you choose to
do so, adding support for both features is a good first target for expanding on the
program. I will outline the necessary steps and show the required SQL here (it is also
present in sql.d in the downloadable source package), but other than that, you're on
your own.

Taking D Online

[398]

For edit functionality, you'll need to complete the following steps:

•	 Implement a function, updateMovie, in db.d to update the fields of a
database entry, given a Movie instance.

•	 Implement a function, postEdit, in web.d to take the data from a form,
construct a Movie instance, and call the updateMovie function.

•	 Implement a function, getEdit, in web.d to call findMovie with an ID,
then pass call the render function with edit.dt and the result of the find
as template arguments.

•	 Implement a Diet template, edit.dt, which contains an input form with
fields corresponding to each member of a Movie instance. The default values
of each field should be taken from the Movie instance that was given to the
render function.

•	 Modify index.dt to show a context-specific header after the update.

Notice that using URLRouter to map edit.dt to a URL such as /forms/edit isn't
going to work this time. In index.dt, the link to edit a movie looks like this:

a(href='/edit?movieID=!{movie.id}') Edit

The ID of the movie to be edited is added to the URL as a movieID parameter, which
means we need to implement a getEdit function that takes a single parameter
named movieID. The server will make sure that GET requests made when clicking
on the link go to getEdit, and POST requests made from the form in edit.dt go to
postEdit (assuming you properly configure the form properties). The SQL for the
edit feature is:

enum updateSQL = `UPDATE movie
SET title = ?1, caseNum=?2, pageNum=?3, discNum=?4, seasonNum=?5
WHERE movieID=?6;`;

To support deleting a movie from the database, follow these steps:

•	 Implement a function, deleteMovie, in db.d to delete a movie from
the database

•	 Implement a function, getDelete, in web.d to call deleteMovie

That's all that's needed to delete a movie. How you handle the implementation is
entirely up to you, but getDelete must take a movieID parameter to match up with
the Delete link in layout.dt. You might first call findMovie with the ID and, if it
doesn't exist, render index.dt with an empty array. Otherwise, call deleteMovie
and then use the result of findMovie to display the data that was deleted. Don't
forget to make use of ListType in both cases.

Chapter 10

[399]

Expanding on MovieManWeb
Once you've implemented the edit and delete features, there are a number of ways
to expand and enhance the program. Perhaps two of the most important are data
validation and error handling. To see why, try entering text in a number field, or
leaving it empty. What you'll end up with is a page showing you the backtrace
of an exception because std.conv.to couldn't convert the text to a number.

The cost of the convenience of the web interface API is that you lose all of the
low-level control over data conversion and error handling. There is an attribute with
which you can annotate any function in MovieMan, @errorDisplay, which can be
given a function that will be called when an exception is thrown during execution of
the annotated function (see http://vibed.org/api/vibe.web.web/errorDisplay),
but if you want any control over form input validation, you'll need to do it client side
with JavaScript. Alternatively, you could implement a new version of the program
using the low-level API to get a feel for how it works. That would also give you
complete control over how to handle invalid parameters and form data.

vibe.d has support for localization. Adding support to display the UI in multiple
languages would be a nice little project to work on. Other ideas include expanding
the database to allow for movie directors, actors and actresses, producers, release
dates, notes, or any other data you'd like to support. This sort of project would touch
every aspect of the code base, requiring more SQL statements, more D code and
more Diet templates. You could also add support for music CDs.

If you want to take MovieManWeb (or anything you derive from it) online, you'll
need to take steps for security first. At a minimum you'll want to add support for
user accounts and input sanitization. Rather than worrying about storing salted
and hashed passwords and user IDs, it might be a better idea to use something such
as Google Sign-in (https://developers.google.com/identity/sign-in/web/
sign-in) or other APIs to allow logging in with using credentials from popular
social media websites.

Whatever you decide to do with the code presented here, have fun. The D
programming language is always a pleasure to use, but using it together with
vibe.d is quite sublime.

http://vibed.org/api/vibe.web.web/errorDisplay
https://developers.google.com/identity/sign-in/web/sign-in
https://developers.google.com/identity/sign-in/web/sign-in

Taking D Online

[400]

Summary
In this chapter, we have taken an all-too-brief tour of vibe.d by implementing an
example application, MovieManWeb. We learned a little about what vibe.d provides,
how to use the web interface API, how to implement Diet templates and, as a bonus,
how to work with the d2sqlite3 library.

In the next chapter, we'll introduce some more advanced language and library
features in order to point you in the right direction to continue your journey with D.

[401]

Taking D to the Next Level
The previous ten chapters cover enough of D, its standard library, and the ecosystem
for any programmer to use as a guide in implementing a variety of applications
and libraries in D. The language and library features that were covered were either
fundamental, such as those discussed in Chapter 2, Building a Foundation with D
Fundamentals, and Chapter 3, Programming Objects the D Way, or used so frequently
that they are encountered on a regular basis in D libraries, tutorials, and example
code. A number of features were not covered, either because they do not fit into the
categories of fundamental and frequently used, or because they aren't quite ready for
prime time.

This chapter introduces several of the language and library features that were
not covered elsewhere in the book. None of the features here are given in-depth
coverage, only enough to provide a general overview of each. Consider this chapter
a platform from which to launch further exploration of the D programming language
to improve your knowledge and experience. Here are the things we'll be looking at
in this chapter, which are organized in no particular order:

•	 Concurrency: D's support for different multithreaded programming models
in the language, the runtime, and the standard library

•	 SafeD: an introduction to the language features that help guarantee
memory safety

•	 Functional purity: a brief introduction to D's support for pure functions
•	 The garbage collector: a look at the garbage collector API, which can be used

to gain more control over when and how the GC does its work
•	 Connecting with C++: A quick look at binding D with C++ libraries
•	 The Future of D: a few optimistic words about D's future

Taking D to the Next Level

[402]

Concurrency
Once upon a time, multithreaded programming was the exclusive realm of people
with pointy hats who uttered strange incantations. Mere mortals fell victim to
the evils of race conditions and deadlocks too easily. Yet, in this age of multi-core
processors, the arcane is on the verge of becoming the mundane. D's multifaceted
support of concurrency is oriented toward giving programmers the tools to make
it so.

The traditional model of multithreaded programming, lock-based synchronization
and data sharing, began to fall out of favor even before multicore processors came
along. Such code is difficult to properly implement, test, and maintain. Other models,
such as thread-per-system, thread-per-task, and message passing, improved the
situation, making it easier to design frameworks that hide the nasty details behind an
interface that appears single-threaded. Recently, it has become easier to implement
loops that operate on data in parallel in some languages through built-in support,
libraries, and compiler extensions. As software gains access to more and more cores,
both on the CPU and the GPU, this latter model becomes more important. D comes
with support for each of these models, spread across the language, the runtime, and
the standard library. This section presents a brief introduction to all of the support
for concurrent programming in D, with suggestions on where to go to learn more.

Threads and fibers
The heart of any concurrent programming model in D is the Thread class found in
the DRuntime package core.thread. D's threads are heavyweight, meaning they
map to kernel threads managed by the operating system. They carry all the baggage
that comes from each thread having its own context that needs to be activated when
a thread is given its time slice. A more lightweight option is the Fiber class. Not
only do fibers carry around less baggage, their execution is managed by the program
rather than the operating system.

Threads
You may use the Thread class to spawn new threads. Even in single-threaded
programs, its static methods, such as sleep or yield, can be called to affect the
execution of the current thread. New threads can be created either by subclassing
Thread, or by instantiating a Thread instance directly. In both cases, a function that
returns void and takes no arguments can be passed to the Thread constructor in the
form of a delegate or function pointer.

import core.thread;
import std.stdio;

Chapter 11

[403]

class MyThread : Thread {
 this() {
 super(&run);
 }
 private void run() {
 writeln("MyThread is running.");
 }
}
void myThreadFunc() {
 writeln("myThreadFunc is running.");
}
void main() {
 auto myThread1 = new MyThread;
 auto myThread2 = new Thread(&myThreadFunc);
 myThread1.start();
 myThread2.start();
}

There are C libraries and frameworks that provide a platform-agnostic way to create
threads. Sometimes, such as when the C library requires the use of a custom thread
handle for certain functions, it is necessary to use the foreign API to create new
threads. This usually requires a pointer to a function that the new thread will call
when it is executed. Any such threads should usually be registered with DRuntime
inside the thread function by calling thread_attachThis.

extern(C) void threadFunc(void* data) {
 import core.thread : thread_attachThis, thread_detachThis;
 thread_attachThis();
 scope(exit) thread_detachThis();
}

Registering foreign threads with DRuntime is necessary to ensure that all required
thread-local initialization is done. It's also important if the thread touches GC-managed
memory. Before the GC scans any particular block of memory, it pauses the execution
of all active threads. If a thread has not been registered with DRuntime, then the
GC can't pause it. For this reason, you should always prefer to use the Thread class
to create new threads in D, even when using C libraries. Threads should be created
through third-party APIs only in the rare cases when it is unavoidable. Foreign threads
should always be registered with DRuntime if they touch anything on the D side.

Fibers
A Fiber, an alternative implementation of a coroutine, can be spawned in the same
manner as a Thread, by subclassing or by instantiation with a function pointer.

Taking D to the Next Level

[404]

The delegate or function pointer associated with a fiber is executed when the call
member function is called. Execution happens in the calling thread, which is blocked
until the yield function is called, as shown in the following example:

import core.thread;
import std.stdio;
void myFiberFunc() {
 writeln("Execution begun.");
 Fiber.yield();
 writeln("Execution resumed.");
}
void main() {
 auto fiber = new Fiber(&myFiberFunc);
 fiber.call();
 writeln("Execution paused.");
 fiber.call();
}

Always keep in mind the difference between a fiber and a thread. A Thread instance
represents a system resource. Each system thread has its own copies of thread-local
data, so any mutations of such data through the run member function of a Thread
instance happen on local copies and will not be visible in other threads. Non thread-
local mutable data should be protected through synchronization primitives. A Fiber
instance does not represent a system resource, meaning it does not have its own
copies of thread-local data. If there is any possibility that multiple threads can run
the call function on a Fiber instance, then care must be taken to synchronize access
to all data that can be accessed through that function. As long as the same thread
executes the function every time, synchronization is only an issue with data that is
not thread-local. We'll see a bit about synchronization in D shortly.

Data sharing
As we know from Chapter 2, Building a Foundation with D Fundamentals, all variables
declared in D are thread-local by default, meaning each thread has its own copy
of each variable. We've also seen brief mentions of the shared and __gshared
attributes. Fundamentally, they both achieve the same end in that they flag a
variable as being outside of thread-local storage, meaning it is shared by all threads.
Other than that, they are quite different, each coming with its own guarantees and
consequences.

Chapter 11

[405]

__gshared
Applying __gshared to a module-scope variable in D is essentially the same as
declaring any variable in C. It is entirely up to the programmer to ensure that
access to the variable by multiple threads is properly guarded. The same holds
true for member variables of aggregate types, with the added side effect that such
variables are also static. For example, the declarations of shared1 and shared2 in the
following snippet are equivalent:

class SharedMembers {
 __gshared static int shared1;
 __gshared int shared2;
}

__gshared is a necessity when declaring variables in C library bindings, but it
should otherwise be a rarity in normal D code.

Shared
There are a few things to be aware of when applying the shared attribute to a
variable. First, it must be understood that shared modifies the type.

int tlsVar; // type == int
shared int sharedVar; // type == shared(int)

This has consequences in how shared variables are used as function arguments
and assigned to other variables. While value types can convert just fine, this does
not hold with reference types or pointers, for example, a shared(int)* does not
implicitly convert to int*.

Second, shared is transitive. Applying shared to an instance of an aggregate type
means all of its members are also shared.

struct ShareMe {
 int* intPtr;
}
shared ShareMe sm;
int x;
sm.intPtr = &x; // Error!

Here, sm.inPtr = &x fails because &x yields int*, not shared(int*), which is the
type of sm.intptr thanks to the declaration of sm as shared.

Taking D to the Next Level

[406]

Third, the compiler prohibits any unprotected, non-atomic modification of a shared
variable. In the following snippet, the second line is illegal:

shared int sharedInt;
++sharedInt;

In this case, the error can be avoided using a template function from the core.
atomic module in DRuntime.

import core.atomic : atomicOp;
atomicOp!"+="(sharedInt, 1);

As I write, ++sharedInt does not result in a compiler error. Instead,
the compiler outputs the following message: Deprecation: read-
modify-write operations are not allowed for shared variables. Use
core.atomic.atomicOp!"+="(sharedInt, 1) instead. The code will still
compile and the program will execute, but there's a good chance for a
race condition to appear. At some point, this will become a compiler
error. For now, it's necessary to pay attention to the compiler output
to ensure that this sort of thing doesn't slip into any code using
shared variables.

Synchronization and atomics
Synchronization goes hand-in-hand with data sharing. Without the means to protect
a variable from simultaneous access by multiple threads, strange things can happen
(note that there is no need to protect data from multiple fibers; Fiber instances are
no different from any other class instance in that regard). Another option, as seen in
the previous section, is to perform modifications of variables atomically; in one step,
where possible. D has support for synchronization both in the language and in the
runtime and for atomic operations in the runtime.

Automatic synchronization
The synchronized statement creates a scope in which all variable accesses are
protected by a mutex. When the scope is entered, the mutex is acquired (locked).
When the scope is exited, the mutex is released.

private int _someInt;
void setSomeInt(int newVal) {
 synchronized {
 _someInt = newVal;
 }
}

Chapter 11

[407]

The compiler will allocate a new mutex object specifically for each synchronized
blocks. This behavior can be overridden by providing any expression that yields
a class or interface instance for the synchronized statement to use. Every class
instance has its own mutex which the compiler will use instead of allocating a new
one. That said, it's considered good practice to use an instance of std.mutex.Mutex.

import std.mutex;
auto mutex = new Mutex;
synchronized(mutex) {
 ...
}

synchronized can be applied to class (but never struct) declarations. Doing so
makes every member function of that class synchronized and causes the mutex
associated with each instance of the class to be used as the monitor, meaning that it's
equivalent to adding a synchronized(this) statement inside every function in the
class. With this, only shared instances of the class can be instantiated and all member
function calls will be serialized.

As I write, there are two issues to watch out for regarding synchronized classes.
One is public member variables. Right now, it's possible to declare them in a
synchronized class, but this can be problematic if they are mutable as it allows for
non-synchronized mutation. It is expected that this will be deprecated at some point.

The second is the documentation at http://dlang.org/class.
html#synchronized-classes says the following:

"Member functions of non-synchronized classes cannot be individually marked as
synchronized. The synchronized attribute must be applied to the class declaration
itself."

In practice, the compiler actually does allow synchronized to be applied to
individual member functions. Again, instances of the class must be declared as
shared. It is unlikely that this will change, as it is certain to break code in active
projects. One such project is DWT, a port to D of the SWT library for Java (see
https://github.com/d-widget-toolkit/dwt).

http://dlang.org/class.html#synchronized-classes
http://dlang.org/class.html#synchronized-classes
https://github.com/d-widget-toolkit/dwt

Taking D to the Next Level

[408]

Manual synchronization
The DRuntime package core.sync contains several modules that expose primitives
that can be used to manually implement synchronization for different behaviors.
The package includes two types of mutexes, a generic recursive mutex in the mutex
module, and a mutex that allows for shared read access and exclusive write access
in the rwmutex module. Additionally, the modules condition, semaphore, and
barrier provide eponymous primitives. If you're looking to implement lock-based
data sharing yourself, this is a good place to start.

Atomics
An atomic operation is one that appears to happen instantaneously. Such operations
are safe in multithreaded programming because there is an inherent guarantee
that only one thread can perform the operation at a time, meaning that no locks are
required. The core.atomic module in DRuntime provides a handful of functions
that allow for lock-free concurrency. Earlier, we observed how to use the template
function atomicOp to convert the non-atomic operation of adding 1 to a shared(int)
into an atomic one. Other functions in the module allow for atomic loads and stores,
atomic compare and swap (cas), and atomic memory barriers (memory fences).

When using atomic operations, it's important to have a good grasp of memory
ordering. Members of the enumeration core.atomic.MemoryOrder can be used
with the atomicLoad and atomicStore functions to specify the type of memory
barrier instruction the CPU should use in carrying out the operation. Although it's a
talk related to C++, a good place to start is Herb Sutter's two-part talk from C++ and
Beyond 2012, titled, atomic<> Weapons: The C++ Memory Model and Modern Hardware
at https://isocpp.org/blog/2013/02/atomic-weapons-the-c-memory-model-
and-modern-hardware-herb-sutter.

Message passing
Phobos provides foundational support for the message passing model of
concurrent programming in the std.concurrency module. This is the preferred
way of handling concurrency in D; you should only turn to other models if std.
concurrency doesn't meet your needs. This module hides most of the raw details
of concurrent programming behind a simplified API; rather than manipulating the
Thread class directly, programs call std.concurrency.spawn and get a Tid (thread
ID) in return that is then used as a marker to identify messages sent and received
between threads.

import std.concurrency;
import std.stdio;
void myThreadFunc(Tid owner) {

https://isocpp.org/blog/2013/02/atomic-weapons-the-c-memory-model-and-modern-hardware-herb-sutter
https://isocpp.org/blog/2013/02/atomic-weapons-the-c-memory-model-and-modern-hardware-herb-sutter

Chapter 11

[409]

 receive(
 (string s) { writefln("Message to thread %s: %s", owner, s); }
);
}
void main() {
 auto child1 = spawn(&myThreadFunc, thisTid);
 auto child2 = spawn(&myThreadFunc, thisTid);
 send(child1, "Message for child1.");
 send(child2, "Message for child2.");
}

Here, two new threads are created by passing a pointer to myThreadFunc and the
result of thisTid, which returns the Tid of the current thread, to spawn. Then the
parent thread sends a message to each child. The send function takes a Tid followed
by any number of parameters of any type. The receive function is a template that
takes any number of delegates as parameters, each of which can itself have different
parameters and return types. The delegates are registered with the owning thread
as message handlers; when a message is received, all of the registered delegates are
searched to see if any have a parameter list that matches the parameters sent via the
send function. In this example, one handler that accepts a string is registered for each
child thread.

It's notable that std.concurrency deals in logical threads. In other words, a Tid
may represent an actual Thread, or it may represent a Fiber. By default, spawn
creates new kernel threads, but it's possible to implement a Scheduler, such as the
example std.concurrency.FiberScheduler, that causes spawn to create new
fibers instead.

std.concurrency contains variations of spawn, send, and receive, as well as utility
functions and types, which can be used as a foundation for a higher-level message
passing API.

Parallelism
When processing large amounts of data, one way to utilize the power of multi-core
processers is to break the data into chunks and process each chunk in parallel. D has
support for this in the form of the Phobos module std.parallelism.

Taking D to the Next Level

[410]

The module is built around the Task and TaskPool types, with a few helper
functions to make things more convenient to use. A Task represents a unit of work.
A TaskPool maintains a queue of tasks and a number of worker threads. Member
functions of TaskPool can be called to process and apply algorithms to the data in
the task queue. For example, the member functions map and reduce perform the
same operations as their std.algorithm counterparts, but do so across multiple
threads in parallel. Another interesting member function of TaskPool is parallel,
which allows the execution of a parallel foreach loop. There is a convenience
function, also called parallel, which uses the default TaskPool instance. The
following example scales 100 million two-dimensional vectors. When compiled
with –version=SingleThread, it all happens on one thread.

struct Vec2 {
 float x = 1.0f, y = 2.0f;
}
void main() {
 import std.stdio : writeln;
 import std.datetime : MonoTime;
 auto vecs = new Vec2[](100_000_000);
 auto before = MonoTime.currTime;
 version(SingleThread) {
 foreach(ref vec; vecs) {
 vec.x *= 2.0f;
 vec.y *= 2.0f;
 }
 }
 else {
 import std.parallelism : parallel;
 foreach(ref vec; parallel(vecs)) {
 vec.x *= 2.0f;
 vec.y *= 2.0f;
 }
 }
 writeln(MonoTime.currTime - before);
}

Given that there are only two multiplications and assignments per vector, there isn't
enough work for a parallel foreach loop to be beneficial with lower numbers of
vector instances. Change the 100_000_000 to 100_000, for example, and you may
find that the parallel version is slower. It was for me. But with 100 million instances,
the parallel version won out in multiple runs on my machine. If you need to process
large datasets, particularly by performing complex operations, std.parallelism
makes it quite simple to take advantage of multiple cores and process the data
in parallel.

Chapter 11

[411]

More information
The Phobos documentation at http://dlang.org/phobos/index.html is a source
of more detailed information for most of the topics we've covered in this section.
Additionally, the concurrency chapter of Andrei Alexandrescu's book The D
Programming Language is available online at http://www.informit.com/articles/
printerfriendly/1609144. The article Getting More Fiber in Your Diet at http://
octarineparrot.com/article/view/getting-more-fiber-in-your-diet
contains a more complex fiber example that is compared against an implementation
using threads.

SafeD
Memory safety is an important issue in software development. Systems languages
like C, C++ and D offer a number of opportunities for programmer mistakes to
open the door to memory corruption during program execution, possibly leading to
critical system failures, or making it easier for those with nefarious intent to achieve
their goals. Other languages, such as Java and C#, have built-in features intended to
minimize this risk and increase memory safety.

While D is a systems language, it includes some features by default that aim to
increase memory safety. Arrays all carry around their length, meaning it's always
easy to determine exactly how many elements an array contains. This is further
enhanced through the bounds-checking of all array accesses, though this can be
disabled on the command line; a systems programming language needs to allow
performance to be a priority when it has to be. Still, D gives you that same proverbial
gun that C and C++ do; you're less likely to blow off your entire foot with it, but
that's not the whole story.

There is a subset of D that allows for a high degree of memory safety. This subset,
commonly referred to as SafeD, allows programmers to opt-in in order to avoid
common mistakes that can lead to memory corruption. This is achieved by
annotating code with the attributes @safe, @trusted, and @system.

By default, all D code is @system. This means it is possible for the programmer to
take advantage of the full power of the language. Memory safety is enforced by
applying the @safe attribute. Like other attributes, it can be applied directly to
functions, or to entire blocks of code using colons or braces.

module my_safe_module;
// Enable SafeD
@safe:
void thisFunctionIsSafe() {}

http://dlang.org/phobos/index.html
http://www.informit.com/articles/printerfriendly/1609144
http://www.informit.com/articles/printerfriendly/1609144
http://octarineparrot.com/article/view/getting-more-fiber-in-your-diet
http://octarineparrot.com/article/view/getting-more-fiber-in-your-diet

Taking D to the Next Level

[412]

// Go back to the default
@system:
void thisFunctionIsNotSafe() {}
void anotherSafeFunction() @safe {}

@safe functions come with a few restrictions on the sort of code they can contain.
For example, pointer arithmetic is forbidden, casts from pointers to non-pointers
are forbidden, taking the address of a local variable is not allowed, const,
immutable, and shared cannot be cast away, all array accesses are bounds-checked
even when the command line switch -release is given to the compiler (though
–boundscheck=off will disable it completely), and more. Another important
component of SafeD is that @safe functions can only call other functions that are
annotated with @safe or @trusted.

The @trusted attribute presents a safe interface, but the compiler does not attempt
to verify that the implementation meets the restrictions of @safe. In other words,
functions marked as @trusted can serve as a bridge between safe and unsafe code.
It is incumbent upon the programmer to verify that @trusted code isn't doing
anything that can corrupt memory. For example, taking the address of a local
variable isn't an unsafe operation in and of itself; @safe prohibits it solely because
it's the easiest and cheapest way to prevent local addresses from escaping, so any
function where it is necessary to do this can be safely marked with @trusted (as long
as the programmer verifies that the address doesn't escape). The same can be said of
pointer arithmetic; as long as the programmer verifies that it stays within the bounds
of the block of memory to which the pointer points, the code can be considered
@trusted. Ultimately, @trusted serves as a marker indicating that maintainers need
to pay extra attention when modifying this code and clients can trust that nothing
untoward is going on.

Fully understanding and responsibly using SafeD requires an intimate knowledge
of D and any peripheral libraries used in a project. Moreover, not all D programmers
make use of these features, so there are a number of libraries in the D ecosystem where
no consideration has been given to the SafeD subset, limiting the range of libraries
available for those who do choose to use it. That said, as more D programmers take
the plunge to understand and use it, it will become less of an issue. That makes it
worthwhile to explore at some point during your journey with D. For more about
SafeD, refer to http://dlang.org/function.html#function-safety.

http://dlang.org/function.html#function-safety

Chapter 11

[413]

Functional purity
The concept of functional purity was discussed briefly back in Chapter 7, Composing
Functional Pipelines with Algorithms and Ranges. Now it's time for a quick introduction
to functional purity as it is implemented in D. Consider the following function:

Vec2 add(Vec2 a, Vec2 b) pure {
 return Vec2(a.x + b.x, a.y + b.y);
}

Assuming that Vec2 is a struct and not a class, then this function is as pure as a
function can be. No global state is mutated, no parameters are mutated, and given
multiple calls with the same arguments, the result will be the same every time.
Note that it has been marked with the pure attribute. With this, the compiler will
produce an error if the function tries to modify any mutable static data (such as a
module-scope variable) or if it calls any function not marked pure.

What the compiler does not do is prevent the modification of any reference variables,
such as class instances, arrays or ref parameters. This, for example, is legal:

Vec2 add(ref Vec2 a, Vec2 b) pure {
 a.x = 1.0f;
 return Vec2(a.x + b.x, a.y + b.y);
}

In a functional programming language, this sort of thing isn't going to fly. There,
only functions like the first version of add are considered pure. In D, such a function
is informally referred to as strongly pure, whereas the second version of add would
be called weakly pure. The first pass at purity in D did not include the notion of
weak purity. The relaxation of the rules came only after experience showed it
was necessary. D is not, after all, a functional language, but a language with an
imperative core and other paradigms built on top.

For a more in-depth introduction to functional purity in D, and to learn how weak
purity actually helps the language better support strong purity, David Nadlinger's
blog post Purity in D at http://klickverbot.at/blog/2012/05/purity-in-d/
is a good place to start.

http://klickverbot.at/blog/2012/05/purity-in-d/

Taking D to the Next Level

[414]

The garbage collector
The GC has been a background presence throughout this book, occasionally coming
to the fore when we discussed specific language and library features. For a large
number of D programs, it is never necessary to interact directly with the GC. A
programmer needs to be aware of when collection cycles may occur, how to write
GC-free code with @nogc, and how to avoid the potential issues that may arise when
using GC-managed memory with C libraries, but the need to get down and dirty
with the GC API is rare. When those times do arise, the core.memory module
comes into play.

In this module, you'll find a single structure, GC, which contains a number of static
member functions. Automatic garbage collection can be turned off with GC.disable.
This doesn't turn off the GC completely—it will still run when the system is out of
memory—but it does prevent it from running during normal usage. Collection can
be forced by calling GC.collect. There have been reports of significant performance
increases for some applications when turning off automatic collection in favor of
manual collection. Automatic collection can be turned on again at any time with
GC.enable.

Now and again, it's necessary to ensure that a block of memory hangs around
indefinitely, or until the programmer determines it's no longer needed. One such
scenario was presented in Chapter 9, Connecting D with C; when a block of memory
allocated by the GC on the D side is handed off for a C library to make use of, bad
things can happen if the GC collects the memory before the C code is finished with
it. Passing a pointer to the memory to GC.addRoot will guarantee the memory block
remains alive indefinitely. When GC.removeRoot is called, the GC will then be free
to collect the memory block at any time.

Normally, GC memory is allocated indirectly though the new operator, expanding
the capacity of dynamic arrays, or other language features. However, it's possible to
allocate memory from the GC directly via GC.malloc. With this function, flags from
the GC.BlkAttr enumeration can be used to control how the GC treats the memory,
giving the programmer more fine-tuned control; when you know a block of memory
contains no pointers to GC-managed memory, it's a waste of cycles for the GC to
scan it again and again.

Sometimes, it's necessary to allocate memory outside of the GC, such as through a
third-party C library or one of the standard C library allocators (such as malloc),
that will be used to store pointers to memory allocated through the GC, such as class
references or dynamic arrays. In this case, the memory block can be registered with
the GC via the GC.addRange function. This will add the block to the list of memory
locations the GC will scan. When the memory is no longer needed, GC.removeRange
can be called to remove it from the GC's list.

Chapter 11

[415]

As an aid in tuning the GC usage of a D application, DMD provides the -vgc
command-line switch, which lists all of the GC allocations that can occur in a
program. This includes hidden allocations, such as those that happen under the hood
with dynamic arrays or inside Phobos functions. When the garbage collector starts
to become a performance issue in a D program, as it sometimes may, this switch can
be used to help guide manual optimizations, such as the addition of @nogc where
appropriate and the use of GC member functions like disable and collect. For
more on D's garbage collector, refer to http://dlang.org/phobos/core_memory.
html and http://dlang.org/garbage.html.

Connecting with C++
This book devoted an entire chapter to connecting D and C, yet there's only this
small section here in the last chapter to discuss interfacing with C++. The reason is
that this feature of D is, as I write, under active development. Interfacing with C is
rather easy, as most C compilers conform to well-defined, standard ABIs. The story
is different with C++, where there is no standard ABI. This is particularly an issue
when it comes to name-mangling, where compilers have traditionally followed their
own schemes. Additionally, there is no such one-to-one correspondence between
C++-specific features and D features as there is when C is compared with D. There
are also key differences in the languages to consider. For example, C++ supports
multiple inheritance, D does not; classes in C++ are value types, while D classes are
reference types; D const is transitive, C++ const is not; and so on. Most of these
issues as yet have no solutions.

Despite all the caveats, there is a significant amount of interoperability between the
two languages. There is much common ground in their shared compatibility with
C. Additionally, progress has been made on interacting with several C++-specific
features. It all starts with the linkage attribute extern(C++). This is important in
getting the name-mangling correct and is highly dependent on the linker being used.
Libraries generated with the Microsoft tools, whether they are static or dynamic,
will have different name-mangling than those generated by the Digital Mars C++
compiler (DMC) or with GCC.

Namespaces are neatly handled as an extension to the linkage attribute. Consider
the following C++ declaration:

namespace mylib {
 void MyFunction(int a);
}

This can be directly translated to D as:

extern(C++, mylib) {

http://dlang.org/phobos/core_memory.html
http://dlang.org/phobos/core_memory.html
http://dlang.org/garbage.html

Taking D to the Next Level

[416]

 void MyFunction(int a);
}

A C++ struct, when used as a POD type with no inheritance, can be translated
directly to a D struct. It's also possible to translate some C++ aggregate types
directly to D classes or interfaces, though things get complicated when templates
or multiple inheritance are involved.

If you are interested in pursuing D and C++ interoperability, a great place to begin
is with a presentation Walter Bright gave at a meeting of the Northwest C++ Users'
Group, titled Interfacing D to Legacy C++ Code. A video of the talk can be found on
YouTube at https://www.youtube.com/watch?v=IkwaV6k6BmM. Alternatively,
there is a fork of LDC called Calypso that takes a different approach to getting the
two languages to work together. You can find it at https://github.com/Syniurge/
Calypso. There are a few members of the D community taking the time to explore
this topic, so more current information can usually be found in the #D IRC channel
or the D forums.

More on Phobos
We have only touched the surface of what's available in Phobos, D's standard library.
We've seen a handful of functions scattered throughout the book, with the most
detail being given in Chapter 7, Composing Functional Pipelines with Algorithms and
Ranges, where we discussed the library's algorithms and other range-based functions.
In this section, we'll take a quick hop around some of the more notable modules and
packages in Phobos.

std.container
The std.container package contains modules in a collection of data structures,
such as linked lists and a red-black tree. All of the containers share a similar,
range-based API. Though the containers are usable now, the state of the package
has been in a sort of limbo for some time, awaiting the arrival of a std.allocator
package so that custom allocators can be used with each of the containers. At the
time of writing, std.allocator has been approved by community review for
inclusion in the std.experimental Phobos package. It was once expected that this
event would trigger more work on the modules in std.container. However, much
has been learned about ranges and collections in the years since std.container was
first introduced, so it is more likely that a new package will be added to Phobos,
using the new allocators, to replace it. Still, std.container is usable today. Refer to
http://dlang.org/phobos/std_container.html.

https://www.youtube.com/watch?v=IkwaV6k6BmM
https://github.com/Syniurge/Calypso
https://github.com/Syniurge/Calypso
http://dlang.org/phobos/std_container.html

Chapter 11

[417]

An alternative to std.container is the third-party containers package.
Developed and maintained by a company called EMSI (Economic Modeling
Specialists, Intl.), this company uses D in production and the containers package
is battle-tested there. The containers in this library do not use the GC and are already
making use of the future std.allocator package. Visit https://github.com/
economicmodeling/containers for details.

std.datetime
std.datetime provides a variety of date and time functions and objects. Here,
you'll find a number of ways to represent points in time, intervals of time, ranges
over intervals of time, and time zones. There are also function templates that take
any number of functions to execute for benchmarking. There's also the MonoTime
type, which we saw earlier in this chapter, providing high-precision timing. In all,
there are a lot of things in this module to dig through, but it's all well-documented
and none of it is difficult to use. Refer to the documentation at http://dlang.org/
phobos/std_datetime.html for details.

std.digest
This package contains modules that provide implementations of various hashing
functions. At the time of writing, implementations exist for CRC, MD5, RIPEMD-160,
SHA1 and SHA2. The base API can be found in the std.digest.digest module. All
implementations follow this API. You can read more about this at http://dlang.
org/phobos/std_digest_digest.html.

std.experimental
This package serves as a staging ground for new Phobos modules and packages. The
idea is that each proposed module (or package) goes through a brief review period in
the forums, where community members can vote whether it is suitable for inclusion
in std.experimental. If approved, it remains in the package, while users put it
through the paces, find the weaknesses, and look for ways to improve it. At some
point, the package goes up for review again in the forums, where users will voice
their opinions, before coming up for a vote on final inclusion into Phobos proper.

https://github.com/economicmodeling/containers
https://github.com/economicmodeling/containers
http://dlang.org/phobos/std_datetime.html
http://dlang.org/phobos/std_datetime.html
http://dlang.org/phobos/std_digest_digest.html
http://dlang.org/phobos/std_digest_digest.html

Taking D to the Next Level

[418]

std.getopt
This entire module is geared around doing one thing: processing command-line
options. For such a seemingly small task, it's quite a popular module. There's little
reason for anyone writing a D program to manually process command line options
these days, except for special-case needs not covered by this module. This example
shows how easy it is:

void main(string[] args) {
 import std.getopt;
 import std.stdio : writeln;
 bool printMeaning;
 int repeatCount = 1;
 auto helpInfo = getopt(
 args, "print-meaning", "Print the meaning of life.",
 &printMeaning, "repeat-count", "Number of times to repeat the
 meaning of life.", &repeatCount
);
 if(helpInfo.helpWanted) {
 defaultGetoptPrinter(
 "This program can show you the meaning of life, if you tell it
 to.", helpInfo.options
);
 return;
 }
 if(printMeaning && repeatCount > 0) {
 for(int i=0; i<repeatCount; ++i)
 writeln("The meaning of life is 42.");
 }
 else {
 writeln("You have opted not to learn the meaning of life.");
 }
}

Executing this program with -h or -help will print the help message, This program
can show you the meaning of life, if you tell it to, along with each
option and its description. To see the meaning of life, execute it with the --print-
meaning switch. To print the message ten times, execute the following (assuming the
executable is named options):

options --print-meaning --repeat-count=10

Refer to http://dlang.org/phobos/std_getopt.html for more information.

http://dlang.org/phobos/std_getopt.html

Chapter 11

[419]

std.process
This module provides the means to launch new processes and pipe data between
them, with a number of different options for doing so. For example, spawnProcess
launches a new process, with the option of assigning it standard input, output, and
error streams, then returns immediately, allowing the child process to continue
running. The execute function launches a new process, but blocks until the process
is finished. Similarly-named functions, such as spawnShell and executeShell,
behave in the same way, except that they accept arbitrary string commands, which
they run through the system's default command shell. For all the details on std.
process, refer to http://dlang.org/phobos/std_process.html.

std.socket
There are certain types of networked applications for which a dependency on
vibe.d might be overkill. Sometimes, a simple thread-per-client or selector model of
networking is more appropriate. For those situations, std.socket provides types
analogous to those found in the well-known Berkeley Sockets API, which is the basis
for Posix Sockets and a version of which exists in the WinSock API for Windows.
Anyone familiar with Berkeley Sockets, or the venerable java.net API, should
feel right at home with std.socket. There you'll find a base Socket type, with
subclasses called TcpSocket and UdpSocket for communicating via the TCP and
UDP protocols. Socket provides member functions for setting socket options, and
there are several enumerations to assist. There is also a SocketSet type that allows
using the selector model of connection management. You can read more about std.
socket at http://dlang.org/phobos/std_socket.html.

Modules for Unicode and other encodings
There are four modules in Phobos related to character encodings: std.ascii, std.
encoding, std.uni, and std.utf.

The std.ascii module consists of a number of functions that work with ASCII
characters. Some examples are toUpper, toLower, isUpper, isWhite, and so on. All
of the functions accept Unicode characters, but the is* functions will return false
upon encountering them and the to* functions will do nothing. Unicode-enabled
counterparts to the functions in this module are found in std.uni, along with
several other Unicode algorithms and data structures. Refer to http://dlang.org/
phobos/std_ascii.html and http://dlang.org/phobos/std_uni.html.

http://dlang.org/phobos/std_process.html
http://dlang.org/phobos/std_socket.html
http://dlang.org/phobos/std_ascii.html
http://dlang.org/phobos/std_ascii.html
http://dlang.org/phobos/std_uni.html

Taking D to the Next Level

[420]

std.utf exposes functions for encoding and decoding strings to and from the three
Unicode encodings, UTF-8, UTF-16, and UTF-32. std.encoding is where you can
find functions for transcoding between UTF-8, UTF-16, UTF-32, ASCII, ISO-8869-
1, and WINDOWS-1252. Visit http://dlang.org/phobos/std_utf.html and
http://dlang.org/phobos/std_encoding.html for more.

System bindings
In addition to bindings for the C standard library, there are some system-specific
bindings living in DRuntime under the core.sys package. There, you'll find the
following subpackages: freebsd, linux, osx, posix, solaris, and windows. With
these, you should have everything you need for programming on each supported
system. The windows package for years was woefully inadequate, but at the time
of this writing, a third-party Windows API binding project has been merged into
the DRuntime repository and should be released with DMD 2.069. This is a fairly
complete binding that allows you to develop Win32 GUI applications with D. Now,
you should be able to pick up Petzold's Programming Windows or Stevens's Advanced
Programming in the Unix Environment and write all of the examples in D. If you find
anything missing, submit a bug report at https://issues.dlang.org/ or a pull
request at https://github.com/D-Programming-Language/DRuntime.

Game development with D
Chapter 8, Exploring the Wide World of D, introduced the Derelict and Diemos bindings
projects. While Deimos includes bindings for C libraries that are useful for game
development, Derelict was created with games in mind. Between them, you can find
dynamic and/or static bindings for several C and C++ libraries that are commonly
used in game development, such as:

•	 SDL2: The Simple Directmedia Layer is a library that abstracts window
and input handling on several platforms. It allows creating OpenGL-capable
windows and ships with a hardware-accelerated 2D renderer that has
backends for OpenGL, OpenGL ES, and Direct3D. It is available at
http://libsdl.org/.

•	 SFML2: The Simple and Fast Multimedia Library is a C++ library similar to
SDL2. It can be used solely to create OpenGL-enabled windows on mulitple
platforms, but also ships with a 2D renderer built on top of OpenGL. Its
home page is at http://www.sfml-dev.org/. There is an alternative static
binding available at http://www.dsfml.com/.

http://dlang.org/phobos/std_utf.html
http://dlang.org/phobos/std_encoding.html
https://issues.dlang.org/
https://github.com/D-Programming-Language/DRuntime
http://libsdl.org/
http://www.sfml-dev.org/
 http://www.dsfml.com/

Chapter 11

[421]

•	 GLFW3: GLFW is a small, simple library aimed at one thing: abstracting the
window and event handling for OpenGL applications on multiple platforms.
Unlike SDL2 or SFML2, it does not come with any bells and whistles for
rendering, image loading, or anything other than window and event
handling. Refer to http://www.glfw.org/.

Derelict includes bindings for OpenGL, OpenAL, OpenCL, OpenIL, FreeImage,
FreeType, and other libraries useful for game development. There is also a binding
in Derelict for the Allegro library (http://liballeg.org/). A static binding
for Allegro, maintained by one of the Allegro developers, can be found at
https://github.com/SiegeLord/DAllegro5.

If you're looking for libraries to help make a game engine, GFM is a project that has
a number of convenience wrappers to several of the libraries mentioned above and
more. It's available at https://github.com/d-gamedev-team/gfm. To handle all of
the vectors, matrixes, quaternions, and other math constructs you may need, there's
the gl3n library at https://github.com/Dav1dde/gl3n.

If you aren't looking for C library bindings and aren't planning to make your own
game engine, you may want to turn to DGame, a simple but popular 2D game
framework at https://github.com/Dgame/Dgame. If you're looking to move into
3D, Circular Studios maintains the Dash engine at https://github.com/Circular-
Studios/Dash. For anyone looking to integrate D into an existing game engine,
Manu Evans gave a presentation at DConf 2013 on how Remedy Games did just that
for one of their projects (refer to http://dconf.org/2013/talks/evans_1.html).

There are a number of hobbyist game developers in the D community, and some
who work in the industry. At the time of writing, a couple of D games have been
released on Steam and there are quite a few projects scattered around the internet.
Game development is one of the areas where there is ample opportunity for anyone
developing D-specific tools and libraries. If it's an area of interest for you, I encourage
you to reach out to others on the #D IRC channel and in the forums.

The future of D
In the years I have been involved with the D community, I have watched it grow
from a handful of programmers posting on an obscure newsgroup to a large, vibrant
community of users, contributors, and an annual conference. The language has
changed and improved dramatically over that same period. As someone who enjoys
using the language and who keeps abreast of D-related news and discussions in
several different online communities, I'm quite optimistic about D's staying power.

http://www.glfw.org/
http://liballeg.org/
https://github.com/SiegeLord/DAllegro5
https://github.com/d-gamedev-team/gfm
https://github.com/Dav1dde/gl3n
https://github.com/Dgame/Dgame
https://github.com/Circular-Studios/Dash
https://github.com/Circular-Studios/Dash
http://dconf.org/2013/talks/evans_1.html

Taking D to the Next Level

[422]

On August 24, 2015, Andrei Alexandrescu announced in the D forums that he was
resigning from his position as a researcher at Facebook to work full time on "pushing
D forward." On October 16, 2015, he announced the incorporation of a D Foundation
to promote and develop the D programming language. One of D's greatest strengths
is that anyone in the community can contribute toward its development, but that has
also been one of its greatest weaknesses; contributors tend to focus on the aspects
of the language and its ecosystem that they enjoy or need themselves. This has led
to a number of holes that contributors have not yet filled. The establishment of a D
Foundation is expected to help alleviate that situation.

Another optimistic sign is that D is being used now by companies in production,
including in scenarios where high-performance is a critical requirement. The success
of these companies has proven that D is a serious contender in different arenas. It
has also resulted in some direct contributions back to the D community, such as the
containers library released by EMSI. As more companies find success with D, more
will begin to adopt it, ultimately benefitting all D users.

It is my hope that you find the same enjoyment in the language that I have found,
and go on to develop new software with D, whether open source or closed. I've
always viewed the D ecosystem much like the Wild West; there are so many
unexplored possibilities out there that anything goes. If you have an itch that existing
D tools and libraries can't scratch, I encourage you to put your new D skills to use
and develop something that does. I also hope that this book provides some help
along the way.

Summary
This chapter has provided short introductions to a few topics not covered elsewhere
in the book. We've seen the different forms of support for concurrent programming
that D provides in the language, the runtime, and the standard library. We've had
brief overviews of memory safety with SafeD, the garbage collector API, and binding
D to C++. We've also taken a quick look at a handful of useful Phobos modules.
In short, this chapter serves as a starting point for further exploration of the D
programming language. Good luck!

[423]

Index
Symbols
.alignof property 151, 152
.length property 60
.sizeof property 41
.stringof property 156

A
accessibility 101
addMovie function

implementing 378
alias declaration 41
alias parameters 170, 171
alias this feature 114
Allegro library

URL 421
alternative string literals

about 62
delimited strings 63
token strings 64
What You See is What You Get

(WYSIWYG) string 62
append operator 50
Application Binary Interface (ABI)

about 307
URL 309

arrays
about 48
and void 57
basics 48-51
literals 56
operations 57-59
rectangular array 51, 52
slices 54, 55

atomics
about 406-408
URL 408

auto ref parameters 169

B
basic data types

about 35
alias declarations 41
bool type 36
conversions 39, 40
floating-point types 36, 37
literals 37
no type 36
properties 41-43

bidirectional range 219
binding 300
build command 24

C
C++

connecting with 415, 416
URL 416

Calypso
URL 416

C, calling from D
about 339
C arrays 339
C callbacks 347-349
D arrays 339
exceptions 347-349
memory 346, 347

class templates 163-165

[424]

C library
D, binding to 311, 312

closure 233
Code::Blocks

about 277
URL 277

code coverage analysis 283, 284
comments 33
compare and swap (cas) 408
comparison algorithms, std.algorithm

package
about 247
cmp function 247
equal function 247
levenshteinDistance 248
mismatch function 248

comparison overloads, non-templated
operator overloads

about 186
considerations 189
opCmp 188
opEquals 187

compile time
features 145
function execution 141-144
members, accessing 146
strings 139

compile time, features
alignment 149-152
data alignment 147
is expression 146, 147
runtime reflection 153
static assert 145
user-defined attributes (UDAs) 154-156

Compile Time Function Execution
(CTFE) 131

compile time strings
about 139
import expression 139, 140
string mixin 140, 141

composable pipelines 233
compositional ranges, std.range package

about 244
chain function 244
lockstep function 246

roundRobin function 244
transposed function 245
zip function 245, 246

concatenation operator 50
concurrency

about 402
atomics 406
data sharing 404
Fiber class 402-404
message passing 408, 409
parallelism 409, 410
reference links 411
synchronization 406
Thread class 402, 403

conditional compilation
about 134
debug condition 137
static if condition 138
version condition 134-137

conditional expression 69
const

about 72
applying, to arrays 75
applying, to basic types 72
applying, to pointer declaration 73-75
contracts 72
conversions 76
using, as storage class 118

constructors and destructors
about 102
class 102, 104
static 108, 109
struct 105-107

contract programming
assert contracts 122
function contracts 122, 123
invariants 122-124

control flow statements
about 65
foreach loop 67, 68
goto statement 71
traditional conditionals 68-71
traditional loops 66

core.stdc package 301

[425]

C types
conditional compilation 337
defined constants 329
enumerations 321, 322
function parameters 329, 330
function pointers 327, 328
global variables 332, 333
macros 333-336
pointers 325, 326
return types 329, 330
special types 320
strings and characters 320
structures 322-325
symbols 331
type aliases 326

custom ranges
about 224
name generator range 226-228
obtaining, from stack 224-226
other considerations 228, 229

D
D

about 2
binding, to C library 309-312
calling, from C 349-351
contract programming 122
future 421, 422
game development 420
help 7
introductory program 3-7
job, URL 270
name mangling, URL 308
related posts, URL 271
related questions, URL 271
terminology 300
URL 3, 8, 270

d2sqlite3
about 358, 372
URL 358

D arrays
about 344, 345
and C arrays, differentiating between 339
arrays of arrays 342, 343
basic arrays 339-341
strings 344-346

Dash engine
URL 421

data alignment
URL 147

database library, vibe.d
about 357
d2sqlite3 358
sqlite3 358, 359

data sharing
__gshared, applying 405
about 404
shared attribute, applying 405

D, binding to C library
about 311
C types 319, 320
D types 319, 320
function prototypes 312, 313

D build tool and package manager. See
DUB

DCD
about 289
URL 289

DConf
about 272, 273
references 273
URL 272

DDT
about 276
URL 276

debug condition 137
derived data types

about 46
arrays 48
associative arrays 64, 65
pointers 46-48
strings 60

D function
about 76-78
attributes 83
delegates 85-87
function pointers 85-87
inout parameters 81
lazy parameters 82
memory 83, 84
out 78-81
overloaded functions 78
ref 78-81

[426]

return statements 83, 84
diet templates, MovieManWeb

about 363, 364
extending 366, 367
including 366
indentation 364-366
tags 364, 365
URL 365

Digital Mars D compiler (DMD)
about 9
backends 9, 10
documentation 14, 15
example, compiling 13, 14
frontends 9, 10
installing 11
installing, from POSIX ZIPs 12
installing, from Windows ZIP 12
installing, from ZIP 12, 13
linkers 9, 10
source code 14, 16
URL, for installation 11
Windows installer 11

DisplayMenu class 130
DLang

issue tracking system, URL 16, 287, 420
D libraries

about 290
Deimos 296, 297
DerelictOrg 296, 297
DUB registry 290

DMD
about 277
code coverage analysis 283, 284
compiling 285
debugging, controlling 277
default output, changing 278
extensions, dropping 279
libraries, compiling 278
libraries, using 279, 280
optimizations, controlling 277
profiling tools 281-283
running 285
warnings 281

Domain-Specific Languages (DSLs) 141
D types

conditional compilation 337, 338
defined constants 329

enumerations 321, 322
function parameters 329, 330
function pointers 327, 328
global variables 332, 333
macros 334-336
pointers 325, 326
return types 329, 330
special types 320
strings and characters 320
structures 322-325
symbols 331
type aliases 326

DUB
about 18, 21
MovieMan project, configuring 20
URL 19

DUB-enabled libraries
testing 295

DUB registry
about 290
browsing 296
DUB-enabled libraries, testing 295
libraries, using 290-293
URL 290, 294
used, for registering libraries 293-295

duck typing 210
DustMite

about 287, 288
and Windows 288
URL 288

DVM
about 289
binary, downloading on Windows 290
URL 289

dynamic array 49
dynamic binding 302, 304, 305
dynamic libraries 303
dynamic linking 303
Dynamic Link Library 303
dynamic loading 304

E
editors 274
enum template 166
errorDisplay function 399

[427]

error handling
about 118
exception handling 119
scope guards 118

F
filterArray function 208, 209
findMovie functions

about 394-397
implementing 394

forward ranges 218
Fully Qualified Name (FQN) 31
functional programming

about 232, 233
example 233-237
example, URL 235
issues 238
URL 233

functional purity
about 232, 413
URL 413

function prototypes
about 312, 313
shared libraries, loading manually 314, 315
testing 316-319

function templates
about 166, 167
special features 168

G
game development

about 420, 421
GLFW3 421
references 421
SDL2 420
SFML2 420

garbage collector (GC)
about 414
URL 415

GDC
about 285
reference links 286
URL 285

generative ranges, std.range package
about 240
iota function 240
recurrence equation 241
sequence function 241

generic programming
benefits 159

getEdit function 398
GNU Compiler Collection (GCC) 9
grep 288

I
identifiers

about 26
selecting, rules 26

identity expression 45
IDEs

about 274, 276
Code::Blocks 277
Mono-D 276
Visual D 276

immutable
about 72
applying, to arrays 75
applying, to basic types 72
applying, to pointer declaration 73-75
contracts 72
conversions 76

Implicit Function Template Instantiation
(IFTI) 167

import expression 139, 140
import library 303
index function

implementing 388
index overloads, non-templated operator

overloads
about 191
opDollar 192
opIndex 191
opIndexAssign 192

index page, MovieManWeb
diet templates, rendering 375, 376
fleshing out 374
index.dt, rewriting 376, 377
web interface functions, mapping

to URLs 374

[428]

inheritance
about 110-113
fake inheritance 114, 115
interface inheritance 113, 114

inline pragma 134
input ranges 216, 217
Internal Compiler Error (ICE) 287
is expression

URL 147
iteration, std.algorithm package

about 249
group function 249
map 249, 250
reduce 251

J
Jade

URL 356
jagged array (rectangular array) 51
Java Native Interface (JNI) 300
JavaScript Object Notation (JSON)

about 21
URL 21

L
lazy functions 209
LDC

about 285, 286
reference links 286
URL 286

lib pragma 132, 133
librarian 9
linkage attributes

about 307
calling conventions 308, 309
name mangling 307, 308

linker 9
listMovies function

implementing 387, 388
literals

about 37
character literals 39
floating-point literals 38
floating-point literals, URL 38
integer literals 37, 38

logical threads 409
loopback address 361

M
module

about 4, 28
declarations 28, 29
import declarations 30, 31
name 4
special package module 32

Mono-D
about 276
URL 276

MovieMan
about 16, 87, 202, 259
app module 91
building 22, 23
configuring 20
db.d 202, 203
db module 259-263
display menu 263-266
DisplayMenu class 130
dub.sdl 21, 22
features 17, 18
improving 268
io module 87-90
issue 17
MainMenu final class 128-130
Menu base class 126-128
menu classes 204, 205
output directory, changing 24
running 22, 23

MovieManWeb
about 359-363
constraints 359
database, setting up 370-373
diet templates 363, 364
expanding 399
index page, fleshing out 374
layout 368, 369
movies, adding 377, 378
movies, deleting 397, 398
movies, editing 397, 398
movies, listing 386
movies, searching 391

[429]

movies
add.dt, implementing 382, 383
adding 377
addMovie function, implementing 378
app.d, modifying 385-394
find.dt, implementing 392
findMovie functions, implementing 394
index.dt, modifying 383-393
index function, modifying 388
invisible table issue, fixing 386
layout.dt, modifying 385-394
listing 386
listMovies function, implementing 386-388
postAdd function, implementing 380, 381
postFind function, implementing 391, 392
search feature, implementing 391
searching 391

msg pragma 134
multidimensional arrays 52
multithreaded programming 402
mutation, std.algorithm package

about 251
copy function 251, 252
fill function 252
remove function 252

mutex 406
MyPackages

URL 294

N
non-templated operator overloads

about 186
assignment overloads 190
comparison overloads 186
function call overloads 189, 190
index overloads 191

Not a Number (NaN) 37

O
object encapsulation, protection attributes

about 98
constructors 102
destructors 102
inheritance 110-113

nested classes 115, 116
package 100
polymorphism 110-113
private 99
public 98
voldemort types 101

objects
const 116, 117
const, using as storage class 118
file formats 305, 306
immutable 116, 117
protection attributes, used for

encapsulation 98
working with 98

online resources
about 270
DConf 272, 273
DSource 273
DWiki 270
Planet D 270
reddit 270, 271
StackOverflow 270, 271
This Week in D 271

operator overloading
about 186, 198
non-templated operator overloads 186
opApply 200, 201
opDispatch 198, 199
templated operator overloads 192
toHash 201
URL 186

operators
about 43, 44
arithmetic operators 43
assignment operator 45
bitwise operators 44
exponentiation operator 43
opAssign operators 45
relational operators 45
URL 43

optional range primitives
about 221
hasAssignableElement 223
hasLength 222
hasMobileElements 223
hasSlicing 222
hasSwappableElements 223

[430]

isInfinite 222
URL 223

output range 220

P
packages, vibe.d

about 4, 21
vibe.core 354
Vibe.http 354
vibe.mail 355
vibe.web 354

padding 150
parameters, template

alias parameters 171
this parameters 172
value parameters 169

Phobos
about 416
modules, for other encodings 419
modules, for Unicode 419
navigating 239
range-based functions, searching 259
std.algorithm package 247
std.array package 257
std.ascii module 419
std.container package 416, 417
std.datetime package 417
std.digest package 417
std.experimental package 417
std.getopt package 418
std.process module 419
std.range package 239
std.socket 419
system bindings 420

Plain Old Data (POD) 202, 370
Planet D

about 270
URL 270

pointers
about 46-48
void pointers 47

polymorphism 110-113
port 300-302
pragma

about 132
inline pragma 134

lib pragma 132, 133msg pragma 133
URL 132

process function 232
properties

.init 41

.sizeof property 41
about 41-43
URL 41

public imports 30

R
random-access range

about 219
obtaining, from char[] 220
obtaining, from wchar[] 220

ranges
about 223
custom algorithms 229, 230
custom ranges 224
defining 207
in use 223
solutions, to problems 210
used, for solving problems 207-209

RDMD 286, 287
real ranges

about 216
bidirectional ranges 219
forward ranges 218
input ranges 216
optional range primitives 221
output ranges 220
random-access range 219

receive function 409
reddit 270, 271

S
SafeD

about 411, 412
URL 412

scope
about 27
block scopes 27
function scope 27
global scope 27
module scope 27

[431]

scoped import 5
scope statement 118
SDL2

URL 420
selective ranges, std.range package

about 242
drop 243
retro 243
stride function 243
take function 242

send function 409
set operation (set op), std.algorithm

package
about 254
setDifference function 255
setIntersection function 254
setUnion function 255

SFML2
URL 420

shadowing 34
shared libraries

compiling, URL 349
shebang lines (#!) 287
Simple Declarative Language (SDLang)

about 21
URL 21

solutions to problems, ranges
array, wrapping up in range 212
filter, implementing 213-215
interfaces 210, 211
test 215

sorting module, std.algorithm package
partition function 256, 257
sort function 255, 256

source files
about 4
encoding 26

SQL
URL 371

sqlite3
about 358
URL 358

StackOverflow 270, 271
static binding 302-305
static if condition 138, 139
static libraries 302

static linking 302
std.algorithm package

about 247
comparison algorithms 247
iteration 249
mutation 251
searching 253
set operation 254
sorting module 255
URL 247

std.algorithm.searching package
about 253
any function 254
count function 253
find function 253

std.array package
about 257
Appender 257
assocArray 258
join function 258
URL 257

std.random.uniform
about 227
URL 227

std.range package
about 239
compositional ranges 244, 245
generative ranges 240
selective ranges 242
URL 240

std.utf
about 420
reference links 420

std.variant module
URL 95

storage class 79
string mixin 140, 141
strings

about 60
alternative literals 62
essentials 60-62

struct pointer 96
structs

and object functions 111
Sublime Text

about 275
URL 275

[432]

synchronization
about 406
automatic synchronization 406, 407
manual synchronization 408

T
template

as code blocks 160-163
basics 160
class template 163-165
constraints 177, 178
enum template 166
function templates 166-168
mixins 178, 179
parameters 169
specializations 173, 174
struct template 163-165
using 173
variadic templates 180-182

templated operator overloads
about 192
binary overloads 193
cast overloads 195
operator assignment overloads 195, 196
slice operator overloads 196-198
unary overloads 192

template specializations
about 173, 174
on pointers and arrays 175, 176

ternary operator 69
textadept

about 274
URL 274

text editors
about 274
Emacs 274
Sublime Text 275
textadept 274
Vim 274

this parameters 172
Thread class 402, 403
tools and utilities

about 277
D Completion Daemon (DCD) 289
DMD 277
DustMite 287, 288

DVM 289
GDC 285
LDC 285
RDMD 286

toStringz 345
type qualifiers

const 72
immutable 72

U
Unicode

algorithms and data structures,
references 419

Uniform Function Call Syntax (UFCS) 6
unit tests 122-125
Universal Character Names (UCN) 26
updateMovie function 398
user-defined attributes (UDAs) 154-156
user-defined types

about 93
enumerations 93, 94
structs and classes 95-97
unions 95

V
value parameters 169
value range propagation 40
variadic functions 78
variadic template

about 180-182
expression tuple 182, 183
template tuple parameter 182
type tuple 182, 183
usages 184, 185

version condition
about 134-137
URL 135

vibe.d
about 354
database library 357, 358
packages 354, 355
URL 354, 357
web app anatomy 355

Vim
references 274
URL 274

[433]

Visual D
about 276
URL 276

Voldemort type 102

W
web app anatomy, vibe.d

about 355-357
deimos option 355
minimal option 355
vibe.d option 355

wrapper function
about 300
using 341

writeln function 27

Thank you for buying
Learning D

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

D Cookbook
ISBN: 978-1-78328-721-5 Paperback: 362 pages

Discover the advantages of programming in D with
over 100 incredibly effective recipes

1.	 Leverage D to write efficient and correct
programs with minimum code.

2.	 Learn advanced code generation techniques
to automate programming tasks.

3.	 See how to apply D idioms to real-world
problems and understand how it can
benefit you.

Mastering D3.js
ISBN: 978-1-78328-627-0 Paperback: 352 pages

Bring your data to life by creating and deploying
complex data visualizations with D3.js

1.	 Create custom charts as reusable components
to be integrated with existing projects.

2.	 Design data-driven applications with several
charts interacting between them.

3.	 Create an analytics dashboard to display
real-time data using Node and D3 with
real world examples.

Please check www.PacktPub.com for information on our titles

Objective-C Memory Management
Essentials
ISBN: 978-1-84969-712-5 Paperback: 200 pages

Learn and put into practice various memory
management techniques in Objective-C to create
robust iOS applications

1.	 Learn about the concepts of memory
management in Objective-C.

2.	 Get introduced to Swift, an innovative new
programming language for Cocoa and
Cocoa Touch.

3.	 A step-by-step approach to various memory
management techniques with lots of sample
code and Xcode projects for your reference.

C# Multithreaded and Parallel
Programming
ISBN: 978-1-84968-832-1 Paperback: 344 pages

Develop powerful C# applications to take advantage
of today's multicore hardware

1.	 Make use of the latest Visual Studio debugging
tools, to manage and debug multiple threads
running simultaneously.

2.	 Learn how to use the Thread, Task, and Parallel
libraries in your C# applications.

3.	 Explore the evolution of multithreaded
development in C#, starting with
BackgroundWorker classes and moving on to
threads and tasks and finally covering Async.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: How to Get a D in Programming
	Say hello to D
	An introductory program
	Getting help

	The Digital Mars D compiler
	Frontends, backends, and linkers
	Installing DMD
	The Windows installer
	Installing from the ZIP

	Compiling the example
	Documentation and source code
	The documentation
	The source

	Say hello to MovieMan
	The problem
	The features

	DUB – the D build tool and package manager
	Getting started
	Configuring the MovieMan project
	Understanding dub.sdl
	Building and running MovieMan
	Changing the output directory

	Summary

	Chapter 2: Building a Foundation with
D Fundamentals
	The very basics
	Identifiers
	A note about scope
	More on modules
	Module declarations
	More about import declarations
	The special package module

	Comments
	Variable declaration and initialization

	Basic types
	The types
	Literals
	Integer literals
	Floating-point literals
	Character literals

	Conversions
	Alias declarations
	Properties

	Basic operators
	Arithmetic operators
	Bitwise operators
	Relational and logical operators
	The cast operator

	Derived data types
	Pointers
	Arrays
	Array basics
	Rectangular arrays
	Slices
	Array literals
	Arrays and void
	Array operations

	Strings
	String essentials
	Alternative string literals

	Associative arrays

	Control flow statements
	Traditional loops
	The foreach loop
	Traditional conditionals
	The goto statement

	Type qualifiers – const and immutable
	The contracts
	With the basic types
	With pointers
	With arrays
	Conversions

	Functions
	Overloaded functions
	ref and out
	inout parameters
	lazy parameters
	Function attributes
	Return statements and memory
	Function pointers and delegates

	MovieMan – first steps
	The io module
	The app module

	Summary

	Chapter 3: Programming Objects
the D Way
	User-defined types
	Enumerations
	Unions
	Structs and classes

	Working with objects
	Encapsulation with protection attributes
	Public
	Private
	Package
	Voldemort types

	Constructors and destructors
	Class constructors and destructors
	Struct constructors and destructors
	Static constructors and destructors

	Inheritance and polymorphism
	Interfaces
	Fake inheritance

	Nested classes

	Objects with const and immutable
	const as a storage class

	Error handling
	Scope guards
	Exception handling

	Contract programming and unit tests
	Assert contracts
	Function contracts
	Invariants
	Unit tests

	MovieMan – adding menus
	The Menu base class
	The MainMenu class
	The DisplayMenu class

	Summary

	Chapter 4: Running Code at
Compile Time
	Pragmas
	The lib pragma
	The msg pragma
	The inline pragma

	Conditional compilation
	The version condition
	The debug condition
	The static if condition

	Compile-time strings
	The import expression
	String mixins

	Compile-time function execution
	Odds and ends
	static assert
	The is expression
	Alignment
	Compile-time reflection
	User-defined attributes

	Summary

	Chapter 5: Generic Programming
Made Easy
	Template basics
	Templates as code blocks
	Struct and class templates
	Enum templates
	Function templates
	Special features

	More template parameters
	Value parameters
	Alias parameters
	This parameters

	Beyond the basics
	Template specializations
	Specialization on pointers and arrays

	Template constraints
	Template mixins
	Variadic templates
	Terminology
	More on usage

	Operator overloading
	Non-templated operator overloads
	Comparison overloads – opEquals and opCmp
	Function call overloads
	Assignment overloads
	Index overloads

	Templated operator overloads
	Unary overloads
	Binary overloads
	Cast overloads
	Operator assignment overloads
	Slice operator overloads

	Other overloads
	opDispatch
	opApply
	toHash

	MovieMan – the database
	db.d
	Back to the menus

	Summary

	Chapter 6: Understanding Ranges
	Ranges defined
	The problem
	The solution
	The interface
	A range for arrays
	The implementation of filter
	The test

	The real ranges
	Input ranges
	Forward ranges
	Bidirectional ranges
	Random-access ranges
	Output ranges
	Optional range primitives

	Ranges in use
	Custom ranges
	Getting a range from a stack
	A name generator range
	Other considerations

	Custom algorithms

	Summary

	Chapter 7: Composing Functional Pipelines with Algorithms
and Ranges
	Functional programming and composable pipelines
	A simple example
	A more complex example
	Sometimes we can't

	Navigating Phobos
	std.range
	Generative ranges
	Selective ranges
	Compositional ranges

	std.algorithm
	Comparison
	Iteration
	Mutation
	Searching
	Set operations
	Sorting

	std.array
	Appender
	assocArray
	join

	Where to look for more

	MovieMan – wrapping up
	The db module
	The display menu
	Making it better

	Summary

	Chapter 8: Exploring the Wide World
of D
	Online resources
	DWiki
	Planet D
	reddit and StackOverflow
	This Week in D
	DConf
	DSource

	Editors and IDEs
	Text editors
	Vim and Emacs
	Textadept
	Sublime Text

	IDEs
	Visual D
	Mono-D
	DDT
	Code::Blocks

	Tools and utilities
	DMD
	Optimized and debug builds
	Changing the default output
	Compiling libraries
	Using libraries
	Warnings
	Profiling
	Code coverage analysis
	Compile and run

	GDC and LDC
	GDC
	LDC

	RDMD
	DustMite
	DCD
	DVM

	Libraries
	code.dlang.org
	Using libraries from the DUB registry
	Registering libraries with the DUB registry
	Browsing the DUB registry

	Deimos and DerelictOrg

	Summary

	Chapter 9: Connecting D with C
	Preliminaries
	Terminology
	Bindings, wrappers, and ports
	Dynamic and static – context matters

	Object file formats
	Linkage attributes
	Name mangling
	Calling conventions
	Putting it together

	Binding D to C
	Function prototypes
	Manually loading shared libraries
	Trying it out

	C types to D types
	Strings and characters
	Special types
	Enumerations
	Structures
	Pointers
	Type aliases
	Function pointers
	Defined constants
	Function parameters and return types
	Symbols
	Global variables
	Macros
	Conditional compilation

	Calling C from D
	D arrays and C arrays
	Basic arrays
	Arrays of arrays
	Strings

	Memory
	C callbacks and exceptions

	Calling D from C
	Summary

	Chapter 10: Taking D Online
	The software
	vibe.d
	Package overview
	The anatomy of a vibe.d web app

	The database library

	MovieManWeb
	Getting started
	The basics of diet templates
	Tags and indentation
	Including and extending templates
	The MovieManWeb layout

	Setting up the database
	Fleshing out the index page
	Mapping web interface functions to URLs
	Rendering diet templates
	Rewriting index.dt

	Adding movies
	Implementing the addMovie function
	Implementing the postAdd function
	Implementing add.dt
	Modifying index.dt
	Modifying app.d
	Modifying layout.dt

	Listing movies
	Implementing the listMovies function
	Modifying the index function
	Modifying index.dt

	Finding movies
	Implementing the postFind function
	Implementing find.dt
	Modifying index.dt
	Modifying app.d and layout.dt
	Implementing the findMovie functions

	Editing and deleting movies
	Expanding on MovieManWeb

	Summary

	Chapter 11: Taking D to the Next Level
	Concurrency
	Threads and fibers
	Threads
	Fibers

	Data sharing
	__gshared
	Shared

	Synchronization and atomics
	Automatic synchronization
	Manual synchronization
	Atomics

	Message passing
	Parallelism
	More information

	SafeD
	Functional purity
	The garbage collector
	Connecting with C++
	More on Phobos
	std.container
	std.datetime
	std.digest
	std.experimental
	std.getopt
	std.process
	std.socket
	Modules for Unicode and other encodings
	System bindings

	Game development with D
	The future of D
	Summary

	Index

