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1 The Hello World Program

The first program to show in most programming language books is the hello world
program. This very short and simple program merely writes "hello world" and
finishes. This program is important because it includes some of the essential
concepts of that language.

Here is a hello world program in D:

import std.stdio;

void main()
{

writeln("Hello world!");
}

The source code above needs to be compiled by a D compiler to produce an
executable program.

1.1 Compiler installation
At the time of writing this chapter, there are three D compilers to choose from:
dmd, the Digital Mars compiler; gdc, the D compiler of GCC; and ldc, the D
compiler that targets the LLVM compiler infrastructure.
dmd is the D compiler that has been used during the design and development of

the language over the years. All of the examples in this book have been tested
with dmd. For that reason, it would be the easiest for you to start with dmd and try
other compilers only if you have a specific need to. Note, as of this writing, dmd
version 2.066.1 was the latest version tested.

To install the latest version of dmd, go to the download page at Digital Mars1 and
select the compiler build that matches your computer environment. You must
select the dmd build that is for your operating system and package management
system, and whether you have a 32-bit or a 64-bit CPU and operating system. Do
not install a D1 compiler. This book covers only D version two.

The installation steps are different on different environments but it should be
as easy as following simple on-screen instructions and clicking a couple of
buttons.

1.2 Source file
The file that the programmer writes for the D compiler to compile is called the
source file. Since D is usually used as a compiled language, the source file itself is
not an executable program. The source file must be converted to an executable
program by the compiler.

As with any file, the source file must have a name. Although the name can be
anything that is legal on the file system, it is customary to use the .d file extension
for D source files because development environments, programming tools, and
programmers all expect this to be the case. For example, test.d, game.d,
invoice.d, etc. are appropriate D source file names.

1.3 Compiling the hello world program
Copy or type the hello world program above into a text file and save it under the
name hello.d.

1. http://www.dlang.org/download.html
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The compiler will soon check that the syntax of this source code is correct (i.e.
it is valid according to the language rules) and make a program out of it by
translating it into machine code. To compile the program follow these steps:

1. Open a console window.
2. Go to the directory where you saved hello.d.
3. Enter the following command. (Do not type the $ character; it is there to

indicate the command line prompt.)

$ dmd hello.d

If you did not make any mistake, you may think that nothing has happened. To
the contrary, it means that everything went well. There should be an executable
file named hello (or hello.exe under Windows) that has just been created by
the compiler.

If the compiler has instead printed some messages, you probably have made a
mistake when copying the program code. Try to identify the mistake, correct it,
and retry compiling. You will routinely make many mistakes when
programming, so the process of correcting and compiling will become familiar to
you.

Once the program has been created successfully, type the name of the
executable program to run it. You should see that the program prints "Hello
world!":

$ ./hello ← running the program
Hello world! ← the message that it prints

Congratulations! Your first D program works as expected.

1.4 Compiler switches
The compiler has many command line switches that are used for influencing how
it compiles the program. To see a list of compiler switches enter only the name of
the compiler:

$ dmd ← enter only the name
DMD64 D Compiler v2.066.1
Copyright (c) 1999-2014 by Digital Mars written by Walter Bright
Documentation: http://dlang.org/
Usage:

dmd files.d ... { -switch }

files.d        D source files
...

-de            show use of deprecated features as errors (halt compilation)
...

-unittest      compile in unit tests
...

-w             warnings as errors (compilation will halt)
...

The abbreviated output above shows only the command line switches that I
recommend that you always use. Although it makes no difference with the hello
world program in this chapter, the following command line would compile the
program by enabling unit tests and not allowing any warnings or deprecated
features. We will see these and other switches in more detail in later chapters:

$ dmd hello.d -de -w -unittest

The Hello World Program
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The complete list of dmd command line switches can be found in the DMD
Compiler documentation1.

One other command line switch that you may find useful is -run. It compiles
the source code, produces the executable program, and runs it with a single
command:

$ dmd -run hello.d -w -unittest
Hello world! ← the program is automatically executed

1.5 IDE
In addition to the compiler, you may also consider installing an IDE (integrated
development environment). IDEs are designed to make program development
easier by simplifying the steps of writing, compiling, and debugging.

If you do install an IDE, compiling and running the program will be as simple
as pressing a key or clicking a button on the IDE. I still recommend that you
familiarize yourself with compiling programs manually in a console window.

If you decide to install an IDE, go to the IDEs page at dlang.org2 to see a list of
available IDEs.

1.6 Contents of the hello world program
Here is a quick list of the many D concepts that have appeared in this short
program:

Core feature: Every language defines its syntax, fundamental types, keywords,
rules, etc. All of these make the core features of that language. The parentheses,
semicolons, and words like main and void are all placed according to the rules of
D. These are similar to the rules of English: subject, verb, punctuation, sentence
structure, etc.
Keyword: Special words that are a part of the core features of the language are
keywords. Such words are reserved for the language itself, and cannot be used for
any other purpose in a D program. There are two keywords in this program:
import, which is used to introduce a module to the program; and void, which
here means "not returning anything".

Library and function: The core features define only the structure of the
language. They are used for defining functions and user types, and those in turn
are used for building libraries. Libraries are collections of reusable program parts
that get linked with your programs to help them achieve their purposes.
writeln above is a function in D's standard library. It is used for printing a line

of text, as its name suggests: write line.
Module: Library contents are grouped by types of tasks that they intend to help

with. Such a group is called a module. The only module that this program uses is
std.stdio, which handles data input and output.

Character and string: Expressions like "Hello world!" are called strings, and the
elements of strings are called characters. The only string in this program contains
characters 'H', 'e', '!', and others.

Order of operations: Programs complete their tasks by executing operations in
a certain order. These tasks start with the operations that are written in the
function named main. The only operation in this program writes "Hello world!".

Significance of uppercase and lowercase letters: You can choose to type any
character inside strings, but you must type the other characters exactly as they

1. http://dlang.org/dmd-linux.html
2. http://wiki.dlang.org/IDEs
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appear in the program. This is because lowercase vs. uppercase is significant in D
programs. For example, writeln and Writeln are two different names.

We will cover all of the features of D in more detail in the following chapters.

1.7 Exercises

1. Make the program output something else.
2. Change the program to output more than one line. You can do this by

adding one more writeln line to the program.
3. Try to compile the program after making other changes; e.g. remove the

semicolon at the end of the line with writeln and observe a compilation
error.

The solutions are on page 688.
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2 writeln and write
In the previous chapter we have seen that writeln takes a string within
parentheses and prints the string.

The parts of programs that actually do work are called functions and the
information that they need to complete their work are called parameters. The act
of giving such information to functions is called passing parameter values to them.
Parameters are passed to functions within parentheses, separated by commas.
Note: The word parameter describes the information that is passed to a function at

the conceptual level. The concrete information that is actually passed during the
execution of the program is called an argument. Although not technically the same,
these terms are sometimes used interchangably in the software industry.
writeln can take more than one argument. It prints them one after the other

on the same line:

import std.stdio;

void main()
{

writeln("Hello world!", "Hello fish!");
}

Sometimes, all of the information that is to be printed on the same line may not
be readily available to be passed to writeln. In such cases, the first parts of the
line may be printed by write and the last part of the line may be printed by
writeln.
writeln advances to the next line, write stays on the same line:

import std.stdio;

void main()
{

// Let's first print what we have available:
write("Hello");

// ... let's assume more operations at this point ...

write("world!");

// ... and finally:
writeln();

}

Calling writeln without any parameter merely completes the current line, or if
nothing has been written, outputs a blank line.
Lines that start with // are called comment lines or briefly comments. A comment is
not a part of the program code in the sense that it doesn't affect the behavior of
the program. Its only purpose is to explain what the code does in that particular
section of the program. The audience of a comment is anybody who may be
reading the program code later, including the programmer who wrote the
comment in the first place.

2.1 Exercises

1. Both of the programs in this chapter print the strings without any spaces
between them. Change the programs so that there is space between the
arguments as in "Hello world!".
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2. Try calling write with more than one parameter as well.

The solutions are on page 688.

writeln and write
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3 Compilation

We have seen that the two tools that are used most in D programming are the text
editor and the compiler. D programs are written in text editors.

The concept of compilation and the function of the compiler must also be
understood when using compiled languages like D.

3.1 Machine code
The brain of the computer is the microprocessor (or the CPU, short for central
processing unit). Telling the CPU what to do is called coding, and the instructions
that are used when doing so are called machine code.

Most CPU architectures use machine code specific to that particular
architecture. These machine code instructions are determined under hardware
constraints during the design stage of the architecture. At the lowest level these
machine code instructions are implemented as electrical signals. Because the ease
of coding is not a primary consideration at this level, writing programs directly in
the form of the machine code of the CPU is a very difficult task.

These machine code instructions are special numbers, which represent various
operations supported by the CPU. For example, for an imaginary 8-bit CPU, the
number 4 might represent the operation of loading, the number 5 might
represent the operation of storing, and the number 6 might represent the
operation of incrementing. Assuming that the leftmost 3 bits are the operation
number and the rightmost 5 bits are the value that is used in that operation, a
sample program in machine code for this CPU might look like the following:

Operation   Value            Meaning
100      11110        LOAD      11110
101      10100        STORE     10100
110      10100        INCREMENT 10100
000      00000        PAUSE

Being so close to hardware, machine code is not suitable for representing higher
level concepts like a playing card or a student record.

3.2 Programming language
Programming languages are designed as efficient ways of programming a CPU,
capable of representing higher-level concepts. Programming languages do not
have to deal with hardware constraints; their main purposes are ease of use and
expressiveness. Programming languages are easier for humans to understand,
closer to natural languages:

if (a_card_has_been_played()) {
display_the_card();

}

However, programming languages adhere to much more strict and formal rules
than any spoken language.

3.3 Compiled languages
In some programming languages, the program instructions must be compiled
before becoming a program to be executed. Such languages produce fast
executing programs but the development process involves two main steps:
writing the program and compiling it.
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In general, compiled languages help with catching programming errors before
the program even starts running.

D is a compiled language.

3.4 Interpreted languages
Some programming languages don't require compilation. Such languages are
called interpreted languages. Programs can be executed directly from the hand-
written program. Some examples of interpreted languages are Python, Ruby, and
Perl. Because there is no compilation step, program development can be easier for
these languages. On the other hand, as the instructions of the program must be
parsed to be interpreted every time the program is executed, programs that are
written in these languages are slower than their equivalents written in compiled
languages.

In general, for an interpreted language, many types of errors in the program
cannot be discovered until the program starts running.

3.5 Compiler
The purpose of a compiler is translation: It translates programs written in a
programming language into machine code. This translation is called compilation.
Every compiler understands a particular programming language and is described
as a compiler of that language, as in "a D compiler".

3.6 Compilation error
As the compiler compiles a program according to the rules of the language, it
stops the compilation as soon as it comes across illegal instructions. Illegal
instructions are the ones that are outside the specifications of the language.
Problems like a mismatched parenthesis, a missing semicolon, a misspelled
keyword, etc. all cause compilation errors.

The compiler may also emit a compilation warning when it sees a suspicious
piece of code that may cause concern but not necessarily an error. However,
warnings almost always indicate an actual error or bad style, so it is a common
practice to consider most or all warnings as errors. The dmd compiler switch to
enable warnings as errors is -w.

Compilation
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4 Fundamental Types

We have seen that the brain of a computer is the CPU. Most of the tasks of a
program are performed by the CPU and the rest are dispatched to other parts of
the computer.

The smallest unit of data in a computer is called a bit. The value of a bit can be
either 0 or 1.

Since a type of data that can hold only the values 0 and 1 would have very
limited use, the CPU supports larger data types that are combinations of more
than one bit. As an example, a byte usually consists of 8 bits. If an N-bit data type
is the most efficient data type supported by a CPU, we consider it to be an N-bit
CPU: as in 32-bit CPU, 64-bit CPU, etc.

The data types that the CPU supports are still not sufficient: they can't
represent higher level concepts like name of a student or a playing card. Likewise,
D's fundamental data types are not sufficient to represent many higher level
concepts. Such concepts must be defined by the programmer as structs and classes,
which we will see in later chapters.

D's fundamental types are very similar to the fundamental types of many other
languages, as seen in the following table. The terms that appear in the table are
explained below:

D's Fundamental Data Types
Type Definition Initial

Value
bool Boolean type false
byte signed 8 bits 0
ubyte unsigned 8 bits 0
short signed 16 bits 0
ushort unsigned 16 bits 0
int signed 32 bits 0
uint unsigned 32 bits 0
long signed 64 bits 0L
ulong unsigned 64 bits 0L
float 32-bit floating point float.nan
double 64-bit floating point double.nan
real either the largest floating point type

that the hardware supports, or double;
whichever is larger

real.nan

ifloat imaginary value type of float float.nan *
1.0i

idouble imaginary value type of double double.nan *
1.0i

ireal imaginary value type of real real.nan *
1.0i

cfloat complex number type made of two floats float.nan +
float.nan *
1.0i

cdouble complex number type made of two doubles double.nan +
double.nan *
1.0i

creal complex number type made of two reals real.nan +
real.nan *
1.0i

char UTF-8 code unit 0xFF
wchar UTF-16 code unit 0xFFFF
dchar UTF-32 code unit and Unicode code point 0x0000FFFF
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In addition to the above, the keyword void represents having no type. The
keywords cent and ucent are reserved for future use to represent signed and
unsigned 128 bit values.

Unless there is a specific reason not to, you can use int to represent whole
values. To represent concepts that can have fractional values, consider double.

The following are the terms that appeared in the table:
Boolean: The type of logical expressions, having the value true for truth and

false for falsity.
Signed type: A type that can have negative and positive values. For example,

byte can have values from -128 to 127. The names of these types come from the
negative sign.

Unsigned type: A type that can have only positive values. For example, ubyte
can have values from 0 to 255. The u at the beginning of the name of these types
comes from unsigned.

Floating point: The type that can represent values with fractions as in 1.25. The
precision of floating point calculations are directly related to the bit count of the
type: higher the bit count, more precise the results.

Only floating point types can represent fractions; integer types like int can
only represent whole values like 1 and 2.

Complex number type: The type that can represent the complex numbers of
mathematics.

Imaginary number type: The type that represents only the imaginary part of
complex numbers. The i that appears in the Initial Value column is the square
root of -1 in mathematics.
nan: Short for "not a number", representing invalid floating point value.

4.1 Properties of types
D types have properties. Properties are accessed with a dot after the name of the
type. For example, the sizeof property of int is accessed as int.sizeof. We will
see only four of these attributes in this chapter:

• .stringof is the name of the type
• .sizeof is the length of the type in terms of bytes. (In order to

determine the bit count, this value must be multiplied by 8, the number
of bits in a byte.)

• .min is short for "minimum"; this is the smallest value that the type can
have

• .max is short for "maximum"; this is the largest value that the type can
have

• .init is short for "initial value"; this is the value that D assigns to a type
when the initial value is not specified

Here is a program that prints these properties for int:

import std.stdio;

void main()
{

writeln("Type           : ", int.stringof);
writeln("Length in bytes: ", int.sizeof);
writeln("Minimum value  : ", int.min);
writeln("Maximum value  : ", int.max);
writeln("Initial value  : ", int.init);

}

Fundamental Types
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The output of the program is the following:

Type           : int
Length in bytes: 4
Minimum value  : -2147483648
Maximum value  : 2147483647
Initial value  : 0

4.2 size_t
You will come across the size_t type as well. size_t is not a separate type but an
alias of an existing unsigned type. Its name comes from "size type". It is the most
suitable type to represent concepts like size or count. size_t must be large enough
to represent the number of bytes of the memory that a program can potentially
be using. Its actual size depends on the system: uint on a 32-bit system, ulong on
a 64-bit system, etc.

You can use the .stringof property to see what size_t is an alias of on your
system:

import std.stdio;

void main()
{

writeln(size_t.stringof);
}

The output of the program is the following on my system:

ulong

4.3 Exercise

• Print the properties of other types.
Note: You can't use the reserved types cent and ucent in any program;

and as an exception, void does not have the properties .min, .max and
.init. The .min property has also been deprecated for floating point types.
You can see all the various properties for the fundamental types in the D
property specification1.

The solution is on page 688.

1. http://dlang.org/property.html
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5 Assignment and Order of Evaluation

The first two difficulties that most students face when learning to program
involve the assignment operation and the order of evaluation.

5.1 The assignment operation
You will see lines similar to the following in almost every program in almost
every programming language:

a = 10;

The meaning of that line is "make a's value become 10". Similarly, the following
line means "make b's value become 20":

b = 20;

Based on that information, what can be said about the following line?

a = b;

Unfortunately, that line is not about the equality concept of mathematics that we
all know. The expression above does not mean "a is equal to b"! When we apply
the same logic from the earlier two lines, the expression above must mean "make
a's value become the same as b's value".

The well-known = symbol of mathematics has a completely different meaning
in programming: make the left side's value the same as the right side's value.

5.2 Order of evaluation
In general, the operations of a program are applied step by step in the order that
they appear in the program. (There are exceptions to this rule, which we will see
in later chapters.) We may see the previous three expressions in a program in the
following order:

a = 10;
b = 20;
a = b;

The meaning of those three lines altogether is this: "make a's value become 10,
then make b's value become 20, then make a's value become the same as b's value".
Accordingly, after those three operations are performed, the value of both a and b
would be 20.

5.3 Exercise

Observe that the following three operations swap the values of a and b.
If at the beginning their values are 1 and 2 respectively, after the
operations the values become 2 and 1:

c = a;
a = b;
b = c;

The solution is on page 689.
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6 Variables

Concrete concepts that are represented in a program are called variables. A value
like air temperature and a more complicated object like a car engine can be
variables of a program.

The main purpose of a variable is to represent a value in the program. The
value of a variable is the last value that has been assigned to that variable. Since
every value is of a certain type, every variable is of a certain type as well. Most
variables have names as well, but some variables are anonymous.

As an example of a variable, we can think of the concept of the number of
students at a school. Since the number of students is a whole number, int is a
suitable type, and studentCount would be a sufficiently descriptive name.

According to D's syntax rules, a variable is introduced by its type followed by its
name. The introduction of a variable to the program is called its definition. Once a
variable is defined, its name represents its value.

import std.stdio;

void main()
{

// The definition of the variable; this definition
// specifies that the type of studentCount is int:
int studentCount;

// The name of the variable becomes its value:
writeln("There are ", studentCount, " students.");

}

The output of this program is the following:

There are 0 students.

As seen from that output, the value of studentCount is 0. This is according to the
fundamental types table from the previous chapter: the initial value of int is 0.

Note that studentCount does not appear in the output as its name. In other
words, the output of the program is not "There are studentCount students".

The values of variables are changed by the = operator. The = operator assigns
new values to variables, and for that reason is called the assignment operator:

import std.stdio;

void main()
{

int studentCount;
writeln("There are ", studentCount, " students.");

// Assigning the value 200 to the studentCount variable:
studentCount = 200;
writeln("There are now ", studentCount, " students.");

}

There are 0 students.
There are now 200 students.

When the value of a variable is known at the time of the variable's definition, the
variable can be defined and assigned at the same time. This is an important
guideline; it makes it impossible to use a variable before assigning its intended
value:
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import std.stdio;

void main()
{

// Definition and assignment at the same time:
int studentCount = 100;

writeln("There are ", studentCount, " students.");
}

There are 100 students.

6.1 Exercise

• Define two variables to print "I have exchanged 20 Euros at the rate of
2.11". You can use the floating point type double for the decimal value.

The solution is on page 689.
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7 Standard Input and Output Streams

So far, the printed output of our programs has been appearing on the console
window (or screen). Although the console is often the ultimate target of output,
this is not always the case. The objects that can accept output are called standard
output streams.

The standard output is character based; everything to be printed is first
converted to the corresponding character representation and then sent to the
output as characters. For example, the integer value 100 that we've printed in the
last chapter is not sent to the output as the value 100, but as the three characters
1, 0, and 0.

Similarly, what we normally perceive as the keyboard is actually the standard
input stream of a program and is also character based. The information always
comes as characters to be converted to data. For example, the integer value 42
actually comes through the standard input as the characters 4 and 2.

These conversions happen automatically.
This concept of consecutive characters is called a character stream. As D's

standard input and standard output fit this description, they are character
streams.
The names of the standard input and output streams in D are stdin and stdout,
respectively.

Operations on these streams normally require the name of the stream, a dot,
and the operation; as in stream.operation(). Because stdin's reading methods
and stdout's writing methods are used very commonly, those operations can be
called without the need of the stream name and the dot.
writeln that we've been using in the previous chapters is actually short for

stdout.writeln. Similarly, write is short for stdout.write. Accordingly, the
hello world program can also be written as follows:

import std.stdio;

void main()
{

stdout.writeln("Hello world!");
}

7.1 Exercise

• Observe that stdout.write works the same as write.

The solution is on page 689.
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8 Reading from the Standard Input

Any data that is read by the program must first be stored in a variable. For
example, a program that reads the number of students from the input must store
this information in a variable. The type of this specific variable can be int.

As we've seen in the previous chapter, we don't need to type stdout when
printing to the output, because it is implied. Further, what is to be printed is
specified as the argument. So, write(studentCount) is sufficient to print the
value of studentCount. To summarize:

stream:      stdout
operation:   write
data:        the value of the studentCount variable
target:      commonly the console window

The reverse of write is readf; it reads from the standard input. The "f" in its
name comes from "formatted" as what it reads must always be presented in a
certain format.

We've also seen in the previous chapter that the standard input stream is
stdin.

In the case of reading, one piece of the puzzle is still missing: where to store the
data. To summarize:

stream:      stdin
operation:   readf
data:        some information
target:      ?

The location of where to store the data is specified by the address of a variable.
The address of a variable is the exact location in the computer's memory where
its value is stored.
In D, the & character that is typed before a name is the address of what that name
represents. For example, the address of studentCount is &studentCount. Here,
&studentCount can be read as "the address of studentCount" and is the missing
piece to replace the question mark above:

stream:      stdin
operation:   readf
data:        some information
target:      the location of the studentCount variable

Typing a & in front of a name means pointing at what that name represents. This
concept is the foundation of references and pointers that we will see in later
chapters.
I will leave one peculiarity about the use of readf for later; for now, let's accept as
a rule that the first argument to readf must be "%s":

readf("%s", &studentCount);

Note: As I explain below, in most cases there must also be a space: " %s".
"%s" indicates that the data should automatically be converted in a way that is

suitable to the type of the variable. For example, when the '4' and '2' characters are
read to a variable of type int, they would be converted as the integer value 42.

The program below asks the user to enter the number of students. You must
press the Enter key after typing the input:
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import std.stdio;

void main()
{

write("How many students are there? ");

/*
* The definition of the variable that will be used to
* store the information that is read from the input.
*/

int studentCount;

// Storing the input data to that variable
readf("%s", &studentCount);

writeln("Got it: There are ", studentCount, " students.");
}

8.1 Skipping the whitespace characters
Even the Enter key that we press after typing the data is stored as a special code
and is placed into the stdin stream. This is useful to the programs to detect
whether the information has been input on a single line or multiple lines.

Although sometimes useful, such special codes are mostly not important for
the program and must be filtered out from the input. Otherwise they block the
input and prevent reading other data.

To see this problem in a program, let's also read the number of teachers from the
input:

import std.stdio;

void main()
{

write("How many students are there? ");
int studentCount;
readf("%s", &studentCount);

write("How many teachers are there? ");
int teacherCount;
readf("%s", &teacherCount);

writeln("Got it: There are ", studentCount, " students",
" and ", teacherCount, " teachers.");

}

Unfortunately, now the program gets stuck when reading the second int:

How many students are there? 100
How many teachers are there? 20

← The program gets stuck here

Although the user enters the number of teachers as 20, the special code(s) that
represents the Enter key that has been pressed when entering the previous 100 is
still in the input stream and is blocking it. The characters that appeared in the
input stream are similar to the following:

100[EnterCode]20[EnterCode]

I have highlighted the Enter code that is blocking the input.
The solution is to use a space character before %s to indicate that the Enter

code that appears before reading the number of teachers is not important: " %s".
Spaces that are in the format strings are used to read and ignore zero or more
invisible characters that would otherwise appear in the input. Such characters
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include the actual space character, the code(s) that represent the Enter key, the
Tab character, etc. and are called the whitespace characters.

As a general rule, you can use " %s" for every data that is read from the input.
The program above works as expected with the following changes:

// ...
readf(" %s", &studentCount);

// ...
readf(" %s", &teacherCount);

// ...

The output:

How many students are there? 100
How many teachers are there? 20
Got it: There are 100 students and 20 teachers.

8.2 Additional information

• Lines that start with // are useful for single lines of comments. To write
multiple lines as a single comment, enclose the lines within /* and */
markers.

In order to be able to comment even other comments, use /+ and +/:

/+
// A single line of comment

/*
A comment that spans
multiple lines

*/

A comment block that includes other comments
+/

• Most of the whitespace in the source code is insignificant. It is good
practice to write longer expressions as multiple lines or add extra
whitespace to make the code more readable. Still, as long as the syntax
rules of the language are observed, the programs can be written without
any extra whitespace:

import std.stdio;void main(){writeln("Hard to read!");}

It is hard to read source code that has as little whitespace as that.

8.3 Exercise

• Enter non-numerical characters when the program is expecting integer
values and observe that the program does not work correctly.

The solution is on page 689.
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9 Logical Expressions

The actual work that a program performs is accomplished by expressions. Any part
of a program that produces a value or a side effect is called an expression. It has a
very wide definition because even a constant value like 42 and a string like "hello"
are expressions, since they produce the respective constant values 42 and "hello".
Note: Don't confuse producing a value with defining a variable. Values need not be

associated with variables.
Function calls like writeln are expressions as well because they have side

effects. In the case of writeln, the effect is on the output stream by the placement
of characters on it. Another example from the programs that we have written so
far would be the assignment operation, which affects the variable that is on its
left-hand side.

Because of producing values, expressions can take part in other expressions.
This allows us to form more complex expressions from simpler ones. For
example, assuming that there is a function named currentTemperature that
produces the value of the current air temperature, the value that it produces may
directly be used in a writeln expression:

writeln("It's ", currentTemperature(),
" degrees at the moment.");

That line consists of four expressions:

1. "It's "
2. currentTemperature()
3. " degrees at the moment."
4. The writeln() expression that makes use of the other three

In this chapter we will cover the particular type of expression that is used in
conditional statements.

Before going further though, I would like to repeat the assignment operator
once more, this time emphasizing the two expressions that appear on its left and
right sides: the assignment operator (=) assigns the value of the expression on its
right-hand side to the expression on its left-hand side (e.g. to a variable).

temperature = 23 // temperature's value becomes 23

9.1 Logical Expressions
Logical expressions are the expressions that are used in Boolean arithmetic.
Logical expressions are what makes computer programs make decisions like "if
the answer is yes, I will save the file".

Logical expressions can have one of only two values: false that indicates
falsity, and true that indicates truth.

I will use writeln expressions in the following examples. If a line has true
printed at the end, it will mean that what is printed on the line is true. Similarly,
false will mean that what is on the line is false. For example, if the output of a
program is the following,

There is coffee: true

then it will mean that "there is coffee". Similarly,

37



There is coffee: false

will mean that "there isn't coffee". Note that the fact that "is" appears on the left-
hand side does not mean that coffee exists. I use the "... is ...: false" construct to
mean "is not" or "is false".

Logical expressions are used extensively in conditional statements, loops, function
parameters, etc. It is essential to understand how they work. Luckily, logical
expressions are very easy to explain and use.

The logical operators that are used in logical expressions are the following:

• The == operator answers the question "is equal to?". It compares the two
expressions on its left and right sides and produces true if they are
equal and false if they are not. By definition, the value that == produces
is a logical expression.

As an example, let's assume that we have the following two variables:

int daysInWeek = 7;
int monthsInYear = 12;

The following are two logical expressions that use those values:

daysInWeek == 7 // true
monthsInYear == 11 // false

• The != operator answers the question "is not equal to?". It compares the
two expressions on its sides and produces the opposite of ==.

daysInWeek != 7 // false
monthsInYear != 11 // true

• The || operator means "or", and produces true if any one of the logical
expressions is true.

If the value of the left-hand expression is true, it produces true
without even looking at the expression that is on the right-hand side. If
the left-hand side is false, then it produces the value of the right-hand
side. This operator is similar to the "or" in English: if the left one, the
right one, or both are true, then it produces true.

The following table presents all of the possible values for both sides of
this operator and its result:

Left expression Operator Right expression Result
false || false false
false || true true
true || false (not evaluated) true
true || true (not evaluated) true

import std.stdio;

void main()
{

// false means "no", true means "yes"

bool existsCoffee = false;
bool existsTea = true;

writeln("There is warm drink: ",
existsCoffee || existsTea);

}

Logical Expressions
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Because at least one of the two expressions is true, the logical
expression above produces true.

• The && operator means "and", and produces true if both of the
expressions are true.

If the value of the left-hand expression is false, it produces false
without even looking at the expression that is on the right-hand side. If
the left-hand side is true, then it produces the value of the right-hand
side. This operator is similar to the "and" in English: if the left value and
the right value are true, then it produces true.

Left expression Operator Right expression Result
false && false (not evaluated) false
false && true (not evaluated) false
true && false false
true && true true

writeln("I will drink coffee: ",
wantToDrinkCoffee && existsCoffee);

Note: The fact that the || and && operators may not evaluate the right-hand
expression is called their shortcut behavior . The only other operator that
has this behavior is the ternary operator ?:, which we will see in a later
chapter. All of the other operators always evaluate and use all of their
expressions.

• The ^ operator answers the question "is one or the other but not both?".
This operator produces true if only one expression is true, but not both.

Left expression Operator Right expression Result
false ^ false false
false ^ true true
true ^ false true
true ^ true false

For example, the logic that represents my playing chess if only one of my
two friends shows up can be coded like this:

writeln("I will play chess: ", jimShowedUp ^ bobShowedUp);

• The < operator answers the question "is less than?" (or "does come before
in sort order?").

writeln("We beat: ", theirScore < ourScore);

• The > operator answers the question "is greater than?" (or "does come
after in sort order?").

writeln("They beat: ", theirScore > ourScore);

• The <= operator answers the question "is less than or equal to?" (or "does
come before or the same in sort order?"). This operator is the opposite of
the > operator.

writeln("We were not beaten: ", theirScore <= ourScore);

• The >= operator answers the question "is greater than or equal to?" (or
"does come after or the same in sort order?"). This operator is the
opposite of the < operator.
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writeln("We did not beat: ", theirScore >= ourScore);

• The ! operator means "the opposite of". Different from the other logical
operators, it takes just one expression and produces true if that
expression is false, and false if that expression is true.

writeln("I will walk: ", !existsBicycle);

9.2 Grouping expressions
The order in which the expressions are evaluated can be specified by using
parentheses to group them. When parenthesized expressions appear in more
complex expressions, the parenthesized expressions are evaluated before they
can be used in the expressions that they appear in. For example, the expression "if
there is coffee or tea, and also cookie or scone; then I am happy" can be coded like
the following:

writeln("I am happy: ",
(existsCoffee || existsTea) && (existsCookie || existsScone));

If the sub expressions were not parenthesized, the expressions would be
evaluated according to operator precedence rules of D (which have been inherited
from the C language). Since in these rules && has a higher precedence than ||,
writing the expression without parentheses would not be evaluated as intended:

writeln("I am happy: ",
existsCoffee || existsTea && existsCookie || existsScone);

The && operator would be evaluated first and the whole expression would be the
semantic equivalent of the following expression:

writeln("I am happy: ",
existsCoffee || (existsTea && existsCookie) || existsScone);

That has a totally different meaning: "if there is coffee, or tea and cookie, or scone;
then I am happy".

9.3 Reading bool input
All of the bool values above are automatically printed as "false" or "true". It is not
the case in the opposite direction: the strings "false" and "true" are not
automatically read as the values false and true. For that reason, the input must
be first read as a string and then be converted to a bool value.

Since one of the exercises below requires you to enter "false" and "true" from
the standard input, I have been forced to use D features that I haven't explained to
you yet. I will have to define a function below that will convert the input string to
a bool value. This function will achieve its task by calling to, which is defined in
the module std.conv. (You may see ConvException errors if you enter anything
other than "false" or "true".)

I am hoping that all of the pieces of code that are in the main() functions of the
following programs are clear at this point. read_bool() is the function that
contains new features. Although I have inserted comments to explain what it
does, you can ignore that function for now. Still, it must be a part of the source
code for the program to compile and work correctly.

Logical Expressions
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9.4 Exercises

1. We've seen above that the < and the > operators are used to determine
whether a value is less than or greater than another value; but there is
no operator that answers the question "is between?" to determine
whether a value is between two other values.

Let's assume that a programmer has written the following code to
determine whether value is between 10 and 20. Observe that the
program cannot be compiled as written:

import std.stdio;

void main()
{

int value = 15;

writeln("Is between: ",
10 < value < 20); // ← compilation ERROR

}

Try using parentheses around the whole expression:

writeln("Is between: ",
(10 < value < 20)); // ← compilation ERROR

Observe that it still cannot be compiled.
2. While searching for a solution to this problem, the same programmer

discovers that the following use of parentheses now enables the code to
be compiled:

writeln("Is between: ",
(10 < value) < 20); // ← compiles but WRONG

Observe that the program now works as expected and prints "true".
Unfortunately that output is misleading because the program has a bug.
To see the effect of that bug, replace 15 with a value greater than 20:

int value = 21;

Observe that the program still prints "true" even though 21 is not less
than 20.

Hint: Remember that the type of a logical expression is bool. It
shouldn't make sense whether a bool value is less than 20.

3. The logical expression that answers the question "is between?" must
instead be coded like this: "is greater than the lower value and less than
the upper value?".

Change the expression in the program according to that logic and
observe that it now prints "true" as expected. Additionally, test that the
logical expression works correctly for other values as well: for example,
when value is 50 or 1, the program should print "false"; and when it's 12,
the program should print "true".

4. Let's assume that we can go to the beach when one of the following
conditions is true:

◦ If the distance to the beach is less than 10 and there is a bicycle
for everyone
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◦ If there is less than 6 of us, and we have a car, and one of us has
a driver license

As written, the following program always prints "true". Construct a
logical expression that will print "true" when one of the conditions above
is true. (When trying the program, enter "false" or "true" for questions
that start with "Is there a".). Don't forget to include the read_bool()
function when testing the following program:

import std.stdio;
import std.conv;
import std.string;

void main()
{

write("How many are we? ");
int personCount;
readf(" %s", &personCount);

write("How many bicycles are there? ");
int bicycleCount;
readf(" %s", &bicycleCount);

write("What is the distance to the beach? ");
int distance;
readf(" %s", &distance);

bool existsCar = read_bool("Is there a car? ");
bool existsLicense =

read_bool("Is there a driver license? ");

/*
Replace the 'true' below with a logical expression that
produces the value 'true' when one of the conditions
listed in the question is satisfied:

*/
writeln("We are going to the beach: ", true);

}

/*
Please note that this function includes features that will
be explained in later chapters.

*/
bool read_bool(string message)
{

// Print the message
write(message, "(false or true) ");

// Read the line as a string
string input;
while (input.length == 0) {

input = chomp(readln());
}

// Produce a 'bool' value from that string
bool result = to!bool(input);

// Return the result to the caller
return result;

}

Enter various values and test that the logical expression that you wrote
works correctly.

The solutions are on page 689.
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10 if Statement

We've learned that the actual work in a program is performed by expressions. All
of the expressions of all of the programs that we've seen so far have started with
the main() function and were executed until the end of main.
Statements, on the other hand, are features that affect the execution of
expressions. Statements don't produce values and don't have side effects
themselves. They determine whether and in what order the expressions are
executed. Statements sometimes use logical expressions when making such
decisions.
Note: Other programming languages may have different definitions for expression

and statement, while some others may not have a distinction at all.

10.1 The if block and its scope
The if statement determines whether one or more expressions would be
executed. It makes this decision by evaluating a logical expression. It has the
same meaning as the English word "if", as in the phrase "if there is coffee then I
will drink coffee".
if takes a logical expression in parentheses. If the value of that logical

expression is true, then it executes the expressions that are within the following
curly brackets. Conversely, if the logical expression is false, it does not execute
the expressions within the curly brackets.

The area within the curly brackets is called a scope and all of the code that is in
that scope is called a block of code.

Here is the syntax of the if statement:

if (a_logical_expression)
{

// ... expression(s) to execute if true
}

For example, the program construct that represents "if there is coffee then drink
coffee and wash the cup" can be written as in the following program:

import std.stdio;

void main()
{

bool existsCoffee = true;

if (existsCoffee) {
writeln("Drink coffee");
writeln("Wash the cup");

}
}

If the value of existsCoffee is false, then the expressions that are within the
block would be skipped and the program would not print anything.

10.2 The else block and its scope
Sometimes there are operations to execute for when the logical expression of the
if statement is false. For example, there is always an operation to execute in a
decision like "if there is coffee I will drink coffee, else I will drink tea".

The operations to execute in the false case are placed in a scope after the else
keyword:
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if (a_logical_expression)
{

// ... expression(s) to execute if true
}
else
{

// ... expression(s) to execute if false
}

For example, under the assumption that there is always tea:

if (existsCoffee) {
writeln("Drink coffee");

} else {
writeln("Drink tea");

}

In that example, either the first or the second string would be printed depending
on the value of existsCoffee.
else itself is not a statement but an optional clause of the if statement; it

cannot be used alone.
Note the placement of curly brackets of the if and else blocks above. Although

it is official D style1 to place curly brackets on separate lines, this book uses a
common style of inline curly brackets throughout.

10.3 Always use the scope curly brackets
It is not recommended but is actually possible to omit the curly brackets if there
is only one statement within a scope. As both the if and the else scopes have just
one statement above, that code can also be written as the following:

if (existsCoffee)
writeln("Drink coffee");

else
writeln("Drink tea");

Most experienced programmers use curly brackets even for single statements.
(One of the exercises of this chapter is about omitting them.) Having said that, I
will now show the only case where omitting the curly brackets is actually better.

10.4 The "if, else if, else" chain
One of the powers of statements and expressions is the ability to use them in
more complex ways. In addition to expressions, scopes can contain other
statements. For example, an else scope can contain an if statement. Connecting
statements and expressions in different ways allows us to make programs behave
intelligently according to their purposes.

The following is a more complex code written under the agreement that riding
to a good coffee shop is preferred over walking to a bad one:

if (existsCoffee) {
writeln("Drink coffee at home");

} else {

if (existsBicycle) {
writeln("Ride to the good place");

1. http://dlang.org/dstyle.html
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} else {
writeln("Walk to the bad place");

}
}

The code above represents the phrase "if there is coffee, drink at home; else if
there is a bicycle, ride to the good place; otherwise walk to the bad place".

Let's complicate this decision process further: instead of having to walk to the
bad place, let's first try the neighbor:

if (existsCoffee) {
writeln("Drink coffee at home");

} else {

if (existsBicycle) {
writeln("Ride to the good place");

} else {

if (neighborIsHome) {
writeln("Have coffee at the neighbor");

} else {
writeln("Walk to the bad place");

}
}

}

Such decisions like "if this case, else if that other case, else if that even other case,
etc." are common in programs. Unfortunately, when the guideline of always using
curly brackets is followed obstinately, the code ends up having too much
horizontal and vertical space: ignoring the empty lines, the 3 if statements and
the 4 writeln expressions above occupy a total of 13 lines.

In order to write such constructs in a more compact way, when an else scope
contains only one if statement, then the curly brackets of that else scope are
omitted as an exception of this guideline.

I am leaving the following code untidy as an intermediate step before showing
the better form of it. No code should be written in such an untidy way. (I am also
presenting it without keyword highlighting to indicate that it is unacceptable as
written.)

The following is what the code looks like after removing the curly brackets of
the two else scopes that contain just a single if statement:

if (existsCoffee) {
writeln("Drink coffee at home");

} else

if (existsBicycle) {
writeln("Ride to the good place");

} else

if (neighborIsHome) {
writeln("Have coffee at the neighbor");

} else {
writeln("Walk to the bad place");

}

If we now move those if statements up to the same lines as their enclosing else
clauses and tidy up the code, we end up with the following more readable format:
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if (existsCoffee) {
writeln("Drink coffee at home");

} else if (existsBicycle) {
writeln("Ride to the good place");

} else if (neighborIsHome) {
writeln("Have coffee at the neighbor");

} else {
writeln("Walk to the bad place");

}

Removing the curly brackets allows the code to be more compact and lines up all
of the expressions for easier readability. The logical expressions, the order that
they are evaluated, and the operations that are executed when they are true are
now easier to see at a glance.

This common programming construct is called the "if, else if, else" chain.

10.5 Exercises

1. Since the logical expression below is true, we would expect this
program to drink lemonade and wash the cup:

import std.stdio;

void main()
{

bool existsLemonade = true;

if (existsLemonade) {
writeln("Drinking lemonade");
writeln("Washing the cup");

} else
writeln("Eating pie");
writeln("Washing the plate");

}

But when you run that program you will see that it washes the plate as
well:

Drinking lemonade
Washing the cup
Washing the plate

Why? Correct the program to wash the plate only when the logical
expression is false.

2. Write a program that plays a game with the user (obviously with trust).
The user throws a die and enters its value. Either the user or the
program wins according to the value of the die:

Value of the die         Output of the program
1                      You won
2                      You won
3                      You won
4                      I won
5                      I won
6                      I won

Any other value               ERROR: Invalid value

Bonus: Have the program also mention the value when the value is
invalid. For example:
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ERROR: 7 is invalid

3. Let's change the game by having the user enter a value from 1 to 1000.
Now the user wins when the value is in the range 1-500 and the
computer wins when the value is in the range 501-1000. Can the previous
program be easily modified to work in this way?

The solutions are on page 690.
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11 while Loop

The while loop is similar to the if statement and essentially works as a repeated
if statement. Just like if, while also takes a logical expression and evaluates the
block when the logical expression is true. The difference is that the while
statement evaluates the logical expression and executes the expressions in the
block repeatedly, as long as the logical expression is true, not just once. Repeating
a block of code this way is called looping.

Here is the syntax of the while statement:

while (a_logical_expression)
{

// ... expression(s) to execute while true
}

For example, the code that represents eat cookies as long as there is cookie can be
coded like this:

import std.stdio;

void main()
{

bool existsCookie = true;

while (existsCookie) {
writeln("Take cookie");
writeln("Eat cookie");

}
}

That program would continue repeating the loop because the value of
existsCookie never changes from true.
while is useful when the value of the logical expression changes during the

execution of the program. To see this, let's write a program that takes a number
from the user as long as that number is zero or greater. Remember that the initial
value of int variables is 0:

import std.stdio;

void main()
{

int number;

while (number >= 0) {
write("Please enter a number: ");
readf(" %s", &number);

writeln("Thank you for ", number);
}

writeln("Exited the loop");
}

The program thanks for the provided number and exits the loop only when the
number is less than zero.

11.1 The continue statement
The continue statement starts the next iteration of the loop right away, instead of
executing the rest of the expressions of the block.
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Let's modify the program above to be a little picky: instead of thanking for any
number, let's not accept 13. The following program does not thank for 13 because
in that case the continue statement makes the program go to the beginning of
the loop to evaluate the logical expression again:

import std.stdio;

void main()
{

int number;

while (number >= 0) {
write("Please enter a number: ");
readf(" %s", &number);

if (number == 13) {
writeln("Sorry, not accepting that one...");
continue;

}

writeln("Thank you for ", number);
}

writeln("Exited the loop");
}

We can define the behavior of that program as take numbers as long as they are
greater than or equal to 0 but skip 13.

11.2 The break statement
Sometimes it becomes obvious that there is no need to stay in the while loop any
longer. break allows the program to exit the loop right away. The following
program exits the loop as soon as it finds a special number:

import std.stdio;

void main()
{

int number;

while (number >= 0) {
write("Please enter a number: ");
readf(" %s", &number);

if (number == 42) {
writeln("FOUND IT!");
break;

}

writeln("Thank you for ", number);
}

writeln("Exited the loop");
}

We can summarize this behavior as take numbers as long as they are greater than or
equal to 0 or until a number is 42.

11.3 Infinite loop
Sometimes the logical expression is intentionally made a constant true. The
break statement is a common way of exiting such infinite loops.

The following program prints a menu in an infinite loop; the only way of
exiting the loop is a break statement:

while Loop
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import std.stdio;

void main()
{

/* Infinite loop, because the logical expression is always
* true */

while (true) {
write("0:Exit, 1:Turkish, 2:English - Your choice? ");

int choice;
readf(" %s", &choice);

if (choice == 0) {
writeln("See you later...");
break; // The only exit of this loop

} else if (choice == 1) {
writeln("Merhaba!");

} else if (choice == 2) {
writeln("Hello!");

} else {
writeln("I don't know that... :/");

}
}

}

Note: Exceptions can terminate an infinite loop as well. We will see exceptions in a
later chapter.

11.4 Exercises

1. The following program is designed to stay in the loop as long as the
input is 3, but there is a bug: it doesn't ask for any input:

import std.stdio;

void main()
{

int number;

while (number == 3) {
write("Number? ");
readf(" %s", &number);

}
}

Fix the bug. The program should stay in the loop as long as the input is 3.
2. Make the computer help Anna and Bill play a game. First, the computer

should take a number from Anna in the range from 1 to 10. The program
should not accept any other number; it should ask again.

Once the program takes a valid number from Anna, it should start
taking numbers from Bill until he guesses Anna's number correctly.
Note: The numbers that Anna enters obviously stays on the console and

can be seen by Bill. Let's ignore this fact and write the program as an exercise
of the while statement.

The solutions are on page 691.
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12 Integers and Arithmetic Operations

We have seen that the if and while statements allow programs to make
decisions by using the bool type in the form of logical expressions. In this
chapter, we will see arithmetic operations on the integer types of D. These features
will allow us to write much more useful programs.

Although arithmetic operations are a part of our daily lives and are actually
simple, there are very important concepts that a programmer must be aware of in
order to produce correct programs: the bit length of a type, overflow (and wrap),
underflow, and truncation.

Before going further, I would like to summarize the arithmetic operations in
the following table as a reference:

Operator Effect Sample
++ increments by one ++variable
-- decrements by one --variable
+ the result of adding two values first + second
- the result of subtracting 'second' from

'first'
first - second

* the result of multiplying two values first * second
/ the result of dividing 'first' by

'second'
first / second

% the remainder of dividing 'first' by
'second'

first % second

^^ the result of raising 'first' to the
power of 'second'

(multiplying 'first' by itself 'second'
times)

first ^^ second

Most of those operators have counterparts that have an = sign attached: +=, -=, *=,
/=, %=, and ^^=. The difference with these operators is that they assign the result
to the left-hand side:

variable += 10;

That expression adds the value of variable and 10 and assigns the result to
variable. In the end, the value of variable would be increased by 10. It is the
equivalent of the following expression:

variable = variable + 10;

I would like also to summarize two important concepts here before elaborating
on them below.

Overflow: Not all values can fit in a variable of a given type. If the value is too
big for the variable we say that the variable overflows. For example, a variable of
type ubyte can have values only in the range of 0 to 255; so when assigned 260,
the variable overflows and its value becomes 4. (Note: Technically, "overflow" is for
signed types only. Unsigned types do "wrap" instead. This distinction is ignored in this
book.)

Underflow: Similarly, values may not be less than the minimum value that a
type can have.

Truncation: Integer types cannot have values with fractional parts. For
example, the value of the int expression 3/2 is 1, not 1.5.
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12.1 More Information
We encounter arithmetic operations daily without many surprises: if a bagel is $1,
two bagels are $2; if four sandwiches are $15, one sandwich is $3.75, etc.

Unfortunately things are not as simple with arithmetic operations in
computers. If we don't understand how values are stored in a computer, we may
be surprised to see that a company's debt is reduced to $1.7 billion when it borrows
$3 billion more on top of its existing debt of $3 billion! Or when a box of ice cream
serves 4 kids, an arithmetic operation may claim that 2 boxes would be sufficient
for 11 kids!

Programmers must understand how integers are stored in computers.

Integer types
Integer types are the types that can have only whole values like -2, 0, 10, etc. These
types cannot have fractional parts, as in 2.5. All of the integer types that we have
seen in the Fundamental Types chapter (page 27) are the following:

Type
Number

of
Bits

Initial
Value

byte 8 0
ubyte 8 0
short 16 0

ushort 16 0
int 32 0

uint 32 0
long 64 0L

ulong 64 0L

The u at the beginning of the type names stands for "unsigned" and indicates that
such types cannot have values less than zero.

Number of bits of a type
In today's computer systems, the smallest unit of information is called a bit. At
the physical level, a bit is represented by electrical signals around certain points
in the circuitry of a computer. A bit can be in one of two states that correspond to
different voltages in the area that defines that particular bit. These two states are
arbitrarily defined to have the values 0 and 1. As a result, a bit can have one of
these two values.

As there aren't many concepts that can be represented by just two states, bit is
not a very useful type. It can only be useful for concepts with two states like
heads or tails or whether a light switch is on or off.

If we consider two bits at a time, the total amount of information that can be
represented multiplies. Based on each bit having a value of 0 or 1 individually,
there are a total of 4 possible states. Assuming that the left and right digits
represent the first and second bit respectively, these states are 00, 01, 10, and 11.
Let's add one more bit to see this effect better; three bits can be in 8 different
states: 000, 001, 010, 011, 100, 101, 110, 111. As can be seen, each added bit doubles
the total number of states that can be represented.

The values to which these eight states correspond to are defined by
conventions. The following table shows these values for the signed and unsigned
representations of 3 bits:

Bit
State

Unsigned
Value

Signed
Value

000 0 0
001 1 1
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010 2 2
011 3 3
100 4 -4
101 5 -3
110 6 -2
111 7 -1

We can construct the following table by adding more bits:

Bits Number of Distinct Values D Type Minimum Value Maximum Value
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256 byte

ubyte
-128

0
127
255

... ...
16 65,536 short

ushort
-32768

0
32767
65535

... ...
32 4,294,967,296 int

uint
-2147483648

0
2147483647
4294967295

... ...
64 18,446,744,073,709,551,616 long

ulong
-9223372036854775808

0
9223372036854775807

18446744073709551615
... ...

I skipped many rows in the table and indicated the signed and unsigned versions
of the D types that have the same number of bits on the same row (e.g. int and
uint are both on the 32-bit row).

Choosing a type
Since a 3-bit type can only have 8 distinct values, it can only represent concepts
like the value of a die or the number of the day of the week. (This is just an
example; there isn't a 3-bit type in D.)

On the other hand, although uint is a very large type, it cannot represent the
concept of an ID number for each living person, as its maximum value is less
than the world population of 7 billion. long and ulong would be more than
enough to represent many concepts.

As a general rule, as long as there is no specific reason not to, you can use int
for integer values.

Overflow
The fact that types can have a limited range of values may cause unexpected
results. For example, although adding two uint variables with values of 3 billion
each should produce 6 billion, because that sum is greater than the maximum
value that a uint variable can hold (about 4 billion), this sum overflows. Without
any warning, only the difference of 6 and 4 billion gets stored. (A little more
accurately, 6 minus 4.3 billion.)

Truncation
Since integers cannot have values with fractional parts, they lose the part after
the decimal point. For example, assuming that a box of ice cream serves 4 kids,
although 11 kids would actually need 2.75 boxes, 2.75 can only be stored as 2 in an
integer type.
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I will show limited techniques to help reduce the effects of overflow, underflow,
and truncation later in the chapter.

.min and .max
I will take advantage of the .min and .max properties below, which we have seen
in the Fundamental Types chapter (page 27). These properties provide the
minimum and maximum values that an integer type can have.

Increment: ++
This operator is used with a single variable (more generally, with a single
expression) and is written before the name of that variable. It increments the
value of that variable by 1:

import std.stdio;

void main()
{

int number = 10;
++number;
writeln("New value: ", number);

}

New value: 11

The increment operator is the equivalent of using the add-and-assign operator
with the value of 1:

number += 1; // same as ++number

If the result of the increment operation is greater than the maximum value of
that type, the result overflows and becomes the minimum value. We can see this
effect by incrementing a variable that initially has the value int.max:

import std.stdio;

void main()
{

writeln("minimum int value   : ", int.min);
writeln("maximum int value   : ", int.max);

int number = int.max;
writeln("before the increment: ", number);
++number;
writeln("after the increment : ", number);

}

The value becomes int.min after the increment:

minimum int value   : -2147483648
maximum int value   : 2147483647
before the increment: 2147483647
after the increment : -2147483648

This is a very important observation, because the value changes from the
maximum to the minimum as a result of incrementing and without any warning!
This effect is called overflow. We will see similar effects with other operations.

Decrement: --
This operator is similar to the increment operator; the difference is that the value
is decreased by 1:
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--number; // the value decreases by 1

The decrement operation is the equivalent of using the subtract-and-assign
operator with the value of 1:

number -= 1; // same as --number

Similar to the ++ operator, if the value is the minimum value to begin with, it
becomes the maximum value. This effect is called underflow.

Addition: +
This operator is used with two expressions and adds their values:

import std.stdio;

void main()
{

int first = 12;
int second = 100;

writeln("Result: ", first + second);
writeln("With a constant expression: ", 1000 + second);

}

Result: 112
With a constant expression: 1100

If the result is greater than the sum of the two expressions, it again overflows and
becomes a value that is less than both of the expressions:

import std.stdio;

void main()
{

// 3 billion each
uint first = 3000000000;
uint second = 3000000000;

writeln("maximum value of uint: ", uint.max);
writeln("                first: ", first);
writeln("               second: ", second);
writeln("                  sum: ", first + second);
writeln("OVERFLOW! The result is not 6 billion!");

}

maximum value of uint: 4294967295
first: 3000000000

second: 3000000000
sum: 1705032704

OVERFLOW! The result is not 6 billion!

Subtraction: -
This operator is used with two expressions and gives the difference between the
first and the second:

import std.stdio;

void main()
{

int number_1 = 10;
int number_2 = 20;

writeln(number_1 - number_2);
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writeln(number_2 - number_1);
}

-10
10

It is again surprising if the actual result is less than zero and is stored in an
unsigned type. Let's rewrite the program using the uint type:

import std.stdio;

void main()
{

uint number_1 = 10;
uint number_2 = 20;

writeln("PROBLEM! uint cannot have negative values:");
writeln(number_1 - number_2);
writeln(number_2 - number_1);

}

PROBLEM! uint cannot have negative values:
4294967286
10

It is a good guideline to use signed types to represent concepts that may ever be
subtracted. As long as there is no specific reason not to, you can choose int.

Multiplication: *
This operator multiplies the values of two expressions; the result is again subject
to overflow:

import std.stdio;

void main()
{

uint number_1 = 6;
uint number_2 = 7;

writeln(number_1 * number_2);
}

42

Division: /
This operator divides the first expression by the second expression. Since integer
types cannot have fractional values, the fractional part of the value is discarded.
This effect is called truncation. As a result, the following program prints 3, not 3.5:

import std.stdio;

void main()
{

writeln(7 / 2);
}

3

For calculations where fractional parts matter, floating point types must be used
instead of integers. We will see floating point types in the next chapter.
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Remainder (modulus): %
This operator divides the first expression by the second expression and produces
the remainder of the division:

import std.stdio;

void main()
{

writeln(10 % 6);
}

4

A common application of this operator is to determine whether a value is odd or
even. Since the remainder of dividing an even number by 2 is always 0,
comparing the result against 0 is sufficient to make that distinction:

if ((number % 2) == 0) {
writeln("even number");

} else {
writeln("odd number");

}

Power: ^^
This operator raises the first expression to the power of the second expression.
For example, raising 3 to the power of 4 is multiplying 3 by itself 4 times:

import std.stdio;

void main()
{

writeln(3 ^^ 4);
}

81

Arithmetic operations with assignment
All of the operators that take two expressions have assignment counterparts.
These operators assign the result back to the expression that is on the left-hand
side:

import std.stdio;

void main()
{

int number = 10;

number += 20; // same as number = number + 20; now 30
number -= 5; // same as number = number - 5;  now 25
number *= 2; // same as number = number * 2;  now 50
number /= 3; // same as number = number / 3;  now 16
number %= 7; // same as number = number % 7;  now  2
number ^^= 6; // same as number = number ^^ 6; now 64

writeln(number);
}

64

Integers and Arithmetic Operations

57



Negation: -
This operator converts the value of the expression from negative to positive or
positive to negative:

import std.stdio;

void main()
{

int number_1 = 1;
int number_2 = -2;

writeln(-number_1);
writeln(-number_2);

}

-1
2

The type of the result of this operation is the same as the type of the expression.
Since unsigned types cannot have negative values, the result of using this
operator with unsigned types can be surprising:

uint number = 1;
writeln("negation: ", -number);

The type of -number is uint as well, which cannot have negative values:

negation: 4294967295

Plus sign: +
This operator has no effect and exists only for symmetry with the negation
operator. Positive values stay positive and negative values stay negative:

import std.stdio;

void main()
{

int number_1 = 1;
int number_2 = -2;

writeln(+number_1);
writeln(+number_2);

}

1
-2

Post-increment: ++
Note: Unless there is a strong reason, always use the regular increment operator (which
is sometimes called the pre-increment operator).

Contrary to the regular increment operator, it is written after the expression
and still increments the value of the expression by 1. The difference is that the
post-increment operation produces the old value of the expression. To see this
difference, let's compare it with the regular increment operator:

import std.stdio;

void main()
{
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int incremented_regularly = 1;
writeln(++incremented_regularly); // prints 2
writeln(incremented_regularly); // prints 2

int post_incremented = 1;

// Gets incremented, but its old value is used:
writeln(post_incremented++); // prints 1
writeln(post_incremented); // prints 2

}

2
2
1
2

The writeln(post_incremented++); statement above is the equivalent of the
following code:

int old_value = post_incremented;
++post_incremented;
writeln(old_value); // prints 1

Post-decrement: --
Note: Unless there is a strong reason, always use the regular decrement operator (which
is sometimes called the pre-decrement operator).

This operator behaves the same way as the post-increment operator except that
it decrements.

Operator precedence
The operators we've discussed above have all been used in operations on their
own with only one or two expressions. However, similar to logical expressions, it
is common to combine these operators to form more complex arithmetic
expressions:

int value = 77;
int result = (((value + 8) * 3) / (value - 1)) % 5;

As with logical operators, arithmetic operators also obey operator precedence
rules. For example, the * operator has precedence over the + operator. For that
reason, when parentheses are not used (e.g. in the value + 8 * 3 expression),
the * operator is evaluated before the + operator. As a result, that expression
becomes the equivalent of value + 24, which is quite different from
(value + 8) * 3.

Using parentheses is useful both for ensuring correct results and for
communicating the intent of the code to programmers who may work on the
code in the future.

Potential remedy against overflow
If the result of an operation cannot fit in the type of the result, then there is
nothing that can be done. Sometimes, although the ultimate result would fit in a
certain type, the intermediate calculations may overflow and cause incorrect
results.

As an example, let's assume that we need to plant an apple tree per 1000 square
meters of an area that is 40 by 60 kilometers. How many trees are needed?
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When we solve this problem on paper, we see that the result is 40000 times
60000 divided by 1000, being equal to 2.4 million trees. Let's write a program that
executes this calculation:

import std.stdio;

void main()
{

int width  = 40000;
int length = 60000;
int areaPerTree = 1000;

int treesNeeded = width * length / areaPerTree;

writeln("Number of trees needed: ", treesNeeded);
}

Number of trees needed: -1894967

Not to mention it's not even close, the result is also less than zero! In this case, the
intermediate calculation width * length overflows and the subsequent
calculation of / areaPerTree produces an incorrect result.

One way of avoiding the overflow in this example is to change the order of
operations:

int treesNeeded = width / areaPerTree * length ;

The result would now be correct:

Number of trees needed: 2400000

The reason this method works is the fact that all of the steps of the calculation
now fit the int type.

Please note that this is not a complete solution because this time the
intermediate value is prone to truncation, which may affect the result
significantly in certain other calculations. Another solution might be to use a
floating point type instead of an integer type: float, double, or real.

Potential remedy against truncation
Changing the order of operations may be a solution to truncation as well. An
interesting example of truncation can be seen by dividing and multiplying a
value with the same number. We would expect the result of 10/9*9 to be 10, but it
comes out as 9:

import std.stdio;

void main()
{

writeln(10 / 9 * 9);
}

9

The result is correct when truncation is avoided by changing the order of
operations:

writeln(10 * 9 / 9);

10
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This too is not a complete solution: This time the intermediate calculation could
be prone to overflow. Using a floating point type may be another solution to
truncation in certain calculations.

12.2 Exercises

1. Write a program that takes two integers from the user, prints the integer
quotient resulting from the division of the first by the second, and also
prints the remainder. For example, when 7 and 3 are entered, have the
program print the following equation:

7 = 3 * 2 + 1

2. Modify the program to print a shorter output when the remainder is 0.
For example, when 10 and 5 are entered, it should not print "10 = 5 * 2 +
0" but just the following:

10 = 5 * 2

3. Write a simple calculator that supports the four basic arithmetic
operations. Have the program let the operation to be selected from a
menu and apply that operation to the two values that are entered. You
can ignore overflow and truncation in this program.

4. Write a program that prints the values from 1 to 10, each on a separate
line, with the exception of value 7. Do not use repeated lines like the
following:

import std.stdio;

void main()
{

// Do not do this!
writeln(1);
writeln(2);
writeln(3);
writeln(4);
writeln(5);
writeln(6);
writeln(8);
writeln(9);
writeln(10);

}

Instead, imagine a variable whose value is incremented in a loop. You
may need to take advantage of the is not equal to operator != here.

The solutions are on page 692.
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13 Floating Point Types

In the previous chapter we have seen that despite their ease of use, arithmetic
operations on integers are prone to programming errors due to overflow,
underflow, and truncation. We have also seen that integers cannot have values
with fractional parts, as in 1.25.

Floating point types are designed to support fractional parts. The "point" in
their name comes from the radix point, which separates the integer part from the
fractional part, and "floating" refers to an implementation detail of how these
types are implemented: the decimal point floats left and right as appropriate. (This
detail is not important when using these types.)

We must cover important details in this chapter as well. Before doing that, I
would like to give a list of some of the interesting aspects of floating point types:

• Adding 0.001 a thousand times is not the same as adding 1.
• Using the logical operators == and != with floating point types is

erroneous in most cases.
• The initial value of floating point types is .nan, not 0. .nan may not be

used in expressions in any meaningful way. When used in comparison
operations, .nan is not less than nor greater than any value.

• The overflow value is .infinity and the underflow value is negative
.infinity.

Although floating point types are more useful in some cases, they have
peculiarities that every programmer must know. Compared to integers, they are
very good at avoiding truncation because their main purpose is to support
fractional values. Like any other type, being based on a certain numbers of bits,
they too are prone to overflow and underflow, but compared to integers, the range
of values that they can support is vast. Additionally, instead of being silent in the
case of overflow and underflow, they get the special values of positive and
negative infinity.

As a reminder, the floating point types are the following:

Type Number of Bits Initial Value
float 32 float.nan
double 64 double.nan
real at least 64, maybe more

(e.g. 80, depending on hardware support)
real.nan

13.1 Floating point type properties
Floating point types have more properties than other types:

• .stringof is the name of the type.
• .sizeof is the length of the type in terms of bytes. (In order to

determine the bit count, this value must be multiplied by 8, the number
of bits in a byte.)

• .max is the short for "maximum" and is the maximum value that the
type can have. There is no separate .min property for floating types; the
negative of .max is the minimum value that the type can have. For
example, the minimum value of double is -double.max.•
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.min_normal is the smallest normalized value that this type can have
(the type can have smaller values than .min_normal but the precision of
those values is less than the normal precision of the type and they are
generally slower to compute).

• .dig is short for "digits" and specifies the number of digits that signify
the precision of the type.

• .infinity is the special value used to denote overflow and underflow.

Other properties of floating point types are used less commonly. You can see all of
them at Properties for Floating Point Types1 at dlang.org.

The properties of floating point types and their relations can be shown on a
number line like the following:

+     +---------+---------+   ...   +   ...   +---------+---------+     +
|   -max       -1         |         0         |         1        max    |
|                         |                   |                         |

-infinity               -min_normal          min_normal                 infinity

The dashed portions of the line above are to scale: the number of values that can
be represented between min_normal and 1 is equal to the number of values that
can be represented between 1 and max. This means that the precision of the
fractional parts of the values that are between min_normal and 1 is very high.
(The same is true for the negative side as well.)

13.2 .nan
We have already seen that this is the default value of floating point variables.
.nan may appear as a result of meaningless floating point expressions as well. For
example, the floating point expressions in the following program all produce
double.nan:

import std.stdio;

void main()
{

double zero = 0;
double infinity = double.infinity;

writeln("any expression with nan: ", double.nan + 1);
writeln("zero / zero            : ", zero / zero);
writeln("zero * infinity        : ", zero * infinity);
writeln("infinity / infinity    : ", infinity / infinity);
writeln("infinity - infinity    : ", infinity - infinity);

}

.nan is not useful only because it indicates an uninitialized value. It is also useful
because it is propagated through computations, making it easier and earlier to
detect errors.

13.3 Specifying floating point values
Floating point values can be built from integer values without a decimal point,
like 123, or created directly with a decimal point, like 123.0.

Floating point values can also be specified with the special floating point
syntax, as in 1.23e+4. The e+ part in that syntax can be read as "times 10 to the
power of". According to that reading, the previous value is "1.23 times 10 to the

1. http://dlang.org/property.html
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power of 4", which is the same as "1.23 times 104", which in turn is the same as
1.23x10000, being equal to 12300.

If the value after e is negative, as in 5.67e-3, then it is read as "divided by 10 to
the power of". Accordingly, this example is "5.67 divided by 103", which in turn is
the same as 5.67/1000, being equal to 0.00567.

The floating point formats is apparent in the output of the following program
that prints the properties of the three floating point types:

import std.stdio;

void main()
{

writeln("Type                    : ", float.stringof);
writeln("Precision               : ", float.dig);
writeln("Minimum normalized value: ", float.min_normal);
writeln("Maximum value           : ", float.max);
writeln("Minimum value           : ", -float.max);
writeln();
writeln("Type                    : ", double.stringof);
writeln("Precision               : ", double.dig);
writeln("Minimum normalized value: ", double.min_normal);
writeln("Maximum value           : ", double.max);
writeln("Minimum value           : ", -double.max);
writeln();
writeln("Type                    : ", real.stringof);
writeln("Precision               : ", real.dig);
writeln("Minimum normalized value: ", real.min_normal);
writeln("Maximum value           : ", real.max);
writeln("Minimum value           : ", -real.max);

}

The output of the program is the following in my environment. Since real
depends on the hardware, you may get a different output:

Type                    : float
Precision               : 6
Minimum normalized value: 1.17549e-38
Maximum value           : 3.40282e+38
Minimum value           : -3.40282e+38

Type                    : double
Precision               : 15
Minimum normalized value: 2.22507e-308
Maximum value           : 1.79769e+308
Minimum value           : -1.79769e+308

Type                    : real
Precision               : 18
Minimum normalized value: 3.3621e-4932
Maximum value           : 1.18973e+4932
Minimum value           : -1.18973e+4932

Observations
As you will remember from the previous chapter, the maximum value of ulong
has 20 digits: 18,446,744,073,709,551,616. That value looks small when compared
to even the smallest floating point type: float can have values up to the 1038

range, e.g. 340,282,000,000,000,000,000,000,000,000,000,000,000. The
maximum value of real is in the range 104932, a value with more than 4900 digits!

As another observation, let's look at the minimum value that double can
represent with 15-digit precision:

Floating Point Types

64



0.000...(there are 300 more zeroes here)...0000222507385850720

13.4 Overflow and underflow are not ignored
Despite being able to take very large values, floating point types too are prone to
overflow and underflow. The floating point types are safer than integer types in
this regard because overflow and underflow are not ignored. The values that
overflow become .infinity, and the values that underflow become -.infinity.
To see this, let's increase the value of .max by 10%. Since the value is already at the
maximum, increasing by 10% would overflow:

import std.stdio;

void main()
{

real value = real.max;

writeln("Before         : ", value);

// Multiplying by 1.1 is the same as adding 10%
value *= 1.1;
writeln("Added 10%      : ", value);

// Let's try to make it less by dividing in half
value /= 2;
writeln("Divided in half: ", value);

}

Once the value overflows and becomes real.infinity, it remains that way even
after being divided in half:

Before         : 1.18973e+4932
Added 10%      : inf
Divided in half: inf

13.5 Precision
Precision is a concept that we come across in daily life but do not talk about
much. Precision is the number of digits that is used when specifying a value. For
example, when we say that the third of 100 is 33, the precision is 2 because 33 has
2 digits. When the value is specified more precisely as 33.33, then the precision is 4
digits.

The number of bits that each floating type has not only affects its maximum
value, but also its precision. The greater the number of bits, the more precise the
values are.

13.6 There is no truncation in division
As we have seen in the previous chapter, integer division cannot preserve the
fractional part of a result:

int first = 3;
int second = 2;
writeln(first / second);

Output:

1

Floating point types don't have this truncation problem; they are specifically
designed for preserving the fractional parts:

Floating Point Types

65



double first = 3;
double second = 2;
writeln(first / second);

Output:

1.5

The accuracy of the fractional part depends on the precision of the type: real has
the highest precision and float has the lowest precision.

13.7 Which type to use
Unless there is a specific reason otherwise, you can choose double for floating
point values. float has low precision but due to being smaller than the other
types it may be useful when memory is limited. On the other hand, since the
precision of real is higher than double on some hardware, it would be preferable
for high precision calculations.

13.8 Cannot represent all values
We cannot represent certain values in our daily lives. In the decimal system that
we use daily, the digits before the decimal point represent ones, tens, hundreds,
etc. and the digits after the decimal point represent tenths, hundredths,
thousandths, etc.

If a value is created from a combination of these values, it can be represented
exactly. For example, because the value 0.23 consists of 2 tenths and 3 hundredths
it is represented exactly. On the other hand, the value 1/3 cannot be exactly
represented in the decimal system because the number of digits is always
insufficient, no matter how many are specified: 0.33333...

The situation is very similar with the floating point types. Because these types
are based on a certain numbers of bits, they cannot represent every value exactly.

The difference with the binary system that the computers use is that the digits
before the decimal point are ones, twos, fours, etc. and the digits after the decimal
point are halves, quarters, eighths, etc. Only the values that are exact
combinations of those digits can be represented exactly.

A value that cannot be represented exactly in the binary system used by
computers is 0.1, as in 10 cents. Although this value can be represented exactly in
the decimal system, its binary representation never ends and continuously
repeats four digits: 0.0001100110011... (Note that it is written in binary system, not
decimal.) It is always inaccurate at some level depending on the precision of the
floating point type that is used.

The following program demonstrates this problem. The value of a variable is
being incremented by 0.001 a thousand times in a loop. Surprisingly, the result is
not 1:

import std.stdio;

void main()
{

float result = 0;

// We would expect the result to be 1 after looping 1000
// times:
while (result < 1) {

result += 0.001;
}

// Let's validate

Floating Point Types

66



if (result == 1) {
writeln("As expected: 1");

} else {
writeln("DIFFERENT: ", result);

}
}

DIFFERENT: 1.00099

Because 0.001 cannot be represented exactly, that inaccuracy affects the result
multiple times. The output suggests that the loop has been repeated 1001 times.

13.9 Comparing floating point values
We have seen the following comparison operations for integers: equal to (==), not
equal to (!=), less than (<), greater than (>), less than or equal to (<=), and greater
than or equal to (>=). Floating point types have many more comparison operators.

Since the special value .nan represents invalid floating point values, some
comparisons with other values are not meaningful. For example, it is meaningless
to ask whether .nan or 1 is greater.

For that reason, floating point values introduce another comparison concept:
unordered. Being unordered means that at least one of the values is .nan.

The following table lists all the floating point comparison operators. All of them
are binary operators (meaning that they take two operands) and used as in
left == right. The columns that contain false and true are the results of the
comparison operations.

The last column indicates whether the operation is meaningful if one of the
operands is .nan. For example, even though the result of the expression 1.2 <
real.nan is false, that result is meaningless because one of the operands is
real.nan. The result of the reverse comparison real.nan < 1.2 would produce
false as well. The abreviation lhs stands for left-hand side, indicating the
expression on the left-hand side of each operator.

Operator Meaning
If lhs

is
greater

If
lhs
is

less

If
both
are

equal

If at
least
one is
.nan

Meaningful
with .nan

== is equal to false false true false yes
!= is not equal to true true false true yes
> is greater than true false false false no
>= is greater than or equal to true false true false no
< is less than false true false false no
<= is less than or equal to false true true false no

!<>= is not less than, not greater
than, nor equal to

false false false true yes

<> is less than or greater than true true false false no
<>= is less than, greater than, or

equal to
true true true false no

!<= is not less than nor equal to true false false true yes
!< is not less than true false true true yes
!>= is not greater than nor equal to false true false true yes
!> is not greater than false true true true yes
!<> is not less than nor greater

than
false false true true yes

Although meaningful to use with .nan, the == operator always produces false
when used with a .nan value. This is the case even when both values are .nan:
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import std.stdio;

void main()
{

if (double.nan == double.nan) {
writeln("equal");

} else {
writeln("not equal");

}
}

Although one would expect double.nan to be equal to itself, the result of the
comparison is false:

not equal

isNaN() for .nan equality comparison
As we have seen above, it is not possible to use the == operator to determine
whether the value of a floating point variable is .nan:

if (variable == double.nan) { // ← WRONG
// ...

}

isNaN() function from the std.math module is for determining whether a value
is .nan:

import std.math;
// ...

if (isNaN(variable)) { // ← correct
// ...

}

Similarly, to determine whether a value is not .nan, one must use !isNaN()
because otherwise the != operator would always produce true.

13.10 Exercises

1. Modify the calculator from the previous chapter to support floating
point types. The new calculator should work more accurately with that
change. When trying the calculator, you can enter floating point values
in various formats, as in 1000, 1.23, and 1.23e4.

2. Write a program that reads 5 floating point values from the input. Make
the program first print twice of each value and then one fifth of each
value.

This exercise is a preparation for the array concept of the next
chapter. If you write this program with what you have seen so far, you
will understand arrays more easily and will better appreciate them.

The solutions are on page 694.
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14 Arrays

We have defined five variables in one of the exercises of the last chapter, and used
them in certain calculations. The definitions of those variables were the
following:

double value_1;
double value_2;
double value_3;
double value_4;
double value_5;

This method of defining variables individually does not scale to cases where even
more variables are needed. Imagine needing a thousand values; it is almost
impossible to define a thousand variables from value_1 to value_1000.

Arrays are useful in such cases: The array feature allows the definition of many
values together. Arrays are also the most common data structure when multiple
values are used together as a collection.

This chapter covers only some of the features of arrays. More features will be
introduced later in the Slices and Other Array Features chapter (page 85).

14.1 Definition
The definition of arrays is very similar to the definition of variables. The only
difference is that the number of variables that are being defined at the same time
is specified in square brackets. We can contrast the two definitions as follows:

int singleVariable;
int[10] arrayOfTenVariables;

The first line above is the definition of a single variable, just like the variables that
we have defined so far. The second line is the definition of an array consisting of
10 variables.

Accordingly, the equivalent of the five separate variables above can be defined
as an array of five variables using the following syntax:

double[5] values;

That definition can be read as 5 double values. Note that I have chosen the name of
the array as plural to avoid confusing it with a single variable.

In summary, the definition of an array consists of the type of the variables, the
number of variables, and the name of the array:

type_name[variable_count] array_name;

The type of the variables can also be a user-defined type. (We will see user-defined
types later.) For example:

// An array that holds the weather information of all
// cities. Here, the bool values may mean
//   false: overcast
//   true : sunny
bool[cityCount] weatherConditions;

// An array that holds the weights of a hundred boxes
double[100] boxWeights;

// Information about the students of a school
StudentInformation[studentCount] studentInformations;
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14.2 Containers and elements
Data structures that bring elements of a certain type together are called
containers. According to this definition, arrays are containers. For example, an
array that holds the air temperatures of the days in July can bring 31 double
variables together and form a container of elements of type double.

The variables of a container are called elements. The number of elements of an
array is called the length of the array.

14.3 Accessing the elements
In order to differentiate the variables in the exercise of the previous chapter, we
had to append an underscore and a number to their names as in value_1. This is
not possible nor necessary when the variables are defined together as a single
array under a single name. Instead, the elements are accessed by specifying the
element number within square brackets:

values[0]

That expression can be read as the element with the number 0 of the array named
values. In other words, instead of typing value_1 one must type values[0] with
arrays.

There are two important points worth stressing here:

• The numbers start with zero: Although humans assign numbers to
items starting with 1, the numbers in arrays start with 0. The values that
we have numbered as 1, 2, 3, 4, and 5 before are numbered as 0, 1, 2, 3,
and 4 in the array. This variation is a common cause of programming
errors.

• Two different uses of the [] characters: Don't confuse the two separate
uses of the [] characters. When defining arrays, the [] characters are
written after the type of the elements and specify the number of
elements. When accessing elements, the [] characters are written after
the name of the array and specify the number of the element that is
being accessed:

// This is a definition. It defines an array that consists
// of 12 elements. This array is used to hold the number
// of days in each month.
int[12] monthDays;

// This is an access. It accesses the element that
// corresponds to December and sets its value to 31.
monthDays[11] = 31;

// This is another access. It accesses the element that
// corresponds to January, the value of which is passed to
// writeln.
writeln("January has ", monthDays[0], " days.");

Reminder: The element numbers of January and December are 0 and 11
respectively; not 1 and 12.

14.4 Index
The number of an element is called its index and the act of accessing an element
is called indexing.
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An index need not be a constant value; the value of a variable can also be used
as an index, making arrays even more useful. For example, the month is
determined by the value of the monthIndex variable below:

writeln("This month has ", monthDays[monthIndex], " days.");

When the value of monthIndex is 2, the expression above would print the value of
monthDays[2], the number of days in March.

Only the index values between zero and one less than the length of the array
are valid. For example, the valid indexes of a three-element array are 0, 1, and 2.
Accessing an array with an invalid index causes the program to be terminated
with an error.

Arrays are containers where the elements are placed side by side in the
computer's memory. For example, the elements of the array holding the number
of days in each month can be shown like the following (assuming a year when
February has 28 days):

indexes →     0    1    2    3    4    5    6    7    8    9   10   11
elements →  | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |

The element at index 0 has the value 31 (number of days in January); the element
at index 1 has the value of 28 (number of days in February), etc.

14.5 Fixed-length arrays vs. dynamic arrays
When the length of an array is specified when the program is written, that array
is a fixed-length array. When the length can change during the execution of the
program, that array is a dynamic array.

Both of the arrays that we have defined above are fixed-length arrays because
their element counts are specified as 5 and 12 at the time when the program is
written. The lengths of those arrays cannot be changed during the execution of
the program. To change their lengths, the source code must be modified and the
program must be recompiled.

Defining dynamic arrays is simpler than defining fixed-length arrays because
omitting the length makes a dynamic array:

int[] dynamicArray;

The length of such an array can increase or decrease during the execution of the
program.

Fixed-length arrays are also known as static arrays.

14.6 .length to get or set the number of elements
Arrays have properties as well, of which we will see only .length here. .length
returns the number of elements of the array:

writeln("The array has ", array.length, " elements.");

Additionally, the length of dynamic arrays can be changed by assigning a value to
this property:

int[] array; // initially empty
array.length = 5; // now has 5 elements
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14.7 An array example
Now let's revisit the exercise with the five values and write it again by using an
array:

import std.stdio;

void main()
{

// This variable is used as a loop counter
int counter;

// The definition of a fixed-length array of five
// elements of type double
double[5] values;

// Reading the values in a loop
while (counter < values.length) {

write("Value ", counter + 1, ": ");
readf(" %s", &values[counter]);
++counter;

}

writeln("Twice the values:");
counter = 0;
while (counter < values.length) {

writeln(values[counter] * 2);
++counter;

}

// The loop that calculates the fifths of the values would
// be written similarly

}

Observations: The value of counter determines how many times the loops are
repeated (iterated). Iterating the loop while its value is less than array.length
ensures that the loops are executed once per element. As the value of that variable
is incremented at the end of each iteration, the values[counter] expression
refers to the elements of the array one by one: values[0], values[1], etc.

To see how this program is better than the previous one, imagine needing to
read 20 values. The program above would require a single change: replacing 5
with 20. On the other hand, the program that did not use an array would have to
have 15 more variable definitions and the lines that they have been used in would
have to be repeated 15 more times.

14.8 Initializing the elements
Like every variable in D, the elements of arrays are automatically initialized. The
initial value of the elements depends on the type of the elements: 0 for int,
double.nan for double, etc.

All of the elements of the values array above are initialized to double.nan:

double[5] values; // elements are all double.nan

Obviously, the values of the elements can be changed later in the program. We
have already seen this above when assigning to an element of an array:

monthDays[11] = 31;

And also when reading a value from the input:

readf(" %s", &values[counter]);
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Sometimes the desired values of the elements are known at the time when the
array is defined. In such cases, the initial values of the elements can be specified
on the right-hand side of the assignment operator within square brackets. Let's
see this in a program that reads the number of the month from the user, and
prints the number of days in that month:

import std.stdio;

void main()
{

// Assuming that February has 28 days
int[12] monthDays =

[ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 ];

write("Please enter the number of the month: ");
int monthNumber;
readf(" %s", &monthNumber);

int index = monthNumber - 1;
writeln("Month ", monthNumber, " has ",

monthDays[index], " days.");
}

As you see, the monthDays array is defined and initialized at the same time. Also
note that the number of the month, which is in the range 1-12 is converted to a
valid array index in the range 0-11. Any value that is entered outside of the 1-12
range would cause the program to be terminated with an error.

When initializing arrays, it is possible to use a single value on the right-hand
side. In that case all of the elements of the array are initialized to that value:

int[10] allOnes = 1; // All of the elements are set to 1

14.9 Basic array operations
Arrays provide convenient operations that apply to all of their elements.

Copying fixed-length arrays
The assignment operator copies all of the elements from the right-hand side to
the left-hand side:

int[5] source = [ 10, 20, 30, 40, 50 ];
int[5] destination;

destination = source;

Note: The meaning of the assignment operation is completely different for dynamic
arrays. We will see this in a later chapter.

Adding elements to dynamic arrays
The ~= operator adds a new element or a new array to the end of a dynamic array:

int[] array; // empty
array ~= 7; // has a single element
array ~= 360; // has two elements
array ~= [ 30, 40 ]; // has four elements

It is not possible to add elements to fixed-length arrays:

int[10] array;
array ~= 7; // ← compilation ERROR
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Combining arrays
The ~ operator creates a new array by combining two arrays. Its ~= counterpart
combines the two arrays and assigns the result back to the left-hand side array:

import std.stdio;

void main()
{

int[10] first = 1;
int[10] second = 2;
int[] result;

result = first ~ second;
writeln(result.length); // prints 20

result ~= first;
writeln(result.length); // prints 30

}

The ~= operator cannot be used when the left-hand side array is a fixed-length
array:

int[20] result;
// ...
result ~= first; // ← compilation ERROR

If the left-hand side array doesn't have room for the result, the program is
terminated with an error during assignment:

int[10] first = 1;
int[10] second = 2;
int[21] result;

result = first ~ second;

object.Exception: lengths don't match for array copy

Sorting the elements
std.algorithm.sort sorts the elements of random-access ranges. In the case of
integers, the elements get sorted from the smallest value to the greatest value. In
order to use sort(), one must import the std.algorithm module first:

import std.stdio;
import std.algorithm;

void main()
{

int[] array = [ 4, 3, 1, 5, 2 ];
sort(array);
writeln(array);

}

The output:

[1, 2, 3, 4, 5]

Reversing the elements
std.algorithm.reverse reverses the elements in place (the first element
becomes the last element, etc.):
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import std.stdio;
import std.algorithm;

void main()
{

int[] array = [ 4, 3, 1, 5, 2 ];
reverse(array);
writeln(array);

}

The output:

[2, 5, 1, 3, 4]

14.10 Exercises

1. Write a program that asks the user how many values will be entered and
then reads all of them. Have the program sort the elements using .sort
and then reverse the sorted elements using .reverse.

2. Write a program that reads numbers from the input, and prints the odd
and even ones separately but in order. Treat the value -1 specially to
determine the end of the numbers; do not process that value.

For example, when the following numbers are entered,

1 4 7 2 3 8 11 -1

have the program print the following:

1 3 7 11 2 4 8

Hint: You may want to put the elements in separate arrays. You can
determine whether a number is odd or even using the % (remainder)
operator.

3. The following is a program that does not work as expected. The program
is written to read five numbers from the input and to place the squares
of those numbers into an array. The program then attempts to print the
squares to the output. Instead, the program terminates with an error.

Fix the bugs of this program and make it work as expected:

import std.stdio;

void main()
{

int[5] squares;

writeln("Please enter 5 numbers");

int i = 0;
while (i <= 5) {

int number;
write("Number ", i + 1, ": ");
readf(" %s", &number);

squares[i] = number * number;
++i;

}

writeln("=== The squares of the numbers ===");
while (i <= squares.length)
{

write(squares[i], " ");
++i;

}
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writeln();
}

The solutions are on page 695.
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15 Characters

Characters are the building blocks of strings. Any symbol of a writing system is
called a character: letters of alphabets, numerals, punctuation marks, the space
character, etc. Confusingly, the building blocks of characters themselves are
called characters as well.

Arrays of characters make up strings. We have seen arrays in the previous
chapter; strings will be covered two chapters later.

Like any other data, characters are also represented as integer values that are
made up of bits. For example, the integer value of the lowercase a is 97 and the
integer value of the numeral 1 is 49. These values have been assigned merely by
conventions when the ASCII table has been designed.

In most languages, characters are represented by the char type, which can hold
only 256 distinct values. If you are familiar with the char type from other
languages, you may already know that it is not large enough to support the
symbols of many writing systems. Before getting to the three distinct character
types of D, let's first take a look at the history of characters in computer systems.

15.1 History

ASCII Table
The ASCII table was designed at a time when computer hardware was very
limited compared to modern systems. Having been based on 7 bits, the ASCII
table can have 128 distinct code values. That is sufficient to represent characters
like the lowercase and uppercase versions of the 26 letters of the basic Latin
alphabet, numerals, commonly used punctuation marks, and some terminal
(console) control characters.

As an example, the ASCII codes of the characters of the string "hello" are the
following (the commas are inserted just to make it easier to read):

104, 101, 108, 108, 111

Every code above represents a single letter of "hello". For example, there are two
108 values for the two 'l' letters. (Note: The actual order of these characters depend on
the platform and even the document that these values are a part of. The codes above are
in the order that they appear in the string.)

The codes of the ASCII table have later been increased to 8 bits to become the
Extended ASCII table. Extended ASCII table has 256 distinct codes.

IBM Code Pages
IBM Corporation has defined a set of tables, each one of which assign the codes of
the Extended ASCII table from 128 to 255 to one or more writing systems. These
code tables allowed supporting the letters of many more alphabets. For example,
the special letters of the Turkish alphabet are a part of IBM's code page 857.

Despite being much useful than ASCII, code pages have some problems and
limitations: In order to display text correctly, it must be known what code page a
given text has originally been written in. This is because the same code
corresponds to a different character in most other tables. For example, the code
that represents Ğ in table 857 corresponds to ª in table 437.

Another problem is the limitation of the number of alphabets that can be
supported in a single document. Additionally, alphabets that have more than 128
non-ASCII characters cannot be supported by an IBM table.
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ISO/IEC 8859 Code Pages
These code pages are a result of international standardization efforts. They are
similar to IBM's code pages in how they assign codes to characters. As an
example, the special letters of the Turkish alphabet appear in code page 8859-9.
These tables have the same problems and limitations of IBM's tables. For example,
the Dutch digraph ĳ does not appear in any of these tables.

Unicode
Unicode solves all of the problems and limitations of previous solutions. Unicode
includes more than 100 thousand characters and symbols of the writing systems
of many human languages, current and old. (New ones are constanly under
review for addition to the table.) Each of these characters has a unique code.
Documents that are encoded in Unicode can include all of the characters of
separate writing systems at the same time without any confusion or limitation.

15.2 Unicode encodings
Unicode assigns a unique code for each character. Since there are more Unicode
characters than an 8-bit value can hold, some characters must be represented by
at least two 8-bit values. For example, the Unicode character code of Ğ (286) is
greater than the maximum value that an 8-bit type can hold (255).
Note: I will arbitrarily use 1 and 30 as the values of the 2 bytes that represent Ğ

below. They are not valid in any Unicode encoding; but are useful when introducing
Unicode encodings. The accurate encoding values are out of the scope of this chapter.

The way characters are represented in electronic mediums is called encoding.
We have seen above how the string "hello" is encoded in ASCII. We will now see
three Unicode encodings that correspond to D's character types.
UTF-32: This encoding uses 32 bits (4 bytes) for every Unicode character. The
UTF-32 encoding of "hello" is similar to its ASCII encoding, but every character is
represented by 4 bytes:

0,0,0,104, 0,0,0,101, 0,0,0,108, 0,0,0,108, 0,0,0,111

As another example, the UTF-32 encoding of "aĞ" is:

0,0,0,97, 0,0,1,30

Note: The actual order of the bytes may be different on different computer systems.
a and Ğ are represented by 1 and 2 significant bytes respectively, and the values

of the other 5 bytes are all zeros. These zeros can be thought of as filler bytes to
make every Unicode character occupy 4 bytes each.

For documents based on the basic Latin alphabet, this encoding always uses 4
times as many bytes as the ASCII encoding. When most of the characters of a
given document have ASCII equivalents, the 3 filler bytes for each of those
characters would make this encoding more wasteful compared to other
encodings.

On the other hand, there are benefits of every character being represented by
an equal number of bytes. For example, the next Unicode character is always
exactly four bytes away.
UTF-16: This encoding uses 16 bits (2 bytes) to represent most of the Unicode
characters. Since 16 bits can have about 65 thousand unique values, the other 35
thousand Unicode characters must be represented by more bytes.

As an example, "aĞ" is encoded by 4 bytes in UTF-16:
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0,97, 1,30

Note: The actual order of the bytes may be different on different computer systems.
Compared to UTF-32, this encoding takes less space for most documents, but

because there are characters that are represented by more than 2 bytes, UTF-16 is
more complicated to process.
UTF-8: This encoding uses 1 or more bytes for every character. If a character has
an equivalent in the ASCII table, it is represented by 1 byte and by the same code
as in the ASCII table. The rest of the Unicode characters are represented by 2, 3, or
4 bytes. Most of the special characters of the European writing systems are
among the group of characters that are represented by 2 bytes.

For most documents, UTF-8 is the encoding that takes the least amount of
space. Another benefit of UTF-8 is that the documents that have already been
encoded in ASCII directly match their UTF-8 encodings. UTF-8 does not waste any
space: every character is represented by significant bytes. As an example, the
UTF-8 encoding of "aĞ" is:

97, 196,158

Note: The actual order of the bytes may be different on different computer systems.

15.3 The character types of D
There are three D types to represent characters. These characters correspond to
the three Unicode encodings mentioned above. As you remember from the
Fundamental Types chapter:

Type Definition Initial Value
char UTF-8 code unit 0xFF
wchar UTF-16 code unit 0xFFFF
dchar UTF-32 code unit and Unicode code point 0x0000FFFF

Compared to some other programming languages, characters in D may not
consist of equal number of bytes. For example, because Ğ can be represented by at
least 2 bytes in Unicode, it doesn't fit in a variable of type char. On the other
hand, because dchar consists of 4 bytes, it can hold any Unicode character.

Despite providing these useful types, D does not support some esoteric features
of Unicode. I will explain this below.

15.4 Character literals
Literals are constant values that are typed in the program as a part of the source
code. In D, character literals are specified within single quotes:

char letter_a = 'a';
wchar letter_e_acute = 'é';

Double quotes are not valid for characters because double quotes are used when
specifying strings, which we will see two chapters later. 'a' is a character literal
and "a" is a string literal that consists of one character.

Variables of type char can only hold letters that are in the ASCII table.
There are many ways of inserting characters in code:

• Most naturally, typing them on the keyboard.
• Copying from another program or another text. For example, you can

copy and paste from a web site, or from a program that is specifically for
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displaying Unicode characters. (One such program in most Linux
environments is Character Map, charmap on the console.)

• Using short names of the characters. The syntax for this is
\&character_name;. For example, the name of the Euro character is
euro and it can be specified in the program like the following:

wchar currencySymbol = '\&euro;';

See the list of named characters1 for all of the characters that can be
specified this way.

• Specifying characters by their integer Unicode values:

char a = 97;
wchar Ğ = 286;

• Specifying the codes of the characters of the ASCII table either by
\value_in_octal or \xvalue_in_hexadecimal syntax:

char questionMarkOctal = '\77';
char questionMarkHexadecimal = '\x3f';

• Specifying the Unicode values of the characters by using the
\ufour_digit_value syntax for wchar, and the \Ueight_digit_value
syntax for dchar. (Note u vs. U.) The Unicode values must be specified in
hexadecimal:

wchar Ğ_w = '\u011e';
dchar Ğ_d = '\U0000011e';

These methods can be used to specify the characters within strings as well. For
example, the following two lines have the same string literals:

writeln("Résumé preparation: 10.25€");
writeln("\x52\&eacute;sum\u00e9 preparation: 10.25\&euro;");

15.5 Control characters
Some characters only affect the format of the text, they don't have a visual
representation themselves. For example, the new-line character, which specifies
that the output should continue on a new line, does not have a visual
representation. Such characters are called control characters. Control characters
are specified with the \control_character syntax.

Syntax Name Definition
\n new line Moves the printing to a new line
\r carriage return Moves the printing to the beginning of

the current line
\t tab Moves the printing to the next tab stop

For example, the write() function, which does not start a new line automatically,
would do so for every \n character. Every occurrence of the \n control character
within the following literal represents the start of a new line:

write("first line\nsecond line\nthird line\n");

The output:

1. http://dlang.org/entity.html
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first line
second line
third line

15.6 Single quote and backslash
The single quote character itself cannot be written within single quotes because
the compiler would take the second one as the closing character of the first one:
'''. The first two would be the opening and closing quotes, and the third one
would be left alone, causing a compilation error.

Similarly, since the backslash character has a special meaning in the control
character and literal syntaxes, the compiler would take it as the start of such a
syntax: \'. The compiler then would be looking for a closing single quote
character, not finding one, and emitting a compilation error.

To avoid these confusions, the single quote and the backslash characters are
escaped by a preceding backslash character:

Syntax Name Definition
\' single quote Allows specifying the single quote

character:'\''
\\ backslash Allows specifying the backslash character:

'\\' or "\\"

15.7 The std.uni module
The std.uni module includes functions that are useful with Unicode characters.
You can see these functions at its documentation1.

The functions that start with is answer certain questions about characters: the
result is false or true depending on whether the answer is no or yes,
respectively. These functions are useful in logical expressions:

• isLower: is a lowercase character?
• isUpper: is an uppercase character?
• isAlpha: is a Unicode alphabetic character?
• isWhite: is a whitespace character?

The functions that start with to produce new characters from existing
characters:

• toLower: produces the lowercase of the given character
• toUpper: produces the uppercase of the given character

Here is a program that uses all of these functions:

import std.stdio;
import std.uni;

void main()
{

writeln("Is ğ lowercase? ", isLower('ğ'));
writeln("Is Ş lowercase? ", isLower('Ş'));

writeln("Is İ uppercase? ", isUpper('İ'));
writeln("Is ç uppercase? ", isUpper('ç'));

writeln("Is z alphanumeric? ",       isAlpha('z'));
writeln("Is \&euro; alphanumeric? ", isAlpha('\&euro;'));

1. http://d-programming-language.org/phobos/std_uni.html
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writeln("Is new-line whitespace? ",  isWhite('\n'));
writeln("Is underline whitespace? ", isWhite('_'));

writeln("The lowercase of Ğ: ", toLower('Ğ'));
writeln("The lowercase of İ: ", toLower('İ'));

writeln("The uppercase of ş: ", toUpper('ş'));
writeln("The uppercase of ı: ", toUpper('ı'));

}

The output:

Is ğ lowercase? true
Is Ş lowercase? false
Is İ uppercase? true
Is ç uppercase? false
Is z alphanumeric? true
Is € alphanumeric? false
Is new-line whitespace? true
Is underline whitespace? false
The lowercase of Ğ: ğ
The lowercase of İ: i
The uppercase of ş: Ş
The uppercase of ı: I

15.8 Limited support for ı and i of the Turkish alphabet
The lowercase and uppercase versions of the letters ı and i are consistently dotted
or undotted in the Turkish alphabet. Most other aphabets are inconsistent in this
regard: the uppercase of the dotted i is undotted I.

Because the computer systems have started with the ASCII table, traditionally
the uppercase of i is I, and the lowercase of I is i. For that reason, these two letters
need special attention. The following program demonstrates this problem:

import std.stdio;
import std.uni;

void main()
{

writeln("The uppercase of i: ", toUpper('i'));
writeln("The lowercase of I: ", toLower('I'));

}

The output is according to the basic Latin alphabet:

The uppercase of i: I
The lowercase of I: i

Every alphabet has limited support
Characters are converted between their uppercase and lowercase versions
normally by their Unicode character codes. This method is problematic for many
alphabets. For example, the Azeri and Celt alphabets are subject to the same
problem of producing the lowercase of I as i.

There are similar problems with sorting. Letters of many alphabets, like the
Turkish ğ, are all sorted after z. Even accented characters like á are sorted after z
even for the basic Latin alphabet.

15.9 Problems with reading characters
The flexibility and power of D's Unicode characters may cause unexpected results
when reading characters from an input stream. This contradiction is due to the
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multiple meanings of the term character. Before expanding on this further, let's
look at a program that has this problem:

import std.stdio;

void main()
{

char letter;
write("Please enter a letter: ");
readf(" %s", &letter);
writeln("The letter that has been read: ", letter);

}

If you try that program in an environment that does not use Unicode, you may
see that even the non-ASCII characters are read and printed correctly.

On the other hand, if you start the same program in a Unicode environment,
for example in a Linux console, you may see that the character printed on the
output is not the same character that has been entered. To see this, let's enter a
non-ASCII character in a console that uses the UTF-8 encoding (like most Linux
consoles):

Please enter a letter: ğ
The letter that has been read: ← no letter on the output

The reason for this problem is that the non-ASCII characters like ğ are
represented by two codes, and reading a char from the input reads only the first
one of those codes. Since that single char is not sufficient to represent the whole
Unicode character, the console does not display the incomplete character.

To show that the UTF-8 codes that make up a character are read one char at a
time, let's read two char variables and print them one after the other:

import std.stdio;

void main()
{

char firstCode;
char secondCode;

write("Please enter a letter: ");
readf(" %s", &firstCode);
readf(" %s", &secondCode);

writeln("The letter that has been read: ",
firstCode, secondCode);

}

The program reads two char variables from the input and prints them in the
same order that they are read. When those codes are sent to the console in that
same order, they complete the UTF-8 encoding of the Unicode character on the
console and this time the Unicode character is printed correctly:

Please enter a letter: ğ
The letter that has been read: ğ ← the Unicode character that

consists of two char codes

These results are also related to the fact that the standard inputs and outputs of
programs are char streams.

We will see later in the Strings chapter that it is easier to read characters as
strings, instead of dealing with UTF codes individually.
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15.10 D's Unicode support
Unicode is a large and complicated standard. D supports a very useful subset of it.

A Unicode-encoded document consists of the following levels of concepts from
the lowermost to the uppermost:

• Code unit: The values that make up the UTF encodings are called code
units. Depending on the encoding and the characters themselves,
Unicode characters are made up of one or more code units. For example,
in the UTF-8 encoding the letter a is made up of a single code unit and
the letter ğ is made up of two code units.

D's character types char, wchar, and dchar correspond to UTF-8,
UTF-16, and UTF-32 code units, respectively.

• Code point: Every letter, numeral, symbol, etc. that the Unicode
standard defines is called a code point. For example, the Unicode code
values of a and ğ are two distinct code points.

Depending on the encoding, code points are represented by one or
more code units. As mentioned above, in the UTF-8 encoding a is
represented by a single code unit, and ğ is represented by two code units.
On the other hand, both a and ğ are represented by a single code unit in
both UTF-16 and UTF-32 encodings.

The D type that supports code points is dchar. char and wchar can
only be used as code units.

• Character: Any symbol that the Unicode standard defines and what we
call "character" in daily talk is a character.
This definition of character is flexible in Unicode, and this brings a
complication. Some characters can be formed by more than one code
point. For example, the letter ğ can be specified in two ways:

◦ as the single code point ğ
◦ as the two code points g and ̆ (combining breve)

D does not natively support the character concept of combined code
points. In D, the single code point ğ is different from the two consecutive
code points g and ̆.

15.11 Summary

• Unicode supports all of the characters of all of the writing systems.
• char is for the UTF-8 encoding; although it is not suitable to represent

characters in general, it supports the ASCII table.
• wchar is for the UTF-16 encoding; although it is not suitable to represent

characters in general, it can support letters of multiple alphabets.
• dchar is for the UTF-32 encoding; because it is 32 bits, it can also be used

as code points.
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16 Slices and Other Array Features

We have seen in the Arrays chapter (page 69) how elements are grouped as a
collection in an array. That chapter has intentionally been brief, leaving most of
the features of arrays to this chapter.

Before going any further, here are brief definitions of some of the terms that
happen to be close in meaning:

• Array: The general concept of a group of elements that are located side
by side and are accessed by indexes.

• Fixed-length array (static array): Array with a fixed number of
elements. This type of array owns its elements.

• Dynamic array: Array that can gain or lose elements. This type of array
provides access to elements that are owned by the D runtime
environment.

• Slice: Another name for dynamic array.

When I write slice I will specifically mean a slice; and when I write array, I will
mean either a slice or a fixed-length array, with no distinction.

16.1 Slices
Slices are the same feature as dynamic arrays. They are called dynamic arrays for
being used like arrays, and are called slices for providing access to portions of
other arrays. They allow using those portions as if they are separate arrays.
Slices are defined by the number range syntax that correspond to the indexes that
specify the beginning and the end of the range:

beginning_index .. one_beyond_the_end_index

In the number range syntax, the beginning index is a part of the range but the
end index is outside of the range:

/* ... */ = monthDays[0 .. 3]; // 0, 1, and 2 are included; but not 3

Note: Number ranges are different from Phobos ranges. Phobos ranges are about struct
and class interfaces. We will see these features in later chapters.

As an example, we can slice the monthDays array to be able to use its parts as
four smaller arrays:

int[12] monthDays =
[ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 ];

int[] firstQuarter  = monthDays[0 .. 3];
int[] secondQuarter = monthDays[3 .. 6];
int[] thirdQuarter  = monthDays[6 .. 9];
int[] fourthQuarter = monthDays[9 .. 12];

The four variables in the code above are slices; they provide access to four parts of
an already existing array. An important point worth stressing here is that those
slices do not have their own elements. They merely provide access to the elements
of the actual array. Modifying an element of a slice modifies the element of the
actual array. To see this, let's modify the first elements of each slice and then print
the actual array:
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firstQuarter[0]  = 1;
secondQuarter[0] = 2;
thirdQuarter[0]  = 3;
fourthQuarter[0] = 4;

writeln(monthDays);

The output:

[1, 28, 31, 2, 31, 30, 3, 31, 30, 4, 30, 31]

Each slice modifies its first element, and the corresponding element of the actual
array is affected.

We have seen earlier that valid array indexes are from 0 to one less than the
length of the array. For example, the valid indexes of a 3-element array are 0, 1,
and 2. Similarly, the end index in the slice syntax specifies one beyond the last
element that the slice will be providing access to. For that reason, when the last
element of an array needs to be included in a slice, the length of the array must be
specified as the end index. For example, a slice of all of the elements of a
3-element array would be array[0..3].

An obvious limitation is that the beginning index cannot be greater than the
end index:

int[3] array = [ 0, 1, 2 ];
int[] slice = array[2 .. 1]; // ← run-time ERROR

It is legal to have the beginning and the end indexes to be equal. In that case the
slice is empty. Assuming that index is valid:

int[] slice = anArray[index .. index];
writeln("The length of the slice: ", slice.length);

The output:

The length of the slice: 0

16.2 $, instead of array.length
When indexing, $ is a shorthand for the length of the array:

writeln(array[array.length - 1]); // the last element
writeln(array[$ - 1]); // the same thing

16.3 .dup to copy
Short for "duplicate", the .dup property makes a new array from the copies of the
elements of an existing array:

double[] array = [ 1.25, 3.75 ];
double[] theCopy = array.dup;

As an example, let's define an array that contains the number of days of the
months of a leap year. A method is to take a copy of the non-leap-year array and
then to increment the element that corresponds to February:

import std.stdio;

void main()
{

int[12] monthDays =
[ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 ];
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int[] leapYear = monthDays.dup;

++leapYear[1]; // increments the days in February

writeln("Non-leap year: ", monthDays);
writeln("Leap year    : ", leapYear);

}

The output:

Non-leap year: [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
Leap year    : [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

16.4 Assignment
We have seen so far that the assignment operator modifies values of variables. It is
the same with fixed-length arrays:

int[3] a = [ 1, 1, 1 ];
int[3] b = [ 2, 2, 2 ];

a = b; // the elements of 'a' become 2
writeln(a);

The output:

[2, 2, 2]

The assignment operation has a completely different meaning for slices: It makes
the slice start providing access to new elements:

int[] odds = [ 1, 3, 5, 7, 9, 11 ];
int[] evens = [ 2, 4, 6, 8, 10 ];

int[] slice; // not providing access to any elements yet

slice = odds[2 .. $ - 2];
writeln(slice);

slice = evens[1 .. $ - 1];
writeln(slice);

Above, slice does not provide access to any elements when it is defined. It is then
used to provide access to some of the elements of odds, and later to some of the
elements of evens:

[5, 7]
[4, 6, 8]

16.5 Making a slice longer may terminate sharing
Since the length of a fixed-length array cannot be changed, the concept of
termination of sharing is only about slices.

It is possible to access the same elements by more than one slice. For example,
the first two of the eight elements below are being accessed through three slices:

import std.stdio;

void main()
{

int[] slice = [ 1, 3, 5, 7, 9, 11, 13, 15 ];
int[] half = slice[0 .. $ / 2];
int[] quarter = slice[0 .. $ / 4];
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quarter[1] = 0; // modify through one slice

writeln(quarter);
writeln(half);
writeln(slice);

}

The effect of the modification to the second element of quarter is seen through
all of the slices:

[1, 0]
[1, 0, 5, 7]
[1, 0, 5, 7, 9, 11, 13, 15]

When viewed this way, slices provide shared access to elements. This sharing
opens the question of what happens when a new element is added to one of the
slices. Since the slices provide access to the same actual elements, there may not
be room to add elements to a slice without disturbing the others.

D answers this question by terminating the sharing relationship if there is no
room for the new element: The slice that has no room to grow leaves the sharing.
When this happens, all of the existing elements of that slice are copied to a new
place automatically and the slice starts providing access to these new elements.

To see this in action, let's add an element to quarter before modifying its
second element:

quarter ~= 42; // this slice leaves the sharing because
// there is no room for the new element

quarter[1] = 0; // for that reason this modification
// does not affect the other slices

The output of the program shows that the modification to the quarter slice does
not affect the others:

[1, 0, 42]
[1, 3, 5, 7]
[1, 3, 5, 7, 9, 11, 13, 15]

Explicitly increasing the length of a slice makes it leave the sharing as well:

++quarter.length; // leaves the sharing

or

quarter.length += 5; // leaves the sharing

On the other hand, shortening a slice does not affect sharing. Shortening the slice
merely means that the slice now provides access to less elements:

int[] a = [ 1, 11, 111 ];
int[] d = a;

d = d[1 .. $]; // shortening from the beginning
d[0] = 42; // modifying the element through the slice

writeln(a); // printing the other slice

As can be seen from the output, the modification through d is seen through a; the
sharing is still in effect:
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[1, 42, 111]

Reducing the length in different ways does not terminate sharing either:

d = d[0 .. $ - 1]; // shortening from the end
--d.length; // same thing
d.length = d.length - 1; // same thing

Sharing of elements is still in effect.

capacity to determine whether sharing will be terminated
There are cases when slices continue sharing elements even after an element is
added to one of them. This happens when the element is added to the longest slice
and there is room at the end of it:

import std.stdio;

void main()
{

int[] slice = [ 1, 3, 5, 7, 9, 11, 13, 15 ];
int[] half = slice[0 .. $ / 2];
int[] quarter = slice[0 .. $ / 4];

slice ~= 42; // adding to the longest slice ...
slice[1] = 0; // ... and then modifying an element

writeln(quarter);
writeln(half);
writeln(slice);

}

As seen in the output, although the added element increases the length of a slice,
the sharing has not been terminated, and the modification is seen through all of
the slices:

[1, 0]
[1, 0, 5, 7]
[1, 0, 5, 7, 9, 11, 13, 15, 42]

The capacity property of slices determines whether the sharing will be
terminated if an element is added to a particular slice. (capacity is actually a
function but this distinction does not have any significance in this discussion.)
capacity has two meanings:

• When its value is 0, it means that this is not the largest original slice. In
this case, adding a new element would definitely relocate the elements
of the slice and the sharing would terminate.

• When its value is non-zero, it means that this is the largest original slice.
In this case, capacity denotes the total number of elements that this
slice can hold without needing to be copied. The number of new elements
that can be added to this slice before it needs to be copied can be
calculated by subtracting the actual length of the slice from the capacity
value. There is no room for another element when the length of the slice
equals its capacity.

Accordingly, a program that needs to determine whether the sharing will
terminate should use a logic similar to the following:
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if (slice.capacity == 0) {
/* Its elements would be relocated if one more element
* is added to this slice. */

// ...

} else {
/* This slice may have room for new elements before
* needing to be relocated. Let's calculate how
* many: */

auto howManyNewElements = slice.capacity - slice.length;

// ...
}

16.6 Operations on all of the elements
This feature is for both fixed-length arrays and slices.

The [] characters written after the name of an array means all of the elements.
This feature simplifies the program when certain operations need to be applied to
all of the elements of an array.
Note: dmd 2.066.1, the compiler that was used last to compile the examples in this

chapter, did not fully support this feature yet. For that reason, some of the examples
below use only fixed-length arrays.

import std.stdio;

void main()
{

double[3] a = [ 10, 20, 30 ];
double[3] b = [  2,  3,  4 ];

double[3] result = a[] + b[];

writeln(result);
}

The output:

[12, 23, 34]

The addition operation in that program is applied to the corresponding elements
of both of the arrays in order: First the first elements are added, then the second
elements are added, etc. A natural requirement is that the lengths of the two
arrays must be equal.

The operator can be one of the arithmetic operators +, -, *, /, %, and ^^; one of
the binary operators ^, &, and |; as well as the unary operators - and ~ that are
typed in front of an array. We will see some of these operators in later chapters.

The assignment versions of these operators can also be used: =, +=, -=, *=, /=,
%=, ^^=, ^=, &=, and |=.

This feature is not only between two arrays; in addition to an array, an
expression that is compatible with the elements can also be used. For example,
the following operation divides all of the elements of an array by four:

double[3] a = [ 10, 20, 30 ];
a[] /= 4;

writeln(a);

The output:

[2.5, 5, 7.5]
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To assign all of the elements to a specific value:

a[] = 42;
writeln(a);

The output:

[42, 42, 42]

This feature requires great attention when used with slices. Although there is no
apparent difference in element values, the following two expressions have very
different meanings:

slice2 = slice1; // ← slice2 starts providing access
//   to the same elements that
//   slice1 provides access to

slice3[] = slice1; // ← the values of the elements of
//   slice3 change

The assignment of slice2 makes it share the same elements as slice1. On the
other hand, as slice3[] means all elements of slice3, the values of its elements
become the same as the values of the elements of slice1. The effect of presence
or absence of the [] characters cannot be ignored.

We can see an example of this difference in the following program:

import std.stdio;

void main()
{

double[] slice1 = [ 1, 1, 1 ];
double[] slice2 = [ 2, 2, 2 ];
double[] slice3 = [ 3, 3, 3 ];

slice2 = slice1; // ← slice2 starts providing access
//   to the same elements that
//   slice1 provides access to

slice3[] = slice1; // ← the values of the elements of
//   slice3 change

writeln("slice1 before: ", slice1);
writeln("slice2 before: ", slice2);
writeln("slice3 before: ", slice3);

slice2[0] = 42; // ← the value of an element that
//   it shares with slice1 changes

slice3[0] = 43; // ← the value of an element that
//   only it provides access to
//   changes

writeln("slice1 after : ", slice1);
writeln("slice2 after : ", slice2);
writeln("slice3 after : ", slice3);

}

The modification through slice2 affects slice1 too:

slice1 before: [1, 1, 1]
slice2 before: [1, 1, 1]
slice3 before: [1, 1, 1]
slice1 after : [42, 1, 1]
slice2 after : [42, 1, 1]
slice3 after : [43, 1, 1]
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The danger here is that the potential bug may not be noticed until after the value
of a shared element is changed.

16.7 Multi-dimensional arrays
So far we have used arrays with only fundamental types like int and double. The
element type can actually be any other type, including other arrays. This enables
the programmer to define complex containers like array of arrays. Arrays of
arrays are called multi-dimensional arrays.

All of the elements of all of the arrays that we have defined so far have been
written in the source code from left to right. To help us understand the concept of
a two-dimensional array, let's define an array from top to bottom this time:

int[] array = [
10,
20,
30,
40

];

As you remember, most spaces in the source code are to help with readability and
do not change the meaning of the code. The array above could have been defined
on a single line and would have the same meaning.

Let's now replace every element of that array with another array:

/* ... */ array = [
[ 10, 11, 12 ],
[ 20, 21, 22 ],
[ 30, 31, 32 ],
[ 40, 41, 42 ]

];

We have replaced elements of type int with elements of type int[]. To make the
code conform to array definition syntax, we must now specify the type of the
elements as int[] instead of int:

int[][] array = [
[ 10, 11, 12 ],
[ 20, 21, 22 ],
[ 30, 31, 32 ],
[ 40, 41, 42 ]

];

Such arrays are called two-dimensional arrays because they can be seen as having
rows and columns.

Two-dimensional arrays are used the same way as any other array as long as
we remember that each element is an array itself and is used in array operations:

array ~= [ 50, 51 ]; // adds a new element (i.e. a slice)
array[0] ~= 13; // adds to the first element

The new state of the array:

[[10, 11, 12, 13], [20, 21, 22], [30, 31, 32], [40, 41, 42], [50, 51]]

Arrays and elements can be fixed-length as well. The following is a three-
dimensional array where all dimensions are fixed-length:

int[2][3][4] array; // 2 columns, 3 rows, 4 pages
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The definition above can be seen as four pages of three rows of two columns. As an
example, such an array can be used to represent a 4-story building in an
adventure game, each story consisting of 2x3=6 rooms.

For example, the number of items in the first room of the second floor can be
incremented like the following:

// The index of the second floor is 1, and the first room
// of that floor is accessed by [0][0]
++itemCounts[1][0][0];

In addition to the syntax above, the new expression can also be used to create a
slice of slices. The following example uses only two dimensions:

import std.stdio;

void main()
{

int[][] s = new int[][](2, 3);
writeln(s);

}

The new expression above creates 2 slices containing 3 elements each and returns
a slice that provides access to those slices and elements. The output:

[[0, 0, 0], [0, 0, 0]]

16.8 Summary

• Fixed-length arrays own their elements; slices provide access to elements
that don't belong to them.

• Within the [] operator, $ is the equivalent of array_name.length.
• .dup makes a new array that consists of the copies of the elements of an

existing array.
• With fixed-length arrays, the assignment operation changes the values

of elements; with slices, it makes the slices start providing access to
other elements.

• Slices that get longer may stop sharing elements and start providing
access to newly copied elements. capacity determines whether this will
be the case.

• The syntax array[] means all of the elements; the operation that is
applied to it is applied to each element individually.

• Arrays of arrays are called multi-dimensional arrays.

16.9 Exercise

• Iterate over the elements of an array of doubles and halve the ones that
are greater than 10. For example, given the following array:

double[] array = [ 1, 20, 2, 30, 7, 11 ];

Modify it as the following:

[1, 10, 2, 15, 7, 5.5]

Although there are many solutions of this problem, try to use only the
features of slices. You can start with a slice that provides access to all of
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the elements. Then you can shorten the slice from the beginning and
always use the first element.

The following expression shortens the slice from the beginning:

slice = slice[1 .. $];

The solution is on page 697.
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17 Strings

We have used strings in many programs that we have seen so far. Strings are a
combination of the two features that we have covered in the last three chapters:
characters and arrays. In the simplest definition, strings are nothing but arrays of
characters. For example, char[] is a type of string.

This simple definition may be misleading. As we have seen in the Characters
chapter (page 77), D has three separate character types. Arrays of these character
types lead to three separate string types, some of which may have surprising
outcomes in some string operations.

17.1 readln and chomp, instead of readf
There are surprises even when reading strings from the console.

Being character arrays, strings can contain control characters like '\n' as well.
When reading strings from the input, the control character that corresponds to
the Enter key that is pressed at the end of console input becomes a part of the
string as well. Further, because there is no way to tell readf() how many
characters to read, it continues to read until the end of the entire input. For these
reasons, readf() does not work as intended when reading strings:

import std.stdio;

void main()
{

char[] name;

write("What is your name? ");
readf(" %s", &name);

writeln("Hello ", name, "!");
}

The Enter key that the user presses after the name does not terminate the input.
readf() continues to wait for more characters to add to the string:

What is your name? Mert
← The input is not terminated although Enter has been pressed
← (Let's assume that Enter is pressed a second time here)

One way of terminating the standard input stream in a console is pressing Ctrl-D
under Unix-based systems and Ctrl-Z under Windows systems. If the user
eventually terminates the input that way, we see that the new-line characters have
been read as parts of the string as well:

Hello Mert
← new-line character after the name

! ← (one more before the exclamation mark)

The exclamation mark appears after those characters instead of being printed
right after the name.
readln() is more suitable when reading strings. Short for "read line",

readln() reads until the end of the line. It is used differently because the " %s"
format string and the & operator are not needed:

import std.stdio;

void main()
{
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char[] name;

write("What is your name? ");
readln(name);

writeln("Hello ", name, "!");
}

readln() stores the new-line character as well. This is so that the program has a
way of determining whether the input consisted of a complete line or whether the
end of input has been reached:

What is your name? Mert
Hello Mert
! ← new-line character before the exclamation mark

Such control characters that are at the ends of strings can be removed by
std.string.chomp:

import std.stdio;
import std.string;

void main()
{

char[] name;

write("What is your name? ");
readln(name);
name = chomp(name);

writeln("Hello ", name, "!");
}

The chomp() expression above returns a new string that does not contain the
trailing control characters. Assigning that return value back to name produces the
intended output:

What is your name? Mert
Hello Mert! ← no new-line character

readln() can be used without a parameter. In that case it returns the line that it
has just read. Chaining the result of readln() to chomp() enables a shorter and
more readable syntax:

string name = chomp(readln());

I will start using that form after introducing the string type below.

17.2 Double quotes, not single quotes
We have seen that single quotes are used to define character literals. String
literals are defined with double quotes. 'a' is a character; "a" is a string that
contains a single character.

17.3 string, wstring, and dstring are immutable
There are three string types that correspond to the three character types: char[],
wchar[], and dchar[].

There are three aliases of the immutable versions of those types: string,
wstring, and dstring. The characters of the variables that are defined by these
aliases cannot be modified. For example, the characters of a wchar[] can be
modified but the characters of a wstring cannot be modified. (We will see D's
immutability concept in later chapters.)
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For example, the following code that tries to capitalize the first letter of a
string would cause a compilation error:

string canNotBeMutated = "hello";
canNotBeMutated[0] = 'H'; // ← compilation ERROR

We may think of defining the variable as a char[] instead of the string alias but
that cannot be compiled either:

char[] a_slice = "hello"; // ← compilation ERROR

This time the compilation error is due to the combination of two factors:

1. The type of string literals like "hello" is string, not char[], so they are
immutable.

2. The char[] on the left-hand side is a slice, which, if the code compiled,
would provide access to all of the characters of the right-hand side.

Since char[] is mutable and string is not, there is a mismatch. The compiler
does not allow accessing characters of an immutable array by a mutable slice.

The solution here is to take a copy of the immutable string by the .dup
property:

import std.stdio;

void main()
{

char[] s = "hello".dup;
s[0] = 'H';
writeln(s);

}

The program can now be compiled and print the modified string:

Hello

Similarly, char[] cannot be used where a string is needed. In such cases, the
.idup property can be used for producing an immutable string variable from a
mutable char[] variable. For example, if s is a variable of type char[], the
following line cannot be compiled:

string result = s ~ '.'; // ← compilation ERROR

When the type of s is char[], the type of the expression on the right-hand side of
the assignment above is char[] as well. .idup is used for producing immutable
strings from existing strings:

string result = (s ~ '.').idup; // ← now compiles

17.4 Potentially confusing length of strings
We have seen that some Unicode characters are represented by more than one
byte. For example, the letter é is represented by two bytes. This fact is reflected in
the .length property of strings:

writeln("résumé".length);

Although "résumé" contains six letters, the length of the string is the number of
characters that it contains:
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The type of the elements of string literals like "hello" is char and char represents
a UTF-8 code unit. A problem that this may cause is when we try to replace a two-
code-unit letter with a single-code-unit letter:

char[] s = "résumé".dup;
writeln("Before: ", s);
s[1] = 'e';
s[5] = 'e';
writeln("After : ", s);

The two 'e' characters do not replace the two letters é; they replace single code
units, resulting in an incorrect UTF-8 encoding:

Before: résumé
After : re�sueé ← INCORRECT

When dealing with letters, symbols, and other Unicode characters directly as in
the code above, the correct type to use is dchar:

dchar[] s = "résumé"d.dup;
writeln("Before: ", s);
s[1] = 'e';
s[5] = 'e';
writeln("After : ", s);

The output:

Before: résumé
After : resume

Please note the two differences in the new code:

1. The type of the string is dchar[].
2. There is a d at the end of the literal "résumé"d, specifying its type as an

array of dchars.

17.5 String literals
The optional character that is specified after string literals determines the type of
the elements of the string:

import std.stdio;

void main()
{

string s = "résumé"c; // same as "résumé"
wstring w = "résumé"w;
dstring d = "résumé"d;

writeln(s.length);
writeln(w.length);
writeln(d.length);

}

The output:

8
6
6
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Because all of the letters of "résumé" can be represented by a single wchar or
dchar, the last two lengths are equal to the number of letters.

17.6 String concatenation
Since they are actually arrays, all of the array operations can be applied to strings
as well. ~ concatenates two strings and ~= appends to an existing string:

import std.stdio;
import std.string;

void main()
{

write("What is your name? ");
string name = chomp(readln());

// Concatenate:
string greeting = "Hello " ~ name;

// Append:
greeting ~= "! Welcome...";

writeln(greeting);
}

The output:

What is your name? Can
Hello Can! Welcome...

17.7 Comparing strings
Note: Unicode does not define how the characters are ordered other than their Unicode
codes. For that reason, you may get results that don't match with your expectations
below.

We have used comparison operators <, >=, etc. with integer and floating point
values before. The same operators can be used with strings as well, but with a
different meaning: strings are ordered lexicographically. This ordering takes each
character's Unicode code to be its place in a hypothetical grand Unicode alphabet.
The concepts of less and greater are replaced with before and after in this
hypothetical alphabet:

import std.stdio;
import std.string;

void main()
{

write("      Enter a string: ");
string s1 = chomp(readln());

write("Enter another string: ");
string s2 = chomp(readln());

if (s1 == s2) {
writeln("They are the same!");

} else {
string former;
string latter;

if (s1 < s2) {
former = s1;
latter = s2;

} else {
former = s2;
latter = s1;
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}

writeln("'", former, "' comes before '", latter, "'.");
}

}

Because Unicode adopts the letters of the basic Latin alphabet from the ASCII
table, the strings that contain only the letters of the ASCII table appear to be
ordered correctly.

17.8 Lowercase and uppercase are different
Because each letter has a unique code, every letter is different from every other.
For example, 'A' and 'a' are different letters.

Additionally, as a consequence of their ASCII code values, all of the uppercase
letters are sorted before all of the lowercase letters. For example, 'B' is before 'a'.
The icmp() function of the std.string module can be used when strings need to
be compared regardless of lowercase and uppercase. You can see the functions of
this module at its online documentation1.

Because strings are arrays (and as a corollary, ranges), the functions of the
std.array, std.algorithm, and std.range modules are very useful with strings
as well.

17.9 Exercises

1. Browse the documentations of the std.string, std.array,
std.algorithm, and std.range modules.

2. Write a program that makes use of the ~ operator: The user enters the
first name and the last name, all in lowercase letters. Produce the full
name that contains the proper capitalization of the first and last names.
For example, when the strings are "ebru" and "domates" the program
should print "Ebru Domates".

3. Read a line from the input and print the part between the first and last 'e'
letters of the line. For example, when the line is "this line has five words"
the program should print "e has five".

You may find the indexOf() and lastIndexOf() functions useful to
get two indexes to produce a slice.

As it is indicated in their documentation, the return types of
indexOf() and lastIndexOf() are not int nor size_t, but
sizediff_t. You may have to define variables of that exact type:

sizediff_t first_e = indexOf(line, 'e');

It is possible to define variables shorter with the auto keyword, which
we will see in a later chapter:

auto first_e = indexOf(line, 'e');

The solutions are on page 697.

1. http://dlang.org/phobos/std_string.html
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18 Redirecting Standard Input and Output
Streams

All of the programs that we have seen so far have interacted through stdin and
stdout, the standard input and output streams. Input and output functions like
readf and writeln operate on these streams by default.

While using these streams, we have made an assumption that the standard
input is from the keyboard and the standard output is to the screen.

We will start writing programs that deal with files in later chapters. We will see
that just like standard input and output streams, files are character streams as
well; so they are used in almost the same way as stdin and stdout.

Before seeing how files are accessed from within programs, I would like to
show how standard inputs and outputs of programs can be redirected to files, and
can be piped to other programs. Programs can print to files instead of the screen,
and read from files instead of the keyboard. Although these features are not
directly related to programming languages, they are useful tools that are
available in all modern consoles.

18.1 Redirecting standard output to a file with >
When starting the program from the console, typing a > character and a file name
at the end of the command line redirects the standard output of that program to
the specified file. Everything that the program prints to its standard output would
be written to that file instead.

Let's test this with a program that reads a floating point number from its input,
multiplies that number by two, and prints the result to its standard output:

import std.stdio;

void main()
{

double number;
readf(" %s", &number);

writeln(number * 2);
}

If the name of the program is by_two, its output would be written to a file named
by_two_result.txt when the program is started on the command line as in the
following line:

./by_two > by_two_result.txt

For example, if we enter 1.2 at the console, the result 2.4 would appear in
by_two_result.txt. (Note: Although the program does not display a prompt like
"Please enter a number", it still expects a number to be entered.)

18.2 Redirecting standard input from a file with <
Similar to redirecting standard output by >, standard input can be redirected
from a file by <. In this case, the program reads from the specified file instead of
from the keyboard.

To test this, let's use a program that calculates one tenth of a number:

import std.stdio;

void main()
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{
double number;
readf(" %s", &number);

writeln(number / 10);
}

Assuming that the file by_two_result.txt still exists and contains 2.4 from the
previous output, and that the name of the new program is one_tenth, we can
redirect the new program's standard input from that file as in the following line:

./one_tenth < by_two_result.txt

This time the program would read from by_two_result.txt and print the result
to the console as 0.24.

18.3 Redirecting both standard streams
> and < can be used at the same time:

./one_tenth < by_two_result.txt > one_tenth_result.txt

This time the standard input would be read from by_two_result.txt and the
standard output would be written to one_tenth_result.txt.

18.4 Piping programs with |
Note that by_two_result.txt is an intermediary between the two programs;
by_two writes to it and one_tenth reads from it.

The | character pipes the standard output of the program that is on its left-
hand side to the standard input of the program that is on its right-hand side
without the need for an intermediary file. For example, when the two programs
above are piped together as in the following line, they collectively calculate one
fifth of the input:

./by_two | ./one_tenth

First by_two runs and reads a number from its input. (Remember that although it
does not prompt for one, it still waits for a number.)

The result of by_two would appear at the standard input of one_tenth, which
in turn would calculate and print one tenth of that result.

18.5 Exercise

• Pipe more than one program:

./one | ./two | ./three

The solution is on page 698.
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19 Files

We have seen in the previous chapter that standard input and output streams can
be redirected to and from files and other programs with the >, <, and | operators
on the console. Despite being very powerful, these tools are not suitable in every
situation because in many cases programs can not complete their tasks by
reading from their input and writing to their output like a simple pipe.

For example, a program that deals with student records may use its standard
output to display the program menu. Such a program would need to write the
student records to an actual file instead of stdout.

In this chapter, we will cover reading from and writing to files of file systems.

19.1 Fundamental concepts
Files are represented by the File struct of the std.stdio module. Since I haven't
introduced structs yet, we will have to accept the syntax of struct construction as-
is for now.

Before getting to code samples we have to go through fundamental concepts
about files.

The producer and the consumer
Files that are created on one platform may not be readily usable on other
platforms. Merely opening a file and writing data in it may not be sufficient for
that data to be available on the consumer's side. The producer and the consumer
of the data must have already agreed on the format of the data that is in the file.
For example, if the producer has written the id and the name of the student
records in a certain order, the consumer must read the data back in the same
order.

Additionally, the sample codes below do not write BOM to the beginning of the
file. This may make your files incompatible with systems that require BOM. (BOM
is short for byte order mark. It specifies in what order the UTF code units of
characters are arranged in a file.)

Access rights
File systems present files to programs under certain access rights. Access rights
are important for both data integrity and performance.

When it is about reading, allowing multiple programs read from the same file
would improve performance because no program would be waiting for any other
to finish their reading. On the other hand, when it is about writing, only one
program should be allowed to write to a file, otherwise programs may overwrite
each other's data.

Opening a file
The standard input and output streams stdin and stdout are already open when
programs start running. They are ready to be used.

On the other hand, files must first be opened by specifying the name of the file
and the access rights that are needed.

Closing a file
Any file that has been opened by a program must be closed when the program
finishes using that file. In most cases the files need not be closed explicitly; they
are closed automatically when File objects are terminated automatically:
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if (aCondition) {

// Assume a File object has been created and used here.
// ...

} // ← The actual file would be closed automatically here
//   when leaving this scope. No need to close explicitly.

In some cases a file object may need to be re-opened to access a different file or
the same file with different access rights. In such cases the file must be closed and
re-opened:

file.close();
file.open("student_records", "r");

Writing to and reading from files
Since files are character streams, input and output functions writeln, readf, etc.
are used exactly the same way with them. The only difference is that the name of
the File variable and a dot must be typed:

writeln("hello"); // writes to standard output
stdout.writeln("hello"); // same as above
file.writeln("hello"); // writes to the specified file

eof() to determine the end of a file
The eof() member function determines whether the end of a file has been
reached while reading from a file. It returns true if the end of the file has been
reached.

For example, the following loop will be active until the end of the file:

while (!file.eof()) {
/* ... */

}

The std.file module
The std.file module1 contains functions and types that are useful when
working with contents of directories. For example, exists can be used to
determine whether a file or a directory exists on the file systems:

import std.file;

// ...

if (exists(fileName)) {
// there is a file or directory under that name

} else {
// no file or directory under that name

}

19.2 std.stdio.File struct
File uses the same
mode characters that are used by fopen of the C programming language:

Mode Definition

1. http://dlang.org/phobos/std_file.html
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r read access
the file is opened to be read from the beginning

r+ read and write access
the file is opened to be read from and written at the
beginning

w write access
if the file does not exist, it is created as empty
if the file already exists, its contents are cleared

w+ read and write access
if the file does not exist, it is created as empty
if the file already exists, its contents are cleared

a append access
if the file does not exist, it is created as empty
if the file already exists, its contents are preserved
and it is opened to be written at the end

a+ read and append access
if the file does not exist, it is created as empty
if the file already exists, its contents are preserved
and the file is opened to be read from the beginning and
written at the end

A 'b' character may be added to the mode string as in "rb". This may have an effect
on platforms that support the binary mode, but it is ignored on all POSIX systems.

The File struct is included in the std.stdio module1.

Writing to a file
The file must have been opened in one of the write modes first:

import std.stdio;

void main()
{

File file = File("student_records", "w");

file.writeln("Name  : ", "Zafer");
file.writeln("Number: ", 123);
file.writeln("Class : ", "1A");

}

As you remember from the Strings chapter (page 95), the type of literals like
"student_records" is string, consisting of immutable characters. For that reason,
it is not possible to construct File objects by a mutable file name (e.g. char[]).
When needed, it would be necessary to call the .idup property of the mutable
string.

The program above creates or overwrites the contents of a file named
student_records in the directory that it has been started under (in the
program's working directory).
Note: File names can contain any character that is legal for that file system. To be

portable, I will use only ASCII characters.

Reading from a file
The file must have been opened in one of the read modes first:

import std.stdio;
import std.string;

void main()
{

File file = File("student_records", "r");

1. http://dlang.org/phobos/std_stdio.html
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while (!file.eof()) {
string line = chomp(file.readln());
writeln("read line -> |", line);

}
}

The program above reads all of the lines of the file named student_records and
prints those lines to its standard output.

19.3 Exercise

• Write a program that takes a file name from the user, opens that file, and
writes all of the non-empty lines of that file to another file. The name of
the new file can be based on the name of the original file. For example, if
the original file is foo.txt, the new file can be foo.txt.out.

The solution is on page 698.
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20 auto and typeof

20.1 auto
When defining File variables in the previous chapter, we have repeated the
name of the type on both sides of the = operator:

File file = File("student_records", "w");

It feels redundant. It would also be cumbersome and error-prone especially when
the type name were longer:

VeryLongTypeName var = VeryLongTypeName(/* ... */);

Fortunately, the type name on the left-hand side is not necessary because the
compiler can infer the type of the left-hand side from the expression on the right-
hand side. For the compiler to infer the type, the auto keyword can be used:

auto var = VeryLongTypeName(/* ... */);

auto can be used with any type even when the type is not spelled out on the right-
hand side:

auto duration = 42;
auto distance = 1.2;
auto greeting = "Hello";
auto vehicle = BeautifulBicycle("blue");

Although "auto" is the abbreviation of automatic, it does not come from automatic
type inference. It comes from automatic storage class, which is a concept about life
times of variables. auto is used when no other specifier is appropriate. For
example, the following definition does not use auto:

immutable i = 42;

The compiler infers the type of i as immutable int above. (We will see
immutable in a later chapter.)

20.2 typeof
typeof provides the actual type of expressions (including single variables,
objects, literals, etc.).

The following is an example of how typeof can be used to specify a type
without explicitly spelling it out:

int value = 100; // already defined as 'int'

typeof(value) value2; // means "type of value"
typeof(100) value3; // means "type of literal 100"

The last two variable definitions above are the equivalent of the following:

int value2;
int value3;

It is obvious that typeof is not needed in situations like above when actual types
are known. This keyword is especially useful in template definitions, which we
will see in later chapters.
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20.3 Exercise

• As we have seen above, the type of literals like 100 is int (as opposed to
short, long, or any other type). Write a program to determine the type
of floating point literals like 1.2. typeof and .stringof would be useful
in this program.

The solution is on page 698.

auto and typeof
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21 Name Space

Any name is accessible from the point that it has been defined at to the point that
its scope has been exited, as well as in all of the scopes that its scope includes. In
this regard, every scope defines a name space.

Names are not available once their scope has been exited:

void main()
{

int outer;

if (aCondition) { // ← curly bracket starts a new scope
int inner = 1;
outer = 2; // ← works; 'outer' is available here

} // ← 'inner' is not available beyond this point

inner = 3; // ← compilation ERROR
//   'inner' is not available in the outer scope

}

Because inner is defined within the scope of the if condition it is available only
in that scope. On the other hand, outer is available in both the outer scope and
the inner scope.

It is not legal to define the same name in an inner scope:

size_t length = oddNumbers.length;

if (aCondition) {
size_t length = primeNumbers.length; // ← compilation ERROR

}

21.1 Defining names closest to their first use
As we have been doing in all of the programs so far, variables must be defined
before their first use:

writeln(number); // ← compilation ERROR
//   number is not known yet

int number = 42;

For that code to be acceptable by the compiler, number must be defined before it is
used with writeln. Although there is no restriction on how many lines earlier it
should be defined, it is accepted as good programming practice that variables be
defined closest to where they are first used.

Let's see this in a program that prints the average of the numbers that it takes
from the user. Programmers who are experienced in some other programming
languages may be used to defining variables at tops of scopes:

int count; // ← HERE
int[] numbers; // ← HERE
double averageValue; // ← HERE

write("How many numbers are there? ");

readf(" %s", &count);

if (count >= 1) {
numbers.length = count;

// ... assume the calculation is here ...
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} else {
writeln("ERROR: You must enter at least one number!");

}

Contrast the code above to the one below that defines the variables later, as each
variable actually starts taking part in the program:

write("How many numbers are there? ");

int count; // ← HERE
readf(" %s", &count);

if (count >= 1) {
int[] numbers; // ← HERE
numbers.length = count;

double averageValue; // ← HERE

// ... assume that the calculation is here ...

} else {
writeln("ERROR: You must enter at least one number!");

}

Although defining all of the variables at the top may look better structurally,
there are several benefits of defining them as late as possible:

• Speed: Every variable definition has a speed cost in the program. As
every variable is initialized in D, defining variables at the top would
potentially waste their initialization cost if those variables would not
actually be used later.

• Risk of mistakes: Every line that is between the definition and use of a
variable carries a higher risk of programming mistakes. As an example
of this, consider a variable named as common as length. It is possible to
use that variable inadvertently for another length before its intended
line. At the time its intended line has been reached, the variable may
have an unintended value.

• Readability: As the number of lines in a scope are increased, it is more
likely that the definition of a variable may become too far up in the
source code, forcing the programmer to scroll back in order to look at its
definition.

• Code maintenance: Source code is in constant modification and
improvement: new features are added, old features are removed, bugs
are fixed, etc. These changes sometimes make it necessary to move a
group of lines altogether as a new function.

When that happens, having all of the variables defined close to the
lines that use them makes it easier to move them as a coherent bunch.

For example, in the latter code above that followed this guideline, all
of the lines within the if statement can be moved to a new a function in
the program.

On the other hand, when the variables are always defined at the top, if
the lines ever need to be moved, the variables that are used in those lines
must be identified one by one.

Name Space
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22 for Loop

The for loop is for the same purpose as the while loop (page 48). for makes it
possible to put the definitions and expressions about the loop's iteration on the
same line.

Although for is used much less than foreach in practice, it is important to
understand the for loop first. We will see foreach in a later chapter.

22.1 Sections of the while loop
The while loop evaluates the loop condition and continues executing the loop as
long as that condition is true. For example, a loop to print the numbers between 1
and 11 may check the condition less than 11:

while (number < 11)

Iterating the loop can be achieved by incrementing number at the end of the loop:

++number;

To be compilable as D code, number must have been defined before its first use:

int number = 1;

Finally, there is the actual work within the loop body:

writeln(number);

These four sections can be defined as in the comments below:

int number = 1; // ← preparation

while (number < 11) { // ← condition check
writeln(number); // ← actual work
++number; // ← iteration

}

The sections of the while loop are executed in the following order during the
iteration of the while loop:

preparation

condition check
actual work
iteration

condition check
actual work
iteration

...

A break statement or a thrown exception can terminate the loop as well.

22.2 Sections of the for loop
for brings three of these sections on a single line. They are written within the
parentheses of the for loop, separated with semicolons. The loop body contains
only the actual work:

111



for (/* preparation */; /* condition check */; /* iteration */) {
/* actual work */

}

The same code is more coherent when written as a for loop:

for (int number = 1; number < 11; ++number) {
writeln(number);

}

The benefit of the for loop is more obvious when the loop body has a large
number of statements. The expression that increments the loop variable is visible
on the for line instead of being mixed with the other statements of the loop.

The sections of the for loop are executed in the same order as the while loop.
The break and continue statements work exactly the same in the for loop.
The only difference between the while and for loops is the name space of the

loop variable. This is explained below.
Although very common, the iteration variable need not be an integer, nor it is

modified only by incrementing. For example, the following loop is used to print
the halves of the previous floating point values:

for (double value = 1; value > 0.001; value /= 2) {
writeln(value);

}

Note: The information above under this title is technically incorrect but does
cover the majority of the use cases of the for loop, especially by programmers
who have a C or C++ background. In reality, D's for loop does not have three
sections that are separated by semicolons. It has two sections, first of which contains
the preparation and the loop condition together. Without getting into the details
of this syntax, here is how to define two variables of different types in the
preparation section:

for ({ int i = 0; double d = 0.5; } i < 10; ++i) {
writeln("i: ", i, ", d: ", d);
d /= 2;

}

Note that the preparation section is the area within the highlighted curly brackets
and that there is not a semicolon between the preparation section and the
condition section.

22.3 The sections may be empty
All three of the for loop sections may be left empty:

• Sometimes a special loop variable is not needed, possibly because an
already-defined variable would be used.

• Sometimes the loop would be exited by a break statement instead of by
relying on the loop condition.

• Sometimes the iteration expressions depend on certain conditions that
would be checked within the loop body.

When all of the sections are emtpy, the for loop models forever:

for ( ; ; ) {
// ...

}

for Loop
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Such a loop may be designed to never end or end with a break statement.

22.4 The name space of the loop variable
The only difference between the for and while loop is the name space of the
variable defined during loop preparation: The variable is accessible only within
the for loop, not outside:

for (int i = 0; i < 5; ++i) {
// ...

}

writeln(i); // ← compilation ERROR
//   i is not accessible here

On the other hand, since the variable is defined in the name space that contains
the while loop, the name is accessible even after the loop:

int i = 0;

while (i < 5) {
// ...
++i;

}

writeln(i); // ← works; i is accessible here

We have seen the guideline of defining names closest to their first use in the previous
chapter. Similar to the rationale for that guideline, the smaller the name space of
a variable the better. In this regard, when the loop variable is not needed outside
the loop, for is better than while.

22.5 Exercises

1. Print the following 9x9 table by using two for loops, one inside the
other:

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8
4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8
5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8
6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8
7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8
8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8

2. Use one or more for loops to print the * character as needed to produce
geometrical patterns:

*
**
***
****
*****
******
*******
********
*********

********
********
********

for Loop
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********
********
********
********
********
********

etc.

The solutions are on page 699.

for Loop
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23 Ternary Operator ?:
The ?: operator works very similarly to an if-else statement:

if (/* condition check */) {
/* ... expression(s) to execute if true */

} else {
/* ... expression(s) to execute if false */

}

The if statement executes either the block for the case of true or the block for
the case of false. As you remember, being a statement, it does not have a value;
if merely affects the execution of code blocks.

On the other hand, the ?: operator is an expression. In addition to working
similary to the if-else statement, it produces a value. The equivalent of the
above code is the following:

/* condition */ ? /* truth expression */ : /* falsity expression */

Because it uses three expressions, the ?: operator is called the ternary operator.
The value that is produced by this operator is either the value of the truth

expression or the value of the falsity expression. Because it is an expression, it
can be used anywhere that expressions can be used.

The following examples contrast the ?: operator to the if-else statement. The
ternary operator is more concise for the cases that are similar to these examples.

• Initialization
To initialize with 366 if leap year, 365 otherwise:

int days = isLeapYear ? 366 : 365;

With if, one way is to define the variable without an explicit initial
value and then assign the intended value:

int days;

if (isLeapYear) {
days = 366;

} else {
days = 365;

}

An alternative with if is to initialize the variable with the non-leap year
value and then increment it if leap year:

int days = 365;

if (isLeapYear) {
++days;

}

• Printing
Printing a part of a message differently depending on a condition:

writeln("The glass is half ",
isOptimistic ? "full." : "empty.");
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With if, the first and last parts of the message may be printed
separately:

write("The glass is half ");

if (isOptimistic) {
writeln("full.");

} else {
writeln("empty.");

}

Alternatively, the entire message can be printed separately:

if (isOptimistic) {
writeln("The glass is half full.");

} else {
writeln("The glass is half empty.");

}

• Calculation
Increasing the score of the winner in a backgammon game 2 points or

1 point depending on whether the game has ended with gammon;

score += isGammon ? 2 : 1;

Straightforward with if:

if (isGammon) {
score += 2;

} else {
score += 1;

}

An alternative with if is to first increment by one and then increment
again if gammon:

++score;

if (isGammon) {
++score;

}

As can be seen from the examples above, the code is more concise and more clear
with the ternary operator in certain situations.

23.1 The types of the selection expressions must match
The value of the ?: operator is either the value of the truth expression or the
value of the falsity expression. The types of these two expressions need not be the
same but they must match. For example, they can be both integer types like int
and long but they cannot be mismatched types like int and string.

From the examples above, the values that would be selected depending on the
value of isLeapYear were 366 and 365. Both of those values are of type int and
do match.

To see a compilation error due to the values of the expressions not matching,
let's look at composing a message that reports the number of items to be shipped.
Let's print "A dozen" when the value equals 12: "A dozen items will be shipped."

Ternary Operator ?:
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Otherwise, let's have the message include the exact number: "3 items will be
shipped."

One might think that the varying part of the message can be selected with the
?: operator:

writeln((count == 12) ? "A dozen" : count, // ← compilation ERROR
" items will be shipped.");

The expressions do not match because the type of "A dozen" is string and the
type of count is int.

A solution is to convert count to string as well. The function to!string from
the std.conv module produces a string value from the specified parameter:

import std.conv;
// ...

writeln((count == 12) ? "A dozen" : to!string(count),
" items will be shipped.");

Now as both of the selection expressions of the ?: operator are of string type,
the code compiles and prints the expected message.

23.2 Exercise

• Have the program read a single int value as the net amount where a
positive value represents a gain and a negative value represents a loss.

The program should print a message that contains "gained" or "lost"
depending on whether the amount is positive or negative. For example,
"$100 lost" or "$70 gained". Even though it may be more suitable, do not
use the if statement in this exercise.

The solution is on page 699.
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24 Literals

Programs achieve their tasks by manipulating values of variables and objects.
They produce new values and new objects by using them with functions and
operators.

Some values need not be produced during the execution of the program; they
are written directly into the source code. For example, the floating point value
0.75 and the string value "Total price: " below are not calculated:

discountedPrice = actualPrice * 0.75;
totalPrice += count * discountedPrice;
writeln("Total price: ", totalPrice);

Such values that are typed into the source code literally are called literals. We
have used many literals in the programs that we have written so far. We will
cover all of the types of literals and their syntax rules.

24.1 Integer literals
Integer literals can be written in one of four ways: the decimal system that we use
in our daily lives; the hexadecimal and binary systems, which are more suitable
in certain computing tasks; and the octal system, which may be needed in very
rare cases.

In order to make the code more readable or for any other reason, it is possible
to insert _ characters anywhere among the characters of integer literals. For
example, to separate the numbers at three digit intervals as in 1_234_567. These
characters are optional; they are ignored by the compiler.

In the decimal system: The literals are specified by the decimal numerals
exactly the same way as we are used to in our daily lives, as in 12. In this system,
the first digit cannot be 0 as that digit is reserved for indicating the octal system
in most other languages. In D, integer literals cannot start with the digit 0 to
prevent bugs that are caused by this subtle difference. This does not preclude 0 on
its own: 0 is zero.

In the hexadecimal system: The literals start with 0x or 0X and include the
numerals of the hexadecimal system: "0123456789abcdef" and "ABCDEF" as in
0x12ab00fe.

In the octal system: The literals are specified by the octal template from the
std.conv module and include the numerals of the octal system: "01234567" as in
octal!576.

In the binary system: The literals start with 0b or 0B and include the numerals
of the binary system: 0 and 1 as in 0b01100011.

The types of integer literals
Just like any other value, every literal is of a certain type. The types of literals are
not specified explicitly as int, double, etc. The compiler infers the type from the
value and syntax of the literal itself.

Although most of the time the types of literals are not important, sometimes
the types may not match the expressions that they are used in. In such cases the
type must be specified explicitly.

By default, integer literals are inferred to be of type int. When the value
happens to be too large to be represented by an int, the compiler uses the
following logic to decide on the type of the literal:
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• If the value of the literal does not fit an int and it is specified in the
decimal system, then its type is long.

• It the value of the literal does not fit an int and it is specified in any
other system, then the type is tried to be uint, long, and ulong, in that
order, depending on which type can accomodate the value.

To see this logic in action, let's try the following program that takes advantage of
typeof and stringof:

import std.stdio;

void main()
{

writeln("\n--- these are written in decimal ---");

// fits an int, so the type is int
writeln(       2_147_483_647, "\t\t",

typeof(2_147_483_647).stringof);

// does not fit an int and is decimal, so the type is long
writeln(       2_147_483_648, "\t\t",

typeof(2_147_483_648).stringof);

writeln("\n--- these are NOT written in decimal ---");

// fits an int, so the type is int
writeln(       0x7FFF_FFFF, "\t\t",

typeof(0x7FFF_FFFF).stringof);

// does not fit an int and is not decimal, so the type is uint
writeln(       0x8000_0000, "\t\t",

typeof(0x8000_0000).stringof);

// does not fit a uint and is not decimal, so the type is long
writeln(       0x1_0000_0000, "\t\t",

typeof(0x1_0000_0000).stringof);

// does not fit a long and is not decimal, so the type is ulong
writeln(       0x8000_0000_0000_0000, "\t\t",

typeof(0x8000_0000_0000_0000).stringof);
}

The output:

--- these are written in decimal ---
2147483647                int
2147483648                long

--- these are NOT written in decimal ---
2147483647                int
2147483648                uint
4294967296                long
9223372036854775808                ulong

The L suffix
Regardless of the magnitude of the value, if it ends with L as in 10L, the type is
long.

The U suffix
If the literal ends with U as in 10U, then its type is an unsigned type. Lowercase u
can also be used.

The L and U specifiers can be used together in any order. For example, 7UL and
8LU are both ulong.
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24.2 Floating point literals
The floating point literals can be specified in either the decimal system as in
1.234 or in the hexadecimal system as in 0x9a.bc.

In the decimal system: An exponent may be appended after the character e or
E meaning "times 10 to the power of". For example, 3.4e5 means "3.4 times 10 to
the power of 5". A + character may also be specified before the value of the
exponent, but it has no effect. For example, 5.6e2 and 5.6e+2 are the same.

The - character typed before the value of the exponent changes the meaning to
be "divided by 10 to the power of". For example, 7.8e-3 means "7.8 divided by 10
to the power of 3".

In the hexadecimal system: The value starts with either 0x or 0X and the parts
before and after the point are specified in the numerals of the hexadecimal
system. Since e and E are valid numerals in this system, the exponent is specified
by p or P.

Another difference is that the exponent does not mean "10 to the power of", but
"2 to the power of". For example, the P4 part in 0xabc.defP4 means "2 to the
power of 4".

Floating point literals almost always have a point but it may be omitted if there
is an exponent specified. For example, 2e3 is a floating point literal with the value
2000.

The value before the point may be omitted if zero. For example, .25 is a literal
having the value "quarter".

The optional _ characters may be used with floating point literals as well, as in
1_000.5.

The types of floating point literals
Unless explicitly specified, the type of a floating point literal is double. The f and
F specifiers mean float, and the L specifier means real. For example; 1.2 is
double, 3.4f is float, and 5.6L is real.

24.3 Character literals
Character literals are specified within single quotes as in 'a', '\n', '\x21', etc.

As the character itself: The character may be typed directly by the keyboard or
copied from a separate text: 'a', 'ş', etc.

As the character specifier: The character literal may be specified by a backslash
character followed by a special letter. For example, the backslash character itself
can be specified by '\\'. Character specifier letters are the following:

Syntax Definition
\' single quote
\" double quote
\? question mark
\\ backslash
\a alert (bell sound on

some terminals)
\b delete character
\f new page
\n new-line
\r carriage return
\t tab
\v vertical tab

As the extended ASCII character code: Character literals can be specified directly
by their codes. The codes can be specified either in the hexadecimal system or in
the octal system. When using the hexadecimal system, the literal must start with
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\x and must use two digits for the code, and when using the octal system the
literal must start with \ and have up to three digits. For example, the literals
'\x21' and '\41' are both the exclamation point.

As the Unicode character code: When the literal is specified with u followed by
4 hexadecimal digits, then its type is wchar. When it's specified with U followed by
8 hexadecimal digits, then its type is dchar. For example, '\u011e' and
'\U0000011e' are both the Ğ character, having the type wchar and dchar,
respectively.

As named character entity: Characters that have entity names can be specified
by that name by the syntax '\&name;'. (See the Named Character Entities table1.)
For example, '\&euro;' is €, '\&hearts;' is ♥, and '\&copy;' is ©.

24.4 String literals
String literals are a combination of character literals and can be specified in a
variety of ways.

Double-quoted string literals
The most common way of specifying string literals is typing their characters
within double quotes as in "hello". Individual characters of string literals follow
the rules of character literals. For example, the literal "A4 ka\
u011fıt: 3\&frac12;TL" is the same as "A4 kağıt: 3½TL".

Wysiwyg string literals
When string literals are specified within back-quotes, the individual characters of
the string do not obey the special syntax rules of character literals. For example,
the literal `c:\nurten` can be a directory name on the Windows operationg
system. If it were written within double quotes, the '\n' part would mean the
new-line character:

writeln(`c:\nurten`);
writeln("c:\nurten");

c:\nurten ← wysiwyg (what you see is what you get)
c: ← the character literal is taken as new-line
urten

Wysiwyg string literals can alternatively be specified within double quotes but
prepended with the r character: r"c:\nurten" is also a wysiwyg string literal.

Hexadecimal string literals
In situations where every character in a string needs to be specified in
hexadecimal system, instead of typing \x before every one of them, a single x
character may be typed before the opening double quote. In that case, every
character in the string literal is taken to be hexadecimal. Additionally, the string
literal may contain spaces, which are ignored by the compiler. For example,
"\x44\x64\x69\x6c\x69" and x"44 64 69 6c 69" are the same string literal.

Delimited string literals
The string literal may contain delimiters that are typed right inside the double
quotes. These delimiters are not considered to be parts of the value of the literal.
Delimited string literals start with a q before the opening double quote. For

1. http://dlang.org/entity.html
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example, the value of q".hello." is "hello"; the dots are not parts of the value. As
long as it ends with a new-line, the delimiter can have more than one character:

writeln(q"MY_DELIMITER
first line
second line
MY_DELIMITER");

MY_DELIMITER is not a part of the value:

first line
second line

Token string literals
String literals that start with q and that use { and } as delimiters can contain only
legal D code:

auto str = q{int number = 42; ++number;};
writeln(str);

The output:

int number = 42; ++number;

This feature is particularly useful to help text editors highlight the code inside the
string as D code.

Types of string literals
By default the type of a string literal is immutable(char)[]. An appended c, w, or
d character specifies the type of the string explicitly as immutable(char)[],
immutable(wchar)[], or immutable(dchar)[], respectively. For example, the
characters of "hello"d are of type immutable(dchar).

We have seen in the Strings chapter (page 95) that these three string types are
aliased as string, wstring, and dstring respectively.

24.5 Literals are calculated at compile time
It is possible to specify literals as expressions. For example, instead of writing the
total number of seconds in January as 2678400 or 2_678_400, it is possible to
specify it by the terms that make up that value as 60 * 60 * 24 * 31. The
multiplication operations in that expression do not affect the run-time speed of
the program, as the program would be compiled as if 2678400 were written
instead.

The same applies to string literals. For example, the concatenation operation in
"hello " ~ "world" would be executed at compile time, not at run time. The
program would be compiled as if the code contains the single string literal
"hello world".

24.6 Exercises

1. The following line causes a compilation error:

int amount = 10_000_000_000; // ← compilation ERROR

Change the program so that the line can be compiled and that amount
equals ten billions.
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2. Write a program that increases the value of a variable and prints it in an
infinite loop. Make the value be printed on the same line:

Number: 25774 ← always on the same line

A special character literal other than '\n' may be useful here.

The solutions are on page 700.
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25 Formatted Output

This chapter is about features of Phobos's std.format module, not about the core
features of the D language.

D's input and output format specifiers are similar to the ones in the C language.
Before going further, I would like to summarize the format specifiers and flags

as a reference:

Flags (can be used together)
-     flush left
+     print the sign
#     print in the alternative way
0     print zero-filled

space print space-filled

Format Specifiers
s     default
b     binary
d     decimal
o     octal

x,X    hexadecimal
e,E    scientific floating point
f,F    dotted floating point
g,G    as e or f
a,A    hexadecimal floating point

(     element format start
)     element format end
|     element delimiter

We have been using functions like writeln with multiple parameters as
necessary. The parameters would be converted to their string representations and
then sent to the output.

Sometimes this is not sufficient. The output may have to be in a certain format.
Let's look at the following code that is used to print items of an invoice:

items ~= 1.23;
items ~= 45.6;

for (int i = 0; i != items.length; ++i) {
writeln("Item ", i + 1, ": ", items[i]);

}

The output:

Item 1: 1.23
Item 2: 45.6

Despite the information being correct, it may be required to be printed in a
certain format. For example, the dots may have to be lined up and that there must
always be two digits after the dot as in the following output:

Item 1:     1.23
Item 2:    45.60

Formatted output is useful in such cases. The output functions that we have been
using so far has counterparts that contain the letter f in their names: writef()
and writefln(). The letter f is short for formatted. The first parameter of these
functions is a format string that describes how the other parameters should be
printed.
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For example, the format string that would have writefln() produce the
desired output above is the following:

writefln("Item %d:%9.02f", i + 1, items[i]);

The format string contains regular characters that are passed to the output as-is,
as well as special format specifiers that correspond to each parameter that is to be
printed. Format specifiers start with the % character and ends with a format
character. The format string above has two format specifiers: %d and %9.02f.

Every specifier is associated to the following parameters in order. For example,
%d is associated with i + 1 and %9.02f is associated with items[i]. Every
specifier specifies the format of the parameter that it corresponds to. (Format
specifiers may have parameter numbers as well. This will be explained later in the
chapter.)

All of the other characters of the format string that are not parts of format
specifiers are printed as-is. Such regular characters of the format specifier above
are highlighted in "Item %d:%9.02f".

Format specifiers consist of six parts most of which are optional. The part
named position will be explained later below. The other five are the following
(Note: The spaces between these parts are inserted here to help with readability; they are
not parts of the specifiers.):

% flags  width  precision  format_character

The % character at the beginning and the format character at the end are
required; the others are optional.

Because % has a special meaning in format strings, when a % needs to be printed
as a regular character, it must be typed as %%.

25.1 format_character
b: Integer parameter is printed in the binary system.
o: Integer parameter is printed in the octal system.
x and X: Integer parameter is printed in the hexadecimal system; with lowercase
letters for x and uppercase letters for X.
d: Integer parameter is printed in decimal system; a negative sign is also printed if
it is a signed type and the value is less than zero.

int value = 12;

writefln("Binary     : %b", value);
writefln("Octal      : %o", value);
writefln("Hexadecimal: %x", value);
writefln("Decimal    : %d", value);

Binary     : 1100
Octal      : 14
Hexadecimal: c
Decimal    : 12

e: Floating point parameter is printed according to the following rules.

• single digit before the dot
• dot if precision is non-zero
• digits after the dot, number of which is determined by precision (default

precision is 6)
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• the e character (meaning "10 to the power of")
• the - or + character depending on whether the exponent is less than or

greater than zero
• the exponent consisting of at least two digits

E: Same as in e with the exception of the E character at the output instead of e.
f and F: Floating point parameter is printed in the decimal system; there is at
least one digit before the dot and the default precision is 6.
g: Same as in f if the exponent is between -5 and precision; otherwise as in e.
precision does not specify the number of digits after the dot, but the significant
digits of the entire value. If there are no significant digits after the dot, then the
dot is not printed. The rightmost zeros after the dot are not printed.
G: Same as in g with the exception of E or F at the output.
a: Floating point parameter is printed in the hexadecimal floating format:

• the characters 0x
• single hexadecimal digit
• dot if precision is non-zero
• digits after the dot, number of which is determined by precision; if no

precision is specified, then as many digits as necessary
• the p character (meaning "2 to the power of")
• the - or + character depending on whether the exponent is less than or

greater than zero
• the exponent consisting of at least one digit (the exponent of the value 0

is 0)

A: Same as in a with the exception of the 0X and P characters at the output.

double value = 123.456789;

writefln("with e: %e", value);
writefln("with f: %f", value);
writefln("with g: %g", value);
writefln("with a: %a", value);

with e: 1.234568e+02
with f: 123.456789
with g: 123.457
with a: 0x1.edd3c07ee0b0bp+6

s: The value is printed in the same way as in regular output, according to the type
of the parameter:

• bool values as true or false
• integer values same as %d
• floating point values same as %g
• strings in UTF-8 encoding; precision determines the maximum number

of bytes to use (remember that in UTF-8 encoding, the number of bytes is
not the same as the number of characters; for example, the string "ağ"
has 2 characters, consisting a total of 3 bytes)
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• struct and class objects as the return value of the toString() member
functions of their types; precision determines the maximum number of
bytes to use

• arrays as their element values side by side

bool b = true;
int i = 365;
double d = 9.87;
string s = "formatted";
auto o = File("test_file", "r");
int[] a = [ 2, 4, 6, 8 ];

writefln("bool  : %s", b);
writefln("int   : %s", i);
writefln("double: %s", d);
writefln("string: %s", s);
writefln("object: %s", o);
writefln("array : %s", a);

bool  : true
int   : 365
double: 9.87
string: formatted
object: File(55738FA0)
array : [2, 4, 6, 8]

25.2 width
This part determines the width of the field that the parameter is printed in. If the
width is specified as the character *, then the actual width value is read from the
next parameter. If width is a negative value, then the - flag is assumed.

int value = 100;

writefln("In a field of 10 characters:%10s", value);
writefln("In a field of 5 characters :%5s", value);

In a field of 10 characters:       100
In a field of 5 characters :  100

25.3 precision
Precision is specified after a dot in the format specifier. For floating point types, it
determines the precision of the printed representation of the values. If the
precision is specified as the character *, then the actual precision is read from the
next parameter (that parameter must be an int). Negative precision values are
ignored.

double value = 1234.56789;

writefln("%.8g", value);
writefln("%.3g", value);
writefln("%.8f", value);
writefln("%.3f", value);

1234.5679
1.23e+03
1234.56789000
1234.568

auto number = 0.123456789;
writefln("Number: %.*g", 4, number);
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Number: 0.1235

25.4 flags
More than one flag can be specified.
-: the value is printed left-aligned in its field; this flag cancels the 0 flag

int value = 123;

writefln("Normally right-aligned:|%10d|", value);
writefln("Left-aligned          :|%-10d|", value);

Normally right-aligned:|       123|
Left-aligned          :|123       |

+: if the value is positive, it is prepended with the + character; this flag cancels the
space flag

writefln("No effect for negative values    : %+d", -50);
writefln("Positive value with the + flag   : %+d", 50);
writefln("Positive value without the + flag: %d", 50);

No effect for negative values    : -50
Positive value with the + flag   : +50
Positive value without the + flag: 50

#: prints the value in an alternate form depending on the format_character

• o: the first character of the octal value is always printed as 0
• x and X: if the value is not zero, it is prepended with 0x or 0X
• floating points: a dot is printed even if there are no significant digits

after the dot
• g and G: even the insignificant zero digits after the dot are printed

writefln("Octal starts with 0               : %#o", 1000);
writefln("Hexadecimal starts with 0x        : %#x", 1000);
writefln("Contains dot even when unnecessary: %#g", 1f);
writefln("Rightmost zeros are printed       : %#g", 1.2);

Octal starts with 0               : 01750
Hexadecimal starts with 0x        : 0x3e8
Contains dot even when unnecessary: 1.00000
Rightmost zeros are printed       : 1.20000

0: the field is padded with zeros (unless the value is nan or infinity); if precision
is also specified, this flag is ignored

writefln("In a field of 8 characters: %08d", 42);

In a field of 8 characters: 00000042

space character: if the value is positive, a space character is prepended to align the
negative and positive values

writefln("No effect for negative values: % d", -34);
writefln("Positive value with space    : % d", 56);
writefln("Positive value without space : %d", 56);
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No effect for negative values: -34
Positive value with space    :  56
Positive value without space : 56

25.5 Positional parameters
We have seen above that the parameters are associated one by one with the
specifiers in the format string. It is possible to use position numbers within
format specifiers. This enables associating the specifiers with specific parameters.
Parameters are numbered in increasing fashion, starting with 1. The parameter
numbers are specified immediately after the % character, followed by a $:

% position$ flags  width  precision  format_character

An advantage of positional parameters is being able to use the same parameter in
more than one places in the same format string:

writefln("%1$d %1$x %1$o %1$b", 42);

The format string above uses the parameter numbered 1 within four specifiers to
print it in decimal, hexadecimal, octal, and binary formats:

42 2a 52 101010

Another application of positional parameters is supporting multiple human
languages. When referred by position numbers, parameters can be moved
anywhere within the specific format string for a given human language. For
example, the number of students of a given classroom can be printed as in the
following:

writefln("There are %s students in room %s.", count, room);

There are 20 students in room 1A.

Let's assume that the program must also support Turkish. In this case the format
string needs be selected according to the active language. The following method
takes advantage of the ternary operator:

auto format = (language == "en"
? "There are %s students in room %s."
: "%s sınıfında %s öğrenci var.");

writefln(format, count, room);

Unfortunately, when the parameters are associated one by one, the classroom and
student count information appear in reverse order in the Turkish message; the
room information is where the count should be and the count is where the room
should be:

20 sınıfında 1A öğrenci var. ← Wrong: means "room 20", and "1A students"!

To avoid this, the parameters can be specified by numbers as 1$ and 2$ to
associate each specifier with the exact parameter:

auto format = (language == "en"
? "There are %1$s students in room %2$s."
: "%2$s sınıfında %1$s öğrenci var.");

writefln(format, count, room);
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Now the parameters appear in the proper order, regardless of the language
selected:

There are 20 students in room 1A.

1A sınıfında 20 öğrenci var.

25.6 Formatted element output
Format specifiers between %( and %) are applied to every element of a container
(e.g. an array or a range):

auto numbers = [ 1, 2, 3, 4 ];
writefln("%(%s%)", numbers);

The format string above consists of three parts:

• %(: Start of element format
• %s: Format for each element
• %): End of element format

Each being printed with the %s format, the elements appear one after the other:

1234

The regular characters before and after the element format are repeated for each
element. For example, the {%s}, specifier would print each element between curly
brackets separated by commas:

writefln("%({%s},%)", numbers);

However, regular characters to the right of the format specifier are considered to
be element delimiters and are printed only between elements, not after the last
one:

{1},{2},{3},{4 ← '}' and ',' are not printed after the last element

%| is for specifying the characters that should be printed even for the last
element. Characters that are to the right of %| are considered to be the delimiters
and are not printed for the last element. Conversely, characters to the left of %|
are printed even for the last element.

For example, the following format specifier would print the closing curly
bracket after the last element but not the comma:

writefln("%({%s}%|,%)", numbers);

{1},{2},{3},{4} ← '}' is printed after the last element as well

Unlike strings that are printed individually, strings that are printed as elements
appear within double quotes:

auto vegetables = [ "spinach", "asparagus", "artichoke" ];
writefln("%(%s, %)", vegetables);

"spinach", "asparagus", "artichoke"

When the double quotes are not desired, the element format must be started with
%-( instead of %(:
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writefln("%-(%s, %)", vegetables);

spinach, asparagus, artichoke

There must be two format specifiers for associative arrays: one for the keys and
one for the values. For example, the following %s (%s) specifier would print first
the key and then the value in parentheses:

auto spelled = [ 1 : "one", 10 : "ten", 100 : "hundred" ];
writefln("%-(%s (%s)%|, %)", spelled);

Also note that being specified to the right of %|, the comma is not printed for the
last element:

1 (one), 100 (hundred), 10 (ten)

25.7 format
Formatted output is available through the format() function of the std.string
module as well. format() works the same as writef() but it returns the result as
a string instead of printing it to the output:

import std.stdio;
import std.string;

void main()
{

write("What is your name? ");
auto name = chomp(readln());

auto result = format("Hello %s!", name);
}

The program can make use of that result in later expressions.

25.8 Exercises

1. Write a program that reads a value and prints it in the hexadecimal
system.

2. Write a program that reads a floating point value and prints it as
percentage value with two digits after the dot. For example, if the value
is 1.2345, it should print %1.23.

The solutions are on page 701.
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26 Formatted Input

It is possible to specify the format of the data that is expected at the input. The
format specifies both the data that is to be read and the characters that should be
ignored.

D's input format specifiers are similar to the ones that are in the C language.
As we have already been using in the previous chapters, the format specifier "

%s" reads the data according to the type of the variable. For example, as the type
of the following variable is double, the characters at the input would be read as
floating point:

double number;

readf(" %s", &number);

The format string can contain three types of information:

• The space character: Indicates zero or more whitespace characters at the
input and specifies that all of those characters should be read and
ignored.

• Format specifier: Similar to the output format specifiers, input format
specifiers start with the % character and determine the format of the
data that is to be read.

• Any other character: Indicates the characters that are expected at the
input as-is, which should be read and ignored.

The format string makes it possible to select specific information from the input
and ignore the others.

Let's have a look at an example that uses all of the three types of information in
the format string. Let's assume that the student number and the grade are
expected to appear at the input in the following format:

number:123 grade:90

Let's further assume that the tags number: and grade: must be ignored. The
following format string would select the values of number and grade and would
ignore the other characters:

int number;
int grade;
readf("number:%s grade:%s", &number, &grade);

The characters that are highlighted in "number:%s grade:%s" must appear at the
input exactly as specified; readf() reads and ignores them.

The single space character that appears in the format string above would cause
all of the whitespace characters that appear exactly at that position to be read and
ignored.

As the % character has a special meaning in format strings, when that character
itself needs to be read and ignored, it must be written twice in the format string
as %%.

Reading a single line of data from the input has been recommended as
chomp(readln()) in the Strings chapter (page 95). Instead of that method, a \n
character at the end of the format string can achieve a similar goal:
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import std.stdio;

void main()
{

write("First name: ");
string firstName;
readf(" %s\n", &firstName); // ← \n at the end

write("Last name : ");
string lastName;
readf(" %s\n", &lastName); // ← \n at the end

write("Age       : ");
int age;
readf(" %s", &age);

writefln("%s %s (%s)", firstName, lastName, age);
}

The \n characters at the ends of the format strings when reading firstName and
lastName would cause the new-line characters to be read from the input and to
be ignored. However, potential whitespace characters at the ends of the strings
may still need to be removed by chomp().

26.1 Format specifier characters
d: Read an integer in the decimal system.
o: Read an integer in the octal system.
x: Read an integer in the hexadecimal system.
f: Read a floating point number.
s: Read according to the type of the variable.
c: Read a single character. This specifier allows reading whitespace characters as
well (it cancels the ignore behavior).

For example, if the input contains "23 23 23", the values would be read
differently according to the different format specifiers:

int number_d;
int number_o;
int number_x;

readf(" %d %o %x", &number_d, &number_o, &number_x);

writeln("Read with %d: ", number_d);
writeln("Read with %o: ", number_o);
writeln("Read with %x: ", number_x);

Although the input contains three sets of "23" characters, the values of the
variables are different:

Read with %d: 23
Read with %o: 19
Read with %x: 35

Note: Very briefly, "23" is equal to 2x8+3=19 in the octal system and to 2x16+3=35 in the
hexadecimal system.

26.2 Exercise

• Assume that the input contains the date in the format year.month.day.
Write a program that prints the number of the month. For example, if
the input is 2009.09.30, the output should be 9.

The solution is on page 701.
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27 do-while Loop

In the for Loop chapter (page 111), we have seen the steps in which the while loop
(page 48) is executed:

preparation

condition check
actual work
iteration

condition check
actual work
iteration

...

The do-while loop is very similar to the while loop. The difference is that the
condition check is performed at the end of each iteration of the do-while loop, so
that the actual work is performed at least once:

preparation

actual work
iteration
condition check ← at the end of the iteration

actual work
iteration
condition check ← at the end of the iteration

...

For example, do-while may be more natural in the following program where the
user guesses a number, as the user must guess at least once so that the number
can be compared:

import std.stdio;
import std.random;

void main()
{

int number = uniform(1, 101);

writeln("I am thinking of a number between 1 and 100.");

int guess;

do {
write("What is your guess? ");

readf(" %s", &guess);

if (number < guess) {
write("My number is less than that. ");

} else if (number > guess) {
write("My number is greater than that. ");

}

} while (guess != number);

writeln("Correct!");
}
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The function uniform() that is used in the program is a part of the std.random
module. It returns a random number in the specified range. The way it is used
above, the second number is considered to be outside of the range. In other
words, uniform() would not return 101 for that call.

27.1 Exercise

• Write a program that plays the same game but have the program do the
guessing. If the program is written correctly, it should guess the user's
number in at most 7 tries.

The solution is on page 702.
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28 Associative Arrays

Associative arrays are a feature that is found in most of the modern high-level
languages. They are very fast data structures that work like mini databases and
are commonly used in many programs.

We have seen arrays in the Arrays chapter (page 69) as containers that store
their elements side-by-side and provide access to them by indexes. An array that
stores the names of the days of the week can be defined like this:

string[] dayNames =
[ "Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday", "Sunday" ];

The name of a specific day can be accessed by its index in that array:

writeln(dayNames[1]); // prints "Tuesday"

The fact that arrays provide access to elements by index values can be described
as an association of indexes with elements. In other words, arrays map indexes to
elements. Arrays can use only integers as indexes.

Associative arrays allow indexing not only by integers but by any type. They
map the values of one type to the values of another type. The values of the type
that associative arrays map from are called keys, rather than indexes. They provide
access to elements by the key of each element.

28.1 Very fast but unordered
Associative arrays are a hash table implementation. Hash tables are among the
fastest collections for storing and accessing elements. Other than rare
pathological cases, the time it takes to store an element or to access an element is
independent of the number of elements that are in the associative array.

The high performance of hash tables comes at the expense of storing the
elements in an unordered way. Unlike arrays, the elements of hash tables are not
stored side-by-side. They are not sorted in any way either.

28.2 Definition
The syntax of associative arrays is similar to the array syntax. The difference is
that it is the type of the key that is specified within the square brackets, not the
length of the array:

element_type[key_type] associative_array_name;

For example, an associative array that maps day names of type string to day
numbers of type int can be defined like this:

int[string] dayNumbers;

The dayNumbers variable above is an associative array that can be used as a table
that provides a mapping from day names to day numbers. In other words, it can
be used as the opposite of the dayNames array from the beginning of this chapter.
We will use the dayNumbers associative array in the examples below.

The keys of associative arrays can be of any type including user-defined struct
and class types. We will see user-defined types in later chapters.

The length of associative arrays cannot be specified when defined. They grow
automatically as elements are added.
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28.3 Adding elements
Using the assignment operator is sufficient to build the association between a key
and a value:

// associates element 0 with key "Monday"
dayNumbers["Monday"] = 0;

// associates element 1 with key "Tuesday"
dayNumbers["Tuesday"] = 1;

The table grows automatically with each association. For example, dayNumbers
would have two elements after the operations above. This can be demonstrated by
printing the entire table:

writeln(dayNumbers);

The output indicates that the element values 0 and 1 correspond to key values
"Monday" and "Tuesday", respectively:

["Monday":0, "Tuesday":1]

There can be only one element per key. For that reason, when assigned to an
existing element, the table does not grow; instead, the value of the existing
element changes:

dayNumbers["Tuesday"] = 222; // changing the existing element
writeln(dayNumbers);

The output:

["Monday":0, "Tuesday":222]

28.4 Initialization
Sometimes some of the mappings between the keys and the values are already
known at the time of the definition of the associative array. Associative arrays are
initialized similarly to arrays, with the difference of a colon separating each key
from its element:

// key : element
int[string] dayNumbers =

[ "Monday" : 0, "Tuesday" : 1, "Wednesday" : 2,
"Thursday" : 3, "Friday" : 4, "Saturday" : 5,
"Sunday" : 6 ];

writeln(dayNumbers["Tuesday"]); // prints 1

28.5 Removing elements
The element that corresponds to a key is removed by .remove():

dayNumbers.remove("Tuesday");
writeln(dayNumbers["Tuesday"]); // ← run-time ERROR

The first line above removes the element for the key "Tuesday". Since that element
is not in the container anymore, the second line would cause an exception to be
thrown and the program to be terminated if that exception is not caught. We will
see exceptions in a later chapter.

It is possible to remove all of the elements at once as will be seen in the first
exercise below.
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28.6 Determining the presence of an element
The in operator determines whether the element for a given key exists in the
associative array:

int[string] colorCodes = [ /* ... */ ];

if ("purple" in colorCodes) {
// there is an element for key "purple"

} else {
// no element for key "purple"

}

Sometimes it makes sense to use a default element value for keys that do not exist
in the associative array. For example, the special value of -1 can be used as the
code for colors that are not in colorCodes. .get() is useful in such cases: It
returns the value of the element if the element for the specified key exists, the
default value otherwise. The default value is specified as the second parameter of
.get():

int[string] colorCodes = [ "blue" : 10, "green" : 20 ];
writeln(colorCodes.get("purple", -1));

Since the array does not contain an element for the key "purple", .get() returns
-1:

-1

28.7 Properties

• .length returns the number of elements in the array.
• .keys returns copies of all of the keys in the associative array as a

dynamic array.
• .byKey provides access to the keys in the associative array without

copying them; we will see how .byKey is used in foreach loops in the
next chapter.

• .values returns copies of all of the values in the associative array as a
dynamic array.

• .byValue provides access to the elements of the associative array
without copying them.

• .rehash may make the array more efficient in some cases like after
inserting a large number of elements and before actually starting to use
the associative array.

• .sizeof is the size of the array reference (it has nothing to do with the
number of elements in the table and is the same value for all associative
arrays).

• .get returns the element if it exists, the default value otherwise.
• .remove removes the specified element from the array.

28.8 Example
Here is a program that prints the Turkish names of colors that are specified in
English:
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import std.stdio;
import std.string;

void main()
{

string[string] colors = [ "black" : "siyah",
"white" : "beyaz",
"red" : "kırmızı",
"green" : "yeşil",
"blue" : "mavi"

];

writefln("I know the Turkish names of these %s colors: %s",
colors.length, colors.keys);

write("Please ask me one: ");
string inEnglish = chomp(readln());

if (inEnglish in colors) {
writefln("\"%s\" is \"%s\" in Turkish.",

inEnglish, colors[inEnglish]);

} else {
writeln("I don't know that one.");

}
}

28.9 Exercises

1. How can all of the elements of an associative array be removed? There
are at least three methods:

◦ Removing the elements one-by-one from the associative array.
◦ Assigning an empty associative array.
◦ Similar to the previous method, assigning the array's .init

property.
Note: The .init property of any variable or type is the initial value
of that type:

number = int.init; // 0 for int

2. Just like with arrays, there can be only one value for each key. This may
be seen as a limitation for some applications.

Assume that an associative array is used for storing student grades.
For example, let's assume that the grades 90, 85, 95, etc. are to be stored
for the student named "emre".

Associative arrays make it easy to access the grades by the name of the
student as in grades["emre"]. However, the grades cannot be inserted
as in the following code because each grade would overwrite the
previous one:

int[string] grades;
grades["emre"] = 90;
grades["emre"] = 85; // ← Overwrites the previous grade!

How can you solve this problem? Define an associative array that can
store multiple grades per student.

The solutions are on page 702.
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29 foreach Loop

One of the most common statements in D is the foreach loop. It is used for
applying the same operations to every element of a container (or a range).

Operations that are applied to elements of containers are very common in
programming. We have seen in the for Loop chapter (page 111) that elements of
an array are accessed in a for loop by an index value that is incremented at each
iteration:

for (int i = 0; i != array.length; ++i) {
writeln(array[i]);

}

The following are the steps that are involved in iterating over all of the elements:

• Defining a variable as a counter, which is conventionally named as i
• Iterating the loop up to the value of the .length property of the array
• Incrementing i
• Accessing the element

foreach has essentially the same behavior but it simplifies the code by handling
those steps automatically:

foreach (element; array) {
writeln(element);

}

Part of the power of foreach comes from the fact that it can be used the same
way regardless of the type of the container. As we have seen in the previous
chapter, one way of iterating over the values of an associative array in a for loop
is by first calling the array's .values property:

auto values = aa.values;
for (int i = 0; i != values.length; ++i) {

writeln(values[i]);
}

foreach does not require anything special for associative arrays; it is used exactly
the same as with arrays:

foreach (value; aa) {
writeln(value);

}

29.1 The foreach syntax
foreach consists of three sections:

foreach (names; container_or_range) {
operations

}

• container_or_range specifies where the elements are.
• operations specifies the operations to apply to each element.
• names specifies the name of the element and potentially other variables

depending on the type of the container or the range. Although the choice
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of names is up to the programmer, the number of and the types of these
names depend on the type of the container.

29.2 continue and break
These keywords have the same meaning as they have with the for loop: continue
moves to the next iteration before completing the rest of the operations for the
current element, and break terminates the loop altogether.

29.3 foreach with arrays
When there is a single name specified in the names section, it is the value of the
element at each iteration:

foreach (element; array) {
writeln(element);

}

When two names are specified in the names section, they are an automatic
counter and the value of the element, respectively:

foreach (i, element; array) {
writeln(i, ": ", element);

}

The counter is incremented automatically by foreach. Its name is up to the
programmer.

29.4 foreach with strings and std.range.stride
Since strings are arrays of characters, foreach works the same as it works with
arrays: Single name is the character, two names are the counter and the
character:

foreach (c; "hello") {
writeln(c);

}

foreach (i, c; "hello") {
writeln(i, ": ", c);

}

However, being UTF code units, char and wchar iterate over UTF code units, not
Unicode code points:

foreach (i, code; "abcçd") {
writeln(i, ": ", code);

}

The two UTF-8 code units that make up ç would be accessed as separate elements:

0: a
1: b
2: c
3:
4: �
5: d

One way of iterating over Unicode characters of strings in a foreach loop is
stride from the std.range module. stride presents the string as a container
that consists of Unicode characters. Its second parameter is the number of steps
that it should take as it strides over the characters:
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import std.range;

// ...

foreach (c; stride("abcçd", 1)) {
writeln(c);

}

Regardless of the character type of the string, stride always presents its
elements as Unicode characters:

a
b
c
ç
d

I will explain below why this loop could not include an automatic counter.

29.5 foreach with associative arrays
A single name specifies the value, two names specify the key and the value:

foreach (value; aa) {
writeln(value);

}

foreach (key, value; aa) {
writeln(key, ": ", value);

}

Associative arrays can provide their keys and values as ranges as well. We will see
ranges in a later chapter. .byKey() and .byValue() return efficient range
objects that are also useful in other contexts. .byValue() does not bring any
benefit in foreach loops over the regular value iteration above. On the other
hand, .byKey() is the only effective way of iterating over just the keys of an
associative array:

foreach (key; aa.byKey()) {
writeln(key);

}

29.6 foreach with number ranges
We have seen number ranges in the Slices and Other Array Features chapter (page
85) before. It is possible to specify a number range in the container_or_range
section:

foreach (number; 10..15) {
writeln(number);

}

Remember that 10 would be included in the range but 15 would not be.

29.7 foreach with structs, classes, and ranges
foreach can also be used with objects of user-defined types that define their own
iteration in foreach loops. As the type itself defines its iteration behavior, it is not
possible to say anything here. Programmers must refer to the documentation of
the particular type.

Structs and classes provide support for foreach iteration either by their
opApply() member functions, or by a set of range member functions. We will see
these features in later chapters.
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29.8 The counter is automatic only for arrays
The automatic counter is provided only when iterating over arrays. When a
counter is needed while iterating over other types of containers, the counter can
be defined and incremented explicitly:

size_t i = 0;
foreach (element; container) {

// ...
++i;

}

Such a variable is also needed when counting a specific condition. For example,
the following code counts only the values that are divisible by 10:

import std.stdio;

void main()
{

auto numbers = [ 1, 0, 15, 10, 3, 5, 20, 30 ];

size_t count = 0;
foreach (number; numbers) {

if ((number % 10) == 0) {
++count;
write(count);

} else {
write(' ');

}

writeln(": ", number);
}

}

The output:

: 1
1: 0
: 15

2: 10
: 3
: 5

3: 20
4: 30

29.9 The copy of the element, not the element itself
The foreach loop normally provides a copy of the element, not the actual
element that is stored in the container. This may be a cause of bugs.

To see an example of this, let's have a look at the following program that is
trying to double the values of the elements of an array:

import std.stdio;

void main()
{

double[] numbers = [ 1.2, 3.4, 5.6 ];

writefln("Before: %s", numbers);

foreach (number; numbers) {
number *= 2;

}

writefln("After : %s", numbers);
}
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The output of the program indicates that the assignment made to each element
inside the foreach body does not have any effect on the elements of the
container:

Before: [1.2, 3.4, 5.6]
After : [1.2, 3.4, 5.6]

That is because number is not an actual element of the array, but a copy of each
element. When the actual elements need to be operated on, the name must be
defined as a reference of the actual element by the ref keyword:

foreach (ref number; numbers) {
number *= 2;

}

The new output shows that the assignments now modify the actual elements of
the array:

Before: [1.2, 3.4, 5.6]
After : [2.4, 6.8, 11.2]

The ref keyword makes number an alias of the actual element at each iteration.
As a result, the modifications through number modifies that actual element of the
container.

29.10 The integrity of the container must be preserved
Although it is fine to modify the elements of the container through ref variables,
the structure of the container must not be changed. For example, elements must
not be removed nor added to the container during a foreach loop.

Such modifications may confuse the inner workings of the loop iteration and
result in incorrect program states.

29.11 foreach_reverse to iterate in the reverse direction
foreach_reverse works the same way as foreach except it iterates in the
reverse direction:

auto container = [ 1, 2, 3 ];

foreach_reverse (element; container) {
writefln("%s ", element);

}

The output:

3
2
1

The use of foreach_reverse is not common because the range function retro()
achieves the same goal. We will see retro() in a later chapter.

29.12 Exercise

• We know that associative arrays provide a mapping from keys to values.
This mapping is unidirectional: values are accessed by keys but not the
other way around.

Assume that there is already the following associative array:

string[int] names = [ 1:"one", 7:"seven", 20:"twenty" ];
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Use that associative array and a foreach loop to fill another associative
array named values. The new associative array should provide values
that correspond to names. For example, the following line should print
20:

writeln(values["twenty"]);

The solution is on page 703.
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30 switch and case
switch is a statement that allows comparing the value of an expression against
multiple special values. It is similar to but not the same as an "if, else if, else"
chain. case is used for specifying the values that are to be compared with
switch's expression. case is a part of the switch statement, not a statement
itself.
switch takes an expression within parentheses, compares the value of that

expression to the case values, and executes the operations of the case that is
equal to the value of the expression. Its syntax consists of a switch block that
contains one or more case sections and a default section:

switch (expression) {

case value_1:
// operations to execute if the expression is equal to value_1
// ...
break;

case value_2:
// operations to execute if the expression is equal to value_2
// ...
break;

// ... other cases ...

default:
// operations to execute if the expression is not equal to any case
// ...
break;

}

Although it is used in conditional checks, the expression that switch takes is not
used as a logical expression. It is not evaluated as "if this condition is true" as in
an if statement. The value of the switch expression is used in equality
comparisons with the case values. It is similar to an "if, else if, else" chain that
has only equality comparisons:

auto value = expression;

if (value == value_1) {
// operations for value_1
// ...

} else if (value == value_2) {
// operations for value_2
// ...

}

// ... other 'else if's ...

} else {
// operations for other values
// ...

}

However, the "if, else if, else" above is not the equivalent of the switch statement.
The reasons will be explained in the following sections.

If a case value matches the value of the switch expression, then the operations
that are under the case are executed. If no value matches, then the operations
that are under the default are executed. The operations are executed until a
break or a goto statement is reached.
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30.1 The goto statement
Some uses of goto is advised against in most programming languages in general.
However, goto is useful in switch statements in rare situations. The goto
statement will be covered in more detail in a later chapter.
case does not introduce a scope as the if statement does. Once the operations

within an if or else scope are finished, the evaluation of the entire if statement
is also finished. It is not the same with the case sections; once a matching case is
found, the execution of the program jumps to that case and executes the
operations under that case. When needed in rare situations, goto case makes
the program execution jump under the next case:

switch (value) {

case 5:
writeln("five");
goto case; // continues with the next case

case 4:
writeln("four");
break;

default:
writeln("unknown");
break;

}

If value is 5, the execution continues under the case 5 line and the program
prints "five". Then the goto case statement causes the execution to continue to
the next case, and as a result "four" is also printed:

five
four

goto can appear in three ways under case sections:

• goto case causes the execution to continue to the next case.
• goto default causes the execution to continue to the default section.
• goto case expression causes the execution to continue to the case

that matches that expression.

The following program demonstrates these three uses by taking advantage of a
foreach loop:

import std.stdio;

void main()
{

foreach (value; [ 1, 2, 3, 10, 20 ]) {
writefln("--- value: %s ---", value);

switch (value) {

case 1:
writeln("case 1");
goto case;

case 2:
writeln("case 2");
goto case 10;

case 3:
writeln("case 3");

switch and case
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goto default;

case 10:
writeln("case 10");
break;

default:
writeln("default");
break;

}
}

}

The output:

--- value: 1 ---
case 1
case 2
case 10
--- value: 2 ---
case 2
case 10
--- value: 3 ---
case 3
default
--- value: 10 ---
case 10
--- value: 20 ---
default

30.2 The expression type must be integer, string, or bool
Any type can be used in equality comparisons in if statements. On the other
hand, the type of the switch expression is limited to integer types, string types,
and bool.

string op = /* ... */;
// ...
switch (op) {

case "add":
result = first + second;
break;

case "subtract":
result = first - second;
break;

case "multiply":
result = first * second;
break;

case "divide":
result = first / second;
break;

default:
throw new Exception(format("Unknown operation: %s", op));

}

Note: The code above throws an exception when the operation is not recognized by the
program. We will see exceptions in a later chapter.

Although it is possible to use bool expressions as well, since bool has only two
values, it may be more suitable to use an if statement or the ternary operator
(?:) with that type.

switch and case
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30.3 case values must be known at compile time
With the if statement, the values that are on both sides of the equality operator
can be calculated at run time. For example, the following if statement may be
using two values, one of which is calculated by the program and the other entered
by the user:

if (guess == number) {
writeln("Correct!");

}

On the other hand, although the value of the switch expression is normally
calculated at run time, the case values must be known at compile time.

30.4 Value ranges
Ranges of values can be specified by .. between cases:

switch (dieValue) {

case 1:
writeln("You won");
break;

case 2: .. case 5:
writeln("It's a draw");
break;

case 6:
writeln("I won");
break;

default:
/* The program should never get here because the cases
* above cover the entire range of valid die values.
* (See 'final switch' below.) */

break;
}

The code above determines that the game ends in a draw when the die value is 2,
3, 4, or 5.

30.5 Distinct values
Let's assume that it is a draw for the values 2 and 4, rather than for the values that
are in the range [2,5]. Distinct values of a case are separated by commas:

case 2, 4:
writeln("It's a draw");
break;

30.6 The final switch statement
This statement works similarly to the regular switch statement with the
following differences:

• It cannot have a default section. Note that this section is meaningless
when the case sections cover the entire range of values anyway, as has
been with the six values of the die above.

• Value ranges cannot be used with cases (distinct values can be).
• If the expression is of an enum type, all of the values of the type must be

covered by the cases (we will see enum types in the next chapter).
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int dieValue = 1;

final switch (dieValue) {

case 1:
writeln("You won");
break;

case 2, 3, 4, 5:
writeln("It's a draw");
break;

case 6:
writeln("I won");
break;

}

30.7 When to use
switch is suitable for comparing the value of an expression against a set of
values that are known at compile time.

When there are only two values to compare, an if statement may make more
sense. For example, to check whether it is heads or tails:

if (headsTailsResult == heads) {
// ...

} else {
// ...

}

As a general rule, switch is more suitable when there are three or more values to
compare.

30.8 Exercises

1. Write a calculator program that supports arithmetic operations. Have
the program first read the operation as a string, then two values of type
double from the input. The calculator should print the result of the
operation. For example, when the operation and values are "add" and
"5 7", respectively, the program should print 12.

The input can be read as in the following code:

string op;
double first;
double second;

// ...

op = chomp(readln());
readf(" %s %s", &first, &second);

2. Improve the calculator to support operators like "+" in addition to words
like "add".

3. Have the program throw an exception for unknown operators.

The solutions are on page 704.
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31 enum
enum is the feature that enables defining named constant values.

31.1 Effects of magic constants on code quality
The following code appeared in the exercise solutions (page 692) of the Integers
and Arithmetic Operations chapter:

if (operation == 1) {
result = first + second;

} else if (operation == 2) {
result = first - second;

} else if (operation == 3) {
result = first * second;

} else if (operation == 4) {
result = first / second;

}

The integer literals 1, 2, 3, and 4 in that piece of code are called magic constants. It
is not easy to determine what each of those literals means in the program. One
must examine the code in each scope to determine that 1 means addition, 2
means subtraction, etc. This task is relatively easy for the code above because all of
the scopes contain just a single line. It would be considerably more difficult to
decipher the meanings of magic constants in most other programs.

Magic constants must be avoided because they reduce two most important
qualities of programs: readability and maintainability.
enum enables giving names to such constants and as a consequence making the

code more readable and maintainable. Each condition would be readily
understandable when the following enum values were used:

if (operation == Operation.add) {
result = first + second;

} else if (operation == Operation.subtract) {
result = first - second;

} else if (operation == Operation.multiply) {
result = first * second;

} else if (operation == Operation.divide) {
result = first / second;

}

The enum type Operation above that obviates the need for magic constants 1, 2, 3,
and 4 can be defined like this:

enum Operation { add = 1, subtract, multiply, divide }

31.2 The enum syntax
The simplest form of an enum definition is the following:

enum TypeName { ValueName_1, ValueName_2, /* etc. */ }

Sometimes it is necessary to specify the actual type (the base type) of the values as
well:
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enum TypeName : base_type { ValueName_1, ValueName_2, /* etc. */ }

We will see how this is used in the next section.
TypeName defines what the values collectively mean. All of the values of an

enum type are listed within curly brackets. Here are some examples:

enum HeadsOrTails { heads, tails }
enum Suit { spades, hearts, diamonds, clubs }
enum Fare { regular, child, student, senior }

Each set of values becomes part of a separate type. For example, heads and tails
become values of the type HeadsOrTails. The new type can be used like other
fundamental types when defining variables:

HeadsOrTails result; // default initialized
auto ht = HeadsOrTails.heads; // inferred type

As has been seen in the codes above, the values of enum types are always specified
by the name of their enum type:

if (result == HeadsOrTails.heads) {
// ...

}

31.3 Actual values and base types
The values of enum types are normally implemented in the background as int
values. In other words, although they appear as named values as heads and
tails in the code, they are actually int values. (Note: It is possible to choose a type
other than int when needed.).

Unless explicitly specified by the programmer, the int values start by 0 and are
incremented by one for each enum value. For example, the two values of the
HeadsOrTails have the values 0 and 1:

writeln("heads is 0: ", (HeadsOrTails.heads == 0));
writeln("tails is 1: ", (HeadsOrTails.tails == 1));

The output:

heads is 0: true
tails is 1: true

It is possible to manually reset the values at any point. That has been the case
when specifying the value of Operation.add as 1 above. The following example
resets the values twice:

enum Test { a, b, c, ç = 100, d, e, f = 222, g, ğ }
writefln("%d %d %d", Test.b, Test.ç, Test.ğ);

The output:

1 100 224

If int is not suitable as the base type of the enum values, the base type can be
specified explicitly after the name of the enum:

enum NaturalConstant : double { pi = 3.14, e = 2.72 }
enum TemperatureUnit : string { C = "Celsius", F = "Fahrenheit" }

enum
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31.4 enum values that are not of an enum type
We have discussed that it is important to avoid magic constants and instead to
take advantage of the enum feature.

However, sometimes it may not be natural to come up with enum type names
just to use named constants. Let's assume that a named constant is needed to
represent the number of seconds per day. It should not be necessary to also define
an enum type for this constant value. All that is needed is a constant value that can
be referred to by its name. In such cases, the type of the enum and the value
parentheses are not specified:

enum secondsPerDay = 60 * 60 * 24;

The type of the value can be specified explicitly, which would be required if the
type cannot be inferred from the right hand side:

enum int secondsPerDay = 60 * 60 * 24;

Since there is no enum type to refer to, such named constants can be used in code
simply by their names:

totalSeconds = totalDays * secondsPerDay;

enum can be used for defining named constants of other types as well. For
example, the type of the following constant would be string:

enum fileName = "list.txt";

Such constants are rvalues (page 190) and they are called manifest constants.

31.5 Properties
The .min and .max properties are the minimum and maximum values of an enum
type. When the values of the enum type are consecutive, they can be iterated over
in a for loop within these limits:

enum Suit { spades, hearts, diamonds, clubs }

for (auto suit = Suit.min; suit <= Suit.max; ++suit) {
writefln("%s: %d", suit, suit);

}

Format specifiers "%s" and "%d" produce different outputs:

spades: 0
hearts: 1
diamonds: 2
clubs: 3

Note that a foreach loop over that range would leave the .max value out of the
iteration:

foreach (suit; Suit.min .. Suit.max) {
writefln("%s: %d", suit, suit);

}

The output:

spades: 0
hearts: 1
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diamonds: 2
← clubs is missing

31.6 Converting from the base type
As has been seen in the formatted outputs above, an enum value can automatically
be converted to its base type (e.g. to int). The reverse conversion is not automatic:

Suit suit = 1; // ← compilation ERROR

The reason for this is to avoid ending up with invalid enum values:

suit = 100; // ← would be an invalid enum value

The values that are known to correspond to valid enum values of a particular enum
type can still be converted to that type by an explicit type cast:

suit = cast(Suit)1; // now hearts

It would be the programmer's responsibility to ensure the validity of the values
when an explicit cast is used. We will see type casting in a later chapter (page 257).

31.7 Exercise

• Modify the calculator program from the exercises of the Integers and
Arithmetic Operations chapter (page 51) by having the user select the
arithmetic operation from a menu.

This program should be different from the previous one at least in the
following areas:

◦ Use enum values, not magic constants.
◦ Use double instead of int.
◦ Use a switch statement instead of an "if, else if, else" chain.

The solution is on page 705.

enum
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32 Functions

Similar to how fundamental types are building blocks of program data, functions
are building blocks of program behavior.

Functions are also closely related to the craft aspect of programming. The
functions that are written by experienced programmers are succinct, simple, and
clear. This goes both ways: The mere act of trying to identify and write smaller
building blocks of a program makes a better programmer.

We have covered basic statements and expressions in previous chapters.
Although there will be many more that we will see in later chapters, what we
have seen so far are commonly-used features of D. Still, they are not sufficient on
their own to write large programs. The programs that we have written so far have
all been very short, each demonstrating just a simple feature of the language.
Trying to write a program with any level of complexity without functions would
be very difficult and open to bugs.

This chapter covers only the basic features of functions. We will see more about
functions later in the following chapters:

• Function Parameters (page 178)
• Function Overloading (page 283)
• Function Pointers, Delegates, and Lambdas (page 490)
• More Functions (page 562)

Functions are features that put statements and expressions together as units of
program execution. Such statements and expression are given a name that
describes what they collectively achieve. They can then be called (or executed) by
that name.

The concept of giving names to a group of steps is common in daily lives. For
example, the act of cooking an omelet can be described in some level of detail by
the following steps:

• get the pan
• get butter
• get the egg
• turn on the stove
• put the pan on the fire
• put butter into the pan when it is hot
• put the egg into butter when it is melted
• remove the pan from the fire when the egg is cooked
• turn off the stove

Since that much detail is obviously excessive, steps that are related together
would be combined under a single name:

• make preparations (get the pan, butter, and the egg)
• turn on the stove
• cook the egg (put the pan on the fire, etc.)
• turn off the stove
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Going further, there can be a single name for all of the steps:

• make a one-egg omelet (all of the steps)

Functions are based on the same concept: Steps that can collectively be named as
a whole are put together to form a function. As an example, let's start with the
following lines of code that achieve the task of printing a menu:

writeln(" 0 Exit");
writeln(" 1 Add");
writeln(" 2 Subtract");
writeln(" 3 Multiply");
writeln(" 4 Divide");

Since it would make sense to name those lines altogether as printMenu, they can
be put together to form a function by the following syntax:

void printMenu()
{

writeln(" 0 Exit");
writeln(" 1 Add");
writeln(" 2 Subtract");
writeln(" 3 Multiply");
writeln(" 4 Divide");

}

The contents of that function can now be executed from within main() simply by
its name:

void main()
{

printMenu();

/* ... */
}

It may be obvious from the similarities of the definitions of printMenu() and
main() that main() is a function as well. The execution of a D program starts
with the function named main() and branches out to other functions from there.

32.1 Parameters
Some of the powers of functions come from the fact that their behaviors are
adjustable through parameters.

Let's continue with the omelet example by modifying it to make an omelet of
five eggs instead of always one. The steps would exactly be the same, the only
difference being the number of eggs to use. We can change the more general
description above accordingly:

• make preparations (get the pan, butter, and five eggs)
• turn on the stove
• cook the eggs (put the pan on the fire, etc.)
• turn off the stove

Likewise, the most general single step would become the following:

• make a five-egg omelet (all of the steps)

This time there is an additional information that concerns some of the steps: "get
five eggs", "cook the eggs", and "make a five-egg omelet".
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The behaviors of functions can be adjusted similarly to the omelet example. The
information that functions use to adjust their behavior are called parameters.
Parameters are specified in the function parameter list, separated by commas from
each other. The parameter list is inside of the parentheses that comes after the
name of the function.

The printMenu() function above has been defined with an empty parameter
list because that function always printed the same menu. Let's assume that
sometimes the menu will need to be printed differently in different contexts. For
example, it may make more sense to print the first entry as "Return" instead of
"Exit" depending on the part of the program that is being executed at that time.

In such a case, the first entry of the menu can be parameterized by having been
defined in the parameter list. The function then uses the value of that parameter
instead of the literal "Exit":

void printMenu(string firstEntry)
{

writeln(" 0 ", firstEntry);
writeln(" 1 Add");
writeln(" 2 Subtract");
writeln(" 3 Multiply");
writeln(" 4 Divide");

}

Notice that since the information that the firstEntry parameter conveys is a
piece of text, its type has been specified as string in the parameter list. This
function can now be called with different parameter values to print menus having
different first entries. All that needs to be done is to use appropriate string
values depending on where the function is being called from:

// At some place in the program:
printMenu("Exit");
// ...
// At some other place in the program:
printMenu("Return");

Note: When you write your own functions, you may encounter compilation errors with parameters of
type string. The printMenu() function above has such a problem. As written, it cannot be called by
parameter values of type char[]. For example, the following code would cause a compilation error:

char[] anEntry;
anEntry ~= "Take square root";
printMenu(anEntry); // ← compilation ERROR

On the other hand, if printMenu() were defined to take its parameter as char[], then it could not be
called with strings like "Exit". This is related to the concept of immutability and the immutable keyword,
both of which will be covered in the next chapter.

Let's continue with the menu function and assume that it is not appropriate to
always start the menu selection numbers with zero. In that case the starting
number can also be passed to the function as its second parameter. The
parameters of the function must be separated by commas:

void printMenu(string firstEntry, int firstNumber)
{

writeln(' ', firstNumber, ' ', firstEntry);
writeln(' ', firstNumber + 1, " Add");
writeln(' ', firstNumber + 2, " Subtract");
writeln(' ', firstNumber + 3, " Multiply");
writeln(' ', firstNumber + 4, " Divide");

}

It is now possible to tell the function what number to start from:
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printMenu("Return", 1);

32.2 Calling a function
Starting a function so that it achieves its task is called calling a function. The
function call syntax is the following:

function_name(parameter_values)

The actual parameter values that are passed to functions are called function
arguments. Although the terms parameter and argument are sometimes used
interchangeably in the literature, they signify different concepts.

The arguments are matched to the parameters one by one in the order that the
parameters are defined. For example, the last call of printMenu() above uses the
arguments "Return" and 1, which correspond to the parameters firstEntry and
firstNumber, respectively.

The type of each argument must match the type of the corresponding
parameter.

32.3 Doing work
In previous chapters, we have defined expressions as entities that do work.
Function calls are expressions as well: they do some work. Doing work can mean
a combination of two things:

• Having side effects: Side effects are any change in the state of the
program or its environment. Some operations have only side effects. An
example is how the printMenu() function above changes stdout by
printing to it. As another example, a function that adds a Student object
to a student container would also have a side effect: it would be causing
the container to grow.

In summary, operations that cause a change in the state of the
program have side effects.

• Producing a value: Some operations only produce values. For example, a
function that adds numbers would be producing the result of that
addition. As another example, a function that makes a Student object by
using the student's name and address would be producing a Student
object.

• Having side effects and producing a value: Some operations do both.
For example, a function that reads two values from stdin and calculates
their sum would be having side effects due to changing the state of
stdin and also producing the sum of the two values.

• No operation: Although every function is of one of the three categories
above, sometimes some functions end up doing no work at all,
depending on certain conditions at compile time or at run time.

32.4 The return value
The value that a function produces as a result of its work is called its return value.
This term comes from the observation that once the program execution branches
into a function, it eventually returns back to where the function has been called.
Functions get called and they return values.

Just like any other value, return values have types. The type of the return value
is specified right before the name of the function at the point where the function
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is defined. For example, a function that adds two values of int and returns their
sum also as int would be defined like the following:

int add(int first, int second)
{

// ...  the actual work of the function ...
}

The value that a function returns takes place of the function call itself. For
example, assuming that the function call add(5, 7) produces the value 12, then
the following two lines would be equivalent:

writeln("Result: ", add(5, 7));
writeln("Result: ", 12);

At the first line above, the add() function is called with the arguments 5 and 7
before writeln() gets called. The value 12 that the function returns is in turn
passed to writeln() as its second argument.

This allows passing the return values of functions to other functions to form
complex expressions:

writeln("Result: ", add(5, divide(100, studentCount())));

In the line above, the return value of studentCount() is passed to divide() as
its second argument, the return value of divide() is passed to add() as its
second argument, and eventually the return value of add() is passed to
writeln() as its second argument.

32.5 The return statement
The return value of a function is specified by the return keyword:

int add(int first, int second)
{

int result = first + second;
return result;

}

A function produces its return value by taking advantage of statements,
expressions, and potentially calling other functions. The function would then
return that value by the return keyword, at which point the execution of the
function ends.

It is possible to have more than one return statement in a function. The value
of the first return statement that gets executed determines the return value of
the function for a particular call:

int complexCalculation(int aParameter, int anotherParameter)
{

if (aParameter == anotherParameter) {
return 0;

}

return aParameter * anotherParameter;
}

The function above returns 0 when the two parameters are equal, and the
product of their values when they are different.
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32.6 void functions
The return types of functions that do not produce values are specified as void. We
have seen this many times with the main() function so far, as well as the
printMenu() function above. Since they do not return any value to the caller,
their return values have been defined as void. (Note: main() can also be defined as
returning int. We will see this in a later chapter.)

32.7 The name of the function
The name of a function must be chosen to communicate the purpose of the
function clearly. For example, the names add and printMenu has been
appropriate because their purposes have been to add two values, and to print a
menu, respectively.

A common guideline for function names is that they contain a verb like add or
print. According to this guideline names like addition() and menu() would be
less than ideal.

However, it is acceptable to name functions simply as nouns, if those functions
do not have any side effects. For example, a function that returns the current
temperature can be named as currentTemperature() instead of
getCurrentTemperature().

Coming up with names that are clear, short, and consistent is more on the art
side of programming.

32.8 Code quality through functions
Functions can improve the quality of code. Smaller functions with fewer
responsibilities lead to programs that are easier to maintain.

Code duplication is harmful
One of the practices that is highly detrimental to program quality is code
duplication. Code duplication is when there are more than one piece of code in
the program that achieve the same task.

Although this sometimes happens by copying lines of code to a new place, it
may also happen by ending up with similar lines of code unintentionally.

One of the problems with code duplication is that potential bugs would
naturally occur in all of the copies, requiring to be fixed in more than one place.
Conversely, when the code appears in only one place in the program, then fixing it
at that one place would get rid of the bug once and for all.

As I have mentioned above, functions are closely related to the craft aspect of
programming. Experienced programmers are always on the lookout for code
duplication. They always try to identify commonalities in code and move
common pieces of code to separate functions (or to common structs, classes,
templates, etc. as we will see in later chapters).
Let's start with a program that contains some code duplication. Let's see how that
duplication can be removed by moving code into functions (i.e. by refactoring the
code). The following program reads numbers from the input and prints them first
in the order that they have arrived and then in numerical order:

import std.stdio;
import std.algorithm;

void main()
{

int[] numbers;

int count;
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write("How many numbers are you going to enter? ");
readf(" %s", &count);

// Read the numbers
foreach (i; 0 .. count) {

int number;
write("Number ", i, "? ");
readf(" %s", &number);

numbers ~= number;
}

// Print the numbers
writeln("Before sorting:");
foreach (i, number; numbers) {

writefln("%3d:%5d", i, number);
}

sort(numbers);

// Print the numbers
writeln("After sorting:");
foreach (i, number; numbers) {

writefln("%3d:%5d", i, number);
}

}

Some of the duplicated lines of code are obvious in that program. The last two
foreach loops that are used for printing the numbers are exactly the same.
Defining a function that might appropriately be named as print() would remove
that duplication. The function could take a slice as a parameter and print it:

void print(int[] slice)
{

foreach (i, element; slice) {
writefln("%3s:%5s", i, element);

}
}

Notice that the name of the parameter is defined to be more generally as slice
instead of numbers. The reason for that is the fact that the function would not
know what the elements of the slice would specifically represent. That can only
be known at the place where the function has been called from. The elements
may be student IDs, parts of a password, etc. Since that cannot be known in the
print() function, general names like slice and element are used in its
implementation.

The new function can be called from the two places where the slice needs to be
printed:

import std.stdio;
import std.algorithm;

void print(int[] slice)
{

foreach (i, element; slice) {
writefln("%3s:%5s", i, element);

}
}

void main()
{

int[] numbers;

int count;
write("How many numbers are you going to enter? ");
readf(" %s", &count);
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// Read the numbers
foreach (i; 0 .. count) {

int number;
write("Number ", i, "? ");
readf(" %s", &number);

numbers ~= number;
}

// Print the numbers
writeln("Before sorting:");
print(numbers);

sort(numbers);

// Print the numbers
writeln("After sorting:");
print(numbers);

}

There is more to do. Notice that there is always a title line printed right before
printing the elements of the slice. Although the title is different, the task is the
same. If printing the title can be seen as a part of printing the slice, the title too
can be passed as a parameter. Here are the new changes:

void print(string title, int[] slice)
{

writeln(title, ":");

foreach (i, element; slice) {
writefln("%3s:%5s", i, element);

}
}

// ...

// Print the numbers
print("Before sorting", numbers);

// ...

// Print the numbers
print("After sorting", numbers);

This step has the added benefit of obviating the comments that appear right
before the two print() calls. Since the name of the function already clearly
communicates what it does, those comments are unnecessary:

print("Before sorting", numbers);
numbers.sort;
print("After sorting", numbers);

Although subtle, there is more code duplication in this program: The values of
count and number are read in exactly the same way. The only difference is the
message that is printed to the user and the name of the variable:

int count;
write("How many numbers are you going to enter? ");
readf(" %s", &count);

// ...

int number;
write("Number ", i, "? ");
readf(" %s", &number);
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The code would become even better if it took advantage of a new function that
might be named appropriately as read_int(). The new function can take the
message as a parameter, print that message, read an int from the input, and
return that int:

int read_int(string message)
{

int result;
write(message, "? ");
readf(" %s", &result);
return result;

}

count can now be initialized directly by the return value of a call to this new
function:

int count = read_int("How many numbers are you going to enter");

number cannot be initialized in as straightforward a way because the loop
counter i happens to be a part of the message that is displayed when reading
number. This can be overcome by taking advantage of format:

import std.string;
// ...

int number = read_int(format("Number %s", i));

Further, since number is used in only one place in the foreach loop, its definition
can be eliminated altogether and the return value of read_int() can directly be
used in its place:

foreach (i; 0 .. count) {
numbers ~= read_int(format("Number %s", i));

}

Let's make a final modification to this program by moving the lines that read the
numbers to a separate function. This would also eliminate the need for the "Read
the numbers" comment because the name of the new function would already
carry that information.

The new readNumbers() function does not need any parameter to complete its
task. It reads some numbers and returns them as a slice. The following is the final
version of the program:

import std.stdio;
import std.string;
import std.algorithm;

void print(string title, int[] slice)
{

writeln(title, ":");

foreach (i, element; slice) {
writefln("%3s:%5s", i, element);

}
}

int read_int(string message)
{

int result;
write(message, "? ");
readf(" %s", &result);
return result;

}
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int[] readNumbers()
{

int[] result;

int count = read_int("How many numbers are you going to enter");

foreach (i; 0 .. count) {
result ~= read_int(format("Number %s", i));

}

return result;
}

void main()
{

int[] numbers = readNumbers();
print("Before sorting", numbers);
sort(numbers);
print("After sorting", numbers);

}

Compare this version of the program to the first one. The major steps of the
program are very clear in the main() function of the new program. In contrast,
the main() function of the first program had to be examined to understand the
purpose of that program.

Although the total numbers of nontrivial lines of the two versions of the
program ended up being equal, functions make programs shorter in general. This
effect is not apparent in this simple program. For example, before the
read_int() function has been defined, reading an int from the input involved
three lines of code. After the definition of read_int(), the same goal is achieved
by a single line of code. Further, the definition of read_int() allowed removing
the definition of the variable number altogether.

Commented lines of code as functions
Sometimes the need to write a comment to describe the purpose of a group of
lines of code is an indication that those lines could better be moved to a newly
defined function. If the name of the function is descriptive enough then there
would be no need for the comment either.

The three commented groups of lines of the first version of the program have
been used for defining new functions that achieved the same tasks.

Another important benefit of removing comment lines is that comments tend
to become outdated as the code gets modified over the time. Comments are
sometimes forgotten to be updated along with the code and become either useless
or even worse, misleading. For that reason, it is beneficial to try to write programs
without the need for comments.

32.9 Exercises

1. Modify the printMenu() function to take the entire set of menu items as
a parameter. For example, the menu items can be passed to the function
as in the following code:

string[] items =
[ "Black", "Red", "Green", "Blue", "White" ];

printMenu(items, 1);

Have the program produce the following output:
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1 Black
2 Red
3 Green
4 Blue
5 White

2. The following program uses a two dimensional array as a canvas. Start
with that program and improve it by adding more functionality to it:

import std.stdio;

enum totalLines = 20;
enum totalColumns = 60;

/*
* The 'alias' in the next line makes 'Line' an alias of
* dchar[totalColumns]. Every 'Line' that is used in the rest
* of the program will mean dchar[totalColumns] from this
* point on.
*
* Also note that 'Line' is a fixed-length array.
*/

alias Line = dchar[totalColumns];

/*
* A dynamic array of Lines is being aliased as 'Canvas'.
*/

alias Canvas = Line[];

/*
* Prints the canvas line by line.
*/

void print(Canvas canvas)
{

foreach (line; canvas) {
writeln(line);

}
}

/*
* Places a dot at the specified location on the canvas. In a
* sense, "paints" the canvas.
*/

void putDot(Canvas canvas, int line, int column)
{

canvas[line][column] = '#';
}

/*
* Draws a vertical line of the specified length from the
* specified position.
*/

void drawVerticalLine(Canvas canvas,
int line,
int column,
int length)

{
foreach (lineToPaint; line .. line + length) {

putDot(canvas, lineToPaint, column);
}

}

void main()
{

Line emptyLine = '.';

/* An empty canvas */
Canvas canvas;

/* Constructing the canvas by adding empty lines */
foreach (i; 0 .. totalLines) {
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canvas ~= emptyLine;
}

/* Using the canvas */
putDot(canvas, 7, 30);
drawVerticalLine(canvas, 5, 10, 4);

print(canvas);
}

The solutions are on page 706.
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33 Immutability

We have seen that variables represent concepts in programs. The interactions of
these concepts are achieved by expressions that change the values of those
variables:

// Pay the bill
totalPrice = calculateAmount(itemPrices);
moneyInWallet -= totalPrice;
moneyAtMerchant += totalPrice;

Modifying a variable is called mutating that variable. The concept of mutability is
essential for most tasks. However, there are some cases where mutability is not
suitable:

• Some concepts are immutable by definition. For example, there are
always seven days in a week, the math constant pi (π) is constant, a
program may be supporting only a short list of human languages (e.g.
only English and Turkish), etc.

• If every variable were modifiable as we have seen so far, then every piece
of code that used that variable could potentially have modified it. Even if
there was no reason to modify a variable in an operation, there would be
no guarantee that this would not happen either. Programs are difficult
to read or maintain when there is no guarantee of immutability.

For example, it may be clear that the function call retire(office,
worker) would retire a worker of an office. If every variable were
mutable, it would not be clear which of the two variables would be
modified after that function call. It may be expected that the number of
active employees of office would be decreased, but would the function
call also modify worker in some way?

The concept of immutability helps with understanding parts of programs by
guaranteeing that certain operations do not change certain variables. It also
reduces the risk of certain types of program errors.

The immutability concept of D is represented by the const and immutable
keywords. Although the two words themselves are close in meaning, their
responsibilities in programs are different and they are sometimes incompatible.

33.1 Immutable variables
Both of the terms "immutable variable" and "constant variable" are nonsensical
when the word "variable" is taken literally to mean something that changes. The
word "variable" means any concept of a program which may be mutable of
immutable.

There are three ways of defining variables that can never be mutated.

enum constants
We have seen earlier in the enum chapter (page 151) that enum defines named
constant values:

enum fileName = "list.txt";

As long as their values can be determined at compile time, enum variables can be
initialized by return values of functions as well:
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int totalLines()
{

return 42;
}

int totalColumns()
{

return 7;
}

string name()
{

return "list";
}

void main()
{

enum fileName = name() ~ ".txt";
enum totalSquares = totalLines() * totalColumns();

}

As expected, values of enum constants cannot be modified:

++totalSquares; // ← compilation ERROR

Although it is a very effective way of representing immutable values, enum can
only be used for compile-time values.

An enum constant is a manifest constant, meaning that the program is compiled
as if it has been replaced by its value. As an example, let's consider the following
enum definition and the two expressions that make use of it:

enum i = 42;
writeln(i);
foo(i);

The code above would be the same as replacing i with its value 42:

writeln(42);
foo(42);

Although that replacement makes sense for simple types like int and makes no
difference in the program, enum constants bring a hidden cost when they are used
for arrays or associative arrays:

enum a = [ 42, 100 ];
writeln(a);
foo(a);

After replacing a with its value, the equivalent code that the compiler would be
compiling is the following:

writeln([ 42, 100 ]); // an array is created at run time
foo([ 42, 100 ]); // another array is created at run time

The hidden cost here is that there would be two separate arrays created for the
two expressions above. For that reason, it may make more sense to define arrays
and associative arrays as immutable variables if they are going to be used more
than once in the program.
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immutable variables
Like enum, this keyword specifies that the value of a variable will never change. Its
difference from enum is that the values of immutable variables can be calculated
during the execution of the program.

The following program compares the uses of enum and immutable. The
program waits for the user to guess a number that has been picked randomly.
Since the random number cannot be determined at compile time, it cannot be
defined as enum. Still, since the randomly picked value must never be changed
after having being decided, it is suitable to specify that variable as immutable.

The program takes advantage of the read_int() function that has been
defined in the previous chapter:

import std.stdio;
import std.random;

int read_int(string message)
{

int result;
write(message, "? ");
readf(" %s", &result);
return result;

}

void main()
{

enum min = 1;
enum max = 10;

immutable number = uniform(min, max + 1);

writefln("I am thinking of a number between %s and %s.",
min, max);

auto isCorrect = false;
while (!isCorrect) {

immutable guess = read_int("What is your guess");
isCorrect = (guess == number);

}

writeln("Correct!");
}

Observations:

• min and max are integral parts of the behavior of this program and their
values are known at compile time. For that reason they are defined as
enum constants.

• number is specified as immutable because it would not be appropriate to
modify it during the execution of the program. It is the same with each
user guess: Once read, the guess should not be modified.

• Observe that the types of those variables are not specified explicitly. As
with auto, the types of enum and immutable variables can be inferred
from the expression on the right hand side.

Although it is not necessary to write the type fully as e.g. immutable(int),
immutable normally takes the actual type within parentheses. The output of the
following program demonstrates that the full names of the types of the three
variables are in fact the same:
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import std.stdio;

void main()
{

immutable inferredType = 0;
immutable int explicitType = 1;
immutable(int) wholeType    = 2;

writeln(typeof(inferredType).stringof);
writeln(typeof(explicitType).stringof);
writeln(typeof(wholeType).stringof);

}

The actual name of the type includes immutable:

immutable(int)
immutable(int)
immutable(int)

The type that is specified within the parentheses has significance. We will see this
below when discussing the immutability of the whole slice vs. its elements.

const variables
This keyword has the same effect as immutable on variables. const variables
cannot be modified:

const half = total / 2;
half = 10; // ← compilation ERROR

I recommend that you prefer immutable over const when defining variables. The
reason is that immutable variables can be passed to functions as their immutable
parameters. We will see this below.

33.2 Immutable parameters
It is possible for functions to promise that they do not modify certain parameters
that they take. The compiler guarantees that this promise is enforced. Before
seeing how this is achieved, let's first see that functions can indeed modify the
elements of slices that are passed as arguments to those function.

As you would remember from the Slices and Other Array Features chapter
(page 85), slices do not own elements but provide access to them. There may be
more than one slice at a given time that provide access to the same elements.

Although the examples in this section focus only on slices, this topic is
applicable to associative arrays and classes as well because they too are reference
types.

A slice that is passed as a function argument is not the slice that the function is
called with. The argument is a copy of the actual slice:

import std.stdio;

void main()
{

int[] slice = [ 10, 20, 30, 40 ]; // 1
halve(slice);
writeln(slice);

}

void halve(int[] numbers) // 2
{

foreach (ref number; numbers) {
number /= 2;
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}
}

When program execution enters the halve() function, there are two slices that
provide access to the same four elements:

1. The slice named slice that is defined in main(), which is passed to
halve() as its argument

2. The slice named numbers that halve() receives as its argument, which
provides access to the same elements as slice

Also due to the ref keyword in the foreach loop, the values of the original (and
the only) elements get halved:

[5, 10, 15, 20]

It is useful for functions to be able to modify the elements of the slices that are
passed as arguments. Some functions exist just for that purpose as has been seen
in this example.

The compiler does not allow passing immutable variables as arguments to such
functions, because it is impossible to modify an immutable variable:

immutable int[] slice = [ 10, 20, 30, 40 ];
halve(slice); // ← compilation ERROR

The compilation error indicates that a variable of type immutable(int[])
cannot be used as an argument of type int[]:

Error: function deneme.halve (int[] numbers) is not callable
using argument types (immutable(int[]))

const parameters
It is important and natural that immutable variables be prevented from being
passed to functions like halve(), which modify their arguments. However, it
would be a limitation if they could not be passed to functions that do not modify
their arguments in any way:

import std.stdio;

void main()
{

immutable int[] slice = [ 10, 20, 30, 40 ];
print(slice); // ← compilation ERROR

}

void print(int[] slice)
{

writefln("%s elements: ", slice.length);

foreach (i, element; slice) {
writefln("%s: %s", i, element);

}
}

It does not make sense above that a slice is prevented from being printed just
because it is immutable. The proper way of dealing with this situation is const
parameters.

The const keyword specifies that a variable would not be modified through
that particular reference (e.g. a slice) of that variable. Specifying a parameter as
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const guarantees that the elements of the slice would not be modified inside the
function. Once print() provides this guarantee, the program can now be
compiled:

print(slice); // now compiles
// ...
void print(const int[] slice)

This guarantee allows passing both mutable and immutable variables as
arguments:

immutable int[] slice = [ 10, 20, 30, 40 ];
print(slice); // compiles

int[] mutableSlice = [ 7, 8 ];
print(mutableSlice); // compiles

A parameter that is not modified in a function but is not specified as const
reduces the usability of that function. Additionally, const parameters provide
useful information to the programmer. Knowing that a variable will not be
modified when passed to a function makes the code easier to understand. It also
prevents potential errors because the compiler prevents modifications to const
parameters:

void print(const int[] slice)
{

slice[0] = 42; // ← compilation ERROR

The programmer would either realize the mistake in the function or would
rethink the design and perhaps remove the const specifier.

The fact that const parameters can accept both mutable and immutable
variables has an interesting consequence. This is explained in the "Should a
parameter be const or immutable?" section below.

immutable parameters
As we have seen above, both mutable and immutable variables can be passed to
functions as their const parameters. In a way, const parameters are welcoming.

In contrast, immutable parameters bring a strong requirement: Only
immutable variables can be passed to functions as their immutable parameters:

void func(immutable int[] slice)
{

/* ... */
}

void main()
{

immutable int[] immSlice = [ 1, 2 ];
int[]    slice = [ 8, 9 ];

func(immSlice); // compiles
func(slice); // ← compilation ERROR

}

For that reason, the immutable specifier should be used only when this
requirement is necessary. We have indeed been using the immutable specifier
indirectly through certain string types. This will be covered below.

We have seen that the parameters that are specified as const or immutable
promise not to modify the actual variable that is passed as an argument. This is
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relevant only for reference types because only then there is the actual variable to
talk about the immutability of.

Reference types and value types will be covered in later chapters. Among the
types that we have seen so far, only slices and associative arrays are reference
types; the others are value types.

Should a parameter be const or immutable?
The two sections above may give the impression that being more flexible, const
parameters should be preferred over immutable parameters. This is not always
true.
const erases the information about whether the original variable is mutable or

immutable. This information is hidden even from the compiler.
A consequence of this fact is that const parameters cannot be passed as

arguments to functions that take immutable parameters. For example, foo()
below cannot pass its const parameter to bar():

void main()
{

/* The original variable is immutable */
immutable int[] slice = [ 10, 20, 30, 40 ];
foo(slice);

}

/* A function that takes its parameter as const, in order to
* be more useful. */

void foo(const int[] slice)
{

bar(slice); // ← compilation ERROR
}

/* A function that takes its parameter as immutable for a
* plausible reason. */

void bar(immutable int[] slice)
{

/* ... */
}

bar() requires that the parameter is immutable. However, it is not known
whether the original variable that foo()'s const parameter references is
immutable or not.
Note: It is clear in the code above that the original variable in main() is immutable.

However, the compiler compiles functions individually without regard to all of the
places that function is called from. To the compiler, the slice parameter of foo() may
be referring to a mutable variable or an immutable one.

A solution would be to call bar() with an immutable copy of the parameter:

void foo(const int[] slice)
{

bar(slice.idup);
}

Although that is a sensible solution, it does have the cost of copying, which would
be wasteful in the case where the original variable has been immutable to begin
with.

After this analysis, it should be clear that taking parameters always as const
does not seem to be the best approach in every situation. After all, if foo()'s
parameter has been defined as immutable, there would not be any need to copy it
before calling bar():
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void foo(immutable int[] slice) // This time immutable
{

bar(slice); // Copying is not needed anymore
}

Although the code compiles, defining the parameter as immutable has a similar
cost: This time an immutable copy of the original variable is needed when calling
foo(), if that variable were not immutable to begin with:

foo(mutableSlice.idup);

Templates can provide help. (We will see templates in later chapters.) Although I
don't expect you to fully understand the following function at this point in the
book, I will present it as a solution to this problem. The following function
template foo() can be called both by mutable and by immutable variables. The
parameter would be copied only if the original variable has been mutable; no
copying would take place if it has been immutable:

import std.conv;
// ...

/* Because it is a template, foo() can be called by mutable
* and immutable variables. */

void foo(T)(T[] slice)
{

/* 'to()' does not make a copy if the original variable is
* already immutable. */

bar(to!(immutable T[])(slice));
}

33.3 Immutability of the slice versus the elements
We have seen above that the type of an immutable slice has been printed as
immutable(int[]). As the parentheses after immutable indicate, it is the entire
slice that is immutable. Such a slice cannot be modified in any way: elements may
not be added or removed, their values may not be modified, and the slice may not
start providing access to a different set of elements:

immutable int[] immSlice = [ 1, 2 ];
immSlice ~= 3; // ← compilation ERROR
immSlice[0] = 3; // ← compilation ERROR
immSlice.length = 1; // ← compilation ERROR

immutable int[] immOtherSlice = [ 10, 11 ];
immSlice = immOtherSlice; // ← compilation ERROR

Taking immutability to that extreme may not be suitable in every case. In most
cases, what is important is the immutability of just the elements. Since a slice is
just an access tool to elements, it should not matter to make changes to the slice
itself as long as the elements are not modified.

To specify that only the elements are immutable, only the element type is
written within parentheses. When the code is modified accordingly, now only the
elements are immutable, not the slice itself:

immutable(int)[] immSlice = [ 1, 2 ];
immSlice ~= 3; // can add elements
immSlice[0] = 3; // ← compilation ERROR
immSlice.length = 1; // can lose elements

immutable int[] immOtherSlice = [ 10, 11 ];
immSlice = immOtherSlice; // can provide access to other elements
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Although the two syntaxes are very similar, they have different meanings. To
summarize:

immutable int[]  a = [1]; /* Neither the elements nor the
* slice can be modified */

immutable(int[]) b = [1]; /* The same meaning as above */

immutable(int)[] c = [1]; /* The elements cannot be
* modified but the slice can be */

This distinction have been in effect in some of the programs that we have written
so far. As you may remember, the three string aliases involve immutability:

• string is an alias for immutable(char)[]
• wstring is an alias for immutable(wchar)[]
• dstring is an alias for immutable(dchar)[]

Likewise, string literals are immutable as well:

• The type of literal "hello"c is string
• The type of literal "hello"w is wstring
• The type of literal "hello"d is dstring

According to these definitions, D strings are normally arrays of immutable
characters.

.dup and .idup
There may be mismatches in immutability when strings are passed to functions
as parameters. The .dup and .idup properties make copies of arrays with the
desired immutability:

• .dup makes a mutable copy of the array; its name comes from
"duplicate"

• .idup makes an immutable copy of the array

For example, a function that insists on the immutability of a parameter may have
to be called with an immutable copy of a mutable string:

void foo(string s)
{

// ...
}

void main()
{

char[] salutation;
foo(salutation); // ← compilation ERROR
foo(salutation.idup); // ← this compiles

}

33.4 How to use

• As a general rule, prefer immutable variables over mutable ones.
• Define constant values as enum if their values can be calculated at

compile time. For example, the constant value of seconds per minute can
be an enum:
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enum int secondsPerMinute = 60;

There is no need to specify the type explicitly if it can be inferred from
the right hand side:

enum secondsPerMinute = 60;

• Consider the hidden cost of enum arrays and enum associative arrays.
Define them as immutable variables if the arrays are large and they are
used more than once in the program.

• Specify variables as immutable if their values will never change but
cannot be known at compile time. Again, the type can be inferred:

immutable guess = read_int("What is your guess");

• If a function does not modify a parameter, specify that parameter as
const. This would allow both mutable and immutable variables to be
passed as arguments:

void foo(const char[] s)
{

// ...
}

void main()
{

char[] mutableString;
string immutableString;

foo(mutableString); // ← compiles
foo(immutableString); // ← compiles

}

• Following from the previous guideline, consider that const parameters
cannot be passed to functions taking immutable. See the section titled
"Should a parameter be const or immutable?" above.

• If the function modifies a parameter, leave that parameter as mutable
(const or immutable would not allow modifications anyway):

import std.stdio;

void reverse(dchar[] s)
{

foreach (i; 0 .. s.length / 2) {
immutable temp = s[i];
s[i] = s[$ - 1 - i];
s[$ - 1 - i] = temp;

}
}

void main()
{

dchar[] salutation = "hello"d.dup;
reverse(salutation);
writeln(salutation);

}

The output:

olleh
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33.5 Summary

• enum variables represent immutable concepts that are known at compile
time.

• immutable variables represent immutable concepts that must be
calculated at run time.

• const parameters are the ones that functions do not modify. Both
mutable and immutable variables can be passed as arguments of const
parameters.

• immutable parameters are the ones that functions specifically require
them to be so. Only immutable variables can be passed as arguments of
immutable parameters.

• immutable(int[]) specifies that neither the slice nor its elements can
be modified.

• immutable(int)[] specifies that only the elements cannot be modified.
• Immutability is a very powerful tool in programming. It is helpful to

know that variables and parameters do not change in specific contexts
and during specific operations.
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34 Function Parameters

This chapter covers different ways of defining function parameters.
Some of the concepts of this chapter have already appeared in previous

chapters. For example, the ref keyword that we have seen in the foreach Loop
chapter (page 140) was making actual elements available in foreach loops as
opposed to copies of those elements.

Additionally, we have covered the const and immutable keywords in the
previous chapter.

We have written functions that produced results by making use of their
parameters. For example, the following function uses its parameters in a
calculation:

double weightedAverage(double quizGrade, double finalGrade)
{

return quizGrade * 0.4 + finalGrade * 0.6;
}

That function calculates the average grade by taking 40% of the quiz grade and
60% of the final grade. Here is how it may be used:

int quizGrade = 76;
int finalGrade = 80;

writefln("Weigthed average: %2.0f",
weightedAverage(quizGrade, finalGrade));

34.1 Most parameters are copied
In the code above, the two variables are passed as arguments to
weightedAverage() and the function uses its parameters. This fact may give the
false impression that the function uses the actual variables that have been passed
as arguments. In reality, what the function uses are copies of those variables.

This distinction is important because modifying a parameter changes only the
copy. This can be seen in the following function that is trying to modify its
parameter (i.e. making a side effect). Let's assume that the following function is
written for reducing the energy of a game character:

void reduceEnergy(double energy)
{

energy /= 4;
}

Here is a program that tests reduceEnergy():

import std.stdio;

void reduceEnergy(double energy)
{

energy /= 4;
}

void main()
{

double energy = 100;

reduceEnergy(energy);
writeln("New energy: ", energy);

}
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The output:

New energy: 100 ← Not changed!

Although reduceEnergy() drops the value of its parameter to a quarter of its
original value, the variable energy in main() does not change. The reason for this
is that the energy variable in main() and the energy parameter of
reduceEnergy() are separate; the parameter is a copy of the variable in main().

To observe this more closely, let's insert some writeln() expressions:

import std.stdio;

void reduceEnergy(double energy)
{

writeln("Entered the function      : ", energy);
energy /= 4;
writeln("Leaving the function      : ", energy);

}

void main()
{

double energy = 100;

writeln("Calling the function      : ", energy);
reduceEnergy(energy);
writeln("Returned from the function: ", energy);

}

The output:

Calling the function      : 100
Entered the function      : 100
Leaving the function      : 25 ← the parameter changes,
Returned from the function: 100 ← the variable remains the same

34.2 Objects of reference types are not copied
Elements of slices and associative arrays, and class objects are not copied when
passed as parameters. Such variables are passed to functions as references. In
effect, the parameter becomes a reference to the actual object; modifications
made through the reference modifies the actual object.

Being slices, strings are passed as references as well:

import std.stdio;

void makeFirstLetterDot(dchar[] str)
{

str[0] = '.';
}

void main()
{

dchar[] str = "abc"d.dup;
makeFirstLetterDot(str);
writeln(str);

}

The change made to the first element of the parameter affects the actual element
in main():

.bc
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34.3 Parameter qualifiers
Parameters are passed to functions according to the general rules described
above:

• Value types are copied
• Reference types are passed as references

Those are the default rules that are applied when parameter definitions have no
qualifiers. The following qualifiers change the way parameters are passed and
what operations are allowed on them.

in
We have seen that functions are a facility that produces values and can have side
effects. The in keyword specifies that a parameter is going be used only as an
input data by this facility. Such parameters cannot be modified by the function:

import std.stdio;

double weightedTotal(in double currentTotal,
in double weight,
in double addend)

{
return currentTotal + (weight * addend);

}

void main()
{

writeln(weightedTotal(1.23, 4.56, 7.89));
}

in parameters cannot be modified:

void foo(in int value)
{

value = 1; // ← compilation ERROR
}

in is the equivalent of const scope.

out
We have seen that the functions return the values that they produce as their
return values. The fact that there is only one return value is sometimes limiting
as some functions may need to produce more than one result. (Note: It is actually
possible to return more than one result by defining the return type as a Tuple or a
struct. We will see these features in later chapters.)

The out keyword makes it possible for functions to return results through their
parameters. When out parameters are modified within the function, those
modifications effect the actual variable that has been passed to the function. In a
sense, the assigned value goes out of the function through out parameters.

Let's have a look at a function that divides two numbers and produces both the
quotient and the remainder. The return value can be used for the quotient and
the remainder can be returned through an out parameter:

import std.stdio;

int divide(in int dividend, in int divisor, out int remainder)
{

remainder = dividend % divisor;
return dividend / divisor;
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}

void main()
{

int remainder;
int result = divide(7, 3, remainder);

writeln("result: ", result, ", remainder: ", remainder);
}

Modifying the remainder parameter of the function modifies the remainder
variable in main() (their names need not be the same):

result: 2, remainder: 1

Regardless of their values at the call site, out parameters are first automatically
assigned to the .init value of their types:

import std.stdio;

void foo(out int parameter)
{

writeln("After entering the function      : ", parameter);
}

void main()
{

int variable = 100;

writeln("Before calling the function      : ", variable);
foo(variable);
writeln("After returning from the function: ", variable);

}

Even though there is no explicit assignment to the parameter in the function, the
value of the parameter automatically becomes the initial value of int, affecting
the variable in main():

Before calling the function      : 100
After entering the function      : 0 ← the value of int.init
After returning from the function: 0

As this demonstrates, out parameters cannot pass values into functions; they are
strictly for passing values out of functions.

We will see in later chapters that returning Tuple or struct types may be
better alternatives to out parameters.

const
As we have seen in the previous chapter, const guarantees that the parameter
will not be modified inside the function. It is helpful for the programmers to
know that certain variables will not be changed by the function. const also
makes functions more useful by allowing mutable, const and immutable
variables to be passed as parameters:

import std.stdio;

dchar lastLetter(const dchar[] str)
{

return str[$ - 1];
}

void main()
{
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writeln(lastLetter("constant"));
}

immutable
As we have seen in the previous chapter, immutable makes functions require that
certain arguments must consist of immutable elements. Because of such a
requirement, the following function can only be called with immutable strings
(e.g. with string literals):

import std.stdio;

dchar[] mix(immutable dchar[] first,
immutable dchar[] second)

{
dchar[] result;
int i;

for (i = 0; (i < first.length) && (i < second.length); ++i) {
result ~= first[i];
result ~= second[i];

}

result ~= first[i..$];
result ~= second[i..$];

return result;
}

void main()
{

writeln(mix("HELLO", "world"));
}

Since it brings a requirement on the parameter, immutable parameters should be
used only when really necessary. Because it is more welcoming, const is more
useful.

ref
This keyword allows passing a parameter by reference even though it would
normally be passed as a copy.

For the reduceEnergy() function above to be able to modify the actual
variable that is passed as its argument, it must take the parameter as ref:

import std.stdio;

void reduceEnergy(ref double energy)
{

energy /= 4;
}

void main()
{

double energy = 100;

reduceEnergy(energy);
writeln("New energy: ", energy);

}

This time, the modification that is made to the parameter changes the actual
variable that is passed to the function in main():

New energy: 25
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As can be seen, ref parameters can be used both as input and output. ref
parameters can also be thought of as aliases of actual variables. The function
parameter energy above is an alias of the variable energy in main().

Similar to out parameters, ref parameters allow functions make side effects as
well. In fact, reduceEnergy() does not return a value; it only makes a side effect
through its only parameter.

The programming style called functional programming favors return values
over side effects, so much so that some functional programming languages do not
allow side effects at all. This is because functions that produce results purely
through their return values are easier to understand, to write correctly, and to
maintain.

The same function can be written in functional programming style by
returning the result, instead of making a side effect. The parts of the program that
has changed are highlighted:

import std.stdio;

double reducedEnergy(double energy)
{

return energy / 4;
}

void main()
{

double energy = 100;

energy = reducedEnergy(energy);
writeln("New energy: ", energy);

}

Note the change in the name of the function as well. Now it is a noun as opposed
to a verb.

auto ref
This qualifier can only be used with templates (page 411). As we will see in the
next chapter, an auto ref parameter takes lvalues by reference and rvalues by
copy.

inout
Despite its name consisting of in and out, this keyword does not mean both input
and output; we have already seen that the keyword that achieves both input and
output is ref.
inout carries the mutability of the parameter to the return type. If the

parameter is mutable, const, or immutable, then the return value is mutable,
const, or immutable, respectively.

To see how inout helps in programs, let's look at a function that returns a slice
having one less element from both the front and the back of the original slice:

import std.stdio;

int[] trimmed(int[] slice)
{

if (slice.length) {
--slice.length; // trim from the end

if (slice.length) {
slice = slice[1 .. $]; // trim from the beginning

}
}
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return slice;
}

void main()
{

int[] numbers = [ 5, 6, 7, 8, 9 ];
writeln(trimmed(numbers));

}

The output:

[6, 7, 8]

According to the previous chapter, in order for the function to be more useful, its
parameter should be const(int)[] because the parameter is not being modified
inside the function. (Note that there is no harm in modifying the parameter slice
itself as it is a copy of the original argument.)

However, defining the function that way would cause a compilation error:

int[] trimmed(const(int)[] slice)
{

// ...
return slice; // ← compilation ERROR

}

The compilation error indicates that a slice of const(int) cannot be returned as
a slice of mutable int:

Error: cannot implicitly convert expression (slice) of type
const(int)[] to int[]

One may think that specifying the return type also as const(int)[] may be the
solution:

const(int)[] trimmed(const(int)[] slice)
{

// ...
return slice; // now compiles

}

Although the code can now be compiled, it brings a limitation: Even if the
function is called with a slice of mutable elements, the returned slice ends up
consisting of const elements. To see how limiting this would be, let's look at the
following code that is trying to modify the elements of a slice other than the ones
at the front and at the back:

int[] numbers = [ 5, 6, 7, 8, 9 ];
int[] middle = trimmed(numbers); // ← compilation ERROR
middle[] *= 10;

It would be expected that the returned slice of type const(int)[] cannot be
assigned to a slice of type int[]:

Error: cannot implicitly convert expression (trimmed(numbers))
of type const(int)[] to int[]

However, since the original slice is of mutable elements to begin with, this
limitation can be seen as artificial and unfortunate. inout solves this mutability
problem about parameters and return values. It is specified both on the
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parameter and on the return type and carries the mutability of the former to the
latter:

inout(int)[] trimmed(inout(int)[] slice)
{

// ...
return slice;

}

With that change, the same function can now be called with mutable, const, and
immutable slices:

{
int[] numbers = [ 5, 6, 7, 8, 9 ];
// The return type is slice of mutable elements
int[] middle = trimmed(numbers);
middle[] *= 10;
writeln(middle);

}

{
immutable int[] numbers = [ 10, 11, 12 ];
// The return type is slice of immutable elements
immutable int[] middle = trimmed(numbers);
writeln(middle);

}

{
const int[] numbers = [ 13, 14, 15, 16 ];
// The return type is slice of const elements
const int[] middle = trimmed(numbers);
writeln(middle);

}

lazy
It is natural to expect that arguments are evaluated before entering functions that
use those arguments. For example, the function add() below is called with the
return values of two other functions:

result = add(anAmount(), anotherAmount());

In order for add() to be called, first anAmount() and anotherAmount() must be
called. Otherwise, the values that add() needs would not be available.

Evaluating arguments before calling a function is eager.
However, some parameters may not get a chance to be used in the function at

all depending on certain conditions. In such cases, the eager evalutions of the
arguments would be wasteful.

Let's look at such a program that uses one of its parameters only when needed.
The following function tries to get the required number of eggs first from the
refrigerator. When there is sufficient number of eggs in there, it doesn't need to
know the number of eggs that the neighbors have:

void makeOmelet(in int requiredEggs,
in int eggsInFridge,
in int eggsAtNeighbors)

{
writefln("Need to make a %s-egg omelet", requiredEggs);

if (requiredEggs <= eggsInFridge) {
writeln("Take all of the eggs from the fridge");

} else if (requiredEggs <= (eggsInFridge + eggsAtNeighbors)) {
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writefln("Take %s eggs from the fridge"
" and %s eggs from the neighbors",
eggsInFridge, requiredEggs - eggsInFridge);

} else {
writefln("Cannot make a %s-omelet", requiredEggs);

}
}

Additionally, let's assume that there is a function that calculates and returns the
total number of eggs available at the neighbors. For demonstration purposes, the
function prints some information as well:

int countEggs(in int[string] availableEggs)
{

int result;

foreach (neighbor, count; availableEggs) {
writeln(neighbor, ": ", count, " eggs");
result += count;

}

writefln("A total of %s eggs available at the neighbors",
result);

return result;
}

That function iterates over the elements of an associative array and adds up all of
the egg counts.

The makeOmelet() function can be called with the return value of
countEggs() as in the following program:

import std.stdio;

void main()
{

int[string] atNeigbors = [ "Jane":5, "Jim":3, "Bill":7 ];

makeOmelet(2, 5, countEggs(atNeigbors));
}

As seen in the output of the program, first countEggs() function is executed and
then makeOmelet() is called:

Jane: 5 eggs ←
Bill: 7 eggs ← counting the eggs at the neighbors
Jim: 3 eggs ←
A total of 15 eggs available at the neighbors
Need to make a 2-egg omelet
Take all of the eggs from the fridge

Although it is possible to make the two-egg omelet with only the eggs in the
fridge, the eggs at the neighbors have already been counted eagerly.

The lazy keyword specifies that an expression that has been passed to a
function as a parameter will be evaluated only if and when needed:

void makeOmelet(in int requiredEggs,
in int eggsInFridge,
lazy int eggsAtNeighbors)

{
// ... the body of the function is the same as before ...

}
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As seen in the new output, when the number of eggs in the fridge satisfy the
required eggs, the counting of the eggs at the neighbors does not happen
anymore:

Need to make a 2-egg omelet
Take all of the eggs from the fridge

That count would still happen if needed. For example, let's take a look at a case
where the required eggs are more than the eggs in the fridge:

makeOmelet(9, 5, countEggs(atNeigbors));

This time the total number of eggs at the neighbors is really needed:

Need to make a 9-egg omelet
Jane: 5 eggs
Bill: 7 eggs
Jim: 3 eggs
A total of 15 eggs available at the neighbors
Take 5 eggs from the fridge and 4 eggs from the neighbors

The values of lazy parameters are evaluated every time that they are used in the
function.

For example, because the lazy parameter of the following function is used
three times in the function, the expression that provides its value is evaluated
three times:

import std.stdio;

int valueOfArgument()
{

writeln("Calculating...");
return 1;

}

void functionWithLazyParameter(lazy int value)
{

int result = value + value + value;
writeln(result);

}

void main()
{

functionWithLazyParameter(valueOfArgument());
}

The output

Calculating
Calculating
Calculating
3

scope
This keyword specifies that a parameter will not be used beyond the scope of the
function:

int[] globalSlice;

int[] foo(scope int[] parameter)
{

globalSlice = parameter; // ← compilation ERROR
return parameter; // ← compilation ERROR
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}

void main()
{

int[] slice = [ 10, 20 ];
int[] result = foo(slice);

}

That function breakes the promise of scope in two places: It assigns the
parameter to a global variable and returns it. Both of those would make it
possible for the parameter to be accessed after the function finishes.

(Note: dmd 2.066.1, the compiler that was used last to compile the examples in this
chapter, did not support the scope keyword. )

shared
This keyword requires that the parameter is sharable between threads:

void foo(shared int[] i)
{

// ...
}

void main()
{

int[] numbers = [ 10, 20 ];
foo(numbers); // ← compilation ERROR

}

The program above cannot be compiled because the argument is not shared. The
program can be compiled with the following change:

shared int[] numbers = [ 10, 20 ];
foo(numbers); // now compiles

We will use the shared keyword later in the Data Sharing Concurrency chapter
(page 0).

34.4 Summary

• Parameter is what the function takes from its caller to accomplish its
task.

• Argument is an expression (e.g. a variable) that is passed to a function as
a parameter.

• Arguments of value types are passed by-copy; arguments of reference
types are passed by-reference. (We will see this topic again in later
chapters.)

• in specifies that the parameter is only for data input.
• out specifies that the parameter is only for data output.
• ref specifies that the parameter is for data input and data output.
• auto ref is for templates only. It specifies that lvalue argument is

passed by reference and rvalue argument is passed by copy.
• const guarantees that the parameter is not modified inside the function.
• immutable requires that the argument is immutable.
• inout appears both at the parameter and the return type, and transfers

the mutability of the parameter to the return type.

Function Parameters

188



• lazy evaluates the parameter when (and every time) its value is actually
used.

• scope guarantees that no reference to the parameter will be leaked from
the function.

• shared requires that the parameter is shared.

34.5 Exercise

• The following program is trying to swap the values of two arguments:

import std.stdio;

void swap(int first, int second)
{

int temp = first;
first = second;
second = temp;

}

void main()
{

int a = 1;
int b = 2;

swap(a, b);

writeln(a, ' ', b);
}

The program does not have any effect on a or b:

1 2 ← not swapped

Fix the function so that the values of a and b are swapped.

The solution is on page 707.
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35 Lvalues and Rvalues

The value of every expression is either an lvalue or an rvalue. A simple way of
differentiating the two is thinking of lvalues as actual variables (including
elements of arrays and associative arrays), and rvalues as temporary results of
expressions (including literals).

As a demonstration, the first writeln() expression below uses only lvalues
and the other one uses only rvalues:

import std.stdio;

void main()
{

int i;
immutable(int) imm;
auto arr = [ 1 ];
auto aa = [ 10 : "ten" ];

/* All of the following arguments are lvalues. */

writeln(i, // mutable variable
imm, // immutable variable
arr, // array
arr[0], // array element
aa[10]); // associative array element

// etc.

enum message = "hello";

/* All of the following arguments are rvalues. */

writeln(42, // a literal
message, // a manifest constant
i + 1, // a temporary value
calculate(i)); // return value of a function

// etc.
}

int calculate(int i)
{

return i * 2;
}

35.1 Limitations of rvalues
Compared to lvalues, rvalues have the following three limitations.

Rvalues don't have addresses
An lvalue can be at a memory location, an rvalue can not.

For example, it is not possible to take the address of the rvalue expression
a + b in the following program:

import std.stdio;

void main()
{

int a;
int b;

readf(" %s", &a); // ← compiles
readf(" %s", &(a + b)); // ← compilation ERROR

}

Error: a + b is not an lvalue
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Rvalues cannot be assigned new values
If mutable, an lvalue can be assigned a new value, an rvalue cannot be:

a = 1; // ← compiles
(a + b) = 2; // ← compilation ERROR

Error: a + b is not an lvalue

Rvalues cannot be passed to functions by reference
An lvalue can be passed to a function that takes by reference, an rvalue cannot be:

void incrementByTen(ref int value)
{

value += 10;
}

// ...

incrementByTen(a); // ← compiles
incrementByTen(a + b); // ← compilation ERROR

Error: function deneme.incrementByTen (ref int value)
is not callable using argument types (int)

The main reason for this limitation is the fact that functions taking ref could
store the reference for later use, at a time when the rvalue would not be available.

Different from languages like C++, in D an rvalue cannot be passed to a
function even if that function does not modify the argument (e.g. by taking a
reference to const):

void print(ref const(int) value)
{

writeln(value);
}

// ...

print(a); // ← compiles
print(a + b); // ← compilation ERROR

Error: function deneme.print (ref const(int) value)
is not callable using argument types (int)

35.2 auto ref parameters to accept both lvalues and rvalues
As it was mentioned in the previous chapter, auto ref parameters of function
templates (page 411) can take both lvalues and rvalues.

When the argument is an lvalue, auto ref means by reference. On the other
hand, since rvalues cannot be passed to functions by reference, when the
argument is an rvalue, it means by copy. For the compiler to generate code
differently for these two distinct cases, the function must be a template.

We will see templates in a later chapter. For now, please accept that the
highlighted empty parentheses below make the following definition a function
template.

void incrementByTen()(auto ref int value)
{

/* WARNING: The parameter may be a copy if the argument is
* an rvalue. This means that the following modification
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* may not be observable by the caller. */

value += 10;
}

void main()
{

int a;
int b;

incrementByTen(a); // ← lvalue; passed by reference
incrementByTen(a + b); // ← rvalue; copied

}

As mentioned in the code comment above, the mutation to the parameter may
not be observable by the caller. For that reason, auto ref is mostly used in
situations where the parameter is not modified; it is used mostly as auto ref
const.

35.3 Terminology
The names "lvalue" and "rvalue" do not represent the characteristics of these two
kinds of values accurately. The initial letters l and r come from left and right,
referring to the left-hand side and the right-hand side expressions of the
assignment operator:

• Assuming that it is mutable, an lvalue can be the left-hand expression of
an assignment operation.

• An rvalue can not be the left-hand expression of an assignment
operation.

The terms "left value" and "right value" are confusing because in general both
lvalues and rvalues can be on either side of an assignment operation:

// rvalue 'a + b' on the left, lvalue 'a' on the right:
array[a + b] = a;
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36 Lazy Operators

Lazy evaluations is about delaying executions of expressions until the results of
those expressions are needed. Lazy evaluations are among the fundamental
features of some programming languages.

Naturally, delaying executions of expressions until their results are really
necessary may make programs run faster.
A concept that is similar to lazy evaluations is the shortcut behavior of the
following operators:

• || (or) operator: The second expression is evaluated only if the first
expression is false.

if (anExpression() || mayNotBeEvaluated()) {
// ...

}

If the result of anExpression() is true, the result of the || expression
is also true and the second expression is not evaluated.

• && (and) operator: The second expression is evaluated only if the first
expression is true.

if (anExpression() && mayNotBeEvaluated()) {
// ...

}

If the result of anExpression() is false, the result of the && expression
is also false and the second expression is not evaluated.

• ?: (ternary) operator: Either the first or the second expression is
evaluated depending on whether the condition is true or false,
respectively.

int i = condition() ? eitherThis() : orThis();

The laziness of these operators is not only about performance. Sometimes,
evaluating one of the expressions can be an error.

For example, the whether the first letter is A condition check below would be an
error when the string is empty:

dstring s;
// ...
if (s[0] == 'A') {

// ...
}

In order to access the zero-indexed element of s, it must first be ensured that the
string does have such an element. For that reason, the following condition check
moves that potentially erroneous logical expression to the right-hand side of the
&& operator to ensure that it will be evaluated only when it is safe to do so:

dstring s;
// ...
if ((s.length >= 1) && (s[0] == 'A')) {

// ...
}
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Lazy evaluations can be achieved by function pointers, delegates, and ranges as
well. We will see these in later chapter.
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37 Program Environment

We have seen that main() is a function. Program execution starts with main()
and branches to other functions from there. The definition of main() that we
have used so far has been the following:

void main()
{

// ...
}

According to that definition main() does not take any parameters and does not
return a value. It is actually not possible to not return a value, because
environments that start programs expect return values from them. Although it is
possible to specify the return type of main() as void, it does indeed return a
value.

37.1 The return value of main()
Programs are always started by an entity in a particular environment. The entity
that starts the program may be the shell where the user types the name of the
program and presses the Enter key, or it may be a development environment
where the programmer clicks the [Run] button, etc.

The program communicates its exit status to its environment by the return
value of main().

A return value of 0 means successful completion and any other value means
some type of failure. Although the return value is up to the programmer, by
convention the value 0 always means success.
Note: Only values in the range [0,127] are portable; not all environments support

other values.
Values other than 0 can have different meanings depending on each program.

For example, the common Unix program ls, which is used for listing contents of
directories, returns 1 for minor errors and 2 for serious ones. In many
environments, the return value of the program that has been executed most
recently in the console can be seen through the $? environment variable. For
example, when we ask ls to list a file that does not exist, its non-zero return value
can be observed with $? as seen below.
Note: In the command line interactions below, the lines that start with # indicate the

lines that the user types. If you want to try the same commands, you must enter the
contents of those lines except the # character. Also, the commands below start a
program named deneme; replace that name with the name of your test program.

Additionally, although the following examples show interactions in a Linux console,
they would be similar but not exactly the same in consoles in other operating systems.

# ls a_file_that_does_not_exist
ls: cannot access a_file_that_does_not_exist: No such file or directory
# echo $?
2 ← the return value of ls

main() always returns a value
Some of the programs that we have written so far have thrown exceptions when
they could not continue with their tasks. As much as we have seen so far, when an
exception is thrown, the program ends with an object.Exception error
message.
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When that happens, even if main() has been defined as returning void, a value
of 1 is automatically returned to the program's environment. Let's see this in
action by the following simple program that terminates with an exception:

void main()
{

throw new Exception("There has been an error.");
}

Although the return type is specified as void, the return value is 1:

# ./deneme
object.Exception: There has been an error.
...
# echo $?
1

Similarly, void main() functions that terminate successfully also automatically
return 0 as their return values. Let's see this with the following program that
terminates successfully:

import std.stdio;

void main()
{

writeln("Done!");
}

The program returns 0:

# ./deneme
Done!
# echo $?
0

Specifying the return value
Returning a specific value from main() is the same as returning a value from any
other function. The return type must be specified as int and the value must be
returned by the return statement:

import std.stdio;

int main()
{

int number;
write("Please enter a number between 3 and 6: ");
readf(" %s", &number);

if ((number < 3) || (number > 6)) {
stderr.writefln("ERROR: %s is not valid!", number);
return 111;

}

writefln("Thank you for %s.", number);

return 0;
}

When the entered number is within the valid range, the return value of the
program is 0:

# ./deneme
Please enter a number between 3 and 6: 5
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Thank you for 5.
# echo $?
0

When the number is outside of the valid range, the return value of the program is
111:

# ./deneme
Please enter a number between 3 and 6: 10
ERROR: 10 is not valid!
# echo $?
111

The value of 111 in the above program is arbitrary; normally 1 is suitable as the
failure code.

37.2 Standard error stream stderr
The program above uses the stream stderr. That stream is the third of the
standard streams. It is used for writing error messages:

• stdin: standard input stream
• stdout: standard output stream
• stderr: standard error stream

When a program is started in a console, normally the messages that are written
to stdout and stderr both appear on the console. When needed, it is possible to
redirect these outputs individually. This subject is outside of the focus of this
chapter and the details may vary for each shell program.

37.3 Parameters of main()
It is common for programs to take parameters from the environment that started
them. For example, we have already passed a file name as a command line option
to ls above. There are two command line options in the following line:

# ls -l deneme
-rwxr-xr-x 1 acehreli users 460668 Nov  6 20:38 deneme

The set of command line parameters and their meanings are defined entirely by
the program. Every program documents its usage, including what every
parameter means.

The arguments that are used when starting a D program are passed to that
program's main() as a slice of strings. Defining main() as taking a parameter of
type string[] is sufficient to have access to program arguments. The name of
this parameter is commonly abbreviated as args. The following program prints
all of the arguments that the program has been started with:

import std.stdio;

void main(string[] args)
{

foreach (i, arg; args) {
writefln("Argument %-3s: %s", i, arg);

}
}

Let's start the program with arbitrary arguments:
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# ./deneme some arguments on the command line 42 --an-option
Argument 0  : ./deneme
Argument 1  : some
Argument 2  : arguments
Argument 3  : on
Argument 4  : the
Argument 5  : command
Argument 6  : line
Argument 7  : 42
Argument 8  : --an-option

The first argument is always the name of the program, in the way it has been
entered by the user. The other arguments appear in the same order that they have
been entered.

It is completely up to the program how it makes use of the arguments. The
following program prints its two arguments in reverse order:

import std.stdio;

int main(string[] args)
{

if (args.length != 3) {
stderr.writefln("ERROR! Correct usage:\n"

"  %s word1 word2", args[0]);
return 1;

}

writeln(args[2], ' ', args[1]);

return 0;
}

The program also shows its correct usage if there are not two words exactly:

# ./deneme
ERROR! Correct usage:

./deneme word1 word2
# ./deneme world hello
hello world

37.4 Command line options and the std.getopt module
That is all there is to know about the parameters and the return value of main().
However, parsing the arguments is a repetitive task. The std.getopt module is
designed to help with parsing the command line options of programs.

Some parameters like "world" and "hello" above are purely data for the program
to use. Other kinds of parameters are called command line options, and are for
changing behaviors of programs. An example of a command line option has been
-l that has been passed to ls above.

Command line options make programs more useful by removing the need for a
human user to interact with the program to have it behave in a certain way. With
command line options, programs can be started from script programs and their
behaviors can be specified through command line options.

Although the syntax and meanings of command line arguments of every
program is specific to that program, their format is somewhat standard. For
example, in POSIX, command line options start with -- followed by the name of
the option, and values come after = characters:

# ./deneme --an-option=17
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The std.getopt module simplifies parsing such options. It has more capabilities
than what is covered in this section.

Let's design a program that prints random numbers. Let's take the minimum,
maximum, and total number of these numbers as program arguments. Let's
expect the following syntax to get these values from the command line:

# ./deneme --count=7 --minimum=10 --maximum=15

The getopt() function parses and assigns those values to variables. Similar to
readf(), the addresses of variables must be specified by the & operator:

import std.stdio;
import std.getopt;
import std.random;

void main(string[] args)
{

int count;
int minimum;
int maximum;

getopt(args,
"count", &count,
"minimum", &minimum,
"maximum", &maximum);

foreach (i; 0 .. count) {
write(uniform(minimum, maximum + 1), ' ');

}

writeln();
}

# ./deneme --count=7 --minimum=10 --maximum=15
11 11 13 11 14 15 10

Most command line options of most programs have shorter syntax as well. For
example, -c may have the same meaning as --count. Such alternative syntax for
each option is specified after a | character. There may be more than one shortcut
for each option:

getopt(args,
"count|c", &count,
"minimum|n", &minimum,
"maximum|x", &maximum);

It is common to use a single dash for the short versions and the = character is
usually omitted:

# ./deneme -c7 -n10 -x15
11 13 10 15 14 15 14

getopt() converts the arguments from string to the type of each variable. For
example, since count above is int, getopt() converts the value specified for the
--count argument to int. When needed, such conversions may also be
performed explicitly by to.

So far we have used std.conv.to only when converting to string. to can in
fact convert from any type to any type as long as that conversion is possible. For
example, the following program takes advantage of to when converting its
argument to size_t:
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import std.stdio;
import std.conv;

void main(string[] args)
{

// The default count is 10
size_t count = 10;

if (args.length > 1) {
// There is an argument
count = to!size_t(args[1]);

}

foreach (i; 0 .. count) {
write(i * 2, ' ');

}

writeln();
}

The program produces 10 numbers when there is no argument specified:

# ./deneme
0 2 4 6 8 10 12 14 16 18
# ./deneme 3
0 2 4

37.5 Environment variables
The environment that a program is started in provides some variables that the
program may make use of. The environment variables can be accessed through
the associative array interface of std.process.environment. For example, the
following program prints the PATH environment variable:

import std.stdio;
import std.process;

void main()
{

writeln(environment["PATH"]);
}

The output:

# ./deneme
/usr/local/bin:/usr/bin

std.process.environment provides access to the environment variables
through the associative array syntax:

import std.process;
// ...

writeln(environment["PATH"]);

However, environment itself is not an associative array. When needed, the
environment variables can be converted to an associative array by toAA():

string[string] envVars = environment.toAA();

37.6 Starting other programs
Programs may start other programs and become the environment for those
programs. A function that enables this is executeShell from the std.process
module.
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executeShell executes its parameter as if the command was typed at the
console. It then returns both the return code and the output of that command as
a tuple. Tuples are array-like structures, which we will see later in the Tuples
chapter (page 525):

import std.stdio;
import std.process;

void main()
{

const result = executeShell("ls -l deneme");
const returnCode = result[0];
const output = result[1];

writefln("ls returned %s.", returnCode);
writefln("Its output:\n%s", output);

}

The output:

# ./deneme
ls returned 0.
Its output:
-rwxrwxr-x. 1 acehreli acehreli 1359178 Apr 21 15:01 deneme

37.7 Summary

• Even when it is defined with return type void, main() automatically
returns 0 for success and 1 for failure.

• stderr is suitable to print error messages.
• main can take parameters as string[].
• std.getopt helps with parsing command line options.
• std.process helps with accessing environment variables and starting

other programs.

37.8 Exercises

1. Write a calculator program that takes an operator and two operands as
command line arguments. Have the program support the following
usage:

# ./deneme 3.4 x 7.8
26.52

Note: Because the * character has a special meaning on most consoles, I have
used x. You may still use * as long as it is escaped as \*.

2. Write a program that asks the user which program to start, starts that
program, and prints its output.

The solutions are on page 707.

Program Environment

201



38 Exceptions

Unexpected situations are parts of programs: user mistakes, programming errors,
changes in the program environment, etc. Programs must be written in ways to
avoid producing incorrect results when faced with such exceptional conditions.

Some of these conditions may be severe enough to stop the execution of the
program. For example, a required piece of information may be missing or invalid,
or a device may not be functioning correctly. The exception handling mechanism
of D helps with stopping program execution when necessary, and to recover from
the unexpected situations when possible.

As an example of a severe condition, we can think of passing an unknown
operator to a function that knows only the four arithmetic operators, as we have
seen in the exercises of the previous chapter:

switch (operator) {

case "+":
writeln(first + second);
break;

case "-":
writeln(first - second);
break;

case "x":
writeln(first * second);
break;

case "/":
writeln(first / second);
break;

default:
throw new Exception(format("Invalid operator: %s", operator));

}

The switch statement above does not know what to do with operators that are
not listed on the case statements; so throws an exception.

There are many examples of thrown exceptions in Phobos. For example,
to!int, which can be used to convert a string representation of an integer to an
int value throws an exception when that representation is not valid:

import std.conv;

void main()
{

const int value = to!int("hello");
}

The program terminates with an exception that is thrown by to!int:

std.conv.ConvException@std/conv.d(38): std.conv(1157): Can't
convert value `hello' of type const(char)[] to type int

std.conv.ConvException at the beginning of the message is the type of the
thrown exception object. We can tell from the name that the type is
ConvException that is defined in the std.conv module.
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38.1 The throw statement to throw exceptions
We've seen the throw statement both in the examples above and in the previous
chapters.
throw throws an exception object and this terminates the current operation of

the program. The expressions and statements that are written after the throw
statement are not executed. This behavior is according to the nature of
exceptions: they must be thrown when the program cannot continue with its
current task.

Conversely, if the program could continue then the situation would not
warrant throwing an exception. In such cases the function would find a way and
continue.

The exception types Exception and Error
Only the types that are inherited from the Throwable class can be thrown.
Throwable is almost never used directly in programs. The types that are actually
thrown are types that are inherited from Exception or Error, which themselves
are the types that are inherited from Throwable. For example, all of the
exceptions that Phobos throws are inherited from either Exception or Error.
Error represents unrecoverable conditions and is not recommended to be

caught. For that reason, most of the exceptions that a program throws are the
types that are inherited from Exception. (Note: Inheritance is a topic related to
classes. We will see classes in a later chapter.)
Exception objects are constructed with a string value that represents an

error message. You may find it easy to create this message with the format()
function from the std.string module:

import std.stdio;
import std.random;
import std.string;

int[] randomDiceValues(int count)
{

if (count < 0) {
throw new Exception(

format("Invalid dice count: %s", count));
}

int[] values;

foreach (i; 0 .. count) {
values ~= uniform(1, 7);

}

return values;
}

void main()
{

writeln(randomDiceValues(-5));
}

object.Exception...: Invalid dice count: -5

In most cases, instead of creating an exception object explicitly by new and
throwing it explicitly by throw, the enforce() function is called. For example,
the equivalent of the error check above is the following enforce() call:

enforce(count >= 0, format("Invalid dice count: %s", count));
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We will see the differences between enforce() and assert() in a later chapter.

Thrown exception terminates all scopes
We have seen that the program execution starts from the main function and
branches into other functions from there. This layered execution of going deeper
into functions and eventually returning from them can be seen as the branches of
a tree.

For example, main() may call a function named makeOmelet, which in turn
may call another function named prepareAll, which in turn may call another
function named prepareEggs, etc. Assuming that the arrows indicate function
calls, the branching of such a program can be shown as in the following function
call tree:

main
|
+--▶ makeOmelet
|      |
|      +--▶ prepareAll
|      |          |
|      |          +-▶ prepareEggs
|      |          +-▶ prepareButter
|      |          +-▶ preparePan
|      |
|      +--▶ cookEggs
|      +--▶ cleanAll
|
+--▶ eatOmelet

The following program demonstrates the branching above by using different
levels of indentation in its output. The program doesn't do anything useful other
than producing an output suitable to our purposes:

import std.stdio;

void indent(in int level)
{

foreach (i; 0 .. level * 2) {
write(' ');

}
}

void entering(in char[] functionName, in int level)
{

indent(level);
writeln("▶ ", functionName, "'s first line");

}

void exiting(in char[] functionName, in int level)
{

indent(level);
writeln("◁ ", functionName, "'s last line");

}

void main()
{

entering("main", 0);
makeOmelet();
eatOmelet();
exiting("main", 0);

}

void makeOmelet()
{

entering("makeOmelet", 1);
prepareAll();
cookEggs();
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cleanAll();
exiting("makeOmelet", 1);

}

void eatOmelet()
{

entering("eatOmelet", 1);
exiting("eatOmelet", 1);

}

void prepareAll()
{

entering("prepareAll", 2);
prepareEggs();
prepareButter();
preparePan();
exiting("prepareAll", 2);

}

void cookEggs()
{

entering("cookEggs", 2);
exiting("cookEggs", 2);

}

void cleanAll()
{

entering("cleanAll", 2);
exiting("cleanAll", 2);

}

void prepareEggs()
{

entering("prepareEggs", 3);
exiting("prepareEggs", 3);

}

void prepareButter()
{

entering("prepareButter", 3);
exiting("prepareButter", 3);

}

void preparePan()
{

entering("preparePan", 3);
exiting("preparePan", 3);

}

The program produces the following output:

▶ main, first line
▶ makeOmelet, first line

▶ prepareAll, first line
▶ prepareEggs, first line
◁ prepareEggs, last line
▶ prepareButter, first line
◁ prepareButter, last line
▶ preparePan, first line
◁ preparePan, last line

◁ prepareAll, last line
▶ cookEggs, first line
◁ cookEggs, last line
▶ cleanAll, first line
◁ cleanAll, last line

◁ makeOmelet, last line
▶ eatOmelet, first line
◁ eatOmelet, last line

◁ main, last line
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The functions entering and exiting are used to indicate the first and last lines
of functions with the help of the ▶ and ◁ characters. The program starts with the
first line of main(), branches down to other functions, and finally ends with the
last line of main.

Let's modify the prepareEggs function to take the number of eggs as a
parameter. Since certain values of this parameter would be an error, let's have
this function throw an exception when the number of eggs is less than one:

import std.string;

// ...

void prepareEggs(int count)
{

entering("prepareEggs", 3);

if (count < 1) {
throw new Exception(

format("Cannot take %s eggs from the fridge", count));
}

exiting("prepareEggs", 3);
}

In order to be able to compile the program, we must modify other lines of the
program to be compatible with this change. The number of eggs to take out of the
fridge can be handed down from function to function, starting with main(). The
parts of the program that need to change are the following. The invalid value of -8
is intentional to show how the output of the program will be different from the
previous output when an exception is thrown:

// ...

void main()
{

entering("main", 0);
makeOmelet(-8);
eatOmelet();
exiting("main", 0);

}

void makeOmelet(int eggCount)
{

entering("makeOmelet", 1);
prepareAll(eggCount);
cookEggs();
cleanAll();
exiting("makeOmelet", 1);

}

// ...

void prepareAll(int eggCount)
{

entering("prepareAll", 2);
prepareEggs(eggCount);
prepareButter();
preparePan();
exiting("prepareAll", 2);

}

// ...
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When we start the program now, we see that the lines that used to be printed after
the point where the exception is thrown are missing:

▶ main, first line
▶ makeOmelet, first line

▶ prepareAll, first line
▶ prepareEggs, first line

object.Exception: Cannot take -8 eggs from the fridge

When the exception is thrown, the program execution exits the prepareEggs,
prepareAll, makeOmelet and main() functions in that order, from the bottom
level to the top level. No additional steps are executed as the program exits these
functions.

The rationale for such a drastic termination is that a failure in a lower level
function would mean that the higher level functions that needed its successful
completion should also be considered as failed.

The exception object that is thrown from a lower level function is transferred to
the higher level functions one level at a time and causes the program to finally
exit the main() function. The path that the exception takes can be shown as the
highlighted path in the following tree:

▲
|
|

main ◀-----------+
| |
| |
+--▶ makeOmelet ◀-----+
|      | |
|      | |
|      +--▶ prepareAll ◀----------+
|      |          | |
|      |          | |
|      |          +-▶ prepareEggs X thrown exception
|      |          +-▶ prepareButter
|      |          +-▶ preparePan
|      |
|      +--▶ cookEggs
|      +--▶ cleanAll
|
+--▶ eatOmelet

The point of the exception mechanism is precisely this behavior of exiting all of
the layers of function calls right away. Sometimes it makes sense to catch the
thrown exception to find a way to continue the execution of the program. I will
introduce the catch keyword below.

When to use throw
Use throw in situations when it is not possible to continue. For example, a
function that reads the number of students from a file may throw an exception if
this information is not available or incorrect.

On the other hand, if the problem is caused by some user action like entering
invalid data, it may make more sense to validate the data instead of throwing an
exception. Displaying an error message and asking the user to re-enter the data is
more appropriate in many cases.

38.2 The try-catch statement to catch exceptions
As we've seen above, a thrown exception causes the program execution to exit all
functions and this finally terminates the whole program.
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The exception object can be caught by a try-catch statement at any point on
its path as it exits the functions. The try-catch statement models the phrase "try
to do something, and catch exceptions that may be thrown." Here is the syntax of
try-catch:

try {
// the code block that is being executed, where an
// exception may be thrown

} catch (an_exception_type) {
// expressions to execute if an exception of this
// type is caught

} catch (another_exception_type) {
// expressions to execute if an exception of this
// other type is caught

// ... more catch blocks as appropriate ...

} finally {
// expressions to execute regardless of whether an
// exception is thrown

}

Let's start with the following program that does not use a try-catch statement at
this state. The program reads the value of a die from a file and prints it to the
standard output:

import std.stdio;

int readDieFromFile()
{

auto file = File("the_file_that_contains_the_value", "r");

int die;
file.readf(" %s", &die);

return die;
}

void main()
{

const int die = readDieFromFile();

writeln("Die value: ", die);
}

Note that the readDieFromFile function is written in a way that ignores error
conditions, expecting that the file and the value that it contains are available. In
other words, the function is dealing only with its own task instead of paying
attention to error conditions. This is a benefit of exceptions: many functions can
be written in ways that focus on their actual tasks, rather than focusing on error
conditions.

Let's start the program when the_file_that_contains_the_value is missing:

std.exception.ErrnoException@std/stdio.d(286): Cannot open
file `the_file_that_contains_the_value' in mode `r' (No such
file or directory)

An exception of type ErrnoException is thrown and the program terminates
without printing "Die value: ".

Let's add an intermediate function to the program that calls readDieFromFile
from within a try block and let's have main() call this new function:

Exceptions

208



import std.stdio;

int readDieFromFile()
{

auto file = File("the_file_that_contains_the_value", "r");

int die;
file.readf(" %s", &die);

return die;
}

int tryReadingFromFile()
{

int die;

try {
die = readDieFromFile();

} catch (std.exception.ErrnoException exc) {
writeln("(Could not read from file; assuming 1)");
die = 1;

}

return die;
}

void main()
{

const int die = tryReadingFromFile();

writeln("Die value: ", die);
}

When we start the program again when the_file_that_contains_the_value
is still missing, this time the program does not terminate with an exception:

(Could not read from file; assuming 1)
Die value: 1

The new program tries executing readDieFromFile in a try block. If that block
executes successfully, the function ends normally with the return die;
statement. If the execution of the try block ends with the specified
std.exception.ErrnoException, then the program execution enters the catch
block.

The following is a summary of events when the program is started when the
file is missing:

• like in the previous program, a std.exception.ErrnoException object
is thrown (by File(), not by our code),

• this exception is caught by catch,
• the value of 1 is assumed during the normal execution of the catch

block,
• and the program continues its normal operations.

catch is to catch thrown exceptions presumably to find a way to continue
executing the program.

As another example, let's go back to the omelet program and add a try-catch
statement to its main() function:

void main()
{
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entering("main", 0);

try {
makeOmelet(-8);
eatOmelet();

} catch (Exception exc) {
write("Failed to eat omelet: ");
writeln('"', exc.msg, '"');
writeln("Shall eat at the neighbor's...");

}

exiting("main", 0);
}

(Note: The .msg property will be explained below.)
That try block contains two lines of code. Any exception thrown from either of

those lines would be caught by the catch block.

▶ main, first line
▶ makeOmelet, first line

▶ prepareAll, first line
▶ prepareEggs, first line

Failed to eat omelet: "Cannot take -8 eggs from the fridge"
Shall eat at the neighbor's...
◁ main, last line

As can be seen from the output, the program doesn't terminate because of the
thrown exception anymore. It recovers from the error condition and continues
executing normally till the end of the main() function.

catch blocks are looked up sequentially
The type Exception, which we have used so far in the examples is a general
exception type. This type merely specifies that an error occurred in the program.
It also contains a message that can explain the error further, but it does not
contain information about the type of the error.
ConvException and ErrnoException that we have seen earlier in this chapter

are more specific exception types: the former is about a conversion error, and the
latter is about a system error. Like many other exception types in Phobos and as
their names suggest, ConvException and ErrnoException are both inherited
from the Exception class.
Exception and its sibling Error are further inherited from Throwable, the

most general exception type.
Although possible, it is not recommended to catch objects of type Error and

objects of types that are inherited from Error. Since it is more general than
Error, it is not recommended to catch Throwable either. What should normally
be caught are the types that are under the Exception hierarchy, including
Exception itself.

Throwable (not recommended to catch)
↗   ↖

Exception     Error (not recommended to catch)
↗    ↖        ↗    ↖

...    ...    ...    ...

Note: I will explain the hierarchy representations later in the Inheritance chapter (page
342). The tree above indicates that Throwable is the most general and Exception and
Error are more specific.
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It is possible to catch exception objects of a particular type. For example, it is
possible to catch an ErrnoException object specifically to detect and handle a
system error.

Exceptions are caught only if they match a type that is specified in a catch
block. For example, a catch block that is trying to catch a SpecialExceptionType
would not catch an ErrnoException.

The type of the exception object that is thrown during the execution of a try
block is matched to the types that are specified by the catch blocks, in the order
in which the catch blocks are written. If the type of the object matches the type
of the catch block, then the exception is considered to be caught by that catch
block, and the code that is within that block is executed. Once a match is found,
the remaining catch blocks are ignored.

Because the catch blocks are matched in order from the first to the last, the
catch blocks must be ordered from the most specific exception types to the most
general exception types. Accordingly, and if it makes sense to catch that type of
exceptions, the Exception type must be specified at the last catch block.

For example, a try-catch statement that is trying to catch several specific
types of exceptions about student records must order the catch blocks from the
most specific to the most general as in the following code:

try {
// operations about student records that may throw ...

} catch (StudentIdDigitException exc) {

// an exception that is specifically about errors with
// the digits of student ids

} catch (StudentIdException exc) {

// a more general exception about student ids but not
// necessarily about their digits

} catch (StudentRecordException exc) {

// even more general exception about student records

} catch (Exception exc) {

// the most general exception that may not be related
// to student records

}

The finally block
finally is an optional block of the try-catch statement. It includes expressions
that should be executed regardless of whether an exception is thrown or not.

To see how finally works, let's look at a program that throws an exception
50% of the time:

import std.stdio;
import std.random;

void throwsHalfTheTime()
{

if (uniform(0, 2) == 1) {
throw new Exception("the error message");

}
}
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void foo()
{

writeln("the first line of foo()");

try {
writeln("the first line of the try block");
throwsHalfTheTime();
writeln("the last line of the try block");

// ... there may be one or more catch blocks here ...

} finally {
writeln("the body of the finally block");

}

writeln("the last line of foo()");
}

void main()
{

foo();
}

The output of the program is the following when the function does not throw:

the first line of foo()
the first line of the try block
the last line of the try block
the body of the finally block
the last line of foo()

The output of the program is the following when the function does throw:

the first line of foo()
the first line of the try block
the body of the finally block
object.Exception@deneme.d: the error message

As can be seen, although "the last line of the try block" and "the last line of foo()"
are not printed, the content of the finally block is still executed when an
exception is thrown.

When to use the try-catch statement
The try-catch statement is useful to catch exceptions to do something special
about them.

For that reason, the try-catch statement should be used only when there is
something special to be done. Do not catch exceptions otherwise and leave them
to higher level functions that may want to catch them.

38.3 Exception properties
The information that is automatically printed on the output when the program
terminates due to an exception is available as properties of exception objects as
well. These properties are provided by the Throwable interface:

• .file: The source file where the exception was thrown from
• .line: The line number where the exception was thrown from
• .msg: The error message
• .info: The state of the program stack when the exception was thrown
• .next: The next collateral exception
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We saw that finally blocks are executed when leaving scopes due to exceptions
as well. (As we will see in later chapters, the same is true for scope statements
and destructors as well.)

Naturally, such code blocks can throw exceptions as well. Exceptions that are
thrown when leaving scopes due to an already thrown exception are called
collateral exceptions. Both the main exception and the collateral exceptions are
elements of a linked list data structure, where every exception object is accessible
through the .next property of the previous exception object. The value of the
.next property of the last exception is null. (We will see null in a later chapter.)

There are three exceptions that are thrown in the example below: The main
exception that is thrown in foo() and the two collateral exceptions that are
thrown in the finally blocks of foo() and bar(). The program accesses the
collateral exceptions through the .next properties.

Some of the concepts that are used in this program will be explained in later
chapters. For example, the continuation condition of the for loop that consists
solely of exc means as long as exc is not null.

import std.stdio;

void foo()
{

try {
throw new Exception("Exception thrown in foo");

} finally {
throw new Exception(

"Exception thrown in foo's finally block");
}

}

void bar()
{

try {
foo();

} finally {
throw new Exception(

"Exception thrown in bar's finally block");
}

}

void main()
{

try {
bar();

} catch (Exception caughtException) {

for (Throwable exc = caughtException;
exc; // ← Meaning: as long as not 'null'
exc = exc.next) {

writefln("error message: %s", exc.msg);
writefln("source file  : %s", exc.file);
writefln("source line  : %s", exc.line);
writeln();

}
}

}

The output:

error message: Exception thrown in foo
source file  : deneme.d
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source line  : 6

error message: Exception thrown in foo's finally block
source file  : deneme.d
source line  : 9

error message: Exception thrown in bar's finally block
source file  : deneme.d
source line  : 20

38.4 Kinds of errors
We have seen how useful the exception mechanism is. It enables both the lower
and higher level operations to be aborted right away, instead of the program
continuing with incorrect or missing data, or behaving in any other incorrect
way.

This does not mean that every error condition warrants throwing an exception.
There may be better things to do depending on the kinds of errors.

User errors
Some of the errors are caused by the user. As we have seen above, the user may
have entered a string like "hello" even though the program has been expecting a
number. It may be more appropriate to display an error message and ask the user
to enter appropriate data again.

Even so, it may be fine to accept and use the data directly without validating
the data up front; as long as the code that uses the data would throw anyway.
What is important is to be able to notify the user why the data is not suitable.

For example, let's look at a program that takes a file name from the user. There
are at least two ways of dealing with potentially invalid file names:

• Validating the data before use: We can determine whether the file with
the given name exists by calling exists() of the std.file module:

if (exists(fileName)) {
// yes, the file exists

} else {
// no, the file doesn't exist

}

This gives us the chance to be able to open the data only if it exists.
Unfortunately, it is still possible that the file cannot be opened even if
exists() returns true, if for example another process on the system
deletes or renames the file before this program actually opens it.

For that reason, the following method may be more useful.
• Using the data without first validating it: We can assume that the data

is valid and start using it right away, because File would throw an
exception if the file cannot be opened anyway.

import std.stdio;
import std.string;

void useTheFile(string fileName)
{

auto file = File(fileName, "r");
// ...

}

string read_string(in char[] prompt)
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{
write(prompt, ": ");
return chomp(readln());

}

void main()
{

bool is_fileUsed = false;

while (!is_fileUsed) {
try {

useTheFile(
read_string("Please enter a file name"));

/*
* If we are at this line, it means that
* useTheFile() function has been completed
* successfully. This indicates that the file
* name has been valid.
*
* We can now set the value of the loop flag to
* terminate the while loop.
*/

is_fileUsed = true;
writeln("The file has been used successfully");

} catch (std.exception.ErrnoException exc) {
stderr.writeln("This file could not be opened");

}
}

}

Programmer errors
Some errors are caused by programmer mistakes. For example, the programmer
may think that a function that has just been written will always be called with a
value greater than or equal zero, and this may be true according to the design of
the program. The function having still been called with a value less than zero
would indicate either a mistake in the design of the program or in the
implementation of that design. Both of these can be thought of as programming
errors.

It is more appropriate to use assert instead of the exception mechanism for
errors that are caused by programmer mistakes. (Note:We will cover assert in a
later chapter.)

void processMenuSelection(int selection)
{

assert(selection >= 0);
// ...

}

void main()
{

processMenuSelection(-1);
}

The program terminates with an assert failure:

core.exception.AssertError@deneme.d(3): Assertion failure

assert validates program state and prints the file name and line number of the
validation if it fails. The message above indicates that the assertion at line 3 of
deneme.d has failed.
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Unexpected situations
For unexpected situations that are outside of the two general cases above, it is still
appropriate to throw exceptions. If the program cannot continue its execution,
there is nothing else to do but to throw.

It is up to the higher layer functions that call this function to decide what to do
with thrown exceptions. They may catch the exceptions that we throw to remedy
the situation.

38.5 Summary

• When faced with a user error either warn the user right away or ensure
that an exception is thrown; the exception may be thrown anyway by
another function when using incorrect data, or you may throw directly.

• Use assert to validate program logic and implementation. (Note:
assert will be explained in a later chapter.)

• When in doubt, throw an exception with throw or enforce(). (Note:
enforce() will be explained in a later chapter.)

• Catch exceptions if and only if you can do something useful about that
exception. Otherwise, do not encapsulate code with a try-catch
statement; instead, leave the exceptions to higher layers of the code that
may do something about them.

• Order the catch blocks from the most specific to the most general.
• Put the expressions that must always be executed when leaving a scope,

in finally blocks.
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39 scope
As we have seen in the previous chapter, expressions that must always be
executed are written in the finally block, and expressions that must be executed
when there are error conditions are written in catch blocks.

We can make the following observations about the use of these blocks:

• catch and finally cannot be used without a try block.
• Some of the variables that these blocks need may not be accessible

within these blocks:

void foo(ref int r)
{

try {
int addend = 42;

r += addend;
mayThrow();

} catch (Exception exc) {
r -= addend; // ← compilation ERROR

}
}

That function first modifies the reference parameter, and then reverts
this modification when an exception is thrown. Unfortunately, addend is
accessible only in the try block, where it is defined. (Note: This is related
to name spaces; as well as object lifetimes that will be explained in a later
chapter.)

• Writing all of potentially unrelated expressions in the single finally
block at the bottom separates those expressions from the actual code
that they are related to.

The scope statements have similar functionality with the catch and finally
scopes but they are better in many respects. Like finally, the three different
scope statements are about executing expressions when leaving scopes:

• scope(exit): the expression is always executed when exiting the scope,
regardless of whether successfully or due to an exception

• scope(success): the expression is executed only if the scope is being
exited successfully

• scope(failure): the expression is executed only if the scope is being
exited due to an exception

Although these statements are closely related to exceptions, they can be used
without a try-catch block.

As an example, let's write the function above with a scope(failure)
statement:

void foo(ref int r)
{

int addend = 42;

r += addend;
scope(failure) r -= addend;
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mayThrow();
}

The scope(failure) statement above ensures that the r -= addend expression
will be executed if the function's scope is exited due to an exception. A benefit of
scope(failure) is the fact that the expression that reverts another expression is
written close to it.
scope statements can be specified as blocks as well:

scope(exit) {
// ... expressions ...

}

Here is another function that tests all three of these statements:

void test()
{

scope(exit) writeln("when exiting 1");

scope(success) {
writeln("if successful 1");
writeln("if successful 2");

}

scope(failure) writeln("if thrown 1");
scope(exit) writeln("when exiting 2");
scope(failure) writeln("if thrown 2");

throwsHalfTheTime();
}

If no exception is thrown, the output of the function includes only the
scope(exit) and scope(success) expressions:

when exiting 2
if successful 1
if successful 2
when exiting 1

If an exception is thrown, the output includes the scope(exit) and
scope(failure) expressions:

if thrown 2
when exiting 2
if thrown 1
when exiting 1
object.Exception@...: the error message

As seen in the outputs, the blocks of the scope statements are executed in reverse
order. This is because later code may depend on previous variables. Executing the
scope statements in reverse order enables undoing side effects of earlier
expressions in a consistent order.
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40 assert and enforce
In the previous two chapters we have seen how exceptions and scope statements
are used towards program correctness. assert is another powerful tool to achieve
the same goal by ensuring that certain assumptions that the program is based on
are valid.

It may sometimes be difficult to decide whether to throw an exception or to call
assert. I will use assert in all of the examples below without much justification.
I will explain the differences later in the chapter.

Although not always obvious, programs are full of assumptions. For example,
the following function is written under the assumption that both age parameters
are greater than or equal to zero:

double averageAge(double first, double second)
{

return (first + second) / 2;
}

Although it may be invalid for the program to ever have an age value that is
negative, the function would still produce an average, which may be used in the
program unnoticed, resulting in the program's continuing with incorrect data.

As another example, the following function assumes that it will always be
called with two commands: "sing" or "dance":

void applyCommand(string command)
{

if (command == "sing") {
robotSing();

} else {
robotDance();

}
}

Because of that assumption, the robotDance() function would be called for every
command other than "sing", valid or invalid.

When such assumptions are kept only in the programmer's mind, the program
may end up working incorrectly. assert statements check assumptions and
terminate programs immediately when they are not valid.

40.1 Syntax
assert can be used in two ways:

assert(logical_expression);
assert(logical_expression, message);

The logical expression represents an assumption about the program. assert
evaluates that expression to validate that assumption. If the value of the logical
expression is true then the assumption is considered to be valid. Otherwise the
assumption is invalid and an AssertError is thrown.

As its name suggests, this exception is inherited from Error, and as you may
remember from the Exceptions chapter (page 202), exceptions that are inherited
from Error must never be caught. It is important for the program to be
terminated right away instead of continuing under invalid assumptions.

The two implicit assumptions of averageAge() above may be spelled out by
two assert calls as in the following function:
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double averageAge(double first, double second)
{

assert(first >= 0);
assert(second >= 0);

return (first + second) / 2;
}

void main()
{

auto result = averageAge(-1, 10);
}

Those assert checks carry the meaning "assuming that both of the ages are
greater than or equal to zero". It can also be thought of as meaning "this function
can work correctly only if both of the ages are greater than or equal to zero".

Each assert checks its assumption and terminates the program with an
AssertError when it is not valid:

core.exception.AssertError@deneme(3): Assertion failure

The part after the @ character in the message indicates the source file and the line
number of the assert check that failed. According to the output above, the
assert that failed is on line 3 of file deneme.d.

The other syntax of assert allows printing a custom message when the assert
check fails:

assert(first >= 0, "Age cannot be negative.");

The output:

core.exception.AssertError@deneme.d(3): Age cannot be negative.

Sometimes it is thought to be impossible for the program to ever enter a code
path. In such cases it is common to use the literal false as the logical expression
to fail an assert check. For example, to indicate that applyCommand() function
is never expected to be called with a command other than "sing" and "dance", and
to guard against such a possibility, an assert(false) can be inserted into the
impossible branch:

void applyCommand(string command)
{

if (command == "sing") {
robotSing();

} else if (command == "dance") {
robotDance();

} else {
assert(false);

}
}

The function is guaranteed to work with the only two commands that it knows
about. (Note: An alternative choice here would be to use a final switch statement.)

40.2 static assert
Since assert checks are for correct execution of programs, they are applied when
the program is actually running. Other checks are about the structure of the
program and can be applied even at compile time.

assert and enforce

220



static assert is the counterpart of assert that is applied at compile time.
The advantage is that it does not allow even compiling a program that would have
otherwise run incorrectly. A natural requirement is that it must be possible to
evaluate the logical expression at compile time.

For example, assuming that the title of a menu will be printed on an output
device that has limited width, the following static assert ensures that it will
never be wider than that limit:

enum dstring menuTitle = "Command Menu";
static assert(menuTitle.length <= 16);

Note that the string is defined as enum so that its length can be evaluated at
compile time.

Let's assume that a programmer changes that title to make it more descriptive:

enum dstring menuTitle = "Directional Commands Menu";
static assert(menuTitle.length <= 16);

The static assert check prevents compiling the program:

Error: static assert  (25u <= 16u) is false

This would remind the programmer of the limitation of the output device.
static assert is even more useful when used in templates. We will see

templates in later chapters.

40.3 assert even if absolutely true
I emphasize "absolutely true" because assumptions about the program are never
expected to be false anyway. A large set of program errors are based on
assumptions that are thought to be absolutely true.

For that reason, take advantage of assert checks even if they feel unnecessary.
Let's look at the following function that returns the days of months in a given
year:

int[] monthDays(in int year)
{

int[] days = [
31, februaryDays(year),
31, 30, 31, 30, 31, 31, 30, 31, 30, 31

];

assert((sum(days) == 365) ||
(sum(days) == 366));

return days;
}

That assert check may be seen as unnecessary because the function would
naturally return either 365 or 366. However, those checks are guarding against
potential mistakes even in the februaryDays() function. For example, the
program would be terminated if februaryDays() returned 30.

Another seemingly unnecessary check can ensure that the length of the slice
would always be 12:

assert(days.length == 12);

That way, deleting or adding elements to the slice unintentionally would also be
caught. Such checks are important tools towards program correctness.
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assert is also the basic tool that is used in unit testing and contract
programming, both of which will be covered in later chapters.

40.4 No value nor side effect
We have seen that expressions produce values or make side effects. assert
checks do not have values nor they should have any side effects.

The D language requires that the evaluation of the logical expression must not
have any side effect. assert must remain as a passive observer of program state.

40.5 Disabling assert checks
Since assert is about program correctness, they can be seen as unnecessary once
the program has been tested sufficiently. Further, since assert checks produce
no values nor they have side effects, removing them from the program should not
make any difference.

The compiler switch -release causes the assert checks to be ignored as if
they have never been included in the program:

dmd deneme.d -release

This would allow programs run faster by not evaluating potentially slow logical
expressions of the assert checks.

As an exception, the assert checks that have the literal false (or 0) as the
logical expression are not disabled even when the program is compiled with
‑release. This is because assert(false) is for ensuring that a block of code is
never reached, and that should be prevented even for the ‑release compilations.

40.6 enforce for throwing exceptions
Not every unexpected situation is an indication of a program error. Programs
may also experience unexpected inputs and unexpected environmental state. For
example, the data that is entered by the user should not be validated by an
assert check because invalid data has nothing to do with the correctness of the
program itself. In such cases it is appropriate to throw exceptions like we have
been doing in previous programs.
std.exception.enforce is a convenient way of throwing exceptions. For

example, let's assume that an exception must be thrown when a specific
condition is not met:

if (count < 3) {
throw new Exception("Must be at least 3.");

}

enforce() is a wrapper around the condition check and the throw statement.
The following is the equivalent of the previous code:

import std.exception;
// ...

enforce(count >= 3, "Must be at least 3.");

Note how the logical expression is negated compared to the if statement. It now
spells out what is being enforced.

40.7 How to use
assert is for catching programmer errors. The conditions that assert guards
against in the monthDays() function and the menuTitle variable above are all
about programmer mistakes.
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Sometimes it is difficult to decide whether to rely on an assert check or to
throw an exception. The decision should be based on whether the unexpected
situation is due to a problem with how the program has been coded.

Otherwise, the program must throw an exception when it is not possible to
accomplish a task. enforce() is expressive and convenient when throwing
exceptions.

Another point to consider is whether the unexpected situation can be remedied
in some way. If the program can not do anything special, even by simply printing
an error message about the problem with some input data, then it is appropriate
to throw an exception. That way, callers of the code that threw the exception can
catch it to do something special to recover from the error condition.

40.8 Exercises

1. The following program includes a number of assert checks. Compile
and run the program to discover its bugs that are revealed by those
assert checks.

The program takes a start time and a duration from the user and
calculates the end time by adding the duration to the start time:

10 hours and 8 minutes after 06:09 is 16:17.

Note that this problem can be written in a much cleaner way by defining
struct types. We will refer to this program in later chapters.

import std.stdio;
import std.string;
import std.exception;

/* Reads the time as hour and minute after printing a
* message. */

void readTime(in string message, out int hour, out int minute)
{

write(message, "? (HH:MM) ");

readf(" %s:%s", &hour, &minute);

enforce((hour >= 0) && (hour <= 23) &&
(minute >= 0) && (minute <= 59),
"Invalid time!");

}

/* Returns the time in string format. */
string timeToString(in int hour, in int minute)
{

assert((hour >= 0) && (hour <= 23));
assert((minute >= 0) && (minute <= 59));

return format("%02s:%02s", hour, minute);
}

/* Adds duration to start time and returns the result as the
* third pair of parameters. */

void addDuration(in int startHour, in int startMinute,
in int durationHour, in int durationMinute,
out int resultHour, out int resultMinute)

{
resultHour = startHour + durationHour;
resultMinute = startMinute + durationMinute;

if (resultMinute > 59) {
++resultHour;

}
}
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void main()
{

int startHour;
int startMinute;
readTime("Start time", startMinute, startHour);

int durationHour;
int durationMinute;
readTime("Duration", durationHour, durationMinute);

int endHour;
int endMinute;
addDuration(startHour, startMinute,

durationHour, durationMinute,
endHour, endMinute);

writefln("%s hours and %s minutes after %s is %s.",
durationHour, durationMinute,
timeToString(startHour, startMinute),
timeToString(endHour, endMinute));

}

Run the program and enter 06:09 as the start time and 1:2 as the
duration. Observe that the program terminates normally.
Note: You may notice a problem with the output. Ignore that problem for

now as you will discover it by the help of assert checks soon.
2. This time enter 06:09 and 15:2. Observe that the program is terminated

by an AssertError. Go to the line of the program that is indicated in the
assert message and see which one of the assert checks have failed. It
may take a while to discover the cause of this particular failure.

3. Enter 06:09 and 20:0 and observe that the same assert check still fails
and fix that bug as well.

4. Modify the program to print the times in 12-hour format with an "am" or
"pm" indicator.

The solutions are on page 708.

assert and enforce

224



41 Unit Testing

As it should be known by most people, any device that runs some piece of
computer program contains software bugs. Software bugs plague computer
devices from the simplest to the most complex. Debugging and fixing software
bugs is among the less favorable daily activities of a programmer.

41.1 Causes of bugs
There are many reasons why software bugs occur. The following is an incomplete
list roughly from the design stage of a program through the actual coding of it:

• The requirements and the specifications of the program may not be
clear. What the program should actually do may not be known at the
design stage.

• The programmer may misunderstand some of the requirements of the
program.

• The programming language may not be expressive enough. Considering
that there are confusions even between native speakers of human
languages, the unnatural syntax and rules of a programming language
may be cause of mistakes.

• Certain assumptions of the programmer may be incorrect. For example,
the programmer may be assuming that 3.14 would be precise enough to
represent π.

• The programmer may have incorrect information on a topic or none at
all. For example, the programmer may not know that using a floating
point variable in a particular logical expression would not be reliable.

• The program may encounter an unforeseen situation. For example, one
of the files of a directory may be deleted or renamed while the program
is using the files of that directory in a foreach loop.

• The programmer may make silly mistakes. For example, the name of a
variable may be mistyped and accidentally matched the name of
another variable.

• etc.

Unfortunately, there is still no software development methodology that ensures
that a program will always work correctly. This is still a hot software engineering
topic where promising solutions emerge every decade or so.

41.2 Discovering the bugs
Software bugs are discovered at various stages of the lifetime of the program by
various types of tools and people. The following is a partial list of when a bug may
be discovered, from the earliest to the latest:

• When writing the program

◦ By the programmer
◦ By another programmer during pair programming
◦ By the compiler through compiler messages
◦ By unit tests as a part of building the program
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• When reviewing the code

◦ By tools that analyze the code at compile time
◦ By other programmers during code reviews

• When running the program

◦ By tools that analyze the execution of the program at run time
(e.g. by valgrind)

◦ During QA testing, either by the failure of assert checks or by
the observed behavior of the program

◦ By the beta users before the release of the program
◦ By the end users after the release of the program

Detecting bugs as early as possible reduces loss of money, time, and in some cases
human lives. Additionally, identifying the causes of bugs that have been
discovered by the end users are harder than identifying the causes of bugs that
are discovered early, during development.

41.3 Unit testing for catching bugs
Since programs are written by programmers and D is a compiled language, the
programmers and the compiler will always be there to discover bugs. Those two
aside, the earliest and partly for that reason the most effective way of catching
bugs is unit testing.

Unit testing is an indispensable part of modern programming. It is the most
effective method of reducing coding errors. According to some development
methodologies, code that is not guarded by unit tests is buggy code.

Unfortunately, the opposite is not true: Unit tests do not guarantee that the
code is free of bugs. Although they are very effective, they can only reduce the
risk of bugs.

Unit testing also enables refactoring the code (i.e. making improvements to it)
with ease and confidence. Otherwise, it is common to accidentally break some of
the existing functionality of a program when adding new features to it. Bugs of
this type are called regressions. Without unit testing, regressions are sometimes
discovered as late as during the QA testing of future releases, or worse, by the end
users.

Risk of regressions discourage programmers from refactoring the code,
sometimes preventing them from performing the simplest of improvements like
correcting the name of a variable. This in turn causes code rot, a condition where
the code becomes more and more unmaintainable. For example, although some
lines of code would better be moved to a newly defined function in order to be
called from more than one place, fear of regressions make programmers copy and
paste the existing lines to other places instead, leading to the problem of code
duplication.

Phrases like "if it isn't broken, don't fix it" are related to fear of regressions.
Although they seem to be conveying wisdom, such guidelines cause the code to
rot slowly and become an untouchable mess.

Modern programming rejects such "wisdom". To the contrary, to prevent it
from becoming a source of bugs, the code is supposed to be "refactored
mercilessly". The most powerful tool of this modern approach is unit testing.

Unit testing involves testing the smallest units of code independently. When
units of code are tested independently, it is less likely that there are bugs in
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higher-level code that use those units. When the parts work correctly, it is more
likely that the whole will work correctly as well.

Units tests are provided as library solutions in other languages (e.g. JUnit,
CppUnit, Unittest++, etc.) In D, unit testing is a core feature of the language. It is
debatable whether a library solution or a language feature is better for unit
testing. Because D does not provide some of the features that are commonly
found in unit testing libraries, it may be worthwhile to consider library solutions
as well.

The unit testing features of D are as simple as inserting assert checks into
unittest blocks.

41.4 Activating the unit tests
Unit tests are not a part of the actual execution of the program. They should be
activated only during program development when explicitly requested.

The dmd compiler switch that activates unit tests is ‑unittest.
Assuming that the program is written in a single source file named deneme.d,

its unit tests can be activated by the following command:

dmd deneme.d -w -unittest

When a program that is built by the ‑unittest switch is started, its unit test
blocks are executed first. Only if all of the unit tests pass that the program
execution continues with main().

41.5 unittest blocks
The lines of code that involve unit tests are written inside unittest blocks. These
blocks do not have any significance for the program other than containing the
unit tests:

unittest
{

/* ... the tests and the code that support them ... */
}

Although unittest blocks can appear anywhere, it is convenient to define them
right after the code that they test.

As an example, let's test a function that returns the ordinal form of the
specified number as in "1st", "2nd", etc. A unittest block of this function can
simply contain assert statements that compare the return values of the function
to the expected values. The following function is being tested with the four
distinct expected outcomes of the function:

string ordinal(size_t number)
{

// ...
}

unittest
{

assert(ordinal(1) == "1st");
assert(ordinal(2) == "2nd");
assert(ordinal(3) == "3rd");
assert(ordinal(10) == "10th");

}

The four tests above test that the function works correctly at least for the values
of 1, 2, 3, and 10 by making four separate calls to the function and comparing the
returned values to the expected ones.

Unit Testing

227



Although unit tests are based on assert checks, unittest blocks can contain
any D code. This allows for preparations before actually starting the tests or any
other supporting code that the tests may need. For example, the following block
first defines a variable to reduce code duplication:

dstring toFront(dstring str, in dchar letter)
{

// ...
}

unittest
{

immutable str = "hello"d;

assert(toFront(str, 'h') == "hello");
assert(toFront(str, 'o') == "ohell");
assert(toFront(str, 'l') == "llheo");

}

The three assert checks above test that toFront() works according to its
specification.

As these examples show, unit tests are also useful as examples of how
particular functions should be called. Usually it is easy to get an idea on what a
function does just by reading its unit tests.

41.6 Testing for exceptions
It is common to test some code for exception types that it should or should not
throw under certain conditions. The std.exception module contains two
functions that help with testing for exceptions:

• assertThrown: Ensures that a specific exception type is thrown from an
expression

• assertNotThrown: Ensures that a specific exception type is not thrown
from an expression

For example, a function that requires that both of its slice parameters have equal
lengths and that it works with empty slices can be tested as in the following tests:

import std.exception;

int[] average(int[] a, int[] b)
{

// ...
}

unittest
{

/* Must throw for uneven slices */
assertThrown(average([1], [1, 2]));

/* Must not throw for empty slices */
assertNotThrown(average([], []));

}

Normally, assertThrown ensures that some type of exception is thrown without
regard to the actual type of that exception. When needed, it can test against a
specific exception type as well. Likewise, assertNotThrown ensures that no
exception is thrown whatsoever but it can be instructed to test that a specific
exception type is not thrown. The specific exception types are specified as
template parameters to these functions:
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/* Must throw UnequalLengths for uneven slices */
assertThrown!UnequalLengths(average([1], [1, 2]));

/* Must not throw RangeError for empty slices (it may
* throw other types of exceptions) */

assertNotThrown!RangeError(average([], []));

We will see templates in a later chapter (page 411).
Main purpose of these functions is to make code more succinct and more

readable. For example, the following assertThrown line is the equivalent of the
lengthy code below it:

assertThrown(average([1], [1, 2]));

// ...

/* The equivalent of the line above */
{

auto isThrown = false;

try {
average([1], [1, 2]);

} catch (Exception exc) {
isThrown = true;

}

assert(isThrown);
}

41.7 Test driven development
Test driven development (TDD) is a software development methodology that
prescribes writing unit tests before implementing functionality. In TDD, the focus
is on unit testing. Coding is a secondary activity that makes the tests pass.

In accordance to TDD, the ordinal() function above can first be implemented
intentionally incorrectly:

import std.string;

string ordinal(size_t number)
{

return ""; // ← intentionally wrong
}

unittest
{

assert(ordinal(1) == "1st");
assert(ordinal(2) == "2nd");
assert(ordinal(3) == "3rd");
assert(ordinal(10) == "10th");

}

void main()
{}

Although the function is obviously wrong, the next step would be to run the unit
tests to see that the tests do indeed catch problems with the function:

$ dmd deneme.d -w -O -unittest
$ ./deneme
core.exception.AssertError@deneme(10): unittest failure

The function should be implemented only after seeing the failure, and only to
make the tests pass. Here is just one implementation that passes the tests:
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import std.string;

string ordinal(size_t number)
{

string suffix;

switch (number) {
case 1: suffix = "st"; break;
case 2: suffix = "nd"; break;
case 3: suffix = "rd"; break;
default: suffix = "th"; break;
}

return format("%s%s", number, suffix);
}

unittest
{

assert(ordinal(1) == "1st");
assert(ordinal(2) == "2nd");
assert(ordinal(3) == "3rd");
assert(ordinal(10) == "10th");

}

void main()
{}

Since the implementation above does pass the unit tests, there is reason to trust
that the ordinal() function is correct. Under the assurance that the tests bring,
the implementation of the function can be changed in many ways with
confidence.

Unit tests before bug fixes
Unit tests are not a panacea; there will always be bugs. If a bug is discovered when
actually running the program, it can be seen as an indication that the unit tests
have been incomplete. For that reason, it is better to first write a unit test that
reproduces the bug and only then to fix the bug to pass the new test.

Let's have a look at the following function that returns the spelling of the
ordinal form of a number specified as a dstring:

import std.exception;
import std.string;

dstring ordinalSpelled(dstring number)
{

enforce(number.length, "number cannot be empty");

dstring[dstring] exceptions = [
"one": "first", "two" : "second", "three" : "third",
"five" : "fifth", "eight": "eighth", "nine" : "ninth",
"twelve" : "twelfth"

];

dstring result;

if (number in exceptions) {
result = exceptions[number];

} else {
result = number ~ "th";

}

return result;
}

unittest
{
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assert(ordinalSpelled("one") == "first");
assert(ordinalSpelled("two") == "second");
assert(ordinalSpelled("three") == "third");
assert(ordinalSpelled("ten") == "tenth");

}

void main()
{}

The function takes care of exceptional spellings and even includes a unit test for
that. Still, the function has a bug yet to be discovered:

import std.stdio;

void main()
{

writefln("He came the %s in the race.",
ordinalSpelled("twenty"));

}

The spelling error in the output of the program is due to a bug in
ordinalSpelled(), which its unit tests have unfortunately fail to catch:

He came the twentyth in the race.

Although it is easy to see that the function does not produce the correct spelling
for numbers that end with the letter y, TDD prescribes that first a unit test must
be written to reproduce the bug before actually fixing it:

unittest
{
// ...

assert(ordinalSpelled("twenty") == "twentieth");
}

With that improvement to the tests, now the bug in the function is being caught
during development:

core.exception.AssertError@deneme(3274338): unittest failure

The function should be fixed only then:

dstring ordinalSpelled(dstring number)
{
// ...

if (number in exceptions) {
result = exceptions[number];

} else {
if (number[$-1] == 'y') {

result = number[0..$-1] ~ "ieth";

} else {
result = number ~ "th";

}
}

return result;
}

41.8 Exercise

• Implement toFront() according to TDD. Start with the intentionally
incomplete implementation below. Observe that the unit tests fail and
provide an implementation that passes the tests.
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dstring toFront(dstring str, in dchar letter)
{

dstring result;
return result;

}

unittest
{

immutable str = "hello"d;

assert(toFront(str, 'h') == "hello");
assert(toFront(str, 'o') == "ohell");
assert(toFront(str, 'l') == "llheo");

}

void main()
{}

The solution is on page 709.
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42 Contract Programming

Contract programming is a software design approach that treats parts of software
as individual entities that provide services to each other. This approach realizes
that software can work according to its specification as long as the provider and
the consumer of the service both obey a contract.

D's contract programming features involve functions as the units of software
services. Like in unit testing, contract programming is also based on assert
checks.

Contract programming in D is implemented by three types of code blocks:

• Function in blocks
• Function out blocks
• Struct and class invariant blocks

We will see invariant blocks and contract inheritance in a later chapter after
covering structs and classes.

42.1 in blocks for preconditions
Correct execution of functions usually depend on whether the values of their
parameters are valid. For example, a square root function may require that its
parameter cannot be negative. A function that deals with dates may require that
the number of the month must be between 1 and 12. Such requirements of a
function are called its preconditions.

We have already seen such condition checks in the assert and enforce
chapter (page 219). Conditions on parameter values can be enforced by assert
checks within function definitions:

string timeToString(in int hour, in int minute)
{

assert((hour >= 0) && (hour <= 23));
assert((minute >= 0) && (minute <= 59));

return format("%02s:%02s", hour, minute);
}

In contract programming, the same checks are written inside the in blocks of
functions. When an in or out block is used, the actual body of the function must
be specified as a body block:

import std.stdio;
import std.string;

string timeToString(in int hour, in int minute)
in
{

assert((hour >= 0) && (hour <= 23));
assert((minute >= 0) && (minute <= 59));

}
body
{

return format("%02s:%02s", hour, minute);
}

void main()
{

writeln(timeToString(12, 34));
}
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A benefit of an in block is that all of the preconditions can be kept together and
separate from the actual body of the function. This way, the function body would
be free of assert checks about the preconditions. As needed, it is still possible
and advisable to have other assert checks inside the function body as unrelated
checks that guard against potential programming errors in the function body.

The code that is inside the in block is executed automatically every time the
function is called. The actual execution of the function starts only if all of the
assert checks inside the in block pass. This prevents executing the function with
invalid preconditions and as a consequence, avoids producing incorrect results.

An assert check that fails inside the in block indicates that the contract has
been violated by the caller.

42.2 out blocks for postconditions
The other side of the contract involves guarantees that the function provides.
Such guarantees are called the function's postconditions. An example of a function
with a postcondition would be a function that returns the number of days in
February: The function can guarantee that the returned value would always be
either 28 or 29.

The postconditions are checked inside the out blocks of functions.
Because the value that a function returns by the return statement need not be

defined as a variable inside the function, there is usually no name to refer to the
return value. This can be seen as a problem because the assert checks inside the
out block cannot refer to the returned variable by name.

D solves this problem by providing a way of naming the return value right after
the out keyword. That name represents the very value that the function is in the
process of returning:

int daysInFebruary(in int year)
out (result)
{

assert((result == 28) || (result == 29));
}
body
{

return isLeapYear(year) ? 29 : 28;
}

Although result is a reasonable name for the returned value, other valid names
may also be used.

Some functions do not have return values or the return value need not be
checked. In that case the out block does not specify a name:

out
{

// ...
}

Similar to in blocks, the out blocks are executed automatically after the body of
the function is executed.

An assert check that fails inside the out block indicates that the contract has
been violated by the function.

As it has been obvious, in and out blocks are optional. Considering the
unittest blocks as well, which are also optional, D functions may consist of up
to four blocks of code:

• in: Optional
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• out: Optional
• body: Mandatory but the body keyword may be skipped if no in or out

block is defined.
• unittest: Optional and technically not a part of a function's definition

but commonly defined right after the function.

Here is an example that uses all of these blocks:

import std.stdio;

/*
* Distributes the sum between two variables.
*
* Distributes to the first variable first, but never gives
* more than 7 to it. The rest of the sum is distributed to
* the second variable.
*/

void distribute(in int sum, out int first, out int second)
in
{

assert(sum >= 0);
}
out
{

assert(sum == (first + second));
}
body
{

first = (sum >= 7) ? 7 : sum;
second = sum - first;

}

unittest
{

int first;
int second;

// Both must be 0 if the sum is 0
distribute(0, first, second);
assert(first == 0);
assert(second == 0);

// If the sum is less than 7, then all of it must be given
// to first
distribute(3, first, second);
assert(first == 3);
assert(second == 0);

// Testing a boundary condition
distribute(7, first, second);
assert(first == 7);
assert(second == 0);

// If the sum is more than 7, then the first must get 7
// and the rest must be given to second
distribute(8, first, second);
assert(first == 7);
assert(second == 1);

// A random large value
distribute(1_000_007, first, second);
assert(first == 7);
assert(second == 1_000_000);

}

void main()
{

int first;
int second;
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distribute(123, first, second);
writeln("first: ", first, " second: ", second);

}

The program can be compiled and run on the console by the following
commands:

$ dmd deneme.d -w -unittest
$ ./deneme
first: 7 second: 116

Although the actual work of the function consists of only two lines, there are a
total of 19 nontrivial lines that support its functionality. It may be argued that so
much extra code is too much for such a short function. However, bugs are never
intentional. The programmer always writes code that is expected to work correctly,
which commonly ends up containing various types of bugs.

When expectations are laid out explicitly by unit tests and contracts, functions
that are initially correct have a greater chance of staying correct. I recommend
that you take full advantage of any feature that improves program correctness.
Both unit tests and contracts are effective tools towards that goal. They help
reduce time spent for debugging, effectively increasing time spent for actually
writing code.

42.3 Disabling contract programming
Contrary to unit testing, contract programming features are enabled by default.
The ‑release compiler switch disables contract programming:

dmd deneme.d -w -release

When the program is compiled with the ‑release switch, the contents of in, out,
and invariant blocks are ignored.

42.4 in blocks versus enforce checks
We have seen in the assert and enforce chapter (page 219) that sometimes it is
difficult to decide whether to use assert or enforce checks. Similarly, sometimes
it is difficult to decide whether to use assert checks within in blocks versus
enforce checks within function bodies.

The fact that it is possible to disable contract programming is an indication
that contract programming is for protecting against programmer errors. For that
reason, the decision here should be based on the same guidelines that we have
seen in the assert and enforce chapter (page 219):

• If the check is guarding against a coding error, then it should be in the
in block. For example, if the function is called only from other parts of
the program, likely to help with achieving a functionality of it, then the
parameter values are entirely the responsibility of the programmer. For
that reason, the preconditions of such a function should be checked in
its in block.

• If the function cannot achieve some task for any other reason, including
invalid parameter values, then it must throw an exception, conveniently
by enforce.

To see an example of this, let's define a function that returns a slice of
the middle of another slice. Let's assume that this function is for the
consumption of the users of the module, as opposed to being an internal
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function used by the module itself. Since the users of this module can
call this function by various and potentially invalid parameter values, it
would be appropriate to check the parameter values every time the
function is called. It would be insufficient to only check them at
program development time, after which contracts can be disabled by
‑release.

For that reason, the following function validates its parameters by
calling enforce in the function body instead of an assert check in the
in block:

import std.exception;

inout(int)[] middle(inout(int)[] originalSlice, size_t width)
out (result)
{

assert(result.length == width);
}
body
{

enforce(originalSlice.length >= width);

immutable start = (originalSlice.length - width) / 2;
immutable end = start + width;

return originalSlice[start .. end];
}

unittest
{

auto slice = [1, 2, 3, 4, 5];

assert(middle(slice, 3) == [2, 3, 4]);
assert(middle(slice, 2) == [2, 3]);
assert(middle(slice, 5) == slice);

}

void main()
{}

There isn't a similar problem with the out blocks. Since the return value
of every function is the responsibility of the programmer,
postconditions must always be checked in the out blocks. The function
above follows this guideline.

• Another criterion to consider when deciding between in blocks versus
enforce is to consider whether the condition is recoverable. If it is
recoverable by the higher layers of code, then it may be more
appropriate to throw an exception, conveniently by enforce.

42.5 Exercise

• Write a program that increases the total points of two football (soccer)
teams according to the result of a game.

The first two parameters of this function are the goals that each team
has scored. The other two parameters are the points of each team before
the game. This function should adjust the points of the teams according
to the goals that they have scored. As a reminder, the winner takes 3
points and the loser takes no point. In the event of a draw, both teams
get 1 point each.
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Additionally, the function should indicate which team has been the
winner: 1 if the first team has won, 2 if the second team has won, and 0 if
the game has ended in a draw.

Start with the following program and fill in the four blocks of the
function appropriately. Do not remove the assert checks in main();
they demonstrate how this function is expected to work.

int addPoints(in int goals1,
in int goals2,
ref int points1,
ref int points2)

in
{

// ...
}
out (result)
{

// ...
}
body
{

int winner;

// ...

return winner;
}

unittest
{

// ...
}

void main()
{

int points1 = 10;
int points2 = 7;
int winner;

winner = addPoints(3, 1, points1, points2);
assert(points1 == 13);
assert(points2 == 7);
assert(winner == 1);

winner = addPoints(2, 2, points1, points2);
assert(points1 == 14);
assert(points2 == 8);
assert(winner == 0);

}

Note: It may be better to return an enum value from this function:

enum GameResult
{

firstWon, secondWon, draw
}

GameResult addPoints(in int goals1,
in int goals2,
ref int points1,
ref int points2)

// ...

I chose to return an int for this exercise, so that the return value can be
checked against the valid values of 0, 1, and 2.

The solution is on page 712.
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43 Lifetimes and Fundamental Operations

We will soon cover structs, the basic feature that allows the programmer to define
application-specific types. Structs are for combining fundamental types and other
structs together to define higher-level types that behave according to special
needs of programs. After structs, we will learn about classes, which are the basis
of the object oriented programming features of D.

Before getting to structs and classes, it will be better to talk about some
important concepts first. These concepts will help understand structs and classes
and some of their differences.

We have been calling any piece of data that represented a concept in a program
a variable. In a few places we have called struct and class variables specifically as
objects. I will continue calling both of these concepts variables in this chapter.

Although this chapter includes only fundamental types, slices, and associative
arrays; these concepts apply to used-defined types as well.

43.1 Lifetime of a variable
The time between when a variable is defined and when it is finalized is the
lifetime of that variable. Although it is the case for many types, becoming
unavailable and being finalized need not be at the same time.

You would remember from the Name Space chapter (page 109) how variables
become unavailable. In simple cases, exiting the scope where a variable has been
defined would make that variable unavailable.

Let's consider the following example as a reminder:

void speedTest()
{

int speed; // Single variable ...

foreach (i; 0 .. 10) {
speed = 100 + i; // ... takes 10 different values.
// ...

}
} // ← 'speed' is unavailable beyond this point.

The lifetime of the speed variable in that code ends upon exiting the
speedTest() function. There is a single variable in the code above, which takes
ten different values from 100 to 109.

When it comes to variable lifetimes, the following code is very different
compared to the previous one:

void speedTest()
{

foreach (i; 0 .. 10) {
int speed = 100 + i; // Ten separate variables.
// ...

} // ← Lifetime of each variable ends here.
}

There are ten separate variables in that code, each taking a single value. Upon
every iteration of the loop, a new variable starts its life, which eventually ends at
the end of each iteration.

43.2 Lifetime of a parameter
The lifetime of a parameter depends on its qualifiers:
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ref: The parameter is just an alias of the actual variable that is specified when
calling the function. ref parameters do not affect the lifetimes of actual
variables.
in: For value types, the lifetime of the parameter starts upon entering the function
and ends upon exiting it. For reference types, the lifetime of the parameter is the
same as with ref. (We will see value types and reference types in the next
chapter.)
out: Same with ref, the parameter is just an alias of the actual variable that is
specified when calling the function. The only difference is that the variable is set
to its .init value automatically upon entering the function.
lazy: The life of the parameter starts when the parameter is actually used and
ends right then.

The following example uses these four types of parameters and explains their
lifetimes in program comments:

void main()
{

int main_in; /* The value of main_in is copied to the
* parameter. */

int main_ref; /* main_ref is passed to the function as
* itself. */

int main_out; /* main_out is passed to the function as
* itself. Its value is set to int.init
* upon entering the function. */

foo(main_in, main_ref, main_out, aCalculation());
}

void foo(
in int p_in, /* The lifetime of p_in starts upon

* entering the function and ends upon
* exiting the function. */

ref int p_ref, /* p_ref is an alias of main_ref. */

out int p_out, /* p_out is an alias of main_out. Its
* value is set to int.init upon
* entering the function. */

lazy int p_lazy) /* The lifetime of p_lazy starts when it
* is used and ends when its use
* ends. Its value is calculated by
* calling aCalculation() every time
* p_lazy is used in the function. */

{
// ...

}

int aCalculation()
{

int result;
// ...
return result;

}

43.3 Fundamental operations
Regardless of its type, there are three fundamental operations throughout the
lifetime of a variable:

• Initialization: The start of its life.
• Finalization: The end of its life.
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• Assignment: Changing its value at once.

To be considered an object, it must first be initialized. There may be final
operations for some types. The value of a variable may change during its lifetime.

Initialization
Every variable must be initialized before being used. Initialization involves two
steps:

1. Reserving space for the variable: This space is where the value of the
variable is stored in memory.

2. Construction: Setting the first value of the variable on that space (or the
first values of the members of structs and classes).

Every variable lives in a place in memory that is reserved for it. Some of the code
that the compiler generates is about reserving space for each variable.

Let's consider the following variable:

int speed = 123;

The number of bytes that the variable speed occupies is the size of an int. If we
visualize the memory as a ribbon going from left to right, we can imagine the
variable living on some part of it:

--+-----+-----+-----+--
|     | 123 |     |

--+-----+-----+-----+--

The memory location that a variable is placed at is called its address. In a sense,
the variable lives at that address. When the value of a variable is changed, the
new value is stored at the same place:

++speed;

The new value would be at the same place where the old value has been:

--+-----+-----+-----+--
|     | 124 |     |

--+-----+-----+-----+--

Construction is necessary to prepare variables for use. Since a variable cannot be
used reliably before being constructed, it is performed by the compiler
automatically.

Variables can be constructed in three ways:

• By their default value: when the programmer does not specify a value
explicitly

• By copying: when the variable is constructed as a copy of another
variable of the same type

• By a specific value: when the programmer specifies a value explicitly

When a value is not specified, the value of the variable would be the default value
of its type, i.e. its .init value.

int speed;
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The value of speed above is int.init, which happens to be zero. Naturally, a
variable that is constructed by its default value may have other values during its
lifetime (unless it is immutable).

File file;

With the definition above, the variable file is a File object that is not yet
associated with an actual file on the file system. It is not usable until it is modified
to be associated with a file.

Variables are sometimes constructed as a copy of another variable:

int speed = otherSpeed;

speed above is constructed by the value of otherSpeed.
As we will see in later chapters, this operation has a different meaning for class

variables:

auto classVariable = otherClassVariable;

Although classVariable starts its life as a copy of otherClassVariable, there
is a fundamental difference with classes: Although speed and otherSpeed are
distinct values, classVariable and otherClassVariable both provide access to
the same value. This is the fundamental difference between value types and
reference types. We will cover this topic in the next chapter.

Finally, variables can be constructed by the value of an expression of a
compatible type:

int speed = someCalculation();

speed above would be constructed by the return value of someCalculation().

Finalization
Finalizing is the final operations that are executed for a variable and reclaiming
its memory:

1. Destruction: The final operations that must be executed for the variable.
2. Reclaiming the variable's memory: Reclaiming the piece of memory

that the variable has been living on.

For simple fundamental types, there are no final operations to execute. For
example, the value of a variable of type int is not set back to zero. For such
variables there is only reclaiming their memory, so that it will be used for other
variables later.

On the other hand, some types of variables require special operations during
finalization. For example, a File object would need to write the characters that
are still in its output buffer to disk and notify the file system that it no longer uses
the file. These operations are the destruction of a File object.

Final operations of arrays are at a little higher-level: Before finalizing the array,
first its elements are destructed. If the elements are of a simple fundamental type
like int, then there are no special final operations for them. If the elements are of
a struct or a class type that needs finalization, then those operations are executed
for each element.

Associative arrays are similar to arrays. Additionally, the keys may also be
finalized if they are of a type that needs destruction.
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The garbage collector: D is a garbage-collected language. In such languages
finalizing an object need not be initiated explicitly by the programmer. When a
variable's lifetime ends, its finalization is automatically handled by the garbage
collector. We will cover the garbage collector and special memory management
in a later chapter.

Variables can be finalized in two ways:

• When the lifetime ends: The finalization happens upon the end of life of
the variable.

• Some time in the future: The finalization happens at an indeterminate
time in the future by the garbage collector.

Which of the two ways a variable will be finalized depends primarily on its type.
Some types like arrays, associative arrays and classes are normally destructed by
the garbage collector some time in the future.

Assignment
The other fundamental operation that a variable experiences during its lifetime is
assignment.

For simple fundamental types assignment is merely changing the value of the
variable. As we have seen above on the memory representation, an int variable
would start having the value 124 instead of 123. However, more generally,
assignment consists of two steps, which are not necessarily executed in the
following order:

• Destructing the old value
• Constructing the new value

These two steps are not important for simple fundamental types that don't need
destruction. For types that need destruction, it is important to remember that
assignment is a combination of the two steps above.
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44 Value Types and Reference Types

This chapter introduces the concepts of value types and reference types. These
concepts are particularly important to understand the differences between
structs and classes.

This chapter also gets into more detail with the & operator.
The chapter ends with a table that contains the outcomes of the following two

concepts for different types of variables:

• Value comparison
• Address comparison

44.1 Value types
Value types are easy to describe: Variables of value types carry values. For
example, all of the integer and floating point types are values types. Although not
immediately obvious, fixed-length arrays are value types as well.

For example, a variable of type int has an integer value:

int speed = 123;

Carrying on from the previous chapter and representing the memory as a ribbon
going from left to right, such a variable would be living on some part of the
memory:

speed
---+-----+---

| 123 |
---+-----+---

When variables of value types are copied, they get their own values:

int newSpeed = speed;

The new variable would have a place and a value of its own:

speed          newSpeed
---+-----+---   ---+-----+---

| 123 |         | 123 |
---+-----+---   ---+-----+---

Naturally, modifications that are made to these variables are independent:

speed = 200;

The value of the other variable does not change:

speed          newSpeed
---+-----+---   ---+-----+---

| 200 |         | 123 |
---+-----+---   ---+-----+---

The use of assert checks below
The following examples contain assert checks to indicate that their conditions
are true. In other words, they are not checks in the normal sense, rather my way
of telling to the reader that "this is true".
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For example, the check assert(speed == newSpeed) below means "speed is
equal to newSpeed".

Value identity
As the memory representations above indicate, there are two types of equality
that concern variables:

• Value equality: The == operator that appear in many examples
throughout the book compares variables by their values. When two
variables are said to be equal in that sense, their values are equal.

• Value identity: In the sense of owning separate values, speed and
newSpeed have separate identities. Even when their values are equal,
they are different variables.

int speed = 123;
int newSpeed = speed;
assert(speed == newSpeed);
speed = 200;
assert(speed != newSpeed);

Address-of operator, &
We have been using the & operator so far with readf(). The & operator tells
readf() where to put the input data.

The addresses of variables can be used for other purposes as well. The following
code simply prints the addresses of two variables:

int speed = 123;
int newSpeed = speed;

writeln("speed   : ", speed, " address: ", &speed);
writeln("newSpeed: ", newSpeed, " address: ", &newSpeed);

speed and newSpeed have the same value but their addresses are different:

speed   : 123 address: 7FFF4B39C738
newSpeed: 123 address: 7FFF4B39C73C

Note: It is normal for the addresses to have different values every time the program is
run. Variables live at parts of memory that happen to be available during that
particular execution of the program.

Addresses are normally printed in hexadecimal format.
Additionally, the fact that the two addresses are 4 apart indicates that those two

integers are placed next to each other in memory. (Note that the value of
hexadecimal C is 12, so the difference between 8 and 12 is 4.)

44.2 Reference variables
Before getting to reference types let's first define reference variables.

Terminology: We have been using the phrase to provide access to so far in
several contexts throughout the book. For example, slices and associative arrays
do not own any elements but provide access to elements that are owned by the D
runtime. Another phrase that is identical in meaning is being a reference of as in
"slices are references of zero or more elements", which is sometimes used even
shorter as to reference as in "this slice references two elements". Finally, the act of
accessing a value through a reference is dereferencing.

Value Types and Reference Types
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Reference variables are variables that act like aliases of other variables.
Although they look and are used like variables, they do not have values
themselves. Modifications made on a reference variable change the value of the
actual variable.

We have already used reference variables so far in two contexts:

• ref in foreach loops: The ref keyword makes the loop variable the
actual element that corresponds to that iteration. When the ref keyword
is not used, the loop variable is a copy of the actual element.

This can be demonstrated by the & operator as well. If their addresses
are the same, two variables would be referencing the same value (or the
same element in this case):

int[] slice = [ 0, 1, 2, 3, 4 ];

foreach (i, ref element; slice) {
assert(&element == &slice[i]);

}

Although they are separate variables, the fact that the addresses of
element and slice[i] are the same proves that they have the same
value identity.

In other words, element and slice[i] are references of the same
value. Modifying either of those affects the actual value. The following
memory layout indicates a snapshot of the iteration when i is 3:

slice[0] slice[1] slice[2] slice[3] slice[4]
⇢        ⇢        ⇢   (element)

--+--------+--------+--------+--------+---------+--
|    0   |    1   |    2   |    3   |    4    |

--+--------+--------+--------+--------+---------+--

• ref and out function parameters: Function parameters that are
specified as ref or out are aliases of the actual variable the function is
called with.

The following example demonstrates this case by passing the same
variable to separate ref and out parameters of a function. Again, the &
operator indicates that both parameters have the same value identity:

import std.stdio;

void main()
{

int originalVariable;
writeln("address of originalVariable: ", &originalVariable);
foo(originalVariable, originalVariable);

}

void foo(ref int refParameter, out int outParameter)
{

writeln("address of refParameter    : ", &refParameter);
writeln("address of outParameter    : ", &outParameter);
assert(&refParameter == &outParameter);

}

Although they are defined as separate parameters, refParameter and
outParameter are aliases of originalVariable:
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address of originalVariable: 7FFF24172958
address of refParameter    : 7FFF24172958
address of outParameter    : 7FFF24172958

44.3 Reference types
Variables of reference types have individual identities but they do not have
individual values. They provide access to existing variables.

We have already seen this concept with slices. Slices do not own elements, they
provide access to existing elements:

void main()
{

// Although it is named as 'array' here, this variable is
// a slice as well. It provides access to all of the
// initial elements:
int[] array = [ 0, 1, 2, 3, 4 ];

// A slice that provides access to elements other than the
// first and the last:
int[] slice = array[1 .. $ - 1];

// At this point slice[0] and array[1] provide access to
// the same value:
assert(&slice[0] == &array[1]);

// Changing slice[0] changes array[1]:
slice[0] = 42;
assert(array[1] == 42);

}

Contrary to reference variables, reference types are not simply aliases. To see this
distinction, let's define another slice as a copy of one of the existing slices:

int[] slice2 = slice;

The two slices have their own adresses. In other words, they have separate
identities:

assert(&slice != &slice2);

The following list is a summary of the differences between reference variables
and reference types:

• Reference variables do not have identities, they are aliases of existing
variables.

• Variables of reference types have identities but they do not own values;
rather, they provide access to existing values.

The way slice and slice2 live in memory can be illustrated as in the following
figure:

slice        slice2
---+---+---+---+---+---+---  ---+---+---  ---+---+---

| 0 | 1 | 2 | 3 | 4 |        | o |        | o |
---+---+---+---+---+---+---  ---+-|-+---  ---+-|-+---

▲                    |            |
|                    |            |
+--------------------+------------+

The three elements that the two slices both reference are highlighted.
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One of the differences between C++ and D is that classes are reference types in
D. Although we will cover classes in later chapters in detail, the following is a
short example to demonstrate this fact:

class MyClass
{

int member;
}

Class objects are constructed by the new keyword:

auto variable = new MyClass;

variable is a reference to an anonymous MyClass object that has been
constructed by new:

(anonymous MyClass object)    variable
---+-------------------+---  ---+---+---

|        ...        |        | o |
---+-------------------+---  ---+-|-+---

▲                    |
|                    |
+--------------------+

Just like with slices, when variable is copied, the copy becomes another
reference to the same object. The copy has its own address:

auto variable = new MyClass;
auto variable2 = variable;
assert(variable == variable2);
assert(&variable != &variable2);

They are equal from the point of view of referencing the same object, but they are
separate variables:

(anonymous MyClass object)    variable    variable2
---+-------------------+---  ---+---+---  ---+---+---

|        ...        |        | o |        | o |
---+-------------------+---  ---+-|-+---  ---+-|-+---

▲                    |            |
|                    |            |
+--------------------+------------+

This can also be shown by modifying the member of the object:

auto variable = new MyClass;
variable.member = 1;

auto variable2 = variable; // They share the same object
variable2.member = 2;

assert(variable.member == 2); // The object that variable
// provides access to has
// changed.

Another reference type is associative arrays. When assigned, they too provide
access to the same set of elements:

string[int] byName =
[

1   : "one",
10  : "ten",
100 : "hundred",

];
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// The two associative arrays will be sharing the same
// set of elements
string[int] byName2 = byName;

// The mapping added through the second ...
byName2[4] = "four";

// ... is visible through the first.
assert(byName[4] == "four");

The difference in the assignment operation
With value types and reference variables, the assignment operation changes the
actual value:

void main()
{

int number = 8;

halve(number); // The actual value changes
assert(number == 4);

}

void halve(ref int dividend)
{

dividend /= 2;
}

On the other hand, with reference types, the assignment operation changes which
value is being accessed. For example, the assignment of the slice3 variable below
does not change the value of any element; rather, it changes what elements
slice3 is now a reference of:

int[] slice1 = [ 10, 11, 12, 13, 14 ];
int[] slice2 = [ 20, 21, 22 ];

int[] slice3 = slice1[1 .. 3]; // Access to the elements
// of slice1 with indexes 1
// and 2

slice3[0] = 777;
assert(slice1 == [ 10, 777, 12, 13, 14 ]);

// This assignment does not modify the elements that
// slice3 is providing access to, it makes slice3 provide
// access to other elements.
slice3 = slice2[$ - 1 .. $]; // Access to the last element

slice3[0] = 888;
assert(slice2 == [ 20, 21, 888 ]);

Let's demonstrate the same effect this time with two objects of the MyClass type:

auto variable1 = new MyClass;
variable1.member = 1;

auto variable2 = new MyClass;
variable2.member = 2;

auto aCopy = variable1;
aCopy.member = 3;

aCopy = variable2;
aCopy.member = 4;

assert(variable1.member == 3);
assert(variable2.member == 4);
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The aCopy variable above first references the same object as variable1, and then
the same object as variable2. As a consequence, the .member that is modified
through aCopy is first variable1's and then variable2's.

Variables of reference types may not be referencing any object
With a reference variable, there is always an actual variable that it is an alias of; it
can not start its life without a variable. On the other hand, variables of reference
types can start their lives without referencing any object.

For example, a MyClass variable can be defined without an actual object
having been created by new:

MyClass variable;

Such variables have the special value of null. We will cover null and the is
keyword in the next chapter.

44.4 Fixed-length arrays are value types, slices are reference
types
D's arrays and slices diverge when it comes to value type versus reference type.

As we have already seen above, slices are reference types. On the other hand,
fixed-length arrays are value types. They own their elements and behave as
individual values:

int[3] array1 = [ 10, 20, 30 ];

auto array2 = array1; // array2's elements are different
// from array1's

array2[0] = 11;

// First array is not affected:
assert(array1[0] == 10);

array1 is a fixed-length array because its length is specified when it has been
defined. Since auto makes the compiler infer the type of array2, it is a fixed-
length array as well. The values of array2's elements are copied from the values
of the elements of array1. Each array has its own elements. Modifying an
element through one does not affect the other.

44.5 Experiment
The following program is an experiment of applying the == operator to different
types. It applies the operator to both variables of a certain type and to the
addresses of those variables. The program produces the following output:

Type of variable                      a == b  &a == &b
===========================================================================

variables with equal values (value type)     true    false
variables with different values (value type)    false    false

foreach with 'ref' variable     true     true
foreach without 'ref' variable     true    false
function with 'out' parameter     true     true
function with 'ref' parameter     true     true
function with 'in' parameter     true    false

slices providing access to same elements     true    false
slices providing access to different elements    false    false

MyClass variables to same object (reference type)     true    false
MyClass variables to different objects (reference type)    false    false

The table above has been generated by the following program:

import std.stdio;
import std.conv;
import std.array;
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int moduleVariable = 9;

class MyClass
{

int member;
}

void printHeader()
{

immutable dchar[] header =
"                     Type of variable"
"                      a == b  &a == &b";

writeln();
writeln(header);
writeln(replicate("=", header.length));

}

void printInfo(const dchar[] label,
bool valueEquality,
bool addressEquality)

{
writefln("%55s%9s%9s",

label,
to!string(valueEquality),
to!string(addressEquality));

}

void main()
{

printHeader();

int number1 = 12;
int number2 = 12;
printInfo("variables with equal values (value type)",

number1 == number2,
&number1 == &number2);

int number3 = 3;
printInfo("variables with different values (value type)",

number1 == number3,
&number1 == &number3);

int[] slice = [ 4 ];
foreach (i, ref element; slice) {

printInfo("foreach with 'ref' variable",
element == slice[i],
&element == &slice[i]);

}

foreach (i, element; slice) {
printInfo("foreach without 'ref' variable",

element == slice[i],
&element == &slice[i]);

}

outParameter(moduleVariable);
refParameter(moduleVariable);
inParameter(moduleVariable);

int[] longSlice = [ 5, 6, 7 ];
int[] slice1 = longSlice;
int[] slice2 = slice1;
printInfo("slices providing access to same elements",

slice1 == slice2,
&slice1 == &slice2);

int[] slice3 = slice1[0 .. $ - 1];
printInfo("slices providing access to different elements",

slice1 == slice3,
&slice1 == &slice3);
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auto variable1 = new MyClass;
auto variable2 = variable1;
printInfo(

"MyClass variables to same object (reference type)",
variable1 == variable1,
&variable1 == &variable2);

auto variable3 = new MyClass;
printInfo(

"MyClass variables to different objects (reference type)",
variable1 == variable3,
&variable1 == &variable3);

}

void outParameter(out int parameter)
{

printInfo("function with 'out' parameter",
parameter == moduleVariable,
&parameter == &moduleVariable);

}

void refParameter(ref int parameter)
{

printInfo("function with 'ref' parameter",
parameter == moduleVariable,
&parameter == &moduleVariable);

}

void inParameter(in int parameter)
{

printInfo("function with 'in' parameter",
parameter == moduleVariable,
&parameter == &moduleVariable);

}

Notes:

• The program makes use of a module variable when comparing different
types of function parameters. Module variables are defined at module
level, outside of all of the functions. They are globally accessible to all of
the code in the module.

• The replicate() function of the std.array module takes a range (the
"=" above) and repeats it specified number of times.

44.6 Summary

• Variables of value types have their own values and adresses.
• Reference variables do not have their own values nor addresses. They

are aliases of existing variables.
• Variables of reference types have their own addresses but the values that

they reference do not belong to them.
• With reference types, assignment does not change value, it changes

which value is being accessed.
• Variables of reference types may be null.
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45 The null Value and the is Operator

In the previous chapter we have seen that a variable of a reference type need not
be referencing an object:

MyClass referencesAnObject = new MyClass;

MyClass variable; // does not reference an object

Being a reference type, variable above does have an identity but it does not
reference any object yet. Such an object can be pictured as having a place in the
memory as in the following picture:

variable
---+------+---

| null |
---+------+---

A reference that does not reference any value is null. We will expand on this
below.

Such a variable is in an almost useless state. Since there is no MyClass object
that it references, it cannot be used in a context where an actual MyClass object is
needed:

import std.stdio;

class MyClass
{

int member;
}

void use(MyClass variable)
{

writeln(variable.member); // ← BUG
}

void main()
{

MyClass variable;
use(variable);

}

As there is no object that is referenced by the parameter that use() receives,
attempting to access a member of a non-existing object results in a program
crash:

$ ./deneme
Segmentation fault

"Segmentation fault" is an indication that the program has been terminated by
the operating system because of attempting to access an illegal memory address.

45.1 The null value
The special value null can be printed just like any other value.

writeln(null);

The output:

null
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A null variable can be used only in two contexts:

1. Assigning an object to it

variable = new MyClass; // now references an object

The assignment above makes variable provide access to the newly
constructed object. From that point on, variable can be used for any
valid operation of the MyClass type.

2. Determining whether it is null
However, because the == operator needs actual objects to compare, the

expression below cannot be compiled:

if (variable == null) // ← compilation ERROR

For that reason, whether a variable is null must be determined by the
is operator.

45.2 The is operator
This operator answers the question "does have the null value?":

if (variable is null) {
// Does not reference any object

}

is can be used with other types of variables as well. In the following use, it
compares the values of two integers:

if (speed is newSpeed) {
// Their values are equal

} else {
// Their values are different

}

When used with slices, it determines whether the two slices reference the same
set of elements:

if (slice is slice2) {
// They provide access to the same elements

}

45.3 The !is operator
!is is the opposite of is. It produces true when the values are different:

if (speed !is newSpeed) {
// Their values are different

}

45.4 Assigning the null value
Assigning the null value to a variable of a reference type makes that variable
stop referencing its current object.

If that assignment happens to be terminating the very last reference to the
actual object, then the actual object becomes a candidate for finalization by the
garbage collector. After all, not being referenced by any variable means that the
object is not being used in the program at all.

Let's look at the example from the previous chapter where two variables have
been referencing the same object:
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auto variable = new MyClass;
auto variable2 = variable;

The following is a representation of the state of the memory after executing that
code:

(anonymous MyClass object)    variable    variable2
---+-------------------+---  ---+---+---  ---+---+---

|        ...        |        | o |        | o |
---+-------------------+---  ---+-|-+---  ---+-|-+---

▲                    |            |
|                    |            |
+--------------------+------------+

Assigning the null value to one of these variables breaks its relationship with the
object:

variable = null;

At this point there is only variable2 that references the MyClass object:

(anonymous MyClass object)    variable    variable2
---+-------------------+---  ---+----+---  ---+---+---

|        ...        |        |null|        | o |
---+-------------------+---  ---+----+---  ---+-|-+---

▲                                  |
|                                  |
+----------------------------------+

Assigning null to the last reference would make the MyClass object unreachable:

variable2 = null;

Such unreachable objects are finalized by the garbage collector at some time in
the future. From the point of view of the program, the object does not exist:

variable      variable2
---+-------------------+---  ---+----+---  ---+----+---

|                   |        |null|        |null|
---+-------------------+---  ---+----+---  ---+----+--

We had discussed ways of emptying an associative array in the exercises section
of the Associative Arrays chapter (page 136). We now know a fourth method:
Assigning null to an associative array variable will break the relationship of that
variable with the elements:

string[int] names;
// ...
names = null; // Not providing access to any element

Similar to the MyClass examples, if names has been the last reference to the
elements of the associative array, those elements would be finalized by the
garbage collector.

Slices can be assigned null as well:

int[] slice = otherSlice[ 10 .. 20 ];
// ...
slice = null; // Not providing access to any element
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45.5 Summary

• null is the value indicating that a variable does not provide access to
any value

• References that have the null value can only be used in two operations:
assigning a value to them and determining whether they are null or not

• Since the == operator may have to access an actual object, determining
whether a variable is null must be performed by the is operator

• !is is the opposite of is
• Assigning null to a variable makes that variable provide access to

nothing
• Objects that are not referenced by any variable are finalized by the

garbage collector
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46 Type Conversions

Variables must be compatible with the expressions that they take parts in. As it
has probably been obvious by the programs that we have seen so far, D is a
statically typed language, meaning that the compatibility of types is validated at
compile time.

All of the expressions that we have written so far always had compatible types
because otherwise the code would be rejected by the compiler. The following is an
example of a code that has incompatible types:

char[] slice;
writeln(slice + 5); // ← compilation ERROR

The compiler rejects the code due to the incompatible types char[] and int for
the addition operation:

Error: incompatible types for ((slice) + (5)): 'char[]' and 'int'

Type incompatibility does not mean that the types are different; different types
can indeed be used in expressions safely. For example, an int variable can safely
be used in place of a double value:

double sum = 1.25;
int increment = 3;
sum += increment;

Even though sum and increment are of different types, the code above is valid
because incrementing a double variable by an int value is legal.

46.1 Automatic type conversions
Automatic type conversions are also called implicit type conversions.

Although double and int are compatible types in the expression above, the
addition operation must still be evaluated as a specific type at the microprocessor
level. As you would remember from the Floating Point Types chapter (page 62),
the 64-bit type double is wider (or larger) than the 32-bit type int. Additionally,
any value that can fit an int can fit a double.

When the compiler encounters an expression that involves mismatched types,
it first converts the parts of the expressions to a common type and then evaluates
the overall expression. The automatic conversions that are performed by the
compiler are in the direction that avoids data loss. For example, double can hold
any value that int can hold but the opposite is not true. The += operation above
can work because any int value can safely be converted to double.

The value that has been generated automatically as a result of a conversion is
always an anonymous (and often temporary) variable. The original value does not
change. For example, the automatic conversion during += above does not change
the type of increment; it is always an int. Rather, a temporary value of type
double is constructed by the value of increment. The conversion that takes place
in the background is equivalent to the following code:

{
double an_anonymous_double_value = increment;
sum += an_anonymous_double_value;

}
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The compiler converts the int value to a temporary double value and uses that
value in the operation. In this example, the temporary variable lives only during
the += operation.

Automatic conversions are not limited to arithmetic operations. There are
other cases where types are converted to other types automatically. As long as the
conversions are valid, the compiler takes advantage of type conversions to be able
to use values in expressions. For example, a byte value can be passed for an int
parameter:

void func(int number)
{

// ...
}

void main()
{

byte smallValue = 7;
func(smallValue); // automatic type conversion

}

In the code above, first a temporary int value is constructed and the function is
called with that value.

Integer promotions
Values of types that are on the left-hand side of the following table never take part
in arithmetic expressions as their actual types. Each type is first promoted to the
type that is on the right-hand side of the table.

From To
bool int
byte int
ubyte int
short int
ushort int
char int
wchar int
dchar uint

Integer promotions are applied to enum values as well.
The reasons for integer promotions are both historical (where the rules come

from C) and the fact that the natural arithmetic type for the microprocessor is
int. For example, although the following two variables are both ubyte, the
addition operation is performed only after both of the values are individually
promoted to int:

ubyte a = 1;
ubyte b = 2;
writeln(typeof(a + b).stringof); // the addition is not in ubyte

The output:

int

Note that the types of the variables a and b do not change; only their values are
temporarily promoted to int for the duration of the addition operation.

Arithmetic conversions
There are other conversion rules that are applied for arithmetic operations. In
general, automatic arithmetic conversions are applied in the safe direction: from
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the narrow type to the wider type. Although this rule is easy to remember and is
correct in most cases, automatic conversion rules are very complicated and in the
case of signed-to-unsigned conversions, carry some risk of bugs.

The arithmetic conversion rules are the following:

1. If one of the values is real, then the other value is converted to real
2. Else, if one of the values is double, then the other value is converted to

double
3. Else, if one of the values is float, then the other value is converted to

float
4. Else, first integer promotions are applied according to the table above, and

then the following rules are followed:

1. If both types are the same, then no more steps needed
2. If both types are signed or both types are unsigned, then the

narrower value is converted to the wider type
3. If the signed type is wider than the unsigned type, then the

unsigned value is converted to the signed type
4. Otherwise the signed type is converted to the unsigned type

Unfortunately, the last rule above can cause subtle bugs:

int a = 0;
int b = 1;
size_t c = 0;
writeln(a - b + c); // Surprising result!

Surprisingly, the output is not -1, but size_t.max:

18446744073709551615

Although one would expect (0 - 1 + 0) to be calculated as -1, according to the
rules above, the type of the entire expression is size_t, not int; and since size_t
cannot hold negative values, the result underflows and becomes size_t.max.

const conversions
As we have seen earlier in the Function Parameters chapter (page 178), reference
types can automatically be converted to the const of the same type. Conversion
to const is safe because the width of the type does not change and const is a
promise to not modify the variable:

char[] parenthesized(const char[] text)
{

return "{" ~ text ~ "}";
}

void main()
{

char[] greeting;
greeting ~= "hello world";
parenthesized(greeting);

}

The mutable greeting above is automatically converted to a const char[] as it
is passed to parenthesized().

As we have also seen earlier, the opposite conversion is not automatic. A const
reference is not automatically converted to a mutable reference:
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char[] parenthesized(const char[] text)
{

char[] argument = text; // ← compilation ERROR
// ...
}

Note that this topic is only about references; since variables of value types are
copied, it is not possible to affect the original through the copy anyway:

const int totalCorners = 4;
int theCopy = totalCorners; // compiles (value type)

The conversion from const to mutable above is legal because the copy is not a
reference to the original.

immutable conversions
Because immutable specifies that a variable can never change, neither conversion
from immutable nor to immutable are automatic:

string a = "hello"; // immutable characters
char[] b = a; // ← compilation ERROR
string c = b; // ← compilation ERROR

As with const conversions above, this topic is also only about reference types.
Since variables of value types are copied anyway, conversions to and from
immutable are valid:

immutable a = 10;
int b = a; // compiles (value type)

enum conversions
As we have seen in the enum chapter (page 151), enum is for defining named
constants:

enum Suit { spades, hearts, diamonds, clubs }

Remember that since no values are specified explicitly above, the values of the
enum members start with zero and are automatically incremented by one.
Accordingly, the value of Suit.clubs is 3.
enum values are atomatically converted to integral types. For example, the value

of Suit.hearts is taken to be 1 in the following calculation and the result
becomes 11:

int result = 10 + Suit.hearts;
assert(result == 11);

The opposite conversion is not automatic: Integer values are not automatically
converted to corresponding enum values. For example, the suit variable below
might be expected to become Suit.diamonds, but the code cannot be compiled:

Suit suit = 2; // ← compilation ERROR

As we will see below, conversions from integers to enum values are still possible
but they must be explicit.

bool conversions
false and true are automatically converted to 0 and 1, respectively:
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int a = false;
assert(a == 0);

int b = true;
assert(b == 1);

The opposite conversion is also automatic but only for two special values. The
literal values 0 and 1 are converted automatically to false and true, respectively:

bool a = 0;
assert(!a); // false

bool b = 1;
assert(b); // true

Other literal values cannot be converted to bool automatically:

bool b = 2; // ← compilation ERROR

Automatic conversions to bool in conditional statements
Some statements make use of logical expressions: if, while, etc. For the logical
expressions of such statements, not only bool but most other types can be used
as well. The value zero is automatically converted to false and the non-zero
values are automatically converted to true.

int i;
// ...

if (i) { // ← int value is being used as a logical expression
// ... 'i' is not zero

} else {
// ... 'i' is zero

}

Similarly, null references are automatically converted to false and non-null
references are automatically converted to true. This makes it easy to ensure that
a reference is non-null before actually using it:

int[] a;
// ...

if (a) { // ← automatic bool conversion
// ... not null; 'a' can be used ...

} else {
// ... null; 'a' cannot be used ...

}

46.2 Explicit type conversions
As we have seen above, there are cases where automatic conversions are not
available:

• Conversions from wider types to narrower types
• Conversions from const to mutable
• immutable conversions
• Conversions from integers to enum values
• etc.
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If such a conversion is known to be safe, the programmer can explicitly ask for a
type conversion by one of the following methods:

• Construction syntax
• std.conv.to function
• std.exception.assumeUnique function
• cast operator

Construction syntax
The struct and class construction syntax is available for other types as well:

DestinationType(value)

For example, the following conversion makes a double value from an int value,
presumably to preserve the fractional part of the division operation:

int i;
// ...
const result = double(i) / 2;

to() for most conversions
The to() function, which we have already used mostly to convert values to
string, can actually be used for many other types. Its complete syntax is the
following:

to!(DestinationType)(value)

Being a template, to() can take advantage of the shortcut template parameter
notation: When the destination type consists only of a single token (generally, a
single word), it can be called without the first pair of parentheses:

to!DestinationType(value)

The following program is trying to convert a double value to short and a string
value to int:

void main()
{

double d = -1.75;

short s = d; // ← compilation ERROR
int i = "42"; // ← compilation ERROR

}

Since not every double value can be represented as a short and not every string
can be represented as an int, those conversions are not automatic. When it is
known by the programmer that the conversions are in fact safe or that the
potential consequences are acceptable, then the types can be converted by to():

import std.conv;

void main()
{

double d = -1.75;

short s = to!short(d);
assert(s == -1);
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int i = to!int("42");
assert(i == 42);

}

Note that because short cannot carry fractional values, the converted value is -1.
to() is safe: It throws an exception when a conversion is not possible.

assumeUnique() for fast immutable conversions
to() can perform immutable conversions as well:

int[] slice = [ 10, 20, 30 ];
auto immutableSlice = to!(immutable int[])(slice);

In order to guarantee that the elements of immutableSlice will never change, it
cannot share the same elements with slice. For that reason, to() creates an
additional slice with immutable elements above. Otherwise, modifications to the
elements of slice would cause the elements of immutableSlice change as well.
This behavior is the same with the .idup property of arrays.

We can see that the elements of immutableSlice are indeed copies of the
elements of slice by looking at the addresses of their first elements:

assert(&(slice[0]) != &(immutableSlice[0]));

Sometimes this copy is unnecessary and may slow the speed of the program
noticeably in certain cases. As an example of this, let's look at the following
function that takes an immutable slice:

void calculate(immutable int[] coordinates)
{

// ...
}

void main()
{

int[] numbers;
numbers ~= 10;
// ... various other modifications ...
numbers[0] = 42;

calculate(numbers); // ← compilation ERROR
}

The program above cannot be compiled because the caller is not passing an
immutable argument to calculate(). As we have seen above, an immutable slice
can be created by to():

import std.conv;
// ...

auto immutableNumbers = to!(immutable int[])(numbers);
calculate(immutableNumbers); // ← now compiles

However, if numbers is needed only to produce this argument and will never be
used after the function is called, copying its elements to immutableNumbers
would be unnecessary. assumeUnique() makes the elements of a slice immutable
without copying:

import std.exception;
// ...

auto immutableNumbers = assumeUnique(numbers);
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calculate(immutableNumbers);
assert(numbers is null); // the original slice becomes null

assumeUnique() returns a new slice that provides immutable access to the
existing elements. It also makes the original slice null to prevent the elements
from accidentally being modified through it.

The cast operator
Both to() and assumeUnique() make use of the conversion operator cast,
which is available to the programmer as well.

The cast operator takes the destination type in parentheses:

cast(DestinationType)value

cast is powerful even for conversions that to() cannot safely perform. For
example, to() fails for the following conversions at runtime:

Suit suit = to!Suit(7); // ← throws exception
bool b = to!bool(2); // ← throws exception

std.conv.ConvException@phobos/std/conv.d(1778): Value (7)
does not match any member value of enum 'Suit'

Sometimes only the programmer can know whether an integer value
corresponds to a valid enum value or that it makes sense to treat an integer value
as a bool. The cast operator can be used when the conversion is known to be
correct according the program's logic:

// Probably incorrect but possible:
Suit suit = cast(Suit)7;

bool b = cast(bool)2;
assert(b);

cast is the only option when converting to and from pointer types:

void * v;
// ...
int * p = cast(int*)v;

Although rare, some C library interfaces make it necessary to store a pointer
value as a non-pointer type. If it is guaranteed that the conversion will preserve
the actual value, cast can convert between pointer and non-pointer types as well:

size_t savedPointerValue = cast(size_t)p;
// ...
int * p2 = cast(int*)savedPointerValue;

46.3 Summary

• Automatic type conversions are mostly in the safe direction: From the
narrower type to the wider type and from mutable to const.

• However, conversions to unsigned types may have surprising effects
because unsigned types cannot have negative values.

• enum types can automatically be converted to integer values but the
opposite conversion is not automatic.
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• false and true are automatically converted to 0 and 1 respectively.
Similarly, zero values are automatically converted to false and non-
zero values are automatically converted to true.

• null references are automatically converted to false and non-null
references are automatically converted to true.

• The construction syntax can be used for explicit conversions.
• to() covers most of the explicit conversions.
• assumeUnique() converts to immutable without copying.
• The cast operator is the most powerful conversion tool.
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47 Structs

As has been mentioned several times earlier in the book, fundamental types are
not suitable to represent higher-level concepts. For example, although a value of
type int is suitable to represent the hour of day, two int variables would be more
suitable together to represent a point in time: one for the hour and the other for
the minute.

Structs are the feature that allow defining new types by combining already
existing other types. The new type is defined by the struct keyword. Most of the
content of this chapter is directly applicable to classes as well. Especially the
concept of combining existing types to define a new type is exactly the same for
them.

This chapter covers only the basic features of structs. We will see more of
structs in the following chapters:

• Member Functions (page 288)
• const ref Parameters and const Member Functions (page 294)
• Constructor and Other Special Functions (page 298)
• Operator Overloading (page 313)
• Encapsulation and Protection Attributes (page 390)
• Properties (page 400)
• Contract Programming for Structs and Classes (page 405)
• foreach with Structs and Classes (page 504)

To understand how useful structs are, let's take a look at the addDuration()
function that we had defined earlier in the assert and enforce chapter (page
219). The following definition is from the exercise solution of that chapter:

void addDuration(in int startHour, in int startMinute,
in int durationHour, in int durationMinute,
out int resultHour, out int resultMinute)

{
resultHour = startHour + durationHour;
resultMinute = startMinute + durationMinute;
resultHour += resultMinute / 60;

resultMinute %= 60;
resultHour %= 24;

}

Note: I will ignore the in, out, and unittest blocks in this chapter to keep the code
samples short.

Although the function above clearly takes six parameters, when the three pairs
of parameters are considered, it is conceptually taking only three bits of
information for the starting time, the duration, and the result.

47.1 Definition
The struct keyword defines a new type by combining variables that are related
in some way:

struct TimeOfDay
{

int hour;
int minute;

}
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The code above defines a new type named TimeOfDay, which consists of two
variables named hour and minute. That definition allows the new TimeOfDay
type to be used in the program just like any other type. The following code
demonstrates how similar its use is to an int's:

int number; // a variable
number = otherNumber; // taking the value of otherNumber

TimeOfDay time; // an object
time = otherTime; // taking the value of otherTime

The syntax of struct definition is the following:

struct TypeName
{

// ... member variables and functions ...
}

We will see member functions in later chapters.
The variables that a struct combines are called its members. According to this

definition, TimeOfDay has two members: hour and minute.

struct defines a type, not a variable
There is an important distinction here: Especially after the Name Space (page 109)
and Lifetimes and Fundamental Operations (page 239) chapters, the curly
brackets of struct definitions may give the wrong impression that the struct
members start and end their lives inside that scope. This is not true.

Member definitions are not variable definitions:

struct TimeOfDay
{

int hour; // ← Not a variable; will become a part of
//   a struct variable later.

int minute; // ← Not a variable; will become a part of
//   a struct variable later.

}

The definition of a struct determines the types and the names of the members
that the objects of that struct will have. Those member variables will be
constructed as parts of TimeOfDay objects that take part in the program:

TimeOfDay bedTime; // This object contains its own hour
// and minute member variables.

TimeOfDay wakeUpTime; // This object contains its own hour
// and minute member variables as
// well. The member variables of
// this object are not related to
// the member variables of the
// previous object.

Variables of struct and class types are called objects.

Coding convenience
Being able to combine the concepts of hour and minute together as a new type is
a great convenience. For example, the function above can be rewritten in a more
meaningful way by taking three TimeOfDay parameters instead of the existing six
int parameters:
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void addDuration(in TimeOfDay start,
in TimeOfDay duration,
out TimeOfDay result)

{
// ...

}

Note: It is not normal to add two variables that represent two points in time. For
example, it is meaningless to add the lunch time 12:00 to the breakfast time 7:30. It
would make more sense to define another type, appropriately called Duration, and to
add objects of that type to TimeOfDay objects. Despite this design error, I will continue
using only TimeOfDay objects in this chapter and introduce Duration in a later
chapter.

As you remember, functions return up-to a single value. That has precisely
been the reason why the earlier definition of addDuration() was taking two out
parameters: It could not return the hour and minute information as a single
value.

Structs remove this limitation as well: Since multiple values can be combined
as a single struct type, functions can return an object of such a struct,
effectively returning multiple values at once. addDuration() can now be defined
as returning its result:

TimeOfDay addDuration(in TimeOfDay start,
in TimeOfDay duration)

{
// ...

}

As a consequence, addDuration() now becomes a function that produces a
value, as opposed to being a function that has side effects. As you would
remember from the Functions chapter (page 155), producing results is preferred
over having side effects.

Structs can be members of other structs. For example, the following struct has
two TimeOfDay members:

struct Meeting
{

string    topic;
size_t    attendanceCount;
TimeOfDay start;
TimeOfDay end;

}

Meeting can in turn be a member of another struct. Assuming that there is also
the Meal struct:

struct DailyPlan
{

Meeting projectMeeting;
Meal    lunch;
Meeting budgetMeeting;

}

47.2 Accessing the members
Struct members are used like any other variable. The only difference is that the
actual struct variable and a dot must be specified before the name of the member:

start.hour = 10;
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The line above assigns the value 10 to the hour member of the start object.
Let's rewrite the addDuration() function with what we have seen so far:

TimeOfDay addDuration(in TimeOfDay start,
in TimeOfDay duration)

{
TimeOfDay result;

result.minute = start.minute + duration.minute;
result.hour = start.hour + duration.hour;
result.hour += result.minute / 60;

result.minute %= 60;
result.hour %= 24;

return result;
}

Notice that the names of the variables are now much shorter in this version of the
function: start, duration, and result. Additionally, instead of using complex
names like startHour, it is possible to access struct members through their
respective struct variables as in start.hour.

Here is a code that uses the new addDuration() function. Given the start time
and the duration, the following code calculates when a class period at a school
would end:

void main()
{

TimeOfDay periodStart;
periodStart.hour = 8;
periodStart.minute = 30;

TimeOfDay periodDuration;
periodDuration.hour = 1;
periodDuration.minute = 15;

immutable periodEnd = addDuration(periodStart,
periodDuration);

writefln("Period end: %s:%s",
periodEnd.hour, periodEnd.minute);

}

The output:

Period end: 9:45

The main() above has been written only by what we have seen so far. We will
make this code even shorter and cleaner soon.

47.3 Construction
The first three lines of main() are about constructing the periodStart object
and the next three lines are about constructing the periodDuration object. In
each three lines of code first an object is being defined and then its hour and
minute values are being set.

In order for a variable to be used in a safe way, that variable must first be
constructed in a consistent state. Because construction is so common, there is a
special construction syntax for struct objects:

TimeOfDay periodStart = TimeOfDay(8, 30);
TimeOfDay periodDuration = TimeOfDay(1, 15);
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The values are automatically assigned to the members in the order that they are
specified: Because hour is defined first in the struct, the value 8 is assigned to
periodStart.hour and 30 is assigned to periodStart.minute.

As we will see in a later chapter (page 257), the construction syntax can be used
for other types as well:

auto u = ubyte(42); // u is a ubyte
auto i = int(u); // i is an int

Constructing objects as immutable
Being able to construct the object by specifying the values of its members at once
makes it possible to define objects as immutable:

immutable periodStart = TimeOfDay(8, 30);
immutable periodDuration = TimeOfDay(1, 15);

Otherwise it would not be possible to mark an object first as immutable and then
modify its members:

immutable TimeOfDay periodStart;
periodStart.hour = 8; // ← compilation ERROR
periodStart.minute = 30; // ← compilation ERROR

Trailing members need not be specified
There may be less values specified than the number of members. In that case, the
remaining members are initialized by the .init values of their respective types.

The following program constructs Test objects each time with one less
constructor parameter. The assert checks indicate that the unspecified members
are initialized automatically by their .init values. (The reason for needing to call
isNaN() is explained after the program):

import std.math;

struct Test
{

char c;
int i;
double d;

}

void main()
{

// The initial values of all of the members are specified
auto t1 = Test('a', 1, 2.3);
assert(t1.c == 'a');
assert(t1.i == 1);
assert(t1.d == 2.3);

// Last one is missing
auto t2 = Test('a', 1);
assert(t2.c == 'a');
assert(t2.i == 1);
assert(isNaN(t2.d));

// Last two are missing
auto t3 = Test('a');
assert(t3.c == 'a');
assert(t3.i == int.init);
assert(isNaN(t3.d));

// No initial value specified
auto t4 = Test();
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assert(t4.c == char.init);
assert(t4.i == int.init);
assert(isNaN(t4.d));

// The same as above
Test t5;
assert(t5.c == char.init);
assert(t5.i == int.init);
assert(isNaN(t5.d));

}

As you would remember from the Floating Point Types chapter (page 62), the
initial value of double is double.nan. Since the .nan value is unordered, it is
meaningless to use it in equality comparisons. That is why calling
std.math.isNaN is the correct way of determining whether a value equals to
.nan.

Specifying default values for members
It is important that member variables are automatically initialized with known
initial values. This prevents the program from continuing with indeterminate
values. However, the .init value of their respective types may not be suitable for
every type. For example, char.init is not even a valid value.

The initial values of the members of a struct can be specified when the struct is
defined. This is useful for example to initialize floating point members by 0.0,
instead of the mostly-unusable .nan.

The default values are specified by the assignment syntax as the members are
defined:

struct Test
{

char c = 'A';
int i = 11;
double d = 0.25;

}

Please note that the syntax above is not really assignment. The code above merely
determines the default values that will be used when objects of that struct are
actually constructed later in the program.

For example, the following Test object is being constructed without any
specific values:

Test t; // no value is specified for the members
writefln("%s,%s,%s", t.c, t.i, t.d);

All of the members are initialized by their default values:

A,11,0.25

Constructing by the { } syntax
Struct objects can also be constructed by the following syntax:

TimeOfDay periodStart = { 8, 30 };

Similar to the earlier syntax, the specified values are assigned to the members in
the order that they are specified. The trailing members get their default values.

This syntax is inherited from the C programming language:
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auto periodStart = TimeOfDay(8, 30); // ← recommended
TimeOfDay periodEnd = { 9, 30 }; // ← as in C

47.4 Copying and assignment
Structs are value types. As has been described in the Value Types and Reference
Types chapter (page 244), this means that every struct object has its own value.
Objects get their own values when constructed, and their values change when
they are assigned new values.

auto yourLunchTime = TimeOfDay(12, 0);
auto myLunchTime = yourLunchTime;

// Only my lunch time becomes 12:05:
myLunchTime.minute += 5;

// ... your lunch time is still the same:
assert(yourLunchTime.minute == 0);

During a copy, all of the members of the source object are automatically copied to
the corresponding members of the destination object. Similarly, assignment
involves assigning each member of the source to the corresponding member of
the destination.

Struct members that are of reference types need extra attention.

Careful with members that are of reference types!
As you remember, copying or assigning variables of reference types does not
change any value, it changes what object is being referenced. As a result, copying
or assigning generates one more reference to the right-hand side object. The
relevance of this for struct members is that, the members of two separate struct
objects would start providing access to the same value.

To see an example of this, let's have a look at a struct where one of the members
is a reference type. This struct is used for keeping the student number and the
grades of a student:

struct Student
{

int number;
int[] grades;

}

The following code constructs a second Student object by copying an existing
one:

// Constructing the first object:
auto student1 = Student(1, [ 70, 90, 85 ]);

// Constructing the second student as a copy of the first
// one and then changing its number:
auto student2 = student1;
student2.number = 2;

// WARNING: The grades are now being shared by the two objects!

// Changing the grades of the first student ...
student1.grades[0] += 5;

// ... affects the second student as well:
writeln(student2.grades[0]);

When student2 is constructed, its members get the values of the members of
student1. Since int is a value type, the second object gets its own number value.
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The two Student objects also have individual grades members as well.
However, since slices are reference types, the actual elements that the two slices
share are the same. Consequently, a change made through one of the slices is seen
through the other slice.

The output of the code indicates that the grade of the second student has been
increased as well:

75

For that reason, a better approach might be to construct the second object by the
copies of the grades of the first one:

// The second Student is being constructed by the copies
// of the grades of the first one:
auto student2 = Student(2, student1.grades.dup);

// Changing the grades of the first student ...
student1.grades[0] += 5;

// ... does not affect the grades of the second student:
writeln(student2.grades[0]);

Since the grades have been copied by .dup, this time the grades of the second
student is not affected:

70

Note: It is possible to have even the reference members copied automatically. We will see
how this is done later when covering struct member functions.

47.5 Struct literals
Similar to being able to use integer literal values like 10 in expressions without
needing to define a variable, struct objects can be used as literals as well.

Struct literals are constructed by the object construction syntax.

TimeOfDay(8, 30) // ← struct literal value

Let's first rewrite the main() function above with what we have learned since its
last version. The variables are constructed by the construction syntax and are
immutable this time:

void main()
{

immutable periodStart = TimeOfDay(8, 30);
immutable periodDuration = TimeOfDay(1, 15);

immutable periodEnd = addDuration(periodStart,
periodDuration);

writefln("Period end: %s:%s",
periodEnd.hour, periodEnd.minute);

}

Note that periodStart and periodDuration need not be defined as named
variables in the code above. Those are in fact temporary variables in this simple
program, which are used only for calculating the periodEnd variable. They could
be passed to addDuration() as literal values instead:

void main()
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{
immutable periodEnd = addDuration(TimeOfDay(8, 30),

TimeOfDay(1, 15));

writefln("Period end: %s:%s",
periodEnd.hour, periodEnd.minute);

}

47.6 static members
Although objects mostly need individual copies of the struct's members,
sometimes it makes sense for the objects of a particular struct type to share some
variables. This may be necessary to maintain e.g. a general information about
that struct type.

As an example, let's imagine a type that assigns a separate identifier for every
object that is constructed of that type:

struct Point
{

// The identifier of each object
size_t id;

int line;
int column;

}

In order to be able to assign different ids to each object, a separate variable is
needed to keep the next available id. It would be incremented every time a new
object is created. Assume that nextId is to be defined elsewhere and to be
available in the following function:

Point makePoint(int line, int column)
{

size_t id = nextId;
++nextId;

return Point(id, line, column);
}

A decision must be made regarding where the common nextId variable is to be
defined. static members are useful in such cases.

Such common information is defined as a static member of the struct.
Contrary to the regular members, there is a single variable of each static
member for each thread. (Note that most programs consist of a single thread that
starts executing the main() function.) That single variable is shared by all of the
objects of that struct in that thread:

import std.stdio;

struct Point
{

// The identifier of each object
size_t id;

int line;
int column;

// The id of the next object to construct
static size_t nextId;

}

Point makePoint(int line, int column)
{

size_t id = Point.nextId;
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++Point.nextId;

return Point(id, line, column);
}

void main()
{

auto top = makePoint(7, 0);
auto middle = makePoint(8, 0);
auto bottom =  makePoint(9, 0);

writeln(top.id);
writeln(middle.id);
writeln(bottom.id);

}

As nextId is incremented at each object construction, each object gets a unique
id:

0
1
2

Since static members are owned by the entire type, there need not be an object
to access them. As we have seen above, such objects can be accessed by the name
of the type, as well as by the name of any object of that struct:

++Point.nextId;
++bottom.nextId; // would be the same as above

When a variable is needed not one per thread but one per program, then those
variables must be defined as shared static. We will see the shared keyword in
a later chapter.

static this() for initialization and static ~this() for finalization
Instead of explicitly assigning an initial value to nextId above, we relied on its
default initial value, zero. We could have used any other value:

static size_t nextId = 1000;

However, such initialization is possible only when the initial value is known at
compile time. Further, some special code may have to be executed before a struct
can be used in a thread. Such code is written in static this() scopes.

For example, the following code reads the initial value from a file if that file
exists:

import std.file;

struct Point
{
// ...

enum nextIdFile = "Point_next_id_file";

static this()
{

if (exists(nextIdFile)) {
auto file = File(nextIdFile, "r");
file.readf(" %s", &nextId);

}
}

}

Structs

275



The contents of static this() is automatically executed once per thread before
the struct type is ever used in that thread. Code that needs to be executed only
once for the entire program must be defined in a shared static this() scope.
We will see the shared keyword in a later chapter.

Similarly, static ~this() is for the final operations of a thread and shared
static ~this() is for the final operations of the entire program.

The following example complements the previous static this() by writing
the value of nextId to the same file, effectively persisting the object ids over
consecutive executions of the program:

struct Point
{
// ...

static ~this()
{

auto file = File(nextIdFile, "w");
file.writeln(nextId);

}
}

The program would now initialize nextId from where it was left off. For example,
the following would be the output of the program's second execution:

3
4
5

47.7 Exercises

1. Design a struct named Card to represent a playing card.
This struct can have two members for the suit and the value. It may

make sense to use an enum to represent the suit, or you can simply use
the characters ♠, ♡, ♢, and ♣.

An int or a dchar value can be used for the card value. If you decide
to use an int, the values 1, 11, 12, and 13 may represent the cards that do
not have numbers (ace, jack, queen, and king).

There are other design choices to make. For example, the card values
can be represented by an enum type as well.

The way objects of this struct will be constructed will depend on the
choice of the types of its members. For example, if both members are
dchar, then Card objects can be constructed like this:

auto card = Card('♣', '2');

2. Define a function named printCard(), which takes a Card object as a
parameter and simply prints it:

struct Card
{

// ... please define the struct ...
}

void printCard(in Card card)
{

// ... please define the function body ...
}

void main()
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{
auto card = Card(/* ... */);
printCard(card);

}

For example, the function can print the 2 of clubs as:

♣2

The implementation of that function may depend on the choice of the
types of the members.

3. Define a function named newDeck() and have it return 52 cards of a
deck as a Card slice:

Card[] newDeck()
out (result)
{

assert(result.length == 52);
}
body
{

// ... please define the function body ...
}

It should be possible to call newDeck() as in the following code:

Card[] deck = newDeck();

foreach (card; deck) {
printCard(card);
write(' ');

}

writeln();

The output should be similar to the following with 52 distinct cards:

♠2 ♠3 ♠4 ♠5 ♠6 ♠7 ♠8 ♠9 ♠0 ♠J ♠Q ♠K ♠A ♡2 ♡3 ♡4
♡5 ♡6 ♡7 ♡8 ♡9 ♡0 ♡J ♡Q ♡K ♡A ♢2 ♢3 ♢4 ♢5 ♢6 ♢7
♢8 ♢9 ♢0 ♢J ♢Q ♢K ♢A ♣2 ♣3 ♣4 ♣5 ♣6 ♣7 ♣8 ♣9 ♣0
♣J ♣Q ♣K ♣A

4. Write a function that shuffles the deck. One way is to pick two cards at
random by std.random.uniform, to swap those two cards, and to repeat
this process a sufficient number of times. The function should take the
number of repetition as a parameter:

void shuffle(Card[] deck, in int repetition)
{

// ... please define the function body ...
}

Here is how it should be used:

Card[] deck = newDeck();
shuffle(deck, 1);

foreach (card; deck) {
printCard(card);
write(' ');

}

writeln();
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The function should swap cards repetition number of times. For
example, when called by 1, the output should be similar to the following:

♠2 ♠3 ♠4 ♠5 ♠6 ♠7 ♠8 ♠9 ♠0 ♠J ♠Q ♠K ♠A ♡2 ♡3 ♡4
♡5 ♡6 ♡7 ♡8 ♣4 ♡0 ♡J ♡Q ♡K ♡A ♢2 ♢3 ♢4 ♢5 ♢6 ♢7
♢8 ♢9 ♢0 ♢J ♢Q ♢K ♢A ♣2 ♣3 ♡9 ♣5 ♣6 ♣7 ♣8 ♣9 ♣0
♣J ♣Q ♣K ♣A

A higher value for repetition should result in a more shuffled deck:

shuffled(deck, 100);

The output:

♠4 ♣7 ♢9 ♢6 ♡2 ♠6 ♣6 ♢A ♣5 ♢8 ♢3 ♡Q ♢J ♣K ♣8 ♣4
♡J ♣Q ♠Q ♠9 ♢0 ♡A ♠A ♡9 ♠7 ♡3 ♢K ♢2 ♡0 ♠J ♢7 ♡7
♠8 ♡4 ♣J ♢4 ♣0 ♡6 ♢5 ♡5 ♡K ♠3 ♢Q ♠2 ♠5 ♣2 ♡8 ♣A
♠K ♣9 ♠0 ♣3

Note: A much better way of shuffling the deck is explained in the solutions.

The solutions are on page 713.
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48 Variable Number of Parameters

This chapter covers two D features that bring flexibility on parameters when
calling functions:

• Default parameter values
• Variadic functions

48.1 Default parameter values
A convenience with function parameters is the ability to specify default values
for them. This is similar to the default initial values of struct members.

Some of the parameters of some functions are called mostly by the same
values. To see an example of this, let's consider a function that prints the elements
of an associative array of type string[string]. Let's assume that the function
takes the separator characters as parameters as well:

void printAA(in char[] title,
in string[string] aa,
in char[] keySeparator,
in char[] elementSeparator)

{
writeln("-- ", title, " --");

auto keys = aa.keys.sort;

foreach (i, key; keys) {
// No separator before the first element
if (i != 0) {

write(elementSeparator);
}

write(key, keySeparator, aa[key]);
}

writeln();
}

That function is being called below by ":" as the key separator and ", " as the
element separator:

string[string] dictionary = [
"blue":"mavi", "red":"kırmızı", "gray":"gri" ];

printAA("Color Dictionary", dictionary, ":", ", ");

The output:

-- Color Dictionary --
blue:mavi, gray:gri, red:kırmızı

If the separators are almost always going to be those two, they can be defined
with default values:

void printAA(in char[] title,
in string[string] aa,
in char[] keySeparator = ": ",
in char[] elementSeparator = ", ")

{
// ...

}

Parameters with default values need not be specified when the function is called:
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printAA("Color Dictionary",
dictionary); /* ← No separator specified. Both

*   parameters will get their
*   default values. */

The parameter values can still be specified when needed, and not necessarily all
of them:

printAA("Color Dictionary", dictionary, "=");

The output:

-- Color Dictionary --
blue=mavi, gray=gri, red=kırmızı

The following call specifies both of the parameters:

printAA("Color Dictionary", dictionary, "=", "\n");

The output:

-- Color Dictionary --
blue=mavi
gray=gri
red=kırmızı

Default values can only be defined for the parameters that are at the end of the
parameter list.

48.2 Variadic functions
Despite appearances, default parameter values do not change the number of
parameters that a function receives. For example, even though some parameters
may be assigned their default values, printAA() always takes four parameters
and uses them according to its implementation.

The variadic functions feature on the other hand allows calling functions with
unspecified number of arguments. We have already been taking advantage of this
feature with functions like writeln(). writeln() can be called with any number
of arguments:

writeln(
"hello", 7, "world", 9.8 /*, and any number of other

*  arguments as needed */);

There are four ways of defining variadic functions in D:

• The feature that works only for functions that are marked as extern
"C". This feature defines the hidden _argptr variable that is used for
accessing the parameters. This book does not cover this feature partly
because it is unsafe.

• The feature that works with regular D functions, which also uses the
hidden _argptr variable, as well as the _arguments variable, the latter
being of type TypeInfo[]. This book does not cover this feature as well
both because it relies on pointers, which have not been covered yet, and
because this feature can be used in unsafe ways as well.

• A safe feature with the limitation that the unspecified number of
parameters must all be of the same type. This is the feature that is
covered in this section.
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• Unspecified number of template parameters. This feature will be
explained later in the templates chapters.

The parameters of variadic functions are passed to the function as a slice.
Variadic functions are defined with a single parameter of a specific type of slice
followed immediately by the ... characters:

double sum(in double[] numbers ...)
{

double result = 0.0;

foreach (number; numbers) {
result += number;

}

return result;
}

That definition makes sum() a variadic function, meaning that it is able to receive
any number of arguments as long as they are double or any other type that can
implicitly be convertible to double:

writeln(sum(1.1, 2.2, 3.3));

The single slice parameter and the ... characters represent all of the arguments.
For example, the slice would have five elements if the function were called with
five double values.

In fact, the variable number of parameters can also be passed as a single slice:

writeln(sum([ 1.1, 2.2, 3.3 ])); // same as above

Variadic functions can also have required parameters, which must be defined
first in the parameter list. For example, the following function prints an
unspecified number of parameters within parentheses. Although the function
leaves the number of the elements flexible, it requires that the parentheses are
always specified:

char[] parenthesize(
in char[] opening, // ← The first two parameters must be
in char[] closing, //   specified when the function is called.
in char[][] words ...) // ← Need not be specified

{
char[] result;

foreach (word; words) {
result ~= opening;
result ~= word;
result ~= closing;

}

return result;
}

The first two parameters are mandatory:

parenthesize("{"); // ← compilation ERROR

As long as the mandatory parameters are specified, the rest are optional:

writeln(parenthesize("{", "}", "apple", "pear", "banana"));

The output:
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{apple}{pear}{banana}

48.3 Exercise

• Assume that the following enum is already defined:

enum Operation { add, subtract, multiply, divide }

Also assume that there is a struct that represents the calculation of an
operation and its two operands:

struct Calculation
{

Operation op;
double first;
double second;

}

For example, the object Calculation(Operation.divide, 7.7, 8.8)
would represent the division of 7.7 by 8.8.

Design a function that receives an unspecified number of these
struct objects, calculates the result of each Calculation, and then
returns all of the results as a slice of type double[].

For example, it should be possible to call the function as in the
following code:

void main()
{

writeln(calculate(Calculation(Operation.add, 1.1, 2.2),
Calculation(Operation.subtract, 3.3, 4.4),
Calculation(Operation.multiply, 5.5, 6.6),
Calculation(Operation.divide, 7.7, 8.8)));

}

The output of the code should be similar to the following:

[3.3, -1.1, 36.3, 0.875]

The solution is on page 716.
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49 Function Overloading

Defining more than one function having the same name is function overloading. In
order to be able to differentiate these functions, their parameters must be
different.

The following code has multiple overloads of the info() function, each taking
a different type of parameter:

import std.stdio;

void info(in double number)
{

writeln("Floating point: ", number);
}

void info(in int number)
{

writeln("Integer       : ", number);
}

void info(in char[] str)
{

writeln("String        : ", str);
}

void main()
{

info(1.2);
info(3);
info("hello");

}

Altough all of the functions are named info(), the compiler picks the one that
matches the argument that is used when making the call. For example, because
the literal 1.2 is of type double, the info() function that takes a double gets
called for it.

The choice of which function to call is made at compile time, which may not
always be easy or clear. For example, because int can implicitly be converted to
both double and real, the compiler cannot decide which of the functions to call
in the following program:

real sevenTimes(in real value)
{

return 7 * value;
}

double sevenTimes(in double value)
{

return 7 * value;
}

void main()
{

int value = 5;
auto result = sevenTimes(value); // ← compilation ERROR

}

Note: It is usually unnecessary to write separate functions when the function bodies are
exactly the same. We will see later in the Templates chapter (page 411) how a single
definition can be used for multiple types.
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However, if there is another function overload that takes a long parameter,
then the ambiguity would be resolved because long is a better match for int than
double or real:

long sevenTimes(in long value)
{

return 7 * value;
}

// ...

auto result = sevenTimes(value); // now compiles

49.1 Overload resolution
The compiler picks the overload that is the best match for the arguments. This is
called overload resolution.

Altough overload resolution is simple and intuitive in most cases, it is
sometimes complicated. The following are the rules of overload resolution. They
are being presented in a simplified way in this book.

There are four states of match, listed from the worst to the best:

• mismatch
• match through automatic type conversion
• match through const qualification
• exact match

The compiler considers all of the overloads of a function during overload
resolution. It first determines the match state of every parameter for every
overload. For each overload, the least match state among the parameters is taken
to be the match state of that overload.

After all of the match states of the overloads are determined, then the overload
with the best match is selected. If there are more than one overload that has the
best match, then more complicated resolution rules are applied. I will not get into
more details of these rules in this book. If your program is in a situation where it
depends on complicated overload resolution rules, it may an indication that it is
time to change the design of the program. Another option is to take advantage of
other features of D like templates. An even simpler approach would be to
abandon function overloading altogether by naming functions differently for
each type e.g. like sevenTimes_real() and sevenTimes_double().

49.2 Function overloading for structs
Function overloading is useful with structs and classes as well. Additionally,
overload resolution ambiguities are much less frequent with user-defined types.
Let's overload the info() function above for some of the types that we have
defined in the Structs chapter (page 266):

struct TimeOfDay
{

int hour;
int minute;

}

void info(in TimeOfDay time)
{

writef("%02s:%02s", time.hour, time.minute);
}
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That overload enables TimeOfDay objects to be used with info(). As a result,
variables of user-defined types can be printed in exactly the same way as
fundamental types:

auto breakfastTime = TimeOfDay(7, 0);
info(breakfastTime);

The TimeOfDay objects would be matched with that overload of info():

07:00

The following is an overload of info() for the Meeting type:

struct Meeting
{

string    topic;
size_t    attendanceCount;
TimeOfDay start;
TimeOfDay end;

}

void info(in Meeting meeting)
{

info(meeting.start);
write('-');
info(meeting.end);

writef(" \"%s\" meeting with %s attendees",
meeting.topic,
meeting.attendanceCount);

}

Note that this overload makes use of the already-defined overload for TimeOfDay.
Meeting objects can now be printed in exactly the same way as fundamental
types as well:

auto bikeRideMeeting = Meeting("Bike Ride", 3,
TimeOfDay(9, 0),
TimeOfDay(9, 10));

info(bikeRideMeeting);

The output:

09:00-09:10 "Bike Ride" meeting with 3 attendees

49.3 Limitations
Although the info() function overloads above are a great convenience, this
method has some limitations:

• info() always prints to stdout. It would be more useful if it could print
to any File. One way of achieving this is to pass the output stream as a
parameter as well e.g. for the TimeOfDay type:

void info(File file, in TimeOfDay time)
{

file.writef("%02s:%02s", time.hour, time.minute);
}

That would enable printing TimeOfDay objects to any file, including
stdout:

info(stdout, breakfastTime);
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auto file = File("a_file", "w");
info(file, breakfastTime);

Note: The special objects stdin, stdout, and stderr are of type File.
• More importantly, info() does not solve the more general problem of

producing the string representation of variables. For example, it does
not help with passing objects of user-defined types to writeln():

writeln(breakfastTime); // Not useful: prints in generic format

The code above prints the object in a generic format that includes the
name of the type and the values of its members, not in a way that would
be useful in the program:

TimeOfDay(7, 0)

It would be much more useful if there were a function that converted
TimeOfDay objects to string in their special format as in "12:34". We will
see how to define string representations of struct objects in the next
chapter.

49.4 Exercise

• Overload the info() function for the following structs as well:

struct Meal
{

TimeOfDay time;
string    address;

}

struct DailyPlan
{

Meeting amMeeting;
Meal    lunch;
Meeting pmMeeting;

}

Since Meal has only the start time, add an hour and a half to determine
its end time. You can use the addDuration() function that we have
defined earlier in the structs chapter:

TimeOfDay addDuration(in TimeOfDay start,
in TimeOfDay duration)

{
TimeOfDay result;

result.minute = start.minute + duration.minute;
result.hour = start.hour + duration.hour;
result.hour += result.minute / 60;

result.minute %= 60;
result.hour %= 24;

return result;
}

Once the end times of Meal objects are calculated by addDuration(),
DailyPlan objects should be printed as in the following output:
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10:30-11:45 "Bike Ride" meeting with 4 attendees
12:30-14:00 Meal, Address: İstanbul
15:30-17:30 "Budget" meeting with 8 attendees

The solution is on page 717.
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50 Member Functions

Although this chapter focuses only on structs, most of the information in this
chapter is applicable to classes as well.

In this chapter we will cover member functions of structs and define the special
toString() member function that is used for representing objects in the string
format.

When a struct or class is defined, usually a number of functions are also
defined alongside with it. We have seen examples of such functions in the earlier
chapters: addDuration() and an overload of info() have been written
specifically to be used with the TimeOfDay type. In a sense, these two functions
define the interface of TimeOfDay.

The first parameter of both addDuration() and info() has been the
TimeOfDay object that each function would be operating on. Additionally, just like
all of the other functions that we have seen so far, both of the functions have been
defined at the module level, outside of any other scope.

The concept of a set of functions determining the interface of a struct is very
common. For that reason, functions that are closely related to a type can be
defined within the body of that type.

50.1 Defining member functions
Functions that are defined within the curly brackets of a struct are called
member functions:

struct SomeStruct
{

void member_function(/* the parameters of the function */)
{

// ... the definition of the function ...
}

// ... the other members of the struct ...
}

Member functions are accessed the same way as member variables, separated
from the name of the object by a dot:

object.member_function(arguments);

We have used member functions before when specifying stdin and stdout
explicitly during input and output operations:

stdin.readf(" %s", &number);
stdout.writeln(number);

The readf() and writeln() above are member function calls, operating on the
objects stdin and stdout, respectively.

Let's define info() as a member function. Its previous definition has been the
following:

void info(in TimeOfDay time)
{

writef("%02s:%02s", time.hour, time.minute);
}
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Making info() a member function is not as simple as moving its definition
inside the struct. The function must be modified in two ways:

struct TimeOfDay
{

int hour;
int minute;

void info() // (1)
{

writef("%02s:%02s", hour, minute); // (2)
}

}

1. The member function does not take the object explicitly as a parameter.
2. For that reason, it refers to the member variables simply as hour and

minute.

The reason is that member functions are always called on an existing object. The
object is implicitly available to the member function:

auto time = TimeOfDay(10, 30);
time.info();

The info() member function is being called on the time object above. The
members hour and minute that are referred to within the function definition
correspond to the members of the time object, specifically time.hour and
time.minute.

The member function call above is almost the equivalent of the following
regular function call:

time.info(); // member function
info(time); // regular function (the previous definition)

Whenever a member function is called on an object, the members of the object
are implicitly accessible by the function:

auto morning = TimeOfDay(10, 0);
auto evening = TimeOfDay(22, 0);

morning.info();
write('-');
evening.info();
writeln();

When called on morning, the hour and minute that are used inside the member
function refer to morning.hour and morning.minute. Similarly, when called on
evening, they refer to evening.hour and evening.minute:

10:00-22:00

toString() for string representations
We have discussed the limitations of the info() function in the previous chapter.
There is at least one more inconvenience with it: Although it prints the time in
human-readable format, printing the '-' character and terminating the line still
needs to be done explicitly by the programmer.

However, it would be more convenient if TimeOfDay objects could be used as
easy as fundamental types as in the following code:
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writefln("%s-%s", morning, evening);

In addition to reducing four lines of code to one, it would also allow printing
objects to any stream:

auto file = File("time_information", "w");
file.writefln("%s-%s", morning, evening);

The toString() member funcion of user-defined types are treated specially: It is
called automatically to produce the string representations of objects.
toString() must return the string representation of the object.

Without getting into more detail, let's first see how the toString() function is
defined:

import std.stdio;

struct TimeOfDay
{

int hour;
int minute;

string toString()
{

return "todo";
}

}

void main()
{

auto morning = TimeOfDay(10, 0);
auto evening = TimeOfDay(22, 0);

writefln("%s-%s", morning, evening);
}

toString() does not produce anything meaningful yet, but the output shows
that it has been called by writefln() twice for the two object:

todo-todo

Also note that info() is not needed anymore. toString() is replacing its
functionality.

The simplest implementation of toString() would be to call format() of the
std.string module. format() works in the same way as the formatted output
functions like writef(). The only difference is that instead of printing variables,
it returns the formatted result in string format.
toString() can simply return the result of format() directly:

import std.string;
// ...
struct TimeOfDay
{
// ...

string toString()
{

return format("%02s:%02s", hour, minute);
}

}

Note that toString() returns the representation of only this object. The rest of
the output is handled by writefln(): It calls the toString() member function
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for the two objects separately, prints the '-' character in between, and finally
terminates the line:

10:00-22:00

The definition of toString() that is explained above does not take any
parameters; it simply produces a string and returns it. An alternative definition
of toString() takes a delegate parameter. We will see that definition later in
the Function Pointers, Delegates, and Lambdas chapter (page 490).

Example: increment() member function
Let's define a member function that adds a duration to TimeOfDay objects.

Before doing that, let's first correct a design flaw that we have been living with.
We have seen in the Structs chapter (page 266) that adding two TimeOfDay objects
in addDuration() is not a meaningful operation:

TimeOfDay addDuration(in TimeOfDay start,
in TimeOfDay duration) // meaningless

{
// ...

}

What is natural to add to a point in time is duration. For example, adding the
travel duration to the departure time would result in the arrival time.

On the other hand, subtracting two points in time is a natural operation, in
which case the result would be a duration.

The following program defines a Duration struct with minute-precision, and
an addDuration() function that uses it:

struct Duration
{

int minute;
}

TimeOfDay addDuration(in TimeOfDay start,
in Duration duration)

{
// Begin with a copy of start
TimeOfDay result = start;

// Add the duration to it
result.minute += duration.minute;

// Take care of overflows
result.hour += result.minute / 60;
result.minute %= 60;
result.hour %= 24;

return result;
}

unittest
{

// A trivial test
assert(addDuration(TimeOfDay(10, 30), Duration(10))

== TimeOfDay(10, 40));

// A time at midnight
assert(addDuration(TimeOfDay(23, 9), Duration(51))

== TimeOfDay(0, 0));

// A time in the next day
assert(addDuration(TimeOfDay(17, 45), Duration(8 * 60))

== TimeOfDay(1, 45));
}

Member Functions

291



Let's redefine a similar function this time as a member function. addDuration()
has been producing a new object as its result. Let's define an increment()
member function that will directly modify this object instead:

struct Duration
{

int minute;
}

struct TimeOfDay
{

int hour;
int minute;

string toString()
{

return format("%02s:%02s", hour, minute);
}

void increment(in Duration duration)
{

minute += duration.minute;

hour += minute / 60;
minute %= 60;
hour %= 24;

}

unittest
{

auto time = TimeOfDay(10, 30);

// A trivial test
time.increment(Duration(10));
assert(time == TimeOfDay(10, 40));

// 15 hours later must be in the next day
time.increment(Duration(15 * 60));
assert(time == TimeOfDay(1, 40));

// 22 hours 20 minutes later must be midnight
time.increment(Duration(22 * 60 + 20));
assert(time == TimeOfDay(0, 0));

}
}

increment() increments the value of the object by the specified amount of
duration. In a later chapter we will see how the operator overloading feature of D
will make it possible to add a duration by the += operator syntax:

time += Duration(10); // to be explained in a later chapter

Also note that unittest blocks can be written inside struct definitions as well,
mostly for testing member functions. It is still possible to move such unittest
blocks outside of the body of the struct:

struct TimeOfDay
{

// ... struct definition ...
}

unittest
{

// ... struct tests ...
}
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50.2 Exercises

1. Add a decrement() member function to TimeOfDay, which should
reduce the time by the specified amount of duration. Similar to
increment(), it should underflow to the previous day when there is not
enough time in the current day. For example, subtracting 10 minutes
from 00:05 should result in 23:55.

In other words, implement decrement() to pass the following unit
tests:

struct TimeOfDay
{

// ...

void decrement(in Duration duration)
{

// ... please implement this function ...
}

unittest
{

auto time = TimeOfDay(10, 30);

// A trivial test
time.decrement(Duration(12));
assert(time == TimeOfDay(10, 18));

// 3 days and 11 hours earlier
time.decrement(Duration(3 * 24 * 60 + 11 * 60));
assert(time == TimeOfDay(23, 18));

// 23 hours and 18 minutes earlier must be midnight
time.decrement(Duration(23 * 60 + 18));
assert(time == TimeOfDay(0, 0));

// 1 minute earlier
time.decrement(Duration(1));
assert(time == TimeOfDay(23, 59));

}
}

2. Convert Meeting, Meal, and DailyPlan overloads of info() to
toString() member functions as well. (See the exercise solutions of the
Function Overloading chapter (page 717) for their info() overloads.)

You will notice that in addition to making their respective structs
more convenient, the implementations of the toString() member
functions will all consist of single lines.

The solutions are on page 719.
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51 const ref Parameters and const Member
Functions

This chapter is about how parameters and member functions are marked as
const so that they can be used with immutable variables as well. As we have
already covered const parameters in earlier chapters, some information in this
chapter will be a review of some of the features that you already know.

Although the examples in this chapter use only structs, const member
functions apply to classes as well.

51.1 immutable objects
We have already seen that it is not possible to modify immutable variables:

immutable readingTime = TimeOfDay(15, 0);

readingTime cannot be modified:

readingTime = TimeOfDay(16, 0); // ← compilation ERROR
readingTime.minute += 10; // ← compilation ERROR

The compiler does not allow modifying immutable objects in any way.

51.2 ref parameters that are not const
We have seen this concept earlier in the Function Parameters chapter (page 178).
Parameters that are marked as ref can freely be modified by the function. For
that reason, even if the function does not actually modify the parameter, the
compiler does not allow passing immutable objects as that parameter:

/* Although not being modified by the function, 'duration'
* is not marked as 'const' */

int totalSeconds(ref Duration duration)
{

return 60 * duration.minute;
}
// ...

immutable warmUpTime = Duration(3);
totalSeconds(warmUpTime); // ← compilation ERROR

The compiler does not allow passing the immutable warmUpTime to
totalSeconds because that function does not guarantee that the parameter will
not be modified.

51.3 const ref parameters
const ref means that the parameter is not modified by the function:

int totalSeconds(const ref Duration duration)
{

return 60 * duration.minute;
}
// ...

immutable warmUpTime = Duration(3);
totalSeconds(warmUpTime); // ← now compiles

Such functions can receive immutable objects as parameters because the
immutability of the object is enforced by the compiler:

int totalSeconds(const ref Duration duration)
{
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duration.minute = 7; // ← compilation ERROR
// ...
}

An alternative to const ref is in ref. As we will see in a later chapter (page 178),
in means that the parameter is used only as input to the function, disallowing
any modification to it.

int totalSeconds(in ref Duration duration)
{

// ...
}

51.4 Non-const member functions
As we have seen with the TimeOfDay.increment member function, objects can
be modified through member functions as well. increment() modifies the
members of the object that it is called on:

struct TimeOfDay
{
// ...

void increment(in Duration duration)
{

minute += duration.minute;

hour += minute / 60;
minute %= 60;
hour %= 24;

}
// ...
}
// ...

auto start = TimeOfDay(5, 30);
start.increment(Duration(30)); // 'start' gets modified

51.5 const member functions
Some member functions do not make any modifications to the object that they
are called on. An example of such a function is toString():

struct TimeOfDay
{
// ...

string toString()
{

return format("%02s:%02s", hour, minute);
}

// ...
}

Since the whole purpose of toString() is to represent the object in string format
anyway, it should not modify the object.

The fact that a member function does not modify the object is declared by the
const keyword after the parameter list:

struct TimeOfDay
{
// ...

string toString() const
{

return format("%02s:%02s", hour, minute);
}

}
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That const guarantees that the object itself is not going to be modified by the
member function. As a consequence, toString() member function is allowed to
be called even on immutable objects. Otherwise, the struct's toString() would
not be called:

struct TimeOfDay
{
// ...

// Inferior design: Not marked as 'const'
string toString()
{

return format("%02s:%02s", hour, minute);
}

}
// ...

immutable start = TimeOfDay(5, 30);
writeln(start); // TimeOfDay.toString() is not called!

The output is not the expected 05:30, indicating that a generic function gets
called instead of TimeOfDay.toString:

immutable(TimeOfDay)(5, 30)

Further, calling toString() on an immutable object explicitly would cause a
compilation error:

auto s = start.toString(); // ← compilation ERROR

Accordingly, the toString() functions that we have defined in the previous
chapter have all been designed incorrectly; they should have been marked as
const.
Note: The const keyword can be specified before the definition of the function as

well:

// The same as above
const string toString()
{

return format("%02s:%02s", hour, minute);
}

Since this version may give the incorrect impression that the const is a part of the
return type, I recommend that you specify it after the parameter list.

51.6 inout member functions
As we have seen in the Function Parameters chapter (page 178), inout transfers
the mutability of a parameter to the return type.

Similarly, an inout member function transfers the mutability of the object to
the function's return type:

import std.stdio;

struct Container
{

int[] elements;

inout(int)[] firstPart(size_t n) inout
{

return elements[0 .. n];
}

}

void main()
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{
{

// An immutable container
auto container = immutable(Container)([ 1, 2, 3 ]);
auto slice = container.firstPart(2);
writeln(typeof(slice).stringof);

}
{

// A const container
auto container = const(Container)([ 1, 2, 3 ]);
auto slice = container.firstPart(2);
writeln(typeof(slice).stringof);

}
{

// A mutable container
auto container = Container([ 1, 2, 3 ]);
auto slice = container.firstPart(2);
writeln(typeof(slice).stringof);

}
}

The three slices that are returned by the three objects of different mutability are
consistent with the objects that returned them:

immutable(int)[]
const(int)[]
int[]

Because it must be called on const and immutable objects as well, an inout
member function is compiled as if it were const.

51.7 How to use

• To give the guarantee that a parameter is not modified by the function,
mark that parameter as in, const, or const ref.

• Mark member functions that do not modify the object as const:

struct TimeOfDay
{
// ...

string toString() const
{

return format("%02s:%02s", hour, minute);
}

}

This would make the struct (or class) more useful by removing an
unnecessary limitation. The examples in the rest of the book will
observe this guideline.

const ref Parameters and const Member Functions

297



52 Constructor and Other Special Functions

Although this chapter focuses only on structs, the topics that are covered here
apply mostly to classes as well. The differences will be explained in later chapters.

Four member functions of structs are special because they define the
fundamental operations of that type:

• Constructor: this()
• Destructor: ~this()
• Postblit: this(this)
• Assignment operator: opAssign()

Although these fundamental operations are handled automatically for structs,
hence need not be defined by the programmer, they can be overridden to make
the struct behave in special ways.

52.1 Constructor
The responsibility of the constructor is to prepare an object for use by assigning
appropriate values to its members.

We have already used constructors in previous chapters. When the name of a
type is used like a function, it is actually the constructor that gets called. We can
see this on the right-hand side of the following line:

auto busArrival = TimeOfDay(8, 30);

Similarly, a class object is being constructed on the right hand side of the
following line:

auto variable = new SomeClass();

The arguments that are specified within parentheses correspond to the
constructor parameters. For example, the values 8 and 30 above are passed to the
TimeOfDay constructor as its parameters.

Constructor syntax
Different from other functions, constructors do not have return values. The name
of the constructor is always this:

struct SomeStruct
{

// ...

this(/* constructor parameters */)
{

// ... operations that prepare the object for use ...
}

}

The constructor parameters include information that is needed to make a useful
and consistent object.

Compiler-generated automatic constructor
All of the structs that we have seen so far have been taking advantage of a
constructor that has been generated automatically by the compiler. The
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automatic constructor assigns the parameter values to the members in the order
that they are specified.

As you will remember from the Structs chapter (page 266), the initial values for
the trailing members need not be specified. The members that are not specified
get initialized by the .init value of their respective types. The .init values of a
member could be provided during the definition of that member after the =
operator:

struct Test
{

int member = 42;
}

Also considering the default parameter values feature from the Variable Number of
Parameters chapter (page 279), we can imagine that the automatic constructor for
the following struct would be the equivalent of the following this():

struct Test
{

char c;
int i;
double d;

/* The equivalent of the compiler-generated automatic
* constructor (Note: This is only for demonstration; the
* following constructor would not actually be called
* when default-constructing the object as Test().) */

this(in char c_parameter = char.init,
in int i_parameter = int.init,
in double d_parameter = double.init)

{
c = c_parameter;
i = i_parameter;
d = d_parameter;

}
}

For most structs, the compiler-generated constructor is sufficient: Usually,
providing appropriate values for each member is all that is needed for objects to
be constructed.

Accessing the members by this.
To avoid mixing the parameters with the members, the parameter names above
had _parameter appended to their names. There would be compilation errors
without doing that:

struct Test
{

char c;
int i;
double d;

this(in char c = char.init,
in int i = int.init,
in double d = double.init)

{
// An attempt to assign an 'in' parameter to itself!
c = c; // ← compilation ERROR
i = i;
d = d;

}
}
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The reason is; c alone would mean the parameter, not the member, and as the
parameters above are defined as in, they cannot be modified:

Error: variable deneme.Test.this.c cannot modify const

A solution is to prepend the member names with this.. Inside member
functions, this means "this object", making this.c mean "the c member of this
object":

this(in char c = char.init,
in int i = int.init,
in double d = double.init)

{
this.c = c;
this.i = i;
this.d = d;

}

Now c alone means the parameter and this.c means the member, and the code
compiles and works as expected: The member c gets initialized by the value of the
parameter c.

User-defined constructors
I have described the behavior of the compiler-generated constructor. Since that
constructor is suitable for most cases, there is no need to define a constructor by
hand.

Still, there are cases where constructing an object involves more complicated
operations than assigning values to each member in order. As an example, let's
consider Duration from the earlier chapters:

struct Duration
{

int minute;
}

The compiler-generated constructor is sufficient for this single-member struct:

time.decrement(Duration(12));

Since that constructor takes the duration in minutes, the programmers would
sometimes need to make calculations:

// 23 hours and 18 minutes earlier
time.decrement(Duration(23 * 60 + 18));

// 22 hours and 20 minutes later
time.increment(Duration(22 * 60 + 20));

To eliminate the need for these calculations, we can design a Duration
constructor that takes two parameters and makes the calculation automatically:

struct Duration
{

int minute;

this(int hour, int minute)
{

this.minute = hour * 60 + minute;
}

}
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Since hour and minute are now separate parameters, the users simply provide
their values without needing to make the calculation themselves:

// 23 hours and 18 minutes earlier
time.decrement(Duration(23, 18));

// 22 hours and 20 minutes later
time.increment(Duration(22, 20));

User-defined constructor disables compiler-generated constructor
A constructor that is defined by the programmer makes some uses of the
compiler-generated constructor invalid: Objects cannot be constructed by default
parameter values anymore. For example, trying to construct Duration by a single
parameter is a compilation error:

time.decrement(Duration(12)); // ← compilation ERROR

Calling the constructor with a single parameter does not match the programmer's
constructor and the compiler-generated constructor is disabled.

One solution is to overload the constructor by providing another constructor
that takes just one parameter:

struct Duration
{

int minute;

this(int hour, int minute)
{

this.minute = hour * 60 + minute;
}

this(int minute)
{

this.minute = minute;
}

}

A user-defined constructor disables constructing objects by the { } syntax as
well:

Duration duration = { 5 }; // ← compilation ERROR

Initializing without providing any parameter is still valid:

auto d = Duration(); // compiles

The reason is, in D, the .init value of every type must be known at compile time.
The value of d above is equal to the initial value of Duration:

assert(d == Duration.init);

static opCall instead of the default constructor
Because the initial value of every type must be known at compile time, it is
impossible to define the default constructor explicitly.

Let's consider the following constructor that tries to print some information
every time an object of that type is constructed:

struct Test
{
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this() // ← compilation ERROR
{

writeln("A Test object is being constructed.");
}

}

The compiler output:

Error: constructor deneme.Deneme.this default constructor for
structs only allowed with @disable and no body

Note:We will see in later chapters that it is possible to define the default constructor for
classes.

As a workaround, a no-parameter static opCall() can be used for
constructing objects without providing any parameters. Note that this has no
effect on the .init value of the type.

For this to work, static opCall() must construct and return an object of that
struct type:

import std.stdio;

struct Test
{

static Test opCall()
{

writeln("A Test object is being constructed.");
Test test;
return test;

}
}

void main()
{

auto test = Test();
}

The Test() call in main() executes static opCall():

A Test object is being constructed.

Note that it is not possible to type Test() inside static opCall(). That syntax
would execute static opCall() as well and cause an infinite recursion:

static Test opCall()
{

writeln("A Test object is being constructed.");
return Test(); // ← Calls 'static opCall()' again

The output:

A Test object is being constructed.
A Test object is being constructed.
A Test object is being constructed.
... ← repeats the same message

Calling other constructors
Constructors can call other constructors to avoid code duplication. Although
Duration is too simple to demonstrate how useful this feature is, the following
single-parameter constructor takes advantage of the two-parameter constructor:

this(int hour, int minute)
{
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this.minute = hour * 60 + minute;
}

this(int minute)
{

this(0, minute); // calls the other constructor
}

The constructor that only takes the minute value calls the other constructor by
passing 0 as the value of hour.
Warning: There is a design flaw in the Duration constructors above because the

intention is not clear when the objects are constructed by a single parameter:

// 10 hours or 10 minutes?
auto travelDuration = Duration(10);

Although it is possible to determine by reading the documentation or the code of
the struct that the parameter actually means "10 minutes," it is an inconsistency
as the first parameter of the two-parameter constructor is hours.

Such design mistakes are causes of bugs and must be avoided.

Immutability of constructor parameters
In the Immutability chapter (page 167) we have seen that it is not easy to decide
whether parameters of reference types should be defined as const or immutable.
Although the same considerations apply for constructor parameters as well,
immutable is usually a better choice for constructor parameters.

The reason is, it is common to assign the parameters to members to be used at a
later time. When a parameter is not immutable, there is no guarantee that the
original variable will not change by the time the member gets used.

Let's consider a constructor that takes a file name as a parameter. The file name
will be used later on when writing student grades. According to the guidelines in
the Immutability chapter (page 167), to be more useful, let's assume that the
constructor parameter is defined as const char[]:

import std.stdio;

struct Student
{

const char[] fileName;
int[] grades;

this(const char[] fileName)
{

this.fileName = fileName;
}

void save()
{

auto file = File(fileName.idup, "w");
file.writeln("The grades of the student:");
file.writeln(grades);

}

// ...
}

void main()
{

char[] fileName;
fileName ~= "student_grades";

auto student = Student(fileName);
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// ...

/* Assume the fileName variable is modified later on
* perhaps unintentionally (all of its characters are
* being set to 'A' here): */

fileName[] = 'A';

// ...

/* The grades would be written to the wrong file: */
student.save();

}

The program above saves the grades of the student under a file name that consists
of A characters, not to "student_grades". For that reason, sometimes it is more
suitable to define constructor parameters and members of reference types as
immutable. We know that this is easy for strings by using aliases like string. The
following code shows the parts of the struct that would need to be modified:

struct Student
{

string fileName;
// ...
this(string fileName)
{

// ...
}
// ...

}

Now the users of the struct must provide immutable strings and as a result the
confusion about the name of the file would be prevented.

Type conversions through single-parameter constructors
Single-parameter constructors can be thought of as providing a sort of type
conversion: They produce an object of the particular struct type starting from a
constructor parameter. For example, the following constructor produces a
Student object from a string:

struct Student
{

string name;

this(string name)
{

this.name = name;
}

}

to() and cast observe this behavior as a conversion as well. To see examples of
this, let's consider the following salute() function. Sending a string parameter
when it expects a Student would naturally cause a compilation error:

void salute(Student student)
{

writeln("Hello ", student.name);
}
// ...

salute("Jane"); // ← compilation ERROR

On the other hand, all of the following lines ensure that a Student object is
constructed before calling the function:
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import std.conv;
// ...

salute(Student("Jane"));
salute(to!Student("Jean"));
salute(cast(Student)"Jim");

to and cast take advantage of the single-parameter constructor by constructing
a temporary Student object and calling salute() with that object.

Disabling the default constructor
Functions that are declared as @disable cannot be called.

Sometimes there are no sensible default values for the members of a type. For
example, it may be illegal for the following type to have an empty file name:

struct Archive
{

string fileName;
}

Unfortunately, the compiler-generated default constructor would initialize
fileName as empty:

auto archive = Archive(); // ← fileName member is empty

The default constructor can explicitly be disabled by declaring it as @disable so
that objects must be constructed by one of the other constructors. There is no
need to provide a body for a disabled function:

struct Archive
{

string fileName;

@disable this(); // ← cannot be called

this(string fileName) // ← can be called
{

// ...
}

}

// ...

auto archive = Archive(); // ← compilation ERROR

This time the compiler does not allow calling this():

Error: constructor deneme.Archive.this is not callable because
it is annotated with @disable

Objects of Archive must be constructed with one of the other constructors:

auto archive = Archive("records"); // ← compiles

52.2 Destructor
The destructor includes the operations that must be executed when the lifetime
of an object ends.

The compiler-generated automatic destructor executes the destructors of all of
the members in order. For that reason, as it is with the constructor, there is no
need to define a destructor for most structs.

However, sometimes some special operations may need to be executed when an
object's lifetime ends. For example, an operating system resource that the object
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owns may need to be returned to the system; a member function of another
object may need to be called; a server running somewhere on the network may
need to be notified that a connection to it is about to be terminated; etc.

The name of the destructor is ~this and just like constructors, it has no return
type.

Destructor is executed automatically
The destructor is executed as soon as the lifetime of the struct ends. As you would
remember from the Lifetimes and Fundamental Operations chapter, (page 239)
the lifetime of an object ends when leaving the scope that it is defined in.

The following are times when the lifetime of a struct ends:

• When leaving the scope of the object either normally or due to a thrown
exception:

if (aCondition) {
auto duration = Duration(7);
// ...

} // ← The destructor is executed for 'duration' at this point

• Anonymous objects are destroyed at the end of the whole expression
that they are constructed in:

time.increment(Duration(5)); // ← The Duration(5) object
//   gets destroyed at the end
//   of the whole expression.

• All of the struct members of a struct object get destroyed when the outer
object is destroyed.

Destructor example
Let's design a type for generating simple XML documents. XML elements are
defined by angle brackets. They contain data and other XML elements. XML
elements can have attributes as well; we will ignore them here.

Our aim will be to ensure that an element that has been opened by a <name> tag
will always be closed by a matching </name> tag:

<class1>    ← opening the outer XML element
<grade>   ← opening the inner XML element

57      ← the data
</grade>  ← closing the inner element

</class1>   ← closing the outer element

A struct that can produce the output above can be designed by two members that
store the tag for the XML element and the indentation to use when printing it:

struct XmlElement
{

string name;
size_t indentation;

}

If the responsibilities of opening and closing the XML element are given to the
constructor and the destructor, respectively, the desired output can be produced
by managing the lifetimes of XmlElement objects. For example, the constructor
can print <tag> and the destructor can print </tag>.

The following definition of the constructor produces the opening tag:
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this(in string name, in int level)
{

this.name = name;
this.indentation = indentationString(level);

writeln(indentation, '<', name, '>');
}

indentationString() is the following function:

import std.array;
// ...
string indentationString(in int level)
{

return replicate(" ", level * 2);
}

The function calls replicate() from the std.array module, which makes and
returns a new string made up of the specified value repeated the specified
number of times.

The destructor can be defined similar to the constructor to produce the closing
tag:

~this()
{

writeln(indentation, "</", name, '>');
}

Here is a test code to demonstrate the effects of the automatic constructor and
destructor calls:

import std.conv;
import std.random;

void main()
{

immutable classes = XmlElement("classes", 0);

foreach (classId; 0 .. 2) {
immutable classTag = "class" ~ to!string(classId);
immutable classElement = XmlElement(classTag, 1);

foreach (i; 0 .. 3) {
immutable gradeElement = XmlElement("grade", 2);
immutable randomGrade = uniform(50, 101);

writeln(indentationString(3), randomGrade);
}

}
}

Note that the XmlElement objects are created in three separate scopes in the
program above. The opening and closing tags of the XML elements in the output
are produced solely by the constructor and the destructor of XmlElement.

I have indicated the matching opening and closing tags of the outer, the middle,
and the inner scopes by different colors:

<classes>
<class0>

<grade>
72

</grade>
<grade>
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97
</grade>
<grade>

90
</grade>

</class0>
<class1>

<grade>
77

</grade>
<grade>

87
</grade>
<grade>

56
</grade>

</class1>
</classes>

The <classes> element is produced by the classesElement variable. Because
that variable is constructed first in main(), the output contains the output of its
construction first. Since it is also the variable that is destroyed last, upon leaving
main(), the output contains the output of the destructor call for its destruction
last.

52.3 Postblit
Copying is constructing a new object from an existing one. Copying involves two
steps:

1. Copying the members of the existing object to the new object bit-by-bit.
This step is called blit, short for block transfer.

2. Making further adjustments to the new object. This step is called postblit.

The first step is handled automatically by the compiler: It copies the members of
the existing object to the members of the new object:

auto returnTripDuration = tripDuration; // copying

Do not confuse copying with assignment. The auto keyword above is an
indication that a new object is being defined. The actual type name could have
been spelled out instead of auto.

For an operation to be assignment, the object on the left-hand side must be an
existing object. For example, assuming that returnTripDuration has already
been defined:

returnTripDuration = tripDuration; // assignment (see below)

Sometimes it is necessary to make adjustments to the members of the new object
after the automatic blit. These operations are defined in the postblit function of
the struct.

Since it is about object construction, the name of the postblit is this as well. To
separate it from the other constructors, its parameter list contains the keyword
this:

this(this)
{

// ...
}
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We have defined a Student type in the Structs chapter (page 266), which had a
problem about copying objects of that type:

struct Student
{

int number;
int[] grades;

}

Being a slice, the grades member of that struct is a reference type. The
consequence of copying a Student object is that the grades members of both the
original and the copy provide access to the same actual array elements of type
int. As a result, the effect of modifying a grade through one of these objects is
seen through the other object as well:

auto student1 = Student(1, [ 70, 90, 85 ]);

auto student2 = student1; // copying
student2.number = 2;

student1.grades[0] += 5; // this changes the grade of the
// second student as well:

assert(student2.grades[0] == 75);

To avoid such a confusion, the elements of the grades member of the second
object must be separate and belong only to that object. Such adjustments are done
in the postblit:

struct Student
{

int number;
int[] grades;

this(this)
{

grades = grades.dup;
}

}

Remember that all of the members have already been copied automatically before
this(this) started executing. The single line in the postblit above makes a copy
of the elements of the original array and assigns a slice of it back to grades. As a
result, the new object gets its own copy of the grades.

Making modifications through the first object does not affect the second object
anymore:

student1.grades[0] += 5;
assert(student2.grades[0] == 70);

Disabling postblit
The postblit function can be disabled by @disable as well. Objects of such a type
cannot be copied:

struct Archive
{
// ...

@disable this(this);
}

// ...
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auto a = Archive("records");
auto b = a; // ← compilation ERROR

The compiler does not allow calling the disabled postblit function:

Error: struct deneme.Archive is not copyable because it is
annotated with @disable

52.4 Assignment operator
Assigment is giving a new value to an existing object:

returnTripDuration = tripDuration; // assignment

Assignment is more complicated from the other special operations because it is
actually a combination of two operations:

• Destroying the left-hand side object
• Copying the right-hand side object to the left-hand side object

However, applying those two steps in that order is risky because the original
object would be destroyed before knowing that copying will succeed. Otherwise,
an exception that is thrown during the copy operation can leave the left-hand side
object in an inconsistent state: fully destroyed but not completely copied.

For that reason, the compiler-generated assignment operator acts safely by
applying the following steps:

1. Copy the right-hand side object to a temporary object
This is the actual copying half of the assignment operation. Since

there is no change to the left-hand side object yet, it will remain intact if
an exception is thrown during this copy operation.

2. Destroy the left-hand side object
This is the other half of the assignment operation.

3. Transfer the temporary object to the left-hand side object
No postblit nor a destructor is executed during or after this step. As a

result, the left-hand side object becomes the equivalent of the temporary
object.

After the steps above, the temporary object disappears and only the right-hand
side object and its copy (i.e. the left-hand side object) remain.

Although the compiler-generated assignment operator is suitable in most cases,
it can be defined by the programmer. When you do that, consider potential
exceptions and write the assignment operator in a way that works even at the
presence of thrown exceptions.

The syntax of the assignment operator is the following:

• The name of the function is opAssign.
• The type of the parameter is the same as the struct type. This

parameter is often named as rhs, short for right-hand side.
• The return type is the same as the struct type.
• The function is exited by return this.

As an example, let's consider a simple Duration struct where the assignment
operator prints a message:
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struct Duration
{

int minute;

Duration opAssign(Duration rhs)
{

writefln("minute is being changed from %s to %s",
this.minute, rhs.minute);

this.minute = rhs.minute;

return this;
}

}
// ...

auto duration = Duration(100);
duration = Duration(200); // assignment

The output:

minute is being changed from 100 to 200

Assigning from other types
Sometimes it is convenient to assign values of types that are different from the
type of the struct. For example, instead of requiring a Duration object on the
right-hand side, it may be useful to assign from an integer:

duration = 300;

This is possible by defining another assignment operator that takes an int
parameter:

struct Duration
{

int minute;

Duration opAssign(Duration rhs)
{

writefln("minute is being changed from %s to %s",
this.minute, rhs.minute);

this.minute = rhs.minute;

return this;
}

Duration opAssign(int minute)
{

writefln("minute is being replaced by an int");

this.minute = minute;

return this;
}

}
// ...

duration = Duration(200);
duration = 300;

The output:

minute is being changed from 100 to 200
minute is being replaced by an int

Note: Although convenient, assigning different types to each other may cause
confusions and errors.
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52.5 Summary

• Constructor (this) is for preparing objects for use. The compiler-
generated default constructor is sufficient in most cases.

• The behavior of the default constructor may not be changed in structs;
static opCall can be used instead.

• Single-parameter constructors can be used during type conversions by
to and cast.

• Destructor (~this) is for the operations that must be executed when the
lifetimes of objects end.

• Postblit (this(this)) is for adjustments to the object after the
automatic member copies.

• Assigment operator (opAssign) is for changing values of existing objects.
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53 Operator Overloading

The topics covered in this chapter apply mostly for classes as well. The biggest
difference is that the behavior of assignment operation opAssign() cannot be
overloaded for classes.

Operator overloading enables defining how user-defined types behave when
used with operators. In this context, the term overload means providing the
definition of an operator for a specific type.

We have seen how to define structs and their member functions in previous
chapters. As an example, we have defined the increment() member function to
be able to add Duration objects to TimeOfDay objects. Here are the two structs
from previous chapters, with only the parts that are relevant to this chapter:

struct Duration
{

int minute;
}

struct TimeOfDay
{

int hour;
int minute;

void increment(in Duration duration)
{

minute += duration.minute;

hour += minute / 60;
minute %= 60;
hour %= 24;

}
}

void main()
{

auto lunchTime = TimeOfDay(12, 0);
lunchTime.increment(Duration(10));

}

A benefit of member functions is being able to define operations of a type
alongside the member variables of that type.

Despite their advantages, member functions can be seen as being limited
compared to operations on fundamental types. After all, fundamental types can
readily be used with operators:

int weight = 50;
weight += 10; // by an operator

According to what we have seen so far, similar operations can only be achieved by
member functions for user-defined types:

auto lunchTime = TimeOfDay(12, 0);
lunchTime.increment(Duration(10)); // by a member function

Operator overloading enables using structs and classes with operators as well. For
example, assuming that the += operator is defined for TimeOfDay, the operation
above can be written in exactly the same way as with fundamental types:

lunchTime += Duration(10); // by an operator even for the struct
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Before getting to the details of operator overloading, let's first see how the line
above would be enabled for TimeOfDay. What is needed is to redefine the
increment() member function under the special name opOpAssign(string
op) and also to specify that this definition is for the + character. As it will be
explained below, this definition actually corresponds to the += operator.

The definition of this member function does not look like the ones that we have
seen so far. That is because opOpAssign is actually a function template. Since we
will see templates in much later chapters, I will have to ask you to accept the
operator overloading syntax as-is for now:

struct TimeOfDay
{
// ...

ref TimeOfDay opOpAssign(string op)(in Duration duration) // (1)
if (op == "+") // (2)

{
minute += duration.minute;

hour += minute / 60;
minute %= 60;
hour %= 24;

return this;
}

}

The template definition consists of two parts:

1. opOpAssign(string op): This part must be written as-is and should be
accepted as the name of the function. We will see below that there are
other member functions in addition to opOpAssign.

2. if (op == "+"): opOpAssign is used for more than one operator
overload. "+" specifies that this is the operator overload that
corresponds to the + character. This syntax is a template constraint,
which will also be covered in later chapters.

Also note that this time the return type is different from the return type of the
increment() member function: It is not void anymore. We will discuss the
return types of operators later below.

Behind the scenes, the compiler replaces the uses of the += operator with calls
to the opOpAssign!"+" member function:

lunchTime += Duration(10);

// The following line is the equivalent of the previous one
lunchTime.opOpAssign!"+"(Duration(10));

The !"+" part that is after opOpAssign specifies that this call is for the definition
of the operator for the + character. We will cover this template syntax in later
chapters as well.

Note that the operator definition that corresponds to += is defined by "+", not by
"+=". The Assign in the name of opOpAssign() already implies that this name is
for an assignment operator.

Being able to define the behaviors of operators brings a responsibility: The
programmer must observe expectations. As an extreme example, the previous
operator could have been defined to decrement the time value instead of

Operator Overloading

314



incrementing it. However, people who read the code would still expect the value
to be incremented by the += operator.

To some extent, the return types of operators can also be chosen freely. Still,
general expectations must be observed for the return types as well.

Keep in mind that operators that behave unnaturally would cause confusion
and bugs.

53.1 Overloadable operators
There are different kinds of operators that can be overloaded.

Unary operators
An operator that takes a single operand is called a unary operator:

++weight;

++ is a unary operator because it works on a single variable.
Unary operators are defined by member functions named opUnary. opUnary

does not take any parameters because it uses only the object that the operator is
being executed on.

The overloadable unary operators and the corresponding operator strings are
the following:

Operator Description Operator String
-object negative of (numeric complement of) "-"
+object the same value as (or, a copy of) "+"
~object bitwise negation "~"
*object access to what it points to "*"
++object increment "++"
--object decrement "--"

For example, the ++ operator for Duration can be defined like this:

struct Duration
{

int minute;

ref Duration opUnary(string op)()
if (op == "++")

{
++minute;
return this;

}
}

Note that the return type of the operator is marked as ref here as well. This will
be explained later below.
Duration objects can now be incremented by ++:

auto duration = Duration(20);
++duration;

The post-increment and post-decrement operators cannot be overloaded. The
object++ and object-- uses are handled by the compiler automatically by
saving the previous value of the object. For example, the compiler applies the
equivalent of the following code for post-increment:

/* The previous value is copied by the compiler
* automatically: */

Duration __previousValue__ = duration;
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/* The ++ operator is called: */
++duration;

/* Then __previousValue__ is used as the value of the
* post-increment operation. */

Additionally, if an opBinary overload supports the duration += 1 usage, then
opUnary need not be overloaded for ++duration and duration++. Instead, the
compiler uses the duration += 1 expression behind the scenes. Similarly, the
duration -= 1 overload covers the uses of --duration and duration-- as well.

Binary operators
An operator that takes two operands is called a binary operator:

totalWeight = boxWeight + chocolateWeight;

The line above has two separate binary operators: the + operator, which adds the
values of the two operands that are on its two sides, and the = operator that
assigns the value of its right-hand operand to its left-hand operand.

The rightmost column below describes the category of each operator. The ones
marked as "=" assign to the left-hand side object.

Operator Description Function name
Function name

for right-hand side Category
+ add opBinary opBinaryRight arithmetic
- subtract opBinary opBinaryRight arithmetic
* multiply opBinary opBinaryRight arithmetic
/ divide opBinary opBinaryRight arithmetic
% remainder of opBinary opBinaryRight arithmetic
^^ to the power of opBinary opBinaryRight arithmetic
& bitwise and opBinary opBinaryRight bitwise
| bitwise or opBinary opBinaryRight bitwise
^ bitwise xor opBinary opBinaryRight bitwise
<< left-shift opBinary opBinaryRight bitwise
>> right-shift opBinary opBinaryRight bitwise
>>> unsigned right-shift opBinary opBinaryRight bitwise
~ concatenate opBinary opBinaryRight
in whether contained in opBinary opBinaryRight
== whether equal to opEquals - logical
!= whether not equal to opEquals - logical
< whether before opCmp - sorting
<= whether not after opCmp - sorting
> whether after opCmp - sorting
>= whether not before opCmp - sorting
= assign opAssign - =
+= increment by opOpAssign - =
-= decrement by opOpAssign - =
*= multiply and assign opOpAssign - =
/= divide and assign opOpAssign - =
%= assign the remainder of opOpAssign - =
^^= assign the power of opOpAssign - =
&= assign the result of & opOpAssign - =
|= assign the result of | opOpAssign - =
^= assign the result of ^ opOpAssign - =
<<= assign the result of << opOpAssign - =
>>= assign the result of >> opOpAssign - =
>>>= assign the result of >>> opOpAssign - =
~= append opOpAssign - =
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opBinaryRight is for when the object can appear on the right-hand side of the
operator. Let's assume a binary operator that we shall call op appears in the
program:

x op y

In order to determine what member function to call, the compiler considers the
following two options:

x.opBinary!"op"(y); // the definition for x being on the left
y.opBinaryRight!"op"(x); // the definition for y being on the right

The compiler picks the option that is a better match than the other.
In most cases it is not necessary to define opBinaryRight, except for the in

operator: It usually makes more sense to define opBinaryRight for in.
The parameter name rhs that appears in the following definitions is short for

right-hand side. It denotes the operand that appears on the right-hand side of the
operator:

x op y

For the expression above, the rhs parameter would represent the variable y.

53.2 Element indexing and slicing operators
The following operators enable using a type as a collection of elements:

Description Function Name Sample Usage
element access opIndex collection[i]

assignment to element opIndexAssign collection[i] = 7
unary operation on element opIndexUnary ++collection[i]

operation with assignment on element opIndexOpAssign collection[i] *= 2
number of elements opDollar collection[$ - 1]

slice of all elements opSlice collection[]
slice of some elements opSlice(size_t, size_t) collection[i..j]

We will cover those operators later below.
The following operator functions are from the earlier versions of D. They are

discouraged:

Description Function Name Sample Usage
unary operation on all elements opSliceUnary

(discouraged)
++collection[]

unary operation on some elements opSliceUnary
(discouraged)

++collection[i..j]

assignment to all elements opSliceAssign
(discouraged)

collection[] = 42

assignment to some elements opSliceAssign
(discouraged)

collection[i..j] =
7

operation with assignment on all
elements

opSliceOpAssign
(discouraged)

collection[] *= 2

operation with assignment on some
elements

opSliceOpAssign
(discouraged)

collection[i..j]
*= 2

Other operators
The following operators can be overloaded as well:

Description Function Name Sample Usage
function call opCall object(42)

type conversion opCast to!int(object)
dispatch for non-existent function opDispatch object.nonExistent()
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These operators will be explained below under their own sections.

53.3 Defining more than one operator at the same time
To keep the code samples short, we have used only the ++, +, and += operators
above. It is conceivable that when one operator is overloaded for a type, many
others would also need to be overloaded. For example, the -- and -= operators are
also defined for the following Duration:

struct Duration
{

int minute;

ref Duration opUnary(string op)()
if (op == "++")

{
++minute;
return this;

}

ref Duration opUnary(string op)()
if (op == "--")

{
--minute;
return this;

}

ref Duration opOpAssign(string op)(in int amount)
if (op == "+")

{
minute += amount;
return this;

}

ref Duration opOpAssign(string op)(in int amount)
if (op == "-")

{
minute -= amount;
return this;

}
}

unittest
{

auto duration = Duration(10);

++duration;
assert(duration.minute == 11);

--duration;
assert(duration.minute == 10);

duration += 5;
assert(duration.minute == 15);

duration -= 3;
assert(duration.minute == 12);

}

void main()
{}

The operator overloads above have code duplications. The only differences
between the similar functions are highlighted. Such code duplications can be
reduced and sometimes avoided altogether by string mixins. We will see the mixin
keyword in a later chapter as well. I would like to show briefly how this keyword
helps with operator overloading.
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mixin inserts the specified string as source code right where the mixin
statement appears in code. The following struct is the equivalent of the one above:

struct Duration
{

int minute;

ref Duration opUnary(string op)()
if ((op == "++") || (op == "--"))

{
mixin (op ~ "minute;");
return this;

}

ref Duration opOpAssign(string op)(in int amount)
if ((op == "+") || (op == "-"))

{
mixin ("minute " ~ op ~ "= amount;");
return this;

}
}

If the Duration objects also need to be multiplied and divided by an amount, all
that is needed is to add two more conditions to the template constraint:

struct Duration
{
// ...

ref Duration opOpAssign(string op)(in int amount)
if ((op == "+") || (op == "-") ||

(op == "*") || (op == "/"))
{

mixin ("minute " ~ op ~ "= amount;");
return this;

}
}

unittest
{

auto duration = Duration(12);

duration *= 4;
assert(duration.minute == 48);

duration /= 2;
assert(duration.minute == 24);

}

In fact, the template constraints are optional:

ref Duration opOpAssign(string op)(in int amount)
// ← no constraint

{
mixin ("minute " ~ op ~ "= amount;");
return this;

}

53.4 Return types of operators
When overloading an operator, it is advisable to observe the return type of the
same operator on fundamental types. This would help with making sense of code
and reducing confusions.

None of the operators on fundamental types return void. This fact should be
obvious for some operators. For example, the result of adding two int values as
a + b is int:
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int a = 1;
int b = 2;
int c = a + b; // c gets initialized by the return value

// of the + operator

The return values of some other operators may not be so obvious. For example,
even operators like ++i have values:

int i = 1;
writeln(++i); // prints 2

The ++ operator not only increments i, it also produces the new value of i.
Further, the value that is produced by ++ is not just the new value of i, rather the
variable i itself. We can see this fact by printing the address of the result of that
expression:

int i = 1;
writeln("The address of i                : ", &i);
writeln("The address of the result of ++i: ", &(++i));

The output contains identical addresses:

The address of i                : 7FFF39BFEE78
The address of the result of ++i: 7FFF39BFEE78

I recommend that you observe the following guidelines when overloading
operators for your own types:

• Operators that modify the object
With the exception of opAssign, it is recommended that the operators

that modify the object return the object itself. This guideline has been
observed above with the TimeOfDay.opOpAssign!"+" and
Duration.opUnary!"++".

The following two steps achieve returning the object itself:

1. The return type is the type of the struct, marked by the ref
keyword to mean reference.

2. The function is exited by return this to mean return this
object.

The operators that modify the object are opUnary!"++", opUnary!"--",
and all of the opOpAssign overloads.

• Logical operators
opEquals that represents both == and != must return bool. Although

the in operator normally returns the contained object, it can simply
return bool as well.

• Sort operators
opCmp that represents <, <=, >, and >= must return int.

• Operators that make a new object
Some operators must make and return a new object:

◦ Unary operators -, +, and ~; and the binary operator ~.
◦ Arithmetic operators +, -, *, /, %, and ^^.
◦ Bitwise operators &, |, ^, <<, >>, and >>>.
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◦ As has been seen in the previous chapter, opAssign returns a
copy of this object by return this.
Note: As an optimization, sometimes it makes more sense for

opAssign to return const ref for large structs. I will not apply
this optimization in this book.

As an example of an operator that makes a new object, let's define the
opBinary!"+" overload for Duration. This operator should add two
Duration objects to make and return a new one:

struct Duration
{

int minute;

Duration opBinary(string op)(in Duration rhs) const
if (op == "+")

{
return Duration(minute + rhs.minute); // new object

}
}

That definition enables adding Duration objects by the + operator:

auto travelDuration = Duration(10);
auto returnDuration = Duration(11);
Duration totalDuration;
// ...
totalDuration = travelDuration + returnDuration;

The compiler replaces that expression with the following member
function call on the travelDuration object:

// the equivalent of the expression above
totalDuration = travelDuration.opBinary!"+"(returnDuration);

• opDollar
Since it returns the number of elements of the container, the most

suitable type for opDollar is size_t. However, the return type can be
other types as well (e.g. int).

• Unconstrained operators
The return types of some of the operators depend entirely on the

design of the user-defined type: The unary *, opCall, opCast,
opDispatch, opSlice, and all opIndex varieties.

53.5 opEquals() for equality comparisons
This member function defines the behaviors of the == and the != operators.

The return type of opEquals is bool.
For structs, the parameter of opEquals can be defined as in. However, for speed

efficiency opEquals can be defined as a template that takes auto ref const
(also note the empty template parentheses below):

bool opEquals()(auto ref const TimeOfDay rhs) const
{

// ...
}

As we have seen in the Lvalues and Rvalues chapter (page 190), auto ref allows
lvalues to be passed by reference and rvalues by copy. However, since rvalues are
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not copied, rather moved, the signature above is efficient for both lvalues and
rvalues.

To reduce confusion, opEquals and opCmp must work consistently. For two
objects that opEquals returns true, opCmp must return zero.

Once opEquals() is defined for equality, the compiler uses its opposite for
inequality:

x == y;
x.opEquals(y); // the equivalent of the previous expression

x != y;
!(x.opEquals(y)); // the equivalent of the previous expression

Normally, it is not necessary to define opEquals() for structs. The compiler
generates it for structs automatically. The automatically-generated opEquals
compares all of the members individually.

Sometimes the equality of two objects must be defined differently from this
automatic behavior. For example, some of the members may not be significant in
this comparison, or the equality may depend on a more complex logic.

Just as an example, let's define opEquals() in a way that disregards the minute
information altogether:

struct TimeOfDay
{

int hour;
int minute;

bool opEquals(in TimeOfDay rhs) const
{

return hour == rhs.hour;
}

}
// ...

assert(TimeOfDay(20, 10) == TimeOfDay(20, 59));

Since the equality comparison considers the values of only the hour members,
20:10 and 20:59 end up being equal. (This is just an example; it should be clear
that such an equality comparison would cause confusions.)

53.6 opCmp() for sorting
Sort operators determine the sort orders of objects. All of the ordering operators
<, <=, >, and >= are covered by the opCmp() member function.

For structs, the parameter of opCmp can be defined as in. However, as with
opEquals, it is more efficient to define opCmp as a template that takes auto ref
const:

int opCmp()(auto ref const TimeOfDay rhs) const
{

// ...
}

To reduce confusion, opEquals and opCmp must work consistently. For two
objects that opEquals returns true, opCmp must return zero.

Let's assume that one of these four operators is used as in the following code:

if (x op y) { // ← op is one of <, <=, >, or >=

The compiler converts that expression to the following logical expression and
uses the result of the new logical expression:
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if (x.opCmp(y) op 0) {

Let's consider the <= operator:

if (x <= y) {

The compiler generates the following code behind the scenes:

if (x.opCmp(y) <= 0) {

For the user-defined opCmp() to work correctly, this member function must
return a result according to the following rules:

• A negative value if the left-hand object is considered to be before the
right-hand object

• A positive value if the left-hand object is considered to be after the right-
hand object

• Zero if the objects are considered to have the same sort order

To be able to support those values, the return type of opCmp() must be int, not
bool.

The following is a way of ordering TimeOfDay objects by first comparing the
values of the hour members, and then comparing the values of the minute
members (only if the hour members are equal):

int opCmp(in TimeOfDay rhs) const
{

/* Note: Subtraction is a bug here if the result can
* underflow. (See the following warning in text.) */

return (hour == rhs.hour
? minute - rhs.minute
: hour - rhs.hour);

}

That definition returns the difference between the minute values when the hour
members are the same, and the difference between the hour members otherwise.
The return value would be a negative value when the left-hand object comes before
in chronological order, a positive value if the right-hand object is before, and zero
when they represent exactly the same time of day.

Warning: Using subtraction for the implementation of opCmp is a bug if valid
values of a member can cause underflow. For example, the two objects below
would be sorted incorrectly as the object with value -2 is calculated to be greater
than the one with value int.max:

struct S
{

int i;

int opCmp(in S rhs) const
{

return i - rhs.i; // ← BUG
}

}

void main()
{

assert(S(-2) > S(int.max)); // ← wrong sort order
}
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On the other hand, subtraction is acceptable for TimeOfDay because none of the
valid values of the members of that struct can cause underflow in subtraction.
You can use std.algorithm.cmp for comparing slices (including all string types
and ranges). cmp() compares slices lexicographically and produces a negative
value, zero, or positive value depending on their order. That result can directly be
used as the return value of opCmp:

import std.algorithm;

struct S
{

string name;

int opCmp(in S rhs) const
{

return cmp(name, rhs.name);
}

}

Once opCmp() is defined, the type can be used in algorithms that compare objects
of that type. The .sort property of arrays is such an algorithm. The following
program constructs 10 objects by random values and sorts them by .sort. As
.sort works on the elements, it is the opCmp() operator that gets called behind
the scenes to determine the sort orders of the elements:

import std.random;
import std.stdio;
import std.string;
import std.algorithm;

struct TimeOfDay
{

int hour;
int minute;

int opCmp(in TimeOfDay rhs) const
{

return (hour == rhs.hour
? minute - rhs.minute
: hour - rhs.hour);

}

string toString() const
{

return format("%02s:%02s", hour, minute);
}

}

void main()
{

TimeOfDay[] times;

foreach (i; 0 .. 10) {
times ~= TimeOfDay(uniform(0, 24), uniform(0, 60));

}

sort(times);

writeln(times);
}

As expected, the elements are sorted from the earliest time to the latest time:

[03:40, 04:10, 09:06, 10:03, 10:09, 11:04, 13:42, 16:40, 18:03, 21:08]
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53.7 opCall() to call objects as functions
The parentheses around the parameter list when calling functions are operators
as well. We have already seen how static opCall() makes it possible to use the
name of the type as a function. static opCall() allows creating objects with
default values at run time.

Non-static opCall() on the other hand allows using the objects of user-defined
types as functions:

Foo foo;
foo();

The object foo above is being called like a function.
As an example, let's consider a struct that represents a linear equation. This

struct will be used for calculating the y values of the following linear equation
for specific x values:

y = ax + b

The following opCall() simply calculates and returns the value of y according to
that equation:

struct LinearEquation
{

double a;
double b;

double opCall(double x) const
{

return a * x + b;
}

}

With that definition, each object of LinearEquation represents a linear equation
for specific a and b values. Such an object can be used as a function that
calculates the y values:

LinearEquation equation = { 1.2, 3.4 };
double y = equation(5.6); // the object is being used like a function

Note: Defining opCall() for a struct disables the compiler-generated automatic
constructor. That is why the { } syntax is used above instead of the recommended
LinearEquation(1.2, 3.4). When the latter syntax is desired, a static
opCall() that takes two double parameters must also be defined.
equation above represents the y = 1.2x + 3.4 linear equation. Using that object

as a function executes the opCall() member function.
This feature can be useful to define and store the a and b values in an object

once and to use that object multiple times later on. The following code uses such
an object in a loop:

LinearEquation equation = { 0.01, 0.4 };

for (double x = 0.0; x <= 1.0; x += 0.125) {
writefln("%f: %f", x, equation(x));

}

That object represents the y = 0.01x + 0.4 equation. It is being used for calculating
the results for x values in the range from 0.0 to 1.0.
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53.8 Indexing operators
opIndex, opIndexAssign, opIndexUnary, opIndexOpAssign, and opDollar
make it possible to use indexing operators on user-defined types similar to arrays
as in object[index].

Unlike arrays, these operators support multi-dimensional indexing as well.
Multiple index values are specified as a comma-separated list inside the square
brackets (e.g. object[index0, index1]). In the following examples we will use
these operators only with a single dimension and cover their multi-dimensional
uses in the More Templates chapter (page 533).

The deque variable in the following examples is an object of struct
DoubleEndedQueue, which we will define below; and e is a variable of type int.
opIndex is for element access. The index that is specified inside the brackets

becomes the parameter of the operator function:

e = deque[3]; // the element at index 3
e = deque.opIndex(3); // the equivalent of the above

opIndexAssign is for assigning to an element. The first parameter is the value
that is being assigned and the second parameter is the index of the element:

deque[5] = 55; // assign 55 to the element at index 5
deque.opIndexAssign(55, 5); // the equivalent of the above

opIndexUnary is similar to opUnary. The difference is that the operation is
applied to the element at the specified index:

++deque[4]; // increment the element at index 4
deque.opIndexUnary!"++"(4); // the equivalent of the above

opIndexOpAssign is similar to opOpAssign. The difference is that the operation
is applied to an element:

deque[6] += 66; // add 66 to the element at index 6
deque.opIndexOpAssign!"+"(66, 6);// the equivalent of the above

opDollar defines the $ character that is used during indexing and slicing. It is for
returning the number of elements in the container:

e = deque[$ - 1]; // the last element
e = deque[deque.opDollar() - 1]; // the equivalent of the above

Indexing operators example
Double-ended queue is a data structure that is similar to arrays but it provides
efficient insertion at the head of the collection as well. (In contrast, inserting at
the head of an array is a relatively slow operation as it requires moving the
existing elements to a newly created array.)

One way of implementing a double-ended queue is to use two arrays in the
background but to use the first one in reverse. The element that is conceptually
inserted at the head of the queue is actually appended to the head array. As a
result, this operation is as efficient as appending to the end.

The following struct implements a double-ended queue that overloads the
operators that we have seen in this section:

import std.stdio;
import std.string;
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import std.conv;

struct DoubleEndedQueue // Also known as Deque
{
private:

/* The elements are represented as the chaining of the two
* member slices. However, 'head' is indexed in reverse so
* that the first element of the entire collection is
* head[$-1], the second one is head[$-2], etc.:
*
* head[$-1], head[$-2], ... head[0], tail[0], ... tail[$-1]
*/

int[] head; // the first group of elements
int[] tail; // the second group of elements

/* Determines the actual slice that the specified element
* resides in and returns it as a reference. */

ref inout(int) elementAt(size_t index) inout
{

return (index < head.length
? head[$ - 1 - index]
: tail[index - head.length]);

}

public:

string toString() const
{

string result;

foreach_reverse (element; head) {
result ~= format("%s ", to!string(element));

}

foreach (element; tail) {
result ~= format("%s ", to!string(element));

}

return result;
}

/* Note: As we will see in the next chapter, the following
* is a simpler and more efficient implementation of
* toString(): */

version (none)
{

void toString(void delegate(const(char)[]) sink) const
{

import std.format;
import std.range;

formattedWrite(
sink, "%(%s %)", chain(head.retro, tail));

}
}

/* Adds a new element to the head of the collection. */
void insertAtHead(int value)
{

head ~= value;
}

/* Adds a new element to the tail of the collection.
*
* Sample: deque ~= value
*/

ref DoubleEndedQueue opOpAssign(string op)(int value)
if (op == "~")

{
tail ~= value;
return this;

}
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/* Returns the specified element.
*
* Sample: deque[index]
*/

inout(int) opIndex(size_t index) inout
{

return elementAt(index);
}

/* Applies a unary operation to the specified element.
*
* Sample: ++deque[index]
*/

int opIndexUnary(string op)(size_t index)
{

mixin ("return " ~ op ~ "elementAt(index);");
}

/* Assigns a value to the specified element.
*
* Sample: deque[index] = value
*/

int opIndexAssign(int value, size_t index)
{

return elementAt(index) = value;
}

/* Uses the specified element and a value in a binary
* operation and assigns the result back to the same
* element.
*
* Sample: deque[index] += value
*/

int opIndexOpAssign(string op)(int value, size_t index)
{

mixin ("return elementAt(index) " ~ op ~ "= value;");
}

/* Defines the $ character, which is the length of the
* collection.
*
* Sample: deque[$ - 1]
*/

size_t opDollar() const
{

return head.length + tail.length;
}

}

void main()
{

auto deque = DoubleEndedQueue();

foreach (i; 0 .. 10) {
if (i % 2) {

deque.insertAtHead(i);

} else {
deque ~= i;

}
}

writefln("Element at index 3: %s",
deque[3]); // accessing an element

++deque[4]; // incrementing an element
deque[5] = 55; // assigning to an element
deque[6] += 66; // adding to an element

(deque ~= 100) ~= 200;

writeln(deque);
}
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According to the guidelines above, the return type of opOpAssign is ref so that
the ~= operator can be chained on the same collection:

(deque ~= 100) ~= 200;

As a result, both 100 and 200 get appended to the same collection:

Element at index 3: 3
9 7 5 3 2 55 68 4 6 8 100 200

53.9 Slicing operators
opSlice allows slicing the objects of user-defined types.
In addition to this operator, there are also opSliceUnary, opSliceAssign, and
opSliceOpAssign but they are discouraged.
opSlice has two distinct forms:

• The square brackets can be empty as in deque[]
Note: As we will see in a later chapter, opIndex corresponds to that usage

in multi-dimensional slicing, not opSlice.
• The square brackets can contain a number range as in
deque[begin..end]

Empty square brackets mean all of the elements and a number range means some
of the elements.

The slicing operators are relatively more complex than other operators because
they involve two distinct concepts: container and range. We will see these concepts
in more detail in later chapters.

Like the indexing operators, opSlice supports multi-dimensional slicing as
well. We will see a multi-dimensional example in the More Templates chapter
(page 533).

In single-dimensional slicing, opSlice returns an object that represents a
specific range of elements of the container. The object that opSlice returns is
responsible for defining the operations that are applied on that range. For
example, behind the scenes the following expression is executed by first calling
opSlice to obtain a range object and then applying opOpAssign!"*" on that
object:

deque[] *= 10; // multiply all of the elements by 10

// The equivalent of the above:
{

auto range = deque.opSlice();
range.opOpAssign!"*"(10);

}

Accordingly, the opSlice operators of DoubleEndedQueue return a special Range
object so that the operations are applied to it:

import std.exception;

struct DoubleEndedQueue
{
// ...

/* Returns a range that represents all of the elements.
* ('Range' struct is defined below.)
*
* Sample: deque[]
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*/
inout(Range) opSlice() inout
{

return inout(Range)(head[], tail[]);
}

/* Returns a range that represents some of the elements.
*
* Sample: deque[begin .. end]
*/

inout(Range) opSlice(size_t begin, size_t end) inout
{

enforce(end <= opDollar());
enforce(begin <= end);

/* Determine what parts of 'head' and 'tail'
* correspond to the specified range: */

if (begin < head.length) {
if (end < head.length) {

/* The range is completely inside 'head'. */
return inout(Range)(

head[$ - end .. $ - begin],
[]);

} else {
/* Some part of the range is inside 'head' and
* the rest is inside 'tail'. */

return inout(Range)(
head[0 .. $ - begin],
tail[0 .. end - head.length]);

}

} else {
/* The range is completely inside 'tail'. */
return inout(Range)(

[],
tail[begin - head.length .. end - head.length]);

}
}

/* Represents a range of elements of the collection. This
* struct is responsible for defining the opUnary,
* opAssign, and opOpAssign operators. */

struct Range
{

int[] headRange; // elements that are in 'head'
int[] tailRange; // elements that are in 'tail'

/* Applies the unary operation to the elements of the
* range. */

Range opUnary(string op)()
{

mixin (op ~ "headRange[];");
mixin (op ~ "tailRange[];");
return this;

}

/* Assigns the specified value to each element of the
* range. */

Range opAssign(int value)
{

headRange[] = value;
tailRange[] = value;
return this;

}

/* Uses each element and a value in a binary operation
* and assigns the result back to that element. */

Range opOpAssign(string op)(int value)
{

mixin ("headRange[] " ~ op ~ "= value;");
mixin ("tailRange[] " ~ op ~ "= value;");
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return this;
}

}
}

void main()
{

auto deque = DoubleEndedQueue();

foreach (i; 0 .. 10) {
if (i % 2) {

deque.insertAtHead(i);

} else {
deque ~= i;

}
}

writeln(deque);
deque[] *= 10;
deque[3 .. 7] = -1;
writeln(deque);

}

The output:

9 7 5 3 1 0 2 4 6 8
90 70 50 -1 -1 -1 -1 40 60 80

53.10 opCast for type conversions
opCast defines the explicit type conversions. It can be overloaded separately for
each target type. As you would remember from the earlier chapters, explicit type
conversions are performed by the to function and the cast operator.
opCast is a template as well, but it has a different format: The target type is

specified by the (T : target_type) syntax:

target_type opCast(T : target_type)()
{

// ...
}

This syntax will become clear later after the templates chapter as well.
Let's change the definition of Duration so that it now has two members: hours

and minutes. The operator that converts objects of this type to double can be
defined as in the following code:

import std.stdio;
import std.conv;

struct Duration
{

int hour;
int minute;

double opCast(T : double)() const
{

return hour + (to!double(minute) / 60);
}

}

void main()
{

auto duration = Duration(2, 30);
double d = to!double(duration); // can be cast(double)duration as well
writeln(d);

}
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The compiler replaces the type conversion call above with the following one:

double d = duration.opCast!double();

The double conversion function above produces 2.5 for two hours and thirty
minutes:

2.5

53.11 Catch-all operator opDispatch
opDispatch gets called whenever a missing member of an object is accessed. All
attempts to access non-existent members are dispatched to this function.

The name of the missing member becomes the template parameter value of
opDispatch.

The following code demonstrates a simple definition:

import std.stdio;

struct Foo
{

void opDispatch(string name, T)(T parameter)
{

writefln("Foo.opDispatch - name: %s, value: %s",
name, parameter);

}
}

void main()
{

Foo foo;
foo.aNonExistentFunction(42);
foo.anotherNonExistentFunction(100);

}

There are no compiler errors for the calls to non-existent members. Instead, all of
those calls are dispatched to opDispatch. The first template parameter is the
name of the member. The parameter values that are used when calling the
function appear as the parameters of opDispatch:

Foo.opDispatch - name: aNonExistentFunction, value: 42
Foo.opDispatch - name: anotherNonExistentFunction, value: 100

The name template parameter can be used inside the function to make decisions
on how the call to that specific non-existent function should be handled:

switch (name) {
// ...

}

53.12 Inclusion query by opBinaryRight!"in"
This operator allows defining the behavior of the in operator for user-defined
types. in is commonly used with associative arrays to determine whether a value
for a specific key exists in the array.

Different from other operators, this operator is normally overloaded for the
case where the object appears on the right-hand side:

if (time in lunchBreak) {

The compiler would use opBinaryRight behind the scenes:
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// the equivalent of the above:
if (lunchBreak.opBinaryRight!"in"(time)) {

Example of the in operator
The following program defines a TimeSpan type in addition to Duration and
TimeOfDay. The in operator that is defined for TimeSpan determines whether a
moment in time is within that time span.

To keep the code short, the following program defines only the necessary
member functions.

Note how the TimeOfDay object is used seamlessly in the for loop. That loop is
a demonstration of how useful operator overloading can be.

import std.stdio;
import std.string;

struct Duration
{

int minute;
}

struct TimeOfDay
{

int hour;
int minute;

ref TimeOfDay opOpAssign(string op)(in Duration duration)
if (op == "+")

{
minute += duration.minute;

hour += minute / 60;
minute %= 60;
hour %= 24;

return this;
}

int opCmp(in TimeOfDay rhs) const
{

return (hour == rhs.hour
? minute - rhs.minute
: hour - rhs.hour);

}

string toString() const
{

return format("%02s:%02s", hour, minute);
}

}

struct TimeSpan
{

TimeOfDay begin;
TimeOfDay end; // end is considered to be outside of the span

bool opBinaryRight(string op)(TimeOfDay time) const
if (op == "in")

{
return (time >= begin) && (time < end);

}
}

void main()
{

auto lunchBreak = TimeSpan(TimeOfDay(12, 00),
TimeOfDay(13, 00));

for (auto time = TimeOfDay(11, 30);
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time < TimeOfDay(13, 30);
time += Duration(15)) {

if (time in lunchBreak) {
writeln(time, " is during the lunch break");

} else {
writeln(time, " is outside of the lunch break");

}
}

}

The output:

11:30 is outside of the lunch break
11:45 is outside of the lunch break
12:00 is during the lunch break
12:15 is during the lunch break
12:30 is during the lunch break
12:45 is during the lunch break
13:00 is outside of the lunch break
13:15 is outside of the lunch break

53.13 Exercise

• Define a fraction type that holds its numerator and denominator as
members of type long. Such a type may be useful, because it does not
lose value like float, double, and real do due to their precisions. For
example, although the result of multiplying a double value of 1.0/3 by 3
is not 1.0, multiplying a Fraction object that represents the fraction 1⁄3
by 3 would be exactly 1:

struct Fraction
{

long num; // numerator
long den; // denominator

/* As a convenience, the constructor uses the default
* value of 1 for the denominator. */

this(long num, long den = 1)
{

enforce(den != 0, "The denominator cannot be zero");

this.num = num;
this.den = den;

/* Ensuring that the denominator is always positive
* will simplify the definitions of some of the
* operator functions. */

if (this.den < 0) {
this.num = -this.num;
this.den = -this.den;

}
}

/* ... you define the operator overloads ... */
}

Define operators as needed for this type to make it a convenient type as
close to fundamental types as possible. Ensure that the definition of the
type passes all of the following unit tests. The unit tests ensure the
following behaviors:
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◦ An exception must be thrown when constructing an object
with zero denominator. (This is already taken care of by the
enforce expression above.)

◦ Producing the negative of the value: For example, the negative
of 1⁄3 should be -1⁄3 and negative of -2⁄5 should be 2⁄5.

◦ Incrementing and decrementing the value by ++ and --.
◦ Support for four arithmetic operations: Both modifying the

value of an object by +=, -=, *=, and /=; and producing the
result of using two objects with the +, -, *, and / operators.
(Similar to the constructor, dividing by zero should be
prevented.)

As a reminder, here are the formulas of arithmetic
operations that involve two fractions a⁄b and c⁄d:

▪ Addition: a⁄b + c⁄d = (a*d + c*b)⁄(b*d)
▪ Subtraction: a⁄b - c⁄d = (a*d - c*b)⁄(b*d)
▪ Multiplication: a⁄b * c⁄d = (a*c)⁄(b*d)
▪ Division: (a⁄b) / (c⁄d) = (a*d)⁄(b*c)

◦ The actual (and necessarily lossful) value of the object can be
converted to double.

◦ Sort order and equality comparisons are performed by the
actual values of the fractions, not by the values of the
numerators and denominators. For example, the fractions 1⁄3
and 20⁄60 must be considered to be equal.

unittest
{

/* Must throw when denominator is zero. */
assertThrown(Fraction(42, 0));

/* Let's start with 1⁄3. */
auto a = Fraction(1, 3);

/* -1⁄3 */
assert(-a == Fraction(-1, 3));

/* 1⁄3 + 1 == 4⁄3 */
++a;
assert(a == Fraction(4, 3));

/* 4⁄3 - 1 == 1⁄3 */
--a;
assert(a == Fraction(1, 3));

/* 1⁄3 + 2⁄3 == 3⁄3 */
a += Fraction(2, 3);
assert(a == Fraction(1));

/* 3⁄3 - 2⁄3 == 1⁄3 */
a -= Fraction(2, 3);
assert(a == Fraction(1, 3));

/* 1⁄3 * 8 == 8⁄3 */
a *= Fraction(8);
assert(a == Fraction(8, 3));

/* 8⁄3 / 16⁄9 == 3⁄2 */
a /= Fraction(16, 9);
assert(a == Fraction(3, 2));
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/* Must produce the equivalent value in type 'double'.
*
* Note that although double cannot represent every value
* precisely, 1.5 is an exception. That is why this test
* is being applied at this point. */

assert(to!double(a) == 1.5);

/* 1.5 + 2.5 == 4 */
assert(a + Fraction(5, 2) == Fraction(4, 1));

/* 1.5 - 0.75 == 0.75 */
assert(a - Fraction(3, 4) == Fraction(3, 4));

/* 1.5 * 10 == 15 */
assert(a * Fraction(10) == Fraction(15, 1));

/* 1.5 / 4 == 3⁄8 */
assert(a / Fraction(4) == Fraction(3, 8));

/* Must throw when dividing by zero. */
assertThrown(Fraction(42, 1) / Fraction(0));

/* The one with lower numerator is before. */
assert(Fraction(3, 5) < Fraction(4, 5));

/* The one with larger denominator is before. */
assert(Fraction(3, 9) < Fraction(3, 8));
assert(Fraction(1, 1_000) > Fraction(1, 10_000));

/* The one with lower value is before. */
assert(Fraction(10, 100) < Fraction(1, 2));

/* The one with negative value is before. */
assert(Fraction(-1, 2) < Fraction(0));
assert(Fraction(1, -2) < Fraction(0));

/* The ones with equal values must be both <= and >=.  */
assert(Fraction(-1, -2) <= Fraction(1, 2));
assert(Fraction(1, 2) <= Fraction(-1, -2));
assert(Fraction(3, 7) <= Fraction(9, 21));
assert(Fraction(3, 7) >= Fraction(9, 21));

/* The ones with equal values must be equal. */
assert(Fraction(1, 3) == Fraction(20, 60));

/* The ones with equal values with sign must be equal. */
assert(Fraction(-1, 2) == Fraction(1, -2));
assert(Fraction(1, 2) == Fraction(-1, -2));

}

The solution is on page 721.
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54 Classes

Similar to structs, class is a feature for defining new types. Different from
structs, classes provide the object oriented programming (OOP) paradigm in D. The
major aspects of OOP are the following:

• Encapsulation: Controlling access to members (Encapsulation is available
for structs as well but it has not been mentioned until this chapter.)

• Inheritance: Acquiring members of another type
• Polymorphism: Being able to use a more special type in place of a more

general type

Encapsulation is achieved by protection attributes, which we will see in a later
chapter. Inheritance is for acquiring implementations of other types.
Polymorphism is for abstracting parts of programs from each other and is
achieved by class interfaces.

This chapter will introduce classes at a high level, underlining the fact that they
are reference types. Classes will be explained in more detail in later chapters.

54.1 Comparing with structs
In general, classes are very similar to structs. Most of the features that we have
seen for structs in the following chapters apply to classes as well:

• Structs (page 266)
• Member Functions (page 288)
• const ref Parameters and const Member Functions (page 294)
• Constructor and Other Special Functions (page 298)
• Operator Overloading (page 313)

However, there are important differences between classes and structs.

Classes are reference types
The biggest difference from structs is that structs are value types and classes are
reference types. The other differences outlined below are mostly due to this fact.

Class objects may be null
As it has been mentioned briefly in The null Value and the is Operator chapter
(page 253), class variables can be null. In other words, class variables may not be
providing access to any object. Class variables do not have values themselves; the
actual class objects must be constructed by the new keyword.

As you would also remember, comparing a reference to null by the == or the
!= operator is an error. Instead, the comparison must be done by the is or the
!is operator, accordingly:

MyClass referencesAnObject = new MyClass;
assert(referencesAnObject !is null);

MyClass variable; // does not reference an object
assert(variable is null);

The reason is that, the == operator may need to consult the values of the members
of the objects and that attempting to access the members through a potentially
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null variable would cause a memory access error. For that reason, class variables
must always be compared by the is and !is operators.

Class variables versus class objects
Class variable and class object are separate concepts.

Class objects are constructed by the new keyword; they do not have names. The
actual concept that a class type represents in a program is provided by a class
object. For example, assuming that a Student class represents students by their
names and grades, such information would be stored by the members of Student
objects. Partly because they are anonymous, it is not possible to access class
objects directly.

A class variable on the other hand is a language feature for accessing class
objects. Although it may seem syntactically that operations are being performed
on a class variable, the operations are actually dispatched to a class object.

Let's consider the following code that we have seen previously in the Value
Types and Reference Types chapter (page 244):

auto variable1 = new MyClass;
auto variable2 = variable1;

The new keyword constructs an anonymous class object. variable1 and
variable2 above merely provide access to that anonymous object:

(anonymous MyClass object)    variable1    variable2
---+-------------------+---  ---+---+---  ---+---+---

|        ...        |        | o |        | o |
---+-------------------+---  ---+-|-+---  ---+-|-+---

▲                    |            |
|                    |            |
+--------------------+------------+

Copying
Copying affects only the variables, not the object.

Because classes are reference types, defining a new class variable as a copy of
another makes two variables that provide access to the same object. The actual
object is not copied.

Since no object gets copied, the postblit function this(this) is not available
for classes.

auto variable2 = variable1;

In the code above, variable2 is being initialized by variable1. The two variables
start providing access to the same object.

When the actual object needs to be copied, the class must have a member
function for that purpose. To be compatible with arrays, this function may be
named dup(). This function must create and return a new class object. Let's see
this on a class that has various types of members:

class Foo
{

S      o; // assume S is a struct type
char[] s;
int i;

// ...

this(S o, const char[] s, int i)
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{
this.o = o;
this.s = s.dup;
this.i = i;

}

Foo dup() const
{

return new Foo(o, s, i);
}

}

The dup() member function makes a new object by taking advantage of the
constructor of Foo and returns the new object. Note that the constructor copies
the s member explicitly by the .dup property of arrays. Being value types, o and i
are copied automatically.

The following code makes use of dup() to create a new object:

auto var1 = new Foo(S(1.5), "hello", 42);
auto var2 = var1.dup();

As a result, the objects that are associated with var1 and var2 are different.
Similarly, an immutable copy of an object can be provided by a member

function appropriately named idup():

class Foo
{
// ...

immutable(Foo) idup() const
{

return new immutable(Foo)(o, s, i);
}

}

// ...

immutable(Foo) imm = var1.idup();

Assignment
Just like copying, assignment affects only the variables.

Assigning to a class variable disassociates that variable from its current object
and associates it with a new object.

If there is no other class variable that still provides access to the object that has
been disassociated from, then that object is going to be destroyed some time in
the future by the garbage collector.

auto variable1 = new MyClass();
auto variable2 = new MyClass();
variable1 = variable2;

The assignment above makes variable1 leave its object and start providing
access to variable2's object. Since there is no other variable for variable1's
original object, that object will be destroyed by the garbage collector.

The behavior of assignment cannot be changed for classes. In other words,
opAssign cannot be overloaded for them.

Definition
Classes are defined by the class keyword instead of the struct keyword:
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class ChessPiece
{

// ...
}

Construction
As with structs, the name of the constructor is this. Unlike structs, class objects
cannot be constructed by the { } syntax.

class ChessPiece
{

dchar shape;

this(dchar shape)
{

this.shape = shape;
}

}

Unlike structs, there is no automatic object construction where the constructor
parameters are assigned to members sequentially:

class ChessPiece
{

dchar shape;
size_t value;

}

void main()
{

auto king = new ChessPiece('♔', 100); // ← compilation ERROR
}

Error: no constructor for ChessPiece

For that syntax to work, a constructor must be defined explicitly by the
programmer.

Destruction
As with structs, the name of the destructor is ~this:

~this()
{

// ...
}

Member access
Same as structs, the members are accessed by the dot operator:

auto king = new ChessPiece('♔');
writeln(king.shape);

Although the syntax makes it look as if a member of the variable is being
accessed, it is actually the member of the object. Class variables do not have
members, the class objects do. The king variable does not have a shape member,
the anonymous object does.
Note: It is usually not proper to access members directly as in the code above. When

that exact syntax is desired, properties should be preferred, which will be explained in a
later chapter.

Classes

340



Operator overloading
Other than the fact that opAssign cannot be overloaded for classes, operator
overloading is the same as structs. For classes, the meaning of opAssign is always
associating a class variable with a class object.

Member functions
Member functions are generally the same as structs.

A difference is that some member functions are automatically inherited from
the Object class. We will see in the next chapter how the definition of toString
is changed by the override keyword.

The is and !is operators
These operators operate on class variables.
is specifies whether two class variables provide access to the same class object.

It returns true if the object is the same and false otherwise. !is is the opposite
of is.

auto myKing = new ChessPiece('♔');
auto yourKing = new ChessPiece('♔');
assert(myKing !is yourKing);

Since the objects of myKing and yourKing variables are different, the !is
operator returns true. Even though the two objects are constructed by the same
character '♔', they are still two separate objects.

When the variables provide access to the same object, is returns true:

auto myKing2 = myKing;
assert(myKing2 is myKing);

Both of the variables above provide access to the same object.

54.2 Summary

• Classes and structs share common features but have big differences.
• Classes are reference types. The new keyword constructs an anonymous

class object and returns a class variable.
• Class variables that are not associated with any object are null.

Checking against null must be done by is or !is, not by == or !=.
• The act of copying associates an additional variable with an object. In

order to copy class objects, the type must have a special function likely
named dup().

• Assignment associates a variable with an object. This behavior cannot
be changed.
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55 Inheritance

Inheritance is defining a more special type based on an existing more general
type. The special type acquires the members of the general type and as a result,
can take place of the general type.
Inheritance is available for classes, not structs. The class that inherits another
class is called the subclass, and the class that gets inherited is called the superclass.

There are two types of inheritance in D. We will cover implementation
inheritance in this chapter and leave interface inheritance to a later chapter.
When defining a subclass, the superclass is specified after a colon character:

class SubClass : SuperClass
{

// ...
}

To see an example of this, let's assume that there is already the following class
that represents a clock:

class Clock
{

int hour;
int minute;
int second;

void adjust(int hour, int minute, int second = 0)
{

this.hour = hour;
this.minute = minute;
this.second = second;

}
}

Apparently, the members of that class do not need special values during
construction; so there is no constructor. Instead, the members are set by the
adjust() member function:

auto deskClock = new Clock;
deskClock.adjust(20, 30);
writefln(

"%02s:%02s:%02s",
deskClock.hour, deskClock.minute, deskClock.second);

Note: It would be more useful to produce the time string by a toString() function. It
will be added later when explaining the override keyword below.

The output:

20:30:00

With only that much functionality, Clock could be a struct as well, and depending
on the needs of the program, that could be sufficient.

However, being a class makes it possible to inherit from Clock.
To see an example of inheritance, let's consider an AlarmClock that not only

includes all of the functionality of Clock, but also provides a way of setting the
alarm. Let's first define this type without regard to Clock. If we did that, we would
have to include the same three members of Clock and the same adjust()
function that adjusted them. AlarmClock would also have other members for its
additional functionality:
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class AlarmClock
{

int hour;
int minute;
int second;
int alarmHour;
int alarmMinute;

void adjust(int hour, int minute, int second = 0)
{

this.hour = hour;
this.minute = minute;
this.second = second;

}

void adjustAlarm(int hour, int minute)
{

alarmHour = hour;
alarmMinute = minute;

}
}

The members that appear exactly in Clock are highlighted. As can be seen,
defining Clock and AlarmClock separately results in code duplication.

Inheritance is helpful in such cases. Inheriting AlarmClock from Clock
simplifies the new class and reduces code duplication:

class AlarmClock : Clock
{

int alarmHour;
int alarmMinute;

void adjustAlarm(int hour, int minute)
{

alarmHour = hour;
alarmMinute = minute;

}
}

The new definition of AlarmClock is the equivalent of the previous one. The
highlighted part of the new definition corresponds to the highlighted parts of the
old definition.

Because AlarmClock inherits the members of Clock, it can be used just like a
Clock:

auto bedSideClock = new AlarmClock;
bedSideClock.adjust(20, 30);
bedSideClock.adjustAlarm(7, 0);

The members that are inherited from the superclass are accessed as if they are
the members of the subclass:

writefln("%02s:%02s:%02s ♫%02s:%02s",
bedSideClock.hour,
bedSideClock.minute,
bedSideClock.second,
bedSideClock.alarmHour,
bedSideClock.alarmMinute);

The output:

20:30:00 ♫07:00

Note: An AlarmClock.toString function would be more useful in this case. It will be
defined later below.
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The inheritance used in this example is implementation inheritance.
If we imagine the memory as a ribbon going from top to bottom, the placement

of the members of AlarmClock in memory can be pictured as in the following
illustration:

|       .     |
|       .     |

the address of the object → +-------------+
| hour |
| minute |
| second |
| alarmHour   |
| alarmMinute |
+-------------+
|       .     |
|       .     |

The illustration above is just to give an idea on how the members of the
superclass and the subclass may be combined together. The actual layout of the
members would depend on decisions that are made by the compiler during
compilation.

55.1 Warning: Inherit only if "is a"
We have seen that implementation inheritance is about acquiring members.
Consider this kind of inheritance only if the subtype can be thought of being a
kind of the supertype as in the phrase "alarm clock is a clock."
"Is a" is not the only relationship between types; a more common relationship is
the "has a" relationship. For example, let's assume that we want to add the concept
of a Battery to the Clock class. It would not be appropriate to add Battery to
Clock by inheritance because the statement "clock is a battery" is not true:

class Clock : Battery // ← WRONG DESIGN
{

// ...
}

A clock is not a battery; it has a battery. When there is such a relationship of
containment, the type that is contained must be defined as a member of the type
that contains it:

class Clock
{

Battery battery; // ← Correct design
// ...

}

55.2 Interitance from at most one class
Class inheritance is limited by a single class.

For example, assuming that there is also a SoundEmitter class, and even
though "alarm clock is a sound emitting object" is also true, it is not possible to
inherit AlarmClock both from Clock and SoundEmitter:

class SoundEmitter
{

// ...
}

class AlarmClock : Clock, SoundEmitter // ← compilation ERROR
{

// ...
}
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On the other hand, there is no limit to the number of interfaces that a class can
inherit from. We will see the interface keyword in a later chapter.

Additionally, there is no limit to how deep the inheritance hierarchy can go:

class MusicalInstrument
{

// ...
}

class StringInstrument : MusicalInstrument
{

// ...
}

class Violin : StringInstrument
{

// ...
}

The inheritance hierarchy above defines a relationship from the more general to
the more specific: musical instrument, string instrument, and violin.

55.3 Hierarchy charts
Types that are related by the "is a" relationship form a class hierarchy.

According to OOP conventions, class hierarchies are represented by
superclasses being on the top and the subclasses being at the bottom. The
inheritance relationships are indicated by arrows pointing from the subclasses to
the superclasses.

For example, the following can be a hierarchy of musical instruments:

MusicalInstrument
↗         ↖

StringInstrument   WindInstrument
↗    ↖            ↗    ↖

Violin  Guitar    Flute   Recorder

55.4 Accessing superclass members
The super keyword allows referring to members that are inherited from the
superclass.

class AlarmClock : Clock
{

// ...

void foo()
{

super.minute = 10; // The inherited 'minute' member
minute = 10; // Same thing if there is no ambiguity

}
}

The super keyword is not always necessary; minute alone has the same meaning
in the code above. The super keyword is needed when both the superclass and the
subclass have members under the same names. We will see this below when we
will need to write super.reset() and super.toString().

55.5 Constructing superclass members
The other use of the super keyword is to call the constructor of the superclass.
This is similar to calling the constructors of the current class: this when calling
constructors of this class and super when calling constructors of the superclass.
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It is not required to call the superclass constructor explicitly; when the
superclass has a default constructor, the inherited members of the superclass are
automatically default-constructed.

We have not defined constructors for the Clock and AlarmClock classes yet.
For that reason, the members of both of those classes are initialized by the .init
values of their respective types, which is 0 for int.

Let's assume that Clock has the following constructor:

class Clock
{

this(int hour, int minute, int second)
{

this.hour = hour;
this.minute = minute;
this.second = second;

}

// ...
}

That constructor must be used when constructing Clock objects:

auto clock = new Clock(17, 15, 0);

Naturally, the programmers who use the Clock type directly would have to use
that syntax. However, when constructing an AlarmClock object, they cannot
construct its Clock part separately. Besides, the users of AlarmClock need not
even know that it inherits from Clock.

A user of AlarmClock should simply construct an AlarmClock object and use it
in the program without needing to pay attention to its Clock heritage:

auto bedSideClock = new AlarmClock(/* ... */);
// ... use as an AlarmClock ...

For that reason, constructing the superclass part is the responsibility of the
subclass. The subclass calls the constructor of the superclass by the super()
syntax:

class AlarmClock : Clock
{

this(int hour, int minute, int second, // for Clock's members
int alarmHour, int alarmMinute) // for AlarmClock's members

{
super(hour, minute, second);
this.alarmHour = alarmHour;
this.alarmMinute = alarmMinute;

}

// ...
}

The constructor of AlarmClock takes arguments for both its own members and
the members of its superclass. It then uses some of that information to construct
its superclass part.

If the superclass already has a default constructor, it is not necessary to call
super() explicitly.

55.6 Overriding the definitions of member functions
One of the benefits of inheritance is being able to redefine the member functions
of the superclass in the subclass. This is called overriding: The existing definition
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of the member function of the superclass is overridden by the subclass by the
override keyword.
Overridable functions are called virtual functions. Virtual functions are
implemented by the compiler through virtual function pointer tables (vtbl) and vtbl
pointers. The details of this mechanism are outside the scope of this book.
However, it must be known by every system programmer that virtual function
calls are more expensive than regular function calls. Every class member
function in D is virtual by default. For that reason, when a superclass function
does not need to be overridden at all, it should be defined as final so that it is not
virtual. We will see the final keyword later in the Interfaces chapter (page 367).

Let's assume that Clock has a member function that is used for resetting its
members all to zero:

class Clock
{

void reset()
{

hour = 0;
minute = 0;
second = 0;

}

// ...
}

That function is inherited by AlarmClock and can be called on an AlarmClock
object:

auto bedSideClock = new AlarmClock(20, 30, 0, 7, 0);
// ...
bedSideClock.reset();

However, necessarily ignorant of the members of AlarmClock, Clock.reset can
only reset its own members. For that reason, to reset the members of the subclass
as well, reset() must be overridden:

class AlarmClock : Clock
{

override void reset()
{

super.reset();
alarmHour = 0;
alarmMinute = 0;

}

// ...
}

The subclass resets only its own members and dispatches the rest of the task to
Clock by the super.reset() call. Note that writing just reset() would not work
as it would mean the reset() function of AlarmClock itself. Calling reset()
from within itself would cause an infinite recursion.

The reason that I have delayed the definition of toString() until this point is
that it must be defined by the override keyword for classes. As we will see in the
next chapter, every class is automatically inherited from a superclass called
Object and Object already defines a toString() member function.

For that reason, the toString() member function for classes must be defined
by the override keyword:
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import std.string;

class Clock
{

override string toString() const
{

return format("%02s:%02s:%02s", hour, minute, second);
}

// ...
}

class AlarmClock : Clock
{

override string toString() const
{

return format("%s ♫%02s:%02s", super.toString(),
alarmHour, alarmMinute);

}

// ...
}

Note that AlarmClock is again dispatching some of the task to Clock by the
super.toString() call.

Those two overrides of toString() allow using AlarmClock objects as strings:

void main()
{

auto deskClock = new AlarmClock(10, 15, 0, 6, 45);
writeln(deskClock);

}

The output:

10:15:00 ♫06:45

55.7 Using the subclass in place of the superclass
Since the superclass is more general and the subclass is more special, objects of a
subclass can be used in places where an object of superclass is required. This is
called polymorphism.

The concepts of general and special types can be seen in statements like "this
type is of that type": "alarm clock is a clock", "student is a person", "cat is an
animal", etc. Accordingly, an alarm clock can be used where a clock is needed, a
student can be used where a person is needed, and a cat can be used where an
animal is needed.

When a subclass object is being used as a superclass object, it does not lose its
own special type. This is similar to its examples in real life: Using an alarm clock
simply as a clock does not change the fact that it is an alarm clock; it would still
behave like an alarm clock.

Let's assume that a function takes a Clock object as parameter, which it resets
at some point during its execution:

void use(Clock clock)
{

// ...
clock.reset();
// ...

}
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Polymorphism makes it possible to send an AlarmClock to such a function:

auto deskClock = new AlarmClock(10, 15, 0, 6, 45);
writeln("Before: ", deskClock);
use(deskClock);
writeln("After : ", deskClock);

This is in accordance with the relationship "alarm clock is a clock." As a result, the
members of the deskClock object gets reset:

Before: 10:15:00 ♫06:45
After : 00:00:00 ♫00:00

The important observation here is that not only the members of Clock but also
the members of AlarmClock have been reset.

Although use() calls reset() on a Clock object, since the actual object is an
AlarmClock, the function that gets called is AlarmClock.reset. According to its
definition above, AlarmClock.reset resets the members of both Clock and
AlarmClock.

In other words, although use() uses the object as a Clock, the actual object
may be an inherited type that behaves in its own special way.

Let's add another class to the Clock hierarchy. The reset() function of this
type sets its members to random values:

import std.random;

class BrokenClock : Clock
{

this()
{

super(0, 0, 0);
}

override void reset()
{

hour = uniform(0, 24);
minute = uniform(0, 60);
second = uniform(0, 60);

}
}

When an object of BrokenClock is sent to use(), then the special reset()
function of BrokenClock would be called. Again, although it is passed as a Clock,
the actual object is still a BrokenClock:

auto shelfClock = new BrokenClock;
use(shelfClock);
writeln(shelfClock);

The output shows random time values as a result of resetting a BrokenClock:

22:46:37

55.8 Inheritance is transitive
Polymorphism is not limited to two classes. Subclasses of subclasses can also be
used in place of any superclass in the hierarchy.

Let's consider the MusicalInstrument hierarchy:

class MusicalInstrument
{

// ...

Inheritance

349



}

class StringInstrument : MusicalInstrument
{

// ...
}

class Violin : StringInstrument
{

// ...
}

The inheritances above build the following relationships: "string instrument is a
musical instrument" and "violin is a string instrument." Therefore, it is also true
that "violin is a musical instrument." Consequently, a Violin object can be used
in place of a MusicalInstrument.

Assuming that all of the supporting code below have also been defined:

void playInTune(MusicalInstrument instrument,
MusicalPiece piece)

{
instrument.tune();
instrument.play(piece);

}

// ...

auto myViolin = new Violin;
playInTune(myViolin, improvisation);

Although playInTune() expects a MusicalInstrument, it is being called with a
Violin due to the relationship "violin is a musical instrument."

Inheritance can be as deep as needed.

55.9 Abstract member functions and abstract classes
Sometimes there are member functions that are natural to appear on a class
interface even though that class cannot provide its definition. When there is no
concrete definition of a member function, that function is an abstract member
function. A class that has at least one abstract member function is an abstract
class.

For example, the ChessPiece superclass in a hierarchy may have an
isValid() member function that determines whether a given move is valid for
that chess piece. Since validity of a move depends on the actual type of the chess
piece, the ChessPiece general class cannot make this decision itself. The valid
moves can only be known by the subclasses like Pawn, King, etc.

The abstract keyword specifies that the definition of the member function is
not provided by this class and must be provided by a subclass:

class ChessPiece
{

abstract bool isValid(in Square from, in Square to);
}

The isValid() function above does not have a definition; it is a declaration.
It is not possible to construct objects of abstract classes:

auto piece = new ChessPiece; // ← compilation ERROR
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Objects of an abstract class cannot be used because of the missing function
definitions. Such a class would not know how to respond to a call like
piece.isValid(thisSquare, thatSquare).

On the other hand, it is possible to construct objects of subclasses as long as
there are no function definitions that are still left undefined (i.e. that are still
abstract):

class Pawn : ChessPiece
{

override bool isValid(in Square from, in Square to)
{

// ... the implementation of isValid for pawn ...
return decision;

}
}

Because it provides the definition for the abstract function, it is possible to
construct objects of Pawn:

auto piece = new Pawn; // compiles

55.10 Example
Let's consider a class hierarchy that represents railway vehicles:

RailwayVehicle
/      |       \

Locomotive   Train   RailwayCar { load()?, unload()? }
/   \

PassengerCar   FreightCar

The functions that RailwayCar will declare as abstract are indicated by
question marks.

Since my goal is only to present a class hierarchy and point out some of its
design decisions, I will not fully implement these classes. Instead of doing actual
work, they will simply print messages.

The most general class of the hierarchy above is RailwayVehicle. In this
program, it will only know how to move itself:

class RailwayVehicle
{

void advance(in size_t kilometers)
{

writefln("The vehicle is advancing %s kilometers",
kilometers);

}
}

A class that inherits from RailwayVehicle is Locomotive, which does not have
any special members yet:

class Locomotive : RailwayVehicle
{}

We will add a special makeSound() member function to Locomotive later during
one of the exercises.
RailwayCar is a RailwayVehicle as well. However, if the hierarchy supports

different types of railway cars, then certain behaviors like loading and unloading
must be done according to their exact types. For that reason, RailwayCar can
only declare these two functions as abstract:
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class RailwayCar : RailwayVehicle
{

abstract void load();
abstract void unload();

}

Loading and unloading a passenger car is as simple as opening the doors of the
car, while loading and unloading a freight car may involve porters and winches.
The following subclasses provide definitions for the abstract functions of
RailwayCar:

class PassengerCar : RailwayCar
{

override void load()
{

writeln("The passengers are getting on");
}

override void unload()
{

writeln("The passengers are getting off");
}

}

class FreightCar : RailwayCar
{

override void load()
{

writeln("The crates are being loaded");
}

override void unload()
{

writeln("The crates are being unloaded");
}

}

Being an abstract class does not preclude the use of RailwayCar in the program.
Objects of RailwayCar can not be constructed but RailwayCar can be used as an
interface. As the subclasses define the two relationships "passenger car is a
railway car" and "freight car is a railway car", the objects of PassengerCar and
FreightCar can be used in places of RailwayCar. This will be seen in the Train
class below.

The class that represents a train can consist of a locomotive and an array of
railwaycars:

class Train : RailwayVehicle
{

Locomotive locomotive;
RailwayCar[] cars;

// ...
}

I would like to repeat an important point: Although both Locomotive and
RailwayCar inherit from RailwayVehicle, it would not be correct to inherit
Train from either of them. Inheritance models the "is a" relationship and a train
is neither a locomotive nor a passenger car. A train consists of them.

If we require that every train must have a locomotive, the Train constructor
must ensure that it takes a valid Locomotive object. Similarly, if the railway cars
are optional, they can be added by a member function:
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import std.exception;
// ...

class Train : RailwayVehicle
{

// ...

this(Locomotive locomotive)
{

enforce(locomotive !is null,
"Locomotive cannot be null");

this.locomotive = locomotive;
}

void addCar(RailwayCar[] cars...)
{

this.cars ~= cars;
}

// ...
}

Note that addCar() can validate the RailwayCar objects as well. I am ignoring
that validation here.

We can imagine that the departures and arrivals of trains should also be
supported:

class Train : RailwayVehicle
{

// ...

void departStation(string station)
{

foreach (car; cars) {
car.load();

}

writefln("Departing from %s station", station);
}

void arriveStation(string station)
{

writefln("Arriving at %s station", station);

foreach (car; cars) {
car.unload();

}
}

}

The following main() is making use of the RailwayVehicle hierarchy:

import std.stdio;
// ...
void main()
{

auto locomotive = new Locomotive;
auto train = new Train(locomotive);

train.addCar(new PassengerCar, new FreightCar);

train.departStation("Ankara");
train.advance(500);
train.arriveStation("Haydarpaşa");

}
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The Train class is being used by functions that are provided by two separate
interfaces:

1. When the advance() function is called, the Train object is being used as
a RailwayVehicle because that function is declared by
RailwayVehicle.

2. When the departStation() and arriveStation() functions are
called, train is being used as a Train because those functions are
declared by Train.

The arrows indicate that load() and unload() functions work according to the
actual type of RailwayCar:

The passengers are getting on ←
The crates are being loaded ←
Departing from Ankara station
The vehicle is advancing 500 kilometers
Arriving at Haydarpaşa station
The passengers are getting off ←
The crates are being unloaded ←

55.11 Summary

• Inheritance is for the "is a" relationship.
• Every class can inherit from up to one class.
• super has two uses: Calling the constructor of the superclass and

accessing the members of the superclass.
• override is for redefining member functions of the superclass specially

for the subclass.
• abstract requires that a member function must be overridden.

55.12 Exercises

1. Let's modify RailwayVehicle. In addition to reporting the distance that
it advances, let's have it also make sounds. To keep the output short, let's
print the sounds per 100 kilometers:

class RailwayVehicle
{

void advance(in size_t kilometers)
{

writefln("The vehicle is advancing %s kilometers",
kilometers);

foreach (i; 0 .. kilometers / 100) {
writefln("  %s", makeSound());

}
}

// ...
}

However, makeSound() cannot be defined by RailwayVehicle because
vehicles may have different sounds:

◦ "choo choo" for Locomotive
◦ "clack clack" for RailwayCar
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Note: Leave Train.makeSound to the next exercise.
Because it must be overridden, makeSound() must be declared as

abstract by the superclass:

class RailwayVehicle
{

// ...

abstract string makeSound();
}

Implement makeSound() for the subclasses and try the code with the
following main():

void main()
{

auto railwayCar1 = new PassengerCar;
railwayCar1.advance(100);

auto railwayCar2 = new FreightCar;
railwayCar2.advance(200);

auto locomotive = new Locomotive;
locomotive.advance(300);

}

Make the program produce the following output:

The vehicle is advancing 100 kilometers
clack clack

The vehicle is advancing 200 kilometers
clack clack
clack clack

The vehicle is advancing 300 kilometers
choo choo
choo choo
choo choo

Note that there is no requirement that the sounds of PassengerCar and
FreightCar be different. They can share the same implemention from
RailwayCar.

3. Think about how makeSound() can be implemented for Train. One idea
is that Train.makeSound may return a string that consists of the
sounds of the members of Train.

The solutions are on page 726.
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56 Object
Classes that do not explicitly inherit any class, automatically inherit the Object
class.

By that definition, the topmost class in any class hierarchy inherits Object:

// ": Object" is not written; it is automatic
class MusicalInstrument : Object
{

// ...
}

// Inherits Object indirectly
class StringInstrument : MusicalInstrument
{

// ...
}

Since the topmost class inherits Object, every class indirectly inherits Object as
well. In that sense, every class "is an" Object.

Every class inherits the following member functions of Object:

• toString: The string representation of the object.
• opEquals: Equality comparison with another object.
• opCmp: Sort order comparison with another object.
• toHash: Associative array hash value.

The last three of these functions emphasize the values of objects. They also make
a class eligible for being the key type of associative arrays.

Because these functions are inherited, their redefinitions for the subclasses
require the override keyword.
Note: Object defines other members as well. This chapter will include only these

four functions.

56.1 toString
Same with structs, toString enables using objects as strings:

auto clock = new Clock(20, 30, 0);
writeln(clock); // Calls clock.toString()

The inherited toString() is usually not useful; it produces just the name of the
type:

deneme.Clock

The part before the name of the type is the name of the module. The output above
indicates that Clock has been defined in the deneme module.

As we have seen in the previous chapter, this function is almost always
overridden to produce a more meaningful string representation:

import std.string;

class Clock
{

override string toString() const
{

return format("%02s:%02s:%02s", hour, minute, second);
}
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// ...
}

class AlarmClock : Clock
{

override string toString() const
{

return format("%s ♫%02s:%02s", super.toString(),
alarmHour, alarmMinute);

}

// ...
}

// ...

auto bedSideClock = new AlarmClock(20, 30, 0, 7, 0);
writeln(bedSideClock);

The output:

20:30:00 ♫07:00

56.2 opEquals
As we have seen in the Operator Overloading chapter (page 313), this member
function is about the behavior of the == operator (and the != operator indirectly).
The return value of the operator must be true if the objects are considered to be
equal and false otherwise.

Warning: The definition of this function must be consistent with opCmp(); for
two objects that opEquals() returns true, opCmp() must return zero.

Contrary to structs, the compiler does not call a.opEquals(b) right away
when it sees the expression a == b. When two class objects are compared by the
== operator, a four-step algorithm is executed:

bool opEquals(Object a, Object b) {
if (a is b) return true; // (1)
if (a is null || b is null) return false; // (2)
if (typeid(a) == typeid(b)) return a.opEquals(b); // (3)
return a.opEquals(b) && b.opEquals(a); // (4)

}

1. If the two variables provide access to the same object (or they are both
null), then they are equal.

2. Following from the previous check, if only one is null then they are not
equal.

3. If both of the objects are of the same type, then a.opEquals(b) is called
to determine the equality.

4. Otherwise, for the two objects to be considered equal, opEquals must
have been defined for both of their types and a.opEquals(b) and
b.opEquals(a) must agree that the objects are equal.

Accordingly, if opEquals() is not provided for a class type, then the values of the
objects are not considered; rather, equality is determined by checking whether
the two class variables provide access to the same object:

auto variable0 = new Clock(6, 7, 8);
auto variable1 = new Clock(6, 7, 8);
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assert(variable0 != variable1); // They are not equal
// because the objects are
// different

Even though the two objects are constructed by the same arguments above, the
variables are not equal because they are not associated with the same object.

On the other hand, because the following two variables provide access to the
same object, they are equal:

auto partner0 = new Clock(9, 10, 11);
auto partner1 = partner0;

assert(partner0 == partner1); // They are equal because
// the object is the same

Sometimes it makes more sense to compare objects by their values instead of
their identities. For example, it is conceivable that variable0 and variable1
above compare equal because their values are the same.

Different from structs, the type of the parameter of opEquals for classes is
Object:

class Clock
{

override bool opEquals(Object o) const
{

// ...
}

// ...
}

As you will see below, the parameter is almost never used directly. For that reason,
it should be acceptable to name it simply as o. Most of the time the first thing to
do with that parameter is to use it in a type conversion.

The parameter of opEquals is the object that appears on the right-hand side of
the == operator:

variable0 == variable1; // o represents variable1

Since the purpose of opEquals() is to compare two objects of this class type, the
first thing to do is to convert o to a variable of the same type of this class. Since it
would not be appropriate to modify the right-hand side object in an equality
comparison, it is also proper to convert the type as const:

override bool opEquals(Object o) const
{

auto rhs = cast(const Clock)o;

// ...
}

As you would remember, rhs is a common abbreviation for right-hand side. Also,
std.conv.to can be used for the conversion as well:

import std.conv;
// ...

auto rhs = to!(const Clock)(o);
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If the original object on the right-hand side can be converted to Clock, then rhs
becomes a non-null class variable. Otherwise, rhs is set to null, indicating that
the objects are not of the same type.

According to the design of a program, it may make sense to compare objects of
two incompatible types. I will assume here that for the comparison to be valid,
rhs must not be null; so, the first logical expression in the following return
statement checks that it is not null. Otherwise, it would be an error to try to
access the members of rhs:

class Clock
{

int hour;
int minute;
int second;

override bool opEquals(Object o) const
{

auto rhs = cast(const Clock)o;

return (rhs &&
(hour == rhs.hour) &&
(minute == rhs.minute) &&
(second == rhs.second));

}

// ...
}

With that definition, Clock objects can now be compared by their values:

auto variable0 = new Clock(6, 7, 8);
auto variable1 = new Clock(6, 7, 8);

assert(variable0 == variable1); // Now they are equal
// because their values
// are equal

When defining opEquals it is important to remember the members of the
superclass. For example, when comparing objects of AlarmClock it would make
sense to also consider the inherited members:

class AlarmClock : Clock
{

int alarmHour;
int alarmMinute;

override bool opEquals(Object o) const
{

auto rhs = cast(const AlarmClock)o;

return (rhs &&
(alarmHour == rhs.alarmHour) &&
(alarmMinute == rhs.alarmMinute) &&
super.opEquals(o));

}

// ...
}

That expression could be written as super == o as well. However, that would
initiate the four-step algorithm again and as a result, the code might be a little
slower.

Object

359



56.3 opCmp
This operator is used when sorting class objects. opCmp is the function that gets
called behind the scenes for the <, <=, >, and >=.

This operator must return a negative value when the left-hand object is before,
a positive value when the left-hand object is after, and zero when both objects
have the same sorting order.

Warning: The definition of this function must be consistent with opEquals();
for two objects that opEquals() returns true, opCmp() must return zero.

Unlike toString and opEquals, there is no default implementation of this
function in Object. If the implementation is not available, comparing objects for
sort order causes an exception to be thrown:

auto variable0 = new Clock(6, 7, 8);
auto variable1 = new Clock(6, 7, 8);

assert(variable0 <= variable1); // ← Causes exception

object.Exception: need opCmp for class deneme.Clock

It is up to the design of the program what happens when the left-hand and right-
hand objects are of different types. One way is to take advantage of the order of
types that is maintained by the compiler automatically. This is achieved by calling
the opCmp function on the typeid values of the two types:

class Clock
{

int hour;
int minute;
int second;

override int opCmp(Object o) const
{

/* Taking advantage of the automatically-maintained
* order of the types. */

if (typeid(this) != typeid(o)) {
return typeid(this).opCmp(typeid(o));

}

auto rhs = cast(const Clock)o;
/* No need to check whether rhs is null, because it is
* known at this line that it has the same type as o. */

if (hour != rhs.hour) {
return hour - rhs.hour;

} else if (minute != rhs.minute) {
return minute - rhs.minute;

} else {
return second - rhs.second;

}
}

// ...
}

The definition above first checks whether the types of the two objects are the
same. If not, it uses the ordering of the types themselves. Otherwise, it compares
the objects by the values of their hour, minute, and second members.

A chain of ternary operators may also be used:
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override int opCmp(Object o) const
{

if (typeid(this) != typeid(o)) {
return typeid(this).opCmp(typeid(o));

}

auto rhs = cast(const Clock)o;

return (hour != rhs.hour
? hour - rhs.hour
: (minute != rhs.minute

? minute - rhs.minute
: second - rhs.second));

}

If important, the comparison of the members of the superclass must also be
considered. The following AlarmClock.opCmp is calling Clock.opCmp first:

class AlarmClock : Clock
{

override int opCmp(Object o) const
{

auto rhs = cast(const AlarmClock)o;

const int superResult = super.opCmp(o);

if (superResult != 0) {
return superResult;

} else if (alarmHour != rhs.alarmHour) {
return alarmHour - rhs.alarmHour;

} else {
return alarmMinute - rhs.alarmMinute;

}
}

// ...
}

Above, if the superclass comparison returns a non-zero value then that result is
used because the sort order of the objects is already determined by that value.
AlarmClock objects can now be compared for their sort orders:

auto ac0 = new AlarmClock(8, 0, 0, 6, 30);
auto ac1 = new AlarmClock(8, 0, 0, 6, 31);

assert(ac0 < ac1);

opCmp is used by other language features and libraries as well. For example, the
.sort property of arrays takes advantage of opCmp when sorting the elements.

opCmp for string members
When some of the members are strings, they can be compared explicitly to return
a negative, positive, or zero value:

import std.exception;

class Student
{

string name;

override int opCmp(Object o) const
{

auto rhs = cast(Student)o;
enforce(rhs);
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if (name < rhs.name) {
return -1;

} else if (name > rhs.name) {
return 1;

} else {
return 0;

}
}

// ...
}

Instead, the existing std.algorithm.cmp function can be used, which happens to
be faster as well:

import std.algorithm;

class Student
{

string name;

override int opCmp(Object o) const
{

auto rhs = cast(Student)o;
enforce(rhs);

return cmp(name, rhs.name);
}

// ...
}

Also note that Student does not support comparing incompatible types by
enforcing that the conversion from Object to Student is possible.

56.4 toHash
This function allows objects of a class type to be used as associative array keys. It
does not affect the cases where the type is used as associative array values.

Warning: Defining only this function is not sufficient. In order for the class
type to be used as associative array keys, consistent definitions of opEquals and
opCmp must also be defined.

Hash table indexes
Associative arrays are a hash table implementation. Hash table is a very fast data
structure when it comes to searching elements in the table. (Note: Like most other
things in software, this speed comes at a cost: Hash tables must keep elements in an
unordered way, and they may be taking up space that is more than exactly necessary.)

The high speed of hash tables comes from the fact that they first produce
integer values for keys. These integers are called hash values. The hash values are
then used for indexing into an internal array that is maintained by the table.

A benefit of this method is the fact that any type that can be converted to an
integer value can be used as the key type of associative arrays. toHash is the
function that returns the hash table index value for an object.

Although perhaps not very meaningful, even Clock objects can be used as
associative array key values:

string[Clock] timeTags;
timeTags[new Clock(12, 0, 0)] = "Noon";
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The default definition of toHash that is inherited from Clock produces different
hash values for different objects. This is similar to how the default behavior of
opEquals considers different objects as being not equal.

The code above compiles and runs even when there is no special definition of
toHash for Clock. However, its default behavior is almost never what is desired.
To see that default behavior, let's try to access an element by an object that is
different from the one that has been used when inserting the element. Although
the new Clock object below has the same value as the Clock object that has been
used when inserting into the associative array above, the value cannot be found:

if (new Clock(12, 0, 0) in timeTags) {
writeln("Exists");

} else {
writeln("Missing");

}

According to the in operator, there is no element in the table that corresponds to
the value Clock(12, 0, 0):

Missing

The reason for this surprising behavior is that the key object that has been used
when inserting the element is not the same as the key object that has been used
when accessing the element.

Selecting members for toHash
Although the hash value is calculated from the members of an object, not every
member is suitable for this task.

The candidates are the members that distinguish objects from each other. For
example, the members name and lastName of a Student class would be suitable if
those members can be used for identifying objects of that type.

On the other hand, a grades array of a Student class would not be suitable
both because many objects may have the same array and also it is likely that the
grades array may change over time.

Calculating hash values
The choice of hash values has a direct effect on the performance of associative
arrays. Furthermore, a hash calculation that is effective on one type of data may
not be as effective on another type of data. As hash algorithms are beyond the
scope of this book, I will give just one guideline here: In general, it is better to
produce different hash values for objects that are considered to have different
values. However, it is not an error if two objects with different values produce the
same index value; it is merely undesirable for performance reasons.

It is conceivable that all of the members of Clock are significant to distinguish
its objects from each other. For that reason, the hash values can be calculated
from the values of its three members. The number of seconds since midnight would
be effective hash values for objects that represent different points in time:

class Clock
{

int hour;
int minute;
int second;

override size_t toHash() const
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{
/* Because there are 3600 seconds in an hour and 60
* seconds in a minute: */

return (3600 * hour) + (60 * minute) + second;
}

// ...
}

Whenever Clock is used as the key type of associative arrays, that special
definition of toHash would be used. As a result, even though the two key objects
of Clock(12, 0, 0) above are distinct, they would now produce the same hash
value.

The new output:

Exists

Similar to the other member functions, the superclass may need to be considered
as well. For example, AlarmClock.toHash can take advantage of Clock.toHash
during its index calculation:

class AlarmClock : Clock
{

int alarmHour;
int alarmMinute;

override size_t toHash() const
{

return super.toHash() + alarmHour + alarmMinute;
}

// ...
}

Note: Take the calculation above just as an example. In general, adding integer values
is not an effective way of generating hash values.

There are existing efficient algorithms for calculating hash values for variables
of floating point, array, and struct types. These algorithms are available to the
programmer as well.
What needs to be done is to call getHash() on the typeid of each member. The
syntax of this method is the same for floating point, array, and struct types.

For example, hash values of a Student type can be calculated from its name
member as in the following code:

class Student
{

string name;

override size_t toHash() const
{

return typeid(name).getHash(&name);
}

// ...
}

Hash values for structs
Since structs are value types, hash values for their objects are calculated
automatically by an efficient algorithm. That algorithm takes all of the members
of the object into consideration.
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When there is a specific reason like needing to exclude certain members from
the hash calculation, toHash() can be overridden for structs as well.

56.5 Exercises

1. Start with the following class, which represents colored points:

enum Color { blue, green, red }

class Point
{

int x;
int y;
Color color;

this(int x, int y, Color color)
{

this.x = x;
this.y = y;
this.color = color;

}
}

Implement opEquals for this class in a way that ignores colors. When
implemented in that way, the following assert check should pass:

// Different colors
auto bluePoint = new Point(1, 2, Color.blue);
auto greenPoint = new Point(1, 2, Color.green);

// They are still equal
assert(bluePoint == greenPoint);

2. Implement opCmp by considering first x then y. The following assert
checks should pass:

auto redPoint1 = new Point(-1, 10, Color.red);
auto redPoint2 = new Point(-2, 10, Color.red);
auto redPoint3 = new Point(-2,  7, Color.red);

assert(redPoint1 < bluePoint);
assert(redPoint3 < redPoint2);

/* Even though blue is before green in enum Color,
* because color is being ignored, bluePoint must not be
* before greenPoint. */

assert(!(bluePoint < greenPoint));

Like the Student class above, you can implement opCmp by excluding
incompatible types by the help of enforce.

3. Consider the following class that combines three Point objects in an
array:

class TriangularArea
{

Point[3] points;

this(Point one, Point two, Point three)
{

points = [ one, two, three ];
}

}

Implement toHash for that class. Again, the following assert checks
should pass:
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/* area1 and area2 are constructed by distinct points that
* happen to have the same values. (Remember that
* bluePoint and greenPoint should be considered equal.) */

auto area1 = new TriangularArea(bluePoint, greenPoint, redPoint1);
auto area2 = new TriangularArea(greenPoint, bluePoint, redPoint1);

// The areas should be equal
assert(area1 == area2);

// An associative array
double[TriangularArea] areas;

// A value is being entered by area1
areas[area1] = 1.25;

// The value is being accessed by area2
assert(area2 in areas);
assert(areas[area2] == 1.25);

Remember that opEquals and opCmp must also be defined when toHash
is defined.

The solutions are on page 729.
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57 Interfaces

The interface keyword if for defining interfaces in class hierarchies. interface
is very similar to class with the following restrictions:

• The member functions that it declares (but not implements) are abstract
even without the abstract keyword.

• The member functions that it implements must be static or final.
(static and final member functions are explained below.)

• Its member variables must be static.
• Interfaces can inherit only interfaces.

Despite these restrictions, there is no limit on the number of interfaces that a
class can inherit from. (In contrast, a class can inherit from up to one class.)

57.1 Definition
Interfaces are defined by the interface keyword, the same way as classes:

interface SoundEmitter
{

// ...
}

An interface if for declaring member functions that are implicitly abstract:

interface SoundEmitter
{

string emitSound(); // Declared (not implemented)
}

Classes that inherit from that interface would have to provide the
implementations of the abstract functions of the interface.

Interface function declarations can have in and out contract blocks:

interface I
{

int func(int i)
in
{

/* Strictest requirements that the callers of this
* function must meet. (Derived interfaces and classes
* can loosen these requirements.) */

}
out // (optionally with (result) parameter)
{

/* Exit guarantees that the implementations of this
* function must give. (Derived interfaces and classes
* can give additional guarantees.) */

}
}

We will see examples of contract inheritance later in the Contract Programming
for Structs and Classes chapter (page 405).

57.2 Inheriting from an interface
The interface inheritance syntax is the same as class inheritance:

class Violin : SoundEmitter
{

string emitSound()
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{
return "♩♪♪";

}
}

class Bell : SoundEmitter
{

string emitSound()
{

return "ding";
}

}

Interfaces support polymorphism: Functions that take interface parameters can
use those parameters without needing to know the actual types of objects. For
example, the following function that takes a parameter of SoundEmitter calls
emitSound() on that parameter without needing to know the actual type of the
object:

void useSoundEmittingObject(SoundEmitter object)
{

// ... some operations ...
writeln(object.emitSound());
// ... more operations ...

}

Just like with classes, that function can be called with any type of object that
inherits from the SoundEmitter interface:

useSoundEmittingObject(new Violin);
useSoundEmittingObject(new Bell);

The special emitSound() function for each object would get called and the
outputs of Violin.emitSound and Bell.emitSound would be printed:

♩♪♪
ding

57.3 Inheriting from more than one interface
A class can be inherited from up to one class. There is no limit on the number of
interfaces to inherit from.

Let's consider the following interface that represents communication devices:

interface CommunicationDevice
{

void talk(string message);
string listen();

}

If a Phone class needs to be used both as a sound emitter and a communication
device, it can inherit both of those interfaces:

class Phone : SoundEmitter, CommunicationDevice
{

// ...
}

That definition represents both of these relationships: "phone is a sound emitter"
and "phone is a communication device."

In order to construct objects of this class, Phone must implement the abstract
functions of both of the interfaces:
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class Phone : SoundEmitter, CommunicationDevice
{

string emitSound() // for SoundEmitter
{

return "rrring";
}

void talk(string message) // for CommunicationDevice
{

// ... put the message on the line ...
}

string listen() // for CommunicationDevice
{

string soundOnTheLine;
// ... get the message from the line ...
return soundOnTheLine;

}
}

A class can inherit from any number of interfaces as it makes sense according to
the design of the program.

57.4 Inheriting from interface and class
Classes can still inherit from up to one class as well:

class Clock
{

// ... clock implementation ...
}

class AlarmClock : Clock, SoundEmitter
{

string emitSound()
{

return "beep";
}

}

AlarmClock inherits the members of Clock. Additionally, it also provides the
emitSound() function that the SoundEmitter interface requires.

57.5 Inheriting interface from interface
An interface that is inherited from another interface effectively increases the
number of functions that the subclasses must implement:

interface MusicalInstrument : SoundEmitter
{

void adjustTuning();
}

According to the definition above, in order to be a MusicalInstrument, both the
emitSound() function that SoundEmitter requires and the adjustTuning()
function that MusicalInstrument requires must be implemented.

For example, if Violin inherits from MusicalInstrument instead of
SoundEmitter, it must now also implement adjustTuning():

class Violin : MusicalInstrument
{

string emitSound() // for SoundEmitter
{

return "♩♪♪";
}

void adjustTuning() // for MusicalInstrument
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{
// ... special tuning of the violin ...

}
}

57.6 static member functions
I have delayed explaining static member functions until this chapter to keep the
earlier chapters shorter. static member functions are available for structs,
classes, and interfaces.

Regular member functions are always called on an object. The member
variables that are referenced inside the member function are the members of a
particular object:

struct Foo
{

int i;

void modify(int value)
{

i = value;
}

}

void main()
{

auto object0 = Foo();
auto object1 = Foo();

object0.modify(10); // object0.i changes
object1.modify(10); // object1.i changes

}

The members can also be referenced by this:

void modify(int value)
{

this.i = value; // equivalent of the previous one
}

A static member function does not operate on an object; there is no object that
the this keyword would refer to, so this is not valid inside a static function.
For that reason, none of the regular member variables are available inside static
member functions:

struct Foo
{

int i;

static void commonFunction(int value)
{

i = value; // ← compilation ERROR
this.i = value; // ← compilation ERROR

}
}

static member functions can use only the static member variables.
Let's redesign the Point struct that we have seen earlier in the Structs chapter

(page 266), this time with a static member function. In the following code, every
Point object gets a unique id, which is determined by a static member function:

import std.stdio;

struct Point
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{
size_t id; // Object id
int line;
int column;

// The id to be used for the next object
static size_t nextId;

this(int line, int column)
{

this.line = line;
this.column = column;
this.id = makeNewId();

}

static size_t makeNewId()
{

immutable newId = nextId;
++nextId;
return newId;

}
}

void main()
{

auto top = Point(7, 0);
auto middle = Point(8, 0);
auto bottom =  Point(9, 0);

writeln(top.id);
writeln(middle.id);
writeln(bottom.id);

}

The static makeNewId() function can use the common variable nextId. As a
result, every object gets a unique id:

0
1
2

Although the example above contains a struct, static member functions are
available for classes and interfaces as well.

57.7 final member functions
I have delayed explaining final member functions until this chapter to keep the
earlier chapters shorter. final member functions are available only for classes
and interfaces; they are not relevant to structs because structs do not support
inheritance.
final specifies that a member function cannot be redefined by a subclass. In a

sense, the implementation that this class or interface provides is the final
implementation of that function. An example of a case where this feature is
useful is where the general steps of an algorithm are defined by an interface and
the finer details are left to subclasses.

Let's see an example of this with a Game interface. The general steps of playing a
game is being determined by the play() function of the following interface:

interface Game
{

final void play()
{

string name = gameName();
writefln("Starting %s", name);

introducePlayers();
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prepare();
begin();
end();

writefln("Ending %s", name);
}

string gameName();
void introducePlayers();
void prepare();
void begin();
void end();

}

It is not possible for subclasses to modify the definition of the play() member
function. The subclasses can (and must) provide the definitions of the five
abstract member functions that are declared by the interface. By doing so, the
subclasses complete the missing steps of the algorithm:

import std.stdio;
import std.string;
import std.random;
import std.conv;

class DiceSummingGame : Game
{

string player;
size_t count;
size_t sum;

string gameName()
{

return "Dice Summing Game";
}

void introducePlayers()
{

write("What is your name? ");
player = chomp(readln());

}

void prepare()
{

write("How many times to throw the dice? ");
readf(" %s", &count);
sum = 0;

}

void begin()
{

foreach (i; 0 .. count) {
immutable dice = uniform(1, 7);
writefln("%s: %s", i, dice);
sum += dice;

}
}

void end()
{

writefln("Player: %s, Dice sum: %s, Average: %s",
player, sum, to!double(sum) / count);

}
}

void useGame(Game game)
{

game.play();
}

void main()
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{
useGame(new DiceSummingGame());

}

Although the example above contains an interface, final member functions
are available for classes as well.

57.8 How to use
interface is a commonly used feature. There is one or more interface at the
top of almost every class hierarchy. A kind of hierarchy that is commonly
encountered in programs involves a single interface and a number of classes
that implement that interface:

MusicalInstrument
(interface)

/    |     \     \
Violin  Guitar  Flute  ...

Although there are more complicated hierarchies in practice, the simple
hierarchy above solves many problems.

It is also common to move common implementation details of class hierarchies
to intermediate classes. The subclasses inherit from these intermediate classes.
The StringInstrument and WindInstrument classes below can contain the
common members of their respective subclasses:

MusicalInstrument
(interface)
/         \

StringInstrument       WindInstrument
/    |     \         /      |     \

Violin  Viola    ...   Flute  Clarinet  ...

The subclasses would implement their respective special definitions of member
functions.

57.9 Abstraction
Interfaces help make parts of programs independent from each other. This is
called abstraction. For example, a program that deals with musical instruments
can be written primarily by using the MusicalInstrument interface, without
ever specifying the actual types of the musical instruments.

A Musician class can contain a MusicalInstrument without ever knowing the
actual type of the instrument:

class Musician
{

MusicalInstrument instrument;
// ...

}

Different types of musical instruments can be combined in a collection without
regard to the actual types of these instruments:

MusicalInstrument[] orchestraInstruments;

Most of the functions of the program can be written only by using this interface:

bool needsTuning(MusicalInstrument instrument)
{

bool result;
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// ...
return result;

}

void playInTune(MusicalInstrument instrument)
{

if (needsTuning(instrument)){
instrument.adjustTuning();

}

writeln(instrument.emitSound());
}

Abstracting away parts of a program from each other allows making changes in
one part of the program without needing to modify the other parts. When
implementations of certain parts of the program are behind a particular interface,
the code that uses only that interface does not get affected.

57.10 Example
The following program defines the SoundEmitter, MusicalInstrument, and
CommunicationDevice interfaces:

import std.stdio;

interface SoundEmitter
{

string emitSound();
}

/* This class needs to implement only emitSound(). */
class Bell : SoundEmitter
{

string emitSound()
{

return "ding";
}

}

interface MusicalInstrument : SoundEmitter
{

void adjustTuning();
}

/* This class needs to implement both emitSound() and
* adjustTuning(). */

class Violin : MusicalInstrument
{

string emitSound()
{

return "♩♪♪";
}

void adjustTuning()
{

// ... tuning of the violin ...
}

}

interface CommunicationDevice
{

void talk(string message);
string listen();

}

/* This class needs to implement emitSound(), talk(), and
* listen(). */

class Phone : SoundEmitter, CommunicationDevice
{

string emitSound()
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{
return "rrring";

}

void talk(string message)
{

// ... put the message on the line ...
}

string listen()
{

string soundOnTheLine;
// ... get the message from the line ...
return soundOnTheLine;

}
}

class Clock
{

// ... the implementation of Clock ...
}

/* This class needs to implement only emitSound(). */
class AlarmClock : Clock, SoundEmitter
{

string emitSound()
{

return "beep";
}

// ... the implementation of AlarmClock ...
}

void main()
{

SoundEmitter[] devices;

devices ~= new Bell;
devices ~= new Violin;
devices ~= new Phone;
devices ~= new AlarmClock;

foreach (device; devices) {
writeln(device.emitSound());

}
}

Because devices is a SoundEmitter slice, it can contain objects of any type that
inherits from SoundEmitter (i.e. types that have an "is a" relationship with
SoundEmitter). As a result, the output of the program consists of different
sounds that are emitted by the different types of objects:

ding
♩♪♪
rrring
beep

57.11 Summary

• interface defines an interface, which is similar to classes that consist
only of abstract functions. interface can contain only static member
variables and static or final member functions.

• In order to be able to construct objects of a class, that class must include
implementations for all of the member functions of all of the interfaces
that it inherits from.
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• interface does not have a restriction of class: It is possible to inherit
from unlimited number of interfaces.

• A common hierarchy consists of a single interface and a number of
subclasses that implement that interface.
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58 destroy and scoped
We have seen the lifetimes of objects in the Lifetimes and Fundamental
Operations chapter (page 239).

In later chapters, we have seen that the objects are prepared for use in the
constructor, which is called this(); and the final operations of objects are
applied in the destructor, which is called ~this().

For structs and other value types, the destructor is executed at the time when
the lifetime of an object ends. For classes and other reference types, it is executed
by the garbage collector some time in the future. The important distinction is that
the destructor of a class object is not executed when its lifetime ends.

System resources are commonly returned back to the system in destructors.
For example, std.stdio.File returns the file resource back to the operating
system in its destructor. As it is not certain when the destructor of a class object
will be called, the system resources that it holds may not be returned until too
late when other objects cannot get a hold of the same resource.

58.1 An example of calling destructors late
Let's define a class to see the effects of executing class destructors late. The
following constructor increments a static counter, and the destructor
decrements it. As you remember, there is only one of each static member, which
is shared by all of the objects of a type. Such a counter would indicate the number
of objects that are yet to be destroyed.

class LifetimeObserved
{

int[] array; // ← Belongs to each object

static size_t counter; // ← Shared by all objects

this()
{

/*
* We are using a relatively large array to make each
* object consume a large amount of memory. Hopefully
* this will make the garbage collector call object
* destructors more frequently to open up space for
* more objects.
*/

array.length = 30_000;

/*
* Increment the counter for this object that is being
* constructed.
*/

++counter;
}

~this()
{

/*
* Decrement the counter for this object that is being
* destroyed.
*/

--counter;
}

}

The following program constructs objects of that class inside a loop:
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import std.stdio;

void main()
{

foreach (i; 0 .. 20) {
auto variable = new LifetimeObserved; // ← start
write(LifetimeObserved.counter, ' ');

} // ← end

writeln();
}

The lifetime of each LifetimeObserved object is in fact very short: Its life starts
when it is constructed by the new keyword and ends at the closing curly bracket
of the foreach loop. Each object then becomes the responsibility of the garbage
collector. The start and end comments indicate the start and end of the lifetimes.

Even though there is up to one object alive at a given time, the value of the
counter indicates that the destructor is not executed when the lifetime ends:

1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6

According to that output, the memory sweep algorithm of the garbage collector
has delayed executing the destructor for up to 8 objects. (Note: The output may be
different depending on the garbage collection algorithm, available memory, and other
factors.)

58.2 destroy() to execute the destructor
destroy() executes the destructor for an object:

void main()
{

foreach (i; 0 .. 20) {
auto variable = new LifetimeObserved;
write(LifetimeObserved.counter, ' ');
destroy(variable);

}

writeln();
}

Like before, the value of LifetimeObserved.counter is incremented by the
constructor as a result of new, and becomes 1. This time, right after it gets printed,
destroy() executes the destructor for the object and the value of the counter is
decremented again down to zero. For that reason, this time its value is always 1:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Once destroyed, the object should be considered to be in an invalid state and must
not be used anymore:

destroy(variable);
// ...
// Warning: Using a potentially invalid object
writeln(variable.array);

Although destroy() is primarily for reference types, it can also be called on
struct objects to destroy them before the end of their normal lifetimes.

58.3 When to use
As has been seen in the previous example, destroy() is used when resources
need to be released at a specific time without relying on the garbage collector.
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58.4 Example
We had designed an XmlElement struct in the Constructor and Other Special
Functions chapter (page 298). That struct was being used for printing XML
elements in the format <tag>value</tag>. Printing the closing tag has been the
responsibility of the destructor:

struct XmlElement
{

// ...

~this()
{

writeln(indentation, "</", name, '>');
}

}

The following output was produced by a program that used that struct. This time,
I am replacing the word "class" with "course" to avoid confusing it with the class
keyword:

<courses>
<course0>

<grade>
72

</grade> ← The closing tags appear on correct lines
<grade>

97
</grade> ←
<grade>

90
</grade> ←

</course0> ←
<course1>

<grade>
77

</grade> ←
<grade>

87
</grade> ←
<grade>

56
</grade> ←

</course1> ←
</courses> ←

The previous output happens to be correct because XmlElement is a struct. The
desired output is achieved simply by placing the objects in appropriate scopes:

void main()
{

const courses = XmlElement("courses", 0);

foreach (courseId; 0 .. 2) {
const courseTag = "course" ~ to!string(courseId);
const courseElement = XmlElement(courseTag, 1);

foreach (i; 0 .. 3) {
const gradeElement = XmlElement("grade", 2);
const randomGrade = uniform(50, 101);

writeln(indentationString(3), randomGrade);

} // ← gradeElement is destroyed
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} // ← courseElement is destroyed

} // ← courses is destroyed

The destructor prints the closing tags as the objects gets destroyed.
To see how classes behave differently, let's convert XmlElement to a class:

import std.stdio;
import std.array;
import std.random;
import std.conv;

string indentationString(in int level)
{

return replicate(" ", level * 2);
}

class XmlElement
{

string name;
string indentation;

this(in string name, in int level)
{

this.name = name;
this.indentation = indentationString(level);

writeln(indentation, '<', name, '>');
}

~this()
{

writeln(indentation, "</", name, '>');
}

}

void main()
{

const courses = new XmlElement("courses", 0);

foreach (courseId; 0 .. 2) {
const courseTag = "course" ~ to!string(courseId);
const courseElement = new XmlElement(courseTag, 1);

foreach (i; 0 .. 3) {
const gradeElement = new XmlElement("grade", 2);
const randomGrade = uniform(50, 101);

writeln(indentationString(3), randomGrade);
}

}
}

As the responsibility of calling the destructors are now left to the garbage
collector, the program does not produce the desired output:

<courses>
<course0>

<grade>
57

<grade>
98

<grade>
87

<course1>
<grade>

84
<grade>
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60
<grade>

99
</grade> ← The closing tags appear at the end
</grade> ←
</grade> ←

</course1> ←
</grade> ←
</grade> ←
</grade> ←

</course0> ←
</courses> ←

The destructor is still executed for every object but this time at the end when the
program is exiting. (Note: The garbage collector does not guarantee that the destructor
will be called for every object. In reality, it is possible that there are no closing tags
printed at all.)
destroy() ensures that the destructor is called at desired points in the

program:

void main()
{

const courses = new XmlElement("courses", 0);

foreach (courseId; 0 .. 2) {
const courseTag = "course" ~ to!string(courseId);
const courseElement = new XmlElement(courseTag, 1);

foreach (i; 0 .. 3) {
const gradeElement = new XmlElement("grade", 2);
const randomGrade = uniform(50, 101);

writeln(indentationString(3), randomGrade);

destroy(gradeElement);
}

destroy(courseElement);
}

destroy(courses);
}

With those changes, the output of the code now matches the output of the code
that use structs:

<courses>
<course0>

<grade>
66

</grade> ← The closing tags appear on correct lines
<grade>

75
</grade> ←
<grade>

68
</grade> ←

</course0> ←
<course1>

<grade>
73

</grade> ←
<grade>

62
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</grade> ←
<grade>

100
</grade> ←

</course1> ←
</courses> ←

58.5 scoped() to call the destructor automatically
The program above has a weakness: The scopes may be exited before the
destroy() lines are executed, commonly by thrown exceptions. If the destroy()
lines must be executed even when exceptions are thrown, a solution is to take
advantage of scope() and other features that we have seen in the Exceptions
chapter (page 202).

Another solution is to construct class objects by std.typecons.scoped instead
of by the new keyword. scoped() wraps the class object inside a struct and the
destructor of that struct object destroys the class object when itself goes out of
scope.

The effect of scoped() is to make class objects behave similar to struct objects
regarding lifetimes.

With the following changes, the program produces the expected output as
before:

import std.typecons;
// ...
void main()
{

const courses = scoped!XmlElement("courses", 0);

foreach (courseId; 0 .. 2) {
const courseTag = "course" ~ to!string(courseId);
const courseElement = scoped!XmlElement(courseTag, 1);

foreach (i; 0 .. 3) {
const gradeElement = scoped!XmlElement("grade", 2);
const randomGrade = uniform(50, 101);

writeln(indentationString(3), randomGrade);
}

}
}

Note that there are no destroy() lines anymore.
scoped() is a function that returns a special struct object encapsulating the
actual class object. The returned object acts as a proxy to the encapsulated one.
(In fact, the type of courses above is Scoped, not XmlElement.)

When the destructor of the struct object is called automatically as its lifetime
ends, it calls destroy() on the class object that it encapsulates. (This is an
application of the Resource Acquisition Is Initialization (RAII) idiom. scoped()
achieves this by the help of templates (page 411) and alias this (page 434), both
of which we will see in later chapters.)

It is desirable for a proxy object to be used as conveniently as possible. In fact,
the object that scoped() returns can be used exactly like the actual class type.
For example, the member functions of the actual type can be called on it:

import std.typecons;

class C
{

void foo()
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{}
}

void main()
{

auto p = scoped!C();
p.foo(); // Proxy object p is being used as type C

}

However, that convenience comes with a price: The proxy object may hand out a
reference to the actual object right before destroying it. This can happen when
the actual class type is specified explicitly on the left hand-side:

C c = scoped!C(); // ← BUG
c.foo(); // ← Accesses a destroyed object

In that definition, c is not the proxy object; rather, as defined by the programmer,
a class variable referencing the encapsulated object. Unfortunately, the proxy
object that is constructed on the right-hand side gets terminated at the end of the
expression that constructs it. As a result, using c in the program would be an
error, likely causing a runtime error:

Segmentation fault

For that reason, do not define scoped() variables by the actual type:

C a = scoped!C(); // ← BUG
auto b = scoped!C(); // ← correct
const c = scoped!C(); // ← correct
immutable d = scoped!C(); // ← correct

58.6 Summary

• destroy() is for executing the destructor of a class object explicitly.
• Objects that are constructed by scoped() are destroyed upon leaving

their respective scopes.
• It is a bug to define scoped() variables by the actual type.
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59 Modules and Libraries

The building blocks of D programs (and libraries) are modules.
D modules are based on a simple concept: Every source file is a module.

Accordingly, the single files that we have been writing our programs in have all
been individual modules.

By default, the name of a module is the same as its filename without the .d
extension. When explicitly specified, the name of the module is defined by the
module keyword, which must appear as the first non-comment line in the source
file.

For example, assuming that the name of a source file is "cat.d", the name of the
module would be specified by the module keyword:

module cat;

class Cat
{

// ...
}

The module line is optional. When not specified, it is the same as the file name
without the .d extension.

59.1 static this() and static ~this()
static this() and static ~this() at module scope are similar to their
struct and class counterparts:

module cat;

static this()
{

// ... the initial operations of the module ...
}

static ~this()
{

// ... the final operations of the module ...
}

Code that are in these scopes are executed once for each thread. (Note that most
programs consist of a single thread, which starts executing the main() function.)
Code that should be executed only once for the entire program must be defined in
shared static this() and shared static ~this(). These will be covered in
a later chapter.

59.2 File and module names
D supports Unicode in source code and module names. However, the Unicode
support of file systems vary. For example, although most Linux file systems
support Unicode, the file names in Windows file systems may not distinguish
between lower and upper case letters. Additionally, most file systems limit the
characters that can be used in file and directory names.

For portability reasons, I recommend that you use only lower case ASCII letters
in file names. For example, "resume.d" would be a suitable file name for a class
named Résumé.

Accordingly, the name of the module would consist of ASCII letters as well:
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module resume; // Module name consisting of ASCII letters

class Résumé // Program code consisting of Unicode characters
{

// ...
}

59.3 Packages
A combination of related modules are called a package. D packages are a simple
concept as well: The source files that are inside the same directory are considered
to belong to the same package. The name of the directory becomes the name of
the package, which must also be specified as the first parts of module names.

For example, if "cat.d" and "dog.d" are inside the directory "animal", then
specifying the directory name along with the module name makes them be a part
of the same package:

module animal.cat;

class Cat
{

// ...
}

Similarly, for the dog module:

module animal.dog;

class Dog
{

// ...
}

Since package names correspond to directory names, the package names of
modules that are deeper than one directory level must reflect that hierarchy. For
example, if the "animal" directory included a "vertebrate" directory, the name of a
module inside that directory would include vertebrate as well:

module animal.vertebrate.cat;

The directory hierarchies can be arbitrarily complex depending on the needs of
the program. Relatively short programs usually have all of their source files in a
single directory.

59.4 Using modules in programs
The import keyword, which we have been using in almost every program so far,
is for introducing a module to the current module:

import std.stdio;

The module name may contain the package name as well. For example, the std.
part above indicates that stdio is a module that is a part of the std package.

The animal.cat and animal.dog modules would be imported similarly. Let's
assume that the following code is inside a file named "deneme.d":

module deneme; // the name of this module

import animal.cat; // a module that it uses
import animal.dog; // another module that it uses

void main()
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{
auto cat = new Cat();
auto dog = new Dog();

}

Note: As described below, for the program to be built correctly, those module files must
also be provided to the linker.

More than one module can be imported at the same time:

import animal.cat, animal.dog;

Selective imports
Instead of importing a module as a whole with all of its names, it is possible to
import just specific names from it.

import std.stdio : writeln;

// ...

writefln("Hello %s.", name); // ← compilation ERROR

The code above cannot be compiled because only writeln is imported, not
writefln.

Selective imports are considered to be better than importing an entire module
because it reduces the chance of name collisions. As we will see in an example
below, a name collision can occur when the same name appears in more than one
imported module.

Selective imports may reduce compilation times as well because the compiler
needs to compile only the parts of a module that are actually imported. On the
other hand, selective imports require more work as every imported name must be
specified separately on the import line.

This book does not take advantage of selective imports mostly for brevity.

Local imports
So far we have always imported all of the required modules at the tops of
programs:

import std.stdio; // ← at the top
import std.string; // ← at the top

// ... the rest of the module ...

Instead, modules can be imported at any other line of the source code. For
example, the two functions of the following program import the modules that
they need in their own scopes:

string makeGreeting(string name)
{

import std.string;

string greeting = format("Hello %s", name);
return greeting;

}

void interactWithUser()
{

import std.stdio;

write("Please enter your name: ");
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string name = readln();
writeln(makeGreeting(name));

}

void main()
{

interactWithUser();
}

Local imports are recommended over global imports because instead of
importing every module unconditionally at the top, the compiler can import only
the ones that are in the scopes that are actually used. If the compiler knows that
the program never calls a function, it can ignore the import directives inside that
function.

Additionally, a locally imported module is accessible only inside that local
scope, further reducing the risk of name collisions.

We will later see in the Mixins chapter (page 575) that local imports are in fact
required for template mixins.

The examples throughout this book do not take advantage of local imports
mostly because local imports were added to D after the start of writing this book.

59.5 Locations of modules
The compiler finds the module files by converting the package and module names
directly to directory and file names.

For example, the previous two modules would be located as "animal/cat.d" and
"animal/dog.d", respectively (or "animal\cat.d" and "animal\dog.d", depending on
the file system). Considering the main source file as well, the program above
consists of three files.

59.6 Long and short module names
The names that are used in the program may be spelled out with the module and
package names:

auto cat0 = Cat();
auto cat1 = animal.cat.Cat(); // same as above

The long names are normally not needed but sometimes there are name conflicts.
For example, when referring to a name that appears in more than one module,
the compiler cannot decide which one is meant.

The following program is spelling out the long names to distinguish between
two separate Jaguar structs that are defined in two separate modules: animal
and car:

import animal.jaguar;
import car.jaguar;

// ...

auto conflicted =  Jaguar(); // ← compilation ERROR

auto myAnimal = animal.jaguar.Jaguar(); // ← compiles
auto myCar    =    car.jaguar.Jaguar(); // ← compiles

It is possible to rename imports as well:

import carnivore = animal.jaguar;
import vehicle = car.jaguar;

// ...
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auto myAnimal = carnivore.Jaguar(); // ← compiles
auto myCar    = vehicle.Jaguar(); // ← compiles

59.7 Importing a package as a module
Sometimes multiple modules of a package may need to be imported together. For
example, whenever one module from the animal package is imported, all of the
other modules may need to be imported as well: animal.cat, animal.dog,
animal.horse, etc.

In such cases it is possible to import some or all of the modules of a package by
importing the package as if it were a module:

import animal; // ← entire package imported as a module

It is achieved by a special configuration file in the package directory, which must
always be named as package.d. That special file includes the module directive for
the package and imports the modules of the package publicly:

// The contents of the file animal/package.d:
module animal;

public import animal.cat;
public import animal.dog;
public import animal.horse;
// ... same for the other modules ...

Importing a module publicly makes that module available to the users of the
importing module as well. As a result, when the users import just the animal
module (which actually is a package), they get access to animal.cat and all the
other modules as well.

59.8 Adding module definitions to the program
The import keyword is not sufficient to make modules become parts of the
program. It simply makes available the features of a module inside the current
module. That much is needed only to compile the code.

It is not possible to build the previous program only by the main source file,
"deneme.d":

$ dmd deneme.d -w
deneme.o: In function `_Dmain':
deneme.d: undefined reference to `_D6animal3cat3Cat7__ClassZ'
deneme.d: undefined reference to `_D6animal3dog3Dog7__ClassZ'
collect2: ld returned 1 exit status
--- errorlevel 1

Those error messages are generated by the linker. Although they are not user-
friendly messages, they indicate that some definitions that are needed by the
program are missing.
The actual build of the program is the responsibility of the linker, which gets
called automatically by the compiler behind the scenes. The compiler passes the
modules that it has just compiled to the linker, and the linker combines those
modules (and libraries) to produce the executable program.

For that reason, all of the modules that make up the program must be provided
to the linker. For the program above to be built, "animal/cat.d" and "animal/dog.d"
must also be specified on the compilation line:

$ dmd deneme.d animal/cat.d animal/dog.d -w
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Instead of having to mention the modules individually every time on the
command line, they can be combined as libraries.

59.9 Libraries
A collection of compiled modules is called a library. Libraries are not programs
themselves; they do not have the main() function. Libraries contain compiled
definitions of functions, structs, classes, and other features of modules, which are
to be linked later by the linker to produce the program.

dmd's -lib command line option is for making libraries. The following
command makes a library that contains the "cat.d" and the "dog.d" modules. The
name of the library is specified by the -of switch:

$ dmd animal/cat.d animal/dog.d -lib -ofanimal -w

The actual name of the library file depends on the platform. For example, the
extension of library files is .a under Linux systems: animal.a.

Once that library is built, It is not necessary to specify the "animal/cat.d" and
"animal/dog.d" modules individually anymore. The library file is sufficient:

$ dmd deneme.d animal.a -w

The command above replaces the following one:

$ dmd deneme.d animal/cat.d animal/dog.d -w

As an exception, the D standard library Phobos need not be specified on the
command line. That library is automatically included behind the scenes.
Otherwise, it could be specified similar to the following line:

$ dmd deneme.d animal.a /usr/lib64/libphobos2.a -w

Note: The name and location of the Phobos library may be different on different
systems.
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60 Encapsulation and Protection Attributes

All of the structs and classes that we have defined so far have all been accessible
from the outside.

Let's consider the following struct:

enum Gender { female, male }

struct Student
{

string name;
Gender gender;

}

The members of that struct is freely accessible to the rest of the program:

auto student = Student("Tim", Gender.male);
writefln("%s is a %s student.", student.name, student.gender);

Such freedom is a convenience in programs. For example, the previous line has
been useful to produce the following output:

Tim is a male student.

However, this freedom is also a liability. As an example, let's assume that perhaps
by mistake, the name of a student object gets modified in the program:

student.name = "Anna";

That assignment may put the object in an invalid state:

Anna is a male student.

As another example, let's consider a School class. Let's assume that this class has
two member variables that store the numbers of the male and female students
separately:

class School
{

Student[] students;
size_t femaleCount;
size_t maleCount;

void add(in Student student)
{

students ~= student;

final switch (student.gender) {

case Gender.female:
++femaleCount;
break;

case Gender.male:
++maleCount;
break;

}
}

override string toString() const
{

return format("%s female, %s male; total %s students",
femaleCount, maleCount, students.length);
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}
}

The add() member function adds students while ensuring that the counts are
always correct:

auto school = new School;
school.add(Student("Lindsey", Gender.female));
school.add(Student("Mark", Gender.male));
writeln(school);

The program produces the following consistent output:

1 female, 1 male; total 2 students

However, being able to access the members of School freely would not guarantee
that this consistency would always be maintained. Let's consider adding a new
element to the students member, this time directly:

school.students ~= Student("Nancy", Gender.female);

Because the new student has been added to the array directly, without going
through the add() member function, the School object is now in an inconsistent
state:

1 female, 1 male; total 3 students

60.1 Encapsulation
Encapsulation is a programming concept of restricting access to members to
avoid problems similar to the one above.

Another benefit of encapsulation is to eliminate the need to know the
implementation details of types. In a sense, encapsulation allows presenting a
type as a black box that is used only through its interface.

Additionally, preventing users from accessing the members directly allows
changing the members of a class freely in the future. As long as the functions that
define the interface of a class is kept the same, its implementation can be changed
freely.

Encapsulation is not for restricting access to sensitive data like a credit card
number or a password, and it cannot be used for that purpose. Encapsulation is a
development tool: It allows using and coding types easily and safely.

60.2 Protection attributes
Protection attributes limit access to members of structs, classes, and modules.
There are two ways of specifying protection attributes:

• At struct or class level to specify the protection of every struct or class
member individually.

• At module level to specify the protection of every feature of a module
individually: class, struct, function, enum, etc.

Protection attributes can be specified by the following keywords. The default
attribute is public.

• public: Specifies accessibility by any part of the program without any
restriction.

Encapsulation and Protection Attributes

391



An example of this is stdout. Merely importing std.stdio makes
stdout available to every module that imported it.

• private: Specifies restricted accessibility.
private class members and module members can only be accessed by

the module that defines that member.
Additionally, private member functions cannot be overridden by

subclasses.
• package: Specifies package-level accessibility.

A feature that is marked as package can be accessed by all of the code
that is a part of the same package. The package attribute involves only
the inner-most package.

For example, a package definition that is inside the
animal.vertebrate.cat module can be accessed by any other module
of the vertebrate package.

Similar to the private attribute, package member functions cannot
be overridden by subclasses.

• protected: Specifies accessibility by derived classes.
This attribute extends the private attribute: A protected member

can be accessed not only by the module that defines it, but also by the
classes that inherit from the class that defines that protected member.

Additionally, the export attribute specifies accessibility from the outside of the
program.

60.3 Definition
Protection attributes can be specified in three ways.

When written in front of a single definition, it specifies the protection attribute
of that definition only. This is similar to the Java programming language:

private int foo;

private void bar()
{

// ...
}

When specified by a colon, it specifies the protection attributes of all of the
following definitions until the next specification of a protection attribute. This is
similar to the C++ programming language:

private:
// ...
// ... all of the definitions here are private ...
// ...

protected:
// ...
// ... all of the definitions here are protected ...
// ...

When specified for a block, the protection attribute is for all of the definitions
that are inside that block:

private {
// ...
// ... all of the definitions here are private ...
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// ...
}

60.4 Module imports are private by default
A module that is imported by import is private to the module that imports it. It
would not be visible to other modules that import it indirectly. For example, if a
school module imports std.stdio, modules that import school cannot
automatically use the std.stdio module.

Let's assume that the school module starts by the following lines:

module school.school;

import std.stdio; // imported for this module's own use...

// ...

The following program cannot be compiled because writeln is not visible to it:

import school.school;

void main()
{

writeln("hello"); // ← compilation ERROR
}

std.stdio must be imported by that module as well:

import school.school;
import std.stdio;

void main()
{

writeln("hello"); // now compiles
}

Sometimes it is desired that a module presents other modules indirectly. For
example, it would make sense for a school module to automatically import a
student module for its users. This is achieved by marking the import as public:

module school.school;

public import school.student;

// ...

With that definition, modules that import school can use the definitions that are
inside the student module without needing to import it:

import school.school;

void main()
{

auto student = Student("Tim", Gender.male);

// ...
}

Although the program above imports only the school module, the
student.Student struct is also available to it.
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60.5 When to use encapsulation
Encapsulation avoids problems similar to the one we have seen in the
introduction section of this chapter. It is an invaluable tool to ensure that objects
are always in consistent states. Encapsulation helps preserve struct and class
invariants by protecting members from direct modifications by the users of the
type.

Encapsulation provides freedom of implementation by abstracting
implementations away from user code. Otherwise, if users had direct access to for
example School.students, it would be hard to modify the design of the class by
changing that array e.g. to an associative array, because this would affect all user
code that has been accessing that member.

Encapsulation is one of the most powerful benefits of object oriented
programming.

60.6 Example
Let's define the Student struct and the School class by taking advantage of
encapsulation and let's use them in a short test program.

This example program will consist of three files. As you remember from the
previous chapter, being parts of the school package, two of these files will be
under the "school" directory:

• "school/student.d": The student module that defines the Student struct
• "school/school.d": The school module that defines the School class
• "deneme.d": A short test program

Here is the "school/student.d" file:

module school.student;

import std.string;
import std.conv;

enum Gender { female, male }

struct Student
{

package string name;
package Gender gender;

string toString() const
{

return format("%s is a %s student.",
name, to!string(gender));

}
}

The members of this struct are marked as package to enable access only to
modules of the same package. We will soon see that School will be accessing
these members directly. (Note that even this should be considered as violating the
principle of encapsulation. Still, let's stick with the package attribute in this
example program.)

The following is the "school/school.d" module that makes use of the previous
one:

module school.school;

public import school.student; // 1
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import std.string;

class School
{
private: // 2

Student[] students;
size_t femaleCount;
size_t maleCount;

public: // 3

void add(in Student student)
{

students ~= student;

final switch (student.gender) { // 4a

case Gender.female:
++femaleCount;
break;

case Gender.male:
++maleCount;
break;

}
}

override string toString() const
{

string result = format(
"%s female, %s male; total %s students",
femaleCount, maleCount, students.length);

foreach (i, student; students) {
result ~= (i == 0) ? ": " : ", ";
result ~= student.name; // 4b

}

return result;
}

}

1. school.student is being imported publicly so that the users of
school.school will not need to import that module explicitly. In a
sense, the student module is made available by the school module.

2. All of the member variables of School are marked as private. This is
important to help protect the consistency of the member variables of
this class.

3. For this class to be useful, it must present some member functions.
add() and toString() are made available to the users of this class.

4. As the two member variables of Student have been marked as package,
being a part of the same package, School can access those variables.

Finally, the following is a test program that uses those types:

import std.stdio;
import school.school;

void main()
{

auto student = Student("Tim", Gender.male);
writeln(student);

auto school = new School;
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school.add(Student("Lindsey", Gender.female));
school.add(Student("Mark", Gender.male));
school.add(Student("Nancy", Gender.female));

writeln(school);
}

This program can use Student and School only through their public interfaces.
It cannot access the member variables of those types. As a result, the objects
would always be consistent:

Tim is a male student.
2 female, 1 male; total 3 students: Lindsey, Mark, Nancy

Note that the program interacts with School only by its add() and toString()
functions. As long as the interfaces of these functions are kept the same, changes
in their implementations would not affect the program above.
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61 Universal Function Call Syntax (UFCS)

UFCS is a feature that is applied by the compiler automatically. It enables the
member function syntax even for regular functions. It can be explained simply by
comparing two expressions:

variable.foo(arguments)

When the compiler encounters an expression such as the one above, if there is no
member function named foo that can be called on variable with the provided
arguments, then the compiler also tries to compile the following expression:

foo(variable, arguments)

If this new expression can indeed be compiled, then the compiler simply accepts
that one. As a result, although foo() evidently has been a regular function, it gets
accepted to be used by the member function syntax.

UFCS is a feature that has been added to D after this book has been started. For
that reason, most of the examples in this book do not take advantage of UFCS.

We know that functions that are closely related to a type are defined as
member functions of that type. This is especially important for encapsulation as
only the member functions of a type (and that type's module) can access its
private members.

Let's consider a Car class which maintains the amount of fuel:

class Car
{

enum economy = 12.5; // kilometers per liter (average)
private double fuelAmount; // liters

this(double fuelAmount)
{

this.fuelAmount = fuelAmount;
}

double fuel() const
{

return fuelAmount;
}

// ...
}

Although member functions are very useful and sometimes necessary, not every
function that operates on a type should be a member function. Some operations
on a type are too specific to a certain application to be member functions. For
example, a function that determines whether a car can travel a specific distance
may more appropriately be defined as a regular function:

bool canTravel(Car car, double distance)
{

return (car.fuel() * car.economy) >= distance;
}

This naturally brings a discrepancy in calling functions that are related to a type:
objects appear at different places in these two syntaxes:

void main()
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{
auto car = new Car(5);

auto remainingFuel = car.fuel(); // Member function syntax

if (canTravel(car, 100)) { // Regular function syntax
// ...

}
}

UFCS removes this discrepancy by allowing regular functions to be called by the
member function syntax:

if (car.canTravel(100)) { // Regular function, called by the
// member function syntax

// ...
}

This feature is available for fundamental types as well, including literals:

int half(int value)
{

return value / 2;
}

void main()
{

assert(42.half() == 21);
}

As we will see in the next chapter, when there are no arguments to pass to a
function, that function can be called without parentheses. When that feature is
used as well, the expression above gets even shorter. All three of the following
statements are equivalent:

result = half(value);
result = value.half();
result = value.half;

UFCS is especially useful when function calls are chained. Let's see this on a
group of functions that operate on int slices:

// Returns the result of dividing all of the elements by
// 'divisor'
int[] divide(int[] slice, int divisor)
{

int[] result;

foreach (value; slice) {
result ~= value / divisor;

}

return result;
}

// Returns the result of multiplying all of the elements by
// 'multiplier'
int[] multiply(int[] slice, int multiplier)
{

int[] result;

foreach (value; slice) {
result ~= value * multiplier;

}

return result;
}
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// Filters out elements that have odd values
int[] evens(int[] slice)
{

int[] result;

foreach (value; slice) {
if (!(value % 2)) {

result ~= value;
}

}

return result;
}

When written by the regular syntax, without taking advantage of UFCS, an
expression that chains three calls to these functions can be written as in the
following program:

import std.stdio;

// ...

void main()
{

auto values = [ 1, 2, 3, 4, 5 ];
writeln(evens(divide(multiply(values, 10), 3)));

}

The values are first multiplied by 10, then divided by 3, and finally only the even
numbers are used:

[6, 10, 16]

A problem with the expression above is that although the pair of multiply and
10 are related and the pair of divide and 3 are related, parts of each pair end up
written away from each other. UFCS eliminates this issue and enables a more
natural syntax that reflects the actual order of operations:

writeln(values.multiply(10).divide(3).evens);

Some programmers take advantage of UFCS even for calls like writeln():

values.multiply(10).divide(3).evens.writeln;

As an aside, the entire program above could have been written in a much simpler
way by map() and filter():

import std.stdio;
import std.algorithm;

void main()
{

auto values = [ 1, 2, 3, 4, 5 ];

writeln(values
.map!(a => a * 10)
.map!(a => a / 3)
.filter!(a => !(a % 2)));

}

The program above takes advantage of templates, ranges, and lambda functions, all
of which will be explained in later chapters.
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62 Properties

Properties allow using member functions like member variables.
We are familiar with this feature from slices. The length property of a slice

returns the number of elements of that slice:

int[] slice = [ 7, 8, 9 ];
assert(slice.length == 3);

Looking merely at that usage, one might think that .length has been
implemented as a member variable:

struct SliceImplementation
{

int length;

// ...
}

However, the other functionality of this property proves that it cannot be a
member variable: Assigning a new value to the .length property actually
changes the length of the slice, sometimes by adding new elements to the
underlying array:

slice.length = 5; // The slice now has 5 elements
assert(slice.length == 5);

Note: The .length property of fixed-length arrays cannot be modified.
The assignment to .length above involves more complicated operations than a

simple value change: Determining whether the array has capacity for the new
length, allocating more memory if not, and moving the existing elements to the
new place; and finally initializing each additional element by .init.

Evidently, the assignment to .length operates like a function.
Properties are member functions that are used like member variables. They are
defined by the @property attribute.

62.1 Calling functions without parentheses
As has been mentioned in the previous chapter, when there is no argument to
pass, functions can be called without parentheses:

writeln();
writeln; // Same as the previous line

This feature is closely related to properties because properties are used almost
always without parentheses.

62.2 Property functions that return values
As a simple example, let's consider a rectangle struct that consists of two
members:

struct Rectangle
{

double width;
double height;

}

Let's assume that a third property of this type becomes a requirement, which
should provide the area of the rectangle:
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auto garden = Rectangle(10, 20);
writeln(garden.area);

One way of achieving that requirement is to define a third member:

struct Rectangle
{

double width;
double height;
double area;

}

A flaw in that design is that the object may easily become inconsistent: Although
rectangles must always have the invariant of "width * height == area", this
consistency may be broken if the members are allowed to be modified freely and
independently.

As an extreme example, objects may even begin their lives in inconsistent
states:

// Inconsistent object: The area is not 10 * 20 == 200.
auto garden = Rectangle(10, 20, 1111);

A better way would be to represent the concept of area as a property. Instead of
defining an additional member, the value of that member is calculated by a
function named area, the same as the concept that it represents:

struct Rectangle
{

double width;
double height;

double area() const @property
{

return width * height;
}

}

Note: As you would remember from the const ref Parameters and const Member
Functions chapter (page 294), the const specifier on the function declaration ensures
that the object is not modified by this function.

That property function enables the struct to be used as if it has a third member
variable:

auto garden = Rectangle(10, 20);
writeln("The area of the garden: ", garden.area);

As the value of the area property is calculated by multiplying the width and the
height of the rectangle, this time it would always be consistent:

The area of the garden: 200

62.3 Property functions that are used in assignment
Similar to the length property of slices, the properties of user-defined types can
be used in assignment operations as well:

garden.area = 50;

For that assignment to actually change the area of the rectangle, the two
members of the struct must be modified accordingly. To enable this functionality,
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we can assume that the rectangle is flexible so that to maintain the invariant of
"width * height == area", the sides of the rectangle can be changed.

The function that enables such an assignment syntax is also named as area
and is also marked by @property. The value that is used on the right-hand side of
the assignment becomes the only parameter of this function.

The following additional definition of area() enables using that property in
assignment operations and effectively modifying the area of Rectangle objects:

import std.stdio;
import std.math;

struct Rectangle
{

double width;
double height;

double area() const @property
{

return width * height;
}

void area(double newArea) @property
{

auto scale = sqrt(newArea / area);

width *= scale;
height *= scale;

}
}

void main()
{

auto garden = Rectangle(10, 20);
writeln("The area of the garden: ", garden.area);

garden.area = 50;

writefln("New state: %s x %s = %s",
garden.width, garden.height, garden.area);

}

The new function takes advantage of the sqrt function from the std.math
module, which returns the square root of the specified value. When both of the
width and the height of the rectangle are scaled by the square root of the ratio,
then the area would equal the desired value.

As a result, assigning the quarter of its current value to area ends up halving
both sides of the rectangle:

The area of the garden: 200
New state: 5 x 10 = 50

62.4 Properties are not absolutely necessary
We have seen above how Rectangle can be used as if it has a third member
variable. However, regular member functions could also be used instead of
properties:

import std.stdio;
import std.math;

struct Rectangle
{

double width;
double height;
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double area() const
{

return width * height;
}

void setArea(double newArea)
{

auto scale = sqrt(newArea / area);

width *= scale;
height *= scale;

}
}

void main()
{

auto garden = Rectangle(10, 20);
writeln("The area of the garden: ", garden.area());

garden.setArea(50);

writefln("New state: %s x %s = %s",
garden.width, garden.height, garden.area());

}

Further, as we have seen in the Function Overloading chapter (page 283), these
two functions could even have the same names:

double area() const
{

// ...
}

void area(double newArea)
{

// ...
}

62.5 When to use
It may not be easy to chose between regular member functions and properties.
Sometimes regular member functions feel more natural and sometimes
properties.

However, as we have seen in the Encapsulation and Protection Attributes
chapter (page 390), it is important to restrict direct access to member variables.
Allowing user code to freely modify member variables always ends up causing
issues with code maintenance. For that reason, member variables better be
encapsulated either by regular member functions or by property functions.

Leaving members like width and height open to public access is acceptable
only for very simple types. Almost always a better design is to use property
functions:

struct Rectangle
{
private:

double width_;
double height_;

public:

double area() const @property
{

return width * height;
}
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void area(double newArea) @property
{

auto scale = sqrt(newArea / area);

width_ *= scale;
height_ *= scale;

}

double width() const @property
{

return width_;
}

double height() const @property
{

return height_;
}

}

Note how the members are made private so that they can only be accessed by
corresponding property functions.

Also note that to avoid confusing their names with the member functions, the
names of the member variables are appended by the _ character. Decorating the
names of member variables is a common practice in object oriented
programming.

That definition of Rectangle still presents width and height as if they are
member variable:

auto garden = Rectangle(10, 20);
writefln("width: %s, height: %s",

garden.width, garden.height);

When there is no property function that modifies a member variable, then that
member is effectively read-only from the outside:

garden.width = 100; // ← compilation ERROR

This is important for controlled modifications of members. The member variables
can only be modified by the Rectangle type itself to ensure the consistency of its
objects.

When it later makes sense that a member variable should be allowed to be
modified from the outside, then it is simply a matter of defining another property
function for that member.
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63 Contract Programming for Structs and
Classes

Contract programming is very effective in reducing coding errors. We have seen
two of the contract programming features earlier in the Contract Programming
chapter (page 233): The in and out blocks ensure input and output contracts of
functions.
Note: It is very important that you consider the guidelines under the "in blocks

versus enforce checks" section of that chapter. The examples in this chapter are based
on the assumption that problems with object and parameter consistencies are due to
programmer errors. Otherwise, you should use enforce checks inside function bodies.

As a reminder, let's write a function that calculates the area of a triangle by
Heron's formula. We will soon move the in and out blocks of this function to the
constructor of a struct.

Obviously, for this calculation to work correctly, the lengths of all of the sides of
the triangle must be greater than or equal to zero. Additionally, since it is
impossible to have a triangle where one of the sides is greater than the sum of the
other two, that condition must also be checked.

Once these input conditions are satisfied, the area of the triangle would be
calculated as greater than or equal to zero. The following function ensures that all
of these requirements are satisfied:

private import std.math;

double triangleArea(in double a, in double b, in double c)
in
{

// No side can be less than zero
assert(a >= 0);
assert(b >= 0);
assert(c >= 0);

// No side can be longer than the sum of the other two
assert(a <= (b + c));
assert(b <= (a + c));
assert(c <= (a + b));

}
out (result)
{

assert(result >= 0);
}
body
{

immutable halfPerimeter = (a + b + c) / 2;

return sqrt(halfPerimeter
* (halfPerimeter - a)
* (halfPerimeter - b)
* (halfPerimeter - c));

}

63.1 Preconditions and postconditions for member functions
The in and out blocks can be used with member functions as well.

Let's convert the function above to a member function of a Triangle struct:

import std.stdio;
import std.math;

struct Triangle
{
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private:

double a_;
double b_;
double c_;

public:

double area() const @property
out (result)
{

assert(result >= 0);
}
body
{

immutable halfPerimeter = (a_ + b_ + c_) / 2;

return sqrt(halfPerimeter
* (halfPerimeter - a_)
* (halfPerimeter - b_)
* (halfPerimeter - c_));

}
}

void main()
{

auto threeFourFive = Triangle(3, 4, 5);
writeln(threeFourFive.area);

}

As the sides of the triangle are now member variables, the function does not take
parameters anymore. That is why this function does not have an in block.
Instead, it assumes that the members already have consistent values.

The consistency of objects can be ensured by the following features.

63.2 Preconditions and postconditions for object consistency
The member function above is written under the assumption that the members of
the object already have consistent values. One way of ensuring that assumption is
to define an in block for the constructor so that the objects are guaranteed to
start their lives in consistent states:

class Triangle
{
// ...

this(in double a, in double b, in double c)
in
{

// No side can be less than zero
assert(a >= 0);
assert(b >= 0);
assert(c >= 0);

// No side can be longer than the sum of the other two
assert(a <= (b + c));
assert(b <= (a + c));
assert(c <= (a + b));

}
body
{

this.a = a;
this.b = b;
this.c = c;

}

// ...
}
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This prevents creating invalid Triangle objects at run time:

auto negativeSide = Triangle(-1, 1, 1);
auto sideTooLong = Triangle(1, 1, 10);

The in block of the constructor would prevent such invalid objects:

core.exception.AssertError@deneme.d: Assertion failure

Although an out block has not been defined for the constructor above, it is
possible to define one to ensure the consistency of members right after
construction.

63.3 invariant() blocks for object consistency
The in and out blocks of constructors guarantee that the objects start their lives
in consistent states and the in and out blocks of member functions guarantee
that those functions themselves work correctly.

However, these checks are not suitable for guaranteeing that the objects are
always in consistent states. Repeating the out blocks for every member function
would be excessive and error-prone.

The conditions that define the consistency and validity of an object are called
the invariants of that object. For example, if there is a one-to-one correspondence
between the orders and the invoices of a customer class, then an invariant of that
class would be that the lengths of the order and invoice arrays would be equal.
When that condition is not satisfied for any object, then the object would be in an
inconsistent state.

As an example of an invariant, let's consider the School class from the
Encapsulation and Protection Attributes chapter (page 390):

class School
{
private:

Student[] students;
size_t femaleCount;
size_t maleCount;

// ...
}

The objects of that class are consistent only if an invariant that involves its three
members are satisfied. The length of the student array must be equal to the sum
of the female and male students:

assert(students.length == (femaleCount + maleCount));

If that condition is ever false, then there must be a bug in the implementation of
this class.
invariant() blocks are for guaranteeing the invariants of user-defined types.

invariant() blocks are defined inside the body of a struct or a class. They
contain assert checks similar to in and out blocks:

class School
{
private:

Student[] students;
size_t femaleCount;
size_t maleCount;
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invariant()
{

assert(students.length == (femaleCount + maleCount));
}

// ...
}

As needed, there can be more than one invariant() block in a user-defined type.
The invariant() blocks are executed automatically at the following times:

• After the execution of the constructor: This guarantees that every object
starts its life in a consistent state.

• Before the execution of the destructor: This guarantees that the
destructor will be executed on a consistent object.

• Before and after the execution of a public member function: This
guarantees that the member functions do not invalidate the consistency
of objects.
Note: export functions are the same as public functions in this regard.
(Very briefly, export functions are functions that are exported on dynamic
library interfaces.)

If an assert check inside an invariant() block fails, an AssertError is thrown.
This ensures that the program does not continue executing with invalid objects.
As with in and out blocks, the checks inside invariant() blocks can be disabled
by the -release command line option:

dmd deneme.d -w -release

63.4 Contract inheritance
Interface and class member functions can have in and out blocks as well. This
allows an interface or a class to define preconditions for its derived types to
depend on, as well as to define postconditions for its users to depend on. Derived
types can define further in and out blocks for the overrides of those member
functions. Overridden in blocks can loosen preconditions and overridden out
blocks can offer more guarantees.

User code is commonly abstracted away from the derived types, written in a
way to satisfy the preconditions of the topmost type in a hierarchy. The user code
does not even know about the derived types. Since user code would be written for
the contracts of an interface, it would not be acceptable for a derived type to put
stricter preconditions on an overridden member function. However, the
preconditions of a derived type can be more permissive than the preconditions of
its bases.

Upon entering a function, the in blocks are executed automatically from the
topmost type to the bottom-most type in the hierarchy . If any in block succeeds
without any assert failure, then the preconditions are considered to be fulfilled.

Warning: A function that does not have an in block means that that function
has no preconditions at all. For that reason, derived types should not fail to define
preconditions for member functions that have preconditions in their bases.
Otherwise, they would effectively remove those preconditions. In other words, if a
member function has in blocks in the base types, it is highly likely that a derived
type needs to define one as well.
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Similarly, derived types can define out blocks as well. Since postconditions are
about guarantees that a function provides, the member functions of the derived
type must observe the postconditions of its ancestors as well. On the other hand,
it can provide additional guarantees.

Upon exiting a function, the out blocks are executed automatically from the
topmost type to the bottom-most type. The function is considered to have
fullfilled its postconditions only if all of the out blocks succeed.

The following artificial program demonstrates these features on an interface
and a class. The class requires less from its callers while providing more
guarantees:

interface Iface
{

int[] func(int[] a, int[] b)
in
{

writeln("Iface.func.in");

/* This interface member function requires that the
* lengths of the two parameters are equal. */

assert(a.length == b.length);
}
out (result)
{

writeln("Iface.func.out");

/* This interface member function guarantees that the
* result will have even number of elements.
* (Note that an empty slice is considered to have
* even number of elements.) */

assert((result.length % 2) == 0);
}

}

class Class : Iface
{

int[] func(int[] a, int[] b)
in
{

writeln("Class.func.in");

/* This class member function loosens the ancestor's
* preconditions by allowing parameters with unequal
* lengths as long as at least one of them is empty. */

assert((a.length == b.length) ||
(a.length == 0) ||
(b.length == 0));

}
out (result)
{

writeln("Class.func.out");

/* This class member function provides additional
* guarantees: The result will not be empty and that
* the first and the last elements will be equal. */

assert((result.length != 0) &&
(result[0] == result[$ - 1]));

}
body
{

writeln("Class.func.body");

/* This is just an artificial implementation to
* demonstrate how the 'in' and 'out' blocks are
* executed. */

int[] result;
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if (a.length == 0) {
a = b;

}

if (b.length == 0) {
b = a;

}

foreach (i; 0 .. a.length) {
result ~= a[i];
result ~= b[i];

}

result[0] = result[$ - 1] = 42;

return result;
}

}

import std.stdio;

void main()
{

auto c = new Class();

/* Although the following call fails Iface's precondition,
* it is accepted because it fulfills Class' precondition. */

writeln(c.func([1, 2, 3], []));
}

The in block of Class is executed only because the parameters fail to satisfy the
preconditions of Iface:

Iface.func.in
Class.func.in ← would not be executed if Iface.func.in succeeded
Class.func.body
Iface.func.out
Class.func.out
[42, 1, 2, 2, 3, 42]

63.5 Summary

• in and out blocks are useful in constructors as well. They ensure that
objects are constructed in valid states.

• invariant() blocks ensure that objects remain in valid states
throughout their lifetimes.

• Derived types can define in blocks for overridden member functions.
Preconditions of a derived type should not be stricter than the
preconditions of its bases. (Note that not defining an in block means "no
precondition at all", which may not be the intent of the programmer.)

• Derived types can define out blocks for overridden member functions.
In addition to its own, a derived member function must observe the
postconditions of its bases as well.

Contract Programming for Structs and Classes

410



64 Templates

Templates are the feature that allows describing the code as a pattern, for the
compiler to generate program code automatically. Parts of the source code may be
left to the compiler to be filled in until that part is actually used in the program.
The compiler fills in the missing parts.

Templates are very useful especially in libraries because they enable writing
generic algorithms and data structures, instead of tying them to specific types.

Compared to the template supports in other languages, D's templates are very
powerful and extensive. I will not get into all of the details of templates in this
chapter. I will cover only function, struct, and class templates and only type
template parameters. We will see more about templates in the More Templates
chapter (page 533). For a complete reference on D templates, see Philippe Sigaud's
D Templates: A Tutorial1.

To see the benefits of templates let's start with a function that prints values in
parentheses:

void printInParens(int value)
{

writefln("(%s)", value);
}

Because the parameter is specified as int, that function can only be used with
values of type int, or values that can automatically be converted to int. For
example, the compiler would not allow calling it with a floating point type.

Let's assume that the requirements of a program changes and that other types
need to be printed in parentheses as well. One of the solutions for this would be to
take advantage of function overloading and provide overloads of the function for
all of the types that the function is used with:

// The function that already exists
void printInParens(int value)
{

writefln("(%s)", value);
}

// Overloading the function for 'double'
void printInParens(double value)
{

writefln("(%s)", value);
}

This solution does not scale well because this time the function cannot be used
with e.g. real or any user-defined type. Although it is possible to overload the
function for other types, the cost of doing this may be prohibitive.

An important observation here is that regardless of the type of the parameter,
the contents of the overloads would all be generically the same: a single
writefln() expression.

Such duplication is common in algorithms and data structures. For example,
the binary search algorithm is independent of the type of the elements: It is about
the specific steps and operations of the search. Similarly, the linked list data
structure is independent of the type of the elements: Linked list is merely about
how the elements are stored in the container, regardless of their type.

1. https://github.com/PhilippeSigaud/D-templates-tutorial
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Templates are useful in such situations: Once a piece of code is described as a
template, the compiler generates overloads of the same code automatically
according to the actual uses of that code in the program.

As I have mentioned above, in this chapter I will cover only function, struct,
and class templates, and type template parameters.

64.1 Function templates
Defining a function as a template is leaving one or more of the types that it uses
as unspecified, to be deduced later by the compiler.

The types that are being left unspecified are defined within the template
parameter list, which comes between the name of the function and the function
parameter list. For that reason, function templates have two parameter lists: the
template parameter list and the function parameter list:

void printInParens(T)(T value)
{

writefln("(%s)", value);
}

The T within the template parameter list above means that T can be any type.
Although T is an arbitrary name, it is an acronym for "type" and is very common
in templates.

Since T represents any type, the templated definition of printInParens()
above is sufficient to use it with almost every type, including the user-defined
ones:

import std.stdio;

void printInParens(T)(T value)
{

writefln("(%s)", value);
}

void main()
{

printInParens(42); // with int
printInParens(1.2); // with double

auto myValue = MyStruct();
printInParens(myValue); // with MyStruct

}

struct MyStruct
{

string toString() const
{

return "hello";
}

}

The compiler considers all of the uses of printInParens() in the program and
generates code to support all those uses. The program is then compiled as if the
function has been overloaded explicitly for int, double, and MyStruct:

/*
*  Note: These functions are not part of the source
*        code. They are the equivalents of the functions that
*        the compiler would automatically generate.
*/

void printInParens(int value)
{

writefln("(%s)", value);
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}

void printInParens(double value)
{

writefln("(%s)", value);
}

void printInParens(MyStruct value)
{

writefln("(%s)", value);
}

The output of the program contains different lines from the different
instantiations by the compiler of the function template:

(42)
(1.2)
(hello)

Each template parameter can determine more than one function parameter. For
example, both the two function parameters and the return type of the following
function template are determined by its single template parameter:

/* Returns a copy of 'slice' except the elements that are
* equal to 'value'. */

T[] removed(T)(const(T)[] slice, T value)
{

T[] result;

foreach (element; slice) {
if (element != value) {

result ~= element;
}

}

return result;
}

64.2 More than one template parameter
Let's change the function template to take the parentheses characters as well:

void printInParens(T)(T value, char opening, char closing)
{

writeln(opening, value, closing);
}

Now we can call the same function with different sets of parentheses:

printInParens(42, '<', '>');

Although being able to specify the parentheses makes the function more usable,
specifying the type of the parentheses as char makes it less flexible because it is
not possible to call the function with characters of type wchar or dchar:

printInParens(42, '→', '←'); // ← compilation ERROR

Error: template deneme.printInParens(T) cannot deduce
template function from argument types !()(int,wchar,wchar)

One solution would be to specify the type of the parentheses as dchar but this
would still be insufficient as this time the function could not be called e.g. with
string or user-defined types.

Templates

413



Another solution is to leave the type of the parentheses to the compiler as well.
Defining an additional template parameter instead of the specific char is
sufficient:

void printInParens(T, ParensType)(T value,
ParensType opening,
ParensType closing)

{
writeln(opening, value, closing);

}

The meaning of the new template parameter is similar to T's: ParensType can be
any type.

It is now possible to use many different types of parentheses. The following are
with wchar and string:

printInParens(42, '→', '←');
printInParens(1.2, "-=", "=-");

→42←
-=1.2=-

The flexibility of printInParens() has been increased, as it now works correctly
for any combination of T and ParensType as long as those types are printable
with writeln().

64.3 Type deduction
The compiler's deciding on what type to use for a template parameter is called
type deduction.

Continuing from the last example above, the compiler decides on the following
types according to the two uses of the function template:

• int and wchar when 42 is printed
• double and string when 1.2 is printed

The compiler can deduce types only from the types of the parameter values that
are passed to function templates. Although the compiler can usually deduce the
types without any ambiguity, there are times when the types must be specified
explicitly by the programmer.

64.4 Explicit type specification
Sometimes it is not possible for the compiler to deduce the template parameters.
A situation that this can happen is when the types do not appear in the function
parameter list. When template parameters are not related to function
parameters, the compiler cannot deduce the template parameter types.

To see an example of this, let's design a function that asks a question to the
user, reads a value as a response, and returns that value. Additionally, let's make
this a function template so that it can be used to read any type of response:

T getResponse(T)(string question)
{

writef("%s (%s): ", question, T.stringof);

T response;
readf(" %s", &response);

return response;
}
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That function template would be very useful in programs to read different types
of values from the input. For example, to read some user information, we can
imagine calling it as in the following line:

getResponse("What is your age?");

Unfortunately, that call does not give the compiler any clue as to what the
template parameter T should be. What is known is that the question is passed to
the function as a string, but the type of the return value cannot be deduced:

Error: template deneme.getResponse(T) cannot deduce template
function from argument types !()(string)

In such cases, the template parameters must be specified explicitly by the
programmer. Template parameters are specified in parentheses after an
exclamation mark:

getResponse!(int)("What is your age?");

The code above can now be accepted by the compiler and the function template is
compiled as T referring to int within the definition of the template.

When there is only one template parameter specified, the parenteses around it
are optional:

getResponse!int("What is your age?"); // same as above

You may recognize that syntax from to!string, which we have been using in
earlier programs. to() is a function template, which takes the target type of the
conversion as a template parameter. Since it has only one template parameter
that needs to be specified, it is commonly written as to!string instead of
to!(string).

64.5 Template instantiation
Automatic generation of code for different sets of template parameter types is
called an instantiation of that template for that specific set of types. For example,
to!string and to!int are two distinct instantiations of the to function
template.

As I will mention again in a separate section below, distinct instantiations of
templates produce distinct and incompatible types.

64.6 Template specializations
Although the getResponse() function template can in theory be used for any
template type, the code that the compiler generates may not be suitable for every
type. Let's assume that we have the following type that represents points on a two
dimensional space:

struct Point
{

int x;
int y;

}

Although the instantiation of getResponse() for the Point type itself would be
fine, the generated readf() call for Point cannot be compiled. This is because the
standard library function readf() does not know how to read a Point object.
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The two lines that actually read the response would look like the following in the
Point instantiation of the getResponse() function template:

Point response;
readf(" %s", &response); // ← compilation ERROR

One way of reading a Point object would be to read the values of the x and y
members separately and then to construct a Point object from those values.

Providing a special definition of a template for a specific type is called template
specialization. The specialization is defined by the type name after a : character in
the template parameter list. A Point specialization of the getResponse()
function template can be defined as in the following code:

// The general definition of the function template (same as before)
T getResponse(T)(string question)
{

writef("%s (%s): ", question, T.stringof);

T response;
readf(" %s", &response);

return response;
}

// The specialization of the function template for Point
T getResponse(T : Point)(string question)
{

writefln("%s (Point)", question);

auto x = getResponse!int("  x");
auto y = getResponse!int("  y");

return Point(x, y);
}

Note that the specialization takes advantage of the general definition of
getResponse() to read two int values to be used as the values of the x and y
members.

Instead of instantiating the template itself, now the compiler uses the
specialization above whenever getResponse() is called for the Point type:

auto center = getResponse!Point("Where is the center?");

Assuming that the user enters 11 and 22:

Where is the center? (Point)
x (int): 11
y (int): 22

The getResponse!int() calls are directed to the general definition of the
template and the getResponse!Point() calls are directed to the Point
specialization of it.

As another example, let's consider using the same template with string. As
you would remember from the Strings chapter (page 95), readf() would read all
of the characters from the input as part of a single string until the end of the
input. For that reason, the default definition of getResponse() would not be
useful when reading string responses:

// Reads the entire input, not only the name!
auto name = getResponse!string("What is your name?");
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We can provide a template specialization for string as well. The following
specialization reads just the line instead:

T getResponse(T : string)(string question)
{

writef("%s (string): ", question);

// Read and ignore whitespace characters which have
// presumably been left over from the previous user input
string response;
do {

response = chomp(readln());
} while (response.length == 0);

return response;
}

64.7 Struct and class templates
The Point struct may be seen as having a limitation: Because its two members are
defined specifically as int, it cannot represent fractional coordinate values. This
limitation can be removed if the Point struct is defined as a template.

Let's first add a member function that returns the distance to another Point
object:

import std.math;

// ...

struct Point
{

int x;
int y;

int distanceTo(in Point that) const
{

immutable real xDistance = x - that.x;
immutable real yDistance = y - that.y;

immutable distance = sqrt((xDistance * xDistance) +
(yDistance * yDistance));

return cast(int)distance;
}

}

That definition of Point is suitable when the required precision is relatively low:
It can calculate the distance between two points at kilometer precision, e.g.
between the center and branch offices of an organization:

auto center = getResponse!Point("Where is the center?");
auto branch = getResponse!Point("Where is the branch?");

writeln("Distance: ", center.distanceTo(branch));

Unfortunately, Point is inadequate at higher precisions than int can provide.
structs and classes can be defined as templates as well, by specifying a template

parameter list after their names. For example, Point can be defined as a struct
template by providing a template parameter and replacing the ints by that
parameter:

struct Point(T)
{

T x;
T y;
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T distanceTo(in Point that) const
{

immutable real xDistance = x - that.x;
immutable real yDistance = y - that.y;

immutable distance = sqrt((xDistance * xDistance) +
(yDistance * yDistance));

return cast(T)distance;
}

}

Since structs and classes are not functions, they cannot be called with
parameters. This makes it impossible for the compiler to deduce their template
parameters. The template parameter list must always be specified for struct and
class templates:

auto center = Point!int(0, 0);
auto branch = Point!int(100, 100);

writeln("Distance: ", center.distanceTo(branch));

The definitions above make the compiler generate code for the int instantiation
of the Point template, which is the equivalent of its earlier non-template
definition. However, now it can be used with any type. For example, when more
precision is needed, with double:

auto point1 = Point!double(1.2, 3.4);
auto point2 = Point!double(5.6, 7.8);

writeln(point1.distanceTo(point2));

Although the template itself has been defined independently of any specific type,
its single definition makes it possible to represent points of various precisions.

Simply converting Point to a template would cause compilation errors in code
that has already been written according to its non-template definition. For
example, now the Point specialization of getResponse() cannot be compiled:

T getResponse(T : Point)(string question) // ← compilation ERROR
{

writefln("%s (Point)", question);

auto x = getResponse!int("  x");
auto y = getResponse!int("  y");

return Point(x, y);
}

The reason for the compilation error is that Point itself is not a type anymore:
Point is now a struct template. Only instantiations of that template would be
considered as types. The following changes are required to correctly specialize
getResponse() for any instantiation of Point:

Point!T getResponse(T : Point!T)(string question) // 2, 1
{

writefln("%s (Point!%s)", question, T.stringof); // 5

auto x = getResponse!T("  x"); // 3a
auto y = getResponse!T("  y"); // 3b

return Point!T(x, y); // 4
}
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1. In order for this template specialization to support all instantiations of
Point, the template parameter list must mention Point!T. This simply
means that the getResponse() specialization is for Point!T, regardless
of T. This specialization would match Point!int, Point!double, etc.

2. Similarly, to return the correct type as the response, the return type
must be specified as Point!T as well.

3. Since the types of x and y members of Point!T are now T, as opposed to
int, the members must be read by calling getResponse!T(), not
getResponse!int(), as the latter would be correct only for Point!int.

4. Similar to items 1 and 2, the type of the return value is Point!T.
5. To print the name of the type accurately for every type, as in Point!int,

Point!double, etc., T.stringof is used.

64.8 Default template parameters
Sometimes it is cumbersome to provide template parameter types every time a
template is used, especially when that type is almost always a particular type. For
example, getResponse() may almost always be called for the int type in the
program, and only in a few places for the double type.

It is possible to specify default types for template parameters, which are
assumed when the types are not explicitly provided. Default parameter types are
specified after the = character:

T getResponse(T = int)(string question)
{

// ...
}

// ...

auto age = getResponse("What is your age?");

As no type has been specified when calling getResponse() above, T becomes the
default type int and the call ends up being the equivalent of
getResponse!int().

Default template parameters can be specified for struct and class templates as
well, but in their case the template parameter list must always be written even
when empty:

struct Point(T = int)
{

// ...
}

// ...

Point!() center;

Similar to default function parameter values as we have seen in the Variable
Number of Parameters chapter (page 279), default template parameters can be
specified for all of the template parameters or for the last ones:

void myTemplate(T0, T1 = int, T2 = char)()
{

// ...
}
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The last two template parameters of that function may be left unspecified but the
first one is required:

myTemplate!string();

In that usage, the second and third parameters are int and char, respectively.

64.9 Every different template instantiation is a distinct type
Every instantiation of a template for a given set of types is considered to be a
distinct type. For example, Point!int and Point!double are separate types:

Point!int point3 = Point!double(0.25, 0.75); // ← compilation ERROR

Those different types cannot be used in the assignment operation above:

Error: cannot implicitly convert expression (Point(0.25,0.75))
of type Point!(double) to Point!(int)

64.10 A compile-time feature
Templates are entirely a compile-time feature. The instances of templates are
generated by the compiler at compile time.

pragma
Pragmas are a way of interacting with the compiler. They can be for giving
special informations to the compiler as well as getting information from it.
Although they are useful in non-templated code as well, I have decided to
introduce pragmas at this point because pragma(msg) can be helpful when
debugging templates.

Every compiler vendor is free to introduce their special pragma directives in
addition to the following mandatory ones:

• pragma(msg): Prints a message to stderr during compilation. No
message is printed during the execution of the compiled program. Of all
the pragmas this is the most useful one.

For example, the following pragma(msg) is being used for exposing
the types of template parameters, presumably during debugging:

import std.string;

void func(A, B)(A a, B b)
{

pragma(msg, format("Called with types '%s' and '%s'",
A.stringof, B.stringof));

// ...
}

void main()
{

func(42, 1.5);
func("hello", 'a');

}

Called with types 'int' and 'double'
Called with types 'string' and 'char'

• pragma(lib): Instructs the compiler to link the program with a specific
library. This is the easiest way of linking the program with a library that
is already installed on the system.

Templates

420



For example, the following program would be linked with the curl
library without needing to mention the library on the command line:

import std.stdio;
import std.net.curl;

pragma(lib, "curl");

void main()
{

// Get this chapter
writeln(get("ddili.org/ders/d.en/templates.html"));

}

• pragma(startaddress): Specifies the start address of the program.
Since the start address is normally assigned by the D runtime
environment it is very unlikely that you will ever use this pragma.

• pragma(mangle): Specifies that a symbol should be name mangled
differently from the default name mangling method. Name mangling is
about how the linker identifies functions and their callers. This pragma
is useful when D code needs to call a library function that happens to be
a D keyword.

For example, if a C library had a function named body, because body
happens to be a keyword in D, the only way of calling it from D would be
through a different name. However, that different name must still be
mangled as the actual function name in the library for the linker to be
able to identify it:

/* If a C library had a function named 'body', it could only
* be called from D through a name like 'c_body', mangled as
* the actual function name: */

pragma(mangle, "body")
extern (C) string c_body(string);

void main()
{

/* D code calls the function as c_body() but the linker
* would find it by its correct C library name 'body': */

auto s = c_body("hello");
}

64.11 Class template example: stack data structure
Struct and class templates are commonly used in the implementations of data
structures. Let's design a stack container that will be able to contain any type.

Stack is one of the simplest data structures. It represents a container where
elements are placed conceptually on top of each other as would be in a stack of
papers. New elements go on top, and only the topmost element is accessed. When
an element is removed, it is always the topmost one.

If we also define a property that returns the total number of elements in the
stack, all of the operations of this data structure would be the following:

• Add element (push())
• Remove element (pop())
• Access the topmost element (.top)
• Report the number of elements (.length)
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An array can be used to store the elements such that the last element of the array
would be representing the topmost element of the stack. Finally, it can be defined
as a class template to be able to contain elements of any type:

class Stack(T)
{
private:

T[] elements;

public:

void push(T element)
{

elements ~= element;
}

void pop()
{

--elements.length;
}

T top() const @property
{

return elements[$ - 1];
}

size_t length() const @property
{

return elements.length;
}

}

As a design decision, push() and pop() are defined as regular member functions,
and .top and .length are defined as properties because they can be seen as
providing simple informations about the stack collection.

Here is a unittest block for this class that uses its int instantiation:

unittest
{

auto stack = new Stack!int;

// The newly added element must appear on top
stack.push(42);
assert(stack.top == 42);
assert(stack.length == 1);

// .top and .length should not affect the elements
assert(stack.top == 42);
assert(stack.length == 1);

// The newly added element must appear on top
stack.push(100);
assert(stack.top == 100);
assert(stack.length == 2);

// Removing the last element must expose the previous one
stack.pop();
assert(stack.top == 42);
assert(stack.length == 1);

// The stack must become empty when the last element is
// removed
stack.pop();
assert(stack.length == 0);

}

To take advantage of this class template, let's try using it this time with a user-
defined type. As an example, here is a modified version of Point:
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struct Point(T)
{

T x;
T y;

string toString() const
{

return format("(%s,%s)", x, y);
}

}

A Stack that contains elements of type Point!double can be defined like the
following:

auto points = new Stack!(Point!double);

Here is a test program that first adds ten elements to this stack and then removes
them one by one:

import std.string;
import std.stdio;
import std.random;

struct Point(T)
{

T x;
T y;

string toString() const
{

return format("(%s,%s)", x, y);
}

}

// Returns a random value between -0.50 and 0.50.
double random_double()
out (result)
{

assert((result >= -0.50) && (result < 0.50));
}
body
{

return (double(uniform(0, 100)) - 50) / 100;
}

// Returns a Stack that contains 'count' number of random
// Point!double elements.
Stack!(Point!double) randomPoints(size_t count)
out (result)
{

assert(result.length == count);
}
body
{

auto points = new Stack!(Point!double);

foreach (i; 0 .. count) {
immutable point = Point!double(random_double(),

random_double());
writeln("adding  : ", point);
points.push(point);

}

return points;
}

void main()
{

auto stackedPoints = randomPoints(10);
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while (stackedPoints.length) {
writeln("removing: ", stackedPoints.top);
stackedPoints.pop();

}
}

As the output of the program shows, the elements are removed in the reverse
order as they have been added:

adding  : (-0.02,-0.01)
adding  : (0.17,-0.5)
adding  : (0.12,0.23)
adding  : (-0.05,-0.47)
adding  : (-0.19,-0.11)
adding  : (0.42,-0.32)
adding  : (0.48,-0.49)
adding  : (0.35,0.38)
adding  : (-0.2,-0.32)
adding  : (0.34,0.27)
removing: (0.34,0.27)
removing: (-0.2,-0.32)
removing: (0.35,0.38)
removing: (0.48,-0.49)
removing: (0.42,-0.32)
removing: (-0.19,-0.11)
removing: (-0.05,-0.47)
removing: (0.12,0.23)
removing: (0.17,-0.5)
removing: (-0.02,-0.01)

64.12 Function template example: binary search algorithm
Binary search is the fastest algorithm to search for an element among the
elements of an already sorted array. It is a very simple algorithm: The element in
the middle is considered; if that element is the one that has been sought, then the
search is over. If not, then the algorithm is repeated on the elements that are
either on the left-hand side or on the right-hand side of the middle element,
depending on whether the sought element is greater or less than the middle
element.

Algorithms that repeat themselves on a smaller range of the initial elements
are recursive. Let's write the binary search algorithm recursively by calling itself.

Before converting it to a template, let's first write this function to support only
arrays of int. We can easily convert it to a template later, by adding a template
parameter list and replacing appropriate ints in its definition by Ts. Here is a
binary search algorithm that works on arrays of int:

/*
* This function returns the index of the value if it exists
* in the array, size_t.max otherwise.
*/

size_t binarySearch(const int[] values, in int value)
{

// The value is not in the array if the array is empty.
if (values.length == 0) {

return size_t.max;
}

immutable midPoint = values.length / 2;

if (value == values[midPoint]) {
// Found.
return midPoint;
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} else if (value < values[midPoint]) {
// The value can only be in the left-hand side; let's
// search in a slice that represents that half.
return binarySearch(values[0 .. midPoint], value);

} else {
// The value can only be in the right-hand side; let's
// search in the right-hand side.
auto index =

binarySearch(values[midPoint + 1 .. $], value);

if (index != size_t.max) {
// Adjust the index; it is 0-based in the
// right-hand side slice.
index += midPoint + 1;

}

return index;
}

assert(false, "We should have never gotten to this line");
}

The function above implements this simple algorithm in four steps:

• If the array is empty, return size_t.max to indicate that the value has
not been found.

• If the element at the mid-point is equal to the sought value, then return
the index of that element.

• If the value is less than the element at the mid-point, then repeat the
same algorithm on the left-hand side.

• Else, repeat the same algorithm on the right-hand side.

Here is a unittest block that tests the function:

unittest
{

auto array = [ 1, 2, 3, 5 ];
assert(binarySearch(array, 0) == size_t.max);
assert(binarySearch(array, 1) == 0);
assert(binarySearch(array, 4) == size_t.max);
assert(binarySearch(array, 5) == 3);
assert(binarySearch(array, 6) == size_t.max);

}

Now that the function has been implemented and tested for int, we can convert
it to a template. int appears only in two places in the definition of the template:

size_t binarySearch(const int[] values, in int value)
{

// ... int does not appear here ...
}

The ints that appear in the parameter list are the types of the elements and the
value. Specifying those as template parameters is sufficient to make this
algorithm a template and to be usable with other types as well:

size_t binarySearch(T)(const T[] values, in T value)
{

// ...
}
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That function template can be used with any type that matches the operations
that are applied to that type in the template. In binarySearch(), the elements
are used only with comparison operators == and <:

if (value == values[midPoint]) {
// ...

} else if (value < values[midPoint]) {

// ...

For that reason, Point is not ready to be used with binarySearch() yet:

import std.string;

struct Point(T)
{

T x;
T y;

string toString() const
{

return format("(%s,%s)", x, y);
}

}

void main()
{

Point!int[] points;

foreach (i; 0 .. 15) {
points ~= Point!int(i, i);

}

assert(binarySearch(points, Point!int(10, 10)) == 10);
}

The program above would cause a compilation error:

Error: need member function opCmp() for struct
const(Point!(int)) to compare

According to the error message, opCmp() needs to be defined for Point. opCmp()
has been covered in the Operator Overloading chapter (page 313):

struct Point(T)
{
// ...

int opCmp(const ref Point that) const
{

return (x == that.x
? y - that.y
: x - that.x);

}
}

64.13 Summary
We will see other features of templates in a later chapter. For a complete
reference on D templates, see Philippe Sigaud's D Templates: A Tutorial1. The
following are what we have covered in this chapter:

1. https://github.com/PhilippeSigaud/D-templates-tutorial
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• Templates define the code as a pattern, for the compiler to generate
instances of it according to the actual uses in the program.

• Templates are a compile-time feature.
• Specifying template parameter lists is sufficient to make function,

struct, and class definitions templates.

void functionTemplate(T)(T functionParameter)
{

// ...
}

class ClassTemplate(T)
{

// ...
}

• Template arguments can be specified explicitly after an exclamation
mark. The parenteses are not necessary when there is only one token
inside the parenteses.

auto object1 = new ClassTemplate!(double);
auto object2 = new ClassTemplate!double; // same thing

• Every different instantiation of a template is a different type.

assert(typeid(ClassTemplate!int) !=
typeid(ClassTemplate!uint));

• Template arguments can only be deduced for function templates.

functionTemplate(42); // functionTemplate!int(42) is deduced

• Templates can be specialized for the type that is after the : character.

class ClassTemplate(T : dchar)
{

// ...
}

• Default template arguments are specified after the = character.

void functionTemplate(T = long)(T functionParameter)
{

// ...
}

• pragma(msg) can be useful when debugging templates.
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65 alias
The alias keyword assigns aliases to existing names.
alias should not be confused with alias this.

Shortening a long name
As we have encountered in the previous chapter, some names may become too
long to be convenient. Let's consider the following function from that chapter:

Stack!(Point!double) randomPoints(size_t count)
{

auto points = new Stack!(Point!double);

// ...
}

Having to type Stack!(Point!double) explicitly in multiple places in the
program has a number of drawbacks:

• Longer names can make the code harder to read.
• It is unnecessary to be reminded at every point that the type is the Stack

data structure that contains objects of the double instantiations of the
Point struct template.

• If the requirements of the program change and e.g. double needs to be
changed to real, this change must be carried out in multiple places.

These drawbacks can be eliminated by giving a new name to
Stack!(Point!double):

alias Points = Stack!(Point!double);

// ...

Points randomPoints(size_t count)
{

auto points = new Points;

// ...
}

It may make sense to go further and define two aliases, one taking advantage of
the other:

alias PrecisePoint = Point!double;
alias Points = Stack!PrecisePoint;

The syntax of alias is the following:

alias new_name = existing_name;

After that definition, the new name and the existing name become synonymous:
They mean the same thing in the program.

You may encounter the older syntax of this feature in some programs:

// Use of old syntax is discouraged:
alias existing_name new_name;

alias is also useful when shortening names which otherwise need to be spelled
out along with their module names. Let's assume that the name Queen appears in
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two separate modules: chess and palace. When both modules are imported,
typing merely Queen would cause a compilation error:

import chess;
import palace;

// ...

Queen person; // ← compilation ERROR

The compiler cannot decide which Queen has been meant:

Error: chess.Queen at chess.d(1) conflicts with
palace.Queen at palace.d(1)

A convenient way of resolving this conflict is to assign aliases to one or more of
the names:

import palace;

alias PalaceQueen = palace.Queen;

void main()
{

PalaceQueen person;

// ...

PalaceQueen anotherPerson;
}

alias works with other names as well. The following code gives a new name to a
variable:

int variableWithALongName = 42;

alias var = variableWithALongName;
var = 43;

assert(variableWithALongName == 43);

Design flexibility
For flexibility, even fundamental types like int can have aliases:

alias CustomerNumber = int;
alias CompanyName = string;
// ...

struct Customer
{

CustomerNumber number;
CompanyName company;
// ...

}

If the users of this struct always type CustomerNumber and CompanyName instead
of int and string, then the design can be changed in the future to some extent,
without affecting user code.

This helps with the readability of code as well. Having the type of a variable as
CustomerNumber conveys more information about the meaning of that variable
than int.

Sometimes such type aliases are defined inside structs and classes and become
parts of the interfaces of those types. The following class has a weight property:
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class Box
{
private:

double weight_;

public:

double weight() const @property
{

return weight_;
}

// ...
}

Because the member variable and the property of that class is defined as double,
the users would have to use double as well:

double totalWeight = 0;

foreach (box; boxes) {
totalWeight += box.weight;

}

Let's compare it to another design where the type of weight is defined as an
alias:

class Box
{
private:

Weight weight_;

public:

alias Weight = double;

Weight weight() const @property
{

return weight_;
}

// ...
}

Now the user code would normally use Weight as well:

Box.Weight totalWeight = 0;

foreach (box; boxes) {
totalWeight += box.weight;

}

With this design, changing the actual type of Weight in the future would not
affect user code. (That is, if the new type supports the += operator as well.)

Revealing hidden names of superclasses
When the same name appears both in the superclass and in the subclass, the
matching names that are in the superclass are hidden. Even a single name in the
subclass is sufficient to hide all of the names of the superclass that match that
name:

class Super
{
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void foo(int x)
{

// ...
}

}

class Sub : Super
{

void foo()
{

// ...
}

}

void main()
{

auto object = new Sub;
object.foo(42); // ← compilation ERROR

}

Since the argument is 42, an int value, one might expect that the Super.foo
function that takes an int would be called for that use. However, even though
their parameter lists are different, Sub.foo hides Super.foo and causes a
compilation error. The compiler disregards Super.foo altogether and reports
that Sub.foo cannot be called by an int:

Error: function deneme.Sub.foo () is not callable
using argument types (int)

Note that this is not the same as overriding a function of the superclass. For that,
the function signatures would be the same and the function would be overridden
by the override keyword. (The override keyword has been explained in the
Inheritance chapter (page 342).)

Here, not overriding, but a language feature called name hiding is in effect. If
there were not name hiding, functions that happen to have the same name foo
that are added to or removed from these classes might silently change the
function that would get called. Name hiding prevents such surprises. It is a
feature of other OOP languages as well.
alias can reveal the hidden names when desired:

class Super
{

void foo(int x)
{

// ...
}

}

class Sub : Super
{

void foo()
{

// ...
}

alias foo = Super.foo;
}

The alias above brings the foo names from the superclass into the subclass
interface. As a result, the code now compiles and Super.foo gets called.

When it is more appropriate, it is possible to bring the names under a different
name as well:

alias
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class Super
{

void foo(int x)
{

// ...
}

}

class Sub : Super
{

void foo()
{

// ...
}

alias generalFoo = Super.foo;
}

// ...

void main()
{

auto object = new Sub;
object.generalFoo(42);

}

Name hiding affects member variables as well. alias can bring those names to
the subclass interface as well:

class Super
{

int city;
}

class Sub : Super
{

string city() const @property
{

return "Kayseri";
}

}

Regardless of one being a member variable and the other a member function, the
name city of the subclass hides the name city of the superclass:

void main()
{

auto object = new Sub;
object.city = 42; // ← compilation ERROR

}

Similarly, the names of the member variables of the superclass can be brought to
the subclass interface by alias, possibly under a different name:

class Super
{

int city;
}

class Sub : Super
{

string city() const @property
{

return "Kayseri";
}

alias cityCode = Super.city;
}
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void main()
{

auto object = new Sub;
object.cityCode = 42;

}

alias
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66 alias this
We have seen the individual meanings of the alias and the this keywords in
previous chapters. These two keywords have a completely different meaning
when used together as alias this.
alias this enables automatic type conversions (also known as implicit type
conversions) of user-defined types. As we have seen in the Operator Overloading
chapter (page 313), another way of providing type conversions for a type is by
defining opCast for that type. The difference is that, while opCast is for explicit
type conversions, alias this is for automatic type conversions.

The keywords alias and this are written separately where the name of a
member variable or a member function is specified between them:

alias member_variable_or_member_function this;

alias this enables the specific conversion from the user-defined type to the
type of that member. The value of the member becomes the resulting value of the
conversion .

The following Fraction example uses alias this with a member function. The
TeachingAssistant example that is further below will use it with member
variables.

Since the return type of value() below is double, the following alias this
enables automatic conversion of Fraction objects to double values:

import std.stdio;

struct Fraction
{

long numerator;
long denominator;

double value() const @property
{

return double(numerator) / denominator;
}

alias value this;

// ...
}

double calculate(double lhs, double rhs)
{

return 2 * lhs + rhs;
}

void main()
{

auto fraction = Fraction(1, 4); // meaning 1⁄4
writeln(calculate(fraction, 0.75));

}

value() gets called automatically to produce a double value when Fraction
objects appear in places where a double value is expected. That is why the
variable fraction can be passed to calculate() as an argument. value()
returns 0.25 as the value of 1⁄4 and the program prints the result of 2 * 0.25 + 0.75:

1.25
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66.1 Multiple inheritance
We have seen in the Inheritance chapter (page 342) that classes can inherit from
only one class. (On the other hand, there is no limit in the number of
interfaces to inherit from.) Some other object oriented languages allow
inheriting from multiple classes. This is called multiple inheritance.
alias this enables using D classes in designs that could benefit from multiple

inheritance. Multiple alias this declarations enable types to be used in places
of multiple different types.
Note: dmd 2.066.1, the compiler that was used last to compile the examples in this

chapter, allowed only one alias this declaration.
The following TeachingAssistant class has two member variables of types

Student and Teacher. The alias this declarations would allow objects of this
type to be used in places of both Student and Teacher:

import std.stdio;

class Student
{

string name;
uint[] grades;

this(string name)
{

this.name = name;
}

}

class Teacher
{

string name;
string subject;

this(string name, string subject)
{

this.name = name;
this.subject = subject;

}
}

class TeachingAssistant
{

Student studentIdentity;
Teacher teacherIdentity;

this(string name, string subject)
{

this.studentIdentity = new Student(name);
this.teacherIdentity = new Teacher(name, subject);

}

/* The following two 'alias this' declarations will enable
* this type to be used both as a Student and as a Teacher.
*
* Note: dmd 2.066.1 did not support multiple 'alias this'
*       declarations. */

alias teacherIdentity this;
alias studentIdentity this;

}

void attendClass(Teacher teacher, Student[] students)
in
{

assert(teacher !is null);
assert(students.length > 0);

}
body
{
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writef("%s is teaching %s to the following students:",
teacher.name, teacher.subject);

foreach (student; students) {
writef(" %s", student.name);

}

writeln();
}

void main()
{

auto students = [ new Student("Shelly"),
new Student("Stan") ];

/* An object that can be used both as a Teacher and a
* Student: */

auto tim = new TeachingAssistant("Tim", "math");

// 'tim' is the teacher in the following use:
attendClass(tim, students);

// 'tim' is one of the students in the following use:
auto amy = new Teacher("Amy", "physics");
attendClass(amy, students ~ tim);

}

The output of the program shows that the same object has been used as two
different types:

Tim is teaching math to the following students: Shelly Stan
Amy is teaching physics to the following students: Shelly Stan Tim

alias this
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67 Pointers

Pointers are variables that provide access to other variables. The value of a
pointer is the address of the variable that it provides access to.

Pointers can point at any type of variable, object, and even other pointers. In
this chapter, I will refer to all of these simply as variables.

Pointers are low level features of microprocessors. They are an important part
of system programming.

The syntax and semantics of pointers in D are inherited directly from C.
Although pointers are notoriously the most difficult feature of C to comprehend,
they should not be as difficult in D. This is because other features of D that are
semantically close to pointers are more useful in situations where pointers would
have to be used in other languages. When the ideas behind pointers are already
understood from those other features of D, pointers should be easier to grasp.

The short examples throughout the most of this chapter are decidedly simple.
The programs at the end of the chapter will be more realistic.

The names like ptr (short for "pointer") that I have used in these examples
should not be considered as useful names in general. As always, names must be
chosen to be more meaningful and explanatory in actual programs.

67.1 The concept of a reference
Although we have encountered references many times in the previous chapters,
let's summarize this concept one more time.

The ref variables in foreach loops
As we have seen in the foreach Loop chapter (page 140), normally the loop
variables are copies of elements:

import std.stdio;

void main()
{

int[] numbers = [ 1, 11, 111 ];

foreach (number; numbers) {
number = 0; // ← the copy changes, not the element

}

writeln("After the loop: ", numbers);
}

The number that gets assigned 0 each time is a copy of one of the elements of the
array. Modifying that copy does not modify the element:

After the loop: [1, 11, 111]

When the actual elements need to be modified, the foreach variable must be
defined as ref:

foreach (ref number; numbers) {
number = 0; // ← the actual element changes

}

This time number is a reference to an actual element in the array:

After the loop: [0, 0, 0]
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ref function parameters
As we have seen in the Function Parameters chapter (page 178), the parameters of
value types are normally copies of the arguments:

import std.stdio;

void addHalf(double value)
{

value += 0.5; // ← Does not affect 'value' in main
}

void main()
{

double value = 1.5;

addHalf(value);

writeln("The value after calling the function: ", value);
}

Because the function parameter is not defined as ref, the assignment inside the
function affects only the local variable there. The variable in main() is not
affected:

The value after calling the function: 1.5

The ref keyword would make the function parameter a reference to the
argument:

void addHalf(ref double value)
{

value += 0.5;
}

This time the variable in main() gets modified:

The value after calling the function: 2

Reference types
Some types are reference types. Variables of such types provide access to separate
variables:

• Class variables
• Slices
• Associative arrays

We have seen this distinction in the Value Types and Reference Types chapter
(page 244). The following example demonstrates reference types by two class
variables:

import std.stdio;

class Pen
{

double ink;

this()
{

ink = 15;
}
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void use(double amount)
{

ink -= amount;
}

}

void main()
{

auto pen = new Pen;
auto otherPen = pen; // ← Now both variables provide

//   access to the same object

writefln("Before: %s %s", pen.ink, otherPen.ink);

pen.use(1); // ← the same object is used
otherPen.use(2); // ← the same object is used

writefln("After : %s %s", pen.ink, otherPen.ink);
}

Because classes are reference types, the class variables pen and otherPen provide
access to the same Pen object. As a result, using either of those class variables
affects the same object:

Before: 15 15
After : 12 12

That single object and the two class variables would be laid out in memory
similar to the following figure:

(The Pen object)            pen        otherPen
---+-------------------+---  ---+---+---  ---+---+---

|        ink        |        | o |        | o |
---+-------------------+---  ---+-|-+---  ---+-|-+---

▲                    |            |
|                    |            |
+--------------------+------------+

References point at actual variables as pen and otherPen do above.
Programming languages implement the reference and pointer concepts by

special registers of the microprocessor, which are specifically for pointing at
memory locations.

Behind the scenes, D's higher-level concepts (class variables, slices, associative
arrays, etc.) are all implemented by pointers. As these higher-level features are
already efficient and convenient, pointers are rarely needed in D programming.
Still, it is important for D programmers to understand pointers well.

67.2 Syntax
The pointer syntax of D is mostly the same as in C. Although this can be seen as
an advantage, the peculiarities of C's pointer syntax are necessarily inherited by
D as well. For example, the different meanings of the * character may be
confusing.

With the exception of void pointers, every pointer is associated with a certain
type and can point at only variables of that specific type. For example, an int
pointer can only point at variables of type int.

The pointer definition syntax consists of the associated type and a * character:

type_to_point_at * name_of_the_pointer_variable;

Accordingly, a pointer variable that would be pointing at int variables would be
defined like this:
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int * myPointer;

The * character in that syntax may be pronounced as "pointer". So, the type of
myPointer above is an "int pointer". The spaces before and after the * character
are optional. The following syntaxes are common as well:

int* myPointer;
int *myPointer;

When it is specifically a pointer type that is being mentioned as in "int pointer", it
is common to write the type without any spaces as in int*.

67.3 Pointer value and the address-of operator &
Being variables themselves pointers have values as well. The default value of a
pointer is the special value null, which means that the pointer is not pointing at
any variable yet (i.e. does not provide access to any variable).

To make a pointer provide access to a variable, the value of the pointer must be
set to the address of that variable. The pointer starts pointing at the variable that
is at that specific address. From now on, I will call that variable the pointee.

The & operator which we have used many times before with readf has also
been briefly mentioned in the Value Types and Reference Types chapter (page
244). This operator produces the address of the variable that is written after it. Its
value can be used when initializing a pointer:

int myVariable = 180;
int * myPointer = &myVariable;

Initializing myPointer by the address of myVariable makes myPointer point at
myVariable.

The value of the pointer is the same as the address of myVariable:

writeln("The address of myVariable: ", &myVariable);
writeln("The value of myPointer   : ", myPointer);

The address of myVariable: 7FFF2CE73F10
The value of myPointer   : 7FFF2CE73F10

Note: The address value is likely to be different every time the program is started.
The following figure is a representation of these two variables in memory:

myVariable at                myPointer at
address 7FFF2CE73F10          some other address

---+----------------+---     ---+----------------+---
|      180       |           |  7FFF2CE73F10  |

---+----------------+---     ---+--------|-------+---
▲                           |
|                           |
+---------------------------+

The value of myPointer is the address of myVariable, conceptually pointing at
the variable that is at that location.

Since pointers are variables as well, the & operator can produce the address of
the pointer as well:

writeln("The address of myPointer : ", &myPointer);

The address of myPointer : 7FFF2CE73F18
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Since the difference between the two addresses above is 8, remembering that an
int takes up 4 bytes, we can deduce that myVariable and myPointer are 4 bytes
apart in memory.

After removing the arrow that represented the concept of pointing at, we can
picture the contents of memory around these addresses like this:

7FFF2CE73F10     7FFF2CE73F14     7FFF2CE73F18
:                :                :                :

---+----------------+----------------+----------------+---
|      180       |    (unused)    |  7FFF2CE73F10  |

---+----------------+----------------+----------------+---

The names of variables, functions, classes, etc. and keywords are not parts of
programs of compiled languages like D. The variables that have been defined by
the programmer in the source code are converted to bytes that occupy memory or
registers of the microprocessor.
Note: The names (a.k.a. symbols) may actually be included in programs to help with

debugging but those names do not affect the operation of the program.

67.4 The access operator *
We have seen above that the * character which normally represents
multiplication is also used when defining pointers. A difficulty with the syntax of
pointers is that the same character has a third meaning: It is also used when
accessing the pointee through the pointer.

When it is written before the name of a pointer, it means the variable that the
pointer is pointing at (i.e. the pointee):

writeln("The value that it is pointing at: ", *myPointer);

The value that it is pointing at: 180

67.5 The . (dot) operator to access a member of the pointee
If you know pointers from C, this operator is the same as the -> operator in that
language.

We have seen above that the * operator is used for accessing the pointee. That is
sufficiently useful for pointers of fundamental types like int*: The value of a
fundamental type is accessed simply by writing *myPointer.

However, when the pointee is a struct or a class object, the same syntax
becomes inconvenient. To see why, let's consider the following struct:

struct Coordinate
{

int x;
int y;

string toString() const
{

return format("(%s,%s)", x, y);
}

}

The following code defines an object and a pointer of that type:

auto center = Coordinate(0, 0);
Coordinate * ptr = &center; // pointer definition
writeln(*ptr); // object access
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That syntax is convenient when accessing the value of the entire Coordinate
object:

(0,0)

However, the code becomes complicated when accessing a member of an object
through a pointer and the * operator:

// Adjust the x coordinate
(*ptr).x += 10;

That expression modifies the value of the x member of the center object. The left-
hand side of that expression can be explained by the following steps:

• ptr: The pointer that points at center
• *ptr: Accessing the object (i.e. center itself)
• (*ptr): Parentheses so that the . (dot) operator is applied to the object,

not to the pointer
• (*ptr).x: The x member of the object that ptr is pointing at

To reduce the complexity of pointer syntax in D, the . (dot) operator is tranferred
to the pointee and provides access to the member of the object. (The exceptions to
this rule are at the end of this section.)

So, the previous expression is normally written as:

ptr.x += 10;

Since the pointer itself does not have a member named x, .x is applied to the
pointee and the x member of center gets modified:

(10,0)

Note that this is the same as the use of the . (dot) operator with classes. When the
. (dot) operator is applied to a class variable, it provides access to a member of the
class object:

class ClassType
{

int member;
}

// ...

// Variable on the left, object on the right
ClassType variable = new ClassType;

// Applied to the variable but accesses the member of
// the object
variable.member = 42;

As you remember from the Classes chapter (page 337), the class object is
constructed by the new keyword on the right-hand side. variable is a class
variable that provides access to it.

Realizing that it is the same with pointers is an indication that class variables
and pointers are implemented similarly by the compiler.

There is an exception to this rule both for class variables and for pointers. Type
properties like .sizeof are applied to the type of the pointer, not to the type of
the pointee:
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char c;
char * p;

writeln(p.sizeof); // size of the pointer, not the pointee

.sizeof produces the size of p, which is a char*, not the size of c, which is a
char. On a 64-bit system pointers are 8-byte long:

8

67.6 Modifying the value of a pointer
The values of pointers can be incremented or decremented and they can be used
in addition and subtraction:

++ptr;
--ptr;
ptr += 2;
ptr -= 2;
writeln(ptr + 3);
writeln(ptr - 3);

Different from their arithmetic counterparts, these operations do not modify the
actual value by the specified amount. Rather, the value of the pointer gets
modified so that it now points at the variable that is a certain number of variables
beyond the current one. The amount of the increment or the decrement specifies
how many variables away should the pointer now point at.

For example, incrementing the value of a pointer makes it point at the next
variable:

++ptr; // Starts pointing at a variable that is next in
// memory from the old variable

For that to work correctly, the actual value of the pointer must be incremented by
the size of the variable. For example, because the size of int is 4, incrementing a
pointer of type int* changes its value by 4. The programmer need not pay
attention to this detail; the pointer value is modified by the correct amount
automatically.

Warning: It is undefined behavior to point at a location that is not a valid byte
that belongs to the program. Even if it is not actually used to access any variable
there, it is invalid for a pointer to point at a nonexistent variable. (The only
exception of this rule is that it is valid to point at the imaginary element one past
the end of an array. This will be explained later below.)

For example, it is invalid to increment a pointer that points at myVariable,
because myVariable is defined as a single int:

++myPointer; // ← undefined behavior

Undefined behavior means that it cannot be known what the behavior of the
program will be after that operation. There may be systems where the program
crashes after incrementing that pointer. However, on most modern systems the
pointer is likely to point at the unused memory location that has been shown as
being between myVariable and myPointer in the previous figure.

For that reason, the value of a pointer must be incremented or decremented
only if there is a valid object at the new location. Arrays (and slices) have that
property: The elements of an array are side by side in memory.
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A pointer that is pointing at an element of a slice can be incremented safely as
long as it does not go beyond the end of the slice. Incrementing such a pointer by
the ++ operator makes it point at the next element:

import std.stdio;
import std.string;
import std.conv;

enum Color { red, yellow, blue }

struct Crayon
{

Color color;
double length;

string toString() const
{

return format("%scm %s crayon", length, color);
}

}

void main()
{

writefln("Crayon objects are %s bytes each.", Crayon.sizeof);

Crayon[] crayons = [ Crayon(Color.red, 11),
Crayon(Color.yellow, 12),
Crayon(Color.blue, 13) ];

Crayon * ptr = &crayons[0]; // (1)

for (int i = 0; i != crayons.length; ++i) {
writeln("Pointer value: ", ptr); // (2)

writeln("Crayon: ", *ptr); // (3)
++ptr; // (4)

}
}

1. Definition: The pointer is initialized by the address of the first element.
2. Using its value: The value of the pointer is the address of the element

that it is pointing at.
3. Accessing the element that is being pointed at.
4. Pointing at the next element.

The output:

Crayon objects are 16 bytes each.
Pointer value: 7F37AC9E6FC0
Crayon: 11cm red crayon
Pointer value: 7F37AC9E6FD0
Crayon: 12cm yellow crayon
Pointer value: 7F37AC9E6FE0
Crayon: 13cm blue crayon

Note that the loop above is iterated a total of crayons.length times so that the
pointer is always used for accessing a valid element.

67.7 Pointers are risky
The compiler and the D runtime environment cannot guarantee that the pointers
are always used correctly. It is the programmer's responsibility to ensure that a
pointer is either null or points at a valid memory location (at a variable, at an
element of an array, etc.).
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For that reason, it is always better to consider higher-level features of D before
thinking about using pointers.

67.8 The element one past the end of an array
It is valid to point at the imaginary element one past the end of an array.

This is a useful idiom that is similar to number ranges. When defining a slice
with a number range, the second index is one past the elements of the slice:

int[] values = [ 0, 1, 2, 3 ];
writeln(values[1 .. 3]); // 1 and 2 included, 3 excluded

This idiom can be used with pointers as well. It is a common function design in C
and C++ where a function parameter points at the first element and another one
points at the element after the last element:

import std.stdio;

void tenTimes(int * begin, int * end)
{

while (begin != end) {
*begin *= 10;
++begin;

}
}

void main()
{

int[] values = [ 0, 1, 2, 3 ];

// The address of the second element:
int * begin = &values[1];

// The address of two elements beyond that one
tenTimes(begin, begin + 2);

writeln(values);
}

The value begin + 2 means two elements after the one that begin is pointing at
(i.e. the element at index 3).

The tenTimes() function takes two pointer parameters. It uses the element
that the first one is pointing at but it never accesses the element that the second
one is pointing at. As a result, only the elements at indexes 1 and 2 get modified:

[0, 10, 20, 3]

Such functions can be implemented by a for loop as well:

for ( ; begin != end; ++begin) {
*begin *= 10;

}

Two pointers that define a range can also be used with foreach loops:

foreach (ptr; begin .. end) {
*ptr *= 10;

}

For these methods to be applicable to all of the elements of a slice, the second
pointer must necessarily point after the last element:
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// The second pointer is pointing at the imaginary element
// past the end of the array:
tenTimes(begin, begin + values.length);

That is the reason why it is legal to point at the imaginary element one beyond
the last element of an array.

67.9 Using pointers with the array indexing operator []
Although it is not absolutely necessary in D, pointers can directly be used for
accessing the elements of an array by an index value:

double[] floats = [ 0.0, 1.1, 2.2, 3.3, 4.4 ];

double * ptr = &floats[2];

*ptr = -100; // direct access to what it points at
ptr[1] = -200; // access by indexing

writeln(floats);

The output:

[0, 1.1, -100, -200, 4.4]

In that syntax, the element that the pointer is pointing at is thought of being the
first element of an imaginary slice. The [] operator provides access to the
specified element of that slice. The ptr above initially points at the element at
index 2 of the original floats slice. ptr[1] is a reference to the element 1 of the
imaginary slice that starts at ptr (i.e. index 3 of the original slice).

Although this behavior may seem complicated, there is a very simple
conversion behind that syntax. Behind the scenes, the compiler converts the
pointer[index] syntax to the *(pointer + index) expression:

ptr[1] = -200; // slice syntax
*(ptr + 1) = -200; // the equivalent of the previous line

As I have mentioned earlier, the compiler may not guarantee that this expression
refers to a valid element. D's slices provide a much safer alternative and should be
considered instead:

double[] slice = floats[2 .. 4];
slice[0] = -100;
slice[1] = -200;

Normally, index values are checked for slices at run time:

slice[2] = -300; // Runtime error: accessing outside of the slice

Because the slice above does not have an element at index 2, an exception would
be thrown at run time (unless the program has been compiled with the -release
compiler switch):

core.exception.RangeError@deneme(8391): Range violation

67.10 Producing a slice from a pointer
Pointers are not as safe or as useful as slices because although they can be used
with the slice indexing operator, they are not aware of the valid range of
elements.
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However, when the number of valid elements is known, a pointer can be used
to construct a slice.

Let's assume that the makeObjects() function below is inside a C library. Let's
assume that makeObjects makes specified number of Struct objects and returns
a pointer to the first one of those objects:

Struct * ptr = makeObjects(10);

The syntax that produces a slice from a pointer is the following:

/* ... */ slice = pointer[0 .. count];

Accordingly, a slice to the 10 objects that are returned by makeObjects() can be
constructed by the following code:

Struct[] slice = ptr[0 .. 10];

After that definition, slice is ready to be used safely in the program just like any
other slice:

writeln(slice[1]); // prints the second element

67.11 void* can point at any type
Although it is almost never needed in D, C's special pointer type void* is available
in D as well. void* can point at any type:

int number = 42;
double otherNumber = 1.25;
void * canPointAtAnything;

canPointAtAnything = &number;
canPointAtAnything = &otherNumber;

The void* above is able to point at variables of two different types: int and
double.
void* pointers are limited in functionality. As a consequence of their flexibility,

they cannot provide access to the pointee. When the actual type is unknown, its
size is not known either:

*canPointAtAnything = 43; // ← compilation ERROR

Instead, its value must first be converted to a pointer of the correct type:

int number = 42; // (1)
void * canPointAtAnything = &number; // (2)

// ...

int * intPointer = cast(int*)canPointAtAnything; // (3)
*intPointer = 43; // (4)

1. The actual variable
2. Storing the address of the variable in a void*
3. Assigning that address to a pointer of the correct type
4. Modifying the variable through the new pointer

It is possible to increment or decrement values of void* pointers, in which case
their values are modified as if they are pointers of 1-byte types like ubyte:
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++canPointAtAnything; // incremented by 1

void* is sometimes needed when interacting with libraries that are written in C.
Since C does not have higher level features like interfaces, classes, templates, etc.
C libraries must rely on the void* type.

67.12 Using pointers in logical expressions
Pointers can automatically be converted to bool. Pointers that have the value
null produce false and the others produce true. In other words, pointers that
do not point at any variable are false.

Let's consider a function that prints objects to the standard output. Let's design
this function so that it also provides the number of bytes that it has just output.
However, let's have it produce this information only when specifically requested.

It is possible to make this behavior optional by checking whether the value of a
pointer is null or not:

void print(Crayon crayon, size_t * numberOfBytes)
{

immutable info = format("Crayon: %s", crayon);
writeln(info);

if (numberOfBytes) {
*numberOfBytes = info.length;

}
}

When the caller does not need this special information, they can pass null as the
argument:

print(Crayon(Color.yellow, 7), null);

When the number of bytes is indeed important, then a non-null pointer value
must be passed:

size_t numberOfBytes;
print(Crayon(Color.blue, 8), &numberOfBytes);
writefln("%s bytes written to the output", numberOfBytes);

Note that this is just an example. Otherwise, it would be better for a function like
print() to return the number of bytes unconditionally:

size_t print(Crayon crayon)
{

immutable info = format("Crayon: %s", crayon);
writeln(info);

return info.length;
}

67.13 new returns a pointer for some types
new, which we have been using only for constructing class objects can be used
with other types as well: structs, arrays, and fundamental types. The variables
that are constructed by new are called dynamic variables.
new first allocates space from the memory for the variable and then constructs

the variable in that space. The variable itself does not have a symbolic name in
the compiled program; it would be accessed through the reference that is
returned by new.

Pointers

448



The reference that new returns is a different kind depending on the type of the
variable:

• For class objects, it is a class variable:

Class classVariable = new Class;

• For struct objects and variables of fundamental types, it is a pointer:

Struct * structPointer = new Struct;
int * intPointer = new int;

• For arrays, it is a slice:

int[] slice = new int[100];

This distinction is usually not obvious when the type is not spelled-out on the left-
hand side:

auto classVariable = new Class;
auto structPointer = new Struct;
auto intPointer = new int;
auto slice = new int[100];

The following program prints the return type of new for different kinds of
variables:

import std.stdio;

struct Struct
{}

class Class
{}

void main()
{

writeln(typeof(new int ).stringof);
writeln(typeof(new int[5]).stringof);
writeln(typeof(new Struct).stringof);
writeln(typeof(new Class ).stringof);

}

new returns pointers for structs and fundamental types:

int*
int[]
Struct*
Class

67.14 The .ptr property of arrays
The .ptr property of arrays and slices is the address of the first element. The type
of this value is a pointer to the type of the elements:

int[] numbers = [ 7, 12 ];

int * addressOfFirstElement = numbers.ptr;
writeln("First element: ", *addressOfFirstElement);

This property is useful especially when interacting with C libraries. Some C
functions take the address of the first of a number of consecutive elements in
memory.
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Remembering that strings are also arrays, the .ptr property can be used with
strings as well. However, note that the first element of a string need not be the
first letter of the string; rather, the first Unicode code unit of that letter. As an
example, the letter é is stored as two code units in a char string.

When accessed through the .ptr property, the code units of strings can be
accessed individually. We will see this in the examples section below.

67.15 The in operator of associative arrays
Actually, we have used pointers earlier in the Associative Arrays chapter (page
136). In that chapter, I had intentionally not mentioned the exact type of the in
operator and had used it only in logical expressions:

if ("purple" in colorCodes) {
// there is an element for key "purple"

} else {
// no element for key "purple"

}

In fact, the in operator returns the address of the element if there is an element
for the specified key; otherwise, it returns null. The if statement above actually
relies on the automatic conversion of the pointer value to bool.

When the return value of in is stored in a pointer, the element can be accessed
efficiently through that pointer:

import std.stdio;

void main()
{

string[int] numbers =
[ 0 : "zero", 1 : "one", 2 : "two", 3 : "three" ];

int number = 2;
auto element = number in numbers; // (1)

if (element) { // (2)
writefln("I know: %s.", *element); // (3)

} else {
writefln("I don't know the spelling of %s.", number);

}
}

The pointer variable element is initialized by the value of the in operator (1) and
its value is used in a logical expression (2). The value of the element is accessed
through that pointer (3) only if the pointer is not null.

The actual type of element above is a pointer to the same type of the elements
(i.e. values) of the associative array. Since the elements of numbers above are of
type string, in returns a string*. Accordingly, the type could have been spelled
out explicitly:

string * element = number in numbers;

67.16 When to use pointers

When required by libraries
Although pointer parameters are rare in D libraries, we have already seen that
readf() is one function that requires pointers.

As another example, the following function from the GtkD library takes a
pointer as well:
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GdkGeometry geometry;
// ... set the members of 'geometry' ...

window.setGeometryHints(/* ... */, &geometry, /* ... */);

When referencing variables of value types
Pointers can be used for referring to local variables. The following program
counts the outcomes of flipping a coin. It takes advantage of a pointer when
referring to one of two local variables:

import std.stdio;
import std.random;

void main()
{

size_t headsCount = 0;
size_t tailsCount = 0;

foreach (i; 0 .. 100) {
size_t * theCounter = (uniform(0, 2) == 1)

? &headsCount
: &tailsCount;

++(*theCounter);
}

writefln("heads: %s  tails: %s", headsCount, tailsCount);
}

Obviously, there are other ways of achieving the same goal. For example, using
the ternary operator in a different way:

uniform(0, 2) ? ++headsCount : ++tailsCount;

By using an if statement:

if (uniform(0, 2)) {
++headsCount;

} else {
++tailsCount;

}

As member variables of data structures
Pointers are essential when implementing many data structures.

Unlike the elements of an array being next to each other in memory, elements
of many other data structures are apart. Such data structures are based on the
concept of their elements pointing at other elements.

For example, each node of a linked list points at the next node. Similarly, each
node of a binary tree points at the left and right branches under that node.
Pointers are encountered in most other data structures as well.

Although it is possible to take advantage of D's reference types, pointers may be
more natural and efficient in some cases.

We will see examples of pointer members below.

When accessing memory directly
Being low-level microprocessor features, pointers provide byte-level access to
memory locations. Note that such locations must still belong to valid variables. It
is undefined behavior to attempt to access a random memory location.
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67.17 Examples

A simple linked list
The elements of linked lists are stored in nodes. The concept of a linked list is
based on each node pointing at the next one. The last node has no other node to
point at, so it is set to null:

first                                        last
node                node                     node

+---------+---+     +---------+---+          +---------+------+
| element | o----▶  | element | o----▶  ...  | element | null |
+---------+---+     +---------+---+          +---------+------+

The figure above may be misleading: In reality, the nodes are not side-by-side in
memory. Each node does point to the next node but the next node may be at a
completely different location.

The following struct can be used for representing the nodes of such a linked
list of ints:

struct Node
{

int element;
Node * next;

// ...
}

Note: Because it contains a reference to the same type as itself, Node is a recursive type.
The entire list can be represented by a single pointer that points at the first

node, which is commonly called the head:

struct List
{

Node * head;

// ...
}

To keep the example short, let's define just one function that adds an element to
the head of the list:

struct List
{

Node * head;

void insertAtHead(int element)
{

head = new Node(element, head);
}

// ...
}

The line inside insertAtHead() keeps the nodes linked by adding a new node to
the head of the list. (A function that adds to the end of the list would be more
natural and more useful. We will see that function later in one of the problems.)

The right-hand side expression of that line constructs a Node object. When this
new object is constructed, its next member is initialized by the current head of
the list. When the head member of the list is assigned to this newly linked node,
the new element ends up being the first element.

The following program tests these two structs:
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import std.stdio;
import std.conv;
import std.string;

struct Node
{

int element;
Node * next;

string toString() const
{

string result = to!string(element);

if (next) {
result ~= " -> " ~ to!string(*next);

}

return result;
}

}

struct List
{

Node * head;

void insertAtHead(int element)
{

head = new Node(element, head);
}

string toString() const
{

return format("(%s)", head ? to!string(*head) : "");
}

}

void main()
{

List numbers;

writeln("before: ", numbers);

foreach (number; 0 .. 10) {
numbers.insertAtHead(number);

}

writeln("after : ", numbers);
}

The output:

before: ()
after : (9 -> 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 2 -> 1 -> 0)

Observing the contents of memory by ubyte*
The data stored at each memory address is a byte. Every variable is constructed
on a piece of memory that consists of as many bytes as the size of the type of that
variable.

A suitable pointer type to observe the content of a memory location is ubyte*.
Once the address of a variable is assigned to a ubyte pointer, then all of the bytes
of that variable can be observed by incrementing the pointer.

Let's consider the following integer that is initialized by the hexadecimal
notation so that it will be easy to understand how its bytes are placed in memory:

int variable = 0x01_02_03_04;
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A pointer that points at that variable can be defined like this:

int * address = &variable;

The value of that pointer can be assigned to a ubyte pointer by the cast operator:

ubyte * bytePointer = cast(ubyte*)address;

Such a pointer allows accessing the four bytes of the int variable individually:

writeln(bytePointer[0]);
writeln(bytePointer[1]);
writeln(bytePointer[2]);
writeln(bytePointer[3]);

If your microprocessor is little-endian like mine, you should see the bytes of the
value 0x01_02_03_04 in reverse:

4
3
2
1

Let's use that idea in a function that will be useful when observing the bytes of all
types of variables:

import std.stdio;

void printBytes(T)(ref T variable)
{

const ubyte * begin = cast(ubyte*)&variable; // (1)

writefln("type   : %s", T.stringof);
writefln("value  : %s", variable);
writefln("address: %s", begin); // (2)
writef  ("bytes  : ");

writefln("%(%02x %)", begin[0 .. T.sizeof]); // (3)

writeln();
}

1. Assigning the address of the variable to a ubyte pointer.
2. Printing the value of the pointer.
3. Obtaining the size of the type by .sizeof and printing the bytes of the

variable. (Note how a slice is produced from the begin pointer and then
that slice is printed directly by writefln().)

Another way of printing the bytes would be to apply the * operator individually:

foreach (bytePointer; begin .. begin + T.sizeof) {
writef("%02x ", *bytePointer);

}

The value of bytePointer would change from begin to begin + T.sizeof to
visit all of the bytes of the variable. Note that the value begin + T.sizeof is
outside of the range and is never accessed.

The following program calls printBytes() with various types of variables:

struct Struct
{

int first;
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int second;
}

class Class
{

int i;
int j;
int k;

this(int i, int j, int k)
{

this.i = i;
this.j = j;
this.k = k;

}
}

void main()
{

int integerVariable = 0x11223344;
printBytes(integerVariable);

double doubleVariable = double.nan;
printBytes(doubleVariable);

string slice = "a bright and charming façade";
printBytes(slice);

int[3] array = [ 1, 2, 3 ];
printBytes(array);

auto structObject = Struct(0xaa, 0xbb);
printBytes(structObject);

auto classVariable = new Class(1, 2, 3);
printBytes(classVariable);

}

The output of the program is informative:

type   : int
value  : 287454020
address: 7FFF19A83FB0
bytes  : 44 33 22 11 ← (1)

type   : double
value  : nan
address: 7FFF19A83FB8
bytes  : 00 00 00 00 00 00 f8 7f ← (2)

type   : string
value  : a bright and charming façade
address: 7FFF19A83FC0
bytes  : 1d 00 00 00 00 00 00 00 e0 68 48 00 00 00 00 00

← (3)
type   : int[3LU]
value  : [1, 2, 3]
address: 7FFF19A83FD0
bytes  : 01 00 00 00 02 00 00 00 03 00 00 00 ← (1)

type   : Struct
value  : Struct(170, 187)
address: 7FFF19A83FE8
bytes  : aa 00 00 00 bb 00 00 00 ← (1)

type   : Class
value  : deneme.Class
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address: 7FFF19A83FF0
bytes  : 80 df 79 d5 97 7f 00 00 ← (4)

Observations:

1. Although in reverse order on little-endian systems, the bytes of some of
the types are as one would expect: The bytes are laid out in memory side
by side for ints, fixed-length arrays (int[3]), and struct objects.

2. Considering that the bytes of the special value of double.nan are also in
reverse order in memory, we can see that it is represented by the special
bit pattern 0x7ff8000000000000.

3. string is reported to be consisting of 16 bytes but it is impossible to fit
the letters "a bright and charming façade" into so few bytes. This is due
to the fact that behind the scenes string is actually implemented as a
struct. Prefixing its name by __ to stress the fact that it is an internal
type used by the compiler, that struct is similar to the following one:

struct __string
{

size_t length;
char * ptr; // the actual characters

}

The evidence of this fact is hidden in the bytes that are printed for
string above. Note that because ç is made up of two UTF-8 code units,
the 28 letters of the string "a bright and charming façade" consists of a
total of 29 bytes. The value 0x000000000000001d, the first 8 of the bytes
of the string in the output above, is also 29. This is a strong indicator that
strings are indeed laid out in memory as in the struct above.

4. Similarly, it is not possible to fit the three int members of the class
object in 8 bytes. The output above hints at the possibility that behind
the scenes a class variable is implemented as a single pointer that points
at the actual class object:

struct __Class_VariableType
{

__Class_ActualObjecType * object;
}

Let's now consider a more flexible function. Instead of printing the bytes of a
variable, let's define a function that prints specified number of bytes at a specified
location:

import std.stdio;
import std.ascii;

void printMemory(T)(T * location, size_t length)
{

const ubyte * begin = cast(ubyte*)location;

foreach (address; begin .. begin + length) {
char c = (isPrintable(*address) ? *address : '.');

writefln("%s:  %02x  %s", address, *address, c);
}

}
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Since some of the UTF-8 code units may correspond to control characters of the
console and disrupt its output, we print only the printable characters by first
checking them individually by std.ascii.isPrintable(). The non-printable
characters are printed as a dot.

We can use that function to print the UTF-8 code units of a string through its
.ptr property:

import std.stdio;

void main()
{

string s = "a bright and charming façade";
printMemory(s.ptr, s.length);

}

As seen in the output, the letter ç consists of two bytes:

47B4F0:  61  a
47B4F1:  20
47B4F2:  62  b
47B4F3:  72  r
47B4F4:  69  i
47B4F5:  67  g
47B4F6:  68  h
47B4F7:  74  t
47B4F8:  20
47B4F9:  61  a
47B4FA:  6e  n
47B4FB:  64  d
47B4FC:  20
47B4FD:  63  c
47B4FE:  68  h
47B4FF:  61  a
47B500:  72  r
47B501:  6d  m
47B502:  69  i
47B503:  6e  n
47B504:  67  g
47B505:  20
47B506:  66  f
47B507:  61  a
47B508:  c3  .
47B509:  a7  .
47B50A:  61  a
47B50B:  64  d
47B50C:  65  e

67.18 Exercises

1. Fix the following function so that the values of the arguments that are
passed to it are swapped. For this exercise, do not specify the parameters
as ref but take them as pointers:

void swap(int lhs, int rhs)
{

int temp = lhs;
lhs = rhs;
rhs = temp;

}

void main()
{

int i = 1;
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int j = 2;

swap(i, j);

// Their values should be swapped
assert(i == 2);
assert(j == 1);

}

When you start the program you will notice that the assert checks
currently fail.

2. Convert the linked list that we have defined above to a template so that it
can be used for storing elements of any type.

3. It is more natural to add elements to the end of a linked list. Modify
List so that it is possible to add elements to the end as well.

For this exercise, an additional pointer member variable that points at
the last element will be useful.

The solutions are on page 730.
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68 Bit Operations

This chapter covers operations on bits, the smallest data units. Bit operations are
among the most fundamental features of microprocessors.

System programmers must understand bit operations at least to use flag
parameters correctly.

68.1 Representation of data at the lowest level
Programming languages are abstractions. A user type like Student defined in a
programming language is not directly related to the internals of the computer.
Programming languages are tools that help humans use the hardware without
needing to know the details of the hardware.

Although it is usually not necessary to deal with the hardware directly, it is
helpful to understand how data is represented at hardware level.

Transistor
The processing abilities of modern electronic devices are mostly based on the
electronic element called the transistor. A significant ability of the transistor is
that it can be controlled by other parts of the electronic circuit that the transistor
is a part of. In a way, it allows the electronic circuit be aware of itself and be able
to change its own state.

Bit
The smallest unit of information is a bit. A bit can be represented by any two-state
system (e.g. by a special arrangement of a few transistors of an electronic circuit).
A bit can have one of two values: 0 or 1. In the computer's memory, the
information that is stored in a bit persists until a new value is stored or until the
energy source is disconnected.

Computers do not provide direct access to bits. One reason is that doing so
would complicate the design of the computer and as a consequence make the
computer more expensive. Another reason is that there are not many concepts
that can be represented by a single bit.

Byte
A byte is a combination of 8 bits. The smallest unit of information that can be
addressed uniquely is a byte. Computers read from or write to memory at least
one byte at a time.

For that reason, although it carries one bit of information (false or true), even
bool must be implemented as one byte:

writefln("%s is %s byte(s)", bool.stringof, bool.sizeof);

bool is 1 byte(s)

Register
Data that are being operated on in a microprocessor are stored in registers.
Registers provide very limited but very fast operations.

The size of the registers depend on the architecture of the microprocessor. For
example, 32-bit microprocessors commonly have 4-byte registers and 64-bit
microprocessors commonly have 8-byte registers. The size of the registers
determine how much information the microprocessor can process efficiently at a
time and how many memory addresses that it can support.
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Every task that is achieved by a programming language ends up being executed
by one or more registers of the microprocessor.

68.2 Binary number system
The decimal number system which is used in daily life consists of 10 numerals:
0123456789. In contrast, the binary number system which is used by computer
hardware consists of 2 numerals: 0 and 1. This is a direct consequence of a bit
consisting of two values. If bits had three values then the computers would use a
number system based on three numerals.

The digits of the decimal system are named incrementally as ones, tens,
hundreds, thousands, etc. For example, the number 1023 can be expanded as in the
following way:

1023 == 1 count of thousand, no hundred, 2 counts of ten, and 3 counts of one

Naturally, moving one digit to the left multiplies the value of that digit by 10: 1, 10,
100, 1000, etc.

When the same rules are applied to a system that has two numerals, we arrive
at the binary number system. The digits are named incrementally as ones, twos,
fours, eights, etc. In other words, moving one digit to the left would multiply the
value of that digit by 2: 1, 2, 4, 8, etc. For example, the binary number 1011 can be
expanded as in the following way:

1011 == 1 count of eight, no four, 1 count of two, and 1 count of one

To make it easy to refer to digits, they are numbered from the rightmost digit to
the leftmost digit, starting by 0. The following table lists the values of all of the
digits of a 32-bit unsigned number in the binary system:

Digit Value
31 2,147,483,648
30 1,073,741,824
29 536,870,912
28 268,435,456
27 134,217,728
26 67,108,864
25 33,554,432
24 16,777,216
23 8,388,608
22 4,194,304
21 2,097,152
20 1,048,576
19 524,288
18 262,144
17 131,072
16 65,536
15 32,768
14 16,384
13 8,192
12 4,096
11 2,048
10 1,024
9 512
8 256
7 128
6 64
5 32
4 16
3 8
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2 4
1 2
0 1

The bits that have higher values are called the upper bits and the bits that have
lower values are called the lower bits.

Remembering from the Literals chapter (page 118) that binary literals are
specified by the 0b prefix, the following program demonstrates how the value of a
literal would correspond to the rows of the previous table:

import std.stdio;

void main()
{

//               1073741824                     4 1
//               ↓                              ↓ ↓
int number = 0b_01000000_00000000_00000000_00000101;
writeln(number);

}

The output:

1073741829

Note that the literal consists of only three non-zero bits. The value that is printed
is the sum of the values that correspond to those bits from the previous table:
1073741824 + 4 + 1 == 1073741829.

The sign bit of signed integer types
The uppermost bit of a signed type determines whether the value is positive or
negative:

int number = 0b_10000000_00000000_00000000_00000000;
writeln(number);

-2147483648

However, the uppermost bit is not entirely separate from the value. For example,
as evidenced above, the fact that all of the other bits of the number being 0 does
not mean that the value is -0. (In fact, -0 is not a valid value for integers.) I will not
get into more detail in this chapter other than noting that this is due to the twos
complement representation, which is used by D as well.

What is important here is that 2,147,483,648; the highest value in the previous
table, is only for unsigned integer types. The same experiment with uint would
print that exact value:

uint number = 0b_10000000_00000000_00000000_00000000;
writeln(number);

2147483648

Partly for that reason, unless there is a reason not to, bit operations must always
be executed on unsigned types: ubyte, uint, and ulong.

68.3 Hexadecimal number system
As can be seen in the literals above, consisting only of 0s and 1s, the binary
system may not be readable especially when the numbers are large.

Bit Operations

461



For that reason, the more readable hexadecimal system has been widely
adopted especially in computer technologies.

The hexadecimal system has 16 numerals. Since alphabets do not have more
than 10 numerals, this system borrows 6 letters from the Latin alphabet and uses
them along with regular numerals: 0123456789abcdef. The numerals a, b, c, d, e,
and f have the values 10, 11, 12, 13, 14, and 15, respectively. The letters ABCDEF can
be used as well.

Similar to other number systems, the value of every digit is 16 times the value
of the digit on its right-hand side: 1, 16, 256, 4096, etc. For example, the values of
all of the digits of an 8-digit unsigned hexadecimal number are the following:

Digit Value
7 268,435,456
6 16,777,216
5 1,048,576
4 65,536
3 4,096
2 256
1 16
0 1

Remembering that hexadecimal literals are specified by the 0x prefix, we can see
how the values of the digits contribute to the overall value of a number:

//           1048576 4096 1
//                 ↓  ↓  ↓
uint number = 0x_0030_a00f;
writeln(number);

3186703

The value that is printed is by the contributions of all of the non-zero digits: 3
count of 1048576, a count of 4096, and f count of 1. Remembering that a
represents 10 and f represents 15, the value is 3145728 + 40960 + 15 == 3186703.

It is straightforward to convert between binary and hexadecimal numbers. In
order to convert a hexadecimal number to binary, the digits of the hexadecimal
number are converted to their binary representations individually. The
corresponding representations in the three number systems are as in the
following table:

Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15
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For example, the hexadecimal number 0x0030a00f can be written in the binary
form by converting its digits individually according to the previous table:

// hexadecimal:     0    0    3    0    a    0    0    f
uint binary = 0b_0000_0000_0011_0000_1010_0000_0000_1111;

Converting from binary to hexadecimal is the reverse: The digits of the binary
number are converted to their hexadecimal representations four digits at a time.
For example, here is how to write in hexadecimal the same binary value that we
have used earlier:

// binary:           0100 0000 0000 0000 0000 0000 0000 0101
uint hexadecimal = 0x___4____0____0____0____0____0____0____5;

68.4 Bit operations
After going over how values are represented by bits and how numbers are
represented in binary and hexadecimal, we can now see operations that change
values at bit-level.

Because there is no direct access to individual bits, even though these
operations are at bit-level, they affect at least 8 bits at a time. For example, for a
variable of type ubyte, a bit operation would be applied to all of the 8 bits of that
variable.

As the uppermost bit is the sign bit for signed types, I will ignore signed types
and use only uint in the examples below. You can repeat these operations with
ulong and ubyte, as well as byte, int, and long as long as you remember the
special meaning of the uppermost bit.

Let's first define a function which will be useful later when examining how bit
operators work. This function will print a value in binary, hexadecimal, and
decimal systems:

import std.stdio;

void print(uint number)
{

writefln("%032b %08x %10s", number, number, number);
}

void main()
{

print(123456789);
}

Here is the same value printed in the binary, hexadecimal, and decimal number
systems:

00000111010110111100110100010101 075bcd15  123456789

Complement operator: ~
Not be confused with the binary ~ operator that is used for array concatenation, this is
the unary ~ operator.

This operator converts each bit of a value to its opposite: The bits that are 0
become 1, and the bits that are 1 become 0.

uint value = 123456789;
write("  "); print(value);
writeln("~ --------------------------------");
write("  "); print(~value);
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The effect is obvious in the binary representation. Every bit has been reversed
(under the dashed line):

00000111010110111100110100010101 075bcd15  123456789
~ --------------------------------

11111000101001000011001011101010 f8a432ea 4171510506

Here is the summary of how the unary ~ operator works:

~0 → 1
~1 → 0

And operator: &
& is a binary operator, written between two expressions. The microprocessor
considers two corresponding bits of the two expressions separately from all of the
other bits: Bits 31, 30, 29, etc. of the expressions are evaluated separately. The
value of each resultant bit is 1 if both of the corresponding bits of the expressions
are 1; 0 otherwise.

uint lhs = 123456789;
uint rhs = 987654321;

write("  "); print(lhs);
write("  "); print(rhs);
writeln("& --------------------------------");
write("  "); print(lhs & rhs);

The following output contains first the left-hand side expression (lhs) and then
the right-hand side expression (rhs). The result of the & operation is under the
dashed line:

00000111010110111100110100010101 075bcd15  123456789
00111010110111100110100010110001 3ade68b1  987654321

& --------------------------------
00000010010110100100100000010001 025a4811   39471121

Note that the bits of the result that have the value 1 are the ones where the
corresponding bits of the expressions are both 1.

This operator is called the and operator because it produces 1 when both the
left-hand side and the right-hand side bits are 1. Among the four possible
combinations of 0 and 1 values, only the one where both of the values are 1
produces 1:

0 & 0 → 0
0 & 1 → 0
1 & 0 → 0
1 & 1 → 1

Observations:

• When one of the bits is 0, regardless of the other bit the result is always
0. Accordingly, "anding a bit by 0" means to clear that bit.

• When one of the bits is 1, the result is the value of the other bit; anding
by 1 has no effect.
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Or operator: |
| is a binary operator, written between two expressions. The microprocessor
considers two corresponding bits of the two expressions separately from all of the
other bits. The value of each resultant bit is 0 if both of the corresponding bits of
the expressions are 0; 1 otherwise.

uint lhs = 123456789;
uint rhs = 987654321;

write("  "); print(lhs);
write("  "); print(rhs);
writeln("| --------------------------------");
write("  "); print(lhs | rhs);

00000111010110111100110100010101 075bcd15  123456789
00111010110111100110100010110001 3ade68b1  987654321

| --------------------------------
00111111110111111110110110110101 3fdfedb5 1071639989

Note that the bits of the result that have the value 0 are the ones where the
corresponding bits of the expressions are both 0. When the corresponding bit in
the left-hand side or in the right-hand side is 1, then the result is 1:

0 | 0 → 0
0 | 1 → 1
1 | 0 → 1
1 | 1 → 1

Observations:

• When one of the bits is 1, regardless of the other bit the result is always 1.
Accordingly, "orring a bit by 1" means to set it.

• When one of the bits is 0, the result is the value of the other bit; orring by
0 has no effect.

Xor operator: ^
Xor is the short for exclusive or. This is a binary operator as well. It produces 1 if
the corresponding bits of the two expressions are different:

uint lhs = 123456789;
uint rhs = 987654321;

write("  "); print(lhs);
write("  "); print(rhs);
writeln("^ --------------------------------");
write("  "); print(lhs ^ rhs);

00000111010110111100110100010101 075bcd15  123456789
00111010110111100110100010110001 3ade68b1  987654321

^ --------------------------------
00111101100001011010010110100100 3d85a5a4 1032168868

Note that the bits of the result that have the value 1 are the ones where the
corresponding bits of the expressions are different from each other.

0 ^ 0 → 0
0 ^ 1 → 1
1 ^ 0 → 1
1 ^ 1 → 0
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Observation:

• "Xorring a bit" with itself means to clear that bit.

Regardless of its value, xorring a variable with itself always produces 0:

uint value = 123456789;

print(value ^ value);

00000000000000000000000000000000 00000000          0

Right-shift operator: >>
This operator shifts the bits of an expression by the specified number of bits to
the right. The rightmost bits, which do not have room to shift into, get dropped
from the value. For unsigned types, the leftmost bits are filled with zeros.

The following example produces a result by shifting a value by two bits to the
right:

uint value = 123456789;
print(value);
print(value >> 2);

In the following output, I highlighted both the bits that are going to be lost due to
dropping off from the right-hand side and the leftmost bits that will get the value
0:

00000111010110111100110100010101 075bcd15  123456789
00000001110101101111001101000101 01d6f345   30864197

Note that the bits that are not highlighted have been shifted two bit positions to
the right.
The new bits that enter from the left-hand side are 0 only for unsigned types. For
signed types, the value of the leftmost bits are determined by a process called sign
extension. Sign extension preserves the value of the sign bit of the original
expression. The value of that bit is used for all of the bits that enter from the left.

Let's see this effect on a value of a signed type where the sign bit is 1 (i.e. the
value is negative):

int value = 0x80010300;
print(value);
print(value >> 3);

Because the leftmost bit of the original value is 1, all of the new bits of the result
are 1 as well:

10000000000000010000001100000000 80010300 2147549952
11110000000000000010000001100000 f0002060 4026540128

When the leftmost bit is 0, then all of the news bits are 0:

int value = 0x40010300;
print(value);
print(value >> 3);

01000000000000010000001100000000 40010300 1073808128
00001000000000000010000001100000 08002060  134226016

Bit Operations

466



Unsigned right-shift operator: >>>
This operator works similarly to the regular right-shift operator. The difference is
that the new leftmost bits are always 0 regardless of the type of the expression
and the value of the leftmost bit:

int value = 0x80010300;
print(value);
print(value >>> 3);

10000000000000010000001100000000 80010300 2147549952
00010000000000000010000001100000 10002060  268443744

Left-shift operator: <<
This operator works as the reverse of the right-shift operator. The bits are shifted
to the left:

uint value = 123456789;
print(value);
print(value << 4);

The bits on the left-hand side are lost and the new bits on the right-hand side are
0:

00000111010110111100110100010101 075bcd15  123456789
01110101101111001101000101010000 75bcd150 1975308624

Operators with assignment
All of the operators above have assignment counterparts: ~=, &=, |=, ^=, >>=, >>>=,
and <<=.

Similar to the operators that we have seen in the Operator Overloading chapter
(page 313), these operators assign the result back to the left-hand operand.

Let's see this on the &= operator:

value = value & 123;
value &= 123; // the same as above

68.5 Semantics
Merely understanding how these operators work at bit-level may not be sufficient
to see how they are useful in programs. The following sections describe common
ways that these operators are used in.

| is a union set
The | operator produces the union of the 1 bits in the two expressions.

As an extreme example, let's consider two values that both have alternating bits
set to 1. The union of these values would produce a result where all of the bits are
1:

uint lhs = 0xaaaaaaaa;
uint rhs = 0x55555555;

write("  "); print(lhs);
write("  "); print(rhs);
writeln("| --------------------------------");
write("  "); print(lhs | rhs);
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10101010101010101010101010101010 aaaaaaaa 2863311530
01010101010101010101010101010101 55555555 1431655765

| --------------------------------
11111111111111111111111111111111 ffffffff 4294967295

& is an intersection set
The & operator produces the intersection of the 1 bits in the two expressions.

As an extreme example, let's consider the last two values again. Since none of
the 1 bits of the previous two expressions match the ones in the other expression,
all of the bits of the result are 0:

uint lhs = 0xaaaaaaaa;
uint rhs = 0x55555555;

write("  "); print(lhs);
write("  "); print(rhs);
writeln("& --------------------------------");
write("  "); print(lhs & rhs);

10101010101010101010101010101010 aaaaaaaa 2863311530
01010101010101010101010101010101 55555555 1431655765

& --------------------------------
00000000000000000000000000000000 00000000          0

|= sets selected bits to 1
To understand how this works, it helps to see one of the expressions as the actual
expression and the other expression as a selector for the bits to set to 1:

uint expression = 0x00ff00ff;
uint bitsToSet = 0x10001000;

write("before     :  "); print(expression);
write("to set to 1:  "); print(bitsToSet);

expression |= bitsToSet;
write("after      :  "); print(expression);

The before and after values of the bits that are affected are highlighted:

before     :  00000000111111110000000011111111 00ff00ff   16711935
to set to 1:  00010000000000000001000000000000 10001000  268439552
after      :  00010000111111110001000011111111 10ff10ff  285151487

In a sense, bitsToSet determines which bits to set to 1. The other bits are not
affected.

&= clears selected bits
One of the expressions can be seen as the actual expression and the other
expression can be seen as a selector for the bits to clear (to set to 0):

uint expression = 0x00ff00ff;
uint bitsToClear = 0xffefffef;

write("before       :  "); print(expression);
write("bits to clear:  "); print(bitsToClear);

expression &= bitsToClear;
write("after        :  "); print(expression);

The before and after values of the bits that are affected are highlighted:
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before       :  00000000111111110000000011111111 00ff00ff   16711935
bits to clear:  11111111111011111111111111101111 ffefffef 4293918703
after        :  00000000111011110000000011101111 00ef00ef   15663343

In a sense, bitsToClear determines which bits to set to 0. The other bits are not
affected.

& determines whether a bit is 1 or not
If one of the expressions has only one bit set to 1, then it can be used to query
whether the corresponding bit of the other expression is 1:

uint expression = 123456789;
uint bitToQuery = 0x00010000;

print(expression);
print(bitToQuery);
writeln(expression & bitToQuery ? "yes, 1" : "not 1");

The bit that is being queried is highlighted:

00000111010110111100110100010101 075bcd15  123456789
00000000000000010000000000000000 00010000      65536
yes, 1

Let's query another bit of the same expression by this time having another bit of
bitToQuery set to 1:

uint bitToQuery = 0x00001000;

00000111010110111100110100010101 075bcd15  123456789
00000000000000000001000000000000 00001000       4096
not 1

When the query expression has more than one bit set to 1, then the query would
determine whether any of the corresponding bits in the other expression are 1.

Right-shifting by one is the equivalent of dividing by two
Shifting all of the bits of a value by one position to the right produces half of the
original value. The reason for this can be seen in the digit-value table above: In
that table, every bit has half the value of the bit that is on its left.

Shifting a value to the right multiple bits at a time means dividing by 2 for that
many times. For example, right-shifting by 3 bits would divide a value by 8:

uint value = 8000;

writeln(value >> 3);

1000

According to how the twos complement system works, right-shifting has the same
effect on signed values:

int value = -8000;

writeln(value >> 3);

-1000
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Left-shifting by one is the equivalent of multiplying by two
Because each bit is two times the value of the bit on its right, shifting a value one
bit to the left means multiplying that value by two:

uint value = 10;

writeln(value << 5);

Multiplying by 2 a total of 5 times is the same as multiplying by 32:

320

68.6 Common uses

Flags
Flags are single-bit independent data that are kept together in the same variable.
As they are only one bit wide each, they are suitable for representing binary
concepts like enabled/disabled, valid/invalid, etc.

Such one-bit concepts are sometimes encountered in D modules that are based
on C libraries.

Flags are usually defined as non-overlapping values of an enum type.
As an example, let's consider a car racing game where the realism of the game

is configurable:

• The fuel consumption is realistic or not.
• Collisions can damage the cars or not.
• Tires can deteriorate by use or not.
• Skid marks are left on the road surface or not.

These configuration options can be specified at run time by the following enum
values:

enum Realism
{

fuelUse    = 1 << 0,
bodyDamage = 1 << 1,
tireUse    = 1 << 2,
skidMarks  = 1 << 3

}

Note that all of those values consist of single bits that do not conflict with each
other. Each value is determined by left-shifting 1 by a different number of bits.
The corresponding bit representations are the following:

fuelUse   : 0001
bodyDamage: 0010
tireUse   : 0100
skidMarks : 1000

Since their 1 bits do not match others', these values can be combined by the |
operator to be kept in the same variable. For example, the two configuration
options that are related to tires can be combined as in the following code:

Realism flags = Realism.tireUse | Realism.skidMarks;
writefln("%b", flags);

The bits of these two flags would be side-by-side in the variable flags:
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Later, these flags can be queried by the & operator:

if (flags & Realism.fuelUse) {
// ... code related to fuel consumption ...

}

if (flags & Realism.tireUse) {
// ... code related to tire consumption ...

}

The & operator produces 1 only if the specified flag is set in flags.
Also note that the result is usable in the if condition due to automatic

conversion of the non-zero value to true. The conditional expression is false
when the result of & is 0 and true otherwise. As a result, the corresponding code
block is executed only if the flag is enabled.

Masking
In some libraries and some protocols an integer value may carry more than one
piece of information. For example, the upper 3 bits of a 32-bit value may have a
certain meaning, while the lower 29 bits may have another meaning. These
separate parts of data can be extracted from the variable by masking.

The four octets of an IPv4 address are an example of this concept. The octets
are the individual values that make up the common dotted representation of an
IPv4 address. They are all kept in a single 32-bit value. For example, the IPv4
address 192.168.1.2 is the 32-bit value 0xc0a80102:

c0 == 12 * 16 + 0 = 192
a8 == 10 * 16 + 8 = 168
01 ==  0 * 16 + 1 =   1
02 ==  0 * 16 + 2 =   2

A mask consists of a number of 1 bits that would cover the specific part of a
variable. "And"ing the value by the mask extracts the part of the variable that is
covered by that mask. For example, the mask value of 0x000000ff would cover
the lower 8 bits of a value:

uint value = 123456789;
uint mask  = 0x000000ff;

write("value : "); print(value);
write("mask  : "); print(mask);
write("result: "); print(value & mask);

The bits that are covered by the mask are highlighted. All of the other bits are
cleared:

value : 00000111010110111100110100010101 075bcd15  123456789
mask  : 00000000000000000000000011111111 000000ff        255
result: 00000000000000000000000000010101 00000015         21

Let's apply the same method to the 0xc0a80102 IPv4 address with a mask that
would cover the uppermost 8 bits:

uint value = 0xc0a80102;
uint mask  = 0xff000000;

write("value : "); print(value);
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write("mask  : "); print(mask);
write("result: "); print(value & mask);

This mask covers the uppermost 8 bits of the value:

value : 11000000101010000000000100000010 c0a80102 3232235778
mask  : 11111111000000000000000000000000 ff000000 4278190080
result: 11000000000000000000000000000000 c0000000 3221225472

However, note that the printed result is not the expected 192 but 3221225472. That
is because the masked value must also be shifted all the way to the right-hand
side. Shifting the value 24 bit positions to the right would produce the value that
those 8 bits represent:

uint value = 0xc0a80102;
uint mask  = 0xff000000;

write("value : "); print(value);
write("mask  : "); print(mask);
write("result: "); print((value & mask) >> 24);

value : 11000000101010000000000100000010 c0a80102 3232235778
mask  : 11111111000000000000000000000000 ff000000 4278190080
result: 00000000000000000000000011000000 000000c0 192

68.7 Exercises

1. Write a function that returns an IPv4 address in its dotted form:

string dotted(uint address)
{

// ...
}

unittest
{

assert(dotted(0xc0a80102) == "192.168.1.2");
}

2. Write a function that converts four octet values to the corresponding
32-bit IPv4 address:

uint ipAddress(ubyte octet3, // most significant octet
ubyte octet2,
ubyte octet1,
ubyte octet0) // least significant octet

{
// ...

}

unittest
{

assert(ipAddress(192, 168, 1, 2) == 0xc0a80102);
}

3. Write a function that can be used for making a mask. It should start
with the specified bit and have the specified width:

uint mask(int lowestBit, int width)
{

// ...
}

unittest
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{
assert(mask(2, 5) ==

0b_0000_0000_0000_0000_0000_0000_0111_1100);
//                                            ↑
//                              lowest bit is 2,
//                              and the mask is 5-bit wide

}

The solutions are on page 733.
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69 Conditional Compilation

Conditional compilation is for compiling parts of programs in special ways
depending on certain compile time conditions. Sometimes, entire sections of a
program may need to be taken out and not compiled at all.

Conditional compilation involves condition checks that are evaluable at
compile time. Runtime conditional statements like if, for, while are not
conditional compilation features.

We have already encountered some features in the previous chapters, which
can be seen as conditional compilation:

• unittest blocks are compiled and run only if the -unittest compiler
switch is enabled.

• The contract programming blocks in, out, and invariant are activated
only if the -release compiler switch is not enabled.

Unit tests and contracts are about program correctness; whether they are
included in the program should not change the behavior of the program.

• Template specializations are compiled into the program only for specific
types. When a specialization is not actually used in the program, the
specialization is not compiled:

void swap(T)(ref T lhs, ref T rhs)
{

T temp = lhs;
lhs = rhs;
rhs = temp;

}

unittest
{

auto a = 'x';
auto b = 'y';
swap(a, b);

assert(a == 'y');
assert(b == 'x');

}

void swap(T : uint)(ref T lhs, ref T rhs)
{

lhs ^= rhs;
rhs ^= lhs;
lhs ^= rh; // TYPO!

}

void main()
{}

The uint specialization above has been implemented by taking
advantage of the ^ (xor) operator, presumably under the belief that it
would be executed faster than the general algorithm. (Note: To the
contrary, on most modern microprocessors this method is slower than the one
that uses a temporary variable.)

Despite the typo at the end of that specialization, since the uint
specialization is never actually used, the program gets compiled without
any errors.
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Note: This is another example of how important unit tests are; the mistake
would have been noticed if there were a unit test for that specialization:

unittest
{

uint i = 42;
uint j = 7;
swap(i, j);

assert(i == 7);
assert(j == 42);

}

This example shows that template specializations are also compiled
under certain conditions.

The following are the features of D that are specifically for conditional
compilation:

• debug
• version
• static if
• is expression
• __traits

We will see the is expression in the next chapter and __traits in a later chapter.

69.1 debug
debug is useful during program development. The expressions and statements
that are marked as debug are compiled into the program only when the -debug
compiler switch is enabled:

debug a_conditionally_compiled_expression;

debug {
// ... conditionally compiled code ...

} else {
// ... code that is compiled otherwise ...

}

The else clause is optional.
Both the single expression and the code block above are compiled only when

the -debug compiler switch is enabled.
We have been adding statements into the programs, which printed messages

like "adding", "subtracting", etc. to the output. Such messages (aka logs and log
messages) are helpful in finding errors by visualizing the steps that are taken by
the program.

Remember the binarySearch() function from the Templates chapter (page
411). The following version of the function is intentionally incorrect:

import std.stdio;

// WARNING! This algorithm is wrong
size_t binarySearch(const int[] values, in int value)
{

if (values.length == 0) {
return size_t.max;

}
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immutable midPoint = values.length / 2;

if (value == values[midPoint]) {
return midPoint;

} else if (value < values[midPoint]) {
return binarySearch(values[0 .. midPoint], value);

} else {
return binarySearch(values[midPoint + 1 .. $], value);

}
}

void main()
{

auto numbers = [ -100, 0, 1, 2, 7, 10, 42, 365, 1000 ];

auto index = binarySearch(numbers, 42);
writeln("Index: ", index);

}

Although the index of 42 is 6, the program incorrectly reports 1:

Index: 1

One way of locating the bug in the program is to insert lines that would print
messages to the output:

size_t binarySearch(const int[] values, in int value)
{

writefln("searching %s among %s", value, values);

if (values.length == 0) {
writefln("%s not found", value);
return size_t.max;

}

immutable midPoint = values.length / 2;

writefln("considering index %s", midPoint);

if (value == values[midPoint]) {
writefln("found %s at index %s", value, midPoint);
return midPoint;

} else if (value < values[midPoint]) {
writefln("must be in the first half");
return binarySearch(values[0 .. midPoint], value);

} else {
writefln("must be in the second half");
return binarySearch(values[midPoint + 1 .. $], value);

}
}

The output of the program now includes steps that the program takes:

searching 42 among [-100, 0, 1, 2, 7, 10, 42, 365, 1000]
considering index 4
must be in the second half
searching 42 among [10, 42, 365, 1000]
considering index 2
must be in the first half
searching 42 among [10, 42]
considering index 1
found 42 at index 1
Index: 1
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Let's assume that the previous output does indeed help the programmer locate the
bug. It is obvious that the writefln() expressions are not needed anymore once
the bug has been located and fixed. However, removing those lines can also be
seen as wasteful, because they might be useful again in the future.

Instead of being removed altogether, the lines can be marked as debug instead:

debug writefln("%s not found", value);

Such lines are included in the program only when the -debug compiler switch is
enabled:

dmd deneme.d -ofdeneme -w -debug

debug(tag)
If there are many debug keywords in the program, possibly in unrelated parts, the
output may become too crowded. To avoid that, the debug statements can be
given names (tags) to be included in the program selectively:

debug(binarySearch) writefln("%s not found", value);

The tagged debug statements are enabled by the -debug=tag compiler switch:

dmd deneme.d -ofdeneme -w -debug=binarySearch

debug blocks can have tags as well:

debug(binarySearch)
{

// ...
}

It is possible to enable more than one debug tag at a time:

$ dmd deneme.d -ofdeneme -w -debug=binarySearch -debug=stackContainer

In that case both the binarySearch and the stackContainer debug statements
and blocks would be included.

debug(level)
Sometimes it is more useful to associate debug statements by numerical levels.
Increasing levels can provide more detailed information:

debug import std.stdio;

void myFunction(string fileName, int[] values)
{

debug(1) writeln("entered myFunction");

debug(2)
{

writeln("the arguments:");
writeln("  file name: ", fileName);

foreach (i, value; values) {
writefln("  %4s: %s", i, value);

}
}

// ... the implementation of the function ...
}
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void main()
{

myFunction("deneme.txt", [ 10, 4, 100 ]);
}

The debug expressions and blocks that are lower than or equal to the specified
level would be compiled:

$ dmd deneme.d -ofdeneme -w -debug=1
$ ./deneme
entered myFunction

The following compilation would provide more information:

$ dmd deneme.d -ofdeneme -w -debug=2
$ ./deneme
entered myFunction
the arguments:

file name: deneme.txt
0: 10
1: 4
2: 100

69.2 version(tag) and version(level)
version is similar to debug and is used in the same way:

version(testRelease) /* ... an expression ... */;

version(schoolRelease) {
/* ... expressions that are related to the version of
*     this program that is presumably shipped to schools ... */

} else {
// ... code compiled otherwise ...

}

version(1) aVariable = 5;

version(2) {
// ... a feature of version 2 ...

}

The else clause is optional.
Although version works essentially the same as debug, having separate

keywords helps distinguish their unrelated uses.
As with debug, more than one version can be enabled:

$ dmd deneme.d -ofdeneme -w -version=record -version=precise_calculation

There are many predefined version tags, the complete list of which is available at
the Conditional Compilation specification1. The following short list is just a
sampling:

Predefined version tags
The compiler DigitalMars GNU LDC SDC
The
operating
system

Windows Win32 Win64 linux OSX Posix FreeBSD OpenBSD NetBSD
DragonFlyBSD BSD Solaris AIX Haiku SkyOS SysV3 SysV4 Hurd

CPU
endianness

LittleEndian BigEndian

1. http://dlang.org/version.html
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Enabled
compiler
switches1

D_Coverage2 D_Ddoc3 D_InlineAsm_X864 D_InlineAsm_X86_645 D_LP64
D_PIC D_X32 D_HardFloat D_SoftFloat D_SIMD D_Version2
D_NoBoundsChecks unittest (page 225) assert

CPU
architecture

X86 X86_64

Platform Android Cygwin MinGW ARM ARM_Thumb ARM_Soft ARM_SoftFP ARM_HardFP
ARM64 PPC PPC_SoftFP PPC_HardFP PPC64 IA64 MIPS MIPS32 MIPS64
MIPS_O32 MIPS_N32 MIPS_O64 MIPS_N64 MIPS_EABI MIPS_NoFloat
MIPS_SoftFloat MIPS_HardFloat SPARC SPARC_V8Plus SPARC_SoftFP
SPARC_HardFP SPARC64 S390 S390X HPPA HPPA64 SH SH64 Alpha
Alpha_SoftFP Alpha_HardFP

... ...

In addition, there are the following two special version tags:

• none: This tag is never defined; it is useful for disabling code blocks.
• all: This tag is always defined; it is useful for enabling code blocks.

As an example of how predefined version tags are used, the following is an
excerpt (formatted differently here) from the std.ascii module, which is for
determining the newline character sequence for the system (static assert will
be explained later below):

version(Windows) {
immutable newline = "\r\n";

} else version(Posix) {
immutable newline = "\n";

} else {
static assert(0, "Unsupported OS");

}

69.3 Assigning identifiers to debug and version
Similar to variables, debug and version can be assigned identifiers. Unlike
variables, this assignment does not change any value, it activates the specified
identifier as well.

import std.stdio;

debug(everything)
{

debug = binarySearch;
debug = stackContainer;
version = testRelease;
version = schoolRelease;

}

void main()
{

debug(binarySearch) writeln("binarySearch is active");
debug(stackContainer) writeln("stackContainer is active");

version(testRelease) writeln("testRelease is active");
version(schoolRelease) writeln("schoolRelease is active");

}

The assignments inside the debug(everything) block above activates all of the
specified identifiers:

1. http://dlang.org/dmd-windows.html#switches
2. http://dlang.org/code_coverage.html
3. http://dlang.org/ddoc.html
4. http://dlang.org/iasm.html
5. http://dlang.org/iasm.html
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$ dmd deneme.d -ofdeneme -w -debug=everything
$ ./deneme
binarySearch is active
stackContainer is active
testRelease is active
schoolRelease is active

69.4 static if
static if is the compile time equivalent of the if statement.

Just like the if statement, static if takes a logical expression and evaluates
it. Unlike the if statement, static if is not about execution flow; rather, it
determines whether a piece of code should be included in the program or not.

The logical expression must be evaluable at compile time. If the logical
expression evaluates to true, the code inside the static if gets compiled. If the
condition is false, the code is not included in the program as if it has never been
written. The logical expressions commonly take advantage of the is expression
and __traits.
static if can appear at module scope or inside definitions of struct, class,

template, etc. Optionally, there may be else clauses as well.
Let's use static if with a simple template, making use of the is expression.

We will see other examples of static if in the next chapter:

import std.stdio;

struct MyType(T)
{

static if (is (T == float)) {
alias ResultType = double;

} else static if (is (T == double)) {
alias ResultType = real;

} else {
static assert(false, T.stringof ~ " is not supported");

}

ResultType doWork()
{

writefln("The return type for %s is %s.",
T.stringof, ResultType.stringof);

ResultType result;
// ...
return result;

}
}

void main()
{

auto f = MyType!float();
f.doWork();

auto d = MyType!double();
d.doWork();

}

According to the code, MyType can be used only with two types: float or double.
The return type of doWork() is chosen depending on whether the template is
instantiated for float or double:

The return type for float is double.
The return type for double is real.
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Note that one must write else static if when chaining static if clauses.
Otherwise, writing else if would result in inserting that if conditional into the
code, which would naturally be executed at run time.

69.5 static assert
Although it is not a conditional compilation feature, I have decided to introduce
static assert here.
static assert is the compile time equivalent of assert. If the conditional

expression is false, the compilation gets aborted due to that assertion failure.
Similar to static if, static assert can appear in any scope in the program.
We have seen an example of static assert in the program above: There,

compilation gets aborted if T is any type other than float or double:

auto i = MyType!int();

The compilation is aborted by the message that was given to static assert:

Error: static assert  "int is not supported"

As another example, let's assume that a specific algorithm can work only with
types that are a multiple of a certain size. Such a condition can be ensured at
compile time by a static assert:

T myAlgorithm(T)(T value)
{

// This algorithm requires that T is a multiple of 4
static assert((T.sizeof % 4) == 0);

// ...
}

If the function was called with a char, the compilation would be aborted by the
following error message:

Error: static assert  (1LU == 0LU) is false

Such a test prevents the function from working with an incompatible type,
potentially producing incorrect results.
static assert can be used with any logical expression that is evaluable at

compile time.

69.6 Type traits
The __traits keyword and the std.traits module provide information about
types and expressions at compile time.

Some information that is collected by the compiler is made available to the
program by __traits. Its syntax includes a traits keyword and parameters that
are relevant to that keyword:

__traits(keyword, parameters)

keyword specifies the information that is being queried. The parameters are either
types or expressions, meanings of which are determined by the specific keyword.

The information that can be gathered by __traits is especially useful in
templates. For example, the isArithmetic keyword can determine whether a
particular template parameter T is an arithmetic type:
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static if (__traits(isArithmetic, T)) {
// ... an arithmetic type ...

} else {
// ... not an arithmetic type ...

}

Please refer to the __traits documentation1 to see all of the available keywords
and their parameters.

Similarly, the std.traits module provides information at compile time by
templates.

For example, std.traits.isSomeChar returns true if its template parameter
is a character type:

import std.traits;

// ...

static if (isSomeChar!T) {
// ... char, wchar, or dchar ...

} else {
// ... not a character type ...

}

Please refer to the std.traits documentation2 for more information.

69.7 Summary

• Code that is defined as debug is included to the program only if the -
debug compiler switch is used.

• Code that is defined as version is included to the program only if a
corresponding -version compiler switch is used.

• static if is similar to an if statement that is executed at compile time.
It introduces code to the program depending on certain compile-time
conditions.

• static assert valides assumptions about code at compile time.
• __traits and std.traits provide information about types at compile

time.

1. http://dlang.org/traits.html
2. http://dlang.org/phobos/std_traits.html
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70 is Expression

The is expression is unrelated to the is operator that we have seen in The null
Value and the is Operator chapter (page 253), both syntactically and
semantically:

a is b // is operator, which we have seen before

is (/* ... */) // is expression

The is expression is evaluated at compile time. It produces an int value, either 0
or 1 depending on the expression specified in parentheses. Although the
expression that it takes is not a logical expression, the is expression itself is used
as a compile time logical expression. It is especially useful in static if
conditionals and template constraints.

The condition that it takes is always about types, which must be written in one
of several syntaxes.

70.1 is (T)
Determines whether T is valid as a type.

It is difficult to come up with examples for this use at this point. We will take
advantage of it in later chapters with template parameters.

static if (is (int)) {
writeln("valid");

} else {
writeln("invalid");

}

int above is a valid type:

valid

As another example, because void is not valid as the key type of an associative
array, the else block would be enabled below:

static if (is (string[void])) {
writeln("valid");

} else {
writeln("invalid");

}

The output:

invalid

70.2 is (T Alias)
Works in the same way as the previous syntax. Additionally, defines Alias as an
alias of T:

static if (is (int NewAlias)) {
writeln("valid");
NewAlias var = 42; // int and NewAlias are the same

} else {
writeln("invalid");

}
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Such aliases are useful especially in more complex is expressions as we will see
below.

70.3 is (T : OtherT)
Determines whether T can automatically be converted to OtherT.

It is used for detecting automatic type conversions which we have seen in the
Type Conversions chapter (page 257), as well as relationships like "this type is of
that type", which we have seen in the Inheritance chapter (page 342).

import std.stdio;

interface Clock
{

void tellTime();
}

class AlarmClock : Clock
{

override void tellTime()
{

writeln("10:00");
}

}

void myFunction(T)(T parameter)
{

static if (is (T : Clock)) {
// If we are here then T can be used as a Clock
writeln("This is a Clock; we can tell the time");
parameter.tellTime();

} else {
writeln("This is not a Clock");

}
}

void main()
{

auto var = new AlarmClock;
myFunction(var);
myFunction(42);

}

When the myFunction() template is instantiated for a type that can be used like
a Clock, then the tellTime() member function is called on its parameter.
Otherwise, the else clause gets compiled:

This is a Clock; we can tell the time ← for AlarmClock
10:00 ← for AlarmClock
This is not a Clock ← for int

70.4 is (T Alias : OtherT)
Works in the same way as the previous syntax. Additionally, defines Alias as an
alias of T.

70.5 is (T == Specifier)
Determines whether T is the same type as Specifier or whether T matches that
specifier. These two different uses are explained in the next sections.

Whether the same type
When we change the previous example to use == instead of :, the condition
would not be satisfied for AlarmClock:
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static if (is (T == Clock)) {
writeln("This is a Clock; we can tell the time");
parameter.tellTime();

} else {
writeln("This is not a Clock");

}

Although AlarmClock is a Clock, it is not exactly the same type as Clock. For that
reason, now the condition is invalid for both AlarmClock and int:

This is not a Clock
This is not a Clock

Whether matches the same specifier
When Specifier is one of the following keywords, this use of is determines
whether the type matches that specifier (we will see some of these keywords in
later chapters):

• struct
• union
• class
• interface
• enum
• function
• delegate
• const
• immutable
• shared

void myFunction(T)(T parameter)
{

static if (is (T == class)) {
writeln("This is a class type");

} else static if (is (T == enum)) {
writeln("This is an enum type");

} else static if (is (T == const)) {
writeln("This is a const type");

} else {
writeln("This is some other type");

}
}

Function templates can take advantage of such information to behave differently
depending on the type that the template is instantiated with. The following code
demonstrates how different blocks of the template above get compiled for
different types:

auto var = new AlarmClock;
myFunction(var);

// (enum WeekDays will be defined below for another example)
myFunction(WeekDays.Monday);

const double number = 1.2;
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myFunction(number);

myFunction(42);

The output:

This is a class type
This is an enum type
This is a const type
This is some other type

70.6 is (T identifier == Specifier)
Works in the same way as the previous syntax. identifier is either an alias of
the type; or some other information depending on Specifier:

Specifier The meaning of identifier
struct alias of the type that satisfied the condition
union alias of the type that satisfied the condition
class alias of the type that satisfied the condition
interface alias of the type that satisfied the condition
super a tuple consisting of the base classes and the

interfaces
enum the actual implementation type of the enum
function a tuple consisting of the function parameters
delegate the type of the delegate
return the return type of the regular function, the

delegate, or the function pointer
__parameters a tuple consisting of the parameters of the

regular function, the delegate, or the function
pointer

const alias of the type that satisfied the condition
immutable alias of the type that satisfied the condition
shared alias of the type that satisfied the condition

Let's first define various types before experimenting with this syntax:

struct Point
{

// ...
}

interface Clock
{

// ...
}

class AlarmClock : Clock
{

// ...
}

enum WeekDays {
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday

}

char foo(double d, int i, Clock c)
{

return 'a';
}

The following function template uses different specifiers with this syntax of the
is expression:
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void myFunction(T)(T parameter)
{

static if (is (T LocalAlias == struct)) {
writefln("\n--- struct ---");
// LocalAlias is the same as T. 'parameter' is the
// struct object that has been passed to this
// function.

writefln("Constructing a new %s object by copying it.",
LocalAlias.stringof);

LocalAlias theCopy = parameter;
}

static if (is (T baseTypes == super)) {
writeln("\n--- super ---");
// The 'baseTypes' tuple contains all of the base
// types of T. 'parameter' is the class variable that
// has been passed to this function.

writefln("class %s has %s base types.",
T.stringof, baseTypes.length);

writeln("All of the bases: ", baseTypes.stringof);
writeln("The topmost base: ", baseTypes[0].stringof);

}

static if (is (T ImplT == enum)) {
writeln("\n--- enum ---");
// 'ImplT' is the actual implementation type of this
//  enum type. 'parameter' is the enum value that has
//  been passed to this function.

writefln("The implementation type of enum %s is %s",
T.stringof, ImplT.stringof);

}

static if (is (T ReturnT == return)) {
writeln("\n--- return ---");
// 'ReturnT' is the return type of the function
// pointer that has been passed to this function.

writefln("This is a function with a return type of %s:",
ReturnT.stringof);

writeln("    ", T.stringof);
write("calling it... ");

// Note: Function pointers can be called like
// functions
ReturnT result = parameter(1.5, 42, new AlarmClock);
writefln("and the result is '%s'", result);

}
}

Let's now call that function template with various types that we have defined
above:

// Calling with a struct object
myFunction(Point());

// Calling with a class reference
myFunction(new AlarmClock);

// Calling with an enum value
myFunction(WeekDays.Monday);

// Calling with a function pointer
myFunction(&foo);

The output:
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--- struct ---
Constructing a new Point object by copying it.

--- super ---
class AlarmClock has 2 base types.
All of the bases: (in Object, in Clock)
The topmost base: Object

--- enum ---
The implementation type of enum WeekDays is int

--- return ---
This is a function with a return type of char:

char function(double d, int i, Clock c)
calling it... and the result is 'a'

70.7 is (/* ... */ Specifier, TemplateParamList)
There are four different syntaxes of the is expression that uses a template
parameter list:

• is (T : Specifier, TemplateParamList)
• is (T == Specifier, TemplateParamList)
• is (T identifier : Specifier, TemplateParamList)
• is (T identifier == Specifier, TemplateParamList)

These syntaxes allow for more complex cases.
identifier, Specifier, :, and == all have the same meanings as described

above.
TemplateParamList is both a part of the condition that needs to be satisfied

and a facility to define additional aliases if the condition is indeed satisfied. It
works in the same way as template type deduction.

As a simple example, let's assume that an is expression needs to match
associative arrays that have keys of type string:

static if (is (T == Value[Key], // (1)
Value, // (2)
Key : string)) { // (3)

That condition can be explained in three parts where the last two are parts of the
TemplateParamList:

1. If T matches the syntax of Value[Key]
2. If Value is a type
3. If Key is string (remember template specialization syntax (page 411))

Having Value[Key] as the Specifier requires that T is an associative array.
Leaving Value as is means that it can be any type. Additionally, the key type of the
associative array must be string. As a result, the previous is expression means
"if T is an associative array where the key type is string."

The following program tests that is expression with four different types:

import std.stdio;

void myFunction(T)(T parameter)
{

writefln("\n--- Called with %s ---", T.stringof);
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static if (is (T == Value[Key],
Value,
Key : string)) {

writeln("Yes, the condition has been satisfied.");

writeln("The value type: ", Value.stringof);
writeln("The key type  : ", Key.stringof);

} else {
writeln("No, the condition has not been satisfied.");

}
}

void main()
{

int number;
myFunction(number);

int[string] intTable;
myFunction(intTable);

double[string] doubleTable;
myFunction(doubleTable);

dchar[long] dcharTable;
myFunction(dcharTable);

}

The condition is satisfied only if the key type is string:

--- Called with int ---
No, the condition has not been satisfied.

--- Called with int[string] ---
Yes, the condition has been satisfied.
The value type: int
The key type  : string

--- Called with double[string] ---
Yes, the condition has been satisfied.
The value type: double
The key type  : string

--- Called with dchar[long] ---
No, the condition has not been satisfied.
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71 Function Pointers, Delegates, and Lambdas

Function pointers are for storing addresses of functions in order to execute those
functions at a later time. Function pointers are similar to their counterparts in
the C programming language.

Delegates store both a function pointer and the context to execute that
function pointer in. The stored context can either be the scope that the function
execution will take place or a struct or class object.

Delegates enable closures as well, a concept that is supported by most functional
programming languages.

71.1 Function pointers
We have seen in the previous chapter that it is possible to take addresses of
functions with the & operator. In one of those examples, we passed such an
address to a function template.

Taking advantage of the fact that template type parameters can match any
type, let's pass a function pointer to a template to observe its type by printing its
.stringof property:

import std.stdio;

int myFunction(char c, double d)
{

return 42;
}

void main()
{

myTemplate(&myFunction); // Taking the function's address and
// passing it as a parameter

}

void myTemplate(T)(T parameter)
{

writeln("type : ", T.stringof);
writeln("value: ", parameter);

}

The output of the program reveals the type and the address of myFunction():

type : int function(char c, double d)
value: 406948

Definition
Similar to regular pointers, each function pointer type can point exactly to a
particular type of function; the parameter list and the return type of the function
pointer and the function must match. Function pointers are defined by the
function keyword between the return type and the parameter list of that
particular type:

return_type function(parameters) ptr;

The names of the parameters (c and d in the output above) are optional. Because
myFunction() takes a char and a double and returns an int, the type of a
function pointer that can point at myFunction() must be defined accordingly:

int function(char, double) ptr = &myFunction;
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The line above defines ptr as a function pointer taking two parameters (char and
double) and returning int. Its value is the address of myFunction().

Function pointer syntax is relatively harder to read; it is common to make code
more readable by an alias:

alias CalculationFunc = int function(char, double);

That alias makes the code easier to read:

CalculationFunc ptr = &myFunction;

As with any type, auto can be used as well:

auto ptr = &myFunction;

Calling a function pointer
Function pointers can be called exactly like functions:

int result = ptr('a', 5.67);
assert(result == 42);

The call ptr('a', 5.67) above is the equivalent of calling the actual function by
myFunction('a', 5.67).

When to use
Because function pointers store what function to call and they are called exactly
like the functions that they point at, function pointers effectively store the
behavior of the program for later.

There are many other features of D that are about program behavior. For
example, the appropriate function to call to calculate the wages of an Employee
can be determined by the value of an enum member:

final switch (employee.type) {

case EmployeeType.fullTime:
fullTimeEmployeeWages();
break;

case EmployeeType.hourly:
hourlyEmployeeWages();
break;

}

Unfortunately, that method is relatively harder to maintain because it obviously
has to support all known employee types. If a new type of employee is added to
the program, then all such switch statements must be located so that a new case
clause is added for the new employee type.

A more common alternative of implementing behavior differences is
polymorphism. An Employee interface can be defined and different wage
calculations can be handled by different implementations of that interface:

interface Employee
{

double wages();
}

class FullTimeEmployee : Employee
{

double wages()
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{
double result;
// ...
return result;

}
}

class HourlyEmployee : Employee
{

double wages()
{

double result;
// ...
return result;

}
}

// ...

double result = employee.wages();

Function pointers are yet another alternative for implementing different
behavior. They are more common in programming languages that do not support
object oriented programming.

Function pointer as a parameter
Let's design a function that takes an array and returns another array. This
function will filter out elements that are less than or equal to zero, and multiply
the others by ten:

int[] filterAndConvert(const int[] numbers)
{

int[] result;

foreach (e; numbers) {
if (e > 0) { // filtering,

immutable newNumber = e * 10; // and conversion
result ~= newNumber;

}
}

return result;
}

The following program demonstrates its behavior with randomly generated
values:

import std.stdio;
import std.random;

void main()
{

int[] numbers;

// Random numbers
foreach (i; 0 .. 10) {

numbers ~= uniform(0, 10) - 5;
}

writeln("input : ", numbers);
writeln("output: ", filterAndConvert(numbers));

}

The output contains numbers that are ten times the original numbers, which
were greater than zero to begin with. The original numbers that have been
selected are highlighted:
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input : [-2, 2, -2, 3, -2, 2, -1, -4, 0, 0]
output: [20, 30, 20]

filterAndConvert() is for a very specific task: It always selects numbers that
are greater than zero and always multiplies them by ten. It could be more useful
if the behaviors of filtering and conversion were parameterized.

Noting that filtering is a form of conversion as well (from int to bool),
filterAndConvert() performs two conversions:

• number > 0, which produces bool by considering an int value.
• number * 10, which produces int from an int value.

Let's define convenient aliases for function pointers that would match the two
conversions above:

alias Predicate = bool function(int); // makes bool from int
alias Convertor = int function(int); // makes int from int

Predicate is the type of functions that take int and return bool, and Convertor
is the type of functions that take int and return int.

If we provide such function pointers as parameters, we can have
filterAndConvert() use those function pointers during its work:

int[] filterAndConvert(const int[] numbers,
Predicate predicate,
Convertor convertor)

{
int[] result;

foreach (number; numbers) {
if (predicate(number)) {

immutable newNumber = convertor(number);
result ~= newNumber;

}
}

return result;
}

filterAndConvert() is now an algorithm that is independent of the actual
filtering and conversion operations. When desired, its earlier behavior can be
achieved by the following two simple functions:

bool isGreaterThanZero(int number)
{

return number > 0;
}

int tenTimes(int number)
{

return number * 10;
}

// ...

writeln("output: ", filterAndConvert(numbers,
&isGreaterThanZero,
&tenTimes));

This design allows calling filterAndConvert() with many different filtering
and conversion behaviors. For example, the following two functions would make
filterAndConvert() produce the negatives of the even numbers:
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bool isEven(int number)
{

return (number % 2) == 0;
}

int negativeOf(int number)
{

return -number;
}

// ...

writeln("output: ", filterAndConvert(numbers,
&isEven,
&negativeOf));

The output:

input : [3, -3, 2, 1, -5, 1, 2, 3, 4, -4]
output: [-2, -2, -4, 4]

As seen in these examples, sometimes such functions are so trivial that defining
them as proper functions with name, return type, parameter list, and curly
brackets is unnecessarily wordy.

As we will see below, the => syntax of anonymous functions makes the code
more concise and more readable. The following line has anonymous functions
that are the equivalents of isEven() and negativeOf(), without proper function
definitions:

writeln("output: ", filterAndConvert(numbers,
number => (number % 2) == 0,
number => -number));

Function pointer as a member
Function pointers can be stored as members of structs and classes as well. To see
this, let's design a class that takes the predicate and convertor as constructor
parameters in order to use them later on:

class NumberHandler
{

Predicate predicate;
Convertor convertor;

this(Predicate predicate, Convertor convertor)
{

this.predicate = predicate;
this.convertor = convertor;

}

int[] handle(const int[] numbers)
{

int[] result;

foreach (number; numbers) {
if (predicate(number)) {

immutable newNumber = convertor(number);
result ~= newNumber;

}
}

return result;
}

}

An object of that type can be used similarly to filterAndConvert():
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auto handler = new NumberHandler(&isEven, &negativeOf);
writeln("result: ", handler.handle(numbers));

71.2 Anonymous functions
The code can be more readable and concise when short functions are defined
without proper function definitions.

Anonymous functions, which are also knows as function literals or lambdas,
allow defining functions inside of expressions. Anonymous functions can be used
at any point where a function pointer can be used.

We will get to their shorter => syntax later below. Let's first see their full syntax,
which is usually too wordy especially when it appears inside of other expressions:

function return_type(parameters) { /* operations */ }

For example, an object of NumberHandler that produces 7 times the numbers that
are greater than 2 can be constructed by anonymous functions as in the following
code:

new NumberHandler(function bool(int number) { return number > 2; },
function int(int number) { return number * 7; });

Two advantages of the code above is that the functions are not defined as proper
functions and that their implementations are visible right where the
NumberHandler object is constructed.

Note that the anonymous function syntax is very similar to regular function
syntax. Although this consistency has benefits, the full syntax of anonymous
functions makes code too wordy.

For that reason, there are various shorter ways of defining anonymous
functions.

Shorter syntax
When the return type can be deduced from the return statement inside the
anonymous function, then the return type need not be specified (The place where
the return type would normally appear is highlighted by code comments.):

new NumberHandler(function /**/(int number) { return number > 2; },
function /**/(int number) { return number * 7; });

Further, when the anonymous function does not take parameters, its parameter
list need not be provided. Let's consider a function that takes a function pointer, a
function pointer that takes nothing and returns double:

void foo(double function() func)
{

// ...
}

Anonymous functions that are passed to that function need not have the empty
parameter list. Therefore, all three of the following anonymous function syntaxes
are equivalent:

foo(function double() { return 42.42; });
foo(function () { return 42.42; });
foo(function { return 42.42; });
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The first one is written in the full syntax. The second one omits the return type,
taking advantage of the return type deduction. The third one omits the
unnecessary parameter list.

Even further, the keyword function need not be provided either. In that case it
is left to the compiler to determine whether it is an anonymous function or an
anonymous delegate. Unless it uses a variable from one of the enclosing scopes, it
is a function:

foo({ return 42.42; });

Most anonymous functions can be defined even shorter by the lambda syntax.

Lambda syntax instead of a single return statement
In most cases even the shortest syntax above is unnecessarily cluttered. The curly
brackets that are just inside the function parameter list make the code harder to
read and a return statement as well as its semicolon inside a function argument
looks out of place.

Let's start with the full syntax of an anonymous function that has a single
return statement:

function return_type(parameters) { return expression; }

We have already seen that the function keyword is not necessary and the return
type can be deduced:

(parameters) { return expression; }

The equivalent of that definition is the following => syntax, where the =>
characters replace the curly brackets, the return keyword, and the semicolon:

(parameters) => expression

Further, when there is a single parameter, the parentheses around the parameter
list can be omitted as well:

single_parameter => expression

On the other hand, to avoid grammar ambiguities, the parameter list must still be
written as empty parentheses when there is no parameter at all:

() => expression

Let's use the lambda syntax in a predicate passed to std.algorithm.filter.
filter() takes a predicate as its template parameter and a range as its function
parameter. It applies the predicate to each element of the range and returns the
ones that satisfy the predicate. One of several ways of specifying the predicate is
the lambda syntax.

(Note: We will see ranges in a later chapter. At this point, it should be sufficient to
know that D slices are ranges.)

The following lambda is a predicate that matches elements that are greater
than 10:

import std.stdio;
import std.algorithm;

void main()
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{
int[] numbers = [ 20, 1, 10, 300, -2 ];
writeln(numbers.filter!(number => number > 10));

}

The output contains only the elements that satisfy the predicate:

[20, 300]

For comparison, let's write the same lambda in the longest syntax. The curly
brackets that define the body of the anonymous function are highlighted:

writeln(numbers.filter!(function bool(int number) {
return number > 10;

}));

As another example, this time let's define an anonymous function that takes two
parameters. The following algorithm takes two slices and passes their
corresponding elements one by one to a function that itself takes two
parameters. It then collects and returns the results as another slice:

import std.exception;

int[] binaryAlgorithm(int function(int, int) func,
const int[] slice1,
const int[] slice2)

{
enforce(slice1.length == slice2.length);

int[] results;

foreach (i; 0 .. slice1.length) {
results ~= func(slice1[i], slice2[i]);

}

return results;
}

Since the function parameter above takes two parameters, lambdas that can be
passed to binaryAlgorithm() must take two parameters as well:

import std.stdio;

void main()
{

writeln(binaryAlgorithm((a, b) => (a * 10) + b,
[ 1, 2, 3 ],
[ 4, 5, 6 ]));

}

The output contains ten times the elements of the first array plus the elements of
the second array (e.g. 14 is 10 * 1 + 4):

[14, 25, 36]

71.3 Delegates
A delegate is a combination of a function pointer and the context that it should be
executed in. Delegates also support closures in D. Closures are a feature supported
by many functional programming languages.

As we have seen in the Lifetimes and Fundamental Operations chapter (page
239), the lifetime of a variable ends upon leaving the scope that it is defined in:
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{
int increment = 10;
// ...

} // ← the life of 'increment' ends here

That is why the address of such a local variable cannot be returned from a
function.

Let's imagine that increment is a local variable of a function that itself returns
a function. Let's make it so that the returned lambda happens to use that local
variable:

alias Calculator = int function(int);

Calculator makeCalculator()
{

int increment = 10;
return value => increment + value; // ← compilation ERROR

}

That code is in error because the returned lambda makes use of a local variable
that is about to go out of scope. If the code were allowed to compile, the lambda
would be trying to access increment, whose life has already ended.

For that code to be compiled and work correctly, the lifetime of increment
must at least be as long as the lifetime of the lambda that uses it. Delegates extend
the lifetime of the context of a lambda so that the local state that the function
uses remains valid.
delegate syntax is similar to function syntax, the only difference being the

keyword. That change is sufficient to make the previous code compile:

alias Calculator = int delegate(int);

Calculator makeCalculator()
{

int increment = 10;
return value => increment + value;

}

Having been used by a delegate, the local variable increment will now live as
long as that delegate lives. The variable is available to the delegate just as any
other variable would be, mutable as needed. We will see examples of this in the
next chapter when using delegates with opApply() member functions.

The following is a test of the delegate above:

auto calculator = makeCalculator();
writeln("The result of the calculation: ", calculator(3));

Note that makeCalculator() returns an anonymous delegate. The code above
assigns that delegate to the variable calculator and then calls it by
calculator(3). Since the delegate is implemented to return the sum of its
parameter and the variable increment, the code outputs the sum of 3 and 10:

The result of the calculation: 13

Shorter syntax
As we have already used in the previous example, delegates can take advantage of
the shorter syntaxes as well. When neither function nor delegate is specified,
the type of the lambda is decided by the compiler, depending on whether the
lambda accesses local state. If so, then it is a delegate.
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The following example has a delegate that does not take any parameters:

int[] delimitedNumbers(int count, int delegate() numberGenerator)
{

int[] result = [ -1 ];
result.reserve(count + 2);

foreach (i; 0 .. count) {
result ~= numberGenerator();

}

result ~= -1;

return result;
}

The function delimitedNumbers() generates a slice where the first and last
elements are -1. It takes two parameters that specify the other elements that come
between those first and last elements.

Let's call that function with a trivial delegate that always returns the same
value. Remember that when there is no parameter, the parameter list of a lambda
must be specified as empty:

writeln(delimitedNumbers(3, () => 42));

The output:

-1 42 42 42 -1

Let's call delimitedNumbers() this time with a delegate that makes use of a local
variable:

int lastNumber;
writeln(delimitedNumbers(15, () => lastNumber += uniform(0, 3)));

writeln("Last number: ", lastNumber);

Although that delegate produces a random value, since the value is added to the
last one, none of the generated values is less than its predecessor:

-1 0 2 3 4 6 6 8 9 9 9 10 12 14 15 17 -1
Last number: 17

An object and a member function as a delegate
We have seen that a delegate is nothing but a function pointer and the context
that it is to be executed in. Instead of those two, a delegate can also be composed
of a member function and an existing object that that member function is to be
called on.
The syntax that defines such a delegate from an object is the following:

&object.member_function

Let's first observe that such a syntax indeed defines a delegate by printing its
string representation:

import std.stdio;

struct Location
{

long x;
long y;
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void moveHorizontally(long step) { x += step; }
void moveVertically(long step)   { y += step; }

}

void main()
{

auto location = Location();
writeln(typeof(&location.moveHorizontally).stringof);

}

According to the output, the type of moveHorizontally() called on location is
indeed a delegate:

void delegate(long step)

Note that the & syntax is only for constructing the delegate. The delegate will be
called later by the function call syntax:

// The definition of the delegate variable:
auto directionFunction = &location.moveHorizontally;

// Calling the delegate by the function call syntax:
directionFunction(3);

writeln(location);

Since the delegate combines the location object and the moveHorizontally()
member function, calling the delegate is the equivalent of calling
moveHorizontally() on location. The output indicates that the object has
indeed moved 3 steps horizontally:

Location(3, 0)

Function pointers, lambdas, and delegates are expressions. They can be used in
places where a value of their type is expected. For example, a slice of delegate
objects is initialized below from delegates constructed from an object and its
various member functions. The delegate elements of the slice are later called
just like functions:

auto location = Location();

void delegate(long)[] movements =
[ &location.moveHorizontally,

&location.moveVertically,
&location.moveHorizontally ];

foreach (movement; movements) {
movement(1);

}

writeln(location);

According to the elements of the slice, the location has been changed twice
horizontally and once vertically:

Location(2, 1)

71.4 toString() with a delegate parameter
We have defined many toString() functions up to this point in the book to
represent objects as strings. Those toString() definitions all returned a string
without taking any parameters. As noted by the comment lines below, structs and
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classes took advantage of toString() functions of their respective members by
simply passing those members to format():

import std.stdio;
import std.string;

struct Point
{

int x;
int y;

string toString() const
{

return format("(%s,%s)", x, y);
}

}

struct Color
{

ubyte r;
ubyte g;
ubyte b;

string toString() const
{

return format("RGB:%s,%s,%s", r, g, b);
}

}

struct ColoredPoint
{

Color color;
Point point;

string toString() const
{

// Taking advantage of Color.toString and Point.toString:
return format("{%s;%s}", color, point);

}
}

struct Polygon
{

ColoredPoint[] points;

string toString() const
{

// Taking advantage of ColoredPoint.toString:
return format("%s", points);

}
}

void main()
{

auto polygon = Polygon(
[ ColoredPoint(Color(10, 10, 10), Point(1, 1)),

ColoredPoint(Color(20, 20, 20), Point(2, 2)),
ColoredPoint(Color(30, 30, 30), Point(3, 3)) ]);

writeln(polygon);
}

In order for polygon to be sent to the output as a string on the last line of the
program, all of the toString() functions of Polygon, ColoredPoint, Color, and
Point are called indirectly, creating a total of 10 strings in the process. Note that
the strings that are constructed and returned by the lower-level functions are
used only once by the respective higher-level function that called them.

However, although a total of 10 strings get constructed, only the very last one is
printed to the output:
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[{RGB:10,10,10;(1,1)}, {RGB:20,20,20;(2,2)}, {RGB:30,30,30;(3,3)}]

However practical, this method may degrade the performance of the program
because of the many string objects that are constructed and promptly thrown
away.

An overload of toString() avoids this performance issue by taking a
delegate parameter:

void toString(void delegate(const(char)[]) sink) const;

As seen in its declaration, this overload of toString() does not return a string.
Instead, the characters that are going to be printed are passed to its delegate
parameter. It is the responsibility of the delegate to append those characters to
the single string that is going to be printed to the output.
All the programmer needs to do differently is to call
std.format.formattedWrite instead of std.string.format and pass the
delegate parameter as its first parameter:

import std.stdio;
import std.format;

struct Point
{

int x;
int y;

void toString(void delegate(const(char)[]) sink) const
{

formattedWrite(sink, "(%s,%s)", x, y);
}

}

struct Color
{

ubyte r;
ubyte g;
ubyte b;

void toString(void delegate(const(char)[]) sink) const
{

formattedWrite(sink, "RGB:%s,%s,%s", r, g, b);
}

}

struct ColoredPoint
{

Color color;
Point point;

void toString(void delegate(const(char)[]) sink) const
{

formattedWrite(sink, "{%s;%s}", color, point);
}

}

struct Polygon
{

ColoredPoint[] points;

void toString(void delegate(const(char)[]) sink) const
{

formattedWrite(sink, "%s", points);
}

}

void main()
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{
auto polygon = Polygon(

[ ColoredPoint(Color(10, 10, 10), Point(1, 1)),
ColoredPoint(Color(20, 20, 20), Point(2, 2)),
ColoredPoint(Color(30, 30, 30), Point(3, 3)) ]);

writeln(polygon);
}

The advantage of this program is that, even though there are still a total of 10 calls
made to various toString() functions, those calls collectively produce a single
string, not 10.

71.5 Summary

• The function keyword is for defining function pointers to be called
later just like a function.

• The delegate keyword is for defining delegates. A delegate is the pair of
a function pointer and the context that that function pointer to be
executed in.

• A delegate can also be created from an object and a member function
by the syntax &object.member_function.

• Anonymous functions and anonymous delegates (lambdas) can be used
in places of function pointers and delegates in expressions.

• There are several syntaxes for lambdas, the shortest of which is for when
the equivalent consists only of a single return statement:
parameter => expression.

• A more efficient overload of toString() takes a delegate.
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72 foreach with Structs and Classes

As you remember from the foreach Loop chapter (page 140), both how foreach
works and the types and numbers of loop variables that it supports depend on the
kind of collection: For slices, foreach provides access to elements with or without
a counter; for associative arrays, to values with or without keys; for number
ranges, to the individual values. For library types, foreach behaves in a way that
is specific to that type; e.g. for File, it provides the lines of a file.

It is possible to define the behavior of foreach for user-defined types as well.
There are two methods of providing this support:

• Defining range member functions, which allows using the user-defined
type with other range algorithms as well

• Defining one or more opApply member functions

Of the two methods, opApply has priority: If it is defined, the compiler uses
opApply, otherwise it considers the range member functions. However, in most
cases range member functions are sufficient, easier, and more useful.
foreach need not be supported for every type. Iterating over an object makes

sense only if that object defines the concept of a collection.
For example, it may not be clear what elements should foreach provide when

iterating over a class that represents a student, so the class better not support
foreach at all. On the other hand, a design may require that Student is a
collection of grades and foreach may provide individual grades of the student.

It depends on the design of the program what types should provide this support
and how.

72.1 foreach support by range member functions
We know that foreach is very similar to for, except that it is more useful and
safer than for. Consider the following loop:

foreach (element; myObject) {
// ... expressions ...

}

Behind the scenes, the compiler rewrites that foreach loop as a for loop, roughly
an equivalent of the following one:

for ( ; /* while not done */; /* skip the front element */) {

auto element = /* the front element */;

// ... expressions ...
}

User-defined types that need to support foreach can provide three member
functions that correspond to the three sections of the previous code: determining
whether the loop is over, skipping the front element, and providing access to the
front element.

Those three member functions must be named as empty, popFront, and front,
respectively. The code that is generated by the compiler calls those functions:

for ( ; !myObject.empty(); myObject.popFront()) {

auto element = myObject.front();
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// ... expressions ...
}

These three functions must work according to the following expectations:

• .empty() must return true if the loop is over, false otherwise
• .popFront() must move to the next element (in other words, skip the

front element)
• .front() must return the front element

Any type that defines those member functions can be used with foreach.

Example
Let's define a struct that produces numbers within a certain range. In order to
be consistent with D's number ranges and slice indexes, let's have the last number
be outside of the valid numbers. Under these requirements, the following struct
would work exactly like D's number ranges:

struct NumberRange
{

int begin;
int end;

invariant()
{

// There is a bug if begin is greater than end
assert(begin <= end);

}

bool empty() const
{

// The range is consumed when begin equals end
return begin == end;

}

void popFront()
{

// Skipping the first element is achieved by
// incrementing the beginning of the range
++begin;

}

int front() const
{

// The front element is the one at the beginning
return begin;

}
}

Note: The safety of that implementation depends solely on a single invariant block.
Additional checks could be added to front and popFront to ensure that those
functions are never called when the range is empty.

Objects of that struct can be used with foreach:

foreach (element; NumberRange(3, 7)) {
write(element, ' ');

}

foreach uses those three functions behind the scenes and iterates until empty()
returns true:

3 4 5 6
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std.range.retro to iterate in reverse
The std.range module contains many range algorithms. retro is one of those
algorithms, which iterates a range in reverse order. It requires two additional
range member functions:

• .popBack() must move to the element that is one before the end (skips
the last element)

• .back() must return the last element

However, although not directly related to reverse iteration, for retro to consider
those functions at all, there must be one more function defined:

• .save() must return a copy of this object

We will learn more about these member functions later in the Ranges chapter
(page 582).

These three additional member functions can trivially be defined for
NumberRange:

struct NumberRange
{
// ...

void popBack()
{

// Skipping the last element is achieved by
// decrementing the end of the range.
--end;

}

int back() const
{

// As the 'end' value is outside of the range, the
// last element is one less than that
return end - 1;

}

NumberRange save() const @property
{

// Returning a copy of this struct object
return this;

}
}

Objects of this type can now be used with retro:

import std.range;

// ...

foreach (element; NumberRange(3, 7).retro) {
write(element, ' ');

}

The output of the program is now in reverse:

6 5 4 3

72.2 foreach support by opApply and opApplyReverse member
functions
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Everything that is said about opApply in this section is valid for opApplyReverse
as well. opApplyReverse is for defining the behaviors of objects in the
foreach_reverse loops.

The member functions above allow using objects as ranges. That method is
more suitable when there is only one sensible way of iterating over a range. For
example, it would be easy to provide access to individual students of a Students
type.

On the other hand, sometimes it makes more sense to iterate over the same
object in different ways. We know this from associative arrays where it is possible
to access either only to the values or to both the keys and the values:

string[string] dictionary; // from English to Turkish

// ...

foreach (inTurkish; dictionary) {
// ... only values ...

}

foreach (inEnglish, inTurkish; dictionary) {
// ... keys and values ...

}

opApply allows using user-defined types with foreach in various and sometimes
more complex ways. Before learning how to define opApply, we must first
understand how it is called automatically by foreach.

The program execution alternates between the expressions inside the foreach
block and the expressions inside the opApply() function. First the opApply()
member function gets called, and then opApply makes an explicit call to the
foreach block. They alternate in that way until the loop eventually terminates.
This process is based on a convention, which I will explain soon.

Let's first observe the structure of the foreach loop one more time:

// The loop that is written by the programmer:

foreach (/* loop variables */; myObject) {
// ... expressions inside the foreach block ...

}

If there is an opApply() member function that matches the loop variables, then
the foreach block becomes a delegate, which is then passed to opApply().

Accordingly, the loop above is converted to the following code behind the
scenes. The curly brackets that define the body of the delegate are highlighted:

// The code that the compiler generates behind the scenes:

myObject.opApply(delegate int(/* loop variables */) {
// ... expressions inside the foreach block ...
return hasBeenTerminatedBy_break;

});

In other words, the foreach loop is replaced by a delegate that is passed to
opApply(). Before showing an example, here are the requirements and
expectations of this convention that opApply() must observe:

1. The body of the foreach loop becomes the body of the delegate. opApply
must call this delegate for each iteration.
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2. The loop variables become the parameters of the delegate. opApply()
must define these parameters as ref.

3. The return type of the delegate is int. Accordingly, the compiler injects a
return statement at the end of the delegate, which determines whether
the loop has been terminated by a break statement: If the return value is
zero, the iteration must continue, otherwise it must terminate.

4. The actual iteration happens inside opApply().
5. opApply() must return the same value that is returned by the delegate.

The following is a definition of NumberRange that is implemented according to
that convention:

struct NumberRange
{

int begin;
int end;

//                             (2)       (1)
int opApply(int delegate(ref int) operations) const
{

int result = 0;

for (int number = begin; number != end; ++number) { // (4)
result = operations(number); // (1)

if (result) {
break; // (3)

}
}

return result; // (5)
}

}

This definition of NumberRange can be used with foreach in exactly the same
way as before:

foreach (element; NumberRange(3, 7)) {
write(element, ' ');

}

The output is the same as the one produced by range member functions:

3 4 5 6

Overloading opApply to iterate in different ways
It is possible to iterate over the same object in different ways by defining
overloads of opApply() that take different types of delegates. The compiler calls
the overload that matches the particular set of loop variables.

As an example, let's make it possible to iterate over NumberRange by two loop
variables as well:

foreach (first, second; NumberRange(0, 15)) {
writef("%s,%s ", first, second);

}

Note how it is similar to the way associative arrays are iterated over by both keys
and values.

For this example, let's require that when a NumberRange object is iterated by
two variables, it should provide two consecutive values and that it arbitrarily
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increases the values by 5. So, the loop above should produce the following output:

0,1 5,6 10,11

This is achieved by an additional definition of opApply() that takes a delegate,
which takes two parameters. opApply() must call that delegate by two values:

int opApply(int delegate(ref int, ref int) dg) const
{

int result = 0;

for (int i = begin; (i + 1) < end; i += 5) {
int first = i;
int second = i + 1;

result = dg(first, second);

if (result) {
break;

}
}

return result;
}

When there are two loop variables, this overload of opApply() gets called.
There may be as many overloads of opApply() as needed.
It is possible and sometimes necessary to give hints to the compiler on what

overload to choose. This is done by specifying types of the loop variables
explicitly.

For example, let's assume that there is a School type that supports iterating
over the teachers and the students separately:

class School
{

int opApply(int delegate(ref Student) dg) const
{

// ...
}

int opApply(int delegate(ref Teacher) dg) const
{

// ...
}

}

To indicate the desired overload, the loop variable must be specified:

foreach (Student student; school) {
// ...

}

foreach (Teacher teacher; school) {
// ...

}

72.3 Loop counter
The convenient loop counter of slices is not automatic for other types. Loop
counter can be achieved for user-defined types in different ways depending on
whether the foreach support is provided by range member functions or by
opApply overloads.

Loop counter with range functions
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If foreach support is provided by range member functions, then a loop counter
can be achieved simply by enumerate from the std.range module:

import std.range;

// ...

foreach (i, element; NumberRange(42, 47).enumerate) {
writefln("%s: %s", i, element);

}

enumerate is a range that produces consecutive numbers starting by default from
0. enumerate pairs each number with the elements of the range that it is applied
on. As a result, the numbers that enumerate generates and the elements of the
actual range (NumberRange in this case) appear in lockstep as loop variables:

0: 42
1: 43
2: 44
3: 45
4: 46

Loop counter with opApply
On the other hand, if foreach support is provided by opApply(), then the loop
counter must be defined as a separate parameter of the delegate, suitably as type
size_t. Let's see this on a struct that represents a colored polygon.

As we have already seen above, an opApply() that provides access to the points
of this polygon can be implemented without a counter as in the following code:

import std.stdio;

enum Color { blue, green, red }

struct Point
{

int x;
int y;

}

struct Polygon
{

Color color;
Point[] points;

int opApply(int delegate(ref const(Point)) dg) const
{

int result = 0;

foreach (point; points) {
result = dg(point);

if (result) {
break;

}
}

return result;
}

}

void main()
{

auto polygon = Polygon(Color.blue,
[ Point(0, 0), Point(1, 1) ] );
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foreach (point; polygon) {
writeln(point);

}
}

Note that the opApply() is itself implemented by a foreach loop. As a result, the
foreach inside main() ends up making indirect use of a foreach over the
points member.

Also note that the type of the delegate parameter is ref const(Point). This
means that this definition of opApply() does not allow modifying the Point
elements of the polygon. In order to allow user code to modify the elements, both
the opApply() function itself and the delegate parameter must be defined
without the const specifier.

The output:

const(Point)(0, 0)
const(Point)(1, 1)

Naturally, trying to use this definition of Polygon with a loop counter would
cause a compilation error:

foreach (i, point; polygon) { // ← compilation ERROR
writefln("%s: %s", i, point);

}

The compilation error:

Error: cannot uniquely infer foreach argument types

For that to work, another opApply() overload that supports a counter must be
defined:

int opApply(
int delegate(ref size_t, ref const(Point)) dg) const

{
int result = 0;

foreach (i, point; points) {
result = dg(i, point);

if (result) {
break;

}
}

return result;
}

This time the foreach variables are matched to the new opApply() overload and
the program prints the desired output:

0: const(Point)(0, 0)
1: const(Point)(1, 1)

Note that this implementation of opApply() takes advantage of the automatic
counter over the points member. (Although the delegate variable is defined as ref
size_t, the foreach loop inside main() cannot modify the counter variable over
points).

When needed, the loop counter can be defined and incremented explicitly as
well. For example, because the following opApply() is implemented by a while
statement it must define a separate variable for the counter:
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int opApply(
int delegate(ref size_t, ref const(Point)) dg) const

{
int result = 0;
bool isDone = false;

size_t counter = 0;
while (!isDone) {

// ...

result = dg(counter, nextElement);

if (result) {
break;

}

++counter;
}

return result;
}

72.4 Warning: The collection must not mutate during the
iteration
Regardless of whether the iteration support is provided by the range member
functions or by opApply() functions, the collection itself must not mutate. New
elements must not be added to the container and the existing elements must not
be removed.

Doing otherwise is undefined behavior.

72.5 Exercises

1. Design a struct that works similarly to NumberRange, which also
supports specifying the step size. The step size can be the third member:

foreach (element; NumberRange(0, 10, 2)) {
write(element, ' ');

}

The expected output of the code above is every second number from 0 to
10:

0 2 4 6 8

2. Implement the School class that was mentioned in the text in a way
that it provides access to students or teachers depending on the foreach
variable.

The solutions are on page 734.
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73 Nested Functions, Structs, and Classes

Up to this point, we have been defining functions, structs, and classes in the
outermost scopes (i.e. the module scope). They can be defined in inner scopes as
well. Defining them in inner scopes helps with encapsulation by narrowing the
visibility of their symbols, as well as creating closures that we have seen in the
Function Pointers, Delegates, and Lambdas chapter (page 490).

As an example, the following outerFunc() function contains definitions of a
nested function, a nested struct, and a nested class:

void outerFunc(int parameter)
{

int local;

void nestedFunc()
{

local = parameter * 2;
}

struct NestedStruct
{

void memberFunc()
{

local /= parameter;
}

}

class NestedClass
{

void memberFunc()
{

local += parameter;
}

}

// Using the nested definitions inside this scope:

nestedFunc();

auto s = NestedStruct();
s.memberFunc();

auto c = new NestedClass();
c.memberFunc();

}

void main()
{

outerFunc(42);
}

Like any other variable, nested definitions can access symbols that are defined in
outer scopes. For example, all three of the nested definitions above are able to use
the variables named parameter and local.

As usual, the names of the nested definitions are valid only in the scopes that
they are defined in. For example, nestedFunc(), NestedStruct, and
NestedClass are not accessible from main():

void main()
{

auto a = NestedStruct(); // ← compilation ERROR
auto b = outerFunc.NestedStruct(); // ← compilation ERROR

}
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Although their names cannot be accessed, nested definitions can still be used in
other scopes. For example, many Phobos algorithms handle their tasks by nested
structs that are defined inside Phobos functions.

To see an example of this, let's design a function that consumes a slice from
both ends in alternating order:

import std.stdio;
import std.array;

auto alternatingEnds(T)(T[] slice)
{

bool isFromFront = true;

struct EndAlternatingRange
{

bool empty() @property const
{

return slice.empty;
}

T front() @property const
{

return isFromFront ? slice.front : slice.back;
}

void popFront()
{

if (isFromFront) {
slice.popFront();
isFromFront = false;

} else {
slice.popBack();
isFromFront = true;

}
}

}

return EndAlternatingRange();
}

void main()
{

auto a = alternatingEnds([ 1, 2, 3, 4, 5 ]);
writeln(a);

}

Even though the nested struct cannot be named inside main(), it is still usable:

[1, 5, 2, 4, 3]

Note: Because their names cannot be mentioned outside of their scopes, such types are
called Voldemort types due to analogy to a Harry Potter character.
Note that the nested struct that alternatingEnds() returns does not have any
member variables. That struct handles its task using merely the function
parameter slice and the local function variable isFromFront. The fact that the
returned object can safely use those variables even after leaving the context that
it was created in is due to a closure that has been created automatically. We have
seen closures in the Function Pointers, Delegates, and Lambdas chapter (page
490).

static when a closure is not needed
Since they keep their contexts alive, nested definitions are more expensive than
their regular counterparts. Additionally, as they must include a context pointer to
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determine the context that they are associated with, objects of nested definitions
occupy more space as well. For example, although the following two structs have
exactly the same member variables, their sizes are different:

import std.stdio;

struct ModuleStruct
{

int i;

void memberFunc()
{}

}

void moduleFunc()
{

struct NestedStruct
{

int i;

void memberFunc()
{}

}

writefln("OuterStruct: %s bytes, NestedStruct: %s bytes.",
ModuleStruct.sizeof, NestedStruct.sizeof);

}

void main()
{

moduleFunc();
}

The sizes of the two structs may be different on other environments:

OuterStruct: 4 bytes, NestedStruct: 16 bytes.

However, some nested definitions are merely for keeping them as local as
possible, with no need to access variables from the outer contexts. In such cases,
the associated cost would be unnecessary. The static keyword removes the
context pointer from nested definitions, making them equivalents of their
module counterparts. As a result, static nested definitions cannot access their
outer contexts:

void outerFunc(int parameter)
{

static class NestedClass
{

int i;

this()
{

i = parameter; // ← compilation ERROR
}

}
}

The context pointer of a nested class object is available as a void* through its
.outer property. For example, because they are defined in the same scope, the
context pointers of the following two objects are equal:

void foo()
{

class C
{}
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auto a = new C();
auto b = new C();

assert (a.outer is b.outer);
}

As we will see below, for classes nested inside classes, the type of the context pointer
is the type of the outer class, not void*.

Classes nested inside classes
When a class is nested inside another one, the context that the nested object is
associated with is the outer object itself.
Such nested classes are constructed by the this.new syntax. When necessary, the
outer object of a nested object can be accessed by this.outer:

class OuterClass
{

int outerMember;

class NestedClass
{

int func()
{

/* A nested class can access members of the outer
* class. */

return outerMember * 2;
}

OuterClass context()
{

/* A nested class can access its outer object
* (i.e. its context) by '.outer'. */

return this.outer;
}

}

NestedClass algorithm()
{

/* An outer class can construct a nested object by
* '.new'. */

return this.new NestedClass();
}

}

void main()
{

auto outerObject = new OuterClass();

/* A member function of an outer class is returning a
* nested object: */

auto nestedObject = outerObject.algorithm();

/* The nested object gets used in the program: */
nestedObject.func();

/* Naturally, the context of nestedObject is the same as
* outerObject: */

assert(nestedObject.context() is outerObject);
}

Instead of this.new and this.outer, .new and .outer can be used on existing
objects as well:

auto var = new OuterClass();
auto nestedObject = var.new OuterClass.NestedClass();
auto var2 = nestedObject.outer;
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73.1 Summary

• Functions, structs, and classes that are defined in inner scopes can
access those scopes as their contexts.

• Nested definitions keep their contexts alive to form closures.
• Nested definitions are more costly than their module counterparts.

When a nested definition does not need to access its context, this cost
can be avoided by the static keyword.

• Classes can be nested inside other classes. The context of such a nested
object is the outer object itself. Nested class objects are constructed by
this.new or variable.new and their contexts are available by
this.outer or variable.outer.
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74 Unions

Unions allow more than one member share the same memory area. They are a
low-level feature inherited from the C programming language.

Unions are very similar to structs with the following main differences:

• Unions are defined by the union keyword.
• The members of a union are not independent; they share the same

memory area.

Just like structs, unions can have member functions as well.
The examples below will produce different results depending on whether they

are compiled on a 32-bit or a 64-bit environment. To avoid getting confusing
results, please use the -m32 compiler switch when compiling the examples in this
chapter. Otherwise, your results may be different than mine due to alignment,
which we will see in a later chapter.

Naturally, struct objects are as large as necessary to accommodate all of their
members:

// Note: Please compile with the -m32 compiler switch
struct S
{

int i;
double d;

}

// ...

writeln(S.sizeof);

Since int is 4 bytes long and double is 8 bytes long, the size of that struct is the
sum of their sizes:

12

In contrast, the size of a union with the same members is only as large as its
largest member:

union U
{

int i;
double d;

}

// ...

writeln(U.sizeof);

The 4-byte int and the 8-byte double share the same area. As a result, the size of
the entire union is the same as its largest member:

8

Unions are not a memory-saving feature. It is impossible to fit multiple data into
the same memory location. The purpose of a union is to use the same area for
different type of data at different times. Only one of the members can be used
reliably at one time. However, although doing so may not be portable to different
platforms, union members can be used for accessing fragments of other
members.
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The following diagram shows how the 8 bytes of the union above are shared by
its members:

0      1      2      3      4      5      6      7
---+------+------+------+------+------+------+------+------+---

|<---  4 bytes for int  ---> |
|<---------------  8 bytes for double  --------------->|

---+------+------+------+------+------+------+------+------+---

Either all of the 8 bytes are used for the double member, or only the first 4 bytes
are used for the int member and the other 4 bytes are unused.

Unions can have as many members as needed. All of the members would share
the same memory location.

The fact that the same memory location is used for all of the members can have
surprising effects. For example, let's initialize a union object by its int member
and then access its double member:

auto u = U(42); // initializing the int member
writeln(u.d); // accessing the double member

Initializing the int member by the value 42 sets just the first 4 bytes, and this
affects the double member in an unpredictable way:

2.07508e-322

Depending on the endianness of the microprocessor, the 4 bytes may be arranged
in memory as 0|0|0|42, 42|0|0|0, or in some other order. For that reason, the value
of the double member may appear differently on different platforms.

74.1 Anonymous unions
Anonymous unions specify what members of a user-defined type share the same
area:

struct S
{

int first;

union
{

int second;
int third;

}
}

// ...

writeln(S.sizeof);

The last two members of S share the same area. So, the size of the struct is a
total of two ints: 4 bytes needed for first and another 4 bytes to be shared by
second and third:

8

74.2 Dissecting other members
Unions can be used for accessing individual bytes of variables of other types. For
example, they make it easy to access the 4 bytes of an IPv4 address individually.

The 32-bit value of the IPv4 address and a fixed-length array can be defined as
the two members of a union:
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union IpAddress
{

uint value;
ubyte[4] bytes;

}

The members of that union would share the same memory area as in the
following figure:

0          1          2          3
---+----------+----------+----------+----------+---

| <----  32 bits of the IPv4 address  ----> |
| bytes[0] | bytes[1] | bytes[2] | bytes[3] |

---+----------+----------+----------+----------+---

For example, when an object of this union is initialized by 0xc0a80102 (the value
that corresponds to the dotted form 192.168.1.2), the elements of the bytes array
would automatically have the values of the four octets:

import std.stdio;

void main()
{

auto address = IpAddress(0xc0a80102);
writeln(address.bytes);

}

When run on a little-endian system, the octets would appear in reverse of their
dotted form:

[2, 1, 168, 192]

The reverse order of the octets is another example of how accessing different
members of a union may produce unpredictable results. This is because the
behavior of a union is guaranteed only if that union is used through just one of
its members. There are no guarantees on the values of the members other than
the one that the union has been initialized with.
Although it is not directly related to this chapter, bswap from the core.bitop
module is useful in dealing with endianness issues. bswap returns its parameter
after swapping its bytes. Also taking advantage of the endian value from the
std.system module, the octets of the previous IPv4 address can be printed in the
expected order after swapping its bytes:

import std.system;
import core.bitop;

// ...

if (endian == Endian.littleEndian) {
address.value = bswap(address.value);

}

The output:

[192, 168, 1, 2]

Please take the IpAddress type as a simple example; in general, it would be better
to consider a dedicated networking module for non-trivial programs.
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74.3 Protocol example
In some protocols like TCP/IP, the meanings of certain parts of a protocol packet
depend on a specific value inside the same packet. Usually, it is a field in the
header of the packet that determines the meanings of successive bytes. Unions
can be used for representing such protocol packets.

The following design represents a protocol packet that has two kinds:

struct Host
{

// ...
}

struct ProtocolA
{

// ...
}

struct ProtocolB
{

// ...
}

enum ProtocolType { A, B }

struct NetworkPacket
{

Host source;
Host destination;
ProtocolType type;

union
{

ProtocolA aParts;
ProtocolB bParts;

}

ubyte[] payload;
}

The struct above can make use of the type member to determine whether
aParts or bParts of the union to be used.

74.4 When to use
Sharing the same memory area for more than one member is a low-level
requirement that is encountered rarely in practice.

Unions may be parts of C library APIs as well.
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75 Labels and goto
Labels are names given to lines of code in order to direct program flow to those
lines later on.

Labels consist of the name and the : character:

end: // ← a label

That label gives the name end to the line that it is defined on.
Note: In reality, a label can appear between statements on the same line to name the

exact spot that it appears at, but this is not a common practice:

anExpression(); end: anotherExpression();

75.1 goto
goto directs program flow to the specified line:

void foo(bool condition)
{

writeln("first");

if (condition) {
goto end;

}

writeln("second");

end:

writeln("third");
}

When condition is true, the program flow goes to line end, effectively skipping
the line that prints "second":

first
third

goto works the same way as in the C and C++ programming languages. Being
notorious for making it hard to understand the intent and flow of code, goto is
discouraged even in those language. Statements like if, while, for etc. should be
used instead.

For example, the previous code can be written without goto in a more
structured way as well:

void foo(bool condition)
{

writeln("first");

if (!condition) {
writeln("second");

}

writeln("third");
}

However, there are two acceptable uses of goto in C, none of which is necessary
in D.
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Finalization area
One of the valid uses of goto in C is going to the finalization area where the
cleanup operations of a function are performed (e.g. giving resources back,
undoing certain operations, etc.):

// --- C code ---

int foo()
{

// ...

if (error) {
goto finally;

}

// ...

finally:
// ... cleanup operations ...

return error;
}

This use of goto is not necessary in D because there are other ways of managing
resources: the garbage collector, destructors, the catch and finally blocks,
scope() statements, etc.
Note: This use of goto is not necessary in C++ either.

continue and break for outer loops
The other valid use of goto in C is about outer loops.

Since continue and break affect only the inner loop, one way of continuing or
breaking out of the outer loop is by goto statements:

// --- C code ---

while (condition) {

while (otherCondition) {

// affects the inner loop
continue;

// affects the inner loop
break;

// works like 'continue' for the outer loop
goto continueOuter;

// works like 'break' for the outer loop
goto breakOuter;

}

continueOuter:
;

}
breakOuter:

The same technique can be used for outer switch statements as well.
This use of goto is not needed in D because D has loop labels, which we will see

below.
Note: This use of goto can be encountered in C++ as well.
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The problem of skipping constructors
The constructor is called on an object exactly where that object is defined. This is
mainly because the information that is needed to construct an object is usually
not available until that point. Also, there is no need to construct an object if that
object is not going to be used in the program at all.

When goto skips a line that an object is constructed on, the program may end
up using an object that has not been prepared yet:

if (condition) {
goto aLabel; // skips the constructor

}

auto s = S(42); // constructs the object properly

aLabel:

s.bar(); // BUG: 's' may not be ready for use

75.2 Loop labels
Loops can have labels and goto statements can refer to those labels:

outerLoop:
while (condition) {

while (otherCondition) {

// affects the inner loop
continue;

// affects the inner loop
break;

// continues the outer loop
continue outerLoop;

// breaks the outer loop
break outerLoop;

}
}

switch statements can have labels as well. An inner break statement can refer to
an outer switch to break out of the outer switch statement.

75.3 goto in case sections
We have already seen the use of goto in case sections in the switch and case
chapter (page 146):

• goto case causes the execution to continue to the next case.
• goto default causes the execution to continue to the default section.
• goto case expression causes the execution to continue to the case

that matches that expression.

75.4 Summary

• Some of the uses of goto are not necessary in D.
• break and continue can specify labels to affect outer loops and switch

statements.
• goto inside case sections can make the program flow jump to other
case and default sections.
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76 Tuples

Tuples are for combining multiple values to be used as a single object. They are
implemented as a library feature by the Tuple template from the std.typecons
module.
Tuple makes use of TypeTuple from the std.typetuple module for some of

its operations.
This chapter covers only the more common operations of tuples. For more

information on tuples and templates see Philippe Sigaud's D Templates: A
Tutorial1.

76.1 Tuple and tuple()
Tuples are usually constructed by the convenience function tuple():

import std.stdio;
import std.typecons;

void main()
{

auto t = tuple(42, "hello");
writeln(t);

}

The tuple call above constructs an object that consists of the int value 42 and
the string value "hello". The output of the program includes the type of the tuple
object and its members:

Tuple!(int, string)(42, "hello")

The tuple type above is the equivalent of the following pseudo struct definition
and likely have been implemented in exactly the same way:

// The equivalent of Tuple!(int, string)
struct __Tuple_int_string
{

int __member_0;
string __member_1;

}

The members of a tuple are normally accessed by their index values. That syntax
suggests that tuples can be seen as arrays consisting of different types of
elements:

writeln(t[0]);
writeln(t[1]);

The output:

42
hello

Member properties
It is possible to access the members by properties if the tuple is constructed
directly by the Tuple template instead of the tuple() function. The type and the
name of each member are specified as two consecutive template parameters:

1. https://github.com/PhilippeSigaud/D-templates-tutorial
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auto t = Tuple!(int, "number",
string, "message")(42, "hello");

The definition above allows accessing the members by .number and .message
properties as well:

writeln("by index 0 : ", t[0]);
writeln("by .number : ", t.number);
writeln("by index 1 : ", t[1]);
writeln("by .message: ", t.message);

The output:

by index 0 : 42
by .number : 42
by index 1 : hello
by .message: hello

Expanding the members as a list of values
Tuple members can be expanded as a list of values that can be used e.g. as an
argument list when calling a function. The members can be expanded either by
the .expand property or by slicing:

import std.stdio;
import std.typecons;

void foo(int i, string s, double d, char c)
{

// ...
}

void bar(int i, double d, char c)
{

// ...
}

void main()
{

auto t = tuple(1, "2", 3.3, '4');

// Both of the following lines are equivalents of
// foo(1, "2", 3.3, '4'):
foo(t.expand);
foo(t[]);

// The equivalent of bar(1, 3.3, '4'):
bar(t[0], t[$-2..$]);

}

The tuple above consists of four values of int, string, double, and char. Since
those types match the parameter list of foo(), an expansion of its members can
be used as arguments to foo(). When calling bar(), a matching argument list is
made up of the first member and the last two members of the tuple.

As long as the members are compatible to be elements of the same array, the
expansion of a tuple can be used as the element values of an array literal as well:

import std.stdio;
import std.typecons;

void main()
{

auto t = tuple(1, 2, 3);
auto a = [ t.expand, t[] ];
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writeln(a);
}

The array literal above is initialized by expanding the same tuple twice:

[1, 2, 3, 1, 2, 3]

Compile-time foreach
Because their values can be expanded, tuples can be used with the foreach
statement as well:

auto t = tuple(42, "hello", 1.5);

foreach (i, member; t) {
writefln("%s: %s", i, member);

}

The output:

0: 42
1: hello
2: 1.5

The foreach statement above may give a false impression: It may be thought of
being a loop that gets executed at run time. That is not the case. Rather, a foreach
statement that operates on the members of a tuple is expansions of the loop body
for each member. The foreach statement above is the equivalent of the following
code:

{
enum size_t i = 0;
int member = t[i];
writefln("%s: %s", i, member);

}
{

enum size_t i = 1;
string member = t[i];
writefln("%s: %s", i, member);

}
{

enum size_t i = 2;
double member = t[i];
writefln("%s: %s", i, member);

}

The reason for the expansion is the fact that when the tuple members are of
different types, the foreach body has to be compiled differently for each type.

Returning multiple values from functions
Tuples can be a simple solution to the limitation of functions having to return a
single value. An example of this is std.algorithm.findSplit. findSplit()
searches for a range inside another range and produces a result consisting of
three pieces: the part before the found range, the found range, and the part after
the found range:

import std.algorithm;

// ...

auto entireRange = "hello";
auto searched = "ll";
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auto result = findSplit(entireRange, searched);

writeln("before: ", result[0]);
writeln("found : ", result[1]);
writeln("after : ", result[2]);

The output:

before: he
found : ll
after : o

Another option for returning multiple values from a function is to return a
struct object:

struct Result
{

// ...
}

Result foo()
{

// ...
}

76.2 TypeTuple
TypeTuple is defined in the std.typetuple module. It is used for representing a
concept that is normally used by the compiler but otherwise not available to the
programmer as an entity: A comma-separated list of values and types. The
following are three examples of such lists:

• Function argument list
• Template argument list
• Array literal element list

The following three lines of code are examples of those lists in the same order:

foo(1, "hello", 2.5); // function arguments
auto o = Bar!(char, long)(); // template arguments
auto a = [ 1, 2, 3, 4 ]; // array literal elements

Tuple takes advantage of TypeTuple when expanding its members.
Although TypeTuple is a very simple concept, it is one of the more confusing

features of D. A reason of this confusion is the fact that its name does not describe
its functionality accurately: It can contain not only types but values as well. (As
we will see in the next chapter, it can contain symbols as well.)

This chapter includes TypeTuple examples that consist only of types or only of
values. Examples of TypeTuples that contain both types and values will appear in
the next chapter. TypeTuple is especially useful with variadic templates, which
we will see in the next chapter as well.

TypeTuple consisting of values
The values that a TypeTuple represents are specified as its template arguments.

Let's imagine a function that takes three parameters:

import std.stdio;

void foo(int i, string s, double d)
{

Tuples

528



writefln("foo called: %s %s %s", i, s, d);
}

That function would normally be called with three arguments:

foo(1, "hello", 2.5);

TypeTuple can combine those arguments as a single entity and can
automatically be expanded when calling functions:

import std.typetuple;

// ...

alias arguments = TypeTuple!(1, "hello", 2.5);
foo(arguments);

Although it looks like the function is now being called with a single argument, the
foo() call above is the equivalent of the previous one. As a result, both calls
produce the same output:

foo called: 1 hello 2.5

Also note that arguments is not defined as a variable, e.g. with auto. Rather, it is
an alias of a specific TypeTuple instance. Although it is possible to define
variables of TypeTuples as well, the examples in this chapter will use them only
as aliases.

As we have seen above with Tuple, when the values are compatible to be
elements of the same array, a TypeTuple can be used to initialize an array literal
as well:

alias elements = TypeTuple!(1, 2, 3, 4);
auto arr = [ elements ];
assert(arr == [ 1, 2, 3, 4 ]);

Indexing and slicing
Same with Tuple, the members of a TypeTuple can be accessed by indexes and
slices:

alias arguments = TypeTuple!(1, "hello", 2.5);
assert(arguments[0] == 1);
assert(arguments[1] == "hello");
assert(arguments[2] == 2.5);

Let's assume there is a function with parameters matching the last two members
of the TypeTuple above. That function can be called with a slice of just the last
two members of the TypeTuple:

void bar(string s, double d)
{

// ...
}

// ...

bar(arguments[$-2 .. $]);
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TypeTuple consisting of types
Members of a TypeTuple can consist of types. In other words, not a specific value
of a specific type but a type like int itself. A TypeTuple consisting of types can
represent template arguments.

Let's use a TypeTuple with a struct template that has two parameters. The
first parameter of this template determines the element type of a member array
and the second parameter determines the return value of a member function:

import std.conv;

struct S(ElementT, ResultT)
{

ElementT[] arr;

ResultT length()
{

return to!ResultT(arr.length);
}

}

void main()
{

auto s = S!(double, int)([ 1, 2, 3 ]);
auto l = s.length();

}

In the code above, we see that the template is instantiated with (double, int). A
TypeTuple can represent the same argument list as well:

import std.typetuple;

// ...

alias Types = TypeTuple!(double, int);
auto s = S!Types([ 1, 2, 3 ]);

Although it appears to be a single template argument, Types gets expanded
automatically and the template instantiation becomes S!(double, int) as
before.
TypeTuple is especially useful in variadic templates. We will see examples of

this in the next chapter.

foreach with TypeTuple
Same with Tuple, the foreach statement operating on a TypeTuple is not a run
time loop. Rather, it is the expansions of the loop body for each member.

Let's see an example of this with a unit test written for the S struct that was
defined above. The following code tests S for element types int, long, and float
(ResultT is always size_t in this example):

unittest
{

alias Types = TypeTuple!(int, long, float);

foreach (Type; Types) {
auto s = S!(Type, size_t)([ Type.init, Type.init ]);
assert(s.length() == 2);

}
}

The foreach variable Type corresponds to int, long, and float, in that order. As
a result, the foreach statement gets compiled as the equivalent of the code below:
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{
auto s = S!(int, size_t)([ int.init, int.init ]);
assert(s.length() == 2);

}
{

auto s = S!(long, size_t)([ long.init, long.init ]);
assert(s.length() == 2);

}
{

auto s = S!(float, size_t)([ float.init, float.init ]);
assert(s.length() == 2);

}

76.3 .tupleof property
.tupleof represents the members of a type or an object. When applied to a user-
defined type, .tupleof provides access to the definitions of the members of that
type:

import std.stdio;

struct S
{

int number;
string message;
double value;

}

void main()
{

foreach (i, MemberType; typeof(S.tupleof)) {
writefln("Member %s:", i);
writefln("  type: %s", MemberType.stringof);

string name = S.tupleof[i].stringof;
writefln("  name: %s", name);

}
}

S.tupleof appears in two places in the program. First, the types of the elements
are obtained by applying typeof to .tupleof so that each type appears as the
MemberType variable. Second, the name of the member is obtained by
S.tupleof[i].stringof.

Member 0:
type: int
name: number

Member 1:
type: string
name: message

Member 2:
type: double
name: value

.tupleof can be applied to an object as well. In that case, it produces a tuple
consisting of the values of the members of the object:

auto object = S(42, "hello", 1.5);

foreach (i, member; object.tupleof) {
writefln("Member %s:", i);
writefln("  type : %s", typeof(member).stringof);
writefln("  value: %s", member);

}

The foreach variable member represents each member of the object:
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Member 0:
type : int
value: 42

Member 1:
type : string
value: hello

Member 2:
type : double
value: 1.5

Here, an important point to make is that the tuple that .tupleof returns consists
of the members of the object themselves, not their copies. In other words, the
tuple members are references to the actual object members.

76.4 Summary

• tuple() combines different types of values similar to a struct object.
• Explicit use of Tuple allows accessing the members by properties.
• The members can be expanded as a value list by .expand or by slicing.
• foreach with a tuple is not a run time loop; rather, a code expansion.
• TypeTuple represents concepts like function argument list, template

argument list, array literal element list, etc.
• TypeTuple can consist of values and types.
• Tuples support indexing and slicing.
• .tupleof provides information about the members of types and objects.
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77 More Templates

We have seen the power and convenience of templates in the Templates chapter
(page 411). A single templated definition of an algorithm or a data structure is
sufficient to use that definition for multiple types.

That chapter covered only the most common uses of templates: function,
struct, and class templates and their uses with type template parameters. In
this chapter we will see templates in more detail. Before going further, I
recommend that you review at least the summary section of that chapter.

77.1 The shortcut syntax
In addition to being powerful, D templates are easy to define and use and they are
very readable. Defining a function, struct, or class template is as simple as
providing a template parameter list:

T twice(T)(T value)
{

return 2 * value;
}

class Fraction(T)
{

T numerator;
T denominator;

// ...
}

Template definitions like the ones above are taking advantage of D's shortcut
template syntax.

In their full syntax, templates are defined by the template keyword. The
equivalents of the two template definitions above are the following:

template twice(T)
{

T twice(T value)
{

return 2 * value;
}

}

template Fraction(T)
{

class Fraction
{

T numerator;
T denominator;

// ...
}

}

Although most templates are defined by the shortcut syntax, the compiler always
uses the full syntax. We can imagine the compiler applying the following steps to
convert a shortcut syntax to its full form behind the scenes:

1. Wrap the definition by a template block.
2. Give the same name to that block.
3. Move the template parameter list to the template block.
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The full syntax that is arrived after those steps is called an eponymous template,
which the programmer can define explicitly as well. We will see eponymous
templates later below.

Template name space
It is possible to have more than one definition inside a template block. The
following template contains both a function and a struct definition:

template MyTemplate(T)
{

T foo(T value)
{

return value / 3;
}

struct S
{

T member;
}

}

Instantiating the template for a specific type instantiates all of the definitions
inside the block. The following code instantiates the template for int and double:

auto result = MyTemplate!int.foo(42);
writeln(result);

auto s = MyTemplate!double.S(5.6);
writeln(s.member);

A specific instantiation of a template introduces a name space. The definitions that
are inside an instantiation can be used by that name. However, if these names are
too long, it is always possible to use aliases as we have seen in the alias chapter
(page 428):

alias MyStruct = MyTemplate!dchar.S;

// ...

auto o = MyStruct('a');
writeln(o.member);

Eponymous templates
Eponymous templates are template blocks that contain a definition that has the
same name as that block. In fact, each shortcut template syntax is the shortcut of
an eponymous template.

As an example, imagine that a program needs to qualify types that are larger
than 20 bytes as too large. Such a qualification can be achieved by a constant bool
value inside a template block:

template isTooLarge(T)
{

enum isTooLarge = T.sizeof > 20;
}

Note how the names of both the template block and its only definition are the
same. This eponymous template is used by the shortcut syntax instead of the full
isTooLarge!int.isTooLarge:

writeln(isTooLarge!int);
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The highlighted part above is the same as the bool value inside the block. Since
the size of int is less than 20, the output of the code would be false.

That eponymous template can be defined by the shortcut syntax as well:

enum isTooLarge(T) = T.sizeof > 20;

77.2 Kinds of templates

Function, class, and struct templates
We have already covered function, class, and struct templates in the Templates
chapter (page 411) and we have seen many examples of them since then.

Member function templates
struct and class member functions can be templates as well. For example, the
following put() member function template would work with any parameter type
as long as that type is compatible with the operations inside the template (for this
specific template, it should be convertible to string):

class Sink
{

string content;

void put(T)(auto ref const T value)
{

import std.conv;
content ~= value.to!string;

}
}

However, as templates can have potentially infinite number of instantiations,
they cannot be virtual functions (page 342) because the compiler cannot know
which specific instantiations of a template to include in the interface.
(Accordingly, the abstract keyword cannot be used either.)

For example, although the presence of the put() template in the following
subclass may give the impression that it is overriding a function, it actually hides
the put name of the superclass (see name hiding in the alias chapter (page 428)):

class Sink
{

string content;

void put(T)(auto ref const T value)
{

import std.conv;
content ~= value.to!string;

}
}

class SpecialSink : Sink
{

/* The following template definition does not override
* the template instances of the superclass; it hides
* those names. */

void put(T)(auto ref const T value)
{

import std.string;
super.put(format("{%s}", value));

}
}

void fillSink(Sink sink)
{

/* The following function calls are not virtual. Because
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* parameter 'sink' is of type 'Sink', the calls will
* always be dispatched to Sink's 'put' template
* instances. */

sink.put(42);
sink.put("hello");

}

void main()
{

auto sink = new SpecialSink();
fillSink(sink);

import std.stdio;
writeln(sink.content);

}

As a result, although the object actually is a SpecialSink, both of the calls inside
fillSink() are dispatched to Sink and the content does not contain the curly
brackets that SpecialSink.put() inserts:

42hello ← Sink's behavior, not SpecialSink's

Union templates
Union templates are similar to struct templates. The shortcut syntax is available
for them as well.

As an example, let's design a more general version of the IpAdress union that
we have seen in the Unions chapter (page 518). There, the value of the IPv4
address was kept as a uint member in that earlier version of IpAdress, and the
element type of the segment array was ubyte:

union IpAddress
{

uint value;
ubyte[4] bytes;

}

The bytes array was an easy access to the four segments of the IPv4 address.
The same concept can be implemented in a more general way as the following

union template:

union SegmentedValue(ActualT, SegmentT)
{

ActualT value;
SegmentT[/* number of segments */] segments;

}

That template would allow specifying the types of the value and its segments
freely.

The number of segments that are needed depends on the types of the actual
value and the segments. Since an IPv4 address has four ubyte segments, that
value was hard-coded as 4 in the earlier definition of IpAddress. For the
SegmentedValue template, the number of segments must be computed at
compile time when the template is instantiated for the two specific types.

The following eponymous template takes advantage of the .sizeof properties
of the two types to calculate the number of segments needed:

template segmentCount(ActualT, SegmentT)
{

enum segmentCount = ((ActualT.sizeof + (SegmentT.sizeof - 1))
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/ SegmentT.sizeof);
}

The shortcut syntax may be more readable:

enum segmentCount(ActualT, SegmentT) =
((ActualT.sizeof + (SegmentT.sizeof - 1))
/ SegmentT.sizeof);

Note: The expression SegmentT.sizeof - 1 is for when the sizes of the types cannot
be divided evenly. For example, when the actual type is 5 bytes and the segment type is 2
bytes, even though a total of 3 segments are needed, the result of the integer division 5/2
would incorrectly be 2.

The definition of the union template is now complete:

union SegmentedValue(ActualT, SegmentT)
{

ActualT value;
SegmentT[segmentCount!(ActualT, SegmentT)] segments;

}

Instantiation of the template for uint and ubyte would be the equivalent of the
earlier definition of IpAddress:

import std.stdio;

void main()
{

auto address = SegmentedValue!(uint, ubyte)(0xc0a80102);

foreach (octet; address.segments) {
write(octet, ' ');

}
}

The output of the program is the same as the one in the Unions chapter (page 518):

2 1 168 192

To demonstrate the flexibility of this template, let's imagine that it is required to
access the parts of the IPv4 address as two ushort values. It would be as easy as
providing ushort as the segment type:

auto address = SegmentedValue!(uint, ushort)(0xc0a80102);

Although unusual for an IPv4 address, the output of the program would consist
of two ushort segment values:

258 49320

Interface templates
Interface templates provide flexibility on the types that are used on an interface
(as well as values such as sizes of fixed-length arrays and other features of an
interface).

Let's define an interface for colored objects where the type of the color is
determined by a template parameter:

interface ColoredObject(ColorT)
{
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void paint(ColorT color);
}

That interface template requires that its subtypes must define the paint()
function but it leaves the type of the color flexible.

A class that represents a frame on a web page may choose to use a color type
that is represented by its red, green, and blue components:

struct RGB
{

ubyte red;
ubyte green;
ubyte blue;

}

class PageFrame : ColoredObject!RGB
{

void paint(RGB color)
{

// ...
}

}

On the other hand, a class that uses the frequency of light can choose a
completely different type to represent color:

alias Frequency = double;

class Bulb : ColoredObject!Frequency
{

void paint(Frequency color)
{

// ...
}

}

However, as explained in the Templates chapter (page 411), "every different
instantiation of a template is a different type". Accordingly, the interfaces
ColoredObject!RGB and ColoredObject!Frequency are unrelated interfaces,
and PageFrame and Bulb are unrelated classes.

77.3 Kinds of template parameters
The template parameters that we have seen so far have all been type parameters.
So far, parameters like T and ColorT all represented types. For example, T meant
int, double, Student, etc. depending on the instantiation of the template.

There are other kinds of template parameters: value, this, alias, and tuple.

Type template parameters
This section is only for completeness. All of the templates that we seen so far had
type parameters.

Value template parameters
Value template parameters allow flexibility on certain values used in the template
implementation.

Since templates are a compile-time feature, the values for the value template
parameters must be known at compile time; values that must be calculated at run
time cannot be used.

To see the advantage of value template parameters, let's start with a set of
structs representing geometric shapes:
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struct Triangle
{

Point[3] corners;
// ...
}

struct Rectangle
{

Point[4] corners;
// ...
}

struct Pentagon
{

Point[5] corners;
// ...
}

Let's assume that other member variables and member functions of those types
are exactly the same and that the only difference is the value that determines the
number of corners.

Value template parameters help in such cases. The following struct template is
sufficient to represent all of the types above and more:

struct Polygon(size_t N)
{

Point[N] corners;
// ...
}

The only template parameter of that struct template is a value named N of type
size_t. The value N can be used as a compile-time constant anywhere inside the
template.

That template is flexible enough to represent shapes of any sides:

auto centagon = Polygon!100();

The following aliases correspond to the earlier struct definitions:

alias Triangle = Polygon!3;
alias Rectangle = Polygon!4;
alias Pentagon = Polygon!5;

// ...

auto triangle = Triangle();
auto rectangle = Rectangle();
auto pentagon = Pentagon();

As long as the value is known at compile time, a value template parameter can be
of any arithmetic or string type.

The following example uses a string template parameter to represent an XML
tag to produce a simple XML output:

• First the tag between the < > characters: <tag>
• Then the value
• Finally the tag between the </ > characters: </tag>

For example, an XML tag representing location 42 would be printed as
<location>42</location>.
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import std.string;

class XmlElement(string tag)
{

double value;

this(double value)
{

this.value = value;
}

override string toString() const
{

return format("<%s>%s</%s>", tag, value, tag);
}

}

Note that the template parameter is not about a type that is used in the
implementation of the template, rather it is about a string value. That value can
be used anywhere inside the template as a string.

The XML elements that a program needs can be defined as aliases as in the
following code:

alias Location = XmlElement!"location";
alias Temperature = XmlElement!"temperature";
alias Weight = XmlElement!"weight";

void main()
{

Object[] elements;

elements ~= new Location(1);
elements ~= new Temperature(23);
elements ~= new Weight(78);

writeln(elements);
}

The output:

[<location>1</location>, <temperature>23</temperature>, <weight>78</weight>]

Value template parameters can have default values as well. For example, the
following struct template represents points in a multi-dimensional space where
the default number of dimensions is 3:

struct Point(T, size_t dimension = 3)
{

T[dimension] coordinates;
}

That template can be used without specifying the dimension template parameter:

Point!double center; // a point in 3-dimensional space

The number of dimensions can still be specified when needed:

Point!(int, 2) point; // a point on a surface

Special keywords as value parameters
The following special keywords act like compile-time literals with values
depending on where they appear in code:

• __MODULE__: Name of the module
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• __FILE__: Name of the source file
• __LINE__: Line number
• __FUNCTION__: Name of the function
• __PRETTY_FUNCTION__: Full signature of the function

Although they are useful in non-templated code as well, they work a little
differently when used as default template arguments. When they are used inside
template code, their values point at the template code itself:

import std.stdio;

void func(T)(T parameter)
{

writefln("We are in function %s at file %s, line %s.",
__FUNCTION__, __FILE__, __LINE__); // ← line 6

}

void main()
{

func(42);
}

The reported line 6 happens to be inside the template function:

We are in function deneme.func!int.func at file deneme.d, line 6.

However, sometimes it is more interesting to determine the line where a template
is instantiated at, not where the definition of the template is. When these special
keywords are provided as default template arguments, then their values point at
where the template is instantiated at:

import std.stdio;

void func(T,
string functionName = __FUNCTION__,
string file = __FILE__,
size_t line = __LINE__)(T parameter)

{
writefln("Instantiated in function %s at file %s, line %s.",

functionName, file, line);
}

void main()
{

func(42); // ← line 14
}

This time the special keywords refer to main(), the caller of the template
function:

Instantiated in function deneme.main at file deneme.d, line 14.

We will use __FUNCTION__ below in a multi-dimensional operator overloading
example.

this template parameters for member functions
Member functions can be templates as well. Their template parameters have the
same meanings as other templates.

However, unlike other templates, member function template parameters can
also be this parameters. In that case, the identifier that comes after the this
keyword represents the exact type of the this reference of the object. (this
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reference means the object itself, as is commonly written in constructors as
this.member = value.)

struct MyStruct(T)
{

void foo(this OwnType)() const
{

writeln("Type of this object: ", OwnType.stringof);
}

}

The OwnType template parameter is the actual type of the object that the member
function is called on:

auto m = MyStruct!int();
auto c = const(MyStruct!int)();
auto i = immutable(MyStruct!int)();

m.foo();
c.foo();
i.foo();

The output:

Type of this object: MyStruct!int
Type of this object: const(MyStruct!int)
Type of this object: immutable(MyStruct!int)

As you can see, the type includes the corresponding type of T as well as the type
qualifiers like const and immutable.

The struct (or class) need not be a template. this template parameters can
appear on member function templates of non-templated types as well.
this template parameters can be useful in template mixins as well, which we

will see two chapters later.

alias template parameters
alias template parameters can correspond to any symbol or expression that is
used in the program. The only constraint on such a template argument is that the
argument must be compatible with its use inside the template.
filter() and map() use alias template parameters to determine the

operations that they execute.
Let's see a simple example on a struct template that is for modifying an

existing variable. The struct template takes the variable as an alias parameter:

struct MyStruct(alias variable)
{

void set(int value)
{

variable = value;
}

}

The member function simply assigns its parameter to the variable that the
struct template is instantiated with. That variable must be specified during the
instantiation of the template:

int x = 1;
int y = 2;

auto object = MyStruct!x();
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object.set(10);
writeln("x: ", x, ", y: ", y);

In that instantiation, the variable template parameter corresponds to the
variable x:

x: 10, y: 2

Conversely, MyStruct!y instantiation of the template would associate variable
with y.

Let's now have an alias parameter that represents a callable entity, similar to
filter() and map():

void caller(alias func)()
{

write("calling: ");
func();

}

As seen by the () parentheses, caller() uses its template parameter as a
function. Additionally, since the parentheses are empty, it must be legal to call the
function without specifying any arguments.

Let's have the following two functions that match that description. They can
both represent func because they can be called as func() in the template:

void foo()
{

writeln("foo called.");
}

void bar()
{

writeln("bar called.");
}

Those functions can be used as the alias parameter of caller():

caller!foo();
caller!bar();

The output:

calling: foo called.
calling: bar called.

As long as it matches the way it is used in the template, any symbol can be used as
an alias parameter. As a counter example, using an int variable with caller()
would cause a compilation error:

int variable;
caller!variable(); // ← compilation ERROR

The compilation error indicates that the variable does not match its use in the
template:

Error: function expected before (), not variable of type int

Although the mistake is with the caller!variable instantiation, the
compilation error necessarily points at func() inside the caller() template
because from the point of view of the compiler the error is with trying to call
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variable as a function. One way of dealing with this issue is to use template
constraints, which we will see below.

If the variable supports the function call syntax perhaps because it has an
opCall() overload or it is a function literal, it would still work with the caller()
template. The following example demonstrates both of those cases:

class C
{

void opCall()
{

writeln("C.opCall called.");
}

}

// ...

auto o = new C();
caller!o();

caller!({ writeln("Function literal called."); })();

The output:

calling: C.opCall called.
calling: Function literal called.

alias parameters can be specialized as well. However, they have a different
specialization syntax. The specialized type must be specified between the alias
keyword and the name of the parameter:

import std.stdio;

void foo(alias variable)()
{

writefln("The general definition is using '%s' of type %s.",
variable.stringof, typeof(variable).stringof);

}

void foo(alias int i)()
{

writefln("The int specialization is using '%s'.",
i.stringof);

}

void foo(alias double d)()
{

writefln("The double specialization is using '%s'.",
d.stringof);

}

void main()
{

string name;
foo!name();

int count;
foo!count();

double length;
foo!length();

}

Also note that alias parameters make the names of the actual variables available
inside the template:
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The general definition is using 'name' of type string.
The int specialization is using 'count'.
The double specialization is using 'length'.

Tuple template parameters
We have seen in the Variable Number of Parameters chapter (page 279) that
variadic functions can take any number and any type of parameters. For
example, writeln() can be called with any number of parameters of any type.
Templates can be variadic as well. A template parameter that consists of a name
followed by ... allows any number and types of parameters at that parameter's
position. Such parameters appear as a tuple inside the template, which can be
used like a TypeTuple.

Let's see an example of this with a template that simply prints information
about every template argument that it is instantiated with:

void info(T...)(T args)
{

// ...
}

The template parameter T... makes info a variadic template. Both T and args are
tuples:

• T represents the types of the arguments.
• args represents the arguments themselves.

The following example instantiates that function template with three values of
three different types:

import std.stdio;

// ...

void main()
{

info(1, "abc", 2.3);
}

The following implementation simply prints information about the arguments by
iterating over them in a foreach loop:

void info(T...)(T args)
{

// 'args' is being used like a tuple:
foreach (i, arg; args) {

writefln("%s: %s argument %s",
i, typeof(arg).stringof, arg);

}
}

The output:

0: int argument 1
1: string argument abc
2: double argument 2.3

Note that instead of obtaining the type of each argument by typeof(arg), we
could have used T[i] as well.
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We know that template arguments can be deduced for function templates.
That's why the compiler deduces the types as int, string, and double in the
previous program.

However, it is also possible to specify template parameters explicitly. For
example, std.conv.to takes the destination type as an explicit template
parameter:

to!string(42);

When template parameters are explicitly specified, they can be a mixture of
value, type, and other kinds. That flexibility makes it necessary to be able to
determine whether each template parameter is a type or not, so that the body of
the template can be coded accordingly. That is achieved by treating the arguments
as a TypeTuple.

Let's see an example of this in a function template that produces struct
definitions as source code in text form. Let's have this function return the
produced source code as string. This function can first take the name of the
struct followed by the types and names of the members specified as pairs:

import std.stdio;

void main()
{

writeln(structDefinition!("Student",
string, "name",
int, "id",
int[], "grades")());

}

That structDefinition instantiation is expected to produce the following
string:

struct Student
{

string name;
int id;
int[] grades;

}

Note: Functions that produce source code are useful with the mixin keyword, which we
will see in a later chapter.

The following is an implementation that produces the desired output. Note
how the function template makes use of the is expression. Remember that the
expression is (arg) produces true when arg is a valid type:

import std.string;

string structDefinition(string name, Members...)()
{

/* Ensure that members are specified as pairs: first the
* type then the name. */

static assert((Members.length % 2) == 0,
"Members must be specified as pairs.");

/* The first part of the struct definition. */
string result = "struct " ~ name ~ "\n{\n";

foreach (i, arg; Members) {
static if (i % 2) {

/* The odd numbered arguments should be the names
* of members. Instead of dealing with the names
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* here, we use them as Members[i+1] in the 'else'
* clause below.
*
* Let's at least ensure that the member name is
* specified as a string. */

static assert (is (typeof(arg) == string),
"Member name " ~ arg.stringof ~
" is not a string.");

} else {
/* In this case 'arg' is the type of the
* member. Ensure that it is indeed a type. */

static assert (is (arg),
arg.stringof ~ " is not a type.");

/* Produce the member definition from its type and
* its name.
*
* Note: We could have written 'arg' below instead
* of Members[i]. */

result ~= format("    %s %s;\n",
Members[i].stringof, Members[i+1]);

}
}

/* The closing bracket of the struct definition. */
result ~= "}";

return result;
}

import std.stdio;

void main()
{

writeln(structDefinition!("Student",
string, "name",
int, "id",
int[], "grades")());

}

77.4 Template specializations
We have seen template specializations in the Templates chapter (page 411). Like
type parameters, other kinds of template parameters can be specialized as well.
The following is both the general definition of a template and its specialization
for 0:

void foo(int value)()
{

// ... general definition ...
}

void foo(int value : 0)()
{

// ... special definition for zero ...
}

We will take advantage of template specializations in the meta programming
section below.

77.5 Meta programming
As they are about code generation, templates are among the higher level features
of D. A template is indeed code that generates code. Writing code that generates
code is called meta programming.

More Templates

547



Due to templates being compile-time features, some operations that are
normally executed at runtime can be moved to compile time as template
instantiations.

(Note: Compile time function execution (CTFE) is another feature that achieves the
same goal. We will see CTFE in a later chapter.)

Executing templates at compile time is commonly based on recursive template
instantiations.

To see an example of this, let's first consider a regular function that calculates
the sum of numbers from 0 to a specific value. For example, when its argument is
4, this fuction should return the result of 0+1+2+3+4:

int sum(int last)
{

int result = 0;

foreach (value; 0 .. last + 1) {
result += value;

}

return result;
}

That is an iterative implementation of the function. The same function can be
implemented by recursion as well:

int sum(int last)
{

return (last == 0
? last
: last + sum(last - 1));

}

The recursive function returns the sum of the last value and the previous sum. As
you can see, the function terminates the recursion by treating the value 0
specially.

Functions are normally run-time features. As usual, sum() can be executed at
run time:

writeln(sum(4));

When the result is needed at compile time, one way of achieving the same
calculation is by defining a function template. In this case, the parameter must be
a template parameter, not a function parameter:

// WARNING: This code is incorrect.
int sum(int last)()
{

return (last == 0
? last
: last + sum!(last - 1)());

}

That function template instantiates itself by last - 1 and tries to calculate the
sum again by recursion. However, that code is incorrect.

As the ternary operator would be compiled to be executed at run time, there is
no condition check that terminates the recursion at compile time:

writeln(sum!4()); // ← compilation ERROR
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The compiler detects that the template instances would recurse infinitely and
stops at an arbitrary number of recursions:

Error: template instance deneme.sum!(-296) recursive expansion

Considering the difference between the template argument 4 and -296, the
compiler restricts template expansion at 300 by default.

In meta programming, recursion is terminated by a template specialization.
The following specialization for 0 produces the expected result:

// The general definition
int sum(int last)()
{

return last + sum!(last - 1)();
}

// The special definition for zero
int sum(int last : 0)()
{

return 0;
}

The following is a program that tests sum():

import std.stdio;

void main()
{

writeln(sum!4());
}

Now the program compiles successfully and produces the result of 4+3+2+1+0:

10

An important point to make here is that the function sum!4() is executed entirely
at compile time. The compiled code is the equivalent of calling writeln() with
literal 10:

writeln(10); // the equivalent of writeln(sum!4())

As a result, the compiled code is as fast and simple as can be. Although the value
10 is still calculated as the result of 4+3+2+1+0, the entire calculation happens at
compile time.

The previous example demonstrates one of the benefits of meta programming:
moving operations from run time to compile time. CTFE obviates some of the
idioms of meta programming in D.

77.6 Compile-time polymorphism
In object oriented programming (OOP), polymorphism is achieved by inheritance.
For example, if a function takes an interface, it accepts objects of any class that
inherits that interface.

Let's recall an earlier example from a previous chapter:

import std.stdio;

interface SoundEmitter
{

string emitSound();
}
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class Violin : SoundEmitter
{

string emitSound()
{

return "♩♪♪";
}

}

class Bell : SoundEmitter
{

string emitSound()
{

return "ding";
}

}

void useSoundEmittingObject(SoundEmitter object)
{

// ... some operations ...
writeln(object.emitSound());
// ... more operations ...

}

void main()
{

useSoundEmittingObject(new Violin);
useSoundEmittingObject(new Bell);

}

useSoundEmittingObject() is benefiting from polymorphism. It takes a
SoundEmitter so that it can be used with any type that is derived from that
interface.

Since working with any type is inherent to templates, they can be seen as
providing a kind of polymorphism as well. Being a compile-time feature, the
polymorphism that templates provide is called compile-time polymorphism.
Conversely, OOP's polymorphism is called run-time polymorphism.

In reality, neither kind of polymorphism allows being used with any type
because the types must satisfy certain requirements.

Run-time polymorphism requires that the type implements a certain interface.
Compile-time polymorphism requires that the type is compatible with how it is

used by the template. As long as the code compiles, the template argument can be
used with that template. (Note: Optionally, the argument must satisfy template
constraints as well. We will see template constraints later below.)

For example, if useSoundEmittingObject() were implemented as a function
template instead of a function, it could be used with any type that supported the
object.emitSound() call:

void useSoundEmittingObject(T)(T object)
{

// ... some operations ...
writeln(object.emitSound());
// ... more operations ...

}

class Car
{

string emitSound()
{

return "honk honk";
}

}

// ...
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useSoundEmittingObject(new Violin);
useSoundEmittingObject(new Bell);
useSoundEmittingObject(new Car);

Note that although Car has no inheritance relationship with any other type, the
code compiles successfully, and the emitSound() member function of each type
gets called.

77.7 Code bloat
The code generated by the compiler is different for every different argument of a
type parameter, of a value parameter, etc.

The reason for that can be seen by considering int and double as type
template arguments. Each type would have to be processed by different kinds of
CPU registers. For that reason, the same template needs to be compiled differently
for different template arguments. In other words, the compiler needs to generate
different code for each instantiation of a template.

For example, if useSoundEmittingObject() were implemented as a template,
it would be compiled as many times as the number of different instantiations of
it.

Because it results in larger program size, this effect is called code bloat.
Although this is not a problem in most programs, it is an effect of templates that
must be known.

Conversely, non-templated version of useSoundEmittingObject() would not
have any code repetition. The compiler would compile that function just once and
execute the same code for all types of the SoundEmitter interface. In run-time
polymorphism, having the same code behave differently for different types is
achieved by function pointers on the background. Although function pointers
have a small cost at run time, that cost is not significant in most programs.

Since both code bloat and run-time polymorphism have effects on program
performance, it cannot be known beforehand whether run-time polymorphism
or compile-time polymorphism would be a better approach for a specific
program.

77.8 Template constraints
The fact that templates can be instantiated with any argument yet not every
argument is compatible with every template brings an inconvenience. If a
template argument is not compatible with a particular template, the
incompatibility is necessarily detected during the compilation of the template
code for that argument. As a result, the compilation error points at a line inside
the template implementation.

Let's see this by using useSoundEmittingObject() with a type that does not
support the object.emitSound() call:

class Cup
{

// ... does not have emitSound() ...
}

// ...

useSoundEmittingObject(new Cup); // ← incompatible type

Although arguably the error is with the code that uses the template with an
incompatible type, the compilation error points at a line inside the template:
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void useSoundEmittingObject(T)(T object)
{

// ... some operations ...
writeln(object.emitSound()); // ← compilation ERROR
// ... more operations ...

}

An undesired consequence is that when the template is a part of a third-party
library module, the compilation error would appear to be a problem with the
library itself.

Note that this issue does not exist for interfaces: A function that takes an
interface can only be called with a type that implements that interface.
Attempting to call such a function with any other type is a compilation error at
the caller.

Template contraints are for disallowing incorrect instantiations of templates.
They are defined as logical expressions of an if condition right before the
template body:

void foo(T)()
if (/* ... constraints ... */)

{
// ...

}

A template definition is considered by the compiler only if its constraints evaluate
to true for a specific instantiation of the template. Otherwise, the template
definition is ignored for that use.

Since templates are a compile-time feature, template constraints must be
evaluable at compile time. The is expression that we have seen in the is
Expression chapter (page 483) is commonly used in template constraints. We will
use the is expression in the following examples as well.

Tuple parameter of single element
Sometimes the single parameter of a template needs to be one of type, value, or
alias kinds. That can be achieved by a tuple parameter of length one:

template myTemplate(T...)
if (T.length == 1)

{
static if (is (T[0])) {

// The single parameter is a type
enum bool myTemplate = /* ... */;

} else {
// The single parameter is some other kind
enum bool myTemplate = /* ... */;

}
}

Some of the templates of the std.traits module take advantage of this idiom.
We will see std.traits in a later chapter.

Named constraints
Sometimes the constraints are complex, making it hard to understand the
requirements of template parameters. This complexity can be handled by an
idiom that effectively gives names to constraints. This idiom combines four
features of D: anonymous functions, typeof, the is expression, and eponymous
templates.
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Let's see this on a function template that has a type parameter. The template
uses its function parameter in specific ways:

void use(T)(T object)
{

// ...
object.prepare();
// ...
object.fly(42);
// ...
object.land();
// ...

}

As is obvious from the implementation of the template, the types that this
function can work with must support three specific function calls on the object:
prepare(), fly(42), and land().

One way of specifying a template constraint for that type is by the is and
typeof expressions for each function call inside the template:

void use(T)(T object)
if (is (typeof(object.prepare())) &&

is (typeof(object.fly(1))) &&
is (typeof(object.land())))

{
// ...

}

I will explain that syntax below. For now, accept the whole construct of
is (typeof(object.prepare())) to mean whether the type supports the
.prepare() call.

Although such constraints achieve the desired goal, sometimes they are too
complex to be readable. Instead, it is possible to give a more descriptive name to
the whole constraint:

void use(T)(T object)
if (canFlyAndLand!T)

{
// ...

}

That constraint is more readable because it is now more clear that the template is
designed to work with types that can fly and land.

Such constraints are achieved by an idiom that is implemented similar to the
following eponymous template:

template canFlyAndLand(T)
{

enum canFlyAndLand = is (typeof(
{

T object;
object.prepare(); // should be preparable for flight
object.fly(1); // should be flyable for a certain distance
object.land(); // should be landable

}()));
}

The D features that take part in that idiom and how they interact with each other
are explained below:

template canFlyAndLand(T)
{
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//        (6)        (5)  (4)
enum canFlyAndLand = is (typeof(
{ // (1)

T object; // (2)
object.prepare();
object.fly(1);
object.land();

// (3)
}()));

}

1. Anonymous function: We have seen anonymous functions in the
Function Pointers, Delegates, and Lambdas chapter (page 490). The
highlighted curly brackets above define an anonymous function.

2. Function block: The function block uses the type as it is supposed to be
used in the actual template. First an object of that type is defined and
then that object is used in specific ways. (This code never gets executed;
see below.)

3. Evaluation of the function: The empty parentheses at the end of an
anonymous function normally execute that function. However, since
that call syntax is within a typeof, it is never executed.

4. The typeof expression: typeof produces the type of an expression.
An important fact about typeof is that it never executes the

expression. Rather, it produces the type of the expression if that
expression would be executed:

int i = 42;
typeof(++i) j; // same as 'int j;'

assert(i == 42); // ++i has not been executed

As the previous assert proves, the expression ++i has not been
executed. typeof has merely produced the type of that expression as
int.

If the expression that typeof receives is not valid, typeof produces
no type at all (not even void). So, if the anonymous function inside
canFlyAndLand can be compiled successfully for T, typeof produces a
valid type. Otherwise, it produces no type at all.

5. The is expression: We have seen many different uses of the is
expression in the is Expression chapter (page 483). The is (Type)
syntax produces true if Type is valid:

int i;
writeln(is (typeof(i))); // true
writeln(is (typeof(nonexistentSymbol))); // false

Although the second typeof above receives a nonexistent symbol, the
compiler does not emit a compilation error. Rather, the effect is that the
typeof expression does not produce any type, so the is expression
produces false:

true
false

More Templates

554



6. Eponymous template: As described above, since the canFlyAndLand
template contains a definition by the same name, the template
instantiation is that definition itself.

In the end, use() gains a more descriptive constraint:

void use(T)(T object)
if (canFlyAndLand!T)

{
// ...

}

Let's try to use that template with two types, one that satisfies the constraint and
one that does not satisfy the constraint:

// A type that does match the template's operations
class ModelAirplane
{

void prepare()
{}

void fly(int distance)
{}

void land()
{}

}

// A type that does not match the template's operations
class Pigeon
{

void fly(int distance)
{}

}

// ...

use(new ModelAirplane); // ← compiles
use(new Pigeon); // ← compilation ERROR

Named or not, since the template has a constraint, the compilation error points at
the line where the template is used rather than where it is implemented.

77.9 Using templates in multi-dimensional operator overloading
We have seen in the Operator Overloading chapter (page 313) that opDollar,
opIndex, and opSlice are for element indexing and slicing. When overloaded for
single-dimensional collections, these operators have the following
responsibilities:

• opDollar: Returns the number of elements of the collection.
• opSlice: Returns an object that represents some or all of the elements of

the collection.
• opIndex: Provides access to an element.

Those operator functions have template versions as well, which have different
responsibilities from the non-templated ones above. Note especially that in multi-
dimensional operator overloading opIndex assumes the responsibility of
opSlice.

• opDollar template: Returns the length of a specific dimension of the
collection. The dimension is determined by the template parameter:
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size_t opDollar(size_t dimension)() const
{

// ...
}

• opSlice template: Returns the range information that specifies the
range of elements (e.g. the begin and end values in
array[begin..end]). The information can be returned as
Tuple!(size_t, size_t) or an equivalent type. The dimension that
the range specifies is determined by the template parameter:

Tuple!(size_t, size_t) opSlice(size_t dimension)(size_t begin,
size_t end)

{
return tuple(begin, end);

}

• opIndex template: Returns a range object that represents a part of the
collection. The range of elements are determined by the template
parameters:

Range opIndex(A...)(A arguments)
{

// ...
}

opIndexAssign and opIndexOpAssign have template versions as well, which
operate on a range of elements of the collection.

The user-defined types that define these operators can be used with the multi-
dimensional indexing and slicing syntax:

// Assigns 42 to the elements specified by the
// indexing and slicing arguments:
m[a, b..c, $-1, d..e] = 42;

//              ↑   ↑     ↑    ↑
// dimensions:  0   1     2    3

Such expressions are first converted to the ones that call the operator functions.
The conversions are performed by replacing the $ characters with calls to
opDollar!dimension(), and the index ranges with calls to
opSlice!dimension(begin, end). The length and range informations that are
returned by those calls are in turn used as arguments when calling e.g.
opIndexAssign. Accordingly, the expression above is executed as the following
equivalent (the dimension values are highlighted):

// The equivalent of the above:
m.opIndexAssign(

42, // ← value to assign
a, // ← argument for dimension 0
m.opSlice!1(b, c), // ← argument for dimension 1
m.opDollar!2() - 1, // ← argument for dimension 2
opSlice!3(d, e)); // ← argument for dimension 3

Consequently, opIndexAssign determines the range of elements from the
arguments.

Multi-dimensional operator overloading example
The following Matrix example demonstrates how these operators can be
overloaded for a two-dimensional type.
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Note that this code can be implemented in more efficient ways. For example,
instead of constructing a single-element sub-matrix even when operating on a
single element e.g. by m[i, j], it could apply the operation directly on that
element.

Additionally, the writeln(__FUNCTION__) expressions inside the functions
have nothing to do with the behavior of the code. They merely help expose the
functions that get called behind the scenes for different operator usages.

Also note that the correctness of dimension values are enforced by template
constraints.

import std.stdio;
import std.format;
import std.string;

/* Works as a two-dimensional int array. */
struct Matrix
{
private:

int[][] rows;

/* Represents a range of rows or columns. */
struct Range
{

size_t begin;
size_t end;

}

/* Returns the sub-matrix that is specified by the row and
* column ranges. */

Matrix subMatrix(Range rowRange, Range columnRange)
{

writeln(__FUNCTION__);

int[][] slices;

foreach (row; rows[rowRange.begin .. rowRange.end]) {
slices ~= row[columnRange.begin .. columnRange.end];

}

return Matrix(slices);
}

public:

this(size_t height, size_t width)
{

writeln(__FUNCTION__);

rows = new int[][](height, width);
}

this(int[][] rows)
{

writeln(__FUNCTION__);

this.rows = rows;
}

void toString(void delegate(const(char)[]) sink) const
{

formattedWrite(sink, "%(%(%5s %)\n%)", rows);
}

/* Assigns the specified value to each element of the
* matrix. */

Matrix opAssign(int value)
{

writeln(__FUNCTION__);
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foreach (row; rows) {
row[] = value;

}

return this;
}

/* Uses each element and a value in a binary operation
* and assigns the result back to that element. */

Matrix opOpAssign(string op)(int value)
{

writeln(__FUNCTION__);

foreach (row; rows) {
mixin ("row[] " ~ op ~ "= value;");

}

return this;
}

/* Returns the length of the specified dimension. */
size_t opDollar(size_t dimension)() const

if (dimension <= 1)
{

writeln(__FUNCTION__);

static if (dimension == 0) {
/* The length of dimension 0 is the length of the
* 'rows' array. */

return rows.length;

} else {
/* The length of dimension 1 is the lengths of the
* elements of 'rows'. */

return rows.length ? rows[0].length : 0;
}

}

/* Returns an object that represents the range from
* 'begin' to 'end'.
*
* Note: Although the 'dimension' template parameter is
* not used here, that information can be useful for other
* types. */

Range opSlice(size_t dimension)(size_t begin, size_t end)
if (dimension <= 1)

{
writeln(__FUNCTION__);

return Range(begin, end);
}

/* Returns a sub-matrix that is defined by the
* arguments. */

Matrix opIndex(A...)(A arguments)
if (A.length <= 2)

{
writeln(__FUNCTION__);

/* We start with ranges that represent the entire
* matrix so that the parameter-less use of opIndex
* means "all of the elements". */

Range[2] ranges = [ Range(0, opDollar!0),
Range(0, opDollar!1) ];

foreach (dimension, a; arguments) {
static if (is (typeof(a) == Range)) {

/* This dimension is already specified as a
* range like 'matrix[begin..end]', which can
* be used as-is. */

ranges[dimension] = a;
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} else static if (is (typeof(a) : size_t)) {
/* This dimension is specified as a single
* index value like 'matrix[i]', which we want
* to represent as a single-element range. */

ranges[dimension] = Range(a, a + 1);

} else {
/* We don't expect other types. */
static assert(

false, format("Invalid index type: %s",
typeof(a).stringof));

}
}

/* Return the sub-matrix that is specified by
* 'arguments'. */

return subMatrix(ranges[0], ranges[1]);
}

/* Assigns the specified value to each element of the
* sub-matrix. */

Matrix opIndexAssign(A...)(int value, A arguments)
if (A.length <= 2)

{
writeln(__FUNCTION__);

Matrix subMatrix = opIndex(arguments);
return subMatrix = value;

}

/* Uses each element of the sub-matrix and a value in a
* binary operation and assigns the result back to that
* element. */

Matrix opIndexOpAssign(string op, A...)(int value,
A arguments)

if (A.length <= 2)
{

writeln(__FUNCTION__);

Matrix subMatrix = opIndex(arguments);
mixin ("return subMatrix " ~ op ~ "= value;");

}
}

/* Executes the expression that is specified as a string, and
* prints the result as well as the new state of the
* matrix. */

void execute(string expression)(Matrix m)
{

writefln("\n--- %s ---", expression);
mixin ("auto result = " ~ expression ~ ";");
writefln("result:\n%s", result);
writefln("m:\n%s", m);

}

void main()
{

enum height = 10;
enum width = 8;

auto m = Matrix(height, width);

int counter = 0;
foreach (row; 0 .. height) {

foreach (column; 0 .. width) {
writefln("Initializing %s of %s",

counter + 1, height * width);

m[row, column] = counter;
++counter;

}
}

More Templates

559



writeln(m);

execute!("m[1, 1] = 42")(m);
execute!("m[0, 1 .. $] = 43")(m);
execute!("m[0 .. $, 3] = 44")(m);
execute!("m[$-4 .. $-1, $-4 .. $-1] = 7")(m);

execute!("m[1, 1] *= 2")(m);
execute!("m[0, 1 .. $] *= 4")(m);
execute!("m[0 .. $, 0] *= 10")(m);
execute!("m[$-4 .. $-2, $-4 .. $-2] -= 666")(m);

execute!("m[1, 1]")(m);
execute!("m[2, 0 .. $]")(m);
execute!("m[0 .. $, 2]")(m);
execute!("m[0 .. $ / 2, 0 .. $ / 2]")(m);

execute!("++m[1..3, 1..3]")(m);
execute!("--m[2..5, 2..5]")(m);

execute!("m[]")(m);
execute!("m[] = 20")(m);
execute!("m[] /= 4")(m);
execute!("(m[] += 5) /= 10")(m);

}

77.10 Summary
The earlier template chapter had the following reminders:

• Templates define the code as a pattern, for the compiler to generate
instances of it according to the actual uses in the program.

• Templates are a compile-time feature.
• Specifying template parameter lists is sufficient to make function,

struct, and class definitions templates.
• Template arguments can be specified explicitly after an exclamation

mark. The parenteses are not necessary when there is only one token
inside the parenteses.

• Each different instantiation of a template is a different type.
• Template arguments can only be deduced for function templates.
• Templates can be specialized for the type that is after the : character.
• Default template arguments are specified after the = character.

This chapter added the following concepts:

• Templates can be defined by the full syntax or the shortcut syntax.
• The scope of the template is a name space.
• A template that contains a definition with the same name as the

template is called an eponymous template. The template represents that
definition.

• Templates can be of functions, classes, structs, unions, and interfaces,
and every template body can contain any number of definitions.

• Template parameters can be of type, value, this, alias, and tuple kinds.
• Templates can be specialized for particular arguments.
• Meta programming is a way of executing operations at compile time.
• Templates enable compile-time polymorphism.
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• Separate code generation for different instantiations can cause code
bloat.

• Template constraints limit the uses of templates for specific template
arguments. They help move compilation errors from the
implementations of templates to where the templates are actually used
incorrectly.

• It is more readable to give names to template constraints.
• The template versions of opDollar, opSlice, opIndex, opIndexAssign,

and opIndexOpAssign are for multi-dimensional indexing and slicing.
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78 More Functions

Functions have been covered in the following chapters so far in the book:

• Functions (page 155)
• Function Parameters (page 178)
• Function Overloading (page 283)
• Function Pointers, Delegates, and Lambdas (page 490)

This chapter will cover more features of functions.

78.1 Return type attributes
Functions can be marked as auto, ref, inout, and auto ref. These attributes are
about return types of functions.

auto functions
The return types of auto functions need not be specified:

auto add(int first, double second)
{

double result = first + second;
return result;

}

The return type is deduced by the compiler from the return expression. Since the
type of result is double, the return type of add() is double.

ref functions
Normally, the expression that is returned from a function is copied to the caller's
context. ref specifies that the expression should be returned by-reference
instead.

For example, the following function returns the greater of its two parameters:

int greater(int first, int second)
{

return (first > second) ? first : second;
}

Normally, both the parameters and the return value of that function are copied:

import std.stdio;

void main()
{

int a = 1;
int b = 2;
int result = greater(a, b);
result += 10; // ← neither a nor b changes
writefln("a: %s, b: %s, result: %s", a, b, result);

}

Because the return value of greater() is copied to result, adding to result
affects only that variable; neither a nor b changes:

a: 1, b: 2, result: 12

ref parameters are passed by references instead of being copied. The same
keyword has the same effect on return values:
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ref int greater(ref int first, ref int second)
{

return (first > second) ? first : second;
}

This time, the returned reference would be an alias to one of the arguments and
mutating the returned reference would modify either a or b:

int a = 1;
int b = 2;
greater(a, b) += 10; // ← either a or b changes
writefln("a: %s, b: %s", a, b);

Note that the returned reference is incremented directly. As a result, the greater
of the two arguments changes:

a: 1, b: 12

Local reference requires a pointer: An important point is that although the
return type is marked as ref, a and b would still not change if the return value
were assigned to a local variable:

int result = greater(a, b);
result += 10; // ← only result changes

Although greater() returns a reference to a or b, that reference gets copied to
the local variable result, and again neither a nor b changes:

a: 1, b: 2, result: 12

For result be a reference to a or b, it has to be defined as a pointer:

int * result = &greater(a, b);
*result += 10;
writefln("a: %s, b: %s, result: %s", a, b, *result);

This time result would be a reference to either a or b and the mutation through
it would affect the actual variable:

a: 1, b: 12, result: 12

It is not possible to return a reference to a local variable: The ref return value is
an alias to one of the arguments that start their lives even before the function is
called. That means, regardless of whether a reference to a or b is returned, the
returned reference refers to a variable that is still alive.

Conversely, it is not possible to return a reference to a variable that is not going
to be alive upon leaving the function:

ref string parenthesized(string phrase)
{

string result = '(' ~ phrase ~ ')';
return result; // ← compilation ERROR

} // ← the lifetime of result ends here

The lifetime of local result ends upon leaving the function. For that reason, it is
not possible to return a reference to that variable:

Error: escaping reference to local variable result
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auto ref functions
auto ref helps with functions like parenthesized() above. Similar to auto, the
return type of an auto ref function is deduced by the compiler. Additionally, if
the returned expression can be a reference, that variable is returned by reference
as opposed to being copied.
parenthesized() can be compiled if the return type is auto ref:

auto ref string parenthesized(string phrase)
{

string result = '(' ~ phrase ~ ')';
return result; // ← compiles

}

The very first return statement of the function determines whether the function
returns a copy or a reference.
auto ref is more useful in function templates where template parameters

may be references or copies depending on context.

inout functions
The inout keyword appears for parameter and return types of functions. It works
like a template for mutable, const, and immutable.

Let's rewrite the previous function as taking string (i.e. immutable(char)[])
and returning string:

string parenthesized(string phrase)
{

return '(' ~ phrase ~ ')';
}

// ...

writeln(parenthesized("hello"));

As expected, the code works with that string argument:

(hello)

However, as it works only with immutable strings, the function can be seen as
being less useful than it could have been:

char[] m; // has mutable elements
m ~= "hello";
writeln(parenthesized(m)); // ← compilation ERROR

Error: function deneme.parenthesized (string phrase)
is not callable using argument types (char[])

The same limitation applies to const(char)[] strings as well.
One solution for this usability issue is to overload the function for mutable and

const strings:

char[] parenthesized(char[] phrase)
{

return '(' ~ phrase ~ ')';
}

const(char)[] parenthesized(const(char)[] phrase)
{

return '(' ~ phrase ~ ')';
}
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That design would be less than ideal due to the obvious code duplications.
Another solution would be to define the function as a template:

T parenthesized(T)(T phrase)
{

return '(' ~ phrase ~ ')';
}

Although that would work, this time it may be seen as being too flexible and
potentially requiring template constraints.
inout is very similar to the template solution. The difference is that not the

entire type but just the mutability attribute is deduced from the parameter:

inout(char)[] parenthesized(inout(char)[] phrase)
{

return '(' ~ phrase ~ ')';
}

inout transfers the deduced mutability attribute to the return type.
When the function is called with char[], it gets compiled as if inout is not

specified at all. On the other hand, when called with immutable(char)[] or
const(char)[], inout means immutable or const, respectively.

The following code demonstrates this by printing the type of the returned
expression:

char[] m;
writeln(typeof(parenthesized(m)).stringof);

const(char)[] c;
writeln(typeof(parenthesized(c)).stringof);

immutable(char)[] i;
writeln(typeof(parenthesized(i)).stringof);

The output:

char[]
const(char)[]
string

78.2 Behavioral attributes
pure, nothrow, and @nogc are about function behaviors.

pure functions
As we have seen in the Functions chapter (page 155), functions can produce return
values and side effects. When possible, return values should be preferred over
side effects because functions that do not have side effects are easier to make
sense of, which in turn helps with program correctness and maintainability.

A similar concept is the purity of a function. Purity is defined differently in D
from most other programming languages: In D, a function that does not access
mutable global or static state is pure. (Since input and output streams are
considered as mutable global state, pure functions cannot perform input or
output operations either.)

In other words, a function is pure if it produces its return value and side effects
only by accessing its parameters, local variables, and immutable global state.

An important aspect of purity in D is that pure functions can mutate their
parameters.
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Additionally, the following operations that mutate the global state of the
program are explicitly allowed in pure functions:

• Allocate memory with the new expression
• Terminate the program
• Access the floating point processing flags
• Throw exceptions

The pure keyword specifies that a function should behave according to those
conditions and the compiler guarantees that it does so.

Naturally, since impure functions do not provide the same guarantees, a pure
function cannot call impure functions.

The following program demonstrates some of the operations that a pure
function can and cannot perform:

import std.stdio;
import std.exception;

int mutableGlobal;
const int constGlobal;
immutable int immutableGlobal;

void impureFunction()
{}

int pureFunction(ref int i, int[] slice) pure
{

// Can throw exceptions:
enforce(slice.length >= 1);

// Can mutate its parameters:
i = 42;
slice[0] = 43;

// Can access immutable global state:
i = constGlobal;
i = immutableGlobal;

// Can use the new expression:
auto p = new int;

// Cannot access mutable global state:
i = mutableGlobal; // ← compilation ERROR

// Cannot perform input and output operations:
writeln(i); // ← compilation ERROR

static int mutableStatic;

// Cannot access mutable static state:
i = mutableStatic; // ← compilation ERROR

// Cannot call impure functions:
impureFunction(); // ← compilation ERROR

return 0;
}

void main()
{

int i;
int[] slice = [ 1 ];
pureFunction(i, slice);

}
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Although they are allowed to, some pure functions do not mutate their
parameters. Following from the rules of purity, the only observable effect of such
a function would be its return value. Further, since the function cannot access
any mutable global state, the return value would be the same for a given set of
arguments, regardless of when and how many times the function is called during
the execution of the program. This fact gives both the compiler and the
programmer optimization opportunities. For example, instead of calling the
function a second time for a given set of arguments, its return value from the first
call can be cached and used instead of actually calling the function again.
Since the exact code that gets generated for a template instantiation depends on
the actual template arguments, whether the generated code is pure depends on
the arguments as well. For that reason, the purity of a template is inferred by the
compiler from the generated code. (The pure keyword can still be specified by the
programmer.)

As a simple example, since the following function template would be impure
when N is zero, it would not be possible to call templ!0() from a pure function:

import std.stdio;

// This template is impure when N is zero
void templ(size_t N)()
{

static if (N == 0) {
// Prints when N is zero:
writeln("zero");

}
}

void foo() pure
{

templ!0(); // ← compilation ERROR
}

void main()
{

foo();
}

The compiler infers that the 0 instantiation of the template is impure and rejects
calling it from the pure function foo():

Error: pure function 'deneme.foo' cannot call impure function
'deneme.templ!0.templ'

However, since the instantiation of the template for values other than zero is
pure, the program can be compiled for such values:

void foo() pure
{

templ!1(); // ← compiles
}

We have seen earlier above that input and output functions like writeln()
cannot be used in pure functions because they access global state. Sometimes
such limitations are too restrictive e.g. when needing to print a message
temporarily during debugging. For that reason, the purity rules are relaxed for
code that is marked as debug:

import std.stdio;
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debug size_t fooCounter;

void foo(int i) pure
{

debug ++fooCounter;

if (i == 0) {
debug writeln("i is zero");
i = 42;

}

// ...
}

void main()
{

foreach (i; 0..100) {
if ((i % 10) == 0) {

foo(i);
}

}

debug writefln("foo is called %s times", fooCounter);
}

The pure function above mutates the global state of the program by modifying a
global variable and printing a message. Despite those impure operations, it still
can be compiled because those operations are marked as debug.
Note: Remember that those statements are included in the program only if the

program is compiled with the -debug command line switch.
Member functions can be marked as pure as well. Subclasses can override

impure functions as pure but the reverse is not allowed:

interface Iface
{

void foo() pure; // Subclasses must define foo as pure.

void bar(); // Subclasses may define bar as pure.
}

class Class : Iface
{

void foo() pure // Required to be pure
{

// ...
}

void bar() pure // pure although not required
{

// ...
}

}

Delegates and anonymous functions can be pure as well. Similar to templates,
whether a function or delegate literal is pure is inferred by the compiler:

import std.stdio;

void foo(int delegate(double) pure dg)
{

int i = dg(1.5);
}

void main()
{

foo(a => 42); // ← compiles

foo((a) { // ← compilation ERROR
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writeln("hello");
return 42;

});
}

foo() above requires that its parameter be a pure delegate. The compiler infers
that the lambda a => 42 is pure and allows it as an argument for foo().
However, since the other delegate is impure it cannot be passed to foo():

Error: function deneme.foo (int delegate(double) pure dg)
is not callable using argument types (void)

nothrow functions
We have seen the exception mechanism of D in the Exceptions chapter. (page 202)
It is good practice for functions to document the types of exceptions that they
may throw under specific error conditions. As a general rule, callers can assume
that any function can throw exceptions that are derived from Exception.
(Remember that it is not recommended to catch Error nor its base class Throwable.)

Sometimes it is more important to know that a function does not emit any
exception at all. Some algorithms can take advantage of the fact that certain of
their steps cannot be interrupted by an exception.
nothrow guarantees that a function does not emit any exception:

int add(int lhs, int rhs) nothrow
{

// ...
}

Such a function can neither throw an exception itself nor can call a function that
may throw an exception:

int add(int lhs, int rhs) nothrow
{

writeln("adding"); // ← compilation ERROR
return lhs + rhs;

}

The compiler rejects the code because add() violates the no-throw guarantee:

Error: function 'deneme.add' is nothrow yet may throw

The reason is that writeln is not (and cannot be) a nothrow function.
The compiler can infer that a function can never emit an exception. The following
implementation of add() is nothrow because it is obvious to the compiler that the
try-catch block prevents any exception from escaping the function:

int add(int lhs, int rhs) nothrow
{

int result;

try {
writeln("adding"); // ← compiles
result = lhs + rhs;

} catch (Exception error) { // catches all exceptions
// ...

}

return result;
}
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As in purity, the compiler automatically deduces whether a template, delegate, or
anonymous function is nothrow.

@nogc functions
D is a garbage collected language. Many data structures and algorithms in most D
programs take advantage of dynamic memory blocks that are managed by the
garbage collector (GC). Such memory blocks are reclaimed again by the GC by an
algorithm called garbage collection.

Some commonly used D operations take advantage of the GC as well. For
example, elements of arrays live on dynamic memory blocks:

// A function that takes advantage of the GC indirectly
int[] append(int[] slice)
{

slice ~= 42;
return slice;

}

If the slice does not have sufficient capacity, the ~= operator above allocates a new
memory block from the GC.

Although the GC is a significant convenience for data structures and
algorithms, memory allocation and garbage collection are costly operations that
make the execution of some programs noticably slow.
@nogc means that a function cannot use the GC directly or indirectly:

void foo() @nogc
{

// ...
}

The compiler guarantees that a @nogc function does not involve GC operations.
For example, the following function cannot call append() above, which does not
provide the @nogc guarantee:

void foo() @nogc
{

int[] slice;
// ...
append(slice); // ← compilation ERROR

}

Error: @nogc function 'deneme.foo' cannot call non-@nogc function 'deneme.append'

78.3 Code safety attributes
@safe, @trusted, and @system are about the code safety that a function provides.
As in purity, the compiler infers the safety level of templates, delegates, and
anonymous functions.

@safe functions
A class of programming errors involve corrupting data at unrelated locations in
memory by writing at those locations unintentionally. Such errors are mostly due
to mistakes made in using pointers and applying type casts.
@safe functions guarantee that they do not contain any operation that may

corrupt memory. The compiler does not allow the following operations in @safe
functions:

• Pointers cannot be converted to other pointer types other than void*.
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• A non-pointer expression cannot be converted to a pointer value.
• Pointers cannot be mutated.
• Unions that have pointer or reference members cannot be used.
• Functions marked as @system cannot be called.
• Exceptions that are not descended from Exception cannot be caught.
• Inline assembler cannot be used.
• Mutable variables cannot be casted to immutable.
• immutable variables cannot be casted to mutable.
• Thread-local variables cannot be casted to shared.
• shared variables cannot be casted to thread-local.
• Addresses of function-local variables cannot be taken.
• __gshared variables cannot be accessed.

@trusted functions
Some functions may actually be safe but cannot be marked as @safe for various
reasons. For example, a function may have to call a library written in C, where no
language support exists for safety in that language.

Some other functions may actually perform operations that are not allowed in
@safe code, but may be well tested and trusted to be correct.
@trusted is an attribute that communicates to the compiler that although the

function cannot be marked as @safe, consider it safe. The compiler trusts the
programmer and treats @trusted code as if it is safe. For example, it allows @safe
code to call @trusted code.

@system functions
Any function that is not marked as @safe or @trusted is considered @system,
which is the default safety attribute.

78.4 Compile time function execution (CTFE)
In many programming languages, computations that are performed at compile
time are very limited. Such computations are usually as simple as calculating the
length of a fixed-length array or simple arithmetic operations:

writeln(1 + 2);

The 1 + 2 expression above is compiled as if it has been written as 3; there is no
computation at runtime.

D has CTFE, which allows any function to be executed at compile time as long
as it is possible to do so.

Let's consider the following program that prints a menu to the output:

import std.stdio;
import std.string;
import std.range;

string menuLines(string[] choices)
{

string result;

foreach (i, choice; choices) {
result ~= format(" %s. %s\n", i + 1, choice);

}
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return result;
}

string menu(string title,
string[] choices,
size_t width)

{
return format("%s\n%s\n%s",

title.center(width),
'='.repeat(width), // horizontal line
menuLines(choices));

}

void main()
{

enum drinks =
menu("Drinks",

[ "Coffee", "Tea", "Hot chocolate" ], 20);

writeln(drinks);
}

Although the same result can be achieved in different ways, the program above
performs non-trivial operations to produce the following string:

Drinks
====================
1. Coffee
2. Tea
3. Hot chocolate

Remember that the initial value of enum constants like drinks must be known at
compile time. That fact is sufficient for menu() to be executed at compile time.
The value that it returns at compile time is used as the initial value of drinks. As
a result, the program is compiled as if that value is written explicitly in the
program:

// The equivalent of the code above:
enum drinks = "       Drinks       \n"

"====================\n"
" 1. Coffee\n"
" 2. Tea\n"
" 3. Hot chocolate\n";

For a function to be executed at compile time, it must appear in an expression
that in fact is needed at compile time:

• Initializing a static variable
• Initializing an enum variable
• Calculating the length of a fixed-length array
• Calculating a template value argument

Clearly, it would not be possible to execute every function at compile time. For
example, a function that accesses a global variable cannot be executed at compile
time because the global variable does not start its life until run time. Similarly,
since stdout is available only at run time, functions that print cannot be
executed at compile time.

The __ctfe variable
It is a powerful aspect of CTFE that the same function is used for both compile
time and run time depending on when its result is needed. Although the function
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need not be written in any special way for CTFE, some operations in the function
may make sense only at compile time or run time. The special variable __ctfe
can be used to differentiate the code that are only for compile time or only for
run time. The value of this variable is true when the function is being executed
for CTFE, false otherwise:

import std.stdio;

size_t counter;

int foo()
{

if (!__ctfe) {
// This code is for execution at run time
++counter;

}

return 42;
}

void main()
{

enum i = foo();
auto j = foo();
writefln("foo is called %s times.", counter);

}

As counter lives only at run time, it cannot be incremented at compile time. For
that reason, the code above attempts to increment it only for run-time execution.
Since the value of i is determined at compile time and the value of j is
determined at run time, foo() is reported to have been called just once during
the execution of the program:

foo is called 1 times.

78.5 Summary

• The return type of an auto function is deduced automatically.
• The return value of a ref function is a reference to an existing variable.
• The return value of an auto ref function is a reference if possible, a

copy otherwise.
• inout carries the mutable, const, or immutable attribute of the

parameter to the return type.
• A pure function cannot access mutable global or static state. The

compiler infers the purity of templates, delegates and anonymous
functions.

• nothrow functions cannot emit exceptions. The compiler infers whether
a template, delegate, or anonymous function is no-throw.

• @nogc functions cannot involve GC operations.
• @safe functions cannot corrupt memory. The compiler infers the safety

attributes of templates, delegates, and anonymous functions.
• @trusted functions are indeed safe but cannot be specified as such; they

are considered @safe both by the programmer and the compiler.
• @system functions can use every D feature. @system is the default safety

attribute.
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• Functions can be executed at compile time as well (CTFE). This can be
differentiated by the value of the special variable __ctfe.
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79 Mixins

Mixins are for mixing in generated code into the source code. The mixed in code
may be generated as a template instance or a string.

79.1 Template mixins
We have seen in the Templates (page 411) and More Templates (page 533) chapters
that templates define code as a pattern, for the compiler to generate actual
instances from that pattern. Templates can generate functions, structs, unions,
classes, interfaces, and any other legal D code.

Template mixins insert instantiations of templates into the code by the mixin
keyword:

mixin a_template!(template_parameters)

As we will see in the example below, the mixin keyword is used in the definitions
of template mixins as well.

The instantiation of the template for the specific set of template parameters are
inserted into the source code right where the mixin keyword appears.

For example, let's have a template that defines both an array of edges and a pair
of functions that operate on those edges:

mixin template EdgeArrayFeature(T, size_t count)
{

T[count] edges;

void setEdge(size_t index, T edge)
{

edges[index] = edge;
}

void printEdges()
{

writeln("The edges:");

foreach (i, edge; edges) {
writef("%s:%s ", i, edge);

}

writeln();
}

}

That template leaves the type and number of array elements flexible. The
instantiation of that template for int and 2 would be mixed in by the following
syntax:

mixin EdgeArrayFeature!(int, 2);

For example, the mixin above can insert the two-element int array and the two
functions that are generated by the template right inside a struct definition:

struct Line
{

mixin EdgeArrayFeature!(int, 2);
}

As a result, Line ends up defining a member array and two member functions:
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import std.stdio;

void main()
{

auto line = Line();
line.setEdge(0, 100);
line.setEdge(1, 200);
line.printEdges();

}

The output:

The edges:
0:100 1:200

Another instantiation of the same template can be used e.g. inside a function:

struct Point
{

int x;
int y;

}

void main()
{

mixin EdgeArrayFeature!(Point, 5);

setEdge(3, Point(3, 3));
printEdges();

}

That mixin inserts an array and two local functions inside main(). The output:

The edges:
0:Point(0, 0) 1:Point(0, 0) 2:Point(0, 0) 3:Point(3, 3) 4:Point(0, 0)

Template mixins must use local imports
Mixing in template instantiations as is can cause problems about the modules
that the template itself is making use of: Those modules may not be available at
the mixin site.

Let's consider the following module named a. Naturally, it would have to import
the std.string module that it is making use of:

module a;

import std.string; // ← wrong place

mixin template A(T)
{

string a()
{

T[] array;
// ...
return format("%(%s, %)", array);

}
}

However, if std.string is not imported at the actual mixin site, then the
compiler would not be able to find the definition of format() at that point. Let's
consider the following program that imports a and tries to mix in A!int from
that module:

import a;

Mixins

576



void main()
{

mixin A!int; // ← compilation ERROR
}

Error: undefined identifier format
Error: mixin deneme.main.A!int error instantiating

For that reason, the modules that template mixins use must be imported in local
scopes:

module a;

mixin template A(T)
{

string a()
{

import std.string; // ← right place

T[] array;
// ...
return format("%(%s, %)", array);

}
}

As long as it is inside the template definition, the import directive above can be
outside of the a() function as well.

Identifying the type that is mixing in
Sometimes a mixin may need to identify the actual type that is mixing it in. That
information is available through this template parameters as we have seen in the
More Templates chapter (page 533):

mixin template MyMixin(T)
{

void foo(this MixingType)()
{

import std.stdio;
writefln("The actual type that is mixing in: %s",

MixingType.stringof);
}

}

struct MyStruct
{

mixin MyMixin!(int);
}

void main()
{

auto a = MyStruct();
a.foo();

}

The output of the program shows that the actual type is available inside the
template as MyStruct:

The actual type that is mixing in: MyStruct

79.2 String mixins
Another powerful feature of D is being able to insert code as string as long as
that string is known at compile time. The syntax of string mixins requires the use
of parentheses:
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mixin (compile_time_generated_string)

For example, the hello world program can be written with a mixin as well:

import std.stdio;

void main()
{

mixin (`writeln("hello world");`);
}

The string gets inserted as code and the program produces the following output:

hello world

We can go further and insert all of the program as a string mixin:

mixin (
`import std.stdio; void main() { writeln("hello world"); }`
);

Obviously, there is no need for mixins in these examples, as the strings could have
been written as code as well.

The power of string mixins comes from the fact that the code can be generated
at compile time. The following example takes advantage of CTFE to generate
statements at compile time:

import std.stdio;

string printStatement(string message)
{

return `writeln("` ~ message ~ `");`;
}

void main()
{

mixin (printStatement("hello world"));
mixin (printStatement("hi world"));

}

The output:

hello world
hi world

Note that the "writeln" expressions are not executed inside printStatement().
Rather, printStatement() generates code that includes writeln() expressions
that are executed inside main(). The generated code is the equivalent of the
following:

import std.stdio;

void main()
{

writeln("hello world");
writeln("hi world");

}

79.3 Mixin name spaces
It is possible to avoid and resolve name ambiguities in template mixins.

For example, there are two i variables defined inside main() in the following
program: one is defined explicitly in main and the other is mixed in. When a
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mixed-in name is the same as a name that is in the surrounding scope, then the
name that is in the surrounding scope gets used:

import std.stdio;

template Templ()
{

int i;

void print()
{

writeln(i); // Always the 'i' that is defined in Templ
}

}

void main()
{

int i;
mixin Templ;

i = 42; // Sets the 'i' that is defined explicitly in main
writeln(i); // Prints the 'i' that is defined explicitly in main
print(); // Prints the 'i' that is mixed in

}

As implied in the comments above, template mixins define a name space for their
contents and the names that appear in the template code are first looked up in
that name space. We can see this in the behavior of print():

42
0 ← printed by print()

The compiler cannot resolve name conflicts if the same name is defined by more
than one template mixin. Let's see this in a short program that mixes in the same
template instance twice:

template Templ()
{

int i;
}

void main()
{

mixin Templ;
mixin Templ;

i = 42; // ← compilation ERROR
}

Error: deneme.main.Templ!().i at ... conflicts with
deneme.main.Templ!().i at ...

To prevent this, it is possible to assign name space identifiers for template mixins
and refer to contained names by those identifiers:

mixin Templ A; // Defines A.i
mixin Templ B; // Defines B.i

A.i = 42; // ← not ambiguous anymore

String mixins do not have these name space features. However, it is trivial to use a
string as a template mixin simply by passing it through a simple wrapper
template.

Let's first see a similar name conflict with string mixins:
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void main()
{

mixin ("int i;");
mixin ("int i;"); // ← compilation ERROR

i = 42;
}

Error: declaration deneme.main.i is already defined

One way of resolving this issue is to pass the string through the following trivial
template that effectively converts a string mixin to a template mixin:

template Templatize(string str)
{

mixin (str);
}

void main()
{

mixin Templatize!("int i;") A; // Defines A.i
mixin Templatize!("int i;") B; // Defines B.i

A.i = 42; // ← not ambiguous anymore
}

79.4 String mixins in operator overloading
We have seen in the Operator Overloading chapter (page 313) how mixin
expressions helped with the definitions of some of the operators.

In fact, the reason why most operator member functions are defined as
templates is to make the operators available as string values so that they can be
used for code generation. We have seen examples of this both in that chapter and
its exercise solutions.

79.5 Example
(Note: Specifying predicates as strings was used more commonly before the lambda
syntax was added to D. Although string predicates as in this example are still used in
Phobos, the => lambda syntax may be more suitable in most cases.)

Let's consider the following function template that takes an array of numbers
and returns another array that consists of the elements that satisfy a specific
condition:

int[] filter(string predicate)(in int[] numbers)
{

int[] result;

foreach (number; numbers) {
if (mixin (predicate)) {

result ~= number;
}

}

return result;
}

That function template takes the filtering condition as its template parameter
and inserts that condition directly into an if statement as is.

For that condition to choose numbers that are e.g. less that 7, the if condition
should look like the following code:

if (number < 7) {
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The users of filter() template can provide the condition as a string:

int[] numbers = [ 1, 8, 6, -2, 10 ];
int[] chosen = filter!"number < 7"(numbers);

Importantly, the name used in the template parameter must match the name of
the variable used in the implementation of filter(). So, the template must
document what that name should be and the users must use that name.

Phobos uses names consisting of single letters like a, b, n, etc.
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80 Ranges

Ranges are an abstraction of element access. This abstraction enables the use of
great number of algorithms over great number of container types. Ranges
emphasize how container elements are accessed, as opposed to how the
containers are implemented.

Ranges are a very simple concept that is based on whether a type defines
certain sets of member functions. We have already seen this concept in the
foreach with Structs and Classes chapter (page 504): any type that provides the
member functions empty, front, and popFront() can be used with the foreach
loop. The set of those three member functions is the requirement of the range
type InputRange.

I will start introducing ranges with InputRange, the simplest of all the range
types. The other ranges require more member functions over InputRange.

Before going further, I would like to provide the definitions of containers and
algorithms.
Container (data structure): Container is a very useful concept that appears in
almost every program. Variables are put together for a purpose and are used
together as elements of a container. D's containers are its core features arrays and
associative arrays, and special container types that are defined in the
std.container module. Every container is implemented as a specific data
structure. For example, associative arrays are a hash table implementation.

Every data structure stores its elements and provides access to them in ways
that are special to that data structure. For example, in the array data structure the
elements are stored side by side and accessed by an element index; in the linked
list data structure the elements are stored in nodes and are accessed by going
through those nodes one by one; in a sorted binary tree data structure, the nodes
provide access to the preceding and successive elements through separate
branches; etc.

In this chapter, I will use the terms container and data structure
interchangeably.
Algorithm (function): Processing of data structures for specific purposes in
specific ways is called an algorithm. For example, linear search is an algorithm that
searches by iterating over a container from the beginning to the end; binary
search is an algorithm that searches for an element by eliminating half of the
candidates at every step; etc.

In this chapter, I will use the terms algorithm and function interchangeably.
For most of the samples below, I will use int as the element type and int[] as

the container type. In reality, ranges are more powerful when used with
templated containers and algorithms. In fact, most of the containers and
algorithms that ranges tie together are all templates. I will leave examples of
templated ranges to the next chapter (page 609).

80.1 History
A very successful library that abstracts algorithms and data structures from each
other is the Standard Template Library (STL), which also appears as a part of the
C++ standard library. STL provides this abstraction with the iterator concept,
which is implemented by C++'s templates.

Although they are a very useful abstraction, iterators do have some
weaknesses. D's ranges were designed by Andrei Alexandrescu partly to overcome
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these weaknesses. D's standard library Phobos takes great advantage of ranges
that are the subject of this chapter.

Andrei Alexandrescu introduces ranges in the seminal paper On Iteration1 and
demonstrates how they are superior to iterators.

80.2 Ranges are an integral part of D
D's slices happen to be implementations of the most powerful range
RandomAccessRange, and there are many range features in Phobos. It is essential
to understand how ranges are used in Phobos.

Many Phobos algorithms return temporary range objects. For example,
filter(), which chooses elements that are greater than 10 in the following code,
actually returns a range object, not an array:

import std.stdio;
import std.algorithm;

void main()
{

int[] values = [ 1, 20, 7, 11 ];
writeln(values.filter!(value => value > 10));

}

writeln uses that range object lazily and accesses the elements as it needs them:

[20, 11]

That output may suggest that filter() returns an int[] but this is not the case.
We can see this from the fact that the following assignment produces a
compilation error:

int[] chosen = values.filter!(value => value > 10); // ← compilation ERROR

The error message contains the type of the range object:

Error: cannot implicitly convert expression (filter(values))
of type FilterResult!(__lambda2, int[]) to int[]

Note: The type may be different in the version of Phobos that you are using.
It is possible to convert that temporary object to an actual array, as we will see

later in the chapter.

80.3 Traditional implementations of algorithms
In traditional implementations of algorithms, the algorithms know how the data
structures that they operate on are implemented. For example, the following
function that prints the elements of a linked list must know that the nodes of the
linked list have members named element and next:

struct Node
{

int element;
Node * next;

}

void print(const(Node) * list)
{

for ( ; list; list = list.next) {
write(' ', list.element);

1. http://www.informit.com/articles/printerfriendly.aspx?p=1407357
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}
}

Similarly, a function that prints the elements of an array must know that arrays
have a length property and their elements are accessed by the [] operator:

void print(const int[] array)
{

for (int i = 0; i != array.length; ++i) {
write(' ', array[i]);

}
}

Note:We know that foreach is more useful when iterating over arrays. As a
demonstration of how traditional algorithms are tied to data structures, let's assume
that the use of for is justified.

Having algorithms tied to data structures makes it necessary to write them
specially for each type. For example, the functions find(), sort(), swap(), etc. must
be written separately for array, linked list, associative array, binary tree, heap, etc.
As a result, N algorithms that support M data structures must be written NxM
times. (Note: In reality, the count is less than NxM because not every algorithm
can be applied to every data structure; for example, associative arrays cannot be
sorted.)

Conversely, because ranges abstract algorithms away from data structures,
implementing just N algorithms and M data structures would be sufficient. A
newly implemented data structure can work with all of the existing algorithms
that support the type of range that the new data structure provides, and a newly
implemented algorithm can work with all of the existing data structures that
support the range type that the new algorithm requires.

80.4 Phobos ranges
The ranges in this chapter are different from number ranges that are written in
the form begin..end. We had seen how number ranges are used with the
foreach loop and with slices:

foreach (value; 3..7) { // number range,
// NOT a Phobos range

int[] slice = array[5..10]; // number range,
// NOT a Phobos range

When I write range, I mean a Phobos range in this chapter.
Ranges form a range hierarchy. At the bottom of this hierarchy is the simplest

range InputRange. The other ranges bring more requirements on top of the range
that they are based on. The following are all of the ranges with their
requirements, sorted from the simplest to the more capable:

• InputRange: requires the empty, front and popFront() member
functions

• ForwardRange: additionally requires the save member function
• BidirectionalRange: additionally requires the back and popBack()

member functions
• RandomAccessRange: additionally requires the [] operator (and another

property depending on whether the range is finite or infinite)
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This hierarchy can be shown as in the following graph. RandomAccessRange has
finite and infinite versions:

InputRange
↑

ForwardRange
↗         ↖

BidirectionalRange    RandomAccessRange (infinite)
↑

RandomAccessRange (finite)

The graph above is in the style of class hierarchies where the lowest level type is
at the top.

Those ranges are about providing element access. There is one more range,
which is about element output:

• OutputRange: requires support for the put(range, element) operation

These five range types are sufficient to abstract algorithms from data structures.

Iterating by shortening the range
Normally, iterating over the elements of a container does not change the
container itself. For example, iterating over a slice with foreach or for does not
affect the slice:

int[] slice = [ 10, 11, 12 ];

for (int i = 0; i != slice.length; ++i) {
write(' ', slice[i]);

}

assert(slice.length == 3); // ← the length doesn't change

Another way of iteration requires a different way of thinking: iteration can be
achieved by shortening the range from the beginning. In this method, always the
first element is used for element access and the first element is popped from the
beginning in order to get to the next element:

for ( ; slice.length; slice = slice[1..$]) {
write(' ', slice[0]); // ← always the first element

}

Iteration is achieved by removing the first element by the slice = slice[1..$]
expression. The slice above is completely consumed by going through the
following stages:

[ 10, 11, 12 ]
[ 11, 12 ]

[ 12 ]
[ ]

The iteration concept of Phobos ranges is based on this new thinking of
shortening the range from the beginning. (BidirectionalRange and finite
RandomAccessRange types can be shortened from the end as well.)

Please note that the code above is just to demonstrate this type of iteration; it
should not be considered normal to iterate as in that example.

Since losing elements just to iterate over a range would not be desired in most
cases, a surrogate range may be consumed instead. The following code uses a
separate slice to preserve the elements of the original one:
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int[] slice = [ 10, 11, 12 ];
int[] surrogate = slice;

for ( ; surrogate.length; surrogate = surrogate[1..$]) {
write(' ', surrogate[0]);

}

assert(surrogate.length == 0); // ← surrogate is consumed
assert(slice.length == 3); // ← slice remains the same

This is the method employed by most of the Phobos range functions: they return
special range objects to be consumed in order to preserve the original containers.

80.5 InputRange
This type of range models the type of iteration where elements are accessed in
sequence as we have seen in the print() functions above. Most algorithms only
require that elements are iterated in the forward direction without needing to
look at elements that have already been iterated over. InputRange models the
standard input streams of programs as well, where elements are removed from
the stream as they are read.

For completeness, here are the three functions that InputRange requires:

• empty: specifies whether the range is empty; it must return true when
the range is considered to be empty, and false otherwise

• front: provides access to the element at the beginning of the range
• popFront(): shortens the range from the beginning by removing the

first element

Note: I write empty and front without parentheses, as they can be seen as properties
of the range; and popFront() with parentheses as it is a function with side effects.

Here is how print() can be implemented by using these range functions:

void print(T)(T range)
{

for ( ; !range.empty; range.popFront()) {
write(' ', range.front);

}

writeln();
}

Please also note that print() is now a function template to avoid limiting the
range type arbitrarily. print() can now work with any type that provides the
three InputRange functions.

InputRange example
Let's redesign the School type that we have seen before, this time as an
InputRange. We can imagine School as a Student container so when designed as
a range, it can be seen as a range of Students.

In order to keep the example short, let's disregard some important design
aspects. Let's

• implement only the members that are related to this section
• design all types as structs
• ignore specifiers and qualifiers like private, public, and const
• not take advantage of contract programming and unit testing

Ranges

586



import std.string;

struct Student
{

string name;
int number;

string toString() const
{

return format("%s(%s)", name, number);
}

}

struct School
{

Student[] students;
}

void main()
{

auto school = School( [ Student("Ebru", 1),
Student("Derya", 2) ,
Student("Damla", 3) ] );

}

To make School be accepted as an InputRange, we must define the three
InputRange member functions.

For empty to return true when the range is empty, we can use the length of the
students array. When the length of that array is 0, the range is considered
empty:

struct School
{

// ...

@property bool empty() const
{

return students.length == 0;
}

}

empty is defined as @property to be able to code it without parentheses, as in
school.empty.

For front to return the first element of the range, we can return the first
element of the array:

struct School
{

// ...

@property ref Student front()
{

return students[0];
}

}

Note: I have used the ref keyword to be able to provide access to the actual element
instead of a copy of it. Otherwise the elements would be copied because Student is a
struct.

For popFront() to shorten the range from the beginning, we can shorten the
students array from the beginning:

struct School
{

// ...
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void popFront()
{

students = students[1 .. $];
}

}

Note: As I have mentioned above, it is not normal to lose the original elements from the
container just to iterate over them. We will address this issue below by introducing a
special range type.

These three functions are sufficient to make School to be used as an
InputRange. As an example, let's add the following line at the end of main()
above to have our new print() function template to use school as a range:

print(school);

print() uses that object as an InputRange and prints its elements to the output:

Ebru(1) Derya(2) Damla(3)

We have achieved our goal of defining a user type as an InputRange; we have sent
it to an algorithm that operates on InputRange types. School is actually ready to
be used with algorithms of Phobos or any other library that work with
InputRange types. We will see examples of this below.

The std.array module to use slices as ranges
Merely importing the std.array module makes the most common container
type conform to the most capable range type: slices can seamlessly be used as
RandomAccessRange objects.

The std.array module provides the functions empty, front, popFront() and
other range functions for slices. As a result, slices are ready to be used with any
range function, for example with print():

import std.array;

// ...

print([ 1, 2, 3, 4 ]);

It is not necessary to import std.array if the std.range module has already
been imported.

Since it is not possible to remove elements from fixed-length arrays,
popFront() cannot be defined for them. For that reason, fixed-length arrays
cannot be used as ranges themselves:

void print(T)(T range)
{

for ( ; !range.empty; range.popFront()) { // ← compilation ERROR
write(' ', range.front);

}

writeln();
}

void main()
{

int[4] array = [ 1, 2, 3, 4 ];
print(array);

}
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It would be better if the compilation error appeared on the line where print() is
called. This is possible by adding a template constraint to print(). The following
template constraint takes advantage of isInputRange, which we will see in the
next chapter. By the help of the template constraint, now the compilation error is
for the line where print() is called, not for a line where print() is defined:

void print(T)(T range)
if (isInputRange!T) // template constraint

{
// ...

}
// ...

print(array); // ← compilation ERROR

The elements of a fixed-length array can still be accessed by range functions.
What needs to be done is to use a slice of the whole array, not the array itself:

print(array[]); // now compiles

Even though slices can be used as ranges, not every range type can be used as an
array. When necessary, all of the elements can be copied one by one into an array.
std.array.array is a helper function to simplify this task; array() iterates over
InputRange ranges, copies the elements, and returns a new array:

import std.array;

// ...

// Note: Also taking advantage of UFCS
auto copiesOfStudents = school.array;
writeln(copiesOfStudents);

The output:

[Ebru(1), Derya(2), Damla(3)]

Also note the use of UFCS (page 397) in the code above. UFCS goes very well with
range algorithms by making code naturally match the execution order of
expressions.

Special convenience for strings
Being character arrays by definition, strings can also be used as ranges just by
importing std.array. However, char and wchar strings cannot be used as
RandomAccessRange.
std.array provides a special functionality with all types of strings: iterating

over strings becomes iterating over Unicode code points, not over UTF code units.
As a result, strings appear as ranges of Unicode characters.

The following strings contain ç and é, which cannot be represented by a single
char, and 𝔸 (mathematical double-struck capital A), which cannot be represented
by a single wchar (note that these characters may not be displayed correctly in the
environment that you are reading this chapter):

import std.array;

// ...

print("abcçdeé𝔸"c);
print("abcçdeé𝔸"w);
print("abcçdeé𝔸"d);
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The output of the program is what we would normally expect from a range of
letters:

a b c ç d e é 𝔸
a b c ç d e é 𝔸
a b c ç d e é 𝔸

As you can see, that output does not match what we have seen in the Characters
(page 77) and Strings (page 95) chapters. We have seen in those chapters that
string is an alias to an array of immutable(char) and wstring is an alias to an
array of immutable(wchar). Accordingly, one might expect to see UTF code units
in the previous output instead of the properly decoded Unicode characters. The
reason why the characters are displayed correctly is due to the fact that when
used as ranges, string elements are automatically decoded.

As a reminder, let's consider the following function that treats the strings as
arrays of code units:

void printElements(T)(T str)
{

for (int i = 0; i != str.length; ++i) {
write(' ', str[i]);

}

writeln();
}

// ...

printElements("abcçdeé𝔸"c);
printElements("abcçdeé𝔸"w);
printElements("abcçdeé𝔸"d);

When the characters are accessed directly by indexing, the elements of the arrays
are not decoded:

a b c � � d e � � � � � �
a b c ç d e é ��� ���
a b c ç d e é 𝔸

Ranges without actual elements
The elements of the School objects were actually stored in the students member
slices. So, School.front returned a reference to an existing Student object.

One of the powers of ranges is the flexibility of not actually owning elements.
front need not return an actual element of an actual container. The returned
element can be calculated each time when popFront() is called, and can be used
as the value that is returned by front.

We have already seen a range without actual elements above: Since char and
wchar cannot represent all Unicode characters, the Unicode characters that
appear as range elements cannot be actual elements of any char or wchar array.
In the case of strings, front returns a dchar that is constructed from the
corresponding UTF code units of arrays:

import std.array;

void main()
{

dchar letter = "é".front; // The dchar that is returned by
// front is constructed from the
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// two chars that represent é
}

Although the element type of the array is char, the return type of front above is
dchar. That dchar is not an element of the array but is decoded as a Unicode
character from the elements of the array.

Similarly, some ranges do not own any elements but are used for providing
access to elements of other ranges. This is a solution to the problem of losing
elements while iterating over School objects above. In order to preserve the
elements of the actual School objects, a special InputRange can be used.

To see how this is done, let's define a new struct named StudentRange and
move all of the range member functions from School to this new struct. Note that
School itself is not a range anymore:

struct School
{

Student[] students;
}

struct StudentRange
{

Student[] students;

this(School school)
{

this.students = school.students;
}

@property bool empty() const
{

return students.length == 0;
}

@property ref Student front()
{

return students[0];
}

void popFront()
{

students = students[1 .. $];
}

}

The new range starts with a member slice that provides access to the students of
School and consumes that member slice in popFront(). As a result, the actual
slice in School is preserved:

auto school = School( [ Student("Ebru", 1),
Student("Derya", 2) ,
Student("Damla", 3) ] );

print(StudentRange(school));

// The actual array is now preserved:
assert(school.students.length == 3);

Note: Since all its work is dispatched to its member slice, StudentRange may not be
seen as a good example of a range. In fact, assuming that students is an accessible
member of School, the user code could have created a slice of School.students
directly and could have used that slice as a range.
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Infinite ranges
Another benefit of not storing elements as actual members is the ability to create
infinite ranges.

Making an infinite range is as simple as having empty always return false.
Since it is constant, empty need not even be a function and can be defined as an
enum value:

enum empty = false; // ← infinite range

Another option is to use an immutable static member:

static immutable empty = false; // same as above

As an example of this, let's design a range that represents the Fibonacci series.
Despite having only two int members, the following range can be used as the
infinite Fibonacci series:

struct FibonacciSeries
{

int first = 0;
int second = 1;

enum empty = false; // ← infinite range

@property int front() const
{

return first;
}

void popFront()
{

int third = first + second;
first = second;
second = third;

}
}

Note: Although it is infinite, because the members are of type int, the elements of this
Fibonacci series would be wrong beyond int.max.

Since empty is always false for FibonacciSeries objects, the for loop in
print() never terminates for them:

print(FibonacciSeries()); // never terminates

An infinite range is useful when the range need not be consumed completely
right away. We will see how to use only some of the elements of a
FibonacciSeries below.

Functions that return ranges
Earlier, we have created a StudentRange object by explicitly writing
StudentRange(school).
In most cases, a convenience function that returns the object of such a range is
used instead. For example, a function with the whole purpose of returning a
StudentRange would simplify the code:

StudentRange studentsOf(ref School school)
{

return StudentRange(school);
}
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// ...

// Note: Again, taking advantage of UFCS
print(school.studentsOf);

This is a convenience over having to remember and spell out the names of range
types explicitly, which can get quite complicated in practice.
We can see an example of this with the simple std.range.take function. take()
is a function that provides access to a specified number of elements of a range,
from the beginning. In reality, this functionality is not achieved by the take()
function itself, but by a special range object that it returns. This fact need not be
explicit when using take():

import std.range;

// ...

auto school = School( [ Student("Ebru", 1),
Student("Derya", 2) ,
Student("Damla", 3) ] );

print(school.studentsOf.take(2));

take() returns a temporary range object above, which provides access to the first
2 elements of school. In turn, print() uses that object and produces the
following output:

Ebru(1) Derya(2)

The operations above still don't make any changes to school; it still has 3
elements:

print(school.studentsOf.take(2));
assert(school.students.length == 3);

The specific types of the range objects that are returned by functions like take()
are not important. These types may sometimes be exposed in error messages, or
we can print them ourselves with the help of typeof and stringof:

writeln(typeof(school.studentsOf.take(2)).stringof);

According to the output, take() returns an instance of a template named Take:

Take!(StudentRange)

std.range and std.algorithm modules
A great benefit of defining our types as ranges is being able to use them not only
with our own functions, but with Phobos and other libraries as well.
std.range includes a large number of range functions, structs, and classes.

std.algorithm includes many algorithms that are commonly found also in the
standard libraries of other languages.
To see an example of how our types can be used with standard modules, let's use
School with the std.algorithm.swapFront algorithm. swapFront() swaps the
front elements of two InputRange ranges. (It requires that the front elements of
the two ranges are swappable. Arrays satisfy that condition.)

import std.algorithm;
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// ...

auto turkishSchool = School( [ Student("Ebru", 1),
Student("Derya", 2) ,
Student("Damla", 3) ] );

auto americanSchool = School( [ Student("Mary", 10),
Student("Jane", 20) ] );

swapFront(turkishSchool.studentsOf,
americanSchool.studentsOf);

print(turkishSchool.studentsOf);
print(americanSchool.studentsOf);

The first elements of the two schools are swapped:

Mary(10) Derya(2) Damla(3)
Ebru(1) Jane(20)

As another example, let's now look at the std.algorithm.filter algorithm.
filter() returns a special range that filters out elements that do not satisfy a
specific condition (a predicate). The operation of filtering out the elements only
affects accessing the elements; the original range is preserved.
Predicates are expressions that must evaluate to true for the elements that are
considered to satisfy a condition, and false for the elements that do not. There
are a number of ways of specifying the predicate that filter() should use. As we
have seen in earlier examples, one way is to use a lambda expression. The
parameter a below represents each student:

school.studentsOf.filter!(a => a.number % 2)

The predicate above selects the elements of the range school.studentsOf that
have odd numbers.

Like take(), filter() returns a special range object as well. That range object
in turn can be passed to other range functions. For example, it can be passed to
print():

print(school.studentsOf.filter!(a => a.number % 2));

That expression can be explained as start with the range school.studentsOf,
construct a range object that will filter out the elements of that initial range, and pass
the new range object to print().

The output consists of students with odd numbers:

Ebru(1) Damla(3)

As long as it returns true for the elements that satisfy the condition, the
predicate can also be specified as a function:

import std.array;

// ...

bool startsWithD(Student student)
{

return student.name.front == 'D';
}

print(school.studentsOf.filter!startsWithD);
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The predicate function above returns true for students having names starting
with the letter D, and false for the others.
Note: Using student.name[0] would have meant the first UTF-8 code unit, not the

first letter. As I have mentioned above, front uses name as a range and always returns
the first Unicode character.

This time the students whose names start with D are selected and printed:

Derya(2) Damla(3)

Laziness
Another benefit of functions' returning range objects is that, those objects can be
used lazily. Lazy ranges produce their elements one at a time and only when
needed. This may be essential for execution speed and memory consumption.
Indeed, the fact that infinite ranges can even exist is made possible by ranges
being lazy.

Lazy ranges produce their elements one at a time and only when needed. We
see an example of this with the FibonacciSeries range: The elements are
calculated by popFront() only as they are needed. If FibonacciSeries were an
eager range and tried to produce all of the elements up front, it could never end
or find room for the elements that it produced.

Another problem of eager ranges is the fact that they would have to spend time
and space for elements that would perhaps never going to be used.

Like most of the algorithms in Phobos, take() and filter() benefit from
laziness. For example, we can pass FibonacciSeries to take() and have it
generate a finite number of elements:

print(FibonacciSeries().take(10));

Although FibonacciSeries is infinite, the output contains only the first 10
numbers:

0 1 1 2 3 5 8 13 21 34

80.6 ForwardRange
InputRange models a range where elements are taken out of the range as they
are iterated over.

Some ranges are capable of saving their states, as well as operating as an
InputRange. For example, FibonacciSeries objects can save their states because
these objects can freely be copied and the two copies continue their lives
independently from each other.
ForwardRange provides the save member function, which is expected to return a
copy of the range. The copy that save returns must operate independently from
the range object that it was copied from: iterating over one copy must not affect
the other copy.

Importing std.array automatically makes slices become ForwardRange
ranges.

In order to implement save for FibonacciSeries, we can simply return a copy
of the object:

struct FibonacciSeries
{
// ...
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@property FibonacciSeries save() const
{

return this;
}

}

The returned copy is a separate range that would continue from the point where
it was copied from.
We can demonstrate that the copied object is independent from the actual range
with the following program. The algorithm std.range.popFrontN() in the
following code removes a specified number of elements from the specified range:

import std.range;

// ...

void report(T)(const dchar[] title, const ref T range)
{

writefln("%40s: %s", title, range.take(5));
}

void main()
{

auto range = FibonacciSeries();
report("Original range", range);

range.popFrontN(2);
report("After removing two elements", range);

auto theCopy = range.save;
report("The copy", theCopy);

range.popFrontN(3);
report("After removing three more elements", range);
report("The copy", theCopy);

}

The output of the program shows that removing elements from the range does
not affect its saved copy:

Original range: [0, 1, 1, 2, 3]
After removing two elements: [1, 2, 3, 5, 8]

The copy: [1, 2, 3, 5, 8]
After removing three more elements: [5, 8, 13, 21, 34]

The copy: [1, 2, 3, 5, 8]

Also note that the range is passed directly to writefln in report(). Like our
print() function, the output functions of the stdio module can take
InputRange objects. I will use stdio's output functions from now on.
An algorithm that works with ForwardRange is std.range.cycle. cycle()
iterates over the elements of a range repeatedly from the beginning to the end. In
order to be able to start over from the beginning it must be able to save a copy of
the initial state of the range, so it requires a ForwardRange.

Since FibonacciSeries is now a ForwardRange, we can try cycle() with a
FibonacciSeries object; but in order to avoid having cycle() iterate over an
infinite range, and as a result never find the end of it, we must first make a finite
range by passing FibonacciSeries through take():

writeln(FibonacciSeries().take(5).cycle.take(20));
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In order to make the resultant range finite as well, the range that is returned by
cycle is also passed through take(). The output consists of the first twenty
elements of cycling through the first five elements of FibonacciSeries:

[0, 1, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 1, 2, 3]

We could have defined intermediate variables as well. The following is an
equivalent of the single-line code above:

auto series                   = FibonacciSeries();
auto firstPart                = series.take(5);
auto cycledThrough            = firstPart.cycle;
auto firstPartOfCycledThrough = cycledThrough.take(20);

writeln(firstPartOfCycledThrough);

I would like to point out the importance of laziness one more time: The first four
lines above merely construct range objects that will eventually produce the
elements. The numbers that are part of the result are calculated by
FibonacciSeries.popFront() as needed.
Note: Although we have started with FibonacciSeries as a ForwardRange, we

have actually passed the result of FibonacciSeries().take(5) to cycle().
take() is adaptive: the range that it returns is a ForwardRange if its parameter is a
ForwardRange. We will see how this is accomplished with isForwardRange in the
next chapter.

80.7 BidirectionalRange
BidirectionalRange provides two member functions over the member
functions of ForwardRange. back is similar to front: it provides access to the last
element of the range. popBack() is similar to popFront(): it removes the last
element from the range.

Importing std.array automatically makes slices become
BidirectionalRange ranges.
A good BidirectionalRange example is the std.range.retro function.
retro() takes a BidirectionalRange and ties its front to back, and
popFront() to popBack(). As a result, the original range is iterated over in
reverse order:

writeln([ 1, 2, 3 ].retro);

The output:

[3, 2, 1]

Let's define a range that behaves similarly to the special range that retro()
returns. Although the following range has limited functionality, it shows how
powerful ranges are:

import std.array;
import std.stdio;

struct Reversed
{

int[] range;

this(int[] range)
{

this.range = range;
}
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@property bool empty() const
{

return range.empty;
}

@property int front() const
{

return range.back; // ← reverse
}

@property int back() const
{

return range.front; // ← reverse
}

void popFront()
{

range.popBack(); // ← reverse
}

void popBack()
{

range.popFront(); // ← reverse
}

}

void main()
{

writeln(Reversed([ 1, 2, 3]));
}

The output is the same as retro():

[3, 2, 1]

80.8 RandomAccessRange
RandomAccessRange represents ranges that allow accessing elements by the []
operator. As we have seen in the Operator Overloading chapter (page 313), []
operator is defined by the opIndex() member function.

Importing std.array module makes slices become RandomAccessRange
ranges only if possible. For example, since UTF-8 and UTF-16 encodings do not
allow accessing Unicode characters by an index, char and wchar arrays cannot
be used as RandomAccessRange ranges of Unicode characters. On the other hand,
since the codes of the UTF-32 encoding correspond one-to-one to Unicode
character codes, dchar arrays can be used as RandomAccessRange ranges of
Unicode characters.
It is natural that every type would define the opIndex() member function
according to its functionality. However, computer science has an expectation on
its algorithmic complexity: random access must take constant time. Constant time
access means that the time spent when accessing an element is independent of
the number of elements in the container. Therefore, no matter how large the
range is, element access should not depend on the length of the range.

In order to be considered a RandomAccessRange, one of the following
conditions must also be satisfied:

• to be an infinite ForwardRange

or

• to be a BidirectionalRange that also provides the length property

Ranges

598



Depending on the condition that is satisfied, the range is either infinite or finite.

Infinite RandomAccessRange
The following are all of the requirements of a RandomAccessRange that is based
on an infinite ForwardRange:

• empty, front and popFront() that InputRange requires
• save that ForwardRange requires
• opIndex() that RandomAccessRange requires
• the value of empty to be known at compile time as false

We were able to define FibonacciSeries as a ForwardRange. However,
opIndex() cannot be implemented to operate at constant time for
FibonacciSeries because accessing an element requires accessing all of the
previous elements first.

As an example where opIndex() can operate at constant time, let's define an
infinite range that consists of squares of integers. Although the following range is
infinite, accessing any one of its elements can happen at constant time:

class SquaresRange
{

int first;

this(int first = 0)
{

this.first = first;
}

enum empty = false;

@property int front() const
{

return opIndex(0);
}

void popFront()
{

++first;
}

@property SquaresRange save() const
{

return new SquaresRange(first);
}

int opIndex(size_t index) const
{

/* This function operates at constant time */
immutable integerValue = first + cast(int)index;
return integerValue * integerValue;

}
}

Note: It would make more sense to define SquaresRange as a struct.
Although no space has been allocated for the elements of this range, the

elements can be accessed by the [] operator:

auto squares = new SquaresRange();

writeln(squares[5]);
writeln(squares[10]);

The output contains the elements at indexes 5 and 10:
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25
100

The element with index 0 should always represent the first element of the range.
We can take advantage of popFrontN() when testing whether this really is the
case:

squares.popFrontN(5);
writeln(squares[0]);

The first 5 elements of the range are 0, 1, 4, 9 and 16; the squares of 0, 1, 2, 3 and 4.
After removing those, the square of the next value becomes the first element of
the range:

25

Being a RandomAccessRange (the most functional range), SquaresRange can also
be used as other types of ranges. For example, as an InputRange when passing to
filter():

bool are_lastTwoDigitsSame(int value)
{

/* Must have at least two digits */
if (value < 10) {

return false;
}

/* Last two digits must be divisible by 11 */
immutable lastTwoDigits = value % 100;
return (lastTwoDigits % 11) == 0;

}

writeln(squares.take(50).filter!are_lastTwoDigitsSame);

The output consists of elements among the first 50, where last two digits are the
same:

[100, 144, 400, 900, 1444, 1600]

Finite RandomAccessRange
The following are all of the requirements of a RandomAccessRange that is based
on a finite BidirectionalRange:

• empty, front and popFront() that InputRange requires
• save that ForwardRange requires
• back and popBack() that BidirectionalRange requires
• opIndex() that RandomAccessRange requires
• length, which provides the length of the range

As an example of a finite RandomAccessRange, let's define a range that works
similarly to std.range.chain. chain() presents the elements of a number of
separate ranges as if they are elements of a single larger range. Although chain()
works with any type of element and any type of range, to keep the example short,
let's implement a range that works only with int slices.

Let's name this range Together and expect the following behavior from it:
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auto range = Together([ 1, 2, 3 ], [ 101, 102, 103]);
writeln(range[4]);

When constructed with the two separate arrays above, range should present all
of those elements as a single range. For example, although neither array has an
element at index 4, the element 102 should be the element that corresponds to
index 4 of the collective range:

102

As expected, printing the entire range should contain all of the elements:

writeln(range);

The output:

[1, 2, 3, 101, 102, 103]

Together will operate lazily: the elements will not be copied to a new larger
array; they will be accessed from the original slices.

We can take advantage of variadic functions, which were introduced in the
Variable Number of Parameters chapter (page 279), to initialize the range by any
number of original slices:

struct Together
{

const(int)[][] slices;

this(const(int)[][] slices ...)
{

this.slices = slices.dup;

clearFront();
clearBack();

}

// ...
}

Note that the element type is const(int), indicating that this struct will not
modify the elements of the ranges. However, the slices will necessarily be
modified by popFront() to implement iteration.

The clearFront() and clearBack() calls that the constructor makes are to
remove empty slices from the beginning and the end of the original slices. Such
empty slices do not change the behavior of Together and removing them up
front will simplify the implementation:

struct Together
{
// ...

private void clearFront()
{

while (!slices.empty && slices.front.empty) {
slices.popFront();

}
}

private void clearBack()
{

while (!slices.empty && slices.back.empty) {
slices.popBack();

}
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}
}

We will call those functions later from popFront() and popBack() as well.
Since clearFront() and clearBack() remove all of the empty slices from the

beginning and the end, still having a slice would mean that the collective range is
not yet empty. In other words, the range should be considered empty only if there
is no slice left:

struct Together
{
// ...

@property bool empty() const
{

return slices.empty;
}

}

The first element of the first slice is the first element of this Together range:

struct Together
{
// ...

@property int front() const
{

return slices.front.front;
}

}

Removing the first element of the first slice removes the first element of this range
as well. Since this operation may leave the first slice empty, we must call
clearFront() to remove that empty slice and the ones that are after that one:

struct Together
{
// ...

void popFront()
{

slices.front.popFront();
clearFront();

}
}

A copy of this range can be constructed from a copy of the slices member:

struct Together
{
// ...

@property Together save() const
{

return Together(slices.dup);
}

}

Please note that .dup copies only slices in this case, not the slice elements that it
contains.

The operations at the end of the range are similar to the ones at the beginning:

struct Together
{
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// ...

@property int back() const
{

return slices.back.back;
}

void popBack()
{

slices.back.popBack();
clearBack();

}
}

The length of the range can be calculated as the sum of the lengths of the slices:

struct Together
{
// ...

@property size_t length() const
{

size_t totalLength = 0;

foreach (slice; slices) {
totalLength += slice.length;

}

return totalLength;
}

}

Alternatively, the length may be calculated with less code by taking advantage of
std.algorithm.reduce. reduce() takes an operation as its template parameter
and applies that operation to all of the elements of a range:

import std.algorithm;

// ...

@property size_t length() const
{

return reduce!((a, b) => a + b.length)(size_t.init, slices);
}

The a in the template parameter represents the current result (the sum in this
case) and b represents the current element. The first function parameter is the
initial value of the result (size_t.init is 0) and the second function parameter is
the range that contains the elements.
Note: Further, instead of calculating the length every time when length is called, it

may be measurably faster to maintain a member variable perhaps named length_,
which always equals the correct length of the collective range. That member may be
calculated once in the constructor and adjusted accordingly as elements are removed by
popFront() and popBack().

One way of returning the element that corresponds to a specific index is to look
at every slice to determine whether the element would be among the elements of
that slice:

struct Together
{
// ...

int opIndex(size_t index) const
{
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/* Save the index for the error message */
immutable originalIndex = index;

foreach (slice; slices) {
if (slice.length > index) {

return slice[index];

} else {
index -= slice.length;

}
}

throw new Exception(
format("Invalid index: %s (length: %s)",

originalIndex, this.length));
}

}

Note: This opIndex() does not satisfy the constant time requirement that has been
mentioned above. For this implementation to be acceptably fast, the slices member
must not be too long.

This new range is now ready to be used with any number of int slices. With the
help of take() and array(), we can even include the range types that we have
defined earlier in this chapter:

auto range = Together(FibonacciSeries().take(10).array,
[ 777, 888 ],
(new SquaresRange()).take(5).array);

writeln(range.save);

The elements of the three slices are accessed as if they were elements of a single
large array:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 777, 888, 0, 1, 4, 9, 16]

We can pass this range to other range algorithms. For example, to retro(), which
requires a BidirectionalRange:

writeln(range.save.retro);

The output:

[16, 9, 4, 1, 0, 888, 777, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0]

Of course you should use the more functional std.range.chain instead of
Together in your programs.

80.9 OutputRange
All of the range types that we have seen so far are about element access.
OutputRange represents streamed element output, similar to sending characters
to stdout.
I have mentioned earlier that OutputRange requires support for the
put(range, element) operation. put() is a function defined in the std.range
module. It determines the capabilities of the range and the element at compile
time and uses the most appropriate method to output the element.
put() considers the following cases in the order that they are listed below, and

applies the method for the first matching case. R represents the type of the range;
range, a range object; E, the type of the element; and e an element of the range:

Case Considered Method Applied
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R has a member function named put
and put can take an E as argument

range.put(e);

R has a member function named put
and put can take an E[] as argument

range.put([ e ]);

R is an InputRange
and e can be assigned to range.front

range.front = e;
range.popFront();

E is an InputRange
and can be copied to R

for (; !e.empty; e.popFront())
put(range, e.front);

R can take E as argument
(e.g. R could be a delegate)

range(e);

R can take E[] as argument
(e.g. R could be a delegate)

range([ e ]);

Let's define a range that matches the first case: The range will have a member
function named put(), which takes a parameter that matches the type of the
output range.

This output range will be used for outputting elements to multiple files,
including stdout. When elements are outputted with put(), they will all be
written to all of those files. As an additional functionality, let's add the ability to
specify a delimiter to be written after each element.

struct MultiFile
{

string delimiter;
File[] files;

this(string delimiter, string[] fileNames ...)
{

this.delimiter = delimiter;

/* stdout is always included */
this.files ~= stdout;

/* A File object for each file name */
foreach (fileName; fileNames) {

this.files ~= File(fileName, "w");
}

}

void put(T)(T element)
{

foreach (file; files) {
file.write(element, delimiter);

}
}

}

In order to be used as an output range of any type of elements, put() is also
templatized on the element type.
An algorithm in Phobos that uses OutputRange is std.algorithm.copy. copy()
is a very simple algorithm, which copies the elements of an InputRange to an
OutputRange.

import std.algorithm;

// ...

auto output = MultiFile("\n", "output_0", "output_1");
copy([ 1, 2, 3], output);
copy([ "red", "blue", "green" ], output);
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That code outputs the elements of the input ranges both to stdout and to files
named "output_0" and "output_1":

1
2
3
red
blue
green

Using slices as OutputRange
The std.range module makes slices OutputRange objects as well. (By contrast,
std.array makes them only input ranges.) Unfortunately, using slices as
OutputRange objects has a confusing effect: slices lose an element for each put()
operation on them; and that element is the element that has just been outputted!

The reason for this behavior is a consequence of slices' not having a put()
member function. As a result, the third case of the previous table is matched for
slices and the following method is applied:

range.front = e;
range.popFront();

As the code above is executed for each put(), the front element of the slice is
assigned to the value of the outputted element, to be subsequently removed from
the slice with popFront():

import std.stdio;
import std.range;

void main()
{

int[] slice = [ 1, 2, 3 ];
put(slice, 100);
writeln(slice);

}

As a result, although the slice is used as an OutputRange, it surprisingly loses
elements:

[2, 3]

To avoid this, a separate slice must be used as an OutputRange instead:

import std.stdio;
import std.range;

void main()
{

int[] slice = [ 1, 2, 3 ];
int[] slice2 = slice;

put(slice2, 100);

writeln(slice2);
writeln(slice);

}

This time the second slice is consumed and the original slice has the expected
elements:
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[2, 3]
[100, 2, 3] ← expected result

Another important fact is that the length of the slice does not grow when used as
an OutputRange. It is the programmer's responsibility to ensure that there is
enough room in the slice:

int[] slice = [ 1, 2, 3 ];
int[] slice2 = slice;

foreach (i; 0 .. 4) { // ← no room for 4 elements
put(slice2, i * 100);

}

When the slice becomes completely empty because of the indirect popFront()
calls, the program terminates with an exception:

core.exception.AssertError@...: Attempting to fetch the front
of an empty array of int

std.array.Appender and its convenience function appender allows using slices
as an OutputRange where the elements are appended. The put() function of the
special range object that appender() returns actually appends the elements to
the original slice:

import std.array;

// ...

auto a = appender([ 1, 2, 3 ]);

foreach (i; 0 .. 4) {
a.put(i * 100);

}

In the code above, appender is called with an array and returns a special range
object. That range object is in turn used as an OutputRange by calling its put()
member function. The resultant elements are accessed by its .data property:

writeln(a.data);

The output:

[1, 2, 3, 0, 100, 200, 300]

Appender supports the ~= operator as well:

a ~= 1000;
writeln(a.data);

The output:

[1, 2, 3, 0, 100, 200, 300, 1000]

80.10 Range templates
Although we have used mostly int ranges in this chapter, ranges and range
algorithms are much more useful when defined as templates.

The std.range module includes many range templates. We will see these
templates in the next chapter.
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80.11 Summary

• Ranges abstract data structures from algorithms and allow them to be
used with algorithms seamlessly.

• Ranges are a D concept and are the basis for many features of Phobos.
• Many Phobos algorithms return lazy range objects to accomplish their

special tasks.
• UFCS works well with range algorithms.
• When used as InputRange objects, the elements of strings are Unicode

characters.
• InputRange requires empty, front and popFront().
• ForwardRange additionally requires save.
• BidirectionalRange additionally requires back and popBack().
• Infinite RandomAccessRange requires opIndex() over ForwardRange.
• Finite RandomAccessRange requires opIndex() and length over
BidirectionalRange.

• std.array.appender returns an OutputRange that appends to slices.
• Slices are ranges of finite RandomAccessRange
• Fixed-length arrays are not ranges.
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81 More Ranges

We used mostly int ranges in the previous chapter. In practice, containers,
algorithms, and ranges are almost always implemented as templates. The
print() example in that chapter was a template as well:

void print(T)(T range)
{

// ...
}

What lacks from the implementation of print() is that even though it requires T
to be a kind of InputRange, it does not formalize that requirement with a
template constraint. (We have seen template constraints in the More Templates
chapter (page 533).)

The std.range module contains templates that are useful both in template
constraints and in static if statements.

81.1 Range kind templates
The group of templates with names starting with is determine whether a type
satisfies the requirements of a certain kind of range. For example,
isInputRange!T answers the question "is T an InputRange?" The following
templates are for determining whether a type is of a specific general range kind:

• isInputRange
• isForwardRange
• isBidirectionalRange
• isRandomAccessRange
• isOutputRange

Accordingly, the template constraint of print() can use isInputRange:

void print(T)(T range)
if (isInputRange!T)

{
// ...

}

Unlike the others, isOutputRange takes two template parameters: The first one is
a range type and the second one is an element type. It returns true if that range
type allows outputting that element type. For example, the following constraint is
for requiring that the range must be an OutputRange that accepts double
elements:

void foo(T)(T range)
if (isOutputRange!(T, double))

{
// ...

}

When used in conjunction with static if, these constraints can determine the
capabilities of user-defined ranges as well. For example, when a dependent range
of a user-defined range is a ForwardRange, the user-defined range can take
advantage of that fact and can provide the save() function as well.
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Let's see this on a range that produces the negatives of the elements of an
existing range (more accurately, the numeric complements of the elements). Let's
start with just the InputRange functions:

struct Negative(T)
if (isInputRange!T)

{
T range;

@property bool empty()
{

return range.empty;
}

@property auto front()
{

return -range.front;
}

void popFront()
{

range.popFront();
}

}

Note: As we will see below, the return type of front can be specified as ElementType!T
as well.

The only functionality of this range is in the front function where it produces
the negative of the front element of the original range.

As usual, the following is the convenience function that goes with that range:

Negative!T negative(T)(T range)
{

return Negative!T(range);
}

This range is ready to be used with e.g. FibonacciSeries that was defined in the
previous chapter:

struct FibonacciSeries
{

int first = 0;
int second = 1;

enum empty = false;

@property int front() const
{

return first;
}

void popFront()
{

int third = first + second;
first = second;
second = third;

}

@property FibonacciSeries save() const
{

return this;
}

}

// ...

writeln(FibonacciSeries().take(5).negative);
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The output contains the negatives of the first five elements of the series:

[0, -1, -1, -2, -3]

Naturally, being just an InputRange, Negative cannot be used with algorithms
like cycle() that require a ForwardRange:

writeln(FibonacciSeries()
.take(5)
.negative
.cycle // ← compilation ERROR
.take(10));

However, when the original range is already a ForwardRange, there is no reason
for Negative not to provide the save() function as well. This condition can be
determined by a static if statement and save() can be provided if the original
range is a ForwardRange. In this case it is as trivial as returning a new Negative
object that is constructed by a copy of the original range:

struct Negative(T)
if (isInputRange!T)

{
// ...

static if (isForwardRange!T)
{

@property Negative save()
{

return Negative(range.save);
}

}
}

The addition of the new save() function makes Negative!FibonacciSeries a
ForwardRange as well and the cycle() call can now be compiled:

writeln(FibonacciSeries()
.take(5)
.negative
.cycle // ← now compiles
.take(10));

The output of the entire expression can be described as take the first five elements
of the Fibonacci series, take their negatives, cycle those indefinitely, and take the first
ten of those elements:

[0, -1, -1, -2, -3, 0, -1, -1, -2, -3]

With the same approach, Negative can be made a BidirectionalRange and a
RandomAccessRange if the original range supports those functionalities:

struct Negative(T)
if (isInputRange!T)

{
// ...

static if (isBidirectionalRange!T)
{

@property auto back()
{

return -range.back;
}

void popBack()
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{
range.popBack();

}
}

static if (isRandomAccessRange!T)
{

auto opIndex(size_t index)
{

return -range[index];
}

}
}

For example, when it is used with a slice, the negative elements can be accessed
by the [] operator:

auto d = [ 1.5, 2.75 ];
auto n = d.negative;
writeln(n[1]);

The output:

-2.75

81.2 ElementType and ElementEncodingType
ElementType provides the types of the elements of the range.

For example, the following template constraint includes a requirement that is
about the element type of the first range:

void foo(I1, I2, O)(I1 input1, I2 input2, O output)
if (isInputRange!I1 &&

isForwardRange!I2 &&
isOutputRange!(O, ElementType!I1))

{
// ...

}

The previous constraint can be described as if I1 is an InputRange and I2 is a
ForwardRange and O is an OutputRange that accepts the element type of I1.
Since strings are always ranges of Unicode characters, regardless of their actual
character types, they are always ranges of dchar, which means that even
ElementType!string and ElementType!wstring are dchar. For that reason,
when needed in a template, the actual UTF encoding type of a string range can be
obtained by ElementEncodingType.

81.3 More range templates
The std.range module has many more range templates that can be used with D's
other compile-time features. The following is a sampling:

• isInfinite: Whether the range is infinite
• hasLength: Whether the range has a length property
• hasSlicing: Whether the range supports slicing i.e. with a[x..y]
• hasAssignableElements: Whether the return type of front is

assignable
• hasSwappableElements: Whether the elements of the range are

swappable e.g. with std.algorithm.swap•
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hasMobileElements: Whether the elements of the range are movable
e.g. with std.algorithm.move
This implies that the range has moveFront(), moveBack(), or moveAt(),
depending on the actual kind of the range. Since moving elements is
usually faster than copying them, depending on the result of
hasMobileElements a range can provide faster operations by calling
move().

• hasLvalueElements: Whether the elements of the range are lvalues
(roughly meaning that the elements are not copies of actual elements
nor are temporary objects that are created on the fly)

For example, hasLvalueElements!FibonacciSeries is false
because the elements of FibonacciSeries do not exist as themselves;
rather, they are copies of the member first that is returned by front.
Similarly, hasLvalueElements!(Negative!(int[])) is false because
although the int slice does have actual elements, the range that is
represented by Negative does not provide access to those elements;
rather, it returns copies that have the negative signs of the elements of
the actual slice. Conversely, hasLvalueElements!(int[]) is true
because a slice provides access to actual elements of an array.

The following example takes advantage of isInfinite to provide empty as an
enum when the original range is infinite, making it known at compile time that
Negative!T is infinite as well:

struct Negative(T)
if (isInputRange!T)

{
// ...

static if (isInfinite!T) {
// Negative!T is infinite as well
enum empty = false;

} else {
@property bool empty()
{

return range.empty;
}

}

// ...
}

static assert ( isInfinite!(Negative!FibonacciSeries));
static assert (!isInfinite!(int[]));

81.4 Run-time polymorphism with inputRangeObject() and
outputRangeObject()
Being implemented mostly as templates, ranges exhibit compile-time
polymorphism, which we have been taking advantage of in the examples of this
chapter and previous chapters. (For differences between compile-time polymorphism
and run-time polymorphism, see the "Compile-time polymorphism" section in the More
Templates chapter (page 533).)

Compile-time polymorphism has to deal with the fact that every instantiation
of a template is a different type. For example, the return type of the take()
template is directly related to the original range:
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writeln(typeof([11, 22].negative.take(1)).stringof);
writeln(typeof(FibonacciSeries().take(1)).stringof);

The output:

Take!(Negative!(int[]))
Take!(FibonacciSeries)

A natural consequence of this fact is that different range types cannot be
assigned to each other. The following is an example of this incompatibility
between two InputRange ranges:

auto range = [11, 22].negative;
// ... at a later point ...
range = FibonacciSeries(); // ← compilation ERROR

As expected, the compilation error indicates that FibonacciSeries and
Negative!(int[]) are not compatible:

Error: cannot implicitly convert expression (FibonacciSeries(0, 1))
of type FibonacciSeries to Negative!(int[])

However, although the actual types of the ranges are different, since they both are
ranges of int, this incompatibility can be seen as an unnecessary limitation. From
the usage point of view, since both ranges simply provide int elements, the actual
mechanism that produces those elements should not be important.

Phobos helps with this issue by inputRangeObject() and
outputRangeObject(). inputRangeObject() allows presenting ranges as a
specific kind of range of specific types of elements. With its help, a range can be used
e.g. as an InputRange of int elements, regardless of the actual type of the range.
inputRangeObject() is flexible enough to support all of the non-output

ranges: InputRange, ForwardRange, BidirectionalRange, and
RandomAccessRange. Because of that flexibility, the object that it returns cannot
be defined by auto. The exact kind of range that is required must be specified
explicitly:

// Meaning "InputRange of ints":
InputRange!int range = [11, 22].negative.inputRangeObject;

// ... at a later point ...

// The following assignment now compiles
range = FibonacciSeries().inputRangeObject;

As another example, when the range needs to be used as a ForwardRange of int
elements, its type must be specified explicitly as ForwardRange!int:

ForwardRange!int range = [11, 22].negative.inputRangeObject;

auto copy = range.save;

range = FibonacciSeries().inputRangeObject;
writeln(range.save.take(10));

The example calls save() just to prove that the ranges can indeed be used as
ForwardRange ranges.

Similarly, outputRangeObject() works with OutputRange ranges and allows
their use as an OutputRange that accepts specific types of elements.
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81.5 Summary

• The std.range module contains many useful range templates.
• Some of those templates allow templates be more capable depending on

the capabilities of original ranges.
• inputRangeObject() and outputRangeObject() provide run-time

polymorphism, allowing using different types of ranges as specific kinds
of ranges of specific types of elements.
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82 Parallelism

Most modern microprocessors consist of more than one core, each of which can
operate as an individual processing unit. They can execute different parts of
different programs at the same time. The features of the std.parallelism
module make it possible for programs to take advantage of all of the cores in
order to run faster.

This chapter covers the following range algorithms. These algorithms should be
used only when the operations that are to be executed in parallel are truly
independent from each other. In parallel means that operations are executed on
multiple cores at the same time:

• parallel: Executes the iterations of a foreach loop in parallel.
• task: Creates tasks that are executed in parallel.
• asyncBuf: Iterates the elements of an InputRange semi-eagerly in

parallel.
• map: Calls functions with the elements of an InputRange semi-eagerly in

parallel.
• amap: Calls functions with the elements of a RandomAccessRange fully-

eagerly in parallel.
• reduce: Makes calculations over the elements of a RandomAccessRange

in parallel.

In the programs that we have written so far we have been assuming that the
expressions of a program are executed in a certain order, at least in general line-
by-line:

++i;
++j;

In the code above, we expect that the value of i is incremented before the value of
j is incremented. Although that is semantically correct, it is rarely the case in
reality: microprocessors and compilers use optimization techniques to have some
variables reside in microprocessor's registers that are independent from each
other. When that is the case, the microprocessor would execute operations like
the increments above in parallel.

Although these optimizations are effective, they cannot be applied
automatically to layers higher than the very low-level operations. Only the
programmer can determine that certain high-level operations are independent
and that they can be executed in parallel.

In a loop, the elements of a range are normally processed one after the other,
operations of each element following the operations of previous elements:

auto students =
[ Student(1), Student(2), Student(3), Student(4) ];

foreach (student; students) {
student.aSlowOperation();

}

Normally, a program would be executed on one of the cores of the
microprocessor, which has been assigned by the operating system to execute the
program. As the foreach loop normally operates on elements one after the other,
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aSlowOperation() would be called for each student sequentially. However, in
many cases it is not necessary for the operations of preceding students to be
completed before starting the operations of successive students. If the operations
on the Student objects were truly independent, it would be wasteful to ignore the
other microprocessor cores, which might potentially be waiting idle on the
system.
To simulate long-lasting operations, the following examples call Thread.sleep()
from the core.thread module. Thread.sleep() suspends the operations for the
specified amount of time. Thread.sleep is admittedly an artifical method to use
in the following examples because it takes time without ever busying any core.
Despite being an unrealistic tool, it is still useful in this chapter to demonstrate
the power of parallelism.

import std.stdio;
import core.thread;

struct Student
{

int number;

void aSlowOperation()
{

writefln("The work on student %s has begun", number);

// Wait for a while to simulate a long-lasting operation
Thread.sleep(1.seconds);

writefln("The work on student %s has ended", number);
}

}

void main()
{

auto students =
[ Student(1), Student(2), Student(3), Student(4) ];

foreach (student; students) {
student.aSlowOperation();

}
}

The execution time of the program can be measured in a console by time:

$ time ./deneme
The work on student 1 has begun
The work on student 1 has ended
The work on student 2 has begun
The work on student 2 has ended
The work on student 3 has begun
The work on student 3 has ended
The work on student 4 has begun
The work on student 4 has ended

real    0m4.005s ← 4 seconds total
user    0m0.004s
sys     0m0.000s

Since the students are iterated over in sequence and since the work of each
student takes 1 second, the total execution time comes out to be 4 seconds.
However, if these operations were executed in an environment that had 4 cores,
they could be operated on at the same time and the total time would be reduced
to about 1 second.
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Before seeing how this is done, let's first determine the number of cores that are
available on the system by std.parallelism.totalCPUs:

import std.stdio;
import std.parallelism;

void main()
{

writefln("There are %s cores on this system.", totalCPUs);
}

The output of the program in the environment that this chapter has been written
is the following:

There are 4 cores on this system.

82.1 taskPool.parallel()
This function can also be called simply as parallel().
parallel() executes the iterations of a foreach loop in parallel. Merely
importing the std.parallelism module and replacing students with
parallel(students) in the program above is sufficient to take advantage of all
of the cores of the system:

import std.parallelism;
// ...

foreach (student; parallel(students)) {

We have seen earlier in the foreach for structs and classes chapter (page 504)
that the expressions that are in foreach blocks are passed to opApply() member
functions as delegates. parallel() returns a range object that knows how to
distribute the execution of the delegate to a separate core for each element.

As a result, passing the Student range through parallel() makes the
program above finish in 1 second on a system that has 4 cores:

$ time ./deneme
The work on student 2 has begun
The work on student 1 has begun
The work on student 4 has begun
The work on student 3 has begun
The work on student 1 has ended
The work on student 2 has ended
The work on student 4 has ended
The work on student 3 has ended

real    0m1.005s ← now only 1 second
user    0m0.004s
sys     0m0.004s

Note: The execution time of the program may be different on other systems but it is
expected to be roughly "4 seconds divided by the number of cores".
A flow of execution through certain parts of a program is called a a thread of
execution or a thread. Programs can consist of multiple threads that are being
actively executed at the same time. The operating system starts and executes each
thread on a core and then suspends it to execute other threads. The execution of
each thread may involve many cycles of starting and suspending.

All of the threads of all of the programs that are active at a given time are
executed on the very cores of the microprocessor. The operating system decides
when and under what condition to start and suspend each thread. That is the
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reason why the messages that are printed by aSlowOperation() are in mixed
order in the output above. This undeterministic order of thread execution may
not matter if the operations of the Student objects are truly independent from
each other.

It is the responsibility of the programmer to call parallel() only when the
operations in the foreach loop are independent for each iteration. For example,
if it were important that the messages appear in a certain order in the output,
calling parallel() should be considered an error in the program above. The
programming model that supports threads that depend on other threads is called
concurrency. Concurrency is the topic of the next chapter.

By the time parallel foreach ends, all of the operations inside the loop have
been completed for all of the elements. The program can safely continue after the
foreach loop.

Work unit size
The second parameter of parallel() has an overloaded meaning and is ignored
in some cases:

/* ... */ = parallel(range, work_unit_size = 100);

• When iterating over RandomAccessRange ranges:
The distribution of threads to cores has some minimal cost. This cost

may sometimes be significant especially when the operations of the loop
are completed in a very short time. In such cases, it may be faster to have
each thread execute more than one iteration of the loop. The work unit
size determines the number of elements that each thread should execute
at each of its iterations:

foreach (student; parallel(students, 2)) {

The default value of work unit size is 100 and is suitable for most cases.
• When iterating over non-RandomAccessRange ranges:

parallel() does not start parallel executions until work unit size
number of elements of a non-RandomAccessRange have been executed
serially first. Due to the relatively high value of 100, parallel() may
give the wrong impression that it is not effective when tried on short
non-RandomAccessRange ranges.

• When iterating over the result ranges of asyncBuf() or parallel map()
(both are explained later in this chapter):

When parallel() works on the results of asyncBuf() or map(), it
ignores the work unit size parameter. Instead, parallel() reuses the
internal buffer of the result range.

82.2 Task
Operations that are executed in parallel with other operations of a program are
called tasks. Tasks are represented by the type std.parallelism.Task.

In fact, parallel() constructs a new Task object for every worker thread and
starts that task automatically. parallel() then waits for all of the tasks to be
completed before finally exiting the loop. parallel() is very convenient as it
constructs, starts, and waits for the tasks automatically. Its limitation is that
parallel() can only be used in foreach loops.
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When tasks do not correspond to or cannot be represented by elements of a
range, these three steps can be handled explicitly by the programmer. task()
constructs, executeInNewThread() starts, and yieldForce() waits for a task
object. These three functions are explained further in the comments of the
following program.

The anOperation() function is started twice in the following program. It
prints the first letter of id to indicate which task it is working for.
Note: Normally, the characters that are printed to output streams like stdout do not
appear on the output right away. They are instead stored in an output buffer until a
line of output is completed. Since write does not output a new-line character, in order
to observe the parallel execution of the following program, stdout.flush() is called
to send the contents of the buffer to stdout even before reaching the end of a line.

import std.stdio;
import std.parallelism;
import std.array;
import core.thread;

/* Prints the first letter of 'id' every half a second. It
* arbitrarily returns the value 1 to simulate functions that
* do calculations. This result will be used later in main. */

int anOperation(string id, int duration)
{

writefln("%s will take %s seconds", id, duration);

foreach (i; 0 .. (duration * 2)) {
Thread.sleep(500.msecs); /* half a second */
write(id.front);
stdout.flush();

}

return 1;
}

void main()
{

/* Construct a task object that will execute
* anOperation(). The function parameters that are
* specified here are passed to the task function as its
* function parameters. */

auto theTask = task!anOperation("theTask", 5);

/* Start the task object */
theTask.executeInNewThread();

/* As 'theTask' continues executing, 'anOperation()' is
* being called again, this time directly in main. */

immutable result = anOperation("main's call", 3);

/* At this point we are sure that the operation that has
* been started directly from within main has been
* completed, because it has been started by a regular
* function call, not as a task. */

/* On the other hand, it is not certain at this point
* whether 'theTask' has completed its operations
* yet. yieldForce() waits for the task to complete its
* operations; it returns only when the task has been
* completed. Its return value is the return value of
* the task function, i.e. anOperation(). */

immutable taskResult = theTask.yieldForce();

writeln();
writefln("All finished; the result is %s.",

result + taskResult);
}
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The output of the program should be similar to the following. The fact that the m
and t letters are printed in mixed order indicates that the operations are executed
in parallel:

main's call will take 3 seconds
theTask will take 5 seconds
mtmttmmttmmttttt
All finished; the result is 2.

The task function has been specified as a template parameter of task(). Another
overload of task() takes the function as its first function parameter:

void someFunction(int value)
{

/* ... */
}

auto theTask = task(&someFunction, 42);

A lambda function or an object of a type that defines the opCall member can also
be used as the task function. The following example starts a task that executes a
lambda:

auto theTask = task((int value) {
/* ... */

}, 42);

Exceptions
As tasks are executed on separate threads, the exceptions that they throw cannot
be caught by the thread that started them. For that reason, the exceptions that are
thrown are automatically caught by the tasks themselves, to be rethrown later
when Task member functions like yieldForce() are called. This makes it
possible for the main thread to catch exceptions that are thrown by a task.

import std.stdio;
import std.parallelism;
import core.thread;

void mayThrow()
{

writeln("mayThrow() is started");
Thread.sleep(1.seconds);
writeln("mayThrow() is throwing an exception");
throw new Exception("Error message");

}

void main()
{

auto theTask = task!mayThrow();
theTask.executeInNewThread();

writeln("main is continuing");
Thread.sleep(3.seconds);

writeln("main is waiting for the task");
theTask.yieldForce();

}

The output of the program shows that the uncaught exception that has been
thrown by the task does not terminate the entire program right away (it
terminates only the task):
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main is continuing
mayThrow() is started
mayThrow() is throwing an exception ← thrown
main is waiting for the task
object.Exception@deneme.d(10): Error message ← terminated

yieldForce() can be called in a try-catch block to catch the exceptions that are
thrown by the task. Note that this is different from single threads: In single-
threaded programs like the samples that we have been writing until this chapter,
try-catch wraps the code that may throw. In parallelism, it wraps
yieldForce():

try {
theTask.yieldForce();

} catch (Exception exc) {
writefln("Detected an error in the task: '%s'", exc.msg);

}

This time the exception is caught by the main thread instead of terminating the
program:

main is continuing
mayThrow() is started
mayThrow() is throwing an exception ← thrown
main is waiting for the task
Detected an error in the task: 'Error message' ← caught

Member functions of Task

• done: Specifies whether the task has been completed; rethrows the
exception if the task has been terminated with an exception.

if (theTask.done) {
writeln("Yes, the task has been completed");

} else {
writeln("No, the task is still going on");

}

• executeInNewThread(): Starts the task in a new thread.
• executeInNewThread(int priority): Starts the task in a new thread

with the specified priority. (Priority is an operating system concept that
determines execution priorities of threads.)

There are three functions to wait for the completion of a task:

• yieldForce(): Starts the task if it has not been started yet; if it has
already been completed, returns its return value; if it is still running,
waits for its completion without making the microprocessor busy; if an
exception has been thrown, rethrows that exception.

• spinForce(): Works similarly to yieldForce(), except that it makes
the microprocessor busy while waiting, in order to catch the completion
as early as possible.

• workForce(): Works similarly to yieldForce(), except that it starts a
new task in the current thread while waiting for the task to be
completed.
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In most cases yieldForce() is the most suitable function to call when waiting
for a task to complete; it suspends the thread that calls yieldForce() until the
task is completed. Although spinForce() makes the microprocessor busy while
waiting, it is suitable when the task is expected to be completed in a very short
time. workForce() can be called when starting other tasks is preferred over
suspending the current thread.

Please see the online documentation of Phobos for the other member functions
of Task.

82.3 taskPool.asyncBuf()
Similar to the way parallel() iterates foreach loops in parallel, asyncBuf()
iterates InputRange ranges in parallel. It stores the elements in a buffer as they
are produced by the range, and serves the elements from that buffer to its user.

In order to avoid making a potentially fully-lazy input range a fully-eager
range, it iterates the elements in waves. Once it prepares certain number of
elements in parallel, it waits until those elements are consumed by popFront()
before producing the elements of the next wave.
asyncBuf() takes a range and an optional buffer size that determines how

many elements to be made available during each wave:

auto elements = taskPool.asyncBuf(range, buffer_size);

To see the effects of asyncBuf(), let's use a range that takes half a second to
iterate and half a second to process each element. This range simply produces
integers up to the specified limit:

import std.stdio;
import core.thread;

struct Range
{

int limit;
int i;

bool empty() const @property
{

return i >= limit;
}

int front() const @property
{

return i;
}

void popFront()
{

writefln("Producing the element after %s", i);
Thread.sleep(500.msecs);
++i;

}
}

void main()
{

auto range = Range(10);

foreach (element; range) {
writefln("Using element %s", element);
Thread.sleep(500.msecs);

}
}
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The elements are produced and used lazily. Since it takes one second for each
element, the whole range takes ten seconds to process in this program:

$ time ./deneme
Using element 0
Producing the element after 0
Using element 1
Producing the element after 1
Using element 2
...
Producing the element after 8
Using element 9
Producing the element after 9

real    0m10.007s ← 10 seconds total
user    0m0.004s
sys     0m0.000s

According to that output, the elements are produced and used sequentially.
On the other hand, it may not be necessary to wait for preceding elements to be

processed before starting to produce the successive elements. The program would
take less time if other elements could be produced while the front element is in
use:

import std.parallelism;
//...

foreach (element; taskPool.asyncBuf(range, 2)) {

In the call above, asyncBuf() makes two elements ready in its buffer. Elements
are produced in parallel while they are being used:

$ time ./deneme
Producing the element after 0
Producing the element after 1
Using element 0
Producing the element after 2
Using element 1
Producing the element after 3
Using element 2
Producing the element after 4
Using element 3
Producing the element after 5
Using element 4
Producing the element after 6
Producing the element after 7
Using element 5
Using element 6
Producing the element after 8
Producing the element after 9
Using element 7
Using element 8
Using element 9

real    0m6.007s ← now 6 seconds
user    0m0.000s
sys     0m0.004s

The default value of buffer size is 100. The buffer size that produces the best
performance would be different under different situations.
asyncBuf() can be used outside of foreach loops, a trait that sets it apart from

parallel(). For example, the following code uses the return value of
asyncBuf() as an InputRange which operates semi-eagerly:
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auto range = Range(10);
auto asyncRange = taskPool.asyncBuf(range, 2);
writeln(asyncRange.front);

82.4 taskPool.map()
It helps to explain map() from the std.algorithm module before explaining
taskPool.map(). std.algorithm.map is an algorithm commonly found in many
functional languages. It calls a function with the elements of a range one-by-one
and returns a range that consists of the results of calling that function with each
element. It is a lazy algorithm: It calls the function as needed.

The fact that std.algorithm.map operates lazily is very powerful in many
programs. However, if the function needs to be called with every element anyway
and the operations on each element are independent from each other, laziness
may be unnecessarily slower than parallel execution. taskPool.map() and
taskPool.amap() from the std.parallelism module take advantage of
multiple cores and run faster in many cases.

Let's compare these three algorithms using the Student example. Let's assume
that Student has a member function that returns the average grade of the
student. To demonstrate how parallel algorithms are faster, let's again slow this
function down with Thread.sleep().
std.algorithm.map takes the function as its template parameter, and the

range as its function parameter. It returns a range that consists of the results of
applying that function to the elements of the range:

auto result_range = map!func(range);

The function may be specified by the => syntax as a lambda expression as we have
seen in earlier chapters. The following program uses map() to call the
averageGrade() member function on each element:

import std.stdio;
import std.algorithm;
import core.thread;

struct Student
{

int number;
int[] grades;

double averageGrade() @property
{

writefln("Started working on student %s",
number);

Thread.sleep(1.seconds);

immutable average =
reduce!((a, b) => a + b)(0.0, grades) / grades.length;

writefln("Finished working on student %s", number);
return average;

}
}

void main()
{

Student[] students;

foreach (i; 0 .. 10) {
/* Two grades for each student */
students ~= Student(i, [80 + i, 90 + i]);

}
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auto results = map!(a => a.averageGrade)(students);

foreach (result; results) {
writeln(result);

}
}

Note that the program uses std.algorithm.reduce when calculating the
average grade. We have seen reduce() in an example in the Ranges chapter (page
582) before. reduce() and its parallel counterpart taskPool.reduce() will be
explained below.

The output of the program demonstrates that map() operates lazily;
averageGrade() is called for each result as the foreach loop iterates:

$ time ./deneme
Started working on student 0
Finished working on student 0
85 ← calculated as foreach iterates
Started working on student 1
Finished working on student 1
86
...
Started working on student 9
Finished working on student 9
94

real    0m10.006s ← 10 seconds total
user    0m0.000s
sys     0m0.004s

If std.algorithm.map were an eager algorithm, the messages about the starts
and finishes of the operations would be printed altogether at the top.
taskPool.map() from the std.parallelism module works essentially the

same as std.algorithm.map. The only difference is that it executes the function
calls semi-eagerly and stores the results in a buffer to be served from as needed.
The size of this buffer is determined by the second parameter. For example, the
following code would make ready the results of the function calls for three
elements at a time:

import std.parallelism;
// ...
double averageGrade(Student student)
{

return student.averageGrade;
}
// ...

auto results = taskPool.map!averageGrade(students, 3);

Note: The free-standing averageGrade() function above is needed due to a limitation
that involves using local delegates with member function templates like
TaskPool.map. There would be a compilation error without that free-standing
function:

auto results = taskPool.map!(a => a.averageGrade)(students, 3); // ← compilation ERROR

This time the operations are executed in waves of three elements:

$ time ./deneme
Started working on student 1 ← in parallel
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Started working on student 2 ← but in unpredictable order
Started working on student 0
Finished working on student 1
Finished working on student 2
Finished working on student 0
85
86
87
Started working on student 4
Started working on student 5
Started working on student 3
Finished working on student 4
Finished working on student 3
Finished working on student 5
88
89
90
Started working on student 7
Started working on student 8
Started working on student 6
Finished working on student 7
Finished working on student 6
Finished working on student 8
91
92
93
Started working on student 9
Finished working on student 9
94

real    0m4.007s ← 4 seconds total
user    0m0.000s
sys     0m0.004s

The second parameter of map() has the same meaning as asyncBuf(): It
determines the size of the buffer that map() uses to store the results in. The third
parameter is the work unit size as in parallel(); the difference being its default
value, which is size_t.max:

/* ... */ = taskPool.map!func(range,
buffer_size = 100
work_unit_size = size_t.max);

82.5 taskPool.amap()
Parallel amap() works the same as parallel map() with two differences:

• It is fully eager.
• It works with RandomAccessRange ranges.

auto results = taskPool.amap!averageGrade(students);

Since it is eager, all of the results are ready by the time amap() returns:

$ time ./deneme
Started working on student 1 ← all are executed up front
Started working on student 0
Started working on student 2
Started working on student 3
Finished working on student 1
Started working on student 4
Finished working on student 2
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Finished working on student 3
Started working on student 6
Finished working on student 0
Started working on student 7
Started working on student 5
Finished working on student 4
Started working on student 8
Finished working on student 6
Started working on student 9
Finished working on student 7
Finished working on student 5
Finished working on student 8
Finished working on student 9
85
86
87
88
89
90
91
92
93
94

real    0m3.005s ← 3 seconds total
user    0m0.000s
sys     0m0.004s

amap() works faster than map() at the expense of using an array that is large
enough to store all of the results. It consumes more memory to gain speed.

The optional second parameter of amap() is the work unit size as well:

auto results = taskPool.amap!averageGrade(students, 2);

The results can also be stored in a RandomAccessRange that is passed to amap()
as its third parameter:

double[] results;
results.length = students.length;
taskPool.amap!averageGrade(students, 2, results);

82.6 taskPool.reduce()
As with map(), it helps to explain reduce() from the std.algorithm module
first.
We have seen std.algorithm.reduce in the Ranges chapter (page 582) before.
reduce() is another high-level algorithm commonly found in many functional
languages. Just like map(), it takes one or more functions as template parameters.
As its function parameters, it takes a value to be used as the initial value of the
result, and a range. reduce() calls the functions with the current value of the
result and each element of the range. When no initial value is specified, the first
element of the range is used instead.

Assuming that it defines a variable named result in its implementation, the
way that reduce() works can be described by the following steps:

1. Assigns the initial value to result
2. Executes the expression result = func(result, element) for every

element
3. Returns the final value of result
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For example, the sum of the squares of the elements of an array can be calculated
as in the following program:

import std.stdio;
import std.algorithm;

void main()
{

writeln(reduce!((a, b) => a + b * b)(0, [5, 10]));
}

When the function is specified by the => syntax as in the program above, the first
parameter (here a) represents the current value of the result (initialized by the
parameter 0 above) and the second parameter (here b) represents the current
element.

The program outputs the sum of 25 and 100, the squares of 5 and 10:

125

As obvious from its behavior, reduce() uses a loop in its implementation.
Because that loop is normally executed on a single core, it may be unnecessarily
slow when the function calls for each element are independent from each other.
In such cases taskPool.reduce() from the std.parallelism module can be
used for taking advantage of all of the cores.

To see an example of this let's use reduce() with a function that is slowed
down again artificially:

import std.stdio;
import std.algorithm;
import core.thread;

int aCalculation(int result, int element)
{

writefln("started  - element: %s, result: %s",
element, result);

Thread.sleep(1.seconds);
result += element;

writefln("finished - element: %s, result: %s",
element, result);

return result;
}

void main()
{

writeln("Result: ", reduce!aCalculation(0, [1, 2, 3, 4]));
}

reduce() uses the elements in sequence to reach the final value of the result:

$ time ./deneme
started  - element: 1, result: 0
finished - element: 1, result: 1
started  - element: 2, result: 1
finished - element: 2, result: 3
started  - element: 3, result: 3
finished - element: 3, result: 6
started  - element: 4, result: 6
finished - element: 4, result: 10
Result: 10

real    0m4.003s ← 4 seconds total
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user    0m0.000s
sys     0m0.000s

As in the parallel() and map() examples, importing the std.parallelism
module and calling taskPool.reduce() is sufficient to take advantage of all of
the cores:

import std.parallelism;
// ...

writeln("Result: ", taskPool.reduce!aCalculation(0, [1, 2, 3, 4]));

However, there are important differences in the way taskPool.reduce() works.
Like the other parallel algorithms, taskPool.reduce() executes the functions

in parallel by using elements in different tasks. Each task works on the elements
that it is assigned to and calculates a result that corresponds to the elements of
that task. Since reduce() is called with only a single initial value, every task must
use that same initial value to initialize its own result (the parameter 0 above).

The final values of the results that each task produces are themselves used in
the same result calculation one last time. These final calculations are executed
sequentially, not in parallel. For that reason, taskPool.reduce() may execute
slower in short examples as in this chapter as will be observed in the following
output.

The fact that the same initial value is used for all of the tasks, effectively being
used in the calculations multiple times, taskPool.reduce() may calculate a
result that is different from what std.algorithm.reduce() calculates. For that
reason, the initial value must be the identity value for the calculation that is being
performed, e.g. the 0 in this example which does not have any effect in addition.

Additionally, as the results are used by the same functions one last time in the
sequential calculations, the types of the parameters that the functions take must
be compatible with the types of the values that the functions return.
taskPool.reduce() should be used only under these considerations.

import std.parallelism;
// ...

writeln("Result: ", taskPool.reduce!aCalculation(0, [1, 2, 3, 4]));

The output of the program indicates that first the calculations are performed in
parallel, and then their results are calculated sequentially. The calculations that
are performed sequentially are highlighted:

$ time ./deneme
started  - element: 3, result: 0 ← first, the tasks in parallel
started  - element: 2, result: 0
started  - element: 1, result: 0
started  - element: 4, result: 0
finished - element: 3, result: 3
finished - element: 1, result: 1
started  - element: 1, result: 0 ← then, their results sequentially
finished - element: 4, result: 4
finished - element: 2, result: 2
finished - element: 1, result: 1
started  - element: 2, result: 1
finished - element: 2, result: 3
started  - element: 3, result: 3
finished - element: 3, result: 6
started  - element: 4, result: 6
finished - element: 4, result: 10
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Result: 10

real    0m5.006s ← parallel reduce is slower in this example
user    0m0.004s
sys     0m0.000s

Parallel reduce() is faster in many other calculations like the calculation of the
math constant pi (π) by quadrature.

82.7 Multiple functions and tuple results
std.algorithm.map(), taskPool.map(), taskPool.amap(), and
taskPool.reduce() can all take more than one function, in which case the
results are returned as a Tuple. We have seen the Tuple type in the Tuples
chapter (page 525) before. The results of individual functions correspond to the
elements of the tuple in the order that the functions are specified. For example,
the result of the first function is the first member of the tuple.

The following program demonstrates multiple functions with
std.algorithm.map. Note that the return types of the functions need not be the
same, as seen in the quarterOf() and tenTimes() functions below. In that case,
the types of the members of the tuples would be different as well:

import std.stdio;
import std.algorithm;
import std.conv;

double quarterOf(double value)
{

return value / 4;
}

string tenTimes(double value)
{

return to!string(value * 10);
}

void main()
{

auto values = [10, 42, 100];
auto results = map!(quarterOf, tenTimes)(values);

writefln(" Quarters  Ten Times");

foreach (quarterResult, tenTimesResult; results) {
writefln("%8.2f%8s", quarterResult, tenTimesResult);

}
}

The output:

Quarters  Ten Times
2.50     100

10.50     420
25.00    1000

In the case of taskPool.reduce(), the initial values of the results must be
specified as a tuple:

taskPool.reduce!(foo, bar)(tuple(0, 1), [1, 2, 3, 4]);
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82.8 TaskPool
Behind the scenes, the parallel algorithms from the std.parallelism module all
use task objects that are elements of a TaskPool container. Normally, all of the
algorithms use the same container object named taskPool.
taskPool contains appropriate number of tasks depending on the

environment that the program runs under. For that reason, usually there is no
need to create any other TaskPool object. Even so, explicit TaskPool objects may
be created and used as needed.

The TaskPool constructor takes the number of threads to use during the
parallel operations that are later started through it. The default value of the
number of threads is one less than the number of cores on the system. All of the
features that we have seen in this chapter can be applied to a separate TaskPool
object.

The following example calls parallel() on a local TaskPool object:

import std.stdio;
import std.parallelism;

void main()
{

auto workers = new TaskPool(2);

foreach (i; workers.parallel([1, 2, 3, 4])) {
writefln("Working on %s", i);

}

workers.finish();
}

TaskPool.finish() tells the object to stop processing when all of its current
tasks are completed.

82.9 Summary

• It is an error to execute operations in parallel unless those operations
are independent from each other.

• parallel() executes the iterations of foreach loops in parallel.
• Tasks can explicitly be created, started, and waited for by task(),
executeInNewThread(), and yieldForce(), respectively.

• The exceptions that are escaped from tasks can be caught later by most
of the parallelism functions like yieldForce().

• asyncBuf() iterates the elements of an InputRange semi-eagerly in
parallel.

• map() calls functions with the elements of an InputRange semi-eagerly
in parallel.

• amap() calls functions with the elements of a RandomAccessRange fully-
eagerly in parallel.

• reduce() makes calculations over the elements of a
RandomAccessRange in parallel.

• map(), amap(), and reduce() can take multiple functions and return
the results as tuples.

• When needed, TaskPool objects other than taskPool can be used.
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83 Message Passing Concurrency

Concurrency is similar to but different from the topic of the previous chapter,
parallelism. As these two concepts both involve executing programs on threads,
and as parallelism is based on concurrency, they are sometimes confused with
each other.
The following are the differences between parallelism and concurrency:

• The main purpose of parallelism is to take advantage of microprocessor
cores to improve the performance of programs. Concurrency on the
other hand, is a concept that may be needed even on a single-core
environment. Concurrency is about making a program run on more
than one thread at a time. An example of a concurrent program would
be a server program that is responding to requests of more than one
client at the same time.

• In parallelism, tasks are independent from each other. In fact, it would
be a bug if they did depend on results of other tasks that are running at
the same time. In concurrency, it is normal for threads to depend on
results of other threads.

• Although both programming models use operating system threads, in
parallelism threads are encapsulated by the concept of task.
Concurrency makes use of threads explicitly.

• Parallelism is easy to use, and as long as tasks are independent it is easy
to produce programs that work correctly. Concurrency is easy only
when it is based on message passing. It is very difficult to write correct
concurrent programs if they are based on the traditional model of
concurrency that involves lock-based data sharing.

D supports both models of concurrency: message passing and data sharing. We
will cover message passing in this chapter and data sharing in the next chapter.

83.1 Concepts
Thread: Operating systems execute programs as work units called threads. D
programs start executing with main() on a thread that has been assigned to that
program by the operating system. All of the operations of the program are
normally executed on that thread. The program is free to start other threads to be
able to work on multiple tasks at the same time. In fact, tasks that have been
covered in the previous chapter are based on threads that are started
automatically by std.parallelism.

The operating system can pause threads at unpredictable times for
unpredictable durations. As a result, even operations as simple as incrementing a
variable may be paused mid operation:

++i;

The operation above involves three steps: Reading the value of the variable,
incrementing the value, and assigning the new value back to the variable. The
thread may be paused at any point between these steps to be continued after an
unpredictable time.
Message: Data that is passed between threads are called messages. Messages may
be composed of any type and any number of variables.
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Thread identifier: Every thread has an id, which is used for specifying recipients
of messages.
Owner: Any thread that starts another thread is called the owner of the new
thread.
Worker: Any thread that is started by an owner is called a worker.

83.2 Starting threads
spawn() takes a function pointer as a parameter and starts a new thread from
that function. Any operations that are carried out by that function, including
other functions that it may call, would be executed on the new thread. As soon as
a new thread is started, the owner and the worker start executing separately as if
they were independent programs:

import std.stdio;
import std.concurrency;
import core.thread;

void worker()
{

foreach (i; 0 .. 5) {
Thread.sleep(500.msecs);
writeln(i, " (worker)");

}
}

void main()
{

spawn(&worker);

foreach (i; 0 .. 5) {
Thread.sleep(300.msecs);
writeln(i, " (main)");

}

writeln("main is done.");
}

The examples in this chapter call Thread.sleep to slow down threads to
demonstrate that they run at the same time. The output of the program shows
that the two threads, one that runs main() and the other that has been started by
spawn(), execute independently at the same time:

0 (main)
0 (worker)
1 (main)
2 (main)
1 (worker)
3 (main)
2 (worker)
4 (main)
main is done.
3 (worker)
4 (worker)

The program automatically waits for all of the threads to finish executing. We can
see this in the output above by the fact that worker() continues executing even
after main() exits after printing "main is done."

The parameters that the thread function takes are passed to spawn() as its
second and later arguments. The two worker threads in the following program
print four numbers each. They take the starting number as the thread function
parameter:
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import std.stdio;
import std.concurrency;
import core.thread;

void worker(int firstNumber)
{

foreach (i; 0 .. 4) {
Thread.sleep(500.msecs);
writeln(firstNumber + i);

}
}

void main()
{

foreach (i; 1 .. 3) {
spawn(&worker, i * 10);

}
}

The output of one of the threads is highlighted:

10
20
11
21
12
22
13
23

The lines of the output may be different at different times depending on how the
threads are paused and resumed by the operating system.

83.3 Thread identifiers
thisTid() returns the identifier of the current thread. It is commonly called
without the function parentheses:

import std.stdio;
import std.concurrency;

void printTid(string tag)
{

writefln("%s: %s", tag, thisTid);
}

void worker()
{

printTid("Worker");
}

void main()
{

spawn(&worker);
printTid("Owner ");

}

The return type of thisTid() is Tid, which has no significance for the program.
Even its toString() function is not overloaded:

Owner : Tid(std.concurrency.MessageBox)
Worker: Tid(std.concurrency.MessageBox)

The return value of spawn(), which I have been ignoring until this point, is the id
of the worker thread:

Tid myWorker = spawn(&worker);
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Conversely, the owner of a worker thread is obtained by the ownerTid() function.
In summary, the owner is identified by ownerTid and the worker is identified

by the return value of spawn().

83.4 Message Passing
send() sends messages and receiveOnly() waits for a message of a particular
type. (There is also prioritySend(), receive(), and receiveTimeout(), which
will be explained later below.)

The owner in the following program sends its worker a message of type int
and waits for a message from the worker of type double. The threads continue
sending messages back and forth until the owner sends a negative int. This is the
owner thread:

void main()
{

Tid worker = spawn(&workerFunc);

foreach (value; 1 .. 5) {
worker.send(value);
double result = receiveOnly!double();
writefln("sent: %s, received: %s", value, result);

}

/* Sending a negative value to the worker so that it
* terminates.  */

worker.send(-1);
}

main() stores the return value of spawn() under the name worker and uses that
variable when sending messages to the worker.

On the other side, the worker receives the message that it needs as an int, uses
that value in a calculation, and sends the result as type double to its owner:

void workerFunc()
{

int value = 0;

while (value >= 0) {
value = receiveOnly!int();
double result = to!double(value) / 5;
ownerTid.send(result);

}
}

The main thread reports the messages that it sends and the messages that it
receives:

sent: 1, received: 0.2
sent: 2, received: 0.4
sent: 3, received: 0.6
sent: 4, received: 0.8

It is possible to send more than one value as a part of the same message. The
following message consists of three parts:

ownerTid.send(thisTid, 42, 1.5);

Values that are passed as parts of a single message appear as a tuple on the
receiver's side. In such cases the template parameters of receiveOnly() must
match the types of the tuple members:
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/* Wait for a message composed of Tid, int, and double. */
auto message = receiveOnly!(Tid, int, double)();

auto sender   = message[0]; // of type Tid
auto integer  = message[1]; // of type int
auto floating = message[2]; // of type double

If the types do not match, a MessageMismatch exception is thrown:

import std.concurrency;

void workerFunc()
{

ownerTid.send("hello"); // ← Sending string
}

void main()
{

spawn(&workerFunc);

auto message = receiveOnly!double(); // ← Expecting double
}

The output:

std.concurrency.MessageMismatch@std/concurrency.d(235):
Unexpected message type: expected 'double', got 'immutable(char)[]'

The exceptions that the worker may throw cannot be caught by the owner. One
solution is to have the worker catch the exception to be sent as a message. We will
see this below.

Example
Let's use what we have seen so far in a simulation program.

The following program simulates independent robots moving around
randomly in a two dimensional space. The movement of each robot is handled by
a separate thread that takes three pieces of information when started:

• The number (id) of the robot: This information is sent back to the owner
to identify the robot that the message is related to.

• The origin: This is where the robot starts moving from.
• The duration between each step: This information is used for

determining when the robot's next step will be.

That information can be stored in the following Job struct:

struct Job
{

size_t robotId;
Position origin;
Duration restDuration;

}

The thread function that moves each robot sends the id of the robot and its
movement to the owner thread continuously:

void robotMover(Job job)
{

Position from = job.origin;

while (true) {
Thread.sleep(job.restDuration);

Message Passing Concurrency

637



Position to = randomNeighbor(from);
Movement movement = Movement(from, to);
from = to;

ownerTid.send(MovementMessage(job.robotId, movement));
}

}

The owner simply waits for these messages in an infinite loop. It identifies the
robots by the robot ids that are sent as parts of the messages. The owner simply
prints every movement:

while (true) {
auto message = receiveOnly!MovementMessage();

writefln("%s %s",
robots[message.robotId], message.movement);

}

All of the messages in this simple program go from the worker to the owner.
Message passing normally involves more complicated communication in many
kinds of programs.

Here is the complete program:

import std.stdio;
import std.random;
import std.string;
import std.concurrency;
import core.thread;

struct Position
{

int line;
int column;

string toString()
{

return format("%s,%s", line, column);
}

}

struct Movement
{

Position from;
Position to;

string toString()
{

return ((from == to)
? format("%s (idle)", from)
: format("%s -> %s", from, to));

}
}

class Robot
{

string image;
Duration restDuration;

this(string image, Duration restDuration)
{

this.image = image;
this.restDuration = restDuration;

}

override string toString()
{

return format("%s(%s)", image, restDuration);
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}
}

/* Returns a random position around 0,0. */
Position randomPosition()
{

return Position(uniform!"[]"(-10, 10),
uniform!"[]"(-10, 10));

}

/* Returns at most one step from the specified coordinate. */
int randomStep(int current)
{

return current + uniform!"[]"(-1, 1);
}

/* Returns a neighbor of the specified Position. It may be one
* of the neighbors at eight directions, or the specified
* position itself. */

Position randomNeighbor(Position position)
{

return Position(randomStep(position.line),
randomStep(position.column));

}

struct Job
{

size_t robotId;
Position origin;
Duration restDuration;

}

struct MovementMessage
{

size_t robotId;
Movement movement;

}

void robotMover(Job job)
{

Position from = job.origin;

while (true) {
Thread.sleep(job.restDuration);

Position to = randomNeighbor(from);
Movement movement = Movement(from, to);
from = to;

ownerTid.send(MovementMessage(job.robotId, movement));
}

}

void main()
{

/* Robots with various restDurations. */
Robot[] robots = [ new Robot("A",  600.msecs),

new Robot("B", 2000.msecs),
new Robot("C", 5000.msecs) ];

/* Start a mover thread for each robot. */
foreach (robotId, robot; robots) {

spawn(&robotMover, Job(robotId,
randomPosition(),
robot.restDuration));

}

/* Ready to collect information about the movements of the
* robots. */

while (true) {
auto message = receiveOnly!MovementMessage();

/* Print the movement of this robot. */
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writefln("%s %s",
robots[message.robotId], message.movement);

}
}

The program prints every movement until terminated:

A(600 ms) 6,2 -> 7,3
A(600 ms) 7,3 -> 8,3
A(600 ms) 8,3 -> 7,3
B(2 secs) -7,-4 -> -6,-3
A(600 ms) 7,3 -> 6,2
A(600 ms) 6,2 -> 7,1
A(600 ms) 7,1 (idle)
B(2 secs) -6,-3 (idle)
A(600 ms) 7,1 -> 7,2
A(600 ms) 7,2 -> 7,3
C(5 secs) -4,-4 -> -3,-5
A(600 ms) 7,3 -> 6,4
...

This program demonstrates how helpful message passing concurrency can be:
Movements of robots are calculated independently by separate threads without
knowledge of each other. It is the owner thread that serializes the printing process
simply by receiving messages from its message box one by one.

83.5 Expecting different types of messages
receiveOnly() can expect only one type of message. receive() on the other
hand can wait for more than one type of message. It dispatches messages to
message handling delegates. When a message arrives, it is compared to the
message type of each delegate. The delegate that matches the type of the
particular message handles it.

For example, the following receive() call specifies two message handlers that
handle messages of types int and string, respectively:

void workerFunc()
{

bool isDone = false;

while (!isDone) {
void intHandler(int message)
{

writeln("handling int message: ", message);

if (message == -1) {
writeln("exiting");
isDone = true;

}
}

void stringHandler(string message)
{

writeln("handling string message: ", message);
}

receive(&intHandler, &stringHandler);
}

}

Messages of type int would match intHandler() and messages of type string
would match stringHandler(). The worker thread above can be tested by the
following program:
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import std.stdio;
import std.concurrency;

// ...

void main()
{

auto worker = spawn(&workerFunc);

worker.send(10);
worker.send(42);
worker.send("hello");
worker.send(-1); // ← to terminate the worker

}

The output of the program indicates that the messages are handled by matching
functions on the receiver's side:

handling int message: 10
handling int message: 42
handling string message: hello
handling int message: -1
exiting

Lambda functions and objects of types that define the opCall() member
function can also be passed to receive() as message handlers. The following
worker handles messages by lambda functions. The following program also
defines a special type named Exit used for communicating to the thread that it is
time for it to exit. Using such a specific type is more expressive than sending the
arbitrary value of -1 like it was done in the previous example.

There are three anonymous functions below that are passed to receive() as
message handlers. Their curly brackets are highlighted:

import std.stdio;
import std.concurrency;

struct Exit
{}

void workerFunc()
{

bool isDone = false;

while (!isDone) {
receive(

(int message) {
writeln("int message: ", message);

},

(string message) {
writeln("string message: ", message);

},

(Exit message) {
writeln("exiting");
isDone = true;

});
}

}

void main()
{

auto worker = spawn(&workerFunc);

worker.send(10);
worker.send(42);
worker.send("hello");
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worker.send(Exit());
}

Receiving any type of message
std.variant.Variant is a type that can encapsulate any type of data. Messages
that do not match the handlers that are specified earlier in the argument list
always match a Variant handler:

import std.stdio;
import std.concurrency;

void workerFunc()
{

receive(
(int message) { /* ... */ },

(double message) { /* ... */ },

(Variant message) {
writeln("Unexpected message: ", message);

});
}

struct SpecialMessage
{

/* ... */
}

void main()
{

auto worker = spawn(&workerFunc);
worker.send(SpecialMessage());

}

The output:

Unexpected message: SpecialMessage()

The details of Variant are outside of the scope of this chapter.

83.6 Waiting for messages up to a certain time
It may not make sense to wait for messages beyond a certain time. The sender
may have been busy temporarily or may have terminated with an exception.
receiveTimeout() prevents blocking the receiving thread indefinitely.

The first parameter of receiveTimeout() determines how long the message
should be waited for. Its return value is true if a message has been received
within that time, false otherwise.

import std.stdio;
import std.concurrency;
import core.thread;

void workerFunc()
{

Thread.sleep(3.seconds);
ownerTid.send("hello");

}

void main()
{

spawn(&workerFunc);

writeln("Waiting for a message");
bool received = false;
while (!received) {
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received = receiveTimeout(600.msecs,
(string message) {

writeln("received: ", message);
});

if (!received) {
writeln("... no message yet");

/* ... other operations may be executed here ... */
}

}
}

The owner above waits for a message for up to 600 milliseconds. It can continue
working on other things if a message does not arrive within that time:

Waiting for a message
... no message yet
... no message yet
... no message yet
... no message yet
received: hello

83.7 Exceptions during the execution of the worker
As we have seen in the previous chapter, the facilities of the std.parallelism
module automatically catch exceptions that have been thrown during the
execution of tasks and rethrow them in the context of the owner. This allows the
owner to catch such exceptions:

try {
theTask.yieldForce();

} catch (Exception exc) {
writefln("Detected an error in the task: '%s'",

exc.msg);
}

std.concurrency does not provide such a convenience for general exception
types. However, the exceptions can be caught and sent explicitly by the worker. As
we will see below, it is also possible to receive OwnerTerminated and
LinkTerminated exceptions as messages.

The calculate() function below receives string messages, converts them to
double, adds 0.5, and sends the result back as a message:

void calculate()
{

while (true) {
auto message = receiveOnly!string();
ownerTid.send(to!double(message) + 0.5);

}
}

The to!double() call above would throw an exception if the string cannot be
converted to a double value. Because such an exception would terminate the
worker thread right away, the owner in the following program can receive a
response only for the first message:

import std.stdio;
import std.concurrency;
import std.conv;

/* ... */
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void main()
{

Tid calculator = spawn(&calculate);

calculator.send("1.2");
calculator.send("hello"); // ← incorrect input
calculator.send("3.4");

foreach (i; 0 .. 3) {
auto message = receiveOnly!double();
writefln("result %s: %s", i, message);

}
}

The owner receives the response for "1.2" as 1.7 but because the worker has been
terminated, the owner would be blocked waiting for a message that would never
arrive:

result 0: 1.7
← waiting for a message that will never arrive

One thing that the worker can do is to catch the exception explicitly and to send it
as a special error message. The following program sends the reason of the failure
as a CalculationFailure message. Additionally, this program takes advantage
of a special message type to signal to the worker when it is time to exit:

import std.stdio;
import std.concurrency;
import std.conv;

struct CalculationFailure
{

string reason;
}

struct Exit
{}

void calculate()
{

bool isDone = false;

while (!isDone) {
receive(

(string message) {
try {

ownerTid.send(to!double(message) + 0.5);

} catch (Exception exc) {
ownerTid.send(CalculationFailure(exc.msg));

}
},

(Exit message) {
isDone = true;

});
}

}

void main()
{

Tid calculator = spawn(&calculate);

calculator.send("1.2");
calculator.send("hello"); // ← incorrect input
calculator.send("3.4");
calculator.send(Exit());

Message Passing Concurrency

644



foreach (i; 0 .. 3) {
writef("result %s: ", i);

receive(
(double message) {

writeln(message);
},

(CalculationFailure message) {
writefln("ERROR! '%s'", message.reason);

});
}

}

This time the reason of the failure is printed by the owner:

result 0: 1.7
result 1: ERROR! 'no digits seen'
result 2: 3.9

Another method would be to send the actual exception object itself to the owner.
The owner can use the exception object or simply rethrow it:

// ... at the worker ...
try {

// ...

} catch (shared(Exception) exc) {
ownerTid.send(exc);

}},

// ... at the owner ...
receive(

// ...

(shared(Exception) exc) {
throw exc;

});

The reason why the shared specifiers are necessary is explained in the next
chapter.

83.8 Detecting thread termination
Threads can detect that the receiver of a message has terminated.

OwnerTerminated exception
This exception is thrown when receiving a message from the owner if the owner
has been terminated. The intermediate owner thread below simply exits after
sending two messages to its worker. This causes an OwnerTerminated exception
to be thrown at the worker thread:

import std.stdio;
import std.concurrency;

void main()
{

spawn(&intermediaryFunc);
}

void intermediaryFunc()
{

auto worker = spawn(&workerFunc);
worker.send(1);
worker.send(2);

} // ← Terminates after sending two messages
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void workerFunc()
{

while (true) {
auto m = receiveOnly!int(); // ← An exception is

//   thrown if the owner
//   has terminated.

writeln("Message: ", m);
}

}

The output:

Message: 1
Message: 2
std.concurrency.OwnerTerminated@std/concurrency.d(248):
Owner terminated

The worker can catch that exception to exit gracefully:

void workerFunc()
{

bool isDone = false;

while (!isDone) {
try {

auto m = receiveOnly!int();
writeln("Message: ", m);

} catch (OwnerTerminated exc) {
writeln("The owner has terminated.");
isDone = true;

}
}

}

The output:

Message: 1
Message: 2
The owner has terminated.

We will see below that this exception can be received as a message as well.

LinkTerminated exception
spawnLinked() is used in the same way as spawn(). When a worker that has
been started by spawnLinked() terminates, a LinkTerminated exception is
thrown at the owner:

import std.stdio;
import std.concurrency;

void main()
{

auto worker = spawnLinked(&workerFunc);

while (true) {
auto m = receiveOnly!int(); // ← An exception is

//   thrown if the worker
//   has terminated.

writeln("Message: ", m);
}

}

void workerFunc()
{

ownerTid.send(10);
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ownerTid.send(20);
} // ← Terminates after sending two messages

The worker above terminates after sending two messages. Since the worker has
been started by spawnLinked(), the owner is notified of the worker's termination
by a LinkTerminated exception:

Message: 10
Message: 20
std.concurrency.LinkTerminated@std/concurrency.d(263):
Link terminated

The owner can catch the exception to do something special like terminating
gracefully:

bool isDone = false;

while (!isDone) {
try {

auto m = receiveOnly!int();
writeln("Message: ", m);

} catch (LinkTerminated exc) {
writeln("The worker has terminated.");
isDone = true;

}
}

The output:

Message: 10
Message: 20
The worker has terminated.

This exception can be received as a message as well.

Receiving exceptions as messages
The OwnerTerminated and LinkTerminated exceptions can be received as
messages as well. The following code demonstrates this for the OwnerTerminated
exception:

bool isDone = false;

while (!isDone) {
receive(

(int message)
{

writeln("Message: ", message);
},

(OwnerTerminated exc)
{

writeln("The owner has terminated; exiting.");
isDone = true;

}
);

}

83.9 Mailbox management
Every thread has a private mailbox that holds the messages that are sent to that
thread. The number of messages in a mailbox may increase or decrease
depending on how long it takes for the thread to receive and respond to each
message. A continuously growing mailbox puts stress on the entire system and
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may point to a design flaw in the program. It may also mean that the thread may
never get to the most recent messages.
setMaxMailboxSize() is used for limiting the number of messages that a
mailbox can hold. Its three parameters specify the mailbox, the maximum
number of messages that it can hold, and what should happen when the mailbox
is full, in that order. There are four choices for the last parameter:

• OnCrowding.block: The sender waits until there is room in the mailbox.
• OnCrowding.ignore: The message is discarded.
• OnCrowding.throwException: A MailboxFull exception is thrown

when sending the message.
• A function pointer of type bool function(Tid): The specified function

is called.

Before seeing an example of setMaxMailboxSize(), let's first cause a mailbox to
grow continuously. The worker in the following program sends messages back to
back but the owner spends some time for each message:

/* WARNING: Your system may become unresponsive when this
*          program is running. */

import std.concurrency;
import core.thread;

void workerFunc()
{

while (true) {
ownerTid.send(42); // ← Produces messages continuously

}
}

void main()
{

spawn(&workerFunc);

while (true) {
receive(

(int message) {
// Spends time for each message
Thread.sleep(1.seconds);

});
}

}

Because the consumer is slower than the producer, the memory that the program
above uses would grow continuously. To prevent that, the owner may limit the
size of its mailbox before starting the worker:

void main()
{

setMaxMailboxSize(thisTid, 1000, OnCrowding.block);

spawn(&workerFunc);
// ...
}

The setMaxMailboxSize() call above sets the main thread's mailbox size to 1000.
OnCrowding.block causes the sender to wait until there is room in the mailbox.

The following example uses OnCrowding.throwException, which causes a
MailboxFull exception to be thrown when sending a message to a mailbox that
is full:
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import std.concurrency;
import core.thread;

void workerFunc()
{

while (true) {
try {

ownerTid.send(42);

} catch (MailboxFull exc) {
/* Failed to send; will try again later. */
Thread.sleep(1.msecs);

}
}

}

void main()
{

setMaxMailboxSize(thisTid, 1000, OnCrowding.throwException);

spawn(&workerFunc);

while (true) {
receive(

(int message) {
Thread.sleep(1.seconds);

});
}

}

83.10 Priority messages
Messages can be sent with higher priority than regular messages by
prioritySend(). These messages are handled before the other messages that are
already in the mailbox:

prioritySend(ownerTid, ImportantMessage(100));

If the receiver does not have a message handler that matches the type of the
priority message, then a PriorityMessageException is thrown:

std.concurrency.PriorityMessageException@std/concurrency.d(280):
Priority message

83.11 Thread names
In the simple programs that we have used above, it was easy to pass the thread ids
of owners and workers. Passing thread ids from thread to thread may be overly
complicated in programs that use more than a couple of threads. To reduce this
complexity, it is possible to assign names to threads, which are globally accessible
from any thread.

The following three functions define an interface to an associative array that
every thread has access to:

• register(): Associates a thread with a name.
• locate(): Returns the thread that is associated with the specified name.

If there is no thread associated with that name, then Tid.init is
returned.

• unregister(): Breaks the association between the specified name and
the thread.
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The following program starts two threads that find each other by their names.
These threads continuously send messages to each other until instructed to
terminate by an Exit message:

import std.stdio;
import std.concurrency;
import core.thread;

struct Exit
{}

void main()
{

// A thread whose partner is named "second"
auto first = spawn(&player, "second");
register("first", first);
scope(exit) unregister("first");

// A thread whose partner is named "first"
auto second = spawn(&player, "first");
register("second", second);
scope(exit) unregister("second");

Thread.sleep(2.seconds);

prioritySend(first, Exit());
prioritySend(second, Exit());

// For the unregister() calls to succeed, main() must wait
// until the workers terminate.
thread_joinAll();

}

void player(string nameOfPartner)
{

Tid partner;

while (partner == Tid.init) {
Thread.sleep(1.msecs);
partner = locate(nameOfPartner);

}

bool isDone = false;

while (!isDone) {
partner.send("hello " ~ nameOfPartner);
receive(

(string message) {
writeln("Message: ", message);
Thread.sleep(500.msecs);

},

(Exit message) {
writefln("%s, I am exiting.", nameOfPartner);
isDone = true;

});
}

}

The thread_joinAll() call that is seen at the end of main() is for making the
owner to wait for all of its workers to terminate.

The output:

Message: hello second
Message: hello first
Message: hello second
Message: hello first
Message: hello first
Message: hello second
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Message: hello first
Message: hello second
second, I am exiting.
first, I am exiting.

83.12 Summary

• When threads do not depend on other threads, prefer parallelism, which
has been the topic of the previous chapter. Consider concurrency only
when threads depend on operations of other threads.

• Because concurrency by data sharing is hard to implement correctly,
prefer concurrency by message passing, which is the subject of this
chapter.

• spawn() and spawnLinked() start threads.
• thisTid is the thread id of the current thread.
• ownerTid is the thread id of the owner of the current thread.
• send() and prioritySend() send messages.
• receiveOnly(), receive(), and receiveTimeout() wait for messages.
• Variant matches any type of message.
• setMaxMailboxSize() limits the size of mailboxes.
• register(), unregister(), and locate() allow referring to threads by

name.
• Exceptions may be thrown during message passing: MessageMismatch,
OwnerTerminated, LinkTerminated, MailboxFull, and
PriorityMessageException.

• The owner cannot automatically catch exceptions that are thrown from
the worker.
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84 Data Sharing Concurrency

The previous chapter was about threads sharing information through message
passing. As it has been mentioned in that chapter, message passing is a safe
method of concurrency.

Another method involves more than one thread reading from and writing to
the same data. For example, the owner thread can start the worker with the
address of a bool variable and the worker can determine whether to terminate or
not by reading the current value of that variable. Another example would be
where the owner starts multiple workers with the address of the same variable so
that the variable gets modified by more than one worker.

One of the reasons why data sharing is not safe is race conditions. A race
condition occurs when more than one thread accesses the same mutable data in
an uncontrolled order. Since the operating system pauses and starts individual
threads in unspecified ways, the behavior of a program that has race conditions is
unpredictable.

The examples in this chapter may look simplistic. However, the issues that they
convey appear in real programs at greater scales. Also, although these examples
use the std.concurrency module, the concepts of this chapter apply to the
core.thread module as well.

84.1 Sharing is not automatic
Unlike most other programming languages, data is not automatically shared in D;
data is thread-local by default. Although module-level variables may give the
impression of being accessible by all threads, each thread actually gets its own
copy:

import std.stdio;
import std.concurrency;
import core.thread;

int variable;

void printInfo(string message)
{

writefln("%s: %s (@%s)", message, variable, &variable);
}

void worker()
{

variable = 42;
printInfo("Before the worker is terminated");

}

void main()
{

spawn(&worker);
thread_joinAll();
printInfo("After the worker is terminated");

}

variable that is modified inside worker() is not the same variable that is seen
by main(). This fact can be observed by printing both the values and the
addresses of the variables:

Before the worker is terminated: 42 (@7F26C6711670)
After the worker is terminated: 0 (@7F26C68127D0)
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Since each thread gets its own copy of data, spawn() does not allow passing
references to thread-local variables. For example, the following program that tries
to pass the address of a bool variable to another thread cannot be compiled:

import std.concurrency;

void worker(bool * isDone)
{

while (!(*isDone)) {
// ...

}
}

void main()
{

bool isDone = false;
spawn(&worker, &isDone); // ← compilation ERROR

// ...

// Hoping to signal the worker to terminate:
isDone = true;

// ...
}

A static assert inside the std.concurrency module prevents accessing
mutable data from another thread:

src/phobos/std/concurrency.d(329): Error: static assert
"Aliases to mutable thread-local data not allowed."

The address of the mutable variable isDone cannot be passed between threads.
An exception of this rule is a variable that is defined as __gshared:

__gshared int globallyShared;

There is only one copy of such a variable in the entire program and all threads
can share that variable. __gshared is necessary when interacting with libraries
of languages like C and C++ where data sharing is automatic by default.

84.2 shared to share mutable data between threads
Mutable variables that need to be shared must be defined with the shared
keyword:

import std.concurrency;

void worker(shared(bool) * isDone)
{

while (*isDone) {
// ...

}
}

void main()
{

shared(bool) isDone = false;
spawn(&worker, &isDone);

// ...

// Signalling the worker to terminate:
isDone = true;

// ...
}
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Note: Prefer message-passing to signal a thread.
On the other hand, since immutable variables cannot be modified, there is no
problem with sharing them directly. For that reason, immutable implies shared:

import std.stdio;
import std.concurrency;
import core.thread;

void worker(immutable(int) * data)
{

writeln("data: ", *data);
}

void main()
{

immutable(int) i = 42;
spawn(&worker, &i); // ← compiles

thread_joinAll();
}

The output:

data: 42

Note that since the lifetime of i is defined by the scope of main(), it is important
that main() does not terminate before the worker thread. The call to
core.thread.thread_joinAll above is to make a thread wait for all of its child
threads to terminate.

84.3 A race condition example
The correctness of the program requires extra attention when mutable data is
shared between threads.

To see an example of a race condition let's consider multiple threads sharing
the same mutable variable. The threads in the following program receive the
addresses as two variables and swap their values a large number of times:

import std.stdio;
import std.concurrency;
import core.thread;

void swapper(shared(int) * first, shared(int) * second)
{

foreach (i; 0 .. 10_000) {
int temp = *second;
*second = *first;
*first = temp;

}
}

void main()
{

shared(int) i = 1;
shared(int) j = 2;

writefln("before: %s and %s", i, j);

foreach (id; 0 .. 10) {
spawn(&swapper, &i, &j);

}

// Wait for all threads to finish their tasks
thread_joinAll();

writefln("after : %s and %s", i, j);
}
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Although the program above gets compiled successfully, in most cases it would
work incorrectly. Observe that it starts ten threads that all access the same two
variables i and j. As a result of the race conditions that they are in, they
inadvertently spoil the operations of other threads.

Also observe that total number of swaps is 10 times 10 thousand. Since that
amount is an even number, it is natural to expect that the variables end up having
values 1 and 2, their initial values:

before: 1 and 2
after : 1 and 2 ← expected result

Although it is possible that the program can indeed produce that result, most of
the time the actual outcome would be one of the following:

before: 1 and 2
after : 1 and 1 ← incorrect result

before: 1 and 2
after : 2 and 2 ← incorrect result

It is possible but highly unlikely that the result may even end up being "2 and 1" as
well.

The reason why the program works incorrectly can be explained by the
following scenario between just two threads that are in a race condition. As the
operating system pauses and restarts the threads at indeterminate times, the
following order of execution of the operations of the two threads is likely as well.

Let's consider the state where i is 1 and j is 2. Although the two threads execute
the same swapper() function, remember that the local variable temp is separate
for each thread and it is independent from the other temp variables of other
threads. To identify those separate variables, they are renamed as tempA and
tempB below.

The chart below demonstrates how the 3-line code inside the for loop may be
executed by each thread over time, from top to bottom, operation 1 being the first
operation and operation 6 being the last operation. Whether i or j is modified at
each step is indicated by highlighting that variable:

Operation        Thread A                             Thread B
1:   int temp = *second; (tempA==2)
2:   *second = *first;   (i==1, j==1)

(Assume that A is paused and B is started at this point)

3:                                        int temp = *second; (tempB==1)
4:                                        *second = *first;   (i==1, j==1)

(Assume that B is paused and A is restarted at this point)

5:   *first = temp;    (i==2, j==1)

(Assume that A is paused and B is restarted at this point)

6:                                        *first = temp;    (i==1, j==1)

As can be seen, at the end of the previous scenario both i and j end up having the
value 1. It is not possible that they can ever have any other value after that point.

The scenario above is just one example that is sufficient to explain the incorrect
results of the program. Obviously, the race conditions would be much more
complicated in the case of the ten threads of this example.
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84.4 synchronized to avoid race conditions
The incorrect program behavior above is due to more than one thread accessing
the same mutable data (and at least one of them modifying it). One way of
avoiding these race conditions is to mark the common code with the
synchronized keyword. The program would work correctly with the following
change:

foreach (i; 0 .. 10_000) {
synchronized {

int temp = *b;
*b = *a;
*a = temp;

}
}

The output:

before: 1 and 2
after : 1 and 2 ← correct result

The effect of synchronized is to create a lock behind the scenes and to allow only
one thread hold that lock at a given time. Only the thread that holds the lock can
be executed and the others wait until the lock becomes available again when the
executing thread completes its synchronized block. Since one thread executes
the synchronized code at a time, each thread would now swap the values safely
before another thread does the same. The state of the variables i and j would
always be either "1 and 2" or "2 and 1" at the end of processing the synchronized
block.
Note: It is a relatively expensive operation for a thread to wait for a lock, which may

slow down the execution of the program noticeably. Fortunately, in some cases program
correctness can be ensured without the use of a synchronized block, by taking
advantage of atomic operations that will be explained below.

When it is needed to synchronize more than one block of code, it is possible to
specify one or more locks with the synchronized keyword.

Let's see an example of this in the following program that has two separate
code blocks that access the same shared variable. The program calls two
functions with the address of the same variable, one function incrementing and
the other function decrementing it equal number of times:

void incrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
*value = *value + 1;

}
}

void decrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
*value = *value - 1;

}
}

Note: If the shorter equivalents of the expression above are used (i.e. ++(*value) and -
-(*value)), then the compiler warns that such read-modify-write operations on
shared variables are deprecated.
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Unfortunately, marking those blocks individually with synchronized is not
sufficient, because the anonymous locks of the two blocks would be independent.
So, the two code blocks would still be accessing the same variable concurrently:

import std.stdio;
import std.concurrency;
import core.thread;

enum count = 1000;

void incrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
synchronized { // ← This lock is different from the one below.

*value = *value + 1;
}

}
}

void decrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
synchronized { // ← This lock is different from the one above.

*value = *value - 1;
}

}
}

void main()
{

shared(int) number = 0;

foreach (i; 0 .. 100) {
spawn(&incrementer, &number);
spawn(&decrementer, &number);

}

thread_joinAll();
writeln("Final value: ", number);

}

Since there are equal number of threads that increment and decrement the same
variable equal number of times, one would expect the final value of number to be
zero. However, that is almost never the case:

Final value: -672 ← not zero

For more than one block to use the same lock or locks, the lock objects must be
specified within the synchronized parenteses:

synchronized (lock_object, another_lock_object, ...)

There is no need for a special lock type in D because any class object can be used
as a synchronized lock. The following program defines an empty class named
Lock to use its objects as locks:

import std.stdio;
import std.concurrency;
import core.thread;

enum count = 1000;

class Lock
{}

void incrementer(shared(int) * value, shared(Lock) lock)
{
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foreach (i; 0 .. count) {
synchronized (lock) {

*value = *value + 1;
}

}
}

void decrementer(shared(int) * value, shared(Lock) lock)
{

foreach (i; 0 .. count) {
synchronized (lock) {

*value = *value - 1;
}

}
}

void main()
{

shared(Lock) lock = new shared(Lock)();
shared(int) number = 0;

foreach (i; 0 .. 100) {
spawn(&incrementer, &number, lock);
spawn(&decrementer, &number, lock);

}

thread_joinAll();
writeln("Final value: ", number);

}

Because this time both synchronized blocks are connected by the same lock,
only one of them is executed at a given time and the result is zero as expected:

Final value: 0 ← correct result

Class types can be defined as synchronized as well. This means that all of the
non-static member functions of that type are synchronized on a given object of
that class:

synchronized class Class
{

void foo()
{

// ...
}

void bar()
{

// ...
}

}

The following is the equivalent of the class definition above:

class Class
{

void foo()
{

synchronized (this) {
// ...

}
}

void bar()
{

synchronized (this) {
// ...

}
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}
}

When blocks of code need to be synchronized on more than one object, those
objects must be specified together. Otherwise, it is possible that more than one
thread may have locked objects that other threads are waiting for, in which case
the program may be deadlocked.

A well known example of this problem is a function that tries to transfer
money from one bank account to another. For this function to work correctly in a
multi-threaded environment, both of the accounts must first be locked. However,
the following attempt would be incorrect:

void transferMoney(shared BankAccount from,
shared BankAccount to)

{
synchronized (from) { // ← INCORRECT

synchronized (to) {
// ...

}
}

}

The error can be explained by an example where one thread attempting to
transfer money from account A to account to B while another thread attempting
to transfer money in the reverse direction. It is possible that each thread may
have just locked its respective from object, hoping next to lock its to object. Since
the from objects correspond to A and B in the two threads respectively, the objects
would be in locked state in separate threads, making it impossible for the other
thread to ever lock its to object. This situation is called a deadlock.

The solution to this problem is to define an ordering relation between the
objects and to lock them in that order, which is handled automatically by the
synchronized statement. In D, it is sufficient to specify the objects in the same
synchronized statement for the code to avoid such deadlocks:

void transferMoney(shared BankAccount from,
shared BankAccount to)

{
synchronized (from, to) { // ← correct

// ...
}

}

84.5 shared static this() for single initialization and shared
static ~this() for single finalization
We have already seen that static this() can be used for initializing modules,
including their variables. A consequence of data being thread-local by default is
that static this() must be executed for each thread:

import std.stdio;
import std.concurrency;
import core.thread;

static this()
{

writeln("executing static this()");
}

void worker()
{}
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void main()
{

spawn(&worker);

thread_joinAll();
}

The static this() block above would be executed once for the main thread and
once for the worker thread:

executing static this()
executing static this()

This would cause a problem for shared module variables because initializing a
variable more than once could be wrong especially in concurrency. The solution
to this problem is a shared static this() block, which is executed only once:

shared static this()
{

writeln("executing shared static this()");
}

static this()
{

writeln("executing static this()");
}

The output:

executing shared static this() ← only once
executing static this()
executing static this()

Similarly, shared static ~this() is for final operations that must be executed
only once per program.

84.6 Atomic operations
Another way of ensuring that only one thread mutates a certain variable is by
using atomic operations, functionality of which are provided by the
microprocessor, the compiler, or the operating system.

The atomic operations of D are in the core.atomic module. We will see only
two of its functions in this chapter:

atomicOp
This function applies its template parameter to its two function parameters. The
template parameter must be a binary operator like "+", "+=", etc.

import core.atomic;

// ...

atomicOp!"+="(*value, 1); // atomic

The line above is the equivalent of the following line, with the difference that the
+= operation would be executed without interruptions by other threads (i.e. it
would be executed atomically):

*value += 1; // NOT atomic

Consequently, when it is only a binary operation that needs to be synchronized,
then there is no need for a synchronized block, which is known to be slow
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because of needing to acquire a lock. The following equivalents of the
incrementer() and decrementer() functions that use atomicOp are correct as
well. Note that there is no need for the Lock class anymore either:

import core.atomic;

//...

void incrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
atomicOp!"+="(*value, 1);

}
}

void decrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
atomicOp!"-="(*value, 1);

}
}

atomicOp can be used with other binary operators as well.

cas
The name of this function is the abbreviation of "compare and swap". Its
operation is based on mutating a variable as long as it still has its currently known
value. The way it is used is by specifying the current and the desired values of the
variable at the same time:

bool is_mutated = cas(address_of_variable, currentValue, newValue);

The fact that the value of the variable still equals currentValue when cas() is
operating is an indication that no other thread has mutated the variable since it
has last been read by this thread. If so, cas() assigns newValue to the variable
and returns true. On the other hand, if the variable's value is different from
currentValue then cas() does not mutate the variable and returns false.

The following functions re-read the current value and call cas() until the
operation succeeds. Again, these calls can be described as if the value of the
variable equals this old value, replace with this new value:

void incrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
int currentValue;

do {
currentValue = *value;

} while (!cas(value, currentValue, currentValue + 1));
}

}

void decrementer(shared(int) * value)
{

foreach (i; 0 .. count) {
int currentValue;

do {
currentValue = *value;

} while (!cas(value, currentValue, currentValue - 1));
}

}

The functions above work correctly without the need for synchronized blocks.
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In most cases, the features of the core.atomic module can be several times
faster than using synchronized blocks. I recommend that you consider this
module as long as the operations that need synchronization are less than a block
of code.

Atomic operations enable lock-free data structures as well, which are beyond the
scope of this book.

You may also want to investigate the core.sync package, which contains
classic concurrency primitives in the following modules:

• core.sync.barrier
• core.sync.condition
• core.sync.config
• core.sync.exception
• core.sync.mutex
• core.sync.rwmutex
• core.sync.semaphore

84.7 Summary

• When threads do not depend on other threads, prefer parallelism.
Consider concurrency only when threads depend on operations of other
threads.

• Even then, prefer message passing concurrency, which has been the topic
of the previous chapter.

• Only shared data can be shared; immutable is implicitly shared.
• __gshared provides data sharing as in C and C++ languages.
• synchronized is for preventing other threads from intervening when a

thread is executing a certain piece of code.
• A class can be defined as synchronized so that only one member

function can be executed on a given object at a given time. In other
words, a thread can execute a member function only if no other thread
is executing a member function on the same object.

• static this() is executed once for each thread; shared static
this() is executed once for the entire program.

• The core.atomic module enables safe data sharing that can be multiple
times faster than synchronized.

• The core.sync package includes many other concurrency primitives.
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85 Memory Management

D is a language that does not require explicit memory management. However, it
is important for a system programmer to know how to manage memory when
needed for special cases.

Memory management is a very broad topic. This chapter will introduce only
the garbage collector (GC), allocating memory from it, and constructing objects at
specific memory locations.

As in some of the previous chapters, when I write variable below, I mean any
type of variable including struct and class objects.

85.1 Memory
Memory is a more significant resource than other system resources because both
the running program and its data are located on the memory. The memory
belongs ultimately to the operating system. The operating system makes it
available to programs to satisfy their needs. The amount of memory that a
program uses may increase or decrease according to the immediate needs of a
program. When a program terminates, the memory areas that it has been using
are automatically returned back to the operating system.

The memory can be imagined like a large sheet of paper where the values of
variables are noted down. Each variable is kept at a specific location where its
value is written to and read from as needed. Once the lifetime of a variable ends,
its place is used for another variable.
The & (address-of) operator is useful when experimenting with memory. For
example, the following program prints the addresses of two variables that are
defined next to each other:

import std.stdio;

void main()
{

int i;
int j;

writeln("i: ", &i);
writeln("j: ", &j);

}

Note: The addresses would likely be different every time the program is executed.
Additionally, the mere act of taking the address of a variable disables the optimization
that would otherwise make the variable live on a CPU register.

As can be seen from the output, the locations of the variables are four bytes
apart:

i: 7FFF2B633E28
j: 7FFF2B633E2C

The last digits of the two addresses indicate that i lives in a memory location that
is right before the location of j: 8 plus 4 (size of int) makes 12 (C in hexadecimal
notation).

85.2 The garbage collector
The dynamic variables that are used in D programs live on memory blocks that
are owned by the garbage collector (GC). When the lifetime of a variable ends, that
variable is subject to being finalized according to an algorithm that is executed by
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the GC. The memory location that the variable lives on is reclaimed to be reused
for other variables. This algorithm is called garbage collection and an execution of
the algorithm is called a garbage collection cycle.

The algorithm that the GC executes can roughly be described as the following.
All of the memory blocks that can be reached directly or indirectly by pointers
(including references) that are in the program stack are scanned. Any memory
block that can be reached is tagged as being still in use and all the others are
tagged as not being used anymore. The finalizers of objects that live on
inaccessible blocks are executed and those memory blocks are reclaimed to be
used for future variables.

Some GC algorithms can move objects around to keep them together in one
place in memory. To preserve program correctness, all of the pointers (and
references) that point to such objects are automatically modified to point to the
new locations.

The order of executing the finalizers is unspecified. For example, a reference
member of an object may be finalized before the object that contains that
member. For that reason, no class member that refers to a dynamic variable
should be accessed inside the destructor. Note that this is very different from the
deterministic destruction order of languages like C++.

A garbage collection cycle can be started for various reasons like needing to
find space for more data. Depending on the GC implementation, because
allocating new objects during a garbage collection cycle can interfere with the
collection process itself, all of the running threads may have to be halted during
collection cycles. Sometimes this can be felt as a hesitation in the execution of the
program.

In most cases the programmer does not need to interfere with the garbage
collection process. However, it is possible to delay or dispatch garbage collection
cycles as needed by the functions defined in the core.memory module.

Starting and delaying garbage collection cycles
It may be desired to delay the execution of garbage collection cycles during a part
of the program where it is important for the program to be responsive.
GC.disable disables garbage collection cycles and GC.enable enables them
again:

GC.disable();

// ... a part of the program where responsiveness is important ...

GC.enable();

However, it is not guaranteed that no garbage collection cycle will be executed: If
the GC absolutely needs to allocate memory for any reason, it still goes ahead and
runs a garbage collection cycle to make more memory available.

Instead of relying on garbage collections happening automatically at
unspecified times, a garbage collection cycle can be started explicitly by
GC.collect():

import core.memory;

// ...

GC.collect(); // starts a garbage collection cycle
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Normally, the GC does not return memory blocks back to the operating system; it
holds on to those memory pages for future needs of the program. If this behavior
is known to be unnecessary for the program, the GC can be asked to give unused
memory back to the operating system by GC.minimize():

GC.minimize();

85.3 Allocating memory
System languages allow programmers to specify the memory areas where objects
should live. Such memory areas are commonly called buffers.

There are several methods of allocating memory. The simplest method would
be using a fixed-length array:

ubyte[100] buffer; // A memory area of 100 bytes

buffer is ready to be used as a 100-byte memory area. Instead of ubyte, it is also
possible to define such buffers as arrays of void, without any association to any
type. Since void cannot be assigned any value, it cannot have the .init value
either. Such arrays must be initialized by the special syntax =void:

void[100] buffer = void; // A memory area of 100 bytes

We will use only GC.calloc from the core.memory module to reserve memory in
this chapter. That module has many other features that are useful in various
situations. Additionally, the memory allocation functions of the C standard
library are avaliable in the std.c.stdlib module.
GC.calloc allocates a memory area of the specified size and returns the

beginning address of the allocated area:

import core.memory;
// ...

void * buffer = GC.calloc(100); // A memory area of 100 bytes

Normally, the returned void* value is casted to a pointer of the proper type:

int * intBuffer = cast(int*)buffer;

However, that intermediate step is usually skipped and the return value is casted
directly:

int * intBuffer = cast(int*)GC.calloc(100);

Instead of arbitrary values like 100, the size of the memory area is usually
calculated by multiplying the number of elements needed with the size of each
element:

// Allocate room for 25 ints
int * intBuffer = cast(int*)GC.calloc(int.sizeof * 25);

There is an important difference for classes: The size of a class variable and the
size of a class object are not the same. .sizeof is the size of a class variable and is
always the same value: 8 on 64-bit systems and 4 on 32-bit systems. The size of a
class object must be obtained by __traits(classInstanceSize):

Memory Management

665



// Allocate room for 10 MyClass objects
MyClass * buffer =

cast(MyClass*)GC.calloc(__traits(classInstanceSize, MyClass) * 10);

When there is not enough memory in the system for the requested size, then a
core.exception.OutOfMemoryError exception is thrown:

void * buffer = GC.calloc(10_000_000_000);

The output on a system that does not have that much free space:

core.exception.OutOfMemoryError

The memory areas that are allocated from the GC can be returned back by
GC.free:

GC.free(buffer);

However, calling free() does not execute the destructors of the objects that live
on that memory block. When needed, the destructors must be executed explicitly
by calling destroy() for each object.
Sometimes the program may determine that a previously allocated memory area
is all used up and does not have room for more data. It is possible to extend a
previously allocated memory area by GC.realloc. realloc() takes the
previously allocated memory pointer and the newly requested size, and returns a
new area:

void * oldBuffer = GC.calloc(100);
// ...

void * newBuffer = GC.realloc(oldBuffer, 200);

realloc() tries to be efficient by not actually allocating new memory unless it is
really necessary:

• If the memory area following the old area is not in use for any other
purpose and is large enough to satisfy the new request, realloc() adds
that part of the memory to the old area, extending the buffer in-place.

• If the memory area following the old area is already in use or is not
large enough, then realloc() allocates a new larger memory area and
copies the contents of the old area to the new one.

• It is possible to pass null as oldBuffer, in which case realloc()
simply allocates new memory.

• It is possible to pass a size less than the previous one, in which case the
remaining part of the old memory is returned back to the GC.

• It is possible to pass 0 as the new size, in which case realloc() simply
frees the memory.

GC.realloc is adapted from the C standard library function realloc(). For
having such a complicated behavior, realloc() is considered to have a badly
designed function interface. A potentially surprising aspect of GC.realloc is that
even if the original memory has been allocated with GC.calloc, the extended
part is never cleared. For that reason, when it is important that the memory is
zero-initialized, a function like reallocCleared() below would be useful. We
will see the meaning of blockAttributes later below:
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import core.memory;

/* Works like GC.realloc but clears the extra bytes if memory
* is extended. */

void * reallocCleared(void * buffer,
size_t oldLength,
size_t newLength,
GC.BlkAttr blockAttributes = GC.BlkAttr.NONE,
const TypeInfo typeInfo = null)

{
/* Dispatch the actual work to GC.realloc. */
buffer = GC.realloc(buffer, newLength,

blockAttributes, typeInfo);

/* Clear the extra bytes if extended. */
if (newLength > oldLength) {

import std.c.string;

auto extendedPart = buffer + oldLength;
auto extendedLength = newLength - oldLength;

memset(extendedPart, 0, extendedLength);
}

return buffer;
}

The function above uses memset() from the std.c.string module to clear the
newly extended bytes. memset() assigns the specified value to the bytes of a
memory area specified by a pointer and a length. In the example, it assigns 0 to
extendedLength number of bytes at extendedPart.

We will use reallocCleared() in an example below.
(Also note how one of the import directives above is inside a local scope. That is a

new feature that has been added to D after this book was started.)
The behavior of the similar function GC.extend is not complicated like
realloc(); it applies only the first item above: If the memory area cannot be
extended in-place, extend() does not do anything and returns 0.

Memory block attributes
The concepts and the steps of a GC algorithm can be configured to some degree
for each memory block by enum BlkAttr. BlkAttr is an optional parameter of
GC.calloc and other allocation functions. It consists of the following values:

• NONE: The value zero; specifies no attribute.
• FINALIZE: Specifies that the objects that live in the memory block

should be finalized.
Normally, the GC assumes that the lifetimes of objects that live on

explicitly-allocated memory locations are under the control of the
programmer; it does not finalize objects on such memory areas.
GC.BlkAttr.FINALIZE is for requesting the GC to execute the
destructors of objects:

Class * buffer =
cast(Class*)GC.calloc(

__traits(classInstanceSize, Class) * 10,
GC.BlkAttr.FINALIZE);

• NO_SCAN: Specifies that the memory area should not be scanned by the
GC.

Memory Management

667



The byte values in a memory area may accidentally look like pointers
to unrelated objects in other parts of the memory. When that happens,
the GC would assume that those objects are still in use even after their
actual lifetimes have ended.

A memory block that is known to not contain any object pointers
should be marked as GC.BlkAttr.NO_SCAN:

int * intBuffer = cast(int*)GC.calloc(100, GC.BlkAttr.NO_SCAN);

The int variables placed in that memory block can have any value
without concern of being mistaken for object pointers.

• NO_MOVE: Specifies that objects in the memory block should not be
moved to other places.

• APPENDABLE: Specifies that the memory block will be used for slice
elements and that fast appending should be supported.

It allows using the memory block as slice capacity:

int * buffer = cast(int*)GC.calloc(100, GC.BlkAttr.APPENDABLE);
int[] slice = buffer[0..0]; // ← Has no elements
assert(slice.capacity > 0); // ← Has capacity

• NO_INTERIOR: Specifies that variables in the memory block do not
contain pointers to objects in the same memory block.

This avoids a memory block holding itself alive by coincidence.

The values of enum BlkAttr are suitable to be used as bit flags that we have seen
in the Bit Operations chapter (page 459). The following is how two attributes can
be merged by the | operator:

const attributes = GC.BlkAttr.NO_SCAN | GC.BlkAttr.APPENDABLE;

Naturally, the GC would be aware only of memory blocks that are reserved by its
own functions and scans only those memory blocks. For example, it would not
know about a memory block allocated by std.c.stdlib.calloc.
GC.addRange is for introducing unrelated memory blocks to the GC. The
complement function GC.removeRange should be called before freeing a memory
block by other means e.g. by std.c.stdlib.free.

In some cases, there may be no reference in the program to a memory block
even if that memory block has been reserved by the GC. For example, if the only
reference to a memory block lives inside a C library, the GC would normally not
know about that reference and assume that the memory block is not in use
anymore.
GC.addRoot introduces a memory block to the GC as a root, to be scanned

during collection cycles. All of the variables that can be reached directly or
indirectly through that memory block would be marked as alive. The complement
function GC.removeRoot should be called when a memory block is not in use
anymore.

Example of extending a memory area
Let's design a simple struct template that works like an array. To keep the
example short, let's provide only the functionality of adding and accessing
elements. Similar to arrays, let's increase the capacity as needed. The following
program uses reallocCleared(), which has been defined above:
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struct Array(T)
{

T * buffer; // Memory area that holds the elements
size_t capacity; // The element capacity of the buffer
size_t length; // The number of actual elements

/* Returns the specified element */
T element(size_t index)
{

import std.string;
enforce(index < length, format("Invalid index %s", index));

return *(buffer + index);
}

/* Appends the element to the end */
void append(T element)
{

writefln("Appending element %s", length);

if (length == capacity) {
/* There is no room for the new element; must
* increase capacity. */

size_t newCapacity = capacity + (capacity / 2) + 1;
increaseCapacity(newCapacity);

}

/* Place the element at the end */
*(buffer + length) = element;
++length;

}

void increaseCapacity(size_t newCapacity)
{

writefln("Increasing capacity from %s to %s",
capacity, newCapacity);

size_t oldBufferSize = capacity * T.sizeof;
size_t newBufferSize = newCapacity * T.sizeof;

/* Also specify that this memory block should not be
* scanned for pointers. */

buffer = cast(T*)reallocCleared(
buffer, oldBufferSize, newBufferSize,
GC.BlkAttr.NO_SCAN);

capacity = newCapacity;
}

}

The capacity of the array grows by about 50%. For example, after the capacity for
100 elements is consumed, the new capacity would become 151. (The extra 1 is to
avoid treating the initial capacity of zero specially. Otherwise, because 50% of zero is
zero, the capacity could never grow.)

The following program uses that template with the double type:

import std.stdio;
import core.memory;
import std.exception;

// ...

void main()
{

auto array = Array!double();

const count = 10;

foreach (i; 0 .. count) {
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double elementValue = i * 1.1;
array.append(elementValue);

}

writeln("The elements:");

foreach (i; 0 .. count) {
write(array.element(i), ' ');

}

writeln();
}

The output:

Adding element with index 0
Increasing capacity from 0 to 1
Adding element with index 1
Increasing capacity from 1 to 2
Adding element with index 2
Increasing capacity from 2 to 4
Adding element with index 3
Adding element with index 4
Increasing capacity from 4 to 7
Adding element with index 5
Adding element with index 6
Adding element with index 7
Increasing capacity from 7 to 11
Adding element with index 8
Adding element with index 9
The elements:
0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9
Returning the memory

85.4 Alignment
By default, every object is placed at memory locations that are multiples of an
amount specific to the type of that object. That amount is called the alignment of
that type. For example, the alignment of int is 4 because int variables are placed
at memory locations that are multiples of 4 (4, 8, 12, etc.).

Alignment is needed for CPU performance because accessing memory
addresses that are multiples of a certain amount is faster, as well as because of
CPU requirements as certain types of varibles can only be placed at memory
locations that are multiples of certain amounts.

The .alignof property
The .alignof property of a type is its default alignment value. For classes,
.alignof is the alignment of the class variable, not the class object. The
alignment of a class object is obtained by
std.traits.classInstanceAlignment.

The following program prints the alignments of various types:

import std.stdio;
import std.typetuple;
import std.traits;

struct EmptyStruct
{}

struct Struct
{

char c;
double d;
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}

class EmptyClass
{}

class Class
{

char c;
}

void main()
{

alias Types = TypeTuple!(char, short, int, long,
double, real,
string, int[int], int*,
EmptyStruct, Struct,
EmptyClass, Class);

writeln(" Size  Alignment  Type\n",
"=========================");

foreach (Type; Types) {
static if (is (Type == class)) {

size_t size = __traits(classInstanceSize, Type);
size_t alignment = classInstanceAlignment!Type;

} else {
size_t size = Type.sizeof;
size_t alignment = Type.alignof;

}

writefln("%4s%8s      %s",
size, alignment, Type.stringof);

}
}

The output of the program may be different in different environments. The
following is a sample output:

Size  Alignment  Type
=========================

1       1      char
2       2      short
4       4      int
8       8      long
8       8      double

16      16      real
16       8      string
8       8      int[int]
8       8      int*
1       1      EmptyStruct

16       8      Struct
16       8      EmptyClass
17       8      Class

We will see later below how variables can be constructed (emplaced) at specific
memory locations. For correctness and efficiency, objects must be constructed at
addresses that match their alignments.

Let's consider two consecutive objects of Class type above, which are 17 bytes
each. Although 0 is not a legal address for a variable on most platforms, to
simplify the example let's assume that the first object is at address 0. The 17 bytes
of this object would be at adresses from 0 to 16:

0 1           16
+----+----+- ... -+----+- ...
|<--- first object --->|
+----+----+- ... -+----+- ...
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Although the next available address is 17, that location cannot be used for a Class
object because 17 is not a multiple of the alignment value 8 of that type. The
nearest possible address for the second object is 24 because 24 is the next smallest
multiple of 8. When the second object is placed at that address, there would be
unused bytes between the two objects. Those bytes are called padding bytes:

0 1           16   17           23 24 25           30
+----+----+- ... -+----+----+- ... -+----+----+----+- ... -+----+- ...
|<--- first object --->|<--- padding --->|<-- second object --->|
+----+----+- ... -+----+----+- ... -+----+----+----+- ... -+----+- ...

The following formula can determine the nearest address value that an object can
be placed at:

(candidateAddress + alignmentValue - 1)
/ alignmentValue
* alignmentValue

For that formula to work, the fractional part of the result of the division must be
truncated. Since truncation is automatic for integral types, all of the variables
above are assumed to be integral types.

We will use the following function in the examples later below:

T * nextAlignedAddress(T)(T * candidateAddr)
{

import std.traits;

static if (is (T == class)) {
const alignment = classInstanceAlignment!T;

} else {
const alignment = T.alignof;

}

const result = (cast(size_t)candidateAddr + alignment - 1)
/ alignment * alignment;

return cast(T*)result;
}

That function template deduces the type of the object from its template
parameter. Since that is not possible when the type is void*, the type must be
provided as an explicit template argument for the void* overload. That overload
can trivially forward the call to the function template above:

void * nextAlignedAddress(T)(void * candidateAddr)
{

return nextAlignedAddress(cast(T*)candidateAddr);
}

The function template above will be useful below when constructing class objects
by emplace().

Let's define one more function template to calculate the total size of an object
including the padding bytes that must be placed between two objects of that type:

size_t sizeWithPadding(T)()
{

static if (is (T == class)) {
const candidateAddr = __traits(classInstanceSize, T);

} else {
const candidateAddr = T.sizeof;

}
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return cast(size_t)nextAlignedAddress(cast(T*)candidateAddr);
}

The .offsetof property
Alignment is observed for members of user-defined types as well. There may be
padding bytes between members so that the members are aligned according to
their respective types. For that reason, the size of the following struct is not 6
bytes as one might expect, but 12:

struct A
{

byte b; // 1 byte
int i; // 4 bytes
ubyte u; // 1 byte

}

static assert (A.sizeof == 12); // More than 1 + 4 + 1

This is due to padding bytes before the int member so that it is aligned at an
address that is a multiple of 4, as well as padding bytes at the end for the
alignment of the entire struct object itself.

The .offsetof property gives the number of bytes a member variable is from
the beginning of the object that it is a part of. The following function prints the
layout of a type by determining the padding bytes by .offsetof:

void printObjectLayout(T)()
if (is (T == struct) || is (T == union))

{
import std.stdio;
import std.string;

writefln("=== Memory layout of '%s'" ~
" (.sizeof: %s, .alignof: %s) ===",
T.stringof, T.sizeof, T.alignof);

/* Prints a single line of layout information. */
void printLine(size_t offset, string info)
{

writefln("%4s: %s", offset, info);
}

/* Prints padding information if padding is actually
* observed. */

void maybePrintPaddingInfo(size_t expectedOffset,
size_t actualOffset)

{
if (expectedOffset < actualOffset) {

/* There is some padding because the actual offset
* is beyond the expected one. */

const paddingSize = actualOffset - expectedOffset;

printLine(expectedOffset,
format("... %s-byte PADDING", paddingSize));

}
}

/* This is the expected offset of the next member if there
* were no padding bytes before that member. */

size_t noPaddingOffset = 0;

/* Note: __traits(allMembers) is a 'string' collection of
* names of the members of a type. */

foreach (memberName; __traits(allMembers, T))
{

mixin (format("alias member = %s.%s;",
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T.stringof, memberName));

const offset = member.offsetof;
maybePrintPaddingInfo(noPaddingOffset, offset);

const typeName = typeof(member).stringof;
printLine(offset, format("%s %s", typeName, memberName));

noPaddingOffset = offset + member.sizeof;
}

maybePrintPaddingInfo(noPaddingOffset, T.sizeof);
}

The following program prints the layout of the 12-byte struct A that was defined
above:

struct A
{

byte b;
int i;
ubyte u;

}

void main()
{

printObjectLayout!A();
}

The output of the program showns where the total of 6 padding bytes are located
inside the object. The first column of the output is the offset from the beginning
of the object:

=== Memory layout of 'A' (.sizeof: 12, .alignof: 4) ===
0: byte b
1: ... 3-byte PADDING
4: int i
8: ubyte u
9: ... 3-byte PADDING

One technique of minimizing padding is ordering the members by their sizes
from the largest to the smallest. For example, when the int member is moved to
the beginning of the previous struct then the size of the object would be less:

struct B
{

int i; // Moved up inside the struct definition
byte b;
ubyte u;

}

void main()
{

printObjectLayout!B();
}

This time, the size of the object is down to 8 due to just 2 bytes of padding at the
end:

=== Memory layout of 'B' (.sizeof: 8, .alignof: 4) ===
0: int i
4: byte b
5: ubyte u
6: ... 2-byte PADDING
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The align attribute
The align attribute is for specifying alignments of variables, user-defined types,
and members of user-defined types. The value provided in parentheses specifies
the alignment value. Every definition can be specified separately. For example, the
following definition would align S objects at 2-byte boundaries and its i member
at 1-byte boundaries (1-byte alignment always results in no padding at all):

align (2) // The alignment of 'S' objects
struct S
{

byte b;
align (1) int i; // The alignment of member 'i'
ubyte u;

}

void main()
{

printObjectLayout!S();
}

When the int member is aligned at a 1-byte boundary, there is no padding before
it and this time the size of the object ends up being exactly 6:

=== Memory layout of 'S' (.sizeof: 6, .alignof: 4) ===
0: byte b
1: int i
5: ubyte u

Although align can reduce sizes of user-defined types, there can be significant
performance penalties when default alignments of types are not observed.
align can specify the alignment of variables as well:

align (32) double d; // The alignment of a variable

However, objects that are allocated by new must always be aligned at multiples of
the size of the size_t type because that is what the GC assumes. Doing otherwise
is undefined behavior. For example, if size_t is 8 bytes long, than the alignments
of variables allocated by new must be a multiple of 8.

85.5 Constructing variables at specific memory locations
The new expression achieves two tasks:

1. Allocates memory large enough for the object. The newly allocated
memory area is considered to be raw, not associated with any type or
any object.

2. Calls the constructor of the object on that memory location. Only after
this step the object becomes placed on that memory area.

We have already seen that the first of these tasks can explicitly be achieved by
memory allocation functions like GC.calloc. Being a system language, D allows
the programmer manage the second step as well.

Variables can be constructed at specific locations with std.conv.emplace.

Constructing a struct object at a specific location
emplace() takes the address of a memory location as its first parameter and
constructs an object at that location. If provided, it uses the remaining
parameters as the object's constructor arguments:
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import std.conv;
// ...

emplace(address, /* ... constructor arguments ... */);

It is not necessary to specify the type of the object explicitly when constructing a
struct object because emplace() deduces the type of the object from the type of
the pointer. For example, since the type of the following pointer is Student*,
emplace() constructs a Student object at that address:

Student * objectAddr = nextAlignedAddress(candidateAddr);
// ...

emplace(objectAddr, name, id);

The following program allocates a memory area large enough for three objects
and constructs them one by one at aligned addresses inside that memory area:

import std.stdio;
import std.string;
import core.memory;
import std.conv;

// ...

struct Student
{

string name;
int id;

string toString()
{

return format("%s(%s)", name, id);
}

}

void main()
{

/* Some information about this type. */
writefln("Student.sizeof: %#x (%s) bytes",

Student.sizeof, Student.sizeof);
writefln("Student.alignof: %#x (%s) bytes",

Student.alignof, Student.alignof);

string[] names = [ "Amy", "Tim", "Joe" ];
auto totalSize = sizeWithPadding!Student() * names.length;

/*
* Reserve room for all Student objects.
*
* Warning! The objects that are accessible through this
* slice are not constructed yet; they should not be
* accessed until after they are properly constructed.
*/

Student[] students =
(cast(Student*)GC.calloc(totalSize))[0 .. names.length];

foreach (int i, name; names) {
Student * candidateAddr = students.ptr + i;
Student * objectAddr = nextAlignedAddress(candidateAddr);
writefln("address of object %s: %s", i, objectAddr);

const id = 100 + i;
emplace(objectAddr, name, id);

}

/* All of the objects are constructed and can be used. */
writeln(students);

}
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The output of the program:

Student.sizeof: 0x18 (24) bytes
Student.alignof: 0x8 (8) bytes
address of object 0: 7F1532861F00
address of object 1: 7F1532861F18
address of object 2: 7F1532861F30
[Amy(100), Tim(101), Joe(102)]

Constructing a class object at a specific location
Class variables need not be of the exact type of class objects. For example, a class
variable of type Animal can refer to a Cat object. For that reason, emplace() does
not determine the type of the object from the type of the memory pointer.
Instead, the actual type of the object must be explicitly specified as a template
argument of emplace(). (Note: Additionally, a class pointer is a pointer to a class
variable, not to a class object. For that reason, specifying the actual type allows the
programmer to specify whether to emplace a class object or a class variable.)
The memory location for a class object must be specified as a void[] slice with
the following syntax:

Type variable =
emplace!Type(voidSlice,

/* ... constructor arguments ... */);

emplace() constructs a class object at the location specified by the slice and
returns a class variable for that object.

Let's use emplace() on objects of an Animal hierarchy. The objects of this
hierarchy will be placed side-by-side on a piece of memory that is allocated by
GC.calloc. To make the example more interesting, we will ensure that the
subclasses have different sizes. This will be useful to demonstrate how the
address of a subsequent object can be determined depending on the size of the
previous one.

interface Animal
{

string sing();
}

class Cat : Animal
{

string sing()
{

return "meow";
}

}

class Parrot : Animal
{

string[] lyrics;

this(string[] lyrics)
{

this.lyrics = lyrics;
}

string sing()
{

/* std.algorithm.joiner joins elements of a range with
* the specified separator. */

return lyrics.joiner(", ").to!string;
}

}
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The buffer that holds the objects will be allocated by GC.calloc by specifying
FINALIZE to allow the GC to execute the finalizers of the objects that are placed in
that buffer:

auto capacity = 10_000;
void * buffer = GC.calloc(capacity, GC.BlkAttr.FINALIZE);

Normally, it must be ensured that there is always available capacity for objects.
We will ignore that check here to keep the example simple and assume that the
objects in the example will fit in ten thousand bytes.

The buffer will be used for constructing a Cat and a Parrot object:

Cat cat = emplace!Cat(catPlace);
// ...

Parrot parrot =
emplace!Parrot(parrotPlace, [ "squawk", "arrgh" ]);

Note that the constructor argument of Parrot is specified after the address of the
object.

The variables that emplace() returns will be stored in an Animal slice later to
be used in a foreach loop:

Animal[] animals;
// ...

animals ~= cat;
// ...

animals ~= parrot;

foreach (animal; animals) {
writeln(animal.sing());

}

More explanations are inside the code comments:

import std.stdio;
import std.algorithm;
import std.conv;
import core.memory;

// ...

void main()
{

/* A slice of Animal variables (not Animal objects). */
Animal[] animals;

/* Allocating a buffer with an arbitrary capacity and
* assuming that the two objects in this example will fit
* in that area. Normally, this condition must be
* validated. */

auto capacity = 10_000;
void * buffer = GC.calloc(capacity, GC.BlkAttr.FINALIZE);

/* Let's first place a Cat object. */
void * catCandidateAddr = buffer;
void * catAddr = nextAlignedAddress!Cat(catCandidateAddr);
writeln("Cat address   : ", catAddr);

/* Since emplace() requires a void[] for a class object,
* we must first produce a slice from the pointer. */

size_t catSize = __traits(classInstanceSize, Cat);
void[] catPlace = catAddr[0..catSize];

/* Construct a Cat object inside that memory slice and
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* store the returned class variable for later use. */
Cat cat = emplace!Cat(catPlace);
animals ~= cat;

/* Now construct a Parrot object at the next available
* address that satisfies the alignment requirement. */

void * parrotCandidateAddr = catAddr + catSize;
void * parrotAddr =

nextAlignedAddress!Parrot(parrotCandidateAddr);
writeln("Parrot address: ", parrotAddr);

size_t parrotSize = __traits(classInstanceSize, Parrot);
void[] parrotPlace = parrotAddr[0..parrotSize];

Parrot parrot =
emplace!Parrot(parrotPlace, [ "squawk", "arrgh" ]);

animals ~= parrot;

/* Use the objects. */
foreach (animal; animals) {

writeln(animal.sing());
}

}

The output:

Cat address   : 7F0E343A2000
Parrot address: 7F0E343A2018
meow
squawk, arrgh

Instead of repeating the steps inside main() for each object, a function template
like newObject(T) would be more useful.

85.6 Destroying objects explicitly
The reverse operations of the new operator are destroying an object and returning
the object's memory back to the GC. Normally, these operations are executed
automatically at unspecified times.

However, sometimes it is necessary to execute destructors at specific points in
the program. For example, an object may be closing a File member in its
destructor and the destructor may have to be executed immediately when the
lifetime of the object ends.
destroy() calls the destructor of an object:

destroy(variable);

destroy() sets the variable to its .init state. Note that the .init state of a class
variable is null; so, a class variable cannot be used once destroyed. destroy()
merely executes the destructor. It is still up to the GC when to reuse the piece of
memory that used to be occupied by the destroyed object.

85.7 Constructing objects at run time by name
The factory() member function of Object takes the fully qualified name of a
class type as parameter, constructs an object of that type, and returns a class
variable for that object:

module test_module;

import std.stdio;

interface Animal
{
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string sing();
}

class Cat : Animal
{

string sing()
{

return "meow";
}

}

class Dog : Animal
{

string sing()
{

return "woof";
}

}

void main()
{

string[] toConstruct = [ "Cat", "Dog", "Cat" ];

Animal[] animals;

foreach (typeName; toConstruct) {
/* The pseudo variable __MODULE__ is always the name
* of the current module, which can be used as a
* string literal at compile time. */

const fullName = __MODULE__ ~ '.' ~ typeName;
writefln("Constructing %s", fullName);
animals ~= cast(Animal)Object.factory(fullName);

}

foreach (animal; animals) {
writeln(animal.sing());

}
}

Although there is no explicit new expression in that program, three class objects
are created and added to the animals slice:

Constructing test_module.Cat
Constructing test_module.Dog
Constructing test_module.Cat
meow
woof
meow

Note that Object.factory() takes the fully qualified name of the type of the
object. Also, the return type of factory() is Object; so, it must be casted to the
actual type of the object before being used in the program.

85.8 Summary

• The garbage collector scans the memory at unspecified times,
determines the objects that cannot possibly be reached anymore by the
program, destroys them, and reclaims their memory locations.

• The operations of the GC may be controlled by the programmer to some
extent by GC.collect, GC.disable, GC.enable, GC.minimize, etc.

• GC.calloc and other functions reserve memory, GC.realloc extends a
previously allocated memory area, and GC.free returns it back to the
GC.
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• It is possible to mark the allocated memory by attributes like
GC.BlkAttr.NO_SCAN, GC.BlkAttr.FINALIZE, etc.

• The .alignof property is the default memory alignment of a type.
Alignment must be obtained by classInstanceAlignment for class
objects.

• The .offsetof property is the number of bytes a member is from the
beginning of the object that it is a part of.

• The align attribute specifies the alignment of a variable, a user-defined
type, or a member.

• emplace() takes a pointer when constructing a struct object, a void[]
slice when constructing a class object.

• Object.factory() constructs objects with their fully qualified type
names.
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86 User Defined Attributes (UDA)

Any declaration (e.g. struct type, class type, variable, etc.) can be assigned
attributes, which can then be accessed at compile time to alter the way the code is
compiled. User defined attributes is purely a compile-time feature.
The user defined attribute syntax consists of the @ sign followed by the attribute,
and appear before the declaration that it is being assigned to. For example, the
following code assigns the Encrypted attribute to the declaration of name:

@Encrypted string name;

Multiple attributes can be specified separately or as a parenthesized list of
attributes. For example, both of the following variables have the same attributes:

@Encrypted @Colored string lastName; // ← separately
@(Encrypted, Colored) string address; // ← together

An attribute can be a type name as well as a value of a user defined or a
fundamental type. However, because their meanings may not be clear, attributes
consisting of literal values like 42 are discouraged:

struct Encrypted
{}

enum Color { black, blue, red }

struct Colored
{

Color color;
}

void main()
{

@Encrypted int a; // ← type name
@Encrypted() int b; // ← object
@Colored(Color.blue) int c; // ← object
@(42) int d; // ← literal (discouraged)

}

The attributes of a and b above are of different kinds: The attribute of a is the type
Encrypted itself, while the attribute of b is an object of type Encrypted. This is an
important difference that affects the way attributes are used at compile time. We
will see an example of this difference below.
The meaning of attributes is solely determined by the programmer for the needs
of the program. The attributes are accessed by __traits(getAttributes) at
compile time and the code is compiled according to those attributes.

The following code shows how the attributes of a single struct member can be
accessed by __traits(getAttributes):

import std.stdio;

// ...

struct Person
{

@Encrypted @Colored(Color.blue) string name;
string lastName;
@Colored(Color.red) string address;

}
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void main()
{

foreach (attr; __traits(getAttributes, Person.name)) {
writeln(attr.stringof);

}
}

The output of the program lists the attributes of Person.name:

Encrypted
Colored(cast(Color)1)

Normally, all of the members of a type (or a module) is accessed by
__traits(allMembers) before accessing their attributes individually. The
following code prints the attributes of all of the members of the Person type:

import std.string;

// ...

void main()
{

foreach (member; __traits(allMembers, Person)) {
enum fullName = format("Person.%s", member); // (1)

writef("The attributes of %-8s:", member);

foreach (attr; __traits(getAttributes,
mixin (fullName))) { // (2)

writef(" %s", attr.stringof);
}

writeln();
}

}

Two points in the code are worth noting:

1. allMembers produces just the name of the member (e.g. "lastName"). For
that reason, the full name of the member must be constructed e.g. as
"Person.lastName" before being passed to getAttributes.

2. Because the generated full name is a string, it must first be inserted as
a string mixin.

The output of the program lists all of the attributes of all of the members of
Person:

The attributes of name    : Encrypted Colored(cast(Color)1)
The attributes of lastName:
The attributes of address : Colored(cast(Color)2)

86.1 Example
Let's design a function template that prints the values of all of the members of a
struct object in XML format. The following function considers the Encrypted
and Colored attributes of each member when producing the output:

void printAsXML(T)(T object)
{
// ...

foreach (member; __traits(allMembers, T)) {
enum fullName = format("%s.%s", T.stringof, member);
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string value =
mixin (format("object.%s.to!string", member));

static if (hasAttribute!(fullName, Encrypted)()) {
value = value.encrypted.to!string;

}

writefln(`  <%1$s color="%2$s">%3$s</%1$s>`,
member, colorAttributeOf!fullName(), value);

}
}

The highlighted parts of the code are explained below:

• The members of the type are accessed by __traits(allMembers).
• Each member is tested by hasAttribute() to determine whether it has

the Encrypted attribute. (We will see hasAttribute() below.) The
member is encrypted if it has that attribute.

• The color attribute of each member is determined by
colorAttributeOf(), which we will see below as well.

The hasAttribute() and colorAttributeOf() templates can be implemented
as in the following code:

bool hasAttribute(string name, Attr)()
{

foreach (attr; __traits(getAttributes, mixin (name))) {
static if (is (attr == Attr)) {

return true;
}

}

return false;
}

Color colorAttributeOf(string name)()
{

foreach (attr; __traits(getAttributes, mixin (name))) {
static if (is (typeof(attr) == Colored)) {

return attr.color;
}

}

return Color.black;
}

Note that the attr variable is used differently in the two functions above:

• As hasAttribute() is designed to be used with attributes that are type
names like @Encrypted, attr is used as a type.

• On the other hand, as colorAttributeOf() is designed to be used with
attributes that are object values like @Colored(Color.blue), the type of
attr is obtained by typeof(attr).

After all of the compile-time evaluations are completed, the printAsXML()
function template would be instantiated for the Person type as the equivalent of
the following function:

/* The equivalent of the printAsXML!Person instance. */
void printAsXML_Person(Person object)
{
// ...
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{
string value = object.name.to!string;
value = value.encrypted.to!string;
writefln(`  <%1$s color="%2$s">%3$s</%1$s>`,

"name", Color.blue, value);
}
{

string value = object.lastName.to!string;
writefln(`  <%1$s color="%2$s">%3$s</%1$s>`,

"lastName", Color.black, value);
}
{

string value = object.address.to!string;
writefln(`  <%1$s color="%2$s">%3$s</%1$s>`,

"address", Color.red, value);
}

}

The complete program contains other explanations as well:

import std.stdio;
import std.string;
import std.algorithm;
import std.conv;

/* Specifies that the declaration that it is assigned to
* should be encrypted. */

struct Encrypted
{}

enum Color { black, blue, red }

/* Specifies the color of the declaration that it is assigned
* to. The default color is Color.black. */

struct Colored
{

Color color;
}

struct Person
{

/* This member is specified to be encrypted and printed in
* blue. */

@Encrypted @Colored(Color.blue) string name;

/* This member does not have any user defined
* attributes. */

string lastName;

/* This member is specified to be printed in red. */
@Colored(Color.red) string address;

}

/* Returns 'true' if the specified name has the specified
* attribute. */

bool hasAttribute(string name, Attr)()
{

foreach (attr; __traits(getAttributes, mixin (name))) {
static if (is (attr == Attr)) {

return true;
}

}

return false;
}

/* Returns the value of the Colored attribute if the specified
* name has that attribute, Color.black otherwise. */

Color colorAttributeOf(string name)()
{

foreach (attr; __traits(getAttributes, mixin (name))) {
static if (is (typeof(attr) == Colored)) {
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return attr.color;
}

}

return Color.black;
}

/* Returns the Caesar-encrypted version of the specified
* string. (Warning: Caesar cipher is a very weak encryption
* method.) */

auto encrypted(string value)
{

return value.map!(a => dchar(a + 1));
}

unittest
{

assert("abcdefghij".encrypted.equal("bcdefghijk"));
}

/* Prints the specified object in XML format according to the
* attributes of its members. */

void printAsXML(T)(T object)
{

writefln("<%s>", T.stringof);
scope (exit) writefln("</%s>", T.stringof);

foreach (member; __traits(allMembers, T)) {
enum fullName = format("%s.%s", T.stringof, member);
string value =

mixin (format("object.%s.to!string", member));

static if (hasAttribute!(fullName, Encrypted)()) {
value = value.encrypted.to!string;

}

writefln(`  <%1$s color="%2$s">%3$s</%1$s>`,
member, colorAttributeOf!fullName(), value);

}
}

void main()
{

auto people = [ Person("Alice", "Davignon", "Avignon"),
Person("Ben", "de Bordeaux", "Bordeaux") ];

foreach (person; people) {
printAsXML(person);

}
}

The output of the program shows that all of the members have the correct color
and that the name member is encrypted:

<Person>
<name color="blue">Bmjdf</name> ← blue and encrypted
<lastName color="black">Davignon</lastName>
<address color="red">Avignon</address> ← red

</Person>
<Person>

<name color="blue">Cfo</name> ← blue and encrypted
<lastName color="black">de Bordeaux</lastName>
<address color="red">Bordeaux</address> ← red

</Person>

86.2 The benefit of user defined attributes
The benefit of user defined attributes is being able to change the attributes of
declarations without needing to change any other part of the program. For
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example, all of the members of Person can become encrypted in the XML output
by the trivial change below:

struct Person
{

@Encrypted
{

string name;
string lastName;
string address;

}
}

// ...

printAsXML(Person("Cindy", "de Cannes", "Cannes"));

The output:

<Person>
<name color="black">Djoez</name> ← encrypted
<lastName color="black">ef!Dbooft</lastName> ← encrypted
<address color="black">Dbooft</address> ← encrypted

</Person>

Further, printAsXML() and the attributes that it considers can be used with other
types as well:

struct Data
{

@Colored(Color.blue) string message;
}

// ...

printAsXML(Data("hello world"));

The output:

<Data>
<message color="blue">hello world</message> ← blue

</Data>

86.3 Summary

• User defined attributes can be assigned to any declaration.
• User defined attributes can be type names as well as values.
• User defined attributes can be accessed at compile time by
__traits(getAttributes) to alter the way the program is compiled.

User Defined Attributes (UDA)

687



87 Exercise Solutions

The Hello World Program (page 19)
1.

import std.stdio;

void main()
{

writeln("Something else... :p");
}

2.

import std.stdio;

void main()
{

writeln("A line...");
writeln("Another line...");

}

3. The following program cannot be compiled because the semicolon at the
end of the writeln line is missing:

import std.stdio;

void main()
{

writeln("Hello world!") // ← compilation ERROR
}

writeln and write (page 23)

1. One method is to use another parameter in between:

writeln("Hello world!", " ", "Hello fish!");

2. write can take multiple parameters as well:

write("one", " two", " three");

Fundamental Types (page 27)

1. We can use other types instead of int:

import std.stdio;

void main()
{

writeln("Type           : ", short.stringof);
writeln("Length in bytes: ", short.sizeof);
writeln("Minimum value  : ", short.min);
writeln("Maximum value  : ", short.max);
writeln("Initial value  : ", short.init);

writeln();

writeln("Type           : ", ulong.stringof);
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writeln("Length in bytes: ", ulong.sizeof);
writeln("Minimum value  : ", ulong.min);
writeln("Maximum value  : ", ulong.max);
writeln("Initial value  : ", ulong.init);

}

Assignment and Order of Evaluation (page 30)

1. The values of a, b, and c are printed on the right-hand side of each
operation. The value that changes at every operation is highlighted:

at the beginning   →     a 1, b 2, c irrelevant
c = a              →     a 1, b 2, c 1
a = b              → a 2, b 2, c 1
b = c              →     a 2, b 1, c 1

At the end, the values of a and b have been swapped.

Variables (page 31)
1.

import std.stdio;

void main()
{

int amount = 20;
double rate = 2.11;

writeln("I have exchanged ", amount,
" Euros at the rate of ", rate);

}

Standard Input and Output Streams (page 33)

1.

import std.stdio;

void main()
{

stdout.writeln(1, ",", 2);
}

Reading from the Standard Input (page 34)

• When the characters cannot be converted to the desired type, stdin gets
in an unusable state. For example, entering "abc" when an int is
expected would make stdin unusable.

Logical Expressions (page 37)

1. Because the compiler recognizes 10 < value already as an expression,
it expects a comma after it to accept it as a legal argument to writeln.
Using parentheses around the whole expression would not work either,
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because this time a closing parenthesis would be expected after the same
expression.

2. Grouping the expression as (10 < value) < 20 removes the
compilation error, because in this case first 10 < value is evaluated and
then its result is used with < 20.

We know that the value of a logical expression like 10 < value is
either false or true. false and true take part in integer expressions as
0 and 1, respectively. (We will see automatic type conversions in a later
chapter.) As a result, the whole expression is the equivalent of either 0 <
20 or 1 < 20, both of which evaluate to true.

3. The expression "greater than the lower value and less than the upper
value" can be coded like the following:

writeln("Is between: ", (value > 10) && (value < 20));

4. "There is a bicycle for everyone" can be coded as personCount <=
bicycleCount or bicycleCount >= personCount. The rest of the
logical expression can directly be translated to program code from the
exercise:

writeln("We are going to the beach: ",
((distance < 10) && (bicycleCount >= personCount))
||
((personCount <= 5) && existsCar && existsLicense)
);

Note the placement of the || operator to help with readability by
separating the two main conditions.

The if Statement (page 43)

1. The statement writeln("Washing the plate") is written indented as
if to be within the else scope. However, because the scope of that else is
not written with curly brackets, only the writeln("Eating pie")
statement is actually inside the scope of that else.

Since whitespaces are not important in D programs, the plate
statement is actually an independent statement within main() and is
executed unconditionally. It confuses the reader as well because of
having been indented more than usual. If the plate statement must really
be within the else scope, there must be curly brackets around that
scope:

import std.stdio;

void main()
{

bool existsLemonade = true;

if (existsLemonade) {
writeln("Drinking lemonade");
writeln("Washing the cup");

} else {
writeln("Eating pie");
writeln("Washing the plate");
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}
}

2. We can come up with more than one design for the conditions of this
game. I will show two examples. In the first one, we apply the
information directly from the exercise:

import std.stdio;

void main()
{

write("What is the value of the die? ");
int die;
readf(" %s", &die);

if (die == 1) {
writeln("You won");

} else if (die == 2) {
writeln("You won");

} else if (die == 3) {
writeln("You won");

} else if (die == 4) {
writeln("I won");

} else if (die == 5) {
writeln("I won");

} else if (die == 6) {
writeln("I won");

} else {
writeln("ERROR: ", die, " is invalid");

}
}

Unfortunately, that program has many repetitions. We can achieve the
same result by other designs. Here is one:

import std.stdio;

void main()
{

write("What is the value of the die? ");
int die;
readf(" %s", &die);

if ((die == 1) || (die == 2) || (die == 3)) {
writeln("You won");

} else if ((die == 4) || (die == 5) || (die == 6)) {
writeln("I won");

} else {
writeln("ERROR: ", die, " is invalid");

}
}

3. The previous designs cannot be used in this case. It is not practical to
type 1000 different values in a program and expect them all be correct
or readable. For that reason, it is better to determine whether the value
of the die is within a range:

if ((die >= 1) && (die <= 500))
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The while Loop (page 48)

1. Because the initial value of number is 0, the logical expression of the
while loop is false since the very beginning, and this is preventing
from entering the loop body. A solution is to use an initial value that will
allow the while condition to be true at the beginning:

int number = 3;

2. All of the variables in the following program are default initialized to 0.
This allows entering both of the loops at least once:

import std.stdio;

void main()
{

int secretNumber;

while ((secretNumber < 1) || (secretNumber > 10)) {
write("Please enter a number between 1 and 10: ");
readf(" %s", &secretNumber);

}

int guess;

while (guess != secretNumber) {
write("Guess the secret number: ");
readf(" %s", &guess);

}

writeln("That is correct!");
}

Integers and Arithmetic Operations (page 51)

1. We can use the / operator for the division and the % operator for the
remainder:

import std.stdio;

void main()
{

int first;
write("Please enter the first number: ");
readf(" %s", &first);

int second;
write("Please enter the second number: ");
readf(" %s", &second);

int quotient = first / second;
int remainder = first % second;

writeln(first, " = ",
second, " * ", quotient, " + ", remainder);

}

2. We can determine whether the remainder is 0 or not with an if
statement:

import std.stdio;

void main()
{
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int first;
write("Please enter the first number: ");
readf(" %s", &first);

int second;
write("Please enter the second number: ");
readf(" %s", &second);

int quotient = first / second;
int remainder = first % second;

// We cannot call writeln up front before determining
// whether the remainder is 0 or not. We must terminate
// the line later with a writeln.
write(first, " = ", second, " * ", quotient);

// The remainder must be printed only if non-zero.
if (remainder != 0) {

write(" + ", remainder);
}

// We are now ready to terminate the line.
writeln();

}

3.

import std.stdio;

void main()
{

while (true) {
write("0: Exit, 1: Add, 2: Subtract, 3: Multiply,",

" 4: Divide - Please enter the operation: ");

int operation;
readf(" %s", &operation);

// Let's first validate the operation
if ((operation < 0) || (operation > 4)) {

writeln("I don't know this operation");
continue;

}

if (operation == 0){
writeln("Goodbye!");
break;

}

// If we are here, we know that we are dealing with
// one of the four operations. Now is the time to read
// two integers from the user:

int first;
int second;

write(" First number: ");
readf(" %s", &first);

write("Second number: ");
readf(" %s", &second);

int result;

if (operation == 1) {
result = first + second;

} else if (operation == 2) {
result = first - second;

} else if (operation == 3) {
result = first * second;
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} else if (operation == 4) {
result = first / second;

} else {
writeln(

"There is an error! ",
"This condition should have never occurred.");

break;
}

writeln("       Result: ", result);
}

}

4.

import std.stdio;

void main()
{

int value = 1;

while (value <= 10) {
if (value != 7) {

writeln(value);
}

++value;
}

}

Floating Point Types (page 62)

1. Replacing the three ints with three doubles is sufficient:

double first;
double second;

// ...

double result;

2. The following program demonstrates how much more complicated it
would become if more than five variables were needed:

import std.stdio;

void main()
{

double value_1;
double value_2;
double value_3;
double value_4;
double value_5;

write("Value 1: ");
readf(" %s", &value_1);
write("Value 2: ");
readf(" %s", &value_2);
write("Value 3: ");
readf(" %s", &value_3);
write("Value 4: ");
readf(" %s", &value_4);
write("Value 5: ");
readf(" %s", &value_5);

writeln("Twice the values:");
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writeln(value_1 * 2);
writeln(value_2 * 2);
writeln(value_3 * 2);
writeln(value_4 * 2);
writeln(value_5 * 2);

writeln("One fifth the values:");
writeln(value_1 / 5);
writeln(value_2 / 5);
writeln(value_3 / 5);
writeln(value_4 / 5);
writeln(value_5 / 5);

}

Arrays (page 69)
1.

import std.stdio;
import std.algorithm;

void main()
{

write("How many values will be entered? ");
int count;
readf(" %s", &count);

double[] values;
values.length = count;

// The counter is commonly named as 'i'
int i;
while (i < count) {

write("Value ", i, ": ");
readf(" %s", &values[i]);
++i;

}

writeln("In sorted order:");
sort(values);

i = 0;
while (i < count) {

write(values[i], " ");
++i;

}
writeln();

writeln("In reverse order:");
reverse(values);

i = 0;
while (i < count) {

write(values[i], " ");
++i;

}
writeln();

}

2. The explanations are included as code comments:

import std.stdio;
import std.algorithm;

void main()
{

// Using dynamic arrays because it is not known how many
// values are going to be read from the input
int[] odds;
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int[] evens;

writeln("Please enter integers (-1 to terminate):");

while (true) {

// Reading the value
int value;
readf(" %s", &value);

// The special value of -1 breaks the loop
if (value == -1) {

break;
}

// Adding to the corresponding array, depending on
// whether the value is odd or even. It is an even
// number if there is no remainder when divided by 2.
if ((value % 2) == 0) {

evens ~= value;

} else {
odds ~= value;

}
}

// The odds and evens arrays are sorted separately
sort(odds);
sort(evens);

// The two arrays are then appended to form a new array
int[] result;
result = odds ~ evens;

writeln("First the odds then the evens, sorted:");

// Printing the array elements in a loop
int i;
while (i < result.length) {

write(result[i], " ");
++i;

}

writeln();
}

3. There are three mistakes (bugs) in this program. The first two are with
the while loops: Both of the loop conditions use the <= operator instead
of the < operator. As a result, the program uses invalid indexes and
attempts to access elements that are not parts of the arrays.

Since it is more beneficial for you to debug the third mistake yourself,
I would like you to first run the program after fixing the previous two
bugs. You will notice that the program will not print the results. Can you
figure out the remaining problem before reading the following
paragraph?

The value of i is 5 when the first while loop terminates, and that
value is causing the logical expression of the second loop to be false,
which in turn is preventing the second loop to be entered. The solution is
to reset i to 0 before the second while loop, for example with the
statement i = 0;
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Slices and Other Array Features (page 85)

• Iterating over elements by consuming a slice from the beginning is an
interesting concept. This method is also the basis of Phobos ranges that
we will see in a later chapter.

import std.stdio;

void main()
{

double[] array = [ 1, 20, 2, 30, 7, 11 ];

double[] slice = array; // Start with a slice that
// provides access to all of
// the elements of the array

while (slice.length) { // As long as there is at least
// one element in that slice

if (slice[0] > 10) { // Always use the first element
slice[0] /= 2; // in the expressions

}

slice = slice[1 .. $]; // Shorten the slice from the
// beginning

}

writeln(array); // The actual elements are
// changed

}

Strings (page 95)

1. Although some of the functions in Phobos modules will be easy to use
with strings, library documentations are usually terse compared to
tutorials. You may find especially the Phobos ranges confusing at this
point. We will see Phobos ranges in a later chapter.

2. Many other functions may be chained as well:

import std.stdio;
import std.string;

void main()
{

write("First name: ");
string first = capitalize(chomp(readln()));

write("Last name: ");
string last = capitalize(chomp(readln()));

string fullName = first ~ " " ~ last;
writeln(fullName);

}

3. This program uses two indexes to make a slice:

import std.stdio;
import std.string;

void main()
{

write("Please enter a line: ");
string line = chomp(readln());

sizediff_t first_e = indexOf(line, 'e');
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if (first_e == -1) {
writeln("There is no letter e in this line.");

} else {
sizediff_t last_e = lastIndexOf(line, 'e');
writeln(line[first_e .. last_e + 1]);

}
}

Redirecting Standard Input and Output Streams (page 101)

1. Redirecting standard input and output of programs are commonly used
especially on Unix-based operating system consoles. Some programs are
designed to work well when piped to other programs.

For example, a file named deneme.d can be searched under a
directory tree by piping find and grep as in the following line:

find | grep deneme.d

find prints the names of all of the files to its output. grep receives that
output through its input and prints the lines that contain deneme.d to
its own output.

Files (page 103)

•

import std.stdio;
import std.string;

void main()
{

write("Please enter the name of the file to read from: ");
string inFileName = chomp(readln());
File inFile = File(inFileName, "r");

string outFileName = inFileName ~ ".out";
File outFile = File(outFileName, "w");

while (!inFile.eof()) {
string line = chomp(inFile.readln());

if (line.length != 0) {
outFile.writeln(line);

}
}

writeln(outFileName, " has been created.");
}

auto and typeof (page 107)

1. We can use typeof to determine the type of the literal and .stringof to
get the name of that type as string:

import std.stdio;

void main()
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{
writeln(typeof(1.2).stringof);

}

The output:

double

The for Loop (page 111)
1.

import std.stdio;

void main()
{

for (int line = 0; line != 9; ++line) {
for (int column = 0; column != 9; ++column) {

write(line, ',', column, ' ');
}

writeln();
}

}

2. Triangle:

import std.stdio;

void main()
{

for (int line = 0; line != 9; ++line) {
int length = line + 1;

for (int i = 0; i != length; ++i) {
write('*');

}

writeln();
}

}

Parallellogram:

import std.stdio;

void main()
{

for (int line = 0; line != 9; ++line) {
for (int i = 0; i != line; ++i) {

write(' ');
}

writeln("********");
}

}

Can you produce the diamond pattern?

*
***

*****
*******
*****
***
*
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The Ternary Operator ?: (page 115)

1. Although it may make more sense to use an if-else statement in this
exercise, the following program uses two ?: operators:

import std.stdio;

void main()
{

write("Please enter the net amount: ");

int amount;
readf(" %s", &amount);

writeln("$",
amount < 0 ? -amount : amount,
amount < 0 ? " lost" : " gained");

}

The program prints "gained" even when the value is zero. Modify the
program to print a message more appropriate for zero.

Literals (page 118)

1. The problem here is that the value on the right-hand side is too large to
fit in an int. According to the rules about integer literals, its type is
long. For that reason it doesn't fit the type of the variable on the left-
hand side. There are at least two solutions.

One solution is to leave the type of the variable to the compiler for
example by the auto keyword:

auto amount = 10_000_000_000;

The type of amount would be deduced to be long from its initial value
from the right-hand side.

Another solution is to make the type of the variable long as well:

long amount = 10_000_000_000;

2. We can take advantage of the special '\r' character that takes the
printing to the beginning of the line.

import std.stdio;

void main()
{

for (int number = 0; ; ++number) {
write("\rNumber: ", number);

}
}

The output of that program may be erratic due to its interactions with
the output buffer. The following program flushes the output buffer and
waits for 10 millisecond after each write:

import std.stdio;
import core.thread;

void main()
{
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for (int number = 0; ; ++number) {
write("\rNumber: ", number);
stdout.flush();
Thread.sleep(10.msecs);

}
}

Flushing the output is normally not necessary as it is flushed
automatically before getting to the next line e.g. by writeln, or before
reading from stdin.

Formatted Output (page 124)

1. We have already seen that this is trivial with format specifiers:

import std.stdio;

void main()
{

writeln("(Enter 0 to exit the program.)");

while (true) {
write("Please enter a number: ");
long number;
readf(" %s", &number);

if (number == 0) {
break;

}

writefln("%1$d <=> %1$#x", number);
}

}

2. Remembering that the % character must appear twice in the format
string to be printed as itself:

import std.stdio;

void main()
{

write("Please enter the percentage value: ");
double percentage;
readf(" %s", &percentage);

writefln("%%%.2f", percentage);
}

Formatted Input (page 132)

1. Using a format string where the parts of the date are replaced with %s
would be sufficient:

import std.stdio;

void main()
{

int year;
int month;
int day;

readf("%s.%s.%s", &year, &month, &day);
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writeln("Month: ", month);
}

The do-while Loop (page 134)

1. This program is not directly related to the do-while loop, as any
problem that is solved by the do-while loop can also be solved by the
other loop statements.

The program can guess the number that the user is thinking of by
shortening the candidate range from top or bottom according to the
user's answers. For example, if its first guess is 50 and the user's reply is
that the secret number is greater, the program would then know that the
number must be in the range [51,100]. If the program then guesses
another number right in the middle of that range, this time the number
would be known to be either in the range [51,75] or in the range [76,100].

When the size of the range is 1, the program would be sure that it must
be the number that the user has guessed.

Associative Arrays (page 136)

1. ◦ The .keys property returns a slice (i.e. dynamic array) that
includes all of the keys of the associative array. Iterating over
this slice and removing the element for each key by calling
.remove would result in an empty associative array:

import std.stdio;

void main()
{

string[int] names =
[

1   : "one",
10  : "ten",
100 : "hundred",

];

writeln("Initial length: ", names.length);

int[] keys = names.keys;

/* 'foreach' is similar but superior to 'for'. We will
* see the 'foreach' loop in the next chapter. */

foreach (key; keys) {
writefln("Removing the element %s", key);
names.remove(key);

}

writeln("Final length: ", names.length);
}

That solution may be slow especially for large arrays. The
following methods would empty the array in a single step.

◦ Another solution is to assign an empty array:

string[int] emptyAA;
names = emptyAA;
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◦ Since the initial value of an array is an empty array anyway,
the following technique would achieve the same result:

names = names.init;

2. The goal is to store multiple grades per student. Since multiple grades
can be stored in a dynamic array, an associative array that maps from
string to int[] would work here. The grades can be appended to the
dynamic arrays that are stored in the associative array:

import std.stdio;

void main()
{

/* The key type of this associative array is string and
* the value type is int[], i.e. an array of ints. The
* associative array is being defined with an extra
* space in between to help distinguish the value type: */

int[] [string] grades;

/* The array of ints that correspond to "emre" is being
* used for appending the new grade to that array: */

grades["emre"] ~= 90;
grades["emre"] ~= 85;

/* Printing the grades of "emre": */
writeln(grades["emre"]);

}

The grades can also be assigned in one go with an array literal:

import std.stdio;

void main()
{

int[][string] grades;

grades["emre"] = [ 90, 85, 95 ];

writeln(grades["emre"]);
}

The foreach Loop (page 140)

1. To have an associative array that works the opposite of names, the types
of the key and the value must be swapped. The new associative array
must be defined as of type int[string].

Iterating over the keys and the values of the original associative array
while using keys as values and values as keys would populate the
numbers table:

import std.stdio;

void main()
{

string[int] names = [ 1:"one", 7:"seven", 20:"twenty" ];

int[string] values;

foreach (key, value; names) {
values[value] = key;

}
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writeln(values["twenty"]);
}

switch and case (page 146)
1.

import std.stdio;
import std.string;

void main()
{

string op;
double first;
double second;

write("Please enter the operation: ");
op = chomp(readln());

write("Please enter two values separated by a space: ");
readf(" %s %s", &first, &second);

double result;

final switch (op) {

case "add":
result = first + second;
break;

case "subtract":
result = first - second;
break;

case "multiply":
result = first * second;
break;

case "divide":
result = first / second;
break;

}

writeln(result);
}

2. By taking advantage of distinct case values:

final switch (op) {

case "add", "+":
result = first + second;
break;

case "subtract", "-":
result = first - second;
break;

case "multiply", "*":
result = first * second;
break;

case "divide", "/":
result = first / second;
break;

}
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3. Since the default section is needed to throw the exception from, it
cannot be a final switch statement anymore. Here are the parts of the
program that are modified:

// ...

switch (op) {

// ...

default:
throw new Exception("Invalid operation: " ~ op);

}

// ...

enum (page 151)
1.

import std.stdio;
import std.conv;

enum Operation { exit, add, subtract, multiply, divide }

void main()
{

// Print the supported operations
write("Operations - ");
for (Operation operation;

operation <= Operation.max;
++operation) {

writef("%d:%s ", operation, operation);
}
writeln();

// Infinite loop until the user wants to exit
while (true) {

write("Operation? ");

// The input must be read in the actual type (int) of
// the enum
int operationCode;
readf(" %s", &operationCode);

/*
We will start using enum values instead of magic
constants from this point on. So the operation code
that has been read in int must be converted to its
corresponding enum value.

(Type conversions will be covered in more detail in
a later chapter.)

*/
Operation operation = cast(Operation)operationCode;

if ((operation < Operation.min) ||
(operation > Operation.max)) {
writeln("ERROR: Invalid operation");
continue;

}

if (operation == Operation.exit) {
writeln("Goodbye!");
break;

}

double first;
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double second;
double result;

write(" First operand? ");
readf(" %s", &first);

write("Second operand? ");
readf(" %s", &second);

switch (operation) {

case Operation.add:
result = first + second;
break;

case Operation.subtract:
result = first - second;
break;

case Operation.multiply:
result = first * second;
break;

case Operation.divide:
result = first / second;
break;

default:
throw new Exception(

"ERROR: This line should have never been reached.");
}

writeln("        Result: ", result);
}

}

Functions (page 155)
1.

import std.stdio;

void printMenu(string[] items, int firstNumber)
{

foreach (i, item; items) {
writeln(' ', i + firstNumber, ' ', item);

}
}

void main()
{

string[] items =
[ "Black", "Red", "Green", "Blue", "White" ];

printMenu(items, 1);
}

2. Here are some ideas:

◦ Write a function named drawHorizontalLine() to draw
horizontal lines.

◦ Write a function named drawSquare() to draw squares. This
function could take advantage of drawVerticalLine() and
drawHorizontalLine() when drawing the square.

◦ Improve the functions to also take the character that is used
when "drawing". This would allow drawing each shape with a
different character:
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void putDot(Canvas canvas, int line, int column, dchar dot)
{

canvas[line][column] = dot;
}

Function Parameters (page 178)

1. Because the parameters of this function are the kind that gets copied
from the arguments, what get swapped in the function are those copies.

To make the function swap the arguments, both of the parameters
must be passed by reference:

void swap(ref int first, ref int second)
{

immutable int temp = first;
first = second;
second = temp;

}

With that change, now the variables in main() would be swapped:

2 1

Although not related to the original problem, also note that temp is
specified as immutable as it would not be changed in the function once
having been initialized.

Program Environment (page 195)
1.

import std.stdio;
import std.conv;

int main(string[] args)
{

if (args.length != 4) {
stderr.writeln(

"ERROR! Usage: \n    ", args[0],
" a_number operator another_number");

return 1;
}

immutable first = to!double(args[1]);
string op = args[2];
immutable second = to!double(args[3]);

switch (op) {

case "+":
writeln(first + second);
break;

case "-":
writeln(first - second);
break;

case "x":
writeln(first * second);
break;

case "/":
writeln(first / second);
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break;

default:
throw new Exception("Invalid operator: " ~ op);

}

return 0;
}

2.

import std.stdio;
import std.process;

void main()
{

write("Please enter the command line to execute: ");
string commandLine = readln();

writeln("The output: ", executeShell(commandLine));
}

assert and enforce (page 219)

1. You will notice that the program terminates normally when you enter
06:09 and 1:2. However, you may notice that the start time is not what
has been entered by the user:

1 hours and 2 minutes after 09:06 is 10:08.

As you can see, although the time that has been entered as 06:09, the
output contains 09:06. This error will be caught by the help of an
assert in the next problem.

2. The assert failure after entering 06:09 and 15:2 takes us to the
following line:

string timeToString(in int hour, in int minute)
{

assert((hour >= 0) && (hour <= 23));
// ...

}

For this assert check to fail, this function must have been called with
invalid hour value.

The only two calls to timeToString() in the program do not appear
to have any problems:

writefln("%s hours and %s minutes after %s is %s.",
durationHour, durationMinute,
timeToString(startHour, startMinute),
timeToString(endHour, endMinute));

A little more investigation should reveal the actual cause of the bug: The
hour and minute variables are swapped when reading the start time:

readTime("Start time", startMinute, startHour);

That programming error causes the time to be interpreted as 09:06 and
incrementing it by duration 15:2 causes an invalid hour value.
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An obvious correction is to pass the hour and minute variables in the
right order:

readTime("Start time", startHour, startMinute);

The output:

Start time? (HH:MM) 06:09
Duration? (HH:MM) 15:2
15 hours and 2 minutes after 06:09 is 21:11.

3. It is again the same assert check:

assert((hour >= 0) && (hour <= 23));

The reason is that addDuration() can produce hour values that are
greater than 23. Adding a remainder operation at the end would ensure
one of the output guarantees of the function:

void addDuration(in int startHour, in int startMinute,
in int durationHour, in int durationMinute,
out int resultHour, out int resultMinute)

{
resultHour = startHour + durationHour;
resultMinute = startMinute + durationMinute;

if (resultMinute > 59) {
++resultHour;

}

resultHour %= 24;
}

Observe that the function has other problems. For example,
resultMinute may end up being greater than 59. The following
function calculates the minute value correctly and makes sure that the
function's output guarantees are enforced:

void addDuration(in int startHour, in int startMinute,
in int durationHour, in int durationMinute,
out int resultHour, out int resultMinute)

{
resultHour = startHour + durationHour;
resultMinute = startMinute + durationMinute;

resultHour += resultMinute / 60;
resultHour %= 24;
resultMinute %= 60;

assert((resultHour >= 0) && (resultHour <= 23));
assert((resultMinute >= 0) && (resultMinute <= 59));

}

4. Good luck.

Unit Testing (page 225)

• The first thing to do is to compile and run the program to ensure that the
tests actually work and indeed fail:
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$ dmd deneme.d -ofdeneme -w -unittest
$ ./deneme
core.exception.AssertError@deneme(11): unittest failure

The line number 11 indicates that the first one of the tests has failed.
For demonstration purposes let's write an obviously incorrect

implementation that passes the first test by accident. The following
function simply returns a copy of the input:

dstring toFront(dstring str, in dchar letter)
{

dstring result;

foreach (c; str) {
result ~= c;

}

return result;
}

unittest
{

immutable str = "hello"d;

assert(toFront(str, 'h') == "hello");
assert(toFront(str, 'o') == "ohell");
assert(toFront(str, 'l') == "llheo");

}

void main()
{}

The first test passes but the second one fails:

$ ./deneme
core.exception.AssertError@deneme.d(17): unittest failure

Here is a correct implementation that passes all of the tests:

dstring toFront(dstring str, in dchar letter)
{

dchar[] firstPart;
dchar[] lastPart;

foreach (c; str) {
if (c == letter) {

firstPart ~= c;

} else {
lastPart ~= c;

}
}

return (firstPart ~ lastPart).idup;
}

unittest
{

immutable str = "hello"d;

assert(toFront(str, 'h') == "hello");
assert(toFront(str, 'o') == "ohell");
assert(toFront(str, 'l') == "llheo");

}

void main()
{}
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The tests finally pass:

$ ./deneme
$

This function can now be modified in different ways under the
confidence that its tests will have to pass. The following two
implementations are very different from the first one but they too are
correct according to the tests.

◦ An implementation that takes advantage of
std.algorithm.partition:

import std.algorithm;

dstring toFront(dstring str, in dchar letter)
{

dchar[] result = str.dup;
partition!(c => c == letter, SwapStrategy.stable)(result);

return result.idup;
}

unittest
{

immutable str = "hello"d;

assert(toFront(str, 'h') == "hello");
assert(toFront(str, 'o') == "ohell");
assert(toFront(str, 'l') == "llheo");

}

void main()
{}

Note: The => syntax that appears in the program above creates a
lambda function. We will see lambda functions in later chapters.

◦ The following implementation first counts how many times the
special letter appears in the string. That information is then
sent to a separate function named repeated() to produce the
first part of the result. Note that repeated() has a set of unit
tests of its own:

dstring repeated(size_t count, dchar letter)
{

dstring result;

foreach (i; 0..count) {
result ~= letter;

}

return result;
}

unittest
{

assert(repeated(3, 'z') == "zzz");
assert(repeated(10, 'é') == "éééééééééé");

}

dstring toFront(dstring str, in dchar letter)
{

size_t specialLetterCount;
dstring lastPart;

foreach (c; str) {
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if (c == letter) {
++specialLetterCount;

} else {
lastPart ~= c;

}
}

return repeated(specialLetterCount, letter) ~ lastPart;
}

unittest
{

immutable str = "hello"d;

assert(toFront(str, 'h') == "hello");
assert(toFront(str, 'o') == "ohell");
assert(toFront(str, 'l') == "llheo");

}

void main()
{}

Contract Programming (page 233)

• The unittest block can be implemented trivially by copying the checks
that are already written in main(). The only addition below is the test
for the case when the second team wins:

int addPoints(in int goals1,
in int goals2,
ref int points1,
ref int points2)

in
{

assert(goals1 >= 0);
assert(goals2 >= 0);
assert(points1 >= 0);
assert(points2 >= 0);

}
out (result)
{

assert((result >= 0) && (result <= 2));
}
body
{

int winner;

if (goals1 > goals2) {
points1 += 3;
winner = 1;

} else if (goals1 < goals2) {
points2 += 3;
winner = 2;

} else {
++points1;
++points2;
winner = 0;

}

return winner;
}

unittest
{

int points1 = 10;
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int points2 = 7;
int winner;

// First team wins
winner = addPoints(3, 1, points1, points2);
assert(points1 == 13);
assert(points2 == 7);
assert(winner == 1);

// Draw
winner = addPoints(2, 2, points1, points2);
assert(points1 == 14);
assert(points2 == 8);
assert(winner == 0);

// Second team wins
winner = addPoints(0, 1, points1, points2);
assert(points1 == 14);
assert(points2 == 11);
assert(winner == 2);

}

void main()
{

// ...
}

Structs (page 266)

1. One of the simplest designs is to use two dchar members:

struct Card
{

dchar suit;
dchar value;

}

2. It would be as simple as printing the two members side by side:

void printCard(in Card card)
{

write(card.suit, card.value);
}

3. Assuming that there is already a function called newSuit(), newDeck()
can be implemented by calling that function for each suit:

Card[] newDeck()
out (result)
{

assert(result.length == 52);
}
body
{

Card[] deck;

deck ~= newSuit('♠');
deck ~= newSuit('♡');
deck ~= newSuit('♢');
deck ~= newSuit('♣');

return deck;
}
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The rest of the work can be accomplished by the following newSuit(),
which constructs the suit by combining the suit character with each
value of a string:

Card[] newSuit(in dchar suit)
in
{

assert((suit == '♠') ||
(suit == '♡') ||
(suit == '♢') ||
(suit == '♣'));

}
out (result)
{

assert(result.length == 13);
}
body
{

Card[] suitCards;

foreach (value; "234567890JQKA") {
suitCards ~= Card(suit, value);

}

return suitCards;
}

Note that the functions above take advantage of contract programming
to reduce risk of program errors.

4. Swapping two elements at random would make the deck become more
and more shuffled at each repetition. Although it is possible to pick the
same element by chance, swapping an element with itself does not have
any effect other than missing an opportunity towards a more shuffled
deck.

void shuffle(Card[] deck, in int repetition)
{

/* Note: A better algorithm is to walk the deck from the
*       beginning to the end and to swap each element
*       with a random one that is picked among the
*       elements from that point to the end.
*
* It would be even better to call randomShuffle() from
* the std.algorithm module, which already applies the
* same algorithm. Please read the comment in main() to
* see how randomShuffle() can be used.
*/

foreach (i; 0 .. repetition) {
// Pick two elements at random
immutable first = uniform(0, deck.length);
immutable second = uniform(0, deck.length);

swap(deck[first], deck[second]);
}

}

The function above calls std.algorithm.swap, which simply swaps the
values of its two ref parameters. It is effectively the equivalent of the
following function:

void mySwap(ref Card left,
ref Card right)

{
immutable temporary = left;
left = right;
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right = temporary;
}

Here is the entire program:

import std.stdio;
import std.random;
import std.algorithm;

struct Card
{

dchar suit;
dchar value;

}

void printCard(in Card card)
{

write(card.suit, card.value);
}

Card[] newSuit(in dchar suit)
in
{

assert((suit == '♠') ||
(suit == '♡') ||
(suit == '♢') ||
(suit == '♣'));

}
out (result)
{

assert(result.length == 13);
}
body
{

Card[] suitCards;

foreach (value; "234567890JQKA") {
suitCards ~= Card(suit, value);

}

return suitCards;
}

Card[] newDeck()
out (result)
{

assert(result.length == 52);
}
body
{

Card[] deck;

deck ~= newSuit('♠');
deck ~= newSuit('♡');
deck ~= newSuit('♢');
deck ~= newSuit('♣');

return deck;
}

void shuffle(Card[] deck, in int repetition)
{

/* Note: A better algorithm is to walk the deck from the
*       beginning to the end and to swap each element
*       with a random one that is picked among the
*       elements from that point to the end.
*
* It would be even better to call randomShuffle() from
* the std.algorithm module, which already applies the
* same algorithm. Please read the comment in main() to
* see how randomShuffle() can be used.
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*/

foreach (i; 0 .. repetition) {
// Pick two elements at random
immutable first = uniform(0, deck.length);
immutable second = uniform(0, deck.length);

swap(deck[first], deck[second]);
}

}

void main()
{

Card[] deck = newDeck();

shuffle(deck, 100);
/* Note: Instead of the shuffle() call above, it would be
*       better to call randomShuffle() as in the
*       following line:
*
* randomShuffle(deck);
*/

foreach (card; deck) {
printCard(card);
write(' ');

}

writeln();
}

Variable Number of Parameters (page 279)

• For the calculate() function to be able to take variable number of
parameters, its parameter list must include a slice of Calculation
followed by ...:

double[] calculate(in Calculation[] calculations ...)
{

double[] results;

foreach (calculation; calculations) {
final switch (calculation.op) {

case Operation.add:
results ~= calculation.first + calculation.second;
break;

case Operation.subtract:
results ~= calculation.first - calculation.second;
break;

case Operation.multiply:
results ~= calculation.first * calculation.second;
break;

case Operation.divide:
results ~= calculation.first / calculation.second;
break;

}
}

return results;
}

Each calculation is evaluated inside a loop and their results are
appended to a slice of type double[].
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Here is the entire program:

import std.stdio;

enum Operation { add, subtract, multiply, divide }

struct Calculation
{

Operation op;
double first;
double second;

}

double[] calculate(in Calculation[] calculations ...)
{

double[] results;

foreach (calculation; calculations) {
final switch (calculation.op) {

case Operation.add:
results ~= calculation.first + calculation.second;
break;

case Operation.subtract:
results ~= calculation.first - calculation.second;
break;

case Operation.multiply:
results ~= calculation.first * calculation.second;
break;

case Operation.divide:
results ~= calculation.first / calculation.second;
break;

}
}

return results;
}

void main()
{

writeln(calculate(Calculation(Operation.add, 1.1, 2.2),
Calculation(Operation.subtract, 3.3, 4.4),
Calculation(Operation.multiply, 5.5, 6.6),
Calculation(Operation.divide, 7.7, 8.8)));

}

The output:

[3.3, -1.1, 36.3, 0.875]

Function Overloading (page 283)

1. The following two overloads take advantage of the existing info()
overloads:

void info(in Meal meal)
{

info(meal.time);
write('-');
info(addDuration(meal.time, TimeOfDay(1, 30)));

write(" Meal, Address: ", meal.address);
}

void info(in DailyPlan plan)
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{
info(plan.amMeeting);
writeln();
info(plan.lunch);
writeln();
info(plan.pmMeeting);

}

Here is the entire program that uses all of these types:

import std.stdio;

struct TimeOfDay
{

int hour;
int minute;

}

void info(in TimeOfDay time)
{

writef("%02s:%02s", time.hour, time.minute);
}

TimeOfDay addDuration(in TimeOfDay start,
in TimeOfDay duration)

{
TimeOfDay result;

result.minute = start.minute + duration.minute;
result.hour = start.hour + duration.hour;
result.hour += result.minute / 60;

result.minute %= 60;
result.hour %= 24;

return result;
}

struct Meeting
{

string    topic;
size_t    attendanceCount;
TimeOfDay start;
TimeOfDay end;

}

void info(in Meeting meeting)
{

info(meeting.start);
write('-');
info(meeting.end);

writef(" \"%s\" meeting with %s attendees",
meeting.topic,
meeting.attendanceCount);

}

struct Meal
{

TimeOfDay time;
string    address;

}

void info(in Meal meal)
{

info(meal.time);
write('-');
info(addDuration(meal.time, TimeOfDay(1, 30)));

write(" Meal, Address: ", meal.address);
}
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struct DailyPlan
{

Meeting amMeeting;
Meal    lunch;
Meeting pmMeeting;

}

void info(in DailyPlan plan)
{

info(plan.amMeeting);
writeln();
info(plan.lunch);
writeln();
info(plan.pmMeeting);

}

void main()
{

immutable bikeRideMeeting = Meeting("Bike Ride", 4,
TimeOfDay(10, 30),
TimeOfDay(11, 45));

immutable lunch = Meal(TimeOfDay(12, 30), "İstanbul");

immutable budgetMeeting = Meeting("Budget", 8,
TimeOfDay(15, 30),
TimeOfDay(17, 30));

immutable todaysPlan = DailyPlan(bikeRideMeeting,
lunch,
budgetMeeting);

info(todaysPlan);
writeln();

}

That main() function can also be written with only object literals:

void main()
{

info(DailyPlan(Meeting("Bike Ride", 4,
TimeOfDay(10, 30),
TimeOfDay(11, 45)),

Meal(TimeOfDay(12, 30), "İstanbul"),

Meeting("Budget", 8,
TimeOfDay(15, 30),
TimeOfDay(17, 30))));

writeln();
}

Member Functions (page 288)

1. Potentially negative intermediate values make decrement() slightly
more complicated than increment():

struct TimeOfDay
{

// ...

void decrement(in Duration duration)
{

auto minutesToSubtract = duration.minute % 60;
auto hoursToSubtract = duration.minute / 60;

minute -= minutesToSubtract;
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if (minute < 0) {
minute += 60;
++hoursToSubtract;

}

hour -= hoursToSubtract;

if (hour < 0) {
hour = 24 - (-hour % 24);

}
}

// ...
}

2. To see how much easier it gets with toString() member functions, let's
look at the Meeting overload of info() one more time:

void info(in Meeting meeting)
{

info(meeting.start);
write('-');
info(meeting.end);

writef(" \"%s\" meeting with %s attendees",
meeting.topic,
meeting.attendanceCount);

}

Taking advantage of the already-defined TimeOfDay.toString, the
implementation of Meeting.toString becomes trivial:

string toString()
{

return format("%s-%s \"%s\" meeting with %s attendees",
start, end, topic, attendanceCount);

}

Here is the entire program:

import std.stdio;
import std.string;

struct Duration
{

int minute;
}

struct TimeOfDay
{

int hour;
int minute;

string toString()
{

return format("%02s:%02s", hour, minute);
}

void increment(in Duration duration)
{

minute += duration.minute;

hour += minute / 60;
minute %= 60;
hour %= 24;

}
}
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struct Meeting
{

string    topic;
int attendanceCount;
TimeOfDay start;
TimeOfDay end;

string toString()
{

return format("%s-%s \"%s\" meeting with %s attendees",
start, end, topic, attendanceCount);

}
}

struct Meal
{

TimeOfDay time;
string    address;

string toString()
{

TimeOfDay end = time;
end.increment(Duration(90));

return format("%s-%s Meal, Address: %s",
time, end, address);

}
}

struct DailyPlan
{

Meeting amMeeting;
Meal    lunch;
Meeting pmMeeting;

string toString()
{

return format("%s\n%s\n%s",
amMeeting,
lunch,
pmMeeting);

}
}

void main()
{

auto bikeRideMeeting = Meeting("Bike Ride", 4,
TimeOfDay(10, 30),
TimeOfDay(11, 45));

auto lunch = Meal(TimeOfDay(12, 30), "İstanbul");

auto budgetMeeting = Meeting("Budget", 8,
TimeOfDay(15, 30),
TimeOfDay(17, 30));

auto todaysPlan = DailyPlan(bikeRideMeeting,
lunch,
budgetMeeting);

writeln(todaysPlan);
writeln();

}

The output of the program is the same as the earlier one that has been
using info() function overloads:

10:30-11:45 "Bike Ride" meeting with 4 attendees
12:30-14:00 Meal, Address: İstanbul
15:30-17:30 "Budget" meeting with 8 attendees
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Operator Overloading (page 313)

• The following implementation passes all of the unit tests. The design
decisions have been included as code comments.

Some of the functions of this struct can be implemented to run more
efficiently. Additionally, it would be beneficial to also normalize the
numerator and denominator. For example, instead of keeping the values
20 and 60, the values could be divided by their greatest common divisor
and the numerator and the denominator can be stored as 1 and 3
instead. Otherwise, most of the operations on the object would cause the
values of the numerator and the denominator to increase.

import std.exception;
import std.conv;

struct Fraction
{

long num; // numerator
long den; // denominator

/* As a convenience, the constructor uses the default
* value of 1 for the denominator. */

this(long num, long den = 1)
{

enforce(den != 0, "The denominator cannot be zero");

this.num = num;
this.den = den;

/* Ensuring that the denominator is always positive
* will simplify the definitions of some of the
* operator functions. */

if (this.den < 0) {
this.num = -this.num;
this.den = -this.den;

}
}

/* Unary -: Returns the negative of this fraction. */
Fraction opUnary(string op)() const

if (op == "-")
{

/* Simply constructs and returns an anonymous
* object. */

return Fraction(-num, den);
}

/* ++: Increments the value of the fraction by one. */
ref Fraction opUnary(string op)()

if (op == "++")
{

/* We could have used 'this += Fraction(1)' here. */
num += den;
return this;

}

/* --: Decrements the value of the fraction by one. */
ref Fraction opUnary(string op)()

if (op == "--")
{

/* We could have used 'this -= Fraction(1)' here. */
num -= den;
return this;

}

/* +=: Adds the right-hand fraction to this one. */
ref Fraction opOpAssign(string op)(in Fraction rhs)

if (op == "+")
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{
/* Addition formula: a⁄b + c⁄d = (a*d + c*b)⁄(b*d) */
num = (num * rhs.den) + (rhs.num * den);
den *= rhs.den;
return this;

}

/* -=: Subtracts the right-hand fraction from this one. */
ref Fraction opOpAssign(string op)(in Fraction rhs)

if (op == "-")
{

/* We make use of the already-defined operators += and
* unary - here. Alternatively, the subtraction
* formula could explicitly be applied similar to the
* += operator above.
*
* Subtraction formula: a⁄b - c⁄d = (a*d - c*b)⁄(b*d)
*/

this += -rhs;
return this;

}

/* *=: Multiplies the fraction by the right-hand side. */
ref Fraction opOpAssign(string op)(in Fraction rhs)

if (op == "*")
{

/* Multiplication formula: a⁄b * c⁄d = (a*c)⁄(b*d) */
num *= rhs.num;
den *= rhs.den;
return this;

}

/* /=: Divides the fraction by the right-hand side. */
ref Fraction opOpAssign(string op)(in Fraction rhs)

if (op == "/")
{

enforce(rhs.num != 0, "Cannot divide by zero");

/* Division formula: (a⁄b) / (c⁄d) = (a*d)⁄(b*c) */
num *= rhs.den;
den *= rhs.num;
return this;

}

/* Binary +: Produces the result of adding this and the
* right-hand side fractions. */

Fraction opBinary(string op)(in Fraction rhs) const
if (op == "+")

{
/* Takes a copy of this fraction and adds the
* right-hand side fraction to that copy. */

Fraction result = this;
result += rhs;
return result;

}

/* Binary -: Produces the result of subtracting the
* right-hand side fraction from this one. */

Fraction opBinary(string op)(in Fraction rhs) const
if (op == "-")

{
/* Uses the already-defined -= operator. */
Fraction result = this;
result -= rhs;
return result;

}

/* Binary *: Produces the result of multiplying this
* fraction with the right-hand side fraction. */

Fraction opBinary(string op)(in Fraction rhs) const
if (op == "*")

{
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/* Uses the already-defined *= operator. */
Fraction result = this;
result *= rhs;
return result;

}

/* Binary /: Produces the result of dividing this fraction
* by the right-hand side fraction. */

Fraction opBinary(string op)(in Fraction rhs) const
if (op == "/")

{
/* Uses the already-defined /= operator. */
Fraction result = this;
result /= rhs;
return result;

}

/* Returns the value of the fraction as double. */
double opCast(T : double)() const
{

/* A simple division. However, as dividing values of
* type long would lose the part of the value after
* the decimal point, we could not have written
* 'num/den' here. */

return to!double(num) / den;
}

/* Sort order operator: Returns a negative value if this
* fraction is before, a positive value if this fraction
* is after, and zero if both fractions have the same sort
* order. */

int opCmp(const ref Fraction rhs) const
{

immutable result = this - rhs;
/* Being a long, num cannot be converted to int
* automatically; it must be converted explicitly by
* 'to' (or cast). */

return to!int(result.num);
}

/* Equality comparison: Returns true if the fractions are
* equal.
*
* The equality comparison had to be defined for this type
* because the compiler-generated one would be comparing
* the members one-by-one, without regard to the actual
* values that the objects represent.
*
* For example, although the values of both Fraction(1,2)
* and Fraction(2,4) are 0.5, the compiler-generated
* opEquals would decide that they were not equal on
* account of having members of different values.
*/

bool opEquals(const ref Fraction rhs) const
{

/* Checking whether the return value of opCmp is zero
* is sufficient here. */

return opCmp(rhs) == 0;
}

}

unittest
{

/* Must throw when denominator is zero. */
assertThrown(Fraction(42, 0));

/* Let's start with 1⁄3. */
auto a = Fraction(1, 3);

/* -1⁄3 */
assert(-a == Fraction(-1, 3));

/* 1⁄3 + 1 == 4⁄3 */
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++a;
assert(a == Fraction(4, 3));

/* 4⁄3 - 1 == 1⁄3 */
--a;
assert(a == Fraction(1, 3));

/* 1⁄3 + 2⁄3 == 3⁄3 */
a += Fraction(2, 3);
assert(a == Fraction(1));

/* 3⁄3 - 2⁄3 == 1⁄3 */
a -= Fraction(2, 3);
assert(a == Fraction(1, 3));

/* 1⁄3 * 8 == 8⁄3 */
a *= Fraction(8);
assert(a == Fraction(8, 3));

/* 8⁄3 / 16⁄9 == 3⁄2 */
a /= Fraction(16, 9);
assert(a == Fraction(3, 2));

/* Must produce the equivalent value in type 'double'.
*
* Note that although double cannot represent every value
* precisely, 1.5 is an exception. That is why this test
* is being applied at this point. */

assert(to!double(a) == 1.5);

/* 1.5 + 2.5 == 4 */
assert(a + Fraction(5, 2) == Fraction(4, 1));

/* 1.5 - 0.75 == 0.75 */
assert(a - Fraction(3, 4) == Fraction(3, 4));

/* 1.5 * 10 == 15 */
assert(a * Fraction(10) == Fraction(15, 1));

/* 1.5 / 4 == 3⁄8 */
assert(a / Fraction(4) == Fraction(3, 8));

/* Must throw when dividing by zero. */
assertThrown(Fraction(42, 1) / Fraction(0));

/* The one with lower numerator is before. */
assert(Fraction(3, 5) < Fraction(4, 5));

/* The one with larger denominator is before. */
assert(Fraction(3, 9) < Fraction(3, 8));
assert(Fraction(1, 1_000) > Fraction(1, 10_000));

/* The one with lower value is before. */
assert(Fraction(10, 100) < Fraction(1, 2));

/* The one with negative value is before. */
assert(Fraction(-1, 2) < Fraction(0));
assert(Fraction(1, -2) < Fraction(0));

/* The ones with equal values must be both <= and >=.  */
assert(Fraction(-1, -2) <= Fraction(1, 2));
assert(Fraction(1, 2) <= Fraction(-1, -2));
assert(Fraction(3, 7) <= Fraction(9, 21));
assert(Fraction(3, 7) >= Fraction(9, 21));

/* The ones with equal values must be equal. */
assert(Fraction(1, 3) == Fraction(20, 60));

/* The ones with equal values with sign must be equal. */
assert(Fraction(-1, 2) == Fraction(1, -2));
assert(Fraction(1, 2) == Fraction(-1, -2));

}
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void main()
{}

As has been mentioned in the chapter, string mixins can be used to
combine the definitions of some of the operators. For example, the
following definition covers the four arithmetic operators:

/* Binary arithmetic operators. */
Fraction opBinary(string op)(in Fraction rhs) const

if ((op == "+") || (op == "-") ||
(op == "*") || (op == "/"))

{
/* Takes a copy of this fraction and applies the
* right-hand side fraction to that copy. */
Fraction result = this;
mixin ("result " ~ op ~ "= rhs;");
return result;

}

Inheritance (page 342)

1. The member functions that are declared as abstract by superclasses
must be defined by the override keyword by subclasses.

Ignoring the Train class for this exercise, Locomotive.makeSound
and RailwayCar.makeSound can be implemented as in the following
program:

import std.stdio;
import std.exception;

class RailwayVehicle
{

void advance(in size_t kilometers)
{

writefln("The vehicle is advancing %s kilometers",
kilometers);

foreach (i; 0 .. kilometers / 100) {
writefln("  %s", makeSound());

}
}

abstract string makeSound();
}

class Locomotive : RailwayVehicle
{

override string makeSound()
{

return "choo choo";
}

}

class RailwayCar : RailwayVehicle
{

// ...

override string makeSound()
{

return "clack clack";
}

}

class PassengerCar : RailwayCar
{
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// ...
}

class FreightCar : RailwayCar
{

// ...
}

void main()
{

auto railwayCar1 = new PassengerCar;
railwayCar1.advance(100);

auto railwayCar2 = new FreightCar;
railwayCar2.advance(200);

auto locomotive = new Locomotive;
locomotive.advance(300);

}

2. The following program uses the sounds of the components of Train to
make the sound of Train itself:

import std.stdio;
import std.exception;

class RailwayVehicle
{

void advance(in size_t kilometers)
{

writefln("The vehicle is advancing %s kilometers",
kilometers);

foreach (i; 0 .. kilometers / 100) {
writefln("  %s", makeSound());

}
}

abstract string makeSound();
}

class Locomotive : RailwayVehicle
{

override string makeSound()
{

return "choo choo";
}

}

class RailwayCar : RailwayVehicle
{

abstract void load();
abstract void unload();

override string makeSound()
{

return "clack clack";
}

}

class PassengerCar : RailwayCar
{

override void load()
{

writeln("The passengers are getting on");
}

override void unload()
{

writeln("The passengers are getting off");
}
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}

class FreightCar : RailwayCar
{

override void load()
{

writeln("The crates are being loaded");
}

override void unload()
{

writeln("The crates are being unloaded");
}

}

class Train : RailwayVehicle
{

Locomotive locomotive;
RailwayCar[] cars;

this(Locomotive locomotive)
{

enforce(locomotive !is null,
"Locomotive cannot be null");

this.locomotive = locomotive;
}

void addCar(RailwayCar[] cars...)
{

this.cars ~= cars;
}

override string makeSound()
{

string result = locomotive.makeSound();

foreach (car; cars) {
result ~= ", " ~ car.makeSound();

}

return result;
}

void departStation(string station)
{

foreach (car; cars) {
car.load();

}

writefln("Departing from %s station", station);
}

void arriveStation(string station)
{

writefln("Arriving at %s station", station);

foreach (car; cars) {
car.unload();

}
}

}

void main()
{

auto locomotive = new Locomotive;
auto train = new Train(locomotive);

train.addCar(new PassengerCar, new FreightCar);

train.departStation("Ankara");
train.advance(500);
train.arriveStation("Haydarpaşa");

}
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The output:

The passengers are getting on
The crates are being loaded
Departing from Ankara station
The vehicle is advancing 500 kilometers

choo choo, clack clack, clack clack
choo choo, clack clack, clack clack
choo choo, clack clack, clack clack
choo choo, clack clack, clack clack
choo choo, clack clack, clack clack

Arriving at Haydarpaşa station
The passengers are getting off
The crates are being unloaded

Object (page 356)

1. For the equality comparison, rhs being non-null and the members
being equal would be sufficient:

enum Color { blue, green, red }

class Point
{

int x;
int y;
Color color;

// ...

override bool opEquals(Object o) const
{

const rhs = cast(const Point)o;

return rhs && (x == rhs.x) && (y == rhs.y);
}

}

2. When the type of the right-hand side object is also Point, they are
compared according to the values of the x members first and then
according to the values of the y members:

class Point
{

int x;
int y;
Color color;

// ...

override int opCmp(Object o) const
{

const rhs = cast(const Point)o;
enforce(rhs);

return (x != rhs.x
? x - rhs.x
: y - rhs.y);

}
}

3. Note that it is not possible to cast to type const TriangularArea inside
opCmp below. When rhs is const TriangularArea, then its member
rhs.points would be const as well. Since the parameter of opCmp is
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non-const, it would not be possible to pass rhs.points[i] to
point.opCmp.

class TriangularArea
{

Point[3] points;

this(Point one, Point two, Point three)
{

points = [ one, two, three ];
}

override bool opEquals(Object o) const
{

const rhs = cast(const TriangularArea)o;
return rhs && (points == rhs.points);

}

override int opCmp(Object o) const
{

auto rhs = cast(TriangularArea)o;
enforce(rhs);

foreach (i, point; points) {
immutable comparison = point.opCmp(rhs.points[i]);

if (comparison != 0) {
/* The sort order has already been
* determined. Simply return the result. */

return comparison;
}

}

/* The objects are considered equal because all of
* their points have been equal. */

return 0;
}

override size_t toHash() const
{

/* Since the 'points' member is an array, we can take
* advantage of the existing toHash algorithm for
* array types. */

return typeid(points).getHash(&points);
}

}

Pointers (page 437)

1. When parameters are value types like int, the arguments are copied to
functions. The preferred way of defining reference parameters is to
specify them as ref.

Another way is to define the parameters as pointers that point at the
actual variables. The parts of the program that have been changed are
highlighted:

void swap(int * lhs, int * rhs)
{

int temp = *lhs;
*lhs = *rhs;
*rhs = temp;

}

void main()
{

int i = 1;
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int j = 2;

swap(&i, &j);

assert(i == 2);
assert(j == 1);

}

The checks at the end of the program now pass.
2. Node and List have been written to work only with the int type. We

can convert these types to struct templates by adding (T) after their
names and replacing appropriate ints in their definitions by Ts:

struct Node(T)
{

T element;
Node * next;

string toString() const
{

string result = to!string(element);

if (next) {
result ~= " -> " ~ to!string(*next);

}

return result;
}

}

struct List(T)
{

Node!T * head;

void insertAtHead(T element)
{

head = new Node!T(element, head);
}

string toString() const
{

return format("(%s)", head ? to!string(*head) : "");
}

}

List can now be used with any type:

import std.stdio;
import std.conv;
import std.string;

// ...

struct Point
{

double x;
double y;

string toString() const
{

return format("(%s,%s)", x, y);
}

}

void main()
{

List!Point points;

points.insertAtHead(Point(1.1, 2.2));
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points.insertAtHead(Point(3.3, 4.4));
points.insertAtHead(Point(5.5, 6.6));

writeln(points);
}

The output:

((5.5,6.6) -> (3.3,4.4) -> (1.1,2.2))

3. In this case we need another pointer to point at the last node of the list.
The new code is necessarily more complex in order to manage the new
variable as well:

struct List(T)
{

Node!T * head;
Node!T * tail;

void append(T element)
{

/* Since there is no node after the last one, we set
* the new node's next pointer to 'null'. */

auto newNode = new Node!T(element, null);

if (!head) {
/* The list has been empty. The new node becomes
* the head. */

head = newNode;
}

if (tail) {
/* We place this node after the current tail. */
tail.next = newNode;

}

/* The new node becomes the new tail. */
tail = newNode;

}

void insertAtHead(T element)
{

auto newNode = new Node!T(element, head);

/* The new node becomes the new head. */
head = newNode;

if (!tail) {
/* The list has been empty. The new node becomes
* the tail. */

tail = newNode;
}

}

string toString() const
{

return format("(%s)", head ? to!string(*head) : "");
}

}

The new implementation of insertAtHead() can actually be shorter:

void insertAtHead(T element)
{

head = new Node!T(element, head);

if (!tail) {
tail = head;
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}
}

The following program uses the new List to insert Point objects with
odd values at the head and Point objects with even values at the end.

void main()
{

List!Point points;

foreach (i; 1 .. 7) {
if (i % 2) {

points.insertAtHead(Point(i, i));

} else {
points.append(Point(i, i));

}
}

writeln(points);
}

The output:

((5,5) -> (3,3) -> (1,1) -> (2,2) -> (4,4) -> (6,6))

Bit Operations (page 459)

1. It may be acceptable to use magic constants in such a short function.
Otherwise, the code may get too complicated.

string dotted(uint address)
{

return format("%s.%s.%s.%s",
(address >> 24) & 0xff,
(address >> 16) & 0xff,
(address >>  8) & 0xff,
(address >>  0) & 0xff);

}

Because the type is an unsigned type, the bits that are inserted into the
value from the left-hand side will all have 0 values. For that reason, there
is no need to mask the value that is shifted by 24 bits. Additionally, since
shifting by 0 bits has no effect, that operation can be eliminated as well:

string dotted(uint address)
{

return format("%s.%s.%s.%s",
address >> 24,

(address >> 16) & 0xff,
(address >>  8) & 0xff,
address        & 0xff);

}

2. Each octet can be shifted to its proper position in the IPv4 address and
then these expressions can be "or'red":

uint ipAddress(ubyte octet3, // most significant octet
ubyte octet2,
ubyte octet1,
ubyte octet0) // least significant octet

{
return
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(octet3 << 24) |
(octet2 << 16) |
(octet1 <<  8) |
(octet0 <<  0);

}

3. The following method starts with a value where all of the bits are 1. First,
the value is shifted to the right so that the upper bits become 0, and then
it is shifted to the left so that the lower bits become 0:

uint mask(int lowestBit, int width)
{

uint result = uint.max;
result >>= (uint.sizeof * 8) - width;
result <<= lowestBit;
return result;

}

uint.max is the value where all of the bits are 1. Alternatively, the
calculation can start with the value that is the complement of 0, which is
the same as uint.max:

uint result = ~0;
// ...

foreach with Structs and Classes (page 504)

1. The step size must be stored alongside begin and end, and the element
value must be increased by that step size:

struct NumberRange
{

int begin;
int end;
int stepSize;

int opApply(int delegate(ref int) dg) const
{

int result;

for (int number = begin; number != end; number += stepSize) {
result = dg(number);

if (result) {
break;

}
}

return result;
}

}

import std.stdio;

void main()
{

foreach (element; NumberRange(0, 10, 2)) {
write(element, ' ');

}
}

2.

import std.stdio;
import std.string;

Exercise Solutions

734



class Student
{

string name;
int id;

this(string name, int id)
{

this.name = name;
this.id = id;

}

override string toString()
{

return format("%s(%s)", name, id);
}

}

class Teacher
{

string name;
string subject;

this(string name, string subject)
{

this.name = name;
this.subject = subject;

}

override string toString()
{

return format("%s teacher %s", subject, name);
}

}

class School
{
private:

Student[] students;
Teacher[] teachers;

public:

this(Student[] students, Teacher[] teachers)
{

this.students = students;
this.teachers = teachers;

}

/* This opApply override will be called when the foreach
* variable is a Student. */

int opApply(int delegate(ref Student) dg)
{

int result;

foreach (student; students) {
result = dg(student);

if (result) {
break;

}
}

return result;
}

/* Similarly, this opApply will be called when the foreach
* variable is a Teacher. */

int opApply(int delegate(ref Teacher) dg)
{

int result;
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foreach (teacher; teachers) {
result = dg(teacher);

if (result) {
break;

}
}

return result;
}

}

void printIndented(T)(T value)
{

writeln("  ", value);
}

void main()
{

auto school = new School(
[ new Student("Can", 1),

new Student("Canan", 10),
new Student("Cem", 42),
new Student("Cemile", 100) ],

[ new Teacher("Nazmiye", "Math"),
new Teacher("Makbule", "Literature") ]);

writeln("Student loop");
foreach (Student student; school) {

printIndented(student);
}

writeln("Teacher loop");
foreach (Teacher teacher; school) {

printIndented(teacher);
}

}

The output:

Student loop
Can(1)
Canan(10)
Cem(42)
Cemile(100)

Teacher loop
Math teacher Nazmiye
Literature teacher Makbule

As you can see, the implementations of both of the opApply() overrides
are exactly the same, except the slice that they iterate on. To reduce code
duplication, the common functionality can be moved to an
implementation function template, which then gets called by the two
opApply() overrides:

class School
{
// ...

int opApplyImpl(T)(T[] slice, int delegate(ref T) dg)
{

int result;

foreach (element; slice) {
result = dg(element);

if (result) {
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break;
}

}

return result;
}

int opApply(int delegate(ref Student) dg)
{

return opApplyImpl(students, dg);
}

int opApply(int delegate(ref Teacher) dg)
{

return opApplyImpl(teachers, dg);
}

}
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