

Git Apprentice
Chris Belanger

Copyright ©2020 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Git Apprentice

raywenderlich.com 2

Dedications
“For Russ and Skip.”

— Chris Belanger

Git Apprentice

raywenderlich.com 3

About the Author
Chris Belanger is an author of this book. He is the Editor-in-Chief
of raywenderlich.com. If there are words to wrangle or a paragraph
to ponder, he‘s on the case. In the programming world, Chris has
over 25 years of experience with multiple database platforms, real-
time industrial control systems, and enterprise healthcare
information systems. When he kicks back, you can usually find
Chris with guitar in hand, looking for the nearest beach, or
exploring the lakes and rivers in his part of the world in a canoe.

About the Editors
Bhagat Singh is a tech editor for this book. Bhagat started iOS
Development after the release of Swift, and has been fascinated by
it ever since. He likes to work on making apps more usable by
building great user experiences and interactions in his
applications. He also is a contributor in the Raywenderlich tutorial
team. When the laptop lid shuts down, you can find him chilling
with his friends and finding new places to eat. He dedicates all his
success to his mother. You can find Bhagat on Twitter:
@soulful_swift

Cesare Rocchi is a tech editor of this book. Cesare runs Studio
Magnolia, an interactive studio that creates compelling web and
mobile applications. He blogs at upbeat.it, and he’s also building
Podrover and Affiliator You can find him on Twitter at
@_funkyboy.

Manda Frederick is an editor of this book. She has been involved
in publishing for over ten years through various creative,
educational, medical and technical print and digital publications,
and is thrilled to bring her experience to the raywenderlich.com
family as Managing Editor. In her free time, you can find her at the
climbing gym, backpacking in the backcountry, working on poems,
playing guitar and exploring breweries.

Git Apprentice

raywenderlich.com 4

Sandra Grauschopf is an editor of this book. Sandra has over 20
years’ experience as a writer, editor, copy editor, and content
manager and has been editing tutorials at raywenderlich.com since
2018. She loves to travel and explore new places, always with a
trusty book close at hand.

Aaron Douglas is the final pass editor for this book. He was that
kid taking apart the mechanical and electrical appliances at five
years of age to see how they worked. He never grew out of that core
interest - to know how things work. He took an early interest in
computer programming, figuring out how to get past security to be
able to play games on his dad’s computer. He’s still that feisty nerd,
but at least now he gets paid to do it. Aaron works for Automattic
(WordPress.com, WooCommerce, Tumblr, SimpleNote) as a Mobile
Lead primarily on the WooCommerce mobile apps. Find Aaron on
Twitter as @astralbodies or at his blog at https://aaron.blog.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Git Apprentice

raywenderlich.com 5

Table of Contents: Overview
Book License 11...

Before You Begin 12..

What You Need 13..

Book Source Code & Forums 14...

About the Cover 15..

Introduction 17..

Section I: Beginning Git 20..

Chapter 1: A Crash Course in Git 21...

Chapter 2: Cloning a Repo 34..

Chapter 3: Committing Your Changes 43...............................

Chapter 4: The Staging Area 63..

Chapter 5: Ignoring Files in Git 76...

Chapter 6: Git Log & History 84..

Chapter 7: Branching 99..

Chapter 8: Merging 110...

Chapter 9: Syncing With a Remote 124...................................

Chapter 10: Creating a Repository 139...................................

Conclusion 153..

Section II: Appendices 154..

Appendix A: Installing & Configuring Git 155.......................

Git Apprentice

raywenderlich.com 6

Table of Contents: Extended
Book License 11.

Before You Begin 12.

What You Need 13.

Book Source Code & Forums 14.

About the Cover 15.

Introduction 17.
Enter the video courses 18.

How to read this book 18.

Section I: Beginning Git 20.

Chapter 1: A Crash Course in Git 21.
What are remote repositories? 22.

Forking the remote repository 22.

Cloning the repository 25.

Creating a branch 26.

Making and staging changes 28.

Committing changes 29.

Pushing your changes 30.

Creating a pull request 31.

Chapter 2: Cloning a Repo 34.
What is cloning? 35.

Using GitHub 35.

Forking 40.

Challenge 41.

Key points 42.

Where to go from here? 42.

Git Apprentice

raywenderlich.com 7

Chapter 3: Committing Your Changes 43.
What is a commit? 44.

Working trees and staging areas 47.

Committing your changes 53.

Adding directories 54.

Looking at git log 59.

Challenge 61.

Key points 62.

Where to go from here? 62.

Chapter 4: The Staging Area 63.
Why staging exists 64.

Undoing staged changes 66.

Moving files in Git 69.

Deleting files in Git 72.

Challenge 74.

Key points 75.

Where to go from here? 75.

Chapter 5: Ignoring Files in Git 76.
Introducing .gitignore 77.

Getting started 77.

Nesting .gitignore files 79.

Looking at the global .gitignore 81.

Finding sample .gitignore files 82.

Challenge 82.

Key points 83.

Where to go from here? 83.

Chapter 6: Git Log & History 84.
Viewing Git history 85.

Vanilla git log 85.

Limiting results 86.

Git Apprentice

raywenderlich.com 8

Graphical views of your repository 88.

Viewing non-ancestral history 90.

Using Git shortlog 90.

Searching Git history 92.

Challenges 95.

Key points 97.

Where to go from here? 98.

Chapter 7: Branching 99.
What is a commit? 100.

What is a branch? 101.

Creating a branch 102.

How Git tracks branches 102.

Checking your current branch 103.

Switching to another branch 103.

Viewing local and remote branches 105.

Explaining origin 105.

Viewing branches graphically 106.

A shortcut for branch creation 107.

Challenge 108.

Key points 109.

Where to go from here? 109.

Chapter 8: Merging 110.
A look at your branches 111.

Three-way merges 113.

Merging a branch 115.

Fast-forward merge 118.

Forcing merge commits 120.

Challenge 122.

Key points 123.

Where to go from here? 123.

Git Apprentice

raywenderlich.com 9

Chapter 9: Syncing With a Remote 124.
Pushing your changes 125.

Pulling changes 127.

Dealing with multiple remotes 133.

Key points 138.

Where to go from here? 138.

Chapter 10: Creating a Repository 139.
Getting started 140.

Creating a LICENSE file 141.

Creating a README file 143.

Creating and syncing a remote 146.

Key points 151.

Where to go from here? 152.

Conclusion 153.

Section II: Appendices 154.

Appendix A: Installing & Configuring Git 155.
Installing on Windows 155.

Installing on macOS 158.

Configuring credentials 160.

Setting your username and email 160.

Persisting your password 160.

Git Apprentice

raywenderlich.com 10

LBook License

By purchasing Git Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in Git Apprentice in as many
apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Git Apprentice in as many apps as you want, but must include this attribution
line somewhere inside your app: “Artwork/images/designs: from Git Apprentice,
available at www.raywenderlich.com”.

• The source code included in Git Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in Git Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 11

Before You Begin

This section tells you a few things you need to know before you get started, such as
what you’ll need for hardware and software, where to find the project files for this
book, and more.

raywenderlich.com 12

iWhat You Need

To follow along with this book, you’ll need the following:

• Git 2.28 or later. Git is the software package you’ll use for all the work in this
book. There are installers for macOS, Windows and Linux available for free from
the official Git page here: https://git-scm.com/downloads. We’ve tested this book
on Git 2.28.0, but you can follow along with older versions of Git as well.

raywenderlich.com 13

iiBook Source Code &
Forums

Book source code
The materials for this book are all available in the GitHub repository here:

• https://github.com/raywenderlich/gita-materials/tree/editions/1.0

You can download the entire set of materials for the book from that page.

Forum
We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/git-apprentice. This is a great place to ask
questions about the book or to submit any errors you may find.

raywenderlich.com 14

iiiAbout the Cover

Git Apprentice

While not the most elegant or agile creature, the flightless penguin should not be
underestimated. Very few other animals can boast the wide adaptability of these
birds. Found in both global hemispheres, penguins are both animals of the land and
the sea, spending half of their lives on each.

In water, they are independent, graceful swimmers and formidable hunters, feeding
on fish, squid and other sea life as they swim and dive — sometimes up to depths of
over 500 meters for up to 22 minutes at a time. On land — well, we know about
penguins on land. Their colonies are a comical flurry of waddling, rock-hopping and
belly sliding — but they are also social, gentle and maternal.

raywenderlich.com 15

Like penguins, Git thrives in multiple environments and is incredibly adaptable, and
its utility should not be underestimated. Though Git seems unassuming at first
glance, not many other tools will allow you to leverage your work in so many
environments, both independently and socially. And like these resilient birds who
manage to slip and tumble, getting back up each time, Git will allow you to work
knowing any mistake can be corrected. The key is just to keep waddling along.

It should also be noted that both penguins and the authors of this book look great
dressed in tuxedos.

Git Apprentice About the Cover

raywenderlich.com 16

ivIntroduction

There are usually two reasons a person picks up a book about Git: one, they are
unusually curious about how the software works at a deeper level; or two, they’re
frustrated and need something to solve their problems now.

Whatever situation brought you here, welcome! I’m happy to have you onboard. I
came to write this book for both of the above reasons. I am a tinkerer and hacker by
nature, and I love going deep into the internals of software to see what makes them
tick. But I, like you, found Git at first to be an inscrutable piece of software. My brain,
which had been trained in software development through the late 1990s, found
version control packages like SVN soothing, with their familiar client-server
architecture, Windows shell integration, and rather straightforward, albeit heavy,
processes.

When I came to use Git and GitHub about seven years ago, I found it inscrutable at
best; it seemed no matter which way I turned, Git was telling me I had a merge
conflict, or it was merging changes from the master branch into my current branch,
or quite often complaining about unstaged changes. And why was it called a “pull
request”, when clearly I was trying to push my changes into the master branch?

Little by little, I learned more about how Git worked; how to solve some of the
common issues I encountered, and I eventually got to a point where I felt
comfortable using it on a daily basis.

raywenderlich.com 17

Enter the video courses
In early 2017, my colleague Sam Davies created a conference talk, titled “Mastering
Git”, and from that, two video courses at raywenderlich.com: “Beginning Git” and
“Mastering Git”. Those two courses form the basis of this book, but it always nagged
me a little that, while Sam’s video version of the material was quite pragmatic and
tied nicely into using both the command line and graphical tools to solve common
Git workflow problems, I always felt like there was a bit of detail missing; the kind of
information that would lead a curious mind to say “I see the how, but I really want to
know more about the why.”

This book gives a little more background on the why: or, in other words, “Why the
%^&$ did you do that to my repository, Git?!” Underneath the hood, you’ll find that
Git has a rather simple and elegant architecture, which is why it scales so well to the
kinds of globally distributed projects that use Git as their version control software,
via GitHub, GitLab, Bitbucket, or other cloud repository management solutions.

And while GUI-based Git frontends like Tower or GitHub Desktop are great at
minimizing effort, they abstract you away from the actual guts of Git. That’s why this
book takes a command-line-first approach, so that you’ll gain a better understanding
of the various actions that Git takes to manage your repositories — and more
importantly, you’ll gain a better understanding of how to fix things when Git does
things that don’t seem to make much sense.

How to read this book
This book covers Beginning Git. If you are still struggling to figure out the
difference between a push and a commit, or you’re coming to Git from a different
version control system, start here. This section takes you through concepts such as
cloning, staging, committing, syncing, merging, viewing logs, and more. The very
first chapter is a crash course on using Git, where you’ll go through the basic Git
workflow to get a handle on the how before you move into the what and the why.

This book works with a small repository that houses a simple ToDo system based on
text files that hold ideas (both good and bad) ideas for content for the website. It’s an
ideal way to learn about Git without getting bogged down in a particular language or
framework.

The next book in our mastering Git series, Advanced Git, which we encourage you to
explore once you’ve completed this book, covers:

Git Apprentice Introduction

raywenderlich.com 18

Mastering Git
If you’ve been using Git for a while, you may choose to start in this section first. If
you know how to do basic staging, committing, merging and .gitignore operations,
then you’ll likely be able to jump right in here. This section walks you through
concepts such as merge conflicts, stashes, rebasing, rewriting history,
fixing .gitignore after the fact, and more.

If you’ve ever come up against a scenario where you feel you just need to delete your
local repository and clone things fresh, then this section is just what you need to
help you solve those sticky Git situations.

Workflows
This section takes a look at some common Git workflows, such as the feature branch
workflow, Gitflow, a basic forking workflow, and even a centralized workflow.
Because of the flexibility of Git, lots of teams have devised interesting workflows for
their teams that work for them — but this doesn’t mean that there’s a single right
way to manage your development.

Learning by doing
Above all, the best advice I can give is to work with Git: find ways to use it in your
daily workflows, find ways to contribute to open-source projects that use Git to
manage their repositories, and don’t be afraid to try some of the more esoteric Git
commands to accomplish something. There’s little chance you’ll screw anything up
beyond repair, and most developers learn best when they inadvertently back
themselves into a technical rabbit-hole — then figure out how to dig themselves out.

A note on master vs. main
At the time that this book went to press, GitHub (and potentially other hosts) were
proposing changing the name of the default repository branch to main, instead of
master, in an attempt to use more culturally-aware language. So if you’re working
through this book and realize that some repos use main as the central reference
branch, don’t worry — simply use main in place of master where you need to in these
commands. If the point comes when there seems to be a consensus on main vs
master in the Git community, we’ll modify the book to match.

I wish you all the best in your Git adventures. Time to Git going! — Chris Belanger

Git Apprentice Introduction

raywenderlich.com 19

Section I: Beginning Git

This section is intended to get newcomers familiar with Git. It will introduce the
basic concepts that are central to Git, how Git differs from other version control
systems, and the basic operations of Git like committing, merging, and pulling.

You may discover things in this section you didn’t quite understand about Git, even
if you’ve used Git for a long time.

raywenderlich.com 20

1Chapter 1: A Crash Course
in Git

It can be a bit challenging to get started with command-line Git if you haven’t done
much work on the command line before. Since you’ll be interacting with Git through
the command line throughout this book, this chapter will take you through a quick
crash course on how to do it.

There’s a common workflow that serves as the foundation of most interactions you’ll
have with Git:

• Create a fork of an existing repository.

• Copy a remote repository to your own computer.

• Create a separate working area in the repository where you can make changes
without affecting anyone else.

• Flag those changes to be saved to the local copy of the repository.

• Save those changes in your local copy of the repository.

• Synchronize those changes with the remote repository.

• Optionally, notify the repository owner that your changes are ready to be
reviewed.

This chapter will take you through all the above actions to help you get familiar with
the basics of working with Git through the command line.

Although this chapter won’t explain everything in detail, it will give you enough
familiarity with a Git repository and the basic Git workflow to better understand the
chapters to come.

raywenderlich.com 21

What are remote repositories?
A remote repository is simply a collection of all the files of a project, hosted
somewhere other than your local machine. They could be hosted internally on your
network, but more often, you’ll work with remote repositories hosted on cloud
services like GitHub and GitLab.

Having a centralized remote repository makes sharing and contributing to a project
easy. Instead of sending files to interested people, you simply point them to the
hosted remote repository to get them up and running as quickly as possible.

The first step is to create your own personal online copy, or fork, of the remote
repository. That gives you a place to work online and lets you follow the instructions
in this chapter without affecting any of the millions of other people reading this
book and following along themselves.

Forking the remote repository
Navigate to the following URL in a browser:

• https://github.com/raywenderlich/programmer-jokes

You’ll see a screen like the following:

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 22

This is the main GitHub page for the project you’ll use in this book. You’ll cover all
the details about GitHub later.

Ensure you’re logged in with your own GitHub username, then click the Fork button
in the top right-hand corner of the page:

Note: If you belong to more than one organization on GitHub, you’ll likely see
a dialog similar to the one below, asking you where to fork the programmer-
jokes repository:

In this case, GitHub isn’t really asking you where to fork to physically; it’s
asking under which account you want to create the fork. Choose your own
username.

You’ll see a progress screen while GitHub creates your repository fork under your
account. When GitHub’s done creating that fork, you’ll see another screen that looks
a lot like the original page, except that now you’re working from a different location:

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 23

And that’s just what you want. This is an exact replica of the original programmer-
jokes repository, except this copy lives under your own account. That means you can
do anything you like to this repository, even delete it, without affecting the original
repository that lives under the raywenderlich organization.

To get started, you’ll need to copy, or clone, this remote repository to your local
workstation. To do that, you’ll need the remote URL of this repository. It’s easy to get
— simply click the Code button on the page, then click the small clipboard icon next
to the https://github.com/username... URL in the dialog:

You now have the remote URL of this repository in your clipboard.

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 24

You’re done with this webpage for a bit — you’re now ready to start working with Git
on the command line.

Open Terminal, PowerShell or the appropriate console prompt on your system and
get ready to follow along.

Cloning the repository
At the command prompt, type the following command without pressing the Enter
key:

git clone

After that, press the spacebar to insert a space character. Then paste what’s in your
clipboard to the command line using Command-V or Control-V, depending on what
the Paste command is on your operating system.

You should have something similar to the following in your command prompt:

git clone https://github.com/<your-username>/programmer-
jokes.git

Now, to break that down a little:

• git is the name of the command-line Git tool. Every interaction you have with Git
on the command line will start with git and be followed by the Git command you
want to execute.

• clone is the name of the command you want to execute. clone tells Git to copy a
specific named repository to your local machine.

• https://github.com/<your-username>/programmer-jokes is the full URL to
the repository you want to clone. Breaking that down further, https://
github.com is the cloud service that hosts the repository, <your-username> is the
owner of the fork of this repository, and programmer-jokes is the name of the
repository you want to clone.

Press Enter or Return to execute that command. Git gives you a bit of output on the
command line to tell you what it’s done:

Cloning into 'programmer-jokes'...
remote: Enumerating objects: 7, done.
remote: Total 7 (delta 0), reused 0 (delta 0), pack-reused 7
Unpacking objects: 100% (7/7), 2.13 KiB | 311.00 KiB/s, done.

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 25

The details of that output aren’t important, but do take a look at that first line:

Cloning into 'programmer-jokes'...

Git’s telling you that it’s cloning the remote repository into a new directory it’s
created: programmer-jokes.

Navigate into that directory from the command line with the following command:

cd programmer-jokes

Next, execute the following to get a list of the files in that directory in long format —
just because it’s easier to read:

ls -l

You’ll see output similar to the following:

-rw-r--r-- 1 chrisbelanger staff 1070 29 May 11:25 LICENSE
-rw-r--r-- 1 chrisbelanger staff 370 29 May 11:25 README.md

There are two files in this repository: LICENSE, which has some boring legal
information about the contents of the repository, and README.MD, which is a
simple text file that contains some groan-worthy programming jokes.

Now that you have the repository cloned to your local machine, the next step is to
create a separate working space, or branch, where you can change the contents of
README.md without fear of messing up the original contents of the repository.

Creating a branch
Branches are, conceptually, copies of the original contents of the repository. You can
work in a branch without affecting the original contents of the repository until you
are ready to merge all your work back together again.

If you’ve ever made a copy of an important document before you started editing it,
the concept of branching is exactly the same.

At the command line, execute the following to create a new branch:

git branch my-joke

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 26

Breaking this down:

• git, again, is the name of the command-line tool.

• branch is the name of the command you want Git to execute.

• my-joke is the name of the branch you want to create. The name you give to a
branch isn’t important, but you generally want to give it a descriptive name, just
as you would when creating new folders on your desktop.

You can see that Git’s created a new branch by executing the following command:

git branch

This looks similar to the command above, but in this case, you haven’t supplied a
branch name. Git understands this to mean, “Oh, you don’t want to create a branch,
you just want to look at all the branches I know about.”

Git responds with the following output:

* master
 my-joke

master is the original copy of the repository, while my-joke is the branch you just
created. The asterisk * indicates which branch you’re currently working in. Right
now, you’re still on master, but that’s not what you want — you want to change to
my-joke so you don’t affect master.

To switch to the my-joke branch, execute the following:

git checkout my-joke

Ah, a new command: checkout. You might have expected a command like switch-
branch, but Git thinks of switching branches in terms of “checking out”. It’s similar
to how you check out a book at a library: That copy of the book is now exclusively
yours to work with until you return it to the library.

Git responds to the checkout command with the following:

Switched to branch 'my-joke'

If you’re the paranoid type, like me, you can confirm this with the command below:

git branch

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 27

Git puts your fears to rest with the following response:

 master
* my-joke

The asterisk tells you that you’re now working securely inside the my-joke branch,
and that your changes won’t affect the master copy of the repository.

Now, it’s time for you to add a stunning joke to README.md.

Making and staging changes
README.md is simply a text file. Open it in a text editor of your choice and you’ll
see it has the following contents:

programmer-jokes

In order to understand recursion you must first understand
recursion.

There are 10 kinds of people in this world: Those who understand
binary, and those who don't.

An SEO expert walked into a bar, pub, liquor store, brewery,
alcohol, beer, whiskey, vodka...

Why did the two functions stop calling each other? Because they
had constant arguments.

They’re hilarious, right!? Well, you can definitely improve upon them by adding your
own joke to this list.

Just in case you don’t have a handy stash of programmer jokes at your disposal, add
the following line to the text file:

Why couldn’t the confirmed bachelor use Git? Because he was
afraid to commit!

Save your changes and exit the text editor.

Git’s pretty smart, but it also knows not to assume too much. Just because you’ve
modified a file, Git isn’t going to assume that you want this in the repository.
Instead, it will wait for you to flag those changes to be made to the repository.

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 28

Execute the command below to flag the change you made to the file, remembering
that case is important:

git add README.md

The add command tells Git to add, or stage, the changes you’ve made to
README.md to the list of things to add to the repository. In this case, you only have
one change to one file, but in practice, you’ll usually have lots of changes to lots of
files.

Now that Git is aware that you want to make that change, you’ll need to commit it to
your local repository.

Committing changes
Git’s got your back here. It knows that sometimes you might add a change, but then
have second thoughts, or you might have other changes that you want to stage at the
same time. That’s why Git separates the act of staging files from the act of
committing those changes.

Committing is the act of saying, “Yes, I have these changes ready, and I want to
formally record those changes in my local copy of the repository.”

Not only does Git record those changes formally, it also allows you to provide a
commit message to give some context about the content of those changes to others
— or even to your future self.

Commit your changes now with the following command:

git commit -m "Adding my new joke"

That tells Git to formally record your current set of changes — although in this case,
you only have one change, which is the joke you added.

Git responds with output similar to the following:

[my-joke f8f8854] Adding my new joke
 1 file changed, 1 insertion(+)

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 29

That may look confusing, but there’s a lot of information in there:

• my-joke is the branch you’re committing your changes to.

• f8f8854 is the unique identifier for your commit, also known as the commit hash
of your changes. You use this identifier to uniquely reference this specific commit
in the future. Note, if you’re following along and typing commands as you read,
your hash will be different.

• Adding my new joke is the commit message you added above.

• 1 file changed, 1 insertion(+) provides some context about what was changed in
this commit: one file, with one line added.

You’ve formally recorded these changes in your local repository, but now you need to
get them synchronized, or pushed, back to the remote repository.

Pushing your changes
Most of Git’s actions are performed from the perspective of your local workstation.
So the action you’re taking is to push your local commit to the remote server.

Execute the following command to send your local changes to your forked remote
repository:

git push --set-upstream origin my-joke

That’s a little obtuse, for sure. Don’t be too concerned at this point; you’ll cover what
this means in future chapters. Essentially, here’s what the various pieces mean:

• push tells Git to put your local changes on the server.

• –set-upstream tells Git to form a tracking link for this branch between your local
repository and the remote repository.

• origin is a convention that references the remote repository.

• my-joke is the branch you want to push.

Git responds with a pile of output:

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 4 threads
Compressing objects: 100% (3/3), done.

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 30

Writing objects: 100% (3/3), 396 bytes | 396.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local
object.
remote:
remote: Create a pull request for 'my-joke' on GitHub by
visiting:
remote: https://github.com/<your-username>/programmer-
jokes/pull/new/my-joke
remote:
To https://github.com/<your-username>/programmer-jokes.git
 * [new branch] my-joke -> my-joke
Branch 'my-joke' set up to track remote branch 'my-joke' from
'origin'.

Note: You may be prompted by the command line to enter your GitHub
username and password. If so, then provide them and hit Enter or Return after
you do.

Git’s successfully pushed your changes to the remote repository, but there’s one
thing left to do: Signal to anyone else using this repository that you have something
you’d like to integrate, or pull, into the remote repository. You do that with a
mechanism called a pull request.

Creating a pull request
Return to your browser, and if you don’t already have it open, open the main GitHub
page for your forked repository at https://github.com/<your-username>/
programmer-jokes.

If you look really closely, You’ll notice that the page has changed a little, to reflect
the fact that your changes made it successfully to the remote repository:

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 31

You can see GitHub is telling you that there’s now two branches in this repo. Click on
that “2 branches” link, and you’ll see the following page, showing your new branch,
along with a “New pull request” button:

Click that button and you’ll be taken to another page, where you can enter some
details about your change. Enter Adds a real knee-slapper to the large text box to
give some extra detail about the changes contained in this pull request, then click
the Create pull request button:

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 32

GitHub takes you to yet another page, where you can see that your pull request is
now active, along with various information related to your pull request:

That’s as far as you need to go with this short crash course in Git. If you didn’t
understand quite everything that happened along the way, don’t worry! This chapter
was just to get you familiar with the basic fork → clone → branch → add → commit
→ push → pull request mechanism of Git.

The rest of the book will look at each of these steps in detail, along with much, much
more information about the more obscure commands in Git. You’ll also get a tour of
the internals of Git, which may help you understand a little better why Git does what
it does.

Head on to the next chapter, where you’ll start by looking at the clone command in
more depth. See you there!

Git Apprentice Chapter 1: A Crash Course in Git

raywenderlich.com 33

2Chapter 2: Cloning a Repo

The preceding chapter took you through a basic crash course in Git, and got you right
into using the basic mechanisms of Git: cloning a repo, creating branches, switching
to branches, committing your changes, pushing those changes back to the remote
and opening a pull request on GitHub for your changes to be reviewed.

That explains the how aspect of Git, but, if you’ve worked with Git for any length of
time (or haven’t worked with Git for any time at all), you’ll know that the how is not
enough. It’s important to also understand the why of Git to gain not just a better
understanding of what’s going on under the hood, but also to understand how to fix
things when, not if, your repository gets into a weird state.

So, first, you’ll start with the most basic aspect of Git: getting a repository copied to
your local system via cloning.

raywenderlich.com 34

What is cloning?
Cloning is exactly what it sounds like: creating a copy, or clone, of a repository. A Git
repository is nothing terribly special; it’s simply a directory, containing code, text or
other assets, that tracks its own history. Then there’s a bit of secure file transfer
magic in front of that directory that lets you sync up changes. That’s it.

A Git repository tracks the history of all changes inside the repository through a
hidden .git directory that you usually don’t ever have to bother with — it’s just there
to quietly track everything that happens inside the repository. You’ll learn more
about the structure and function of the hidden .git directory later on in this book.

So since a Git repository is just a special directory, you could, in theory, effect a
pretty cheap and dirty clone operation by zipping up all the files in a repository on
your friend’s or colleague’s workstation and then emailing it to yourself. When you
extract the contents of that zipped-up file, you’d have an exact copy of the
repository on your computer.

However, emailing things around can (and does) get messy. Instead, many
organizations make use of online repository hosts, such as GitHub, GitLab, BitBucket
or others. Some organizations even choose to self-host repositories, but that’s
outside the scope of this book. For now, you’ll stick to using online hosts — in this
example, GitHub.

Using GitHub
GitHub, at its most basic level, is really just a big cloud-based storage solution for
repositories, with account and access management mixed in with some collaboration
tools. But you don’t need to know about all the features of GitHub to start working
with repositories hosted on GitHub, as demonstrated in the Git crash course in the
previous chapter.

Cloning from an online repository is a rather straightforward operation. To get
started, you simply need the following things:

• A working installation of Git on your local system.

• The remote URL of the repository you want to clone.

• Any credentials for the online host.

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 35

Note: It is generally possible to clone repositories without using credentials,
but you won’t be able to propagate the changes you make on your local copy
back to the online host.

The GitHub repository homepage
There’s a repository already set up on GitHub for you to clone, so you first need to
get the remote URL of the repository.

To start, navigate to https://github.com/raywenderlich/ideas and log in with your
GitHub username and password. If you haven’t already set up an account, you can do
so now.

The main page for the ideas repository.

Once you’re on the homepage for the repository, have a look at the list of files and
directories listed on the page. These lists and directories represent the contents of
the repository, and they are the files that you’ll clone to your local system.

But where do you find the remote URL of the repository to clone it? Like many things
in Git (and with computers, in general), there are multiple ways to clone a repository.
In this chapter, you’ll use the easiest and most common cloning method, which
starts on the GitHub repository homepage.

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 36

Finding the repository clone URL
Look for and click on the Code button on the repository homepage.

The ’Clone or download’ button displays the various cloning options for a repository.

The little pop-up dialog gives you a few options to get a repository cloned to your
local system:

The cloning options for at GitHub repository.

1. This is the main HTTPS URL for the repository. This is the URL that you’ll use in
this chapter to clone from the command line git client.

2. You can also use SSH to clone a repository. Clicking this link lets you toggle
between using SSH and HTTPS to work with the repository.

3. If you have the GitHub Desktop app installed, you can use the Open in Desktop
button to launch GitHub Desktop and clone this repository all in one step.

4. If you just want a zipped copy of what’s in the repository (but not all the
repository bits itself), the Download ZIP button will let you do this.

For now, copy the HTTPS URL that you see in the dialog via the little clipboard icon
button to the right of the URL. This places a copy of the HTTPS URL in your
clipboard so that you can paste it into your command line later.

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 37

Cloning on the command line
Now, go to your command prompt. Change to a suitable directory where you want
your repositories to live. In this case, I’ll create a directory in my home directory
named GitApprentice where I would like to locally store all of the repos for this
book.

Execute the following command to create the new directory:

mkdir GitApprentice

Now, execute the following command to see the listing of files in the directory (yours
will be different than shown below):

ls

I see the following directories on my system, and there’s my new GitApprentice
directory:

~ $ ls
Applications Downloads Music
Dropbox Pictures Library
Public Desktop GitApprentice
Documents Movies

Execute the following command to navigate into the new directory:

cd GitApprentice

You’re now ready to use the command line to clone the repository.

Enter the following command, but don’t press the Enter key or Return key just yet:

git clone

Now, press the Space bar to add one space character and paste in the URL you
copied earlier, so your command looks as follows:

git clone https://github.com/raywenderlich/ideas.git

Now, you can press Enter to execute the command.

You’ll see a brief summary of what Git is doing below:

~/MasteringGit $ git clone https://github.com/raywenderlich/

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 38

ideas.git
Cloning into 'ideas'...
remote: Enumerating objects: 49, done.
remote: Total 49 (delta 0), reused 0 (delta 0), pack-reused 49
Unpacking objects: 100% (49/49), done.

Execute the ls command to see the new contents of your GitApprentice directory:

~/MasteringGit $ ls
ideas

Use the cd command, followed by the ls command, to navigate into the new ideas
directory and see what’s inside:

~/MasteringGit $ cd ideas
~/MasteringGit/ideas $ ls
LICENSE README.md articles books videos

So there’s the content from the repository. Well, the visible content at least. Run the
ls command again with the -a option to show the hidden .git directory discussed
earlier:

~/MasteringGit/ideas $ ls -a
. .git README.md books
.. LICENSE articles videos

Aha — there’s that magical .git hidden directory. Take a look at what’s inside.

Exploring the .git directory
Use the cd command to navigate into the .git directory:

cd .git

Execute the ls command again to see what dark magic lives inside this directory.
This time, use the -F option so that you can tell which entities are files and which
are directories:

ls -F

You’ll see the following:

~/GitApprentice/ideas/.git $ ls -F
HEAD config hooks/ info/ objects/
refs/
branches/ description index logs/ packed-refs

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 39

So it’s not quite the dark arts, I’ll admit. But what is here is a collection of important
files and directories that track and control all aspects of your local Git repository.
Most of this probably won’t make much sense to you at this point, and that’s fine. As
you progress through this book, you’ll learn what most of these bits and pieces do.

For now though, leave everything as-is; there’s seldom any reason to work at this
level of the repository. Pretty much everything you do should happen up in your
working directory, not in the .git subfolder.

So backtrack up one level to the the working directory for your repository with the cd
command:

cd ..

You’re now back up in the relative safety of the top level of your repository. For now,
it’s enough to know where that .git directory lives and that you really don’t have a
reason to deal with anything in there right now.

Forking
You’ve managed to make a clone of the ideas repository, but although ideas is a
public repository, the ideas repository currently belongs to the raywenderlich
organization. And since you’re not a member of the raywenderlich organization, the
access control settings of the ideas repository mean that you won’t be able to push
any local changes you make back to the server. Bummer.

But with most public repositories, like ideas, you can create a remote copy of the
repository up on the server under your own personal user space. You, or anyone you
grant access to, can then clone that copy locally, make changes and push those
changes back to the remote copy on the server. Creating a remote clone of a
repository is known as forking.

First, you’ll need to rid your machine of the existing local clone of the ideas
repository. It’s of little use to you in its current state, so it’s fine to get rid of it.

First, head up one level, out of your working directory, by executing the following
command:

cd ..

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 40

You should be back up at the main GitApprentice directory:

~/GitApprentice $

Now, get rid of the local clone with the rm command, and use the -rf options to
recursively delete all subdirectories and files, and to force all files to be deleted:

rm -rf ideas

Execute ls to be sure the directory is gone:

~/GitApprentice $ ls
~/GitApprentice $

Looks good. You’re ready to create a fork of the raywenderlich ideas repository…
which leads you to your challenge for this chapter!

Challenge

Challenge: Fork on GitHub and create a local
clone
The goal of this challenge is twofold:

1. Create a fork of the ideas repository under your own user account on GitHub.

2. Clone the forked repository to your local system.

Navigate to the homepage for the ideas repository at https://github.com/
raywenderlich/ideas. In the top right-hand corner of the page, you’ll see the Fork
button. That’s your starting point.

The ’Fork’ button lets you create a remote copy of a repository.

The steps to this challenge are:

1. Fork the ideas repository under your own personal user account.

2. Find the clone URL of your new, forked repository.

3. Clone the forked ideas repository to your local system.

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 41

4. Verify that the local clone created successfully.

5. Bonus: Prove that you’ve cloned the fork of your repo and not the original
repository.

If you get stuck, you can always find the solution to this challenge under this
chapter’s projects/challenge folder inside the materials you downloaded for this
book.

Key points
• Cloning creates a local copy of a remote Git repository.

• Use git clone along with the clone URL of a remote repository to create a local
copy of a repository.

• Cloning a repository automatically creates a hidden .git directory, which tracks the
activity on your local repository.

• Forking creates a remote copy of a repository under your personal user space.

Where to go from here?
Once you’ve successfully completed the challenge for this chapter, head into the
next chapter where you’ll learn about the status, diff, add and commit commands.
You’ll also learn just a bit about how Git actually tracks the changes that you make in
the local copy of your repository.

Git Apprentice Chapter 2: Cloning a Repo

raywenderlich.com 42

3Chapter 3: Committing
Your Changes

The previous chapter showed you how to clone remote repositories down to your
local system. At this point, you’re ready to start making changes to your repository.
That’s great!

But, clearly, just making the changes to your local files isn’t all you need to do. You’ll
need to stage the changes to your files, so that Git knows about the changes. Once
you’re done making your changes, you’ll need to tell Git that you want to commit
those changes into the repository.

raywenderlich.com 43

What is a commit?
As you’ve probably guessed by now, a Git repo is more than a collection of files;
there’s quite a bit going on beneath the surface to track the various states of your
changes and, even more importantly, what to do with those changes.

To start, head back to the homepage for your forked repository at https://
github.com/[your-username]/ideas, and find the little “11 commits” link at the top of
the repository page:

Note: If you didn’t complete the challenge for the last chapter, then go create
a fork of https://github.com/raywenderlich/ideas and clone it to your local
workstation.

Click that link, and you’ll see a bit of the history of this repository:

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 44

Each of those entries is a commit, which is essentially a snapshot of the particular
state of the set of files in the repository at a point in time.

Generally, a commit represents some logical update to your collection of files.
Imagine that you’re adding new items to your ideas lists, and you’ve added as many
as you can think of. You’d like to capture that bit of work as a commit into your
repository.

The state of the repository before you began those updates — your starting point, in
effect — is the parent commit. After you commit your changes — which is the diff —
that next commit would be the child commit. The diagram below explains this a
little more:

Example of two commits, the parent on the left, and the child on the right.

In this example, I’ve added new text to a file between commits. The parent commit is
the left-hand file, and the child commit is the right-hand file. The diff between them
are the changes I made to a single file:

The diff is the difference between the above two commits.

And a diff doesn’t just have to be additions to files; creating new content, modifying
content and deleting content are other common changes that you’ll make to the files
in your repository.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 45

In Git, there are a few steps between the act of changing a file and creating a commit.
This may seem like a bit of a heavy approach, at first, but, as you move through
building up your commits, you’ll see how each step helps create a workflow that
keeps you in tune with the files in your repository and what’s happened to them.

The easiest way to understand the process of building up commits is to actually
create one. You’ll create a change to a file, see how Git acknowledges that change,
how to stage that change, and, finally, how to commit that change to the repository.

Starting with a change
Open your terminal program and navigate to the ideas repository; in my case, I’ve
put it inside of the GitApprentice directory. This should be the clone of the forked
repository that you created in the previous chapter.

Note: If you missed completing the challenge at the end of the Chapter 2, go
back now and follow the challenge solution so that you have a local clone of
the forked ideas repository to work with.

Assume that you want to add more ideas to the books file. Open books/
book_ideas.md in any plaintext editor. I like to use nano since it’s quick and easy,
and I don’t need to remember any obscure commands to use it.

Add a line to the end of the file to capture a new book idea: “Care and feeding of
developers.” Take care to follow the same format as the other entries. Your file
should look like this:

Ideas for new book projects

- [] Hotubbing by tutorials
- [x] Advanced debugging and reverse engineering
- [] Animal husbandry by tutorials
- [] Beginning tree surgery
- [] CVS by tutorials
- [] Fortran for fun and profit
- [x] RxSwift by tutorials
- [] Mastering git
- [] Care and feeding of developers

When you’re done, save your work and return to your terminal program.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 46

In the background, Git is watching what you’re doing. Don’t believe me? Execute the
following command to see that Git knows what you’ve done, here:

git status

git status shows you the current state of your working tree — that is, the
collection of files in your directory that you’re working on. In your case, the working
tree is everything inside your ideas directory.

You should see the following output:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: books/book_ideas.md

no changes added to commit (use "git add" and/or "git commit
-a")

Ah, there’s the file you just changed: books/book_ideas.md. Git knows that you’ve
modified it… but what does it mean when Git says, Changes not staged for
commit?

It’s time for a short diversion to look at the various states of your files in Git.
Building up a mental model of the various states of Git will go a long way to
understanding what Git is doing… especially when Git does something that you
don’t quite understand.

Working trees and staging areas
The working copy or working tree or working directory (language is great, there’s
always more than one name for something) is the collection of project files on your
disk that you work with and modify directly, just as you did in books/book_ideas.md
above.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 47

Git thinks about the files in your working tree as being in three distinct states:

• Unmodified

• Modified

• Staged

Unmodified simply means that you haven’t changed this file since your last commit.
Modified is simply the opposite of that: Git sees that you’ve modified this file in
some fashion since your last commit. But what’s this “staged” state?

If you’re coming from the background of other version control systems, such as
Subversion, you may think of a “commit” as simply saving the current state of all
your modifications to the repository. But Git is different, and a bit more elegant.
Instead, Git lets you build your next commit incrementally as you work, by using the
concept of a staging area.

Note: If you’ve ever moved houses, you’ll understand this paradigm. When
you are packing for the move, you don’t take all of your belongings and throw
them loosely into the back of the moving van. (Well, maybe you do, but you
shouldn’t, really.)

Instead, you take a cardboard box (the staging area), and fill it with similar
things, fiddle around to get everything packed properly in the box, take out a
few things that don’t quite belong, and add a few more things you forgot
about.

When you’re satisfied that the box is just right, you close up the box with
packing tape and put the box in the back of the van. You’ve used the box as
your staging area in this case, and taping up the box and placing on the van is
like making a commit.

Essentially, as you work on bits and pieces of your project, you can mark a change, or
set of changes, as “staged,” which is how you tell Git, “Hey, I want these changes to
go into my next commit… but I might have some more changes for you, so just hold
on to these changes for a bit.” You can add and remove changes from this staging
area as you go about your work, and only commit that set of carefully curated
changes to the repository when you’re good and ready.

Notice above that I said, “Add and remove changes from the staging area,” not “Add
and remove files from the staging area.” There’s a distinct difference, here, and you’ll
see this difference in just a bit as you stage your first few changes.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 48

Staging your changes
Git’s pretty useful in that it (usually) tells you what do to in the output to a
command. Look back at the output from git status above, and the Changes not
staged for commit section gives you a few suggestions on what to do:

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working
directory)

So since you want to get this change eventually committed to the repository, you’ll
try the first suggestion: git add.

Execute the following command:

git add books/book_ideas.md

Then, execute git status to see the results of what you’ve done:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: books/book_ideas.md

Ah, that seems a little better. Git recognizes that you’ve now placed this change in
the staging area.

But you have another modification to make to this file that you forgot about: Since
you’re reading this book, you should probably check off that entry for “Mastering git”
in there to mark it as complete.

Open books/book_ideas.md in your text editor and place a lower-case x in the box
to mark that item as complete:

- [x] Mastering git

Save your changes and exit out of your editor. Now, execute git status again (yes,
you’ll use that command often to get your bearings), and see what Git tells you:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master'.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 49

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: books/book_ideas.md

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 modified: books/book_ideas.md

What gives? Git now tells you that books/book_ideas.md is both staged and not
staged? How can that be?

Remember that you’re staging changes here, not files. Git understands this, and tells
you that you have one change already staged for commit (the Care and feeding of
developers change), and that you have one change that’s not yet been staged —
marking Mastering git as complete.

To see this in detail, you can tell Git to show you what it sees as changed. Remember
that diff we talked about earlier? Yep, that’s your next new command.

Execute the following command:

git diff

You’ll see something similar to the following:

diff --git a/books/book_ideas.md b/books/book_ideas.md
index 76dfa82..5086b1f 100644
--- a/books/book_ideas.md
+++ b/books/book_ideas.md
@@ -7,5 +7,5 @@
 - [] CVS by tutorials
 - [] Fortran for fun and profit
 - [x] RxSwift by tutorials
-- [] Mastering git
+- [x] Mastering git
 - [] Care and feeding of developers

That looks pretty obtuse, but a diff is simply a compact way of showing you what’s
changed between two files. In this case, Git is telling you that you’re comparing two
versions of the same file — the version of the file in your working directory, and the
version of the file that you told Git to stage earlier with the git add command:

--- a/books/book_ideas.md
+++ b/books/book_ideas.md

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 50

And it also shows you what’s changed between those two versions:

-- [] Mastering Git
+- [x] Mastering Git

The - prefix means that a line (or a portion of that line) has been deleted, and the +
prefix means that a line (or a portion of that line) has been added. In this case, you
deleted the space and added an x character.

You’ll learn more about git diff as you go along, but that’s enough to get you
going for now. Time to stage your latest change.

It gets a bit tedious to always type the full name of the file you want to stage with
git add. And, let’s be honest, most of the time you really just want to stage all of the
changes you’ve made. Git’s got your back with a great shortcut.

Execute the following:

git add .

That full stop (or period) character tells Git to add all changes to the staging area,
both in this directory and all other subdirectories. It’s pretty handy, and you’ll use it
a lot in your workflow.

Again, execute git status to see what’s ready in your staging area:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: books/book_ideas.md

That looks good. There’s nothing left unstaged, and you’ll just see the changes to
books/book_ideas.md that are ready to commit.

As an interesting point, execute git diff again to see what’s changed:

~/GitApprentice/ideas $ git diff
~/GitApprentice/ideas $

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 51

Uh, that’s interesting. git diff reports that nothing has changed. But if you think
about it for a moment, that makes sense. git diff compares your working tree to
the staging area. With git add ., you put everything from your working tree into
the staging area, so there should be no differences between your working tree and
staging.

If you want to be really thorough (or if you don’t trust Git quite yet), you can ask Git
to show you the differences that it’s staged for commit with an extra option on the
end of git diff.

Execute the following command, making note that it’s two -- characters, not one:

git diff --staged

You’ll see a diff similar to the following:

~/GitApprentice/ideas $ git diff --staged
diff --git a/books/book_ideas.md b/books/book_ideas.md
index 1a92ca4..5086b1f 100644
--- a/books/book_ideas.md
+++ b/books/book_ideas.md
@@ -7,4 +7,5 @@
 - [] CVS by tutorials
 - [] Fortran for fun and profit
 - [x] RxSwift by tutorials
-- [] Mastering git
+- [x] Mastering git
+- [] Care and feeding of developers

Here’s the lines that have changed:

-- [] Mastering git
+- [x] Mastering git
+- [] Care and feeding of developers

You’ve removed something from the Mastering Git line, added something to the
Mastering Git line, and added the Care and feeding of developers line. That
seems to be everything. Looks like it’s time to actually commit your changes to the
repository.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 52

Committing your changes
You’ve made all of your changes, and you’re ready to commit to the repository.
Simply execute the following command to make your first commit:

git commit

Git will take you into a rather confusing state. Here’s what I see in my terminal
program:

Please enter the commit message for your changes. Lines
starting
with '#' will be ignored, and an empty message aborts the
commit.

On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
modified: books/book_ideas.md

~
~
~
~
"~/GitApprentice/ideas/.git/COMMIT_EDITMSG" 10L, 272C

If you haven’t been introduced to vim before, welcome! Vim is the default text editor
used by Git when it requires free text input from you.

If you read the first little bit of instruction that Git provides there, it becomes
apparent what Git is asking for:

Please enter the commit message for your changes. Lines
starting
with '#' will be ignored, and an empty message aborts the
commit.

Ah — Git needs a message for your commit. If you think back to the list of commits
you saw earlier in the chapter, you’ll notice that each entry had a little message with
it:

Working in Vim isn’t terribly intuitive, but it’s not hard once you know the
commands.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 53

Press the I key on your keyboard to enter Insert mode, and you’ll see the status line
at the bottom of the screen change to -- INSERT-- to indicate this. You’re free to
type what you like here, but stay simple and keep your message to just one line to
start.

Type the following for your commit message:

Added new book entry and marked Git book complete

When you’re done, you need to tell Vim to save the file and exit. Exit out of Insert
mode by pressing the Escape key first.

Now, type a colon (Shift + ; on my American keyboard) to enter Ex mode, which lets
you execute commands.

To save your work and exit in one fell swoop, type wq — which means “write” and
“quit” in that order, and press Enter:

:wq

You’ll be brought back to the command line and shown the result of your commit:

~/GitApprentice/ideas $ git commit
[master 57f31b3] Added new book entry and marked Git book
complete
 1 file changed, 2 insertions(+), 1 deletion(-)

That’s it! There’s your first commit. One file changed, with two insertions and one
deletion. That matches up with what you saw in git diff earlier in the chapter.

Now that you’ve learned how to commit changes to your files, you’ll take a look at
adding new files and directories to repositories.

Adding directories
You have directories in your project to hold ideas for books, videos and articles. But
it would be good to have a directory to also store ideas for written tutorials. So you’ll
create a directory and an idea file, and add those to your repository.

Back in your terminal program, execute the following command to create a new
directory named tutorials:

mkdir tutorials

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 54

Then, confirm that the directory exists, using the ls command:

~/GitApprentice/ideas $ ls
LICENSE articles tutorials
README.md books videos

So the directory is there; now you can see how Git recognizes the new directory.
Execute the following command:

git status

You’ll see the following:

~/GitApprentice/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)

nothing to commit, working tree clean

Er, that doesn’t seem right. Why can’t Git see your new directory? That’s by design,
and it reflects the way that Git thinks about files and directories.

How Git views your working tree
At its core, Git really only knows about files, and nothing about directories. Git thinks
about a file as “a string that points to an entity that Git can track”. If you think about
this, it makes some sense: If a file can be uniquely referenced as the full path to the
file, then tracking directories separately is quite redundant.

For instance, here’s a list of all the files (excluding hidden files, hidden directories
and empty directories) currently in your project:

ideas/LICENSE
ideas/README.md
ideas/articles/clickbait_ideas.md
ideas/articles/live_streaming_ideas.md
ideas/articles/ios_article_ideas.md
ideas/books/book_ideas.md
ideas/videos/content_ideas.md
ideas/videos/platform_ideas.md

This is a simplified version of how Git views your project: a list of paths to files that
are tracked in the repository. From this, Git can easily and quickly re-create a
directory and file structure when it clones a repository to your local system.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 55

You’ll learn more about the inner workings of Git in the intermediate section of this
book, but, for now, you simply need to figure out how to get Git to pick up a new
directory that you want to add to the repository.

.keep files
The solution to making Git recognize a directory is clearly to put a file inside of it.
But what if you don’t have anything yet to put here, or you want an empty directory
to show up in everyone’s clone of this project?

The solution is to use a placeholder file. The usual convention is to create a hidden,
zero-byte .keep file inside the directory you want Git to “see.”

To do this, first navigate into the tutorials directory that you just created with the
following command:

cd tutorials

Then create an empty file named .keep, using the touch command for expediency:

touch .keep

Note: The touch command was originally designed to set and modify the
“modified” and “accessed” times of existing files. But one of the nice features
of touch is that, if a specified file doesn’t exist, touch will automatically
create the file for you.

touch is a nice alternative to opening a text editor to create and save an empty
file. Experienced command line users take advantage of this shortcut much of
the time.

Execute the following command to view the contents of this directory, including
hidden dotfiles:

ls -a

You should see the following:

~/GitApprentice/ideas/tutorials $ ls -a
. .. .keep

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 56

There’s your hidden file. Let’s see what Git thinks about this directory now. Execute
the following command to move back to the main project directory:

cd ..

Now, execute git status to see Git’s understanding of the situation:

~/GitApprentice/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 tutorials/

nothing added to commit but untracked files present (use "git
add" to track)

Git now understands that there’s something in that directory, but that it’s
untracked, which means you haven’t yet added whatever’s in that directory to the
repository. Adding the contents of that directory is easy to do with the git add
command.

Execute the following command, which is a slightly different form of git add:

git add tutorials/*

Note: The weird formatting above with the two slashes should work
equivalently in a bash shell, or a ksh shell, which is the current default on
newer macOS systems.

While you could have just used git add . as before to add all files, this form of git
add is a nice way to only add the files in a particular directory or subdirectory. In this
case, you’re telling Git to stage all files underneath the tutorials directory.

Git now tells you that it’s tracking this file, and that it’s in the staging area:

~/GitApprentice/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 57

 new file: tutorials/.keep

You can now commit this addition to the repository. But, instead of invoking that
whole business with Vim and a text editor, there’s a shortcut way to commit a file to
the repository and add a message all in one shot.

Execute the following command to commit the staged changes to your repository:

git commit -m "Adding empty tutorials directory"

You’ll see the following, confirming your change committed:

~/GitApprentice/ideas $ git commit -m "Adding empty tutorials
directory"
[master ce6971f] Adding empty tutorials directory
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 tutorials/.keep

Note: Depending on the project or organization you’re working with, you’ll
often find that there are standards around what to put inside Git commit
messages.

The early portions of this book kept things simple with a single-line commit
message, but as you advance in your Git career you’ll see why following some
standards like the 50/72 rule proposed by Tim Pope at https://tbaggery.com/
2008/04/19/a-note-about-git-commit-messages.html will make your life easier
when you get deeper into Git.

Once again, use git status to see that there’s nothing left to commit:

~/GitApprentice/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 2 commits.
 (use "git push" to publish your local commits)

nothing to commit, working tree clean

You may have realized that all these little commits give you a piecemeal view of what
Git is doing with your files. And, as you keep working on your project, you’ll probably
want to see a historical view of what you’ve done. Git provides a way to view the
history of your files, also known as the log.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 58

Looking at git log
You’ve done a surprising number of things over the last few chapters. To see what
you’ve done, execute the following command:

git log

You’ll get a pile of output; I’ve shown the first few bits of my log below:

commit 761a50d148a9d241712e3be4630db3dad6e010c8 (HEAD -> master)
Author: Chris Belanger <chris@example.com>
Date: Sun Jun 16 06:53:03 2019 -0300

 Adding empty tutorials directory

commit dbcfe56fa47a1a1547b8268a60e5b67de0489b95
Author: Chris Belanger <chris@example.com>
Date: Sun Jun 16 06:51:54 2019 -0300

 Added new book entry and marked Git book complete

commit c47084959448d2e0b6877832b6bd3ae70f70b187 (origin/master,
origin/HEAD)
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:32:55 2019 -0400

 Going to try this livestreaming thing

commit 629cc4d309cdcfe508791b09da447c3633448f07
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:32:17 2019 -0400

 Some scratch ideas for the iOS team
.
.
.
.

You’ll see all of your commits, in reverse chronological order.

Note: Depending on the number of lines you can see at once in your terminal
program, your output may be paginated, using a reader like less. If you see a
colon on the last line of your terminal screen, this is likely the case. Simply
press the Space bar to read subsequent pages of text.

When you get to the end of the file, you’ll see (END). At any point, you can
press the Q key to quit back to your command prompt.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 59

The output above shows you your own commit messages, which are useful… to a
point. Since Git knows everything about your files, you can use git log to see every
detail of your commits, such as the actual changes, or diff, of each commit.

To see this, execute the following command:

git log -p

This shows you the actual diffs of your commits, to help you see what specifically
changed. Here’s a sample from my results:

commit ce6971fbdb945fc5fb01b739b9dea9c9ae193cae (HEAD -> master)
Author: Chris Belanger <chris@razeware.com>
Date: Wed Jan 16 08:22:36 2019 -0400

 Adding empty tutorials directory

diff --git a/tutorials/.keep b/tutorials/.keep
new file mode 100644
index 0000000..e69de29

commit 57f31b37ea843d1f0692178c99307d96850eca57
Author: Chris Belanger <chris@razeware.com>
Date: Fri Jan 11 10:16:13 2019 -0400

 Added new book entry and marked Git book complete

diff --git a/books/book_ideas.md b/books/book_ideas.md
index 1a92ca4..5086b1f 100644
--- a/books/book_ideas.md
+++ b/books/book_ideas.md
@@ -7,4 +7,5 @@
 - [] CVS by tutorials
 - [] Fortran for fun and profit
 - [x] RxSwift by tutorials
-- [] Mastering Git
+- [x] Mastering Git
+- [] Care and feeding of developers
.
.
.

In reverse chronological order, I’ve added the .keep file to the tutorials directory,
and made some modifications to the book_ideas.md file.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 60

Note: Chapter 6, “Git Log & History,” will take an in-depth look at the various
facets of git log, and it will show you how to use the various options of git
log to get some really interesting information about the activity on your
repository.

Now that you have a pretty good understanding of how to stage changes and commit
them to your repository, it’s time for the challenge for this chapter!

Challenge

Challenge: Add some tutorial ideas
You have a great directory to store tutorial ideas, so now it’s time to add those great
ideas. Your tasks in this challenge are:

1. Create a new file named tutorial_ideas.md inside the tutorials directory.

2. Add a heading to the file: # Tutorial Ideas.

3. Populate the file with a few ideas, following the format of the other files, for
example, [] Mastering PalmOS.

4. Save your changes.

5. Add those changes to the staging area.

6. Commit those staged changes with an appropriate message.

If you get stuck, you can always find the solution to this challenge under this
chapter’s projects/challenge folder inside the materials you downloaded for this
book.

As well, if you want to compare the state of your repo or directories with mine at this
point, you’ll also find my ideas directory zipped in that same folder.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 61

Key points
• A commit is essentially a snapshot of the particular state of the set of files in the

repository at a point in time.

• The working tree is the collection of project files that you work with directly.

• git status shows you the current state of your working tree.

• Git thinks about the files in your working tree as being in three distinct states:
unmodified, modified and staged.

• git add <filename> lets you add changes from your working tree to the staging
area.

• git add . adds all changes in the current directory and its subdirectories.

• git add <directoryname>/* lets you add all changes in a specified directory.

• git diff shows you the difference between your working tree and the staging
area.

• git diff --staged shows you the difference between your staging area and the
last commit to the repository.

• git commit commits all changes in the staging area and opens Vim so you can
add a commit message.

• git commit -m "<your message here>" commits your staged changes and
includes a message without having to go through Vim.

• git log shows you the basic commit history of your repository.

• git log -p shows the commit history of your repository with the corresponding
diffs.

Where to go from here?
Now that you’ve learned how to build up commits in Git, head on to the next chapter
where you’ll learn more about the art of staging your changes, including how Git
understands the moving and deleting of files, how to undo staged changes that you
didn’t actually mean to make, and your next new commands: git reset, git mv and
git rm.

Git Apprentice Chapter 3: Committing Your Changes

raywenderlich.com 62

4Chapter 4: The Staging
Area

In previous chapters, you’ve gained some knowledge of the staging area of Git:
You’ve learned how to stage modifications to your files, stage the addition of new
files to the repository, view diffs between your working tree and the staging area, and
you even got a little taste of how git log works.

But there’s more to the staging area than just those few operations. At this point, you
may be wondering why the staging area is necessary. “Why can’t you just push all of
your current updates to the repository directly?”, you may ask. It’s a good question,
but there are issues with that linear approach; Git was actually designed to solve
some of the common issues with direct-commit history that exist under other
version control systems.

In this chapter, you’ll learn a bit more about how the staging area of Git works, why
it’s necessary, how to undo changes you’ve made to the staging area, how to move
and delete files in your repository, and more.

raywenderlich.com 63

Why staging exists
Development is a messy process. What, in theory, should be a linear, cumulative
construction of functionality in code, is more often than not a series of intertwining,
non-linear threads of dead-end code, partly finished features, stubbed-out tests,
collections of // TODO: comments in the code, and other things that are inherent to
a human-driven and largely hand-crafted process.

It’s noble to think that that you’ll work on just one feature or bug at a time; that your
working tree will only ever be populated with clean, fully documented code; that
you’ll never have unnecessary files cluttering up your working tree; that the
configuration of your development environment will always be in perfect sync with
the rest of your team; and that you won’t follow any rabbit trails (or create a few of
your own) while you’re investigating a bug.

Git was built to compensate for this messy, non-linear approach to development. It’s
possible to work on lots of things at once, and selectively choose what you want to
stage and commit to the repository. The general philosophy is that a commit should
be a logical collection of changes that make sense as a unit — not just “the latest
collection of things I updated that may or may not be related.”

A simple staging example
In the example below, I’m working on a website, and I want my design guru to review
my CSS changes. I’ve changed the following files in the course of my work:

index.html

images/favicon.ico
images/header.jpg
images/footer.jpg
images/profile.jpg

styles/admin.css
styles/frontend.css

scripts/main.js
scripts/admin.js
scripts/email.js

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 64

I’ve updated a bunch of files, here, not just the CSS. And if I had to commit everything
I had changed in my working directory, all at once, I’d have everything jammed into
one commit:

And if I committed each little change as I made it, my commit history might look like
the following:

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 65

Then, when my design guru wants to take a look at the CSS changes, she’ll have to
wade through my commit messages and potentially look through my diffs, or even
ping me on Slack to figure out what files she’s supposed to review.

But, instead, if I were to stage and commit the HTML change first, followed by the
image changes, followed by the JavaScript changes, and then the CSS changes after
that, the commit history, and even the mental picture of what I did, becomes a lot
more clear:

In later chapters of the book, you’ll come to understand the power of being able to
consciously choose various changes to stage for commit, and even choose just a
portion of a file to stage for commit. But, for now, you’ll explore a few more common
scenarios, involving moving files, deleting files, and even undoing your changes that
you weren’t quite ready to commit.

Undoing staged changes
It’s quite common that you’ll change your mind about a particular set of staged
changes, or you might even use something like git add . and then realize that
there was something in there you didn’t quite want to stage.

You’ve got a file already for book ideas, but you also want to capture some ideas for
non-technical management books. Not everyone wants to learn how to program, it
seems.

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 66

Head back to your terminal program, and create a new file in the books directory,
named management_book_ideas.md:

touch books/management_book_ideas.md

But, wait — the video production team pings you and urgently requests that you
update the video content ideas file, since they’ve just found someone to create the
“Getting started with Symbian” course, and, oh, could you also add, “Advanced MOS
6510 Programming” to the list?

OK, not a huge issue. Open up videos/content_ideas.md, mark the “Getting started
with Symbian” entry as complete by putting an “x” between the brackets, and add a
line to the end for the “Advanced MOS 6510 Programming” entry. When you’re done,
your file should look like this:

Content Ideas

Suggestions for new content to appear as videos:

[x] Beginning Pascal
[] Mastering Pascal
[x] Getting started with Symbian
[] Coding for the Psion V
[] Flash for developers
[] Advanced MOS 6510 Programming

Now, execute the following command to add those recent changes to your staging
area:

git add .

Execute the following command to see what Git thinks about the current state of
things:

git status

You should see the following:

Your branch is ahead of 'origin/master' by 3 commits.
 (use "git push" to publish your local commits)

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: books/management_book_ideas.md
 modified: videos/content_ideas.md

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 67

Oh, crud. You accidentally added that empty books/management_book_ideas.md.
You likely didn’t want to commit that file just yet, did you? Well, now you’re in a
pickle. Now that something is in the staging area, how do you get rid of it?

Fortunately, since Git understands everything that’s changed so far, it can easily
revert your changes for you. The easiest way to do this is through git reset.

git reset
Execute the following command to remove the change to books/
management_book_ideas.md from the staging area:

git reset HEAD books/management_book_ideas.md

git reset restores your environment to a particular state. But wait — what’s this
HEAD business?

HEAD is simply a label that references the most recent commit. You may have already
noticed the term HEAD in your console output while working through earlier portions
of the book.

In case you missed it, execute the following command to look at the log:

git log

If you look at the top lines of the output in your console, you’ll see something
similar to the following:

commit 6c88142dc775c4289b764cb9cf2e644274072102 (HEAD -> master)
Author: Chris Belanger <chris@razeware.com>
Date: Sat Jan 19 07:16:11 2019 -0400

 Adding some tutorial ideas

That (HEAD -> master) note tells you that the latest commit on your local system is
as you expect — the commit where you added those tutorial ideas — and that this
commit was done on the master branch. You’ll get into branches a little later in this
section, but, for now, simply understand that HEAD keeps track of your latest commit.

So, git reset HEAD books/management_book_ideas.md, in this context means
“use HEAD as a reference point, restore the staging area to that point, but only restore
any changes related to the books/management_book_ideas.md file.”

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 68

To see that this is actually the case, exit out of git log with Q if necessary, and
execute git status once again:

~/MasteringGit/ideas $ git status
Your branch is ahead of 'origin/master' by 3 commits.
 (use "git push" to publish your local commits)

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: videos/content_ideas.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 books/management_book_ideas.md

That looks better: Git is no longer tracking books/management_book_ideas.md,
but it’s still tracking your changes to videos/content_ideas.md. Phew — you’re back
to where you wanted to be.

Better commit that last change before you get into more trouble. Execute the
following command to add another commit:

git commit -m "Updates book ideas for Symbian and MOS 6510"

Now, you’ve been thinking a bit, and you don’t think you should keep those ideas
about the video platform itself in the videos folder. They more appropriately belong
in a new folder: website.

Moving files in Git
Create the folder for the website ideas with the following command:

mkdir website

Now, you need to move that file from the videos directory to the website directory.
Even with your short experience with Git, you probably suspect that it’s not quite as
simple as just moving the file from one directory to the other. That’s correct, but it’s
instructive to see why this is.

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 69

So, you’ll move it the brute force way first, and see how Git interprets your actions.
Execute the following command to use the standard mv command line tool to move
the file from one directory to the other:

mv videos/platform_ideas.md website

Now, execute git status to see what Git thinks about what you’ve done:

~/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 4 commits.
 (use "git push" to publish your local commits)

Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 deleted: videos/platform_ideas.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 books/management_book_ideas.md
 website/

no changes added to commit (use "git add" and/or "git commit
-a")

Well, that’s a bit of a mess. Git thinks you’ve deleted a file that is being tracked, and
it also thinks that you’ve added this website bit of nonsense. Git doesn’t seem so
smart after all. Why doesn’t it just see that you’ve moved the file?

The answer is in the way that Git thinks about files: as full paths, not individual
directories. Take a look at how Git saw this part of the working tree before the move:

videos/platform_ideas.md (tracked)
videos/content_ideas.md (tracked)

And, after the move, here’s what it sees:

videos/platform_ideas.md (deleted)
videos/content_ideas.md (tracked)
website/platform_ideas.md (untracked)

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 70

Remember, Git knows nothing about directories: It only knows about full paths.
Comparing the two snippets of your working tree above shows you exactly why git
status reports what it does.

Seems like the brute force approach of mv isn’t what you want. Git has a built-in mv
command to move things “properly” for you.

Move the file back with the following command:

mv website/platform_ideas.md videos/

Now, execute the following:

git mv videos/platform_ideas.md website/

And execute git status to see what’s up:

 ~/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 4 commits.
 (use "git push" to publish your local commits)

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 renamed: videos/platform_ideas.md -> website/
platform_ideas.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 books/management_book_ideas.md

That looks better. Git sees the file as “renamed,” which makes sense, since Git thinks
about files in terms of their full path. And Git has also staged that change for you.
Nice!

Commit those changes now:

git commit -m "Moves platform ideas to website directory"

Your ideas project is now looking pretty ship-shape. But, to be honest, those live
streaming ideas are pretty bad. Perhaps you should just get rid of them now before
too many people see them.

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 71

Deleting files in Git
The impulse to just delete/move/rename files as you’d normally do on your
filesystem is usually what puts Git into a tizzy, and it causes people to say they don’t
“get” Git. But if you take the time to instruct Git on what to do, it usually takes care
of things quite nicely for you.

So — that live streaming ideas file has to go. The brute-force approach, as you may
guess, isn’t the best way to solve things, but let’s see if it causes Git any grief.

Execute the following command to delete the live streaming ideas file with the rm
command:

rm articles/live_streaming_ideas.md

And then execute git status to see what Git’s reaction is:

~/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 5 commits.
 (use "git push" to publish your local commits)

Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 deleted: articles/live_streaming_ideas.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 books/management_book_ideas.md

no changes added to commit (use "git add" and/or "git commit
-a")

Oh, that’s not so bad. Git recognizes that you’ve deleted the file and is prompting
you to stage it.

Do that now with the following command:

git add articles/live_streaming_ideas.md

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 72

Then, see what’s up with git status:

~/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 5 commits.
 (use "git push" to publish your local commits)

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: articles/live_streaming_ideas.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 books/management_book_ideas.md

Well, that was a bit of a roundabout way to do things. But just like git mv, you can
use the git rm command to do this in one fell swoop.

Restoring deleted files
First, you need to get back to where you were. Unstage the change to the live
streaming ideas file with your best new friend, git reset:

git reset HEAD articles/live_streaming_ideas.md

That removes that change from the staging area — but it doesn’t restore the file itself
in your working tree. To do that, you’ll need to tell Git to retrieve the latest
committed version of that file from the repository.

Execute the following to restore your file to its original infamy:

git checkout HEAD articles/live_streaming_ideas.md

You’re back to where you started.

Now, get rid of that file with the following command:

git rm articles/live_streaming_ideas.md

And, finally, commit that change with an appropriate message:

git commit -m "Removes terrible live streaming ideas"

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 73

Looks like you’ll have to leave the live streaming to the experts: fourteen-year-olds
on YouTube with too much time on their hands and too little common sense.

That empty file for management book ideas is still hanging around. Since you don’t
have any good ideas for that file yet, you may as well commit it and hope that
someone down the road can populate it with good ways to be an effective manager.

Add that empty file with the following command:

git add books/management_book_ideas.md

And commit it with a nice comment:

git commit -m "Adds all the good ideas about management"

It’s not all bad: Abandoning your attempts to building a career in live streaming and
management gives you more time to take on this next challenge!

Challenge

Challenge: Move, delete and restore a file
This challenge takes you through the paces of what you just learned. You’ll need to
do the following:

1. Move the newly added books/management_book_ideas.md to the website
directory with the git mv command.

2. You’ve changed your mind and don’t want management_book_ideas.md
anymore, so remove that file completely with the git rm command. Git will give
you an error when you do this, but look at the suggested actions in the error
closely to see how to solve this problem this with the -f option, and try again.

3. But now you’re having second thoughts: Maybe you do have some good ideas
about management. Restore that file to its original location.

Remember to use the git status command to get your bearings when you need to.
Liberal use of git status will definitely help you understand what Git is doing at
each stage of this challenge.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenge folder for this chapter.

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 74

Key points
• The staging area lets you construct your next commit in a logical, structure

fashion.

• git reset HEAD <filename> lets you restore your staging environment to the
last commit state.

• Moving files around and deleting them from the filesystem, without notifying Git,
will cause you grief.

• git mv moves files around and stages the change, all in one action.

• git rm removes files from your repository and stages the change, again, in one
action.

• Restore deleted and staged files with git reset HEAD <filename> followed by
git checkout HEAD <filename>

Where to go from here?
That was quite a ride! You’ve gotten deeper into understanding how Git sees the
world; building up a parallel mental model will help you out immensely as you use
Git more in your daily workflow.

Sometimes, you may have files that you explicitly don’t want to add to your
repository, but that you want to keep around in your working tree. You can tell Git to
ignore things in your working tree, and even tell Git to ignore particular files across
all of your projects through the magic of the simple file known as .gitignore — which
you’ll learn all about in the next chapter!

Git Apprentice Chapter 4: The Staging Area

raywenderlich.com 75

5Chapter 5: Ignoring Files in
Git

You’ve spent a fair bit of time learning how to get Git to track files in your repository,
and how to deal with the ins and outs of Git’s near-constant surveillance of your
activities. So it might come as a wonder that you’d ever want Git to actively ignore
things in your repository.

Why wouldn’t you want Git to track everything in your project? Well, there are quite
a few situations in which you might not want Git to track everything.

A good example would be any files that contain API keys, tokens, passwords or other
secrets that you definitely need for testing, but you don’t want them sitting in a
repository — especially a public repository — for all to see.

Depending on your development platform, you may have lots of build artifacts or
generated content sitting around inside your project directory, such as linker files,
metadata, the resulting executable and other similar things. These files are
regenerated each time you build your project, so you definitely don’t want Git to
track these files. And then there are those persnickety things that some OSes add
into your directories without asking, such as .DS_Store files on macOS.

raywenderlich.com 76

Introducing .gitignore
Git’s answer to this is the .gitignore file, which is a set of rules held in a file that tell
Git to not track files or sets of files. That seems like a very simple solution, and it is.
But the real power of .gitignore is in its ability to pattern-match a wide range of
files so that you don’t have to spell out every single file you want Git to ignore, and
you can even instruct Git to ignore the same types of files across multiple projects.
Taking that a step further, you can have a global .gitignore that applies to all of your
repositories, and then put project-specific .gitignore files within directories or
subdirectories under the projects that need a particularly pedantic level of control.

In this chapter, you’ll learn how to configure your own .gitignore, how to use some
prefabricated .gitignore files from places like GitHub, and how to set up a
global .gitignore to apply to all of your projects.

Getting started
Imagine that you have a tool in your arsenal that “builds” your markdown into HTML
in preparation for deploying your stunning book, tutorial and other ideas to a private
website for your team to comment on.

In this case, the HTML files would be the generated content that you don’t want to
track in the repository. You’d like to render them locally as part of your build process
so you could preview them, but you’d never edit the HTML directly: It’s always
rendered using the tool.

Create a new directory in the root folder of your project to hold these generated files,
using the following command:

mkdir sitehtml

Now, create an empty HTML file in there (keep that imagination going, friend), with
the following command:

touch sitehtml/all-todos.html

Run git status to see that Git recognizes the new content:

/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 7 commits.
 (use "git push" to publish your local commits)

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 77

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 sitehtml/

nothing added to commit but untracked files present (use "git
add" to track)

So Git, once again, sees what you’re doing. But here’s how to tell Git to turn a blind
eye.

Create a new file named .gitignore in the root folder of your project:

touch .gitignore

And add the following line to your newly created .gitignore using a text editor:

*.html

Save and exit. What you’ve done is to tell Git, “For this project, ignore all files that
match this pattern.” In this case, you’ve asked it to ignore all files that have an .html
extension.

Now, see what git status tells you:

~/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 7 commits.
 (use "git push" to publish your local commits)

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .gitignore

nothing added to commit but untracked files present (use "git
add" to track)

Git sees that you’ve added .gitignore, but it no longer views that HTML file as
“untracked,” even through it’s buried down in a subdirectory.

Now, what if you were fine with ignoring HTML files in subdirectories, but you
wanted all HTML files in the top-level directory of your project to be tracked? You
could theoretically re-create the same .gitignore files in each of your subdirectories
and remove this top-level .gitignore, but that would be amazingly tedious and
would not scale well.

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 78

Instead, you can use some clever pattern-matching in your top-level .gitignore to
only ignore subdirectories.

Edit the single line in your .gitignore as follows:

/.html

Save and exit. This new pattern tells Git, “Ignore all HTML files that aren’t in the
top-level directory.”

To see that this is true, create a new HTML file in the top-level directory of your
project:

touch index.html

Run git status to see if Git does, in fact, recognize the HTML files in the top-level
directory, while still ignoring the ones underneath:

/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 7 commits.
 (use "git push" to publish your local commits)

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .gitignore
 index.html

nothing added to commit but untracked files present (use "git
add" to track)

Git sees the top-level HTML file as untracked, but it’s still ignoring the other HTML
file down in the sitehtml directory, just as you’d planned.

Nesting .gitignore files
You can easily nest .gitignore files in your project. Imagine that you have a
subdirectory with HTML files that are referenced from your index.html. These aren’t
generated by your imaginary build process but, rather, maintained by hand, and you
want to make sure Git is able to track these.

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 79

Create a new directory and name it htmlrefs:

mkdir htmlrefs

Now, create an HTML file in that subdirectory:

touch htmlrefs/utils.html

And create a .gitignore file in that directory as well:

touch htmlrefs/.gitignore

Open htmlrefs/.gitignore and add the following line to it:

!/*.html

Save and exit. The exclamation mark (!) negates the pattern in this case, and the
slash (/) means “start this rule from this directory.” So this rule says, “Despite any
higher-level rules, don’t ignore any HTML files, starting in this directory or lower.”

Execute git status to see if this is true:

~/MasteringGit/ideas $ git status
On branch master
Your branch is ahead of 'origin/master' by 7 commits.
 (use "git push" to publish your local commits)

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .gitignore
 htmlrefs/
 index.html

nothing added to commit but untracked files present (use "git
add" to track)

Git now sees the contents of your htmlrefs directory as untracked, just as you
wanted.

Now that you’re happy with the current arrangement of your .gitignore files, you
can stage and commit those changes.

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 80

Stage all changes with the following command:

git add .

And commit those changes as well:

git commit -m "Adding .gitignore files and HTML"

Setting up .gitignore files on a project-by-project basis will only get you so far,
though. There are things — like the aforementioned .DS_Store files that macOS so
helpfully adds to your directories — that you want to ignore all of the time. Git has
the concept of a global .gitignore that you can use for cases like this.

Looking at the global .gitignore
Execute the following command to find out if you already have a global .gitignore:

git config --global core.excludesfile

If that command returns nothing, then you don’t have one set up just yet. No
worries; it’s easy to create one.

Create a file in a convenient location — in this case, your home directory — and name
it something obvious:

touch ~/.gitignore_global

And now you can use the git config command to tell Git that it should look at this
file from now on as your global .gitignore:

git config --global core.excludesfile ~/.gitignore_global

So now if I ask Git where my global .gitignore lives, it tells me the following:

~/MasteringGit/ideas $ git config --global core.excludesfile
/Users/chrisbelanger/.gitignore_global

But now that you have a global .gitignore… what should you put in it?

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 81

Finding sample .gitignore files
This is one of those situations wherein you don’t have to reinvent the wheel.
Hundreds of thousands of developers have come before you, and they’ve already
figured out what the best configuration is for your particular situation.

One of the better collections of prefabricated .gitignore files is hosted by GitHub —
no surprise there, I’m sure. GitHub has files for most OSes, programming languages
and code editors.

Head over to https://github.com/github/gitignore and have a look through the
packages it offers. Sample files that are appropriate for your OS can be found in the
Global subfolder of the repository.

Go into the Global subfolder (or simply navigate to https://github.com/github/
gitignore/tree/master/Global) and find the one for your local system.

There’s a Windows.gitignore, a macOS.gitignore, a Linux.gitignore and many
more, all waiting for you to add them to your own .gitignore. And that brings you to
the challenge for this chapter!

Challenge

Challenge: Populate your global .gitignore
This challenge should be rather straightforward and give you a good starting point
for your global .gitignore. Your goal is to find the correct .gitignore for your own
OS, get that file from the GitHub repository, and add the contents of that file to your
global .gitignore.

1. Navigate to https://github.com/github/gitignore/tree/master/Global.

2. Find the correct .gitignore for your own OS.

3. Take the contents of that OS-specific .gitignore, and add it to your own
global .gitignore.

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 82

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenge folder for this chapter.

Key points
• .gitignore lets you configure Git so that it ignores specific files or files that match

a certain pattern.

• *.html in your .gitignore matches on all files with an .html extension, in any
directory or subdirectory of your project.

• */*.html matches all files with an .html extension, but only in subdirectories of
your project.

• ! negates a matching rule.

• You can have multiple .gitignore files inside various directories of your project to
override higher-level matches in your project.

• You can find where your global .gitignore lives with the command git config --
global core.excludesfile.

• GitHub hosts some excellent started .gitignore files at https://github.com/github/
gitignore.

Where to go from here?
As you work on more and more complex projects, especially across multiple code-
based and coding languages, you’ll find that the power of the global .gitignore,
coupled with the project-specific (and even folder-specific) .gitignore files, will be
an indispensable part of your Git workflow.

The next chapter will take you through a short diversion into the various workings of
git log. Yes, you’ve already used this command, but this command has some clever
options that will help you view the history of your project in an efficient and highly
readable manner.

Git Apprentice Chapter 5: Ignoring Files in Git

raywenderlich.com 83

6Chapter 6: Git Log &
History

You’ve been quite busy in your repository, adding files, making changes, undoing
changes and making intelligent commits with good, clear messages. But as time goes
on, it gets harder and harder to remember what you did and when you did it.

When you mess up your project (not if, but when), you’ll want to be able to go back in
history and find a commit that worked, and rewind your project back to that point in
time. This chapter shows you how.

raywenderlich.com 84

Viewing Git history
Git keeps track of pretty much everything you do in your repository. You’ve already
seen this in action in previous chapters, when you used the git log command.

However, there are many ways you can view the data provided by git log that can
tell you some incredibly interesting things about your repository and your history. In
fact, you can even use git log to create a graphical representation of your
repository to get a better mental image of what’s going on.

Vanilla git log
Open your terminal app and execute git log to see the basic, vanilla-flavor history
of your repository that you’ve become accustomed to:

commit 477e542bfa35942ddf069d85fbe3fb0923cfab47 (HEAD -> master)
Author: Chris Belanger <chris@razeware.com>
Date: Wed Jan 23 16:49:56 2019 -0400

 Adding .gitignore files and HTML

commit ffcedc2397503831938894edffda5c5795c387ff
Author: Chris Belanger <chris@razeware.com>
Date: Tue Jan 22 20:26:30 2019 -0400

 Adds all the good ideas about management

commit 84094274a447e76eb8f55def2c38b909ef94fa42
Author: Chris Belanger <chris@razeware.com>
Date: Tue Jan 22 20:17:03 2019 -0400

 Removes terrible live streaming ideas

commit 67fd0aa99b5afc18b7c6cc9b4300a07e9fc88418
Author: Chris Belanger <chris@razeware.com>
Date: Tue Jan 22 19:47:23 2019 -0400

 Moves platform ideas to website directory

This shows you a list of ancestral commits — that is, the set of commits that form
the history of the current head. In this case, that’s the most recent commit in the
master branch of your repository. Press Q to exit this view.

The basic git log command shows you all the ancestral commits for this branch.
What if you only wanted to see a few — say, three?

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 85

Limiting results
This is straightforward; simply execute the following command to show the number
of commits you’d like to see, starting from the most recent:

git log -3

Git will then show you just the three most recent commits. You can replace the 3 in
the above example to show any number of commits you’d prefer.

That’s a little more manageable, but there’s still a lot of detail in there. Wouldn’t it
be nice if there was a way to view just the commit messages and filter out all the
other, extra information?

There is! Execute the following command to see a more compact view of the
repository history:

git log --oneline

You’ll see a quick, compact view of the commit history, which is arguably far more
readable than the original output from git log:

~/GitApprentice/ideas $ git log --oneline
477e542 (HEAD -> master) Adding .gitignore files and HTML
ffcedc2 Adds all the good ideas about management
8409427 Removes terrible live streaming ideas
67fd0aa Moves platform ideas to website directory
0ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas
.
.
.

This also shows you the short hash of a commit. Although you haven’t looked at
hashes in depth yet, there are long and short hashes for each commit that uniquely
identify a commit within a repository.

For instance, if I take a look at the first line of the most recent commit on my repo
with git log -1 (that’s the number “1”, not the letter “l”), I see the following:

commit 477e542bfa35942ddf069d85fbe3fb0923cfab47 (HEAD -> master)

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 86

Now, to compare, I look at that same single commit with git log -1 --oneline
(yes, you can stack multiple options with git log), I get the following:

477e542 (HEAD -> master) Adding .gitignore files and HTML

The short hash is simply the first seven characters of the long hash; in this case,
477e542. For the average-sized development project, seven hexadecimal digits
provides you with more than a quarter of a billion short hashes, so the possibility of
hashes colliding between various commits is quite small.

When you ramp up to massively-sized Git repositories that live on for years, or even
decades, the chance of two commits having the same hash becomes a reality.

Older versions of Git allowed you to configure the number of hash characters to use
for your repository, but more recent versions of Git (from about 2017 onward)
dynamically adapt this setting to suit the size of your project, so you don’t usually
have to worry about it.

Note: Are you wondering why some options to commands are preceded with a
single dash, while others are preceded with double dashes?

This has its roots way back in the history of command-line-based operating
systems. Generally, commands that have double dashes are the “long form” of
a command, and are there for clarity.

For instance, the command git log -p, which you’ve used before, shows the
diffs of your commits. But there’s another command that only differs by the
fact that the option is in uppercase: git log -P, which does something
entirely different.

Since all these commands can get a bit confusing, especially where case
matters, many modern command-line utilities provide long form alternatives
to commands to be clearer about the the intent of a particular option.

In the above example, you can use git log --patch and git log -p
interchangeably, because they mean exactly the same thing. The --patch
option is more clear, but -p is more compact.

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 87

Graphical views of your repository
So what else can git log do? Well, Git has some simple methods to show you the
branching history of your repository. Execute the following command to see a rather
verbose view of the “tree” structure of your repository history:

git log --graph

Page through a few results by pressing the Spacebar (or scroll using the arrow keys),
and you’ll see where I merged a branch in an early version of the repository:

.

.

.
 commit fbc46d3d828fa57ef627742cf23e865689bf01a0
| Author: Chris Belanger <chris@razeware.com>
| Date: Thu Jan 10 10:18:14 2019 -0400
|
| Adding files for article ideas
|
* commit 5fcdc0e77adc11e0b2beca341666e89611a48a4a
|\ Merge: 39c26dd cfbbca3
| | Author: Chris Belanger <chris@razeware.com>
| | Date: Thu Jan 10 10:14:56 2019 -0400
| |
| | Merge branch 'video_team'
| |
| * commit cfbbca371f4ecc80796a6c3fc0c084ebe181edf0
| | Author: Chris Belanger <chris@razeware.com>
| | Date: Thu Jan 10 10:06:25 2019 -0400
| |
| | Removing brain download as per ethics committee
.
.
.

And if you page down a little more, you’ll see the point where I created the branch
off of master:

* | commit 39c26dd9749eb627056b938313df250b669c1e4c
| | Author: Chris Belanger <chris@razeware.com>
| | Date: Thu Jan 10 10:13:32 2019 -0400
| |
| | I should write a book on git someday
| |
* | commit 43b4998d7bf0a6d7f779dd2c0fa4fe17aa3d2453
|/ Author: Chris Belanger <chris@razeware.com>
| Date: Thu Jan 10 10:12:36 2019 -0400
|

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 88

| Adding book ideas file
|
* commit becd762cea13859ac32841b6024dd4178a706abe
| Author: Chris Belanger <chris@razeware.com>
| Date: Thu Jan 10 09:49:23 2019 -0400
|
| Creating the directory structure
|
* commit 73938223caa4ad5c3920a4db72920d5eda6ff6e1
 Author: crispy8888 <chris@razeware.com>
 Date: Wed Jan 9 20:59:40 2019 -0400

 Initial commit

But that’s still too much information. How could you collapse this tree-like view to
only see the commit messages, but still see the branching history? That’s right — by
stacking the options to git log.

Execute the following to see a more condensed view:

git log --oneline --graph

You’ll see a nice, compact view of the history and branching structure:

~/GitApprentice/ideas $ git log --oneline --graph
* 477e542 (HEAD -> master) Adding .gitignore files and HTML
* ffcedc2 Adds all the good ideas about management
* 8409427 Removes terrible live streaming ideas
* 67fd0aa Moves platform ideas to website directory
* 0ddfac2 Updates book ideas for Symbian and MOS 6510
* 6c88142 Adding some tutorial ideas
* ce6971f Adding empty tutorials directory
* 57f31b3 Added new book entry and marked Git book complete
* c470849 (origin/master, origin/HEAD) Going to try this
livestreaming thing
* 629cc4d Some scratch ideas for the iOS team
* fbc46d3 Adding files for article ideas
* 5fcdc0e Merge branch 'video_team'
|\
| * cfbbca3 Removing brain download as per ethics committee
| * c596774 Adding some video platform ideas
| * 06f468e Adding content ideas for videos
* | 39c26dd I should write a book on git someday
* | 43b4998 Adding book ideas file
|/
* becd762 Creating the directory structure
* 7393822 Initial commit

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 89

Viewing non-ancestral history
Git’s not showing you the complete history, though. It’s only showing you the history
of things that have happened on the master branch. To tell Git to show you the
complete history of everything it knows about, add the --all option to the previous
command:

git log --oneline --graph --all

You’ll see that there’s an origin/clickbait branch off of master that Git wasn’t
telling you about earlier:

* 477e542 (HEAD -> master) Adding .gitignore files and HTML
* ffcedc2 Adds all the good ideas about management
* 8409427 Removes terrible live streaming ideas
* 67fd0aa Moves platform ideas to website directory
* 0ddfac2 Updates book ideas for Symbian and MOS 6510
* 6c88142 Adding some tutorial ideas
* ce6971f Adding empty tutorials directory
* 57f31b3 Added new book entry and marked Git book complete
* c470849 (origin/master, origin/HEAD) Going to try this
livestreaming thing
* 629cc4d Some scratch ideas for the iOS team
| * e69a76a (origin/clickbait) Adding suggestions from Mic
| * 5096c54 Adding first batch of clickbait ideas
|/
* fbc46d3 Adding files for article ideas
* 5fcdc0e Merge branch 'video_team'
|\
| * cfbbca3 Removing brain download as per ethics committee
| * c596774 Adding some video platform ideas
| * 06f468e Adding content ideas for videos
* | 39c26dd I should write a book on git someday
* | 43b4998 Adding book ideas file
|/

Using Git shortlog
Git provides a very handy companion to git log in the form of git shortlog. This
is a nice way to get a summary of the commits, perhaps for including in the release
notes of your app. Sometimes “bug fixes and performance improvements” just isn’t
quite enough detail, you know?

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 90

Execute the following command to see who’s made commits to this repository:

git shortlog

I see the following collection of commits for this repository:

Chris Belanger (18):
 Creating the directory structure
 Adding content ideas for videos
 Adding some video platform ideas
 Removing brain download as per ethics committee
 Adding book ideas file
 I should write a book on git someday
 Merge branch 'video_team'
 Adding files for article ideas
 Some scratch ideas for the iOS team
 Going to try this livestreaming thing
 Added new book entry and marked Git book complete
 Adding empty tutorials directory
 Adding some tutorial ideas
 Updates book ideas for Symbian and MOS 6510
 Moves platform ideas to website directory
 Removes terrible live streaming ideas
 Adds all the good ideas about management
 Adding .gitignore files and HTML

crispy8888 (1):
 Initial commit
.
.
.

I can see that I have 18 commits to this repository — and then there’s this
crispy8888 chap that created the initial repository. Well, that was nice of him. There
are likely other changes from other users in there, including yourself.

You’ll notice that, in contrast to the standard git log command, git shortlog
orders the commits in increasing time order. That makes more sense from a
summary standpoint than showing everything in reverse-time order.

So far, you’ve seen how to use git log and git shortlog to give you a high-level
view of the repository history with as much detail as you like. But sometimes you
want to see a particular action in the repository. You know what you want to search
for, but do you really have to scroll through all that output to retrieve what you’re
looking for?

Git provides some excellent search functionality that you can use to find information
about one particular file, or even particular changes across many files.

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 91

Searching Git history
Imagine that you wanted to see just the commits that this crispy8888 fellow had
made in the repository. Git gives you the ability to filter the output of git log to a
particular author.

Execute the following command:

git log --author=crispy8888 --oneline

Git shows you the one change this fellow made:

7393822 Initial commit

If you want to search on a name that consists of two or more parts, simply enclose
the name in quotation marks:

git log --author="Chris Belanger" --oneline

You can also search the commit messages of the repository, independent of who
made the change.

Execute the following to find the commits, which have a commit message that
contains the word “ideas”:

git log --grep=ideas --oneline

You should see something similar to the following:

ffcedc2 Adds all the good ideas about management
8409427 Removes terrible live streaming ideas
67fd0aa Moves platform ideas to website directory
0ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas
629cc4d Some scratch ideas for the iOS team
fbc46d3 Adding files for article ideas
43b4998 Adding book ideas file
c596774 Adding some video platform ideas
06f468e Adding content ideas for videos

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 92

Note: Wondering what grep means? grep is a reference to a command line
tool that stands for “global search regular expression and print”. grep is a
wonderfully useful and powerful command line tool, and “grep” has come to
be recognized in general usage as a verb that means “search,” especially in
conjunction with regular expressions.

What if you’re interested in just a single file? That’s easy to do in Git.

Execute the following command to see all of the full commit messages for books/
book_ideas.md:

git log --oneline books/book_ideas.md

You’ll see all the commits for just that file:

57f31b3 Added new book entry and marked Git book complete
39c26dd I should write a book on git someday
43b4998 Adding book ideas file

You can also see the commits that happened to the files in a particular directory:

git log --oneline books

This shows you all the changes that happened in that directory, but it’s not clear
which files were changed.

To get a clearer picture of which files were changed in that directory, you can throw
the --stat option on top of that command:

git log --oneline --stat books

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 93

This shows you the following details about the changes in this directory so that you
can see what was changed, and even get a glimpse into how much was changed:

ffcedc2 Adds all the good ideas about management
 books/management_book_ideas.md | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
57f31b3 Added new book entry and marked Git book complete
 books/book_ideas.md | 3 ++-
 1 file changed, 2 insertions(+), 1 deletion(-)
39c26dd I should write a book on git someday
 books/book_ideas.md | 1 +
 1 file changed, 1 insertion(+)
43b4998 Adding book ideas file
 books/book_ideas.md | 9 +++++++++
 1 file changed, 9 insertions(+)
becd762 Creating the directory structure
 books/.keep | 0
 1 file changed, 0 insertions(+), 0 deletions(-)

You can also search the actual contents of the commit itself; that is, the changeset of
the commit. This lets you look inside of your commits for particular words of interest
or even whole snippets of code.

Find all of the commits in your code that deal with the term “Fortran” with the
following command:

git log -S"Fortran"

You’ll see the following:

commit 43b4998d7bf0a6d7f779dd2c0fa4fe17aa3d2453
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:12:36 2019 -0400

 Adding book ideas file

There’s just the one commit, where the book ideas file was initially added. But, again,
that’s not quite enough detail. Can you recall which option you can use to show the
actual changes in the commit?

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 94

That’s right: It’s the -p option. Execute the command above, but this time, add the
-p option to the end:

git log -S"Fortran" -p

You’ll see a bit more detail now:

commit 43b4998d7bf0a6d7f779dd2c0fa4fe17aa3d2453
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:12:36 2019 -0400

 Adding book ideas file

diff --git a/books/book_ideas.md b/books/book_ideas.md
new file mode 100644
index 0000000..f924368
--- /dev/null
+++ b/books/book_ideas.md
@@ -0,0 +1,9 @@
+# Ideas for new book projects
+
+- [] Hotubbing by tutorials
+- [x] Advanced debugging and reverse engineering
+- [] Animal husbandry by tutorials
+- [] Beginning tree surgery
+- [] CVS by tutorials
+- [] Fortran for fun and profit
+- [x] RxSwift by tutorials

That’s better! You can now see the contents of that commit, where Git found the
term “Fortran”.

You’ve learned quite a lot about git log in this chapter, probably more than the
average Git user knows. As you use Git more and more in your workflow, and as the
history of your project grows from months to years, you’ll find that git log will
eventually be your best friend, and better at recalling things than your brain could
ever be.

Challenges
Speaking of brains, why don’t you exercise yours and reinforce the skills you learned
in this chapter by taking on the four challenges of this chapter?

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 95

Challenge 1: Show all the details of commits
that mark items as “done”
For this challenge, you need to find all of the commits where items have been ticked
off as “done”; that is, ones that have an “x” inside the brackets, like so:

[x]

You’ll need to search for the above string, and you’ll need to use an option to not
only show the basic commit details, but also show the contents of the changeset of
the commit.

Challenge 2: Find all the commits with
messages that mention “streaming”
You want to search through the commit messages to find where you or someone else
has used the term “streaming” in the commit message itself, not necessarily in the
content of the commit. Tip: What was that strangely named command you learned
about earlier in this chapter?

Challenge 3: Get a detailed history of the
videos directory
For this challenge, you need to show everything that’s happened inside the videos
directory, as far as Git’s concerned. But, once again, the basic information about the
commit is not enough. You also need to show the full details about that diff. So you’ll
tag a familiar option on to the end of the command… or can you?

Challenge 4: Find detailed information about
all commits that contain “iOS 13”
In this final challenge, you need to find the commits whose diffs contain the term
“iOS 13.” This sounds similar to Challenge 1 above, but if you try to use the same
command as you did in that challenge, you won’t find any results. But trust me, there
is at least one result in there. Tip: Did you remember to search “all” of the
repository?

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 96

Key points
• git log by itself shows a basic, vanilla view of the ancestral commits of the

current HEAD.

• git log -p shows the diff of a commit.

• git log -n shows the last n commits.

• git log --oneline shows a concise view of the short hash and the commit
message.

• You can stack options on git log, as in git log -8 --oneline to show the last 8
commits in a condensed form.

• git log --graph shows a crude but workable graphical representation of your
repository.

• git log --all shows commits on other branches in the repository, not just the
ancestors of the current HEAD.

• git shortlog shows a summary of commits, grouped by their author them, in
increasing time order.

• git log --author="<authorname>" lets you search for commits by a particular
author.

• git log --grep="<term>" lets you search commit messages for a particular
term.

• git log <path/to/filename> will show you just the commits associated with
that one file.

• git log <directory> will show you the commits for files in a particular
directory.

• git log --stat shows a nice overview of the scope and scale of the change in
each commit.

• git log -S"<term>" lets you search the contents of a commit’s changeset for a
particular term.

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 97

Where to go from here?
You’ve learned a significant amount about how Git works under the hood, how
commits work, how the staging area works, how to undo things you didn’t mean to
do, how to ignore files and how to leverage the power of git log to unravel the
secrets of your repository.

But one thing you haven’t yet really touched on is what makes Git so elegant and
useful: its powerful branching model.

In fact, Git’s branching mechanism is what sets it apart from most other version
control systems, since it works extremely well with the way most developers go
about their projects.

In the next chapter, you’ll learn what master really means, how to create branches,
how Git “thinks” about branches in your repository, the difference between local and
remote repositories, how to switch branches, how to delete branches and more.

Git Apprentice Chapter 6: Git Log & History

raywenderlich.com 98

7Chapter 7: Branching

One of the driving factors behind Git’s original design was to support the messy,
non-linear approach to development that stems from working on large-scale, fast-
moving projects. The need to split off development from the main development line,
make changes independently and in isolation of other changes on the main
development line, easily merge those changes back in, and do all this in a lightweight
manner, was what drove the creators of Git to build a very lightweight, elegant model
to support this kind of workflow.

In this chapter, you’ll explore the first half of this paradigm: branching. You’ve
touched on branching quite briefly in Chapter 1, “A Crash Course in Git,” but you
probably didn’t quite understand what you, or Git, were doing in that moment.

Although you can hobble through your development career never really
understanding how branching in Git actually works, branching is incredibly
important to the development workflows of many development teams, both large
and small, so knowing what’s going on under the hood, and having a solid mental
model of your repository’s branching structure will help you immensely as your
projects grow in size and complexity.

raywenderlich.com 99

What is a commit?
That question was asked and answered in a shallow manner a few chapters ago, but
it’s a good time to revisit that question and explore commits in more detail.

Recall that a commit represents the state of your project tree — your directory — at a
particular point in time:

├── LICENSE
├── README.md
├── articles
│ ├── clickbait_ideas.md
│ ├── ios_article_ideas.md
│ └── live_streaming_ideas.md
├── books
│ └── book_ideas.md
└── videos
 ├── content_ideas.md
 └── platform_ideas.md

You probably think about your files primarily in terms of their content, their position
inside the directory hierarchy, and their names. So when you think of a commit,
you’re likely to think about the state of the files, their content and names at a
particular point in time. And that’s correct, to a point: Git also adds some more
information to that “state of your files” concept in the form of metadata.

Git metadata includes such things like “when was this committed?” and “who
committed this?”, but most importantly, it includes the concept of “where did this
commit originate from?” — and that piece of information is known as the commit’s
parent. A commit can have one or two parents, depending on how it was branched
and merged back in, but you’ll get to that point later.

Git takes all that metadata, including a reference to this commit’s parent, and wraps
that up with the state of your files as the commit. Git then hashes that collection of
things using SHA1 to create an ID, or key, that is unique to that commit inside your
repository. This makes it extremely easy to refer to a commit by its hash value, or as
you saw in the previous chapter, its short hash.

Git Apprentice Chapter 7: Branching

raywenderlich.com 100

What is a branch?
The concept of a branch is massively simple in Git: It’s simply a reference, or a label,
to a commit in your repository. That’s it. Really. And because you can refer to a
commit in Git simply through its hash, you can see how creating branches is a
terribly cheap operation. There’s no copying, no extra cloning, just Git saying “OK,
your new branch is a label to commit 477e542”. Boom, done.

As you make commits on your branch, that label for the branch gets moved forward
and updated with the hash of each new commit. Again, all Git does is update that
label, which is stored as a simple file in that hidden .git repository, as a really cheap
operation.

You’ve been working on a branch all along — did you realize that? Yes, master, or
main, or whatever you’ve chosen as the originating branch of your repository, is
nothing but a regular branch. It’s only by convention, and the default name that Git
applies to this default branch when it creates a new repository, that we say “Oh, the
master branch is the original branch.”

Note: As of version 2.28.0, Git now provides a setting by which you can
control the label to be used when you create the first branch in a new
repository. This defaults to master, but you can choose to set this to main or
whatever you like.

The setting is init.defaultBranch, and you can change it with the following
command:$ git config --global init.defaultBranch main

This sets the default branch name to main.

This only affects new repositories that you create; it doesn’t change the
default branch name of any existing repositories.

There’s nothing special about master or main; again, Git simply knows that the
master or main branch is a revision in your repository pointed to by a simple label
held in a file on disk. Sorry to dash any notion that master or main was magic or
something.

Git Apprentice Chapter 7: Branching

raywenderlich.com 101

Creating a branch
You created a branch before in the crash-course chapter, but now you’re going to
create a branch and watch exactly what Git is doing.

The command to create a branch in Git is, unsurprisingly, git branch, followed by
the name of your branch.

Execute the following command to create a new branch:

git branch testBranch

Git finishes that action with little fanfare, since a new branch is not a big deal to Git.

How Git tracks branches
To see that Git actually did something, execute the following command to see what
Git’s done in the background:

ls .git/refs/heads/

This directory contains the files that point to all of your branches. I get the following
result of two files in that directory:

master testBranch

Oh, that’s interesting — a file named testBranch, the same as your branch name.
Take a look at testBranch to see what’s inside, using the following command:

cat .git/refs/heads/testBranch

Wow — Git is really bare-bones about branches. All that’s in there is a single hash
value. To take this to a new level of pedantry, you can prove that the label
testBranch is pointing to the actual latest commit on your repository.

Execute the following to see the latest commit:

git log -1

You’ll see something like the following (your hash will be different than mine):

commit 477e542bfa35942ddf069d85fbe3fb0923cfab47 (HEAD -> master,
testBranch)

Git Apprentice Chapter 7: Branching

raywenderlich.com 102

Author: Chris Belanger <chris@razeware.com>
Date: Wed Jan 23 16:49:56 2019 -0400

 Adding .gitignore files and HTML

Let’s pick this apart a little. The commit referenced here is, indeed, the same hash as
contained in testBranch. The next little bit, (HEAD -> master, testBranch),
means that this commit is pointed to by both the master and the testBranch
branches. The reason this commit is pointed to by both labels is because you’ve only
created a new branch, and not created any more commits on this branch. So the label
can’t move forward until you make another commit.

Checking your current branch
Git can easily tell you which branch you’re on, if you ever need to know. Execute the
following command to verify you’re working on testbranch:

git branch

Without any arguments or options, git branch simply shows you the list of local
branches on your repository. You should have the two following branches listed:

* master
 testBranch

The asterisk indicates that you’re still on the master branch, even though you’ve
just created a new branch. That’s because Git won’t switch to a newly created branch
unless you tell it explicitly.

Switching to another branch
To switch to testBranch, execute the checkout command like so:

git checkout testBranch

Git responds with the following:

Switched to branch 'testBranch'

That’s really all there is to creating and switching between branches.

Git Apprentice Chapter 7: Branching

raywenderlich.com 103

Note: Admittedly, the term checkout is a bit of a misnomer, since if you’ve
ever owned a library card, you know that checking out a book makes that book
inaccessible to anyone else until you return it.

That term is a holdover from the way that some older version control systems
functioned, as they used a lock-modify-unlock model, which prevented anyone
else from modifying the file at the same time. It worked really well for
preventing merge conflicts, but pretty much killed any form of distributed,
concurrent development.

Speaking of old version control systems, if any of you used PVCS Version
Manager back in the day (c. 2000 or so), drop me a line and we can swap horror
stories about the amazingly sparse documentation, the endless fighting with
semaphores, and all the other fun bits that came along with that piece of
software.

That’s enough poking around with testBranch, so switch back to master with the
following command:

git checkout master

You really don’t need testBranch anymore, since there are other, real branches to be
explored. Delete testBranch with the following command:

git branch -d testBranch

Time to take a look at some real branches. You already have one in your repository,
just waiting for you to go in and start doing some work… what’s that? Oh, you don’t
remember seeing that branch when you last executed git branch? That’s because
git branch by itself only shows the local branches in your repository.

When you first cloned this repository (which was a fork from the original ideas
repository), Git started tracking both the local repository, as well as the remote
repository — i.e., the forked repository that you created on GitHub. Git knows about
the branches on the remote as well as on your local system.

So because of this synchronization between your local repository and the remote
repository, Git knows that any commits you make locally — and will likely push back
to the remote — belong on a particular, matching, remote branch. Equally well, Git
knows that any changes made on a branch on the remote — perhaps by a fellow
developer somewhere in the world — belong in a specific, matching directory on your
local system.

Git Apprentice Chapter 7: Branching

raywenderlich.com 104

Viewing local and remote branches
To see all of the branches that Git knows about on this repository, either local or
remote, execute the following command:

git branch --all

Git will respond with something similar to the following:

* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/clickbait
 remotes/origin/master

Git shows you all of the branches in your local and remote repositories. In this case,
the remote only has one branch: clickbait. All of the other branches listed are
effectively master or pointers to master.

You have some work to do on the clickbait branch. If everyone else is doing it, you
should, too, right? To get this branch down to your machine, tell Git to start tracking
it, and switch to this branch all in one action, execute the following command:

git checkout --track origin/clickbait

Git responds with the following:

Branch 'clickbait' set up to track remote branch 'clickbait'
from 'origin'.
Switched to a new branch 'clickbait'

Explaining origin
OK, what is this origin thing that you keep seeing?

origin is another one of those convenience conventions that Git uses. Just like
master is the default name for the first branch created in your repository, origin is
the default alias for the location of the remote repository from where you cloned
your local repository.

Git Apprentice Chapter 7: Branching

raywenderlich.com 105

To see this, execute the following command to see where Git thinks origin lives:

git remote -v

You should see something similar to the following:

origin https://www.github.com/belangerc/ideas (fetch)
origin https://www.github.com/belangerc/ideas (push)

You’ll have something different in your URLs, instead of belangerc. But you can see
here that origin is simply an alias for the URL of the remote repository. That’s all.

To see Git’s view of all local and remote branches now, execute the following
command:

git branch --all -v

Git will respond with its understanding of the current state of the local and remote
branches, with a bit of extra information provided by the -v (verbose) option:

* clickbait e69a76a Adding suggestions from Mic
 master 477e542 [ahead 8] Adding .gitignore
files and HTML
 remotes/origin/HEAD -> origin/master
 remotes/origin/clickbait e69a76a Adding suggestions from Mic
 remotes/origin/master c470849 Going to try this
livestreaming thing

Git tells you that you are on the clickbait branch, and you can also see that the hash
for the local clickbait branch is the same as the remote one, as you’d expect.

Of interest is the master branch, as well. Git is tracking your local master branch
against the remote one, and it knows that your local master branch is eight commits
ahead of the remote. Git will also let you know if you’re behind the remote branch as
well; that is, if there are any commits on the remote branch that you haven’t yet
pulled down to your local branch.

Viewing branches graphically
To see a visual representation of the current state of your local branches, execute the
following command:

git log --oneline --graph

Git Apprentice Chapter 7: Branching

raywenderlich.com 106

The tip of the graph, which is the latest commit, tells you where you are:

* e69a76a (HEAD -> clickbait, origin/clickbait) Adding
suggestions from Mic

Your current HEAD points to the clickbait branch, and you’re at the same point as
your remote repository.

A shortcut for branch creation
I confess, I took you the long way ’round with that command git checkout --
track origin/clickbait, but seeing the long form of that command hopefully
helped you understand what Git actually does when it checks out and tracks a branch
from the remote.

There’s a much shorter way to checkout and switch to an existing branch on the
remote: git checkout clickbait works equally well, and is a bit easier to type and
to remember.

When you specify a branch name to git checkout, Git checks to see if there is a
local branch that matches that name to switch to. If not, then it looks to the origin
remote, and if it finds a branch on the remote matching that name, it assumes that is
the branch you want, checks it out for you, and switches you to that branch. Rather
nice of it to take care of all that for you.

There’s also a shortcut command which solves the two-step problem of git branch
<branchname> and git checkout <branchname>: git checkout -b
<branchname>. This, again, is a faster way to create a local branch.

Now that you have seen how to create, switch to, and delete branches, it’s time for
the short challenge of this chapter, which will serve to reinforce what you’ve learned
and show you what to do when you want to delete a local branch that already has a
commit on it.

Git Apprentice Chapter 7: Branching

raywenderlich.com 107

Challenge

Challenge: Delete a branch with commits
You don’t want to muck up your existing branches for this challenge, so you’ll need
to create a temporary local branch, switch to it, make a commit, and then delete that
branch.

1. Create a temporary branch with the name of newBranch.

2. Switch to that branch.

3. Use the touch command to create an empty README.md file in the root
directory of your project.

4. Add that new README.md file to the staging area.

5. Commit that change with an appropriate message.

6. Checkout the master branch.

7. Delete newBranch — but Git won’t let you delete this branch in its current state.
Why?

8. Follow the suggestion that Git gives you to see if you can delete this branch.

Remember to use git status, git branch and git log --oneline --graph --
all to help get your bearings as you work on this challenge.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenge folder for this chapter.

Git Apprentice Chapter 7: Branching

raywenderlich.com 108

Key points
• A commit in Git includes information about the state of the files in your

repository, along with metadata such as the commit time, the commit creator, and
the commit’s parent or parents.

• The hash of your commit becomes the unique ID, or key, to identify that particular
commit in your repository.

• A branch in Git is simply a reference to a particular commit by way of its hash.

• master is simply a convenience convention, but has come to be accepted as the
original branch of a repository. main is also another common convenience branch
name in lieu of master.

• Use git branch <branchname> to create a branch.

• Use git branch to see all local branches.

• Use git checkout <branchname> to switch to a local branch, or to checkout and
track a remote branch.

• Use git branch -d <branchname> to delete a local branch.

• Use git branch --all to see all local and remote branches.

• origin, like master, is simply a convenience convention that is an alias for the
URL of the remote repository.

• Use git checkout -b <branchname> to create and switch to a local branch in
one fell swoop.

Where to go from here?
Get used to branching in Git, because you’ll be doing it often. Lightweight branches
are pretty much the reason that Git has drawn so many followers, as it matches the
workflow of concurrent development teams.

But there’s little point in being able to branch and work on a branch, without being
able to get your work joined back up to the main development branch. That’s
merging, and that’s exactly what you’ll do in the next chapter!

Git Apprentice Chapter 7: Branching

raywenderlich.com 109

8Chapter 8: Merging

Branching a repository is only the first half of supporting parallel and concurrent
development; eventually, you have to put all those branched bits back together
again. And, yes, that operation can be as complex as you think it might be!

Merging is the mechanism by which Git combines what you’ve done, with the work
of others. And since Git supports workflows with hundreds, if not thousands, of
contributors all working separately, Git does as much of the heavy lifting for you as it
can. Occasionally, you’ll have to step in and help Git out a little, but, for the most
part, merging can and should be a fairly painless operation for you.

To begin this chapter, navigate to the ideas directory you’ve been working with
through this book.

raywenderlich.com 110

A look at your branches
To start, switch to the clickbait branch of this repository with the following
command:

git checkout clickbait

If you were to visualize the branching history of your current ideas repository, with
you sitting on the clickbait branch, it would look something like this :

In the image above, you can see the following:

1. This is your local master branch. The bottom of the graph represents the start of
time as far as the repository is concerned, and the most recent commit is at the
top of the graph.

2. This is the master branch on origin — that is, the remote repository. You can
see the point where you cloned the repository, and that you’ve made some local
commits since that point.

Git Apprentice Chapter 8: Merging

raywenderlich.com 111

3. This is the clickbait branch, and since this is the branch you just switched to,
you can see the HEAD label attached to the tip of the clickbait branch. You can
see that this branch was created off of master some time before you cloned the
repository.

4. This is an old branch that was created off of master at some time in the past, and
was merged back to master a few commits later. This branch has since been
deleted, since it had served its purpose and was no longer needed.

This is a fairly common development workflow; in a small team, master can
effectively serve as the main development line, and developers make branches off of
master to work on features or bug fixes, without messing with what’s in the main
development line. Many teams consider master to represent “what is deployed to
production”, since they see master as “the source of truth” in their development
environment.

Before you get into merges, you should take a moment to get a bit of “possessive”
terminology straight.

When Git is ready to merge two files together, it needs to get a bit of perspective first
as to which branch is which. Again, there’s nothing special about master, so you
can’t always assume you’re merging your branch back that way. In practice, you’ll
find that you often merge between branches that aren’t master.

So, therefore, Git thinks about branches in terms of ours and theirs. “Ours” refers to
the branch to which you’re merging back to, and “theirs” refers to the branch that
you want to pull into “ours”.

Let’s say you want to merge the clickbait branch back into master. In this case, as
shown in the diagram below, master is ours and the clickbait branch would be
theirs. Keeping this distinction straight will help you immeasurably in your merging
career.

Git Apprentice Chapter 8: Merging

raywenderlich.com 112

Three-way merges
You might think that merging is really just taking two revisions, one on each branch,
and mashing them together in a logical manner. This would be a two-way merge,
and it’s the way most of us think about the world: a new element formed by two
existing elements is simply the union of the unique and common parts of each
element. However, a merge in Git actually uses three revisions to perform what is
known as a three-way merge.

To see why this is, take a look at the two-way merge scenario below. You have one
simple text file; you’re working on one copy of the file while your friend is working
on another, separate copy of that same file.

The original file.

You delete a line from the top of the file, and your friend adds a line to the bottom of
the file.

Chris’ changes on the left; Sam’s changes on the right.

Now imagine that you and your friend hand off your work to an impartial third party
to merge this text file together. Now, this third party has literally no idea as to what
the original state of this file was, so she has to make a guess as to what she should
take from each file.

With no background of what the starting point was, the person responsible to merge tries
to preserve as many lines as possible in common to both files.

Git Apprentice Chapter 8: Merging

raywenderlich.com 113

The end result is not quite what you intended, is it? You’ve ended up with all four
lines; the impartial third party reviewer probably assumed Sam added a line to the
top as well as a line to the bottom of Chris’ work.

To perform an educated merge of these two files, your impartial third party has to
know about the common ancestor of both of these files. This common ancestor is
the third revision that comes in to play with a three-way merge.

Now, imagine you and your friend also provided the original file that you both
started with — the common ancestor — to your impartial third party. She could
compare each new file’s changes to the original file, figure out the diff of your
changes, figure out the diff of your friend’s changes, and create the correct resulting
merged document from the diffs of each.

Knowing the origin of each set of changes lets you detect that Line 1 was deleted by Chris,
and Line 4 was added by Sam.

That’s better. And this, essentially, is what Git does in an automated fashion. By
performing three-way merges on your content, Git gets it right most of the time.
Once in a while, Git won’t be able to figure things out on its own, and you’ll have to
go in there and help it out a little bit. But you’ll get into these scenarios a little later
on in this book when you work on merge conflicts, which are a lot less scary than
they sound.

The result is what you both intended.

Git Apprentice Chapter 8: Merging

raywenderlich.com 114

It’s time for you to try out some merging yourself. Open up Terminal, navigate to the
folder that houses your repository, and get ready to see how merging works in action.

Merging a branch
In this scenario, you’re going to look at the work that someone else has made in the
clickbait branch of the ideas repository, and merge those changes back into
master.

Make sure you’re on the clickbait branch by executing the following command (if
you haven’t already done this):

git checkout clickbait

Execute the following command to see what’s been committed on this branch that
you’ll want to merge back to master:

git log clickbait --not master

This little gem is quite nice to keep on hand, as it tells you “what are the commits
that are just in the clickbait branch, but not in master?” Just executing git log
shows you all history of this branch, right back to the original creation of the master
branch, which is too much information for your purposes.

You’ll see the following output:

commit e69a76a6febf996a44a5de4dda6bde8569ef02bc (HEAD ->
clickbait, origin/clickbait)
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:28:14 2019 -0400

 Adding suggestions from Mic

commit 5096c545075411b09a6861a4c447f1af453933c3
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:27:10 2019 -0400

 Adding first batch of clickbait ideas

Ok, there’s two changes to merge back in; guess you’d better get cracking and merge
these clickbait ideas before you lose any more traffic to your site.

Git Apprentice Chapter 8: Merging

raywenderlich.com 115

To see the contents of the new file that’s in this branch, execute the following
command:

cat articles/clickbait_ideas.md

Some great ideas in there, for sure.

Recall that merging is the action of pulling in changes that have been done on
another branch. In this case, you want to pull the changes from clickbait into the
master branch. To do that, you’ll have to be on the master branch first.

Execute the following to move to the master branch:

git checkout master

Now, what’s in that articles/clickbait_ideas.md you looked at in the other branch?
Execute that same command, again:

cat articles/clickbait_ideas.md

There’s nothing in there. That’s OK — you’ll soon fill up that file with the ideas
you’re merging from the clickbait branch.

You’re now back on the master branch, ready to pull in the changes from the
clickbait branch. Execute the following command to merge the changes from
clickbait to master:

git merge clickbait

Oh, heck, you’re back in Vim. Well, at least Git has created a nice default message for
you: Merge branch 'clickbait' into master. That’s enough detail for this
merge, so simply accept this commit message and exit out:

• Press : (colon) to enter Command mode.

• Type wq and press Enter to write this file and quit the Vim editor.

As soon as you quit Vim, Git starts the merge operation for you and commits that
merge, and it’s likely done even before you know it.

Git Apprentice Chapter 8: Merging

raywenderlich.com 116

Now, you can take a look at Git’s graphical representation of the repository at this
point with git log --oneline --graph --all:

* 55fb2dc (HEAD -> master) Merge branch 'clickbait' into
master
|\
| * e69a76a (origin/clickbait, clickbait) Adding suggestions
from Mic
| * 5096c54 Adding first batch of clickbait ideas
* | 477e542 Adding .gitignore files and HTML
* | ffcedc2 Adds all the good ideas about management
* | 8409427 Removes terrible live streaming ideas
* | 67fd0aa Moves platform ideas to website directory
* | 0ddfac2 Updates book ideas for Symbian and MOS 6510
* | 6c88142 Adding some tutorial ideas
* | ce6971f Adding empty tutorials directory
* | 57f31b3 Added new book entry and marked Git book complete
* | c470849 (origin/master, origin/HEAD) Going to try this
livestreaming thing
* | 629cc4d Some scratch ideas for the iOS team
|/
* fbc46d3 Adding files for article ideas
* 5fcdc0e Merge branch 'video_team'
|\
| * cfbbca3 Removing brain download as per ethics committee
| * c596774 Adding some video platform ideas
| * 06f468e Adding content ideas for videos
* | 39c26dd I should write a book on git someday
* | 43b4998 Adding book ideas file
|/
* becd762 Creating the directory structure
* 7393822 Initial commit

You can see at the top of the graph that Git has merged in your clickbait branch to
master and that HEAD has now moved up to the latest revision, i.e., your merge
commit.

If you want to prove that the file has now been brought into the master branch,
execute the following command:

cat articles/clickbait_ideas.md

You’ll see the contents of the file spat out to the console.

Git Apprentice Chapter 8: Merging

raywenderlich.com 117

Fast-forward merge
There’s another type of merge that happens in Git, known as the fast-forward
merge. To illustrate this, think back to the example above, where you and your friend
were working on a file. Your friend has gone away (probably hired away by Google or
Apple, lucky sod), and you’re now working on that file by yourself.

Once you’ve finished your revisions, you take your updated file, along with the
original file (the common ancestor, again) to your impartial third party for merging.
She’s going to look at the common ancestor file, along with your new file, but she
isn’t going to see a third file to merge.

In this case, she’s just going to commit your file on top of of the old file, because
there’s nothing to merge.

If there are no other changes to the file to merge, Git simply commits your file over top of
the original.

If no other person had touched the original file since you picked it up and started
working on it, there’s no real point in doing anything fancy, here. And while Git is far
from lazy, it is terribly efficient and only does the work it absolutely needs to do to
get the job done. This, in effect, is exactly what a fast-forward merge does.

To see this in action, you’ll create a branch off of master, make a commit, and then
merge the branch back to master to see how a fast-forward merge works.

Git Apprentice Chapter 8: Merging

raywenderlich.com 118

First, execute the following to ensure you’re on the master branch:

git checkout master

Now, create a branch named readme-updates to hold some changes to the
README.md file:

git checkout -b readme-updates

Git creates that branch and automatically switches you to it. Now, open
README.md in your favorite text editor, and add the following text to the end of
the file:

This repository is a collection of ideas for articles, content
and features at raywenderlich.com.

Feel free to add ideas and mark taken ideas as "done".

Save your changes, and return to Terminal. Stage your changes with the following
command:

git add README.md

Now, commit that staged change with an appropriate message:

git commit -m "Adding more detail to the README file"

Now, to merge that change back to master. Remember — you need to be on the
branch you want to pull the changes into, so you’ll have to switch back to master
first:

git checkout master

Now, before you merge that change in, take a look at Git’s graph of the repository,
using the --all flag to look on all branches, not just master:

git log --oneline --graph --all

Take a look at the top two lines of the result:

* 78eefc6 (readme-updates) Adding more detail to the README file
* 55fb2dc (HEAD -> master) Merge branch 'clickbait' into
master

Git Apprentice Chapter 8: Merging

raywenderlich.com 119

Git doesn’t represent this as a fork in the branch — because it doesn’t need to. Just as
you saw in the example above with the single file, there’s no need to merge anything,
here. And that begs the question: If there’s nothing to merge here, what will the
resulting commit look like?

Time to find out! Execute the following command to merge readme-updates to
master:

git merge readme-updates

Git tells you that it’s done a fast-forward merge, right in the output:

~/GitApprentice/ideas $ git merge readme-updates
Updating 55fb2dc..78eefc6
Fast-forward
 README.md | 4 ++++
 1 file changed, 4 insertions(+)

You’ll notice that Git didn’t bring up the Vim editor, prompting you to add a commit
message. You’ll see why this is the case in just a moment. First, have a look at the
resulting graph of the repository, using the command below:

git log --oneline --graph --all

Take a close look at the top two lines of the result. It looks like nothing much has
changed, but take a look at where HEAD points now:

* 78eefc6 (HEAD -> master, readme-updates) Adding more detail to
the README file
* 55fb2dc Merge branch 'clickbait' into master

Here, all Git has done is move the HEAD label to your latest commit. And this makes
sense; Git isn’t going to create a new commit if it doesn’t have to. It’s easier to just
move the HEAD label along, since there’s nothing to merge in this case. And that’s
why Git didn’t prompt you to enter a commit message in Vim for this fast-forward
merge.

Forcing merge commits
You can force Git to not treat this as a fast-forward merge, if you don’t want it to
behave that way. For instance, you may be following a particular workflow in which
you check that certain branches have been merged back to master before you build.

Git Apprentice Chapter 8: Merging

raywenderlich.com 120

But if those branches resulted in a fast-forward merge, for all intents and purposes, it
will look like those changes were done directly on master, which isn’t the case.

To force Git to create a merge commit when it doesn’t really need to, all you need to
do is add the --no-ff option to the end of your merge command. The challenge for
this chapter will let you create a fast-forward situation, and see the difference
between a merge commit and a fast-forward merge.

Note: Why wouldn’t you always want a merge commit, especially if branching
and merging are such cheap operations in Git? What’s the point of moving
HEAD along? Wouldn’t it just be more clear to always have a merge commit?

This is a question that’s just about as politically loaded as the age-old PC vs.
Mac debate, the Android vs. iOS debate, or the cats vs. dogs debate (in which
case, the answer is “dogs,” if you were wondering).

This becomes particularly important on larger software projects with multiple
contributors, where your commit history can have thousands upon thousands
of commits over time. Merge commits can be seen as preserving the historical
context of a feature or bugfix branch; it’s clear that you branched, fixed, and
then merged back in. Conversely, having lots of branches and merge commits
— especially implicit merge commits, which you’ll encounter later in this book
— can make a repository’s history harder to read and understand.

There’s no real “right” answer, here; but don’t believe people on the internet
who claim that “merge commits are evil,” because they’re not. Git’s job is to do
its best to record what happened in your repository, and your workflow
shouldn’t necessarily have to change just to make sure that your commit
history is linear and clean. However, you’ll undoubtedly work with teams on
both sides of the issue, so as long as you understand merge commits in Git,
you’ll do just fine, no matter which workflow your team champions.

Git Apprentice Chapter 8: Merging

raywenderlich.com 121

Challenge

Challenge: Create a non-fast-forward merge
For this challenge, you’ll create a new branch, make a modification to the
README.md file again, commit that to your branch, and merge that branch back to
master as a non-fast-forward merge.

This challenge will require the following steps:

1. Ensure you’re on the master branch.

2. Create a branch named contact-details.

3. Switch to that branch.

4. Edit the README.md file and add the following text to the end of the file:
“Contact: support@razeware.com”.

5. Save your edits to the file.

6. Stage your changes.

7. Commit your changes with an appropriate commit message, such as “Adding
README contact information.”

8. Switch back to the master branch.

9. Pull up the graph of the repository, and don’t forget to use the --all option to
see history of all branches. Make note of how master and contact-details look
on this graph.

10. Merge in the changes from contact-details, using the --no-ff option.

11. Enter something appropriate in the merge message in Vim when prompted. Use
the cheatsheet above to help you navigate through Vim if necessary.

12. Pull up the graph of the repository again. How can you tell that this is a merge
commit, and not a fast-forward commit?

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenge folder for this chapter.

Git Apprentice Chapter 8: Merging

raywenderlich.com 122

Key points
• Merging combines work done on one branch with work done on another branch.

• Git performs three-way merges to combine content.

• Ours refers to the branch to which you want to pull changes into; theirs refers to
the branch that has the changes you want to pull into ours.

• git log <theirs> --not <ours> shows you what commits are on the branch
you want to merge, that aren’t in your branch already.

• git merge <theirs> merges the commits on the “theirs” branch into “our”
branch.

• Git automatically creates a merge commit message for you, and lets you edit it
before continuing with the merge.

• A fast-forward merge happens when there have been no changes to “ours” since
you branched off “theirs”, and results in no merge commit being made.

• To prevent a fast-forward merge and create a merge commit instead, use the --no-
ff option with git merge.

Where to go from here?
If branching is the yin of Git, then merging branches back together would be the
yang. Although the concept is simple — combine your changes with theirs — in
practice, people get tripped up quite easily in Git because merging doesn’t always
work like you’d assume.

The next chapter, Syncing with a Remote, takes you beyond your local environment,
and shows you how to synchronize your local changes with what’s up on the server.

Git Apprentice Chapter 8: Merging

raywenderlich.com 123

9Chapter 9: Syncing With a
Remote

Up to this point in the book, you’ve worked pretty much exclusively on your local
system, which isn’t to say that’s a bad thing — having a Git repository on your local
machine can support a healthy development workflow, even when you are working
by yourself.

But where Git really shines is in managing distributed, concurrent development, and
that’s what this chapter is all about. You’ve done lots of great work on your machine,
and now it’s time to push it back to your remote repository and synchronize what
you’ve done with what’s on the server.

And there’s lots of reasons to have a remote repository somewhere, even if you are
working on your own. If you ever need to restore your development environment,
such as after a hard drive failure, or simply setting up another development machine,
then all you have to do is clone your remote repository to your clean machine.

And just because you’re working on your own now doesn’t mean that you won’t
always want to maintain this codebase yourself. Down the road, you may want
another maintainer for your project, or you may want to fully open-source your code.
Having a remote hosted repository makes doing that trivial.

raywenderlich.com 124

Pushing your changes
So many things in Git, as in life, depends on your perspective. Git has perspective
standards when synchronizing local repositories with remote ones: Pushing is the
act of taking your local changes and putting them up on the server, while pulling is
the act of pulling any changes on the server into your local cloned repository.

So you’re ready to push your changes, and that brings you to your next Git command,
handily named git push.

Execute the following command to push your changes up to the server:

git push origin master

This tells Git to take the changes from the master branch and synchronize the
remote repository (origin) with your changes. You’ll see output similar to the
following:

Counting objects: 40, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (36/36), done.
Writing objects: 100% (40/40), 3.96 KiB | 579.00 KiB/s, done.
Total 40 (delta 18), reused 0 (delta 0)
remote: Resolving deltas: 100% (12/12), completed with 3 local
objects.
To https://www.github.com/belangerc/ideas.git
 c470849..f5c54f0 master -> master

Git’s given you a lot of output in this message, but essentially it’s telling you some
high-level information about what it’s done, here: It’s synchronized 12 changed
items from your local repository on the remote repository.

Note: Wondering why Git didn’t prompt you for a commit message, here?
That’s because a push is not really committing anything; what you’re doing is
asking Git to take your changes and synchronize them onto the remote
repository. You’re combining your commits with those already on the remote,
not creating a new commit on top of what’s already on the remote.

Want to see the effect of your changes? Head over to the URL for your repository on
GitHub. If you’ve forgotten what that is, you can find it in the output of your git
push command. In my case, it’s https://www.github.com/belangerc/ideas, but
yours will have a different username in there.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 125

Once there, click the 25 commits link near the top of your page:

You’ll be taken to a list of all of your synchronized changes in your remote
repository, and you should recognize the commits that you’ve made in your local
repository:

That’s one half of the synchronization dance. And the yin to git push’s yang is,
unsurprisingly. git pull.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 126

Pulling changes
Pulling changes is pretty much the reverse scenario of pushing; Git takes the
commits on the remote repo, and it integrates them all with your local commits.

That operation is pretty straightforward when you’re working by yourself on a
project; you pull the latest changes from the repository, and, most likely, the remote
will always be synchronized with your local, since there’s no one else but you to
make any changes.

But the more common scenario is that you’ll be working with others in the same
repository, and they will be their own pushing changes to the repository. So most of
the time, you won’t have the luxury of pushing your changes onto an untouched
repository, and you’ll have to integrate the changes on the remote by pulling them
into your repository before you can push your local changes.

To illustrate how this works, and to illustrate what git pull actually does to your
repository, you’ll simulate a scenario wherein someone else has made a change to
the master branch and pushed their changes before you had a chance to push yours.
You’ll see how Git responds to this scenario, and you’ll learn the steps required to
solve this issue see how to solve this issue.

Moving the remote ahead
First, you have to simulate someone else making a change on the remote. Navigate
to the main page on GitHub for your repository: https://github.com/<username>/
ideas. Once there, click on the tutorials directory link of your project, and then click
on tutorial_ideas.md to view it in your browser.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 127

Click the edit icon on the page (the little pencil icon), and GitHub will open a basic
editor for you.

Add the following idea to tutorial_ideas.md in the editor:

[] Blockchains with BASIC

Then, scroll down to the Commit changes section below the editor, add a commit
message of your choice in the first field of that section, leave the radio button
selection as Commit directly to the master branch, and click Commit changes.

This creates a new commit on top of the existing master branch on the remote
repository, just as if someone else on your development team had pushed the
commits from their local system.

Now, you’ll create a change to a different file in your local repository.

Return to your terminal program, and edit books/book_ideas.md and add the
following line to the bottom of the file:

- [] Debugging with the Grace Hopper Method

Save your changes and exit.

Stage the change:

git add books/book_ideas.md

Now, create a commit on your local repository:

git commit -m "Adding debugging book idea"

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 128

You now have a commit on the head of your local master branch, and you also have a
different commit on the head of your remote master branch. Now you want to push
this change up to the remote. Well, that’s easy. Just execute the git push command
as you normally would:

git push origin master

Git balks, and returns the following information to you:

! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://www.github.com/
belangerc/ideas'
hint: Updates were rejected because the remote contains work
that you do
hint: not have locally. This is usually caused by another
repository pushing
hint: to the same ref. You may want to first integrate the
remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help'
for details.

Well, that didn’t work as expected. Git is quite helpful sometimes in the hints it
gives; in this case, it’s telling you that it detected changes on the remote that you
don’t have locally. Since you’d probably want to make sure that your local changes
meshed properly with the changes on the remote before you push, you’ll want to pull
those changes down to your local system.

Execute the following to pull the changes from the remote into your local:

git pull origin

Oh, heck, Git has opened up Vim, which means that it’s creating a commit; in this
case, it’s creating a merge commit. Why, Git, why?

Merge branch 'master' of https://github.com/belangerc/ideas into
master
Please enter a commit message to explain why this merge is
necessary,
especially if it merges an updated upstream into a topic
branch.

Lines starting with '#' will be ignored, and an empty message
aborts
the commit.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 129

You’ll explore what Git is doing shortly, but finish this commit first and let Git get on
with whatever it’s doing. Git has already auto-created a commit message for you, so
you might as well accept that and try and figure this mess out later. Press :, then type
wq and then press Enter to save this commit message and exit out of Vim.

You’re taken back to the command prompt, so execute the following to see what Git
has done for you:

git log --oneline --graph

You’ll see something similar to the following:

* b495cc8 (HEAD -> master) Merge branch 'master' of https://
github.com/belangerc/ideas into master
|\
| * 35054cc (origin/master, origin/HEAD) Update
tutorial_ideas.md
* | 8648645 Adding debugging book idea
|/
* a4eded5 Merge branch 'contact-details' into master
.
.
.

Note: Wondering what those asterisks (*) mean in the graphical
representation of your tree? Since commits from different branches are shown
stacked one on top of the other, the asterisks simply show you on which
branch this commit was made. In this case, you can see the book idea was
committed on one branch (your local master branch), and the other commit
was created on the remote origin branch.

Working up the tree, you have a common ancestor of a4eded5 Merge branch
'contact-details' into master. Then you have commit 8648645, which is the
commit you made on your local repository, followed by 35054cc, your remote
commit on the GitHub repository page. And also, there’s this b495cc8 Merge
branch 'master' stuff at the top. And also also, Git shows your remote “Update
tutorial_ideas.md” on a branch. But you didn’t create a branch. You chose the option
on the GitHub edit page to commit directly to master. Where did that come from?

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 130

Note: It’s seemingly simple scenarios like this — non-conflicting changes to
distinct files resulting in a merge commit — that causes newcomers to Git to
throw up their hands and say, “What the heck, Git?”

This is why learning Git on the command line can be instructive, as opposed to
using a Git GUI client that hides details like this. Seeing what Git is doing
under the hood, and, more importantly, understanding why, is what will help
you navigate these types of scenarios like a pro.

To understand what Git’s doing, you need to dissect the git pull command first,
since git pull is not one, but two commands in disguise.

Press Q to exit out of the git log viewer.

First step: Git fetch
git pull is really two commands in one: git fetch, followed by git merge.

You haven’t run across git fetch yet. Fetching updates your local repository’s
hidden .git directory with all of the commits for this repository, both local and
remote. Then, Git can figure out what to do with what it’s fetched from the remote;
maybe it can fast-forward merge it, maybe it can’t, or maybe there’s a conflict
preventing Git from going any further until you fix the conflict.

Generally, it’s a good idea to execute git fetch before pushing your changes to the
remote, if you suspect that someone else may have been committing changes to that
same particular branch on the remote, and you want to check out what they’ve done
before you integrate it with your work.

When Git fetches the remote commits and brings them down to your local system, it
creates a temporary reference to the tip of the remote repository’s branch. Think
back to when you explored a little of the Git internal file structure, and you found
the file .git/refs/heads/master that simply contained a reference to the hash of the
commit that was at the tip of the current branch (i.e., HEAD).

You can see this reference in your own local hidden .git directory.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 131

Execute the following command:

ls .git

In the results, you should see a file named FETCH_HEAD. That’s the temporary
reference to the tip of your remote branches. Want to see what’s inside? Sure thing!

Execute the following command to see the contents of FETCH_HEAD:

cat .git/FETCH_HEAD

You’ll see a hash, along with a note of where this commit came from. In my case, I
see the following at the top of that file:

8909ec5feb674be351d99f19c51a6981930ba285 branch 'master'
of https://github.com/belangerc/ideas

Second step: Git merge
So once Git has fetched all of the commits to your local system, you’re essentially in
a position in which you have a commit from one source — your local commit — that
Git needs to combine with another commit: the remote commit. Sounds like merging
a branch, doesn’t it?

In fact, that’s pretty much how Git views the situation. Take a look back at the state
of the repository graph before you merged, reproduced here:

| * 35054cc (origin/master, origin/HEAD) Update
tutorial_ideas.md
* | 8648645 Adding debugging book idea
|/
* a4eded5 Merge branch 'contact-details' into master
.
.
.

Merging two commits, regardless of where they came from, is essentially what you
did when you merged your branches back to master in the previous chapter. The
difference here is that Git creates a virtual “branch” that points to the commit from
the remote repository, as you can see in the graphical representation of the
repository tree above.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 132

There is a way around creating a messy merge commit, that involves the Git
mechanism of rebasing. You’ll cover that method of merging in later sections of this
book, but, for now, you’ll simply push your changes to the remote and live with the
merge commit for now.

Execute the following command to push your changes up to the remote:

git push origin master

Head over to the main GitHub page for your repository, click on the 28 commits link,
and you’ll see your changes up there on the remote.

Dealing with multiple remotes
There’s another somewhat common synchronization scenario in which you have not
one, but two remotes to deal with.

You’ve been working on your own fork of the ideas repository for some time, but
what if there were a few changes in someone else’s forked repository that you
wanted to pull down to your own local system, and merge from whatever branch that
user has them in, into your master branch?

Head over to the original ideas repository at https://github.com/raywenderlich/
ideas. Click on the number next to the Fork button, and you’ll see a list of all the
forks that have been created from this repository:

This mysterious crispy8888 user has created an update on his copy of the repository
that you’d like to pull down and incorporate into your local repository. Click on the
ideas link next to the crispy8888 username, and you’ll be taken to the crispy8888
fork. Get the URL of this fork using the Clone or Download button.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 133

Back in your terminal program, execute the following to add a new remote to your
repository:

git remote add crispy8888 https://github.com/crispy8888/
ideas.git

This creates a new remote reference in your repository, named crispy8888, that
points to the crispy8888’s fork at the above URL.

Execute the following command to see that your local repository now has another
remote added to it:

git remote -v

You’ll see something similar to the following:

crispy8888 https://github.com/crispy8888/ideas.git (fetch)
crispy8888 https://github.com/crispy8888/ideas.git (push)
origin https://www.github.com/belangerc/ideas (fetch)
origin https://www.github.com/belangerc/ideas (push)

There you are: another remote that points to someone else’s fork. Now you can work
with that remote, just as you did with origin. Remember, the name of your first
remote, origin, is nothing more than a convention. There’s nothing special about
origin; it’s just another remote, no different than the crispy8888 one you just
created. And you don’t have to name your new remote the same as the account that
created it; I could easily have named that remote whatshisname instead of
crispy8888 and things would have worked just as well.

At this point, you only have a reference to the remote in your local repository; you
don’t actually have any of the new remote’s content yet. To see this, execute the
following command to see the graphical view of your repository:

git log --oneline --graph --all

It looks the same as before. But didn’t you just add a remote, and then use the --all
switch above?

Even though you’ve instructed Git to look at all of the branches, you still can’t see
the changes on the crispy8888 remote. That’s because you haven’t fetched any of
the content yet from that fork; it’s all still up on the server.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 134

Execute the following command to pull down the contents of the crispy8888
remote:

git fetch crispy8888

At the end of the output from that command, you’ll see the following two lines:

 * [new branch] clickbait -> crispy8888/clickbait
 * [new branch] master -> crispy8888/master

Now you can look at the graphical representation of this repository with the
following command:

git log --oneline --graph --all

Scroll down until you find the most recent entry that references the crispy8888
remote, and , you’ll see where this remote has diverged from the original:

* 3ff6fbe Merge branch 'clickbait' into master
|\
| | * fbe86a2 (crispy8888/clickbait) Added another clickbait
idea
| |/
| * e69a76a (origin/clickbait, clickbait) Adding suggestions
from Mic
| * 5096c54 Adding first batch of clickbait ideas
| | * 22d9abd (crispy8888/master) Merge branch 'master' of
https://github.com/crispy8888/ideas into master
| | |\
| | | * f550fed Update tutorial_ideas.md
| |_|/
|/| |
| | * f9278e6 Adding debugging book idea
| |/
|/|

ASCII graphing tools have their limitations, to be sure! But you get the point: there
is a commit on crispy8888/clickbait that you’d like to pull into your own
repository.

To be diligent, you should probably follow a branching workflow here so your actions
are easily traceable in the log. Move to your own clickbait branch:

git checkout clickbait

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 135

Now you’d like to merge those two changes into your new branch. That’s done in just
the same way that you merge any other branch. The only difference is that you have
to explicitly specify the remote that you want to merge from:

git merge crispy8888/clickbait

Git narrates every step of what it’s doing like any good, modern YouTube star:

Updating e69a76a..9ff4582
Fast-forward
 articles/clickbait_ideas.md | 1 +
 1 file changed, 1 insertion(+)

Oh, that’s nice — Git performed a clean fast-forward merge for you, since there were
no other changes on the forked clickbait branch since you created your own fork.
That’s quite a change from your previous attempt, where you ended up with a merge
commit for a simple change.

To check that Git actually created a fast-forward merge, check the first few lines of
git log --oneline --graph (don’t use the --all switch, so you’ll just see your
current branch):

* fbe86a2 (HEAD -> clickbait, crispy8888/clickbait) Added
another clickbait idea
* e69a76a (origin/clickbait) Adding suggestions from Mic
* 5096c54 Adding first batch of clickbait ideas

Are you done, yet? No, you’ve only merged this into your local clickbait branch.
You still need to merge this into master.

First, switch to the branch you’d like to merge into:

git checkout master

Now, merge in your local clickbait branch as follows:

git merge clickbait

Vim opens up, so either accept the default merge message, or press I to enter Insert
mode to improve it yourself. When done, Escape + Colon + w + q will get you out of
there.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 136

Pull up the log again, with git log --oneline --graph to see the current state of
affairs:

* 72670be (HEAD -> master) Merge branch 'clickbait' into
master
|\
| * fbe86a2 (crispy8888/clickbait, clickbait) Added another
clickbait idea
* | b495cc8 (origin/master, origin/HEAD) Merge branch 'master'
of https://github.com/belangerc/ideas into master
|\ \
| * | 35054cc Update tutorial_ideas.md
* | | 8648645 Adding debugging book idea
|/ /
.
.
.

At the top is your merge commit, and below that is your work done merging from the
crispy8888 remote. You can tell that Git is pushing its ASCII art graphing skills to
the limit here with just three branches at play, but git log does nicely in a pinch
when you don’t have access to your usual GUI tools.

You’re done, here, so all that’s left is to push this merge to origin. Do that as you
normally would with the following command:

git push origin master

You’ve done a tremendous amount in this chapter, so there’s no challenge for you.
You’ve covered more here than any average developer would likely see in the course
of a few years’ worth of simple pushing, pulling, branching and merging.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 137

Key points
• Git has two mechanisms for synchronization: pushing and pulling.

• git push takes your local commits and synchronizes the remote repository with
those commits.

• git pull brings the commits from the remote repository and merges them with
your local commits.

• git pull is actually two commands in disguise: git fetch and git merge.

• git fetch pulls all of the commits down from the remote repository to your local
one.

• git merge merges the commits from the remote into your local repository.

• You can’t push to a remote that has any commits that you don’t have locally, and
that Git can’t fast-forward merge.

• You can pull commits from multiple remotes into your local repository and merge
them as you would commits from any other branch or remote.

Where to go from here?
You’ve accomplished quite a bit, here, so now that you know how to work in a
powerful fashion with Git repositories, it’s time to loop back around and answer two
questions:

• “How do I create a Git repository from scratch?”

• “How to I create a remote repository from a local one?”

You’ll answer those two questions in the next two chapters that will close out this
Beginning Git section of the book, and lead you nicely into the Intermediate Git
chapters to come.

Git Apprentice Chapter 9: Syncing With a Remote

raywenderlich.com 138

10Chapter 10: Creating a
Repository

You’ve come a long way in your Git journey, all the way from your first commit, to
learning about what Git does behind the scenes, to managing some rather
complicated merge scenarios. But in all your work with repositories, you haven’t yet
learned exactly where a repository comes from. Sure, you’ve cloned a repository, and
you’ve forked repositories and worked with remotes, but how do you create a
repository and a remote from scratch?

This chapter shows you how to create a brand-new repository on your local machine,
and how to create a remote to host your brand-new repository for all to see.

raywenderlich.com 139

Getting started
Many people will blindly tell you that the easiest way to create a repository is to “Go
to GitHub, click ‘New Repository’, and then clone it locally.” But, in most cases, you’ll
have a small project built up on disk before you ever think about turning it into a
full-fledged repository. So this chapter will put you right into the middle of your
project development and walk you through turning a simple project directory into a
full-fledged repository.

But, first, you’ll need a project! Check the starter folder for this chapter; inside,
you’ll find a small starter project that is the starting webpage for the sales page for
this book.

Copy the entire git-apprentice-web directory from the starter folder into your main
GitApprentice folder.

Now, open up your terminal program and navigate into the git-apprentice-web
directory. If you’ve been following along with the book so far, you’re likely still in the
GitApprentice/ideas folder, so execute the following command to get into the git-
apprentice-web subdirectory:

cd ../git-apprentice-web/

Once there, execute the following command to tell Git to set this directory up as a
new repository:

git init

Git tells you that it has set up an empty repository:

Initialized empty Git repository in /Users/chrisbelanger/
GitApprentice/git-apprentice-web/.git/

Why does Git tell you it’s an empty repository, when there are files in that directory?
Think back to how you staged files to add to a repository: You have to use the git
add command to tell Git what to include in the repository; Git wouldn’t just assume
it should pick up any old file lying around. And the same is true, here; Git has created
an empty repository, just waiting for you to add some files.

Now, before you add any files, you’ll want to get two things in your repository that
are good hygiene for any repository that’s designed to be shared online: a LICENSE
file, and a README file.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 140

Creating a LICENSE file
It’s worth understanding why you need a license file, before you go and create one
blindly.

Having a license file in your repository makes it clear how others may, or may not,
use your code. In this modern, digital age, some people believe that copying/
stealing/borrowing/reusing anything is fair game, but most people will want to
respect your license terms, even though you may be providing the code freely online.

Having a license outlines how others may contribute to your project and what their
rights are. The interesting bit comes in when you don’t include a license to your
work. If you create a project and stick it up on GitHub, without a license, you’re
stating that no one has the license to use your code in any situation — they can look
at it, but that’s about it.

That’s all well and good if “look but don’t touch” is truly what you want, but if you’re
inviting others to collaborate with you, then having no license means that once
someone else touches the code it’s not clear who owns the copyright anymore. Having a
license file included with your code makes it clear where the ownership of this code
lies.

True, having a license included with your project won’t protect you from code
burglars who just want to take your work and use it without your permission. But
what it does do is indicate the terms of use and reuse of your project to anyone who
wants to collaborate in a fair manner, or use your work in any other manner. It’s a
live-and-let-live kind of thing.

Now, with that said, what kind of license should you choose? That’s not always an
easy question to answer. Most of the time, your projects will have just code in them,
but what if they contain images? What if they contain hardware designs? 3D printing
files? Your open-source book manuscript? Fonts you designed and want to open-
source? What if your project is a mix of these or more?

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 141

There’s a great site out there that will help you navigate the ins and outs of your
project, and help you choose a license for your new project. Navigate to https://
choosealicense.com/, and you’ll see a lot of options:

You can explore the site at your leisure, but, in this case, I am happy for others to
learn from and reuse my work in any way they like as I build up my webpage. So
select the MIT License link, and you’ll be taken to the main license page for the MIT
License, which is one of the most common and most permissive licenses.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 142

Click the Copy license text to clipboard button to copy the text of the MIT license
to your clipboard.

Now, return to your terminal program, create a new file named LICENSE (yes,
uppercase, and no extension required) in the root folder, and populate it with the
contents of the clipboard. Save your work when you’re done.

That takes care of the license file. Now, it’s time to turn your attention to the
README file.

Creating a README file
The README is much more straightforward than the license file. Inside the
README, you can put whatever details you want people to know about you, your
project, and anything that will help them get started using your project.

The common convention is to craft README files in Markdown, primarily so that
they can be rendered in an easy-to-read format on the front page of your repository
on GitHub, GitLab or other cloud hosts.

Create a new file in the root directory of your project named README.md and
populate it with the following information (changing whatever you like to suit):

git-apprentice-web

This is the main website for the Git Apprentice book, from
raywenderlich.com.

contact: @crispytwit

Save your changes and exit out of the editor.

You’ve got your current project, LICENSE file, and the README file — looks like
you’re ready to commit your files to the repository.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 143

To see what’s outstanding for your first commit, execute git status to see what
Git’s view of your working area looks like:

~GitApprentice/git-apprentice-web $ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 LICENSE
 README.md
 css/
 images/
 index.html

nothing added to commit but untracked files present (use "git
add" to track)

That looks as you’d expect: The basic files for the project are there, along with the
new LICENSE and README.md file.

By this point, you should be able to stage and commit this collection of files to your
new repository. Try to stage and commit the complete set of files on your own first,
before following the instructions below. Remember: If you mess things up, you can
simply use git reset to revert your changes.

Stage the files for commit with the following command:

git add .

This adds everything in the current directory and subdirectories.

Now, commit your changes to the repository, providing a sensible commit message:

git commit -m "Initial commit of the web site, README and
LICENSE"

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 144

Since this is your very first commit into the repository, Git shows you a bit of
different output:

[master (root-commit) 443f9b3] Initial commit of the web site,
README and LICENSE
 5 files changed, 111 insertions(+)
 create mode 100644 LICENSE
 create mode 100644 README.md
 create mode 100644 css/style.css
 create mode 100644 images/SFR_b+w_-_penguin.jpg
 create mode 100644 index.html

The very first commit to the repository is a bit special, since it doesn’t have any
parents. Recall earlier when you learned that every commit in Git has at least one
parent? Well, this is a special case in which Git creates a root commit for the
repository, upon which all future commits will be based.

And that’s it! You’ve made your first commit to your repository. But you’re not done
— you want to get this repository pushed up to a remote for the world to ooh and ahh
over. You’ll do that in the second half of this chapter.

Create mode
That create mode is something you’ve seen before in the output from git commit,
and have probably wondered about. It’s of academic interest only at this point; it
really doesn’t affect you much at this stage of your interaction with repositories.

But in the interest of being obsessively thorough, here’s what that number with
commit mode means:

• The number after create mode is an octal (base 8) representation of the type of
file you’re creating, along with the read/write/execute permissions of that file.

• The first part of that binary number is a 4-bit value that indicates the kind of file
you’re creating. In this case, you’re creating a regular file, which Git labels with
1000 in binary. There are other types, including symlinks and gitlinks, which you
aren’t using yet in your Git career.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 145

• The next part of that binary number is three unused bits: 000.

• The last part of that binary number is made of nine bits, and represents the UNIX-
style permissions of this file. The first three bits hold the owner’s read/write/
execute permission bits, the next three bits hold the group’s read/write/execute
bits, and the final three bits hold the global read/write/execute bits.

• So since you own the file, Git sets the first three bits to 110 (read, write, but no
execution since this isn’t an executable binary or script file).

• To allow anyone in your group to read but not write to this file, Git assigns 100
(read, no write, no execute).

• To allow anyone in the world to read but not write to this file, Git assigns 100
(read, no write, no execute).

• When all of that binary is concatenated together, you have 1000 with 000 with
110100100 = 1000000110100100 as the full binary string.

• Convert 1000000110100100 to octal (base 8), and you have 100644 as a compact
way to indicate the type and permissions of this file.

See? I told you it was of academic interest only.

Creating and syncing a remote
At the moment, you have your own repository on your local system. But that’s a bit
like practicing your guitar in your room your whole life and never jamming out at a
party so you can wow your guests with a performance of “Wonderwall.” You need to
get this project out where others can see and potentially collaborate on it.

Head over to GitHub to create a new remote repository for your project, and log in to
your account.

Click the + sign at the top right-hand corner of the screen, and select New
repository.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 146

A few details to follow, here:

• Give your repository a good name; in this case, I’m going to use the same name as
my project’s directory name, git-apprentice-web, although this isn’t strictly
necessary.

• Leave the repository set to Public, so that anyone can see it.

• Finally, leave everything in the Initialize this repository with: section
unchecked, since you will be importing the repository from your local workstation,
which already exists and already has a LICENSE and a README.

This gives you several instructions on how to get some content into your repository.
In your case, you already have an existing repository, so you can use the instructions
under …or push an existing repository from the command line. Because you’re
all about that command line Git mastery, right?

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 147

Ensure the HTTPS option is selected in the top section of this page, next to the
repository’s URL. Copy the URL provided to your clipboard.

• Click the Create repository button and Git will shortly bring you to the Quick
setup page.

Return to your terminal program, and execute the following to add a new remote to
your local repository, substituting in the copied URL of your own repository where
necessary:

git remote add origin https://github.com/<your-repo-name>/git-
apprentice-web.git

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 148

Git gives you no output from that command, but you can verify that you’ve added a
remote, using the following command:

git remote -v

You should see your remote shown in the output:

origin https://github.com/<your-username>/git-apprentice-
web.git (fetch)
origin https://github.com/<your-username>/git-apprentice-
web.git (push)

So this is where many people get tripped up. As of late 2020, GitHub now uses main
as the default branch name for all new repositories. But if you have a plain vanilla
install of Git on your local workstation, you’re likely configured with master as your
default branch name. To check this, simply execute the following to see what git
init set as your first branch name:

git branch

In my case, Git responds with the following:

* master

You have a disconnect here; your local workstation has master as the default branch,
but your new GitHub repo is expecting main.

To fix this, execute the second command as prompted on the Quick setup page:

git branch -M main

Although Git gives you no output, this command changes the local name of your
branch from master to main. Again, it pays to be paranoid with Git, so execute git
branch again to confirm that your branch has been renamed to main.

OK - so your local repository is ready to be pushed to the remote. Now, execute the
final command from the Quick setup page:

git push -u origin main

This pushes your changes, as you’d expect, with some corresponding output. The -u
switch is the shorthand equivalent of --push-upstream, which ensures that every
branch in your local repository tracks against the corresponding branch in the
remote repository. Otherwise, Git won’t automatically “know” to track your local
branches against the remote ones.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 149

The origin option is simply the name of the remote to which you want to push;
remember, origin is simply the conventional default name of the remote Git uses
when it sets up your repository with git init, and not a standard.

main is the name of the local branch you want to push to your remote.

You can verify that Git has pushed and started tracking your local branch against the
remote branch by looking at the final lines in the output from your git push
command:

 * [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from
'origin'.

Head back to the homepage for your GitHub repository, and refresh the page to see
your new repository there in all its glory:

At this point, your repository is ready for you, or anyone else, to view, clone, and
contribute to.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 150

Key points
• Use git init to set up a Git repository.

• It’s accepted practice to have a LICENSE file and a README.md file in your
repository.

• Use git add followed by git commit to create the first commit on your new
repository.

• create mode is simply Git telling you what file permissions it’s setting on the files
added to the repository.

• You can create an empty remote on GitHub to host your repository, and you can
choose to not have GitHub populate your remote with a LICENSE and README.md
by default.

• Use git remote add origin <remote-url> to add a remote to your local
repository.

• Use git remote -v to see the remotes associated with your local repository.

• If your Git installation uses master as the default branch in new repositories and
you want to push to a newly created GitHub repository with main as the default
branch, you’ll need to execute git branch -M main to rename the local master
branch to main to match your remote.

• Use git push --set-upstream origin main or git push -u origin main to
push the local commits in your repository to your remote, and to start tracking
your local branch against the remote branch.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 151

Where to go from here?
You’ve come full circle with your introduction to Git! You started out with cloning
someone else’s repo, made a significant amount of changes to it, learned how to
stage and commit your changes, how to view the log, how to branch, how to pull and
push changes, and now you’re back where you started, except that you are the creator
of your very own repository. That feels good, doesn’t it?

If you’re an inquisitive sort, you probably have a lot of unanswered questions about
Git, especially how it works under the hood, what merge conflicts are, how to deal
with partially complete workfiles, and how to do things that you’ve heard about
online, such as squashing commits, rewriting history, and using rebasing as an
alternative to merging.

The next book in the Git Series is called Advanced Git (https://
www.raywenderlich.com/books/advanced-git). That book takes you further under the
hood of Git, shows you a little more about the internals of Git, and walks you through
some scenarios that scare a lot of developers off of using Git in an advanced way. But
you’ll soon see that the elegance and relative simplicity of Git let you do some
amazing things that can greatly improve the life of you and your distributed
development team.

Git Apprentice Chapter 10: Creating a Repository

raywenderlich.com 152

11Conclusion

We hope this book has helped you get up to speed with Git! You know everything you
need to know to effectively use Git on any sized project and team.

You’re now ready to move on to advancing your Git skills! Check out our Advanced
Git book in the Raywenderlich.com library at https://library.raywenderlich.com/.

If you have any questions or comments as you continue to use Git, please stop by our
forums at http://forums.raywenderlich.com.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos and other things we do at raywenderlich.com possible — we
truly appreciate it!

– Chris, Jawwad, Bhagat, Cesare, Manda, Sandra and Aaron

The Git Apprentice team

raywenderlich.com 153

Section II: Appendices

raywenderlich.com 154

AAppendix A: Installing &
Configuring Git

Installing Git is relatively straightforward, but putting a little care in your initial
setup and configuration will go a long way to ensuring that your work with Git is as
hassle-free as possible.

Installing on Windows
To remain as platform-agnostic as possible, you’ll install Git using one of the official
standalone installers. While you can use the Chocolatey Package Manager for
Windows, or even download and install GitHub Desktop (which installs Git on its
own), you’ll install and configure the plain-vanilla version of Git for Windows.

These instructions were tested on Windows 10, but the concepts should be similar
across Windows versions.

1. Download the official release of Git for Windows at the following link:

• https://github.com/git-for-windows/git/releases/

This book uses the 2.27.0 release, available here:

• https://github.com/git-for-windows/git/releases/download/v2.27.0.windows.1/
Git-2.27.0-64-bit.exe

2. Execute the self-contained EXE file once it downloads fully.

3. If prompted to allow changes to your system, click OK.

raywenderlich.com 155

4. Click through the installer, accepting all defaults along the way. One thing you
might want to change, depending on your system, is the install location of Git,
which by default is C:\Program Files\Git. If you usually install everything into
C:\Program Files, then you can leave this option alone.

Note: To best follow along with this book, leave the default editor option as
Vim.

Although you can select from a list of arguably excellent and more user-
friendly editors as part of the setup process, you’ll likely get lost when you try
to use another text editor to create your commit messages or do other tasks.
But if you feel compelled to choose another option, do so now. Dulce
periculum. :]

5. The app will install Git and a host of helper libraries. This will only take a
Microsoft minute.

6. When the installer finishes, you’ll be presented with the completion dialog.
Unselect View Release Notes (you have this book, so who needs release notes
anyway?) and select Launch Git Bash so you can start the configuration process
once the installer closes. Then click Next.

Git Apprentice Appendix A: Installing & Configuring Git

raywenderlich.com 156

7. You’ll see a console that looks similar to the following:

This is Git Bash. It’s similar to the familiar Windows Command shell, but it’s a
version of the Bourne Again Shell (bash) that’s a common way for people to interact
with Linux, macOS and other platforms.

Git Apprentice Appendix A: Installing & Configuring Git

raywenderlich.com 157

If you use the Git Bash shell to interact with your directories and projects, you’ll be
able to follow along with this book pretty much verbatim. This includes using the
command line tools in this book, such as nano.

However, if you choose to use Git CMD (which lets you use the familiar Windows
path structure, among other things), you’ll have to adapt some of the commands
and/or tools that you’ll use in this book to their Windows equivalents.

Installing on macOS
There are a few ways to install Git on macOS. There is a standalone installer for Git,
but it’s unfortunately quite out of date and isn’t recommended anymore. Installing
GitHub Desktop will set up Git for you. However, the two recommended methods for
maximum control are to either install with Xcode’s command-line tools or use the
Homebrew package manager to install Git on your system.

Installing Xcode’s command-line tools
Chances are you’re using Xcode if you’re developing on a Mac. Since Xcode has some
really good Git integration, you might as well just let Xcode do what it wants and
manage the Git installation itself.

1. If you have Xcode installed on your Mac, simply execute the following command
from Terminal to install the Xcode command-line tools:

xcode-select --install

You’ll see a prompt to install the Xcode command-line tools, which include Git.
Simply wait for the installer to run and finish.

2. Run the following command to verify which version of Git installed:

git --version

If Git responds with the current version or greater, which is 2.27.0 as of this writing,
then you’re good. If the version number is older, verify that you have the most recent
version of Xcode installed.

Git Apprentice Appendix A: Installing & Configuring Git

raywenderlich.com 158

Installing with Homebrew
Homebrew is a useful package manager for macOS. With Homebrew, you can install
and update hundreds, if not thousands, of pieces of software right from your
command line.

To install Homebrew, execute the following command in Terminal:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install.sh)"

Sit back and wait while Homebrew installs itself. This might take a while.

Once Homebrew has finished installing, you can get down to installing Git.

1. Execute the following command in Terminal to install Git using Homebrew:

brew install git

Once again, sit back and wait for Homebrew to do its thing.

2. Once Homebrew has finished installing Git, you’ll need to check that Homebrew
has actually been able to overwrite any existing installations of Git on your
machine.

To check which version of Git is being pointed to on your system, execute the
following command in Terminal:

git --version

If Git responds with the current version, which is 2.27.0 as of this writing, then you’re
good.

If Git responds with an older version, then the symlinks that point to the Homebrew-
installed copy of Git haven’t been updated properly. Force Homebrew to rebuild
those symlinks with the following command:

brew link --overwrite git

Execute git --version once more and Git should now report the correct version.

Git Apprentice Appendix A: Installing & Configuring Git

raywenderlich.com 159

Configuring credentials
There are a few things you can do once you’ve installed Git to make your life a tiny
bit easier; they’re optional but highly recommended. One of those things is to set up
your GitHub credentials in Git so they stick, saving you from having to re-enter them
frequently.

Setting your username and email
1. To persist your GitHub username so you don’t have to type it in every time you

push your changes to a remote repository, execute the following command,
enclosing your name in quotes:

git config --global user.name "your-username-here"

2. To persist the email you use for commits, which will appear alongside your
commit history, enter the following command, enclosing your email in quotes:

git config --global user.email "youremail@domain.com"

Persisting your password
If you’re on macOS, authenticating against GitHub or other repositories from the
command line will store your password on the macOS Keychain, so you won’t have to
enter your credentials each time you want to interact with a remote repository.

If you’re on Windows, you’ll need to install the Git Credential Manager for Windows
to get the same functionality. Find the instructions for installing that helper tool
here:

• https://github.com/Microsoft/Git-Credential-Manager-for-Windows

Git Apprentice Appendix A: Installing & Configuring Git

raywenderlich.com 160

	Book License
	What You Need
	Book Source Code & Forums
	About the Cover
	Introduction
	Enter the video courses
	How to read this book

	Chapter 1: A Crash Course in Git
	What are remote repositories?
	Forking the remote repository
	Cloning the repository
	Creating a branch
	Making and staging changes
	Committing changes
	Pushing your changes
	Creating a pull request

	Chapter 2: Cloning a Repo
	What is cloning?
	Using GitHub
	Forking
	Challenge
	Key points
	Where to go from here?

	Chapter 3: Committing Your Changes
	What is a commit?
	Working trees and staging areas
	Committing your changes
	Adding directories
	Looking at git log
	Challenge
	Key points
	Where to go from here?

	Chapter 4: The Staging Area
	Why staging exists
	Undoing staged changes
	Moving files in Git
	Deleting files in Git
	Challenge
	Key points
	Where to go from here?

	Chapter 5: Ignoring Files in Git
	Introducing .gitignore
	Getting started
	Nesting .gitignore files
	Looking at the global .gitignore
	Finding sample .gitignore files
	Challenge
	Key points
	Where to go from here?

	Chapter 6: Git Log & History
	Viewing Git history
	Vanilla git log
	Limiting results
	Graphical views of your repository
	Viewing non-ancestral history
	Using Git shortlog
	Searching Git history
	Challenges
	Key points
	Where to go from here?

	Chapter 7: Branching
	What is a commit?
	What is a branch?
	Creating a branch
	How Git tracks branches
	Checking your current branch
	Switching to another branch
	Viewing local and remote branches
	Explaining origin
	Viewing branches graphically
	A shortcut for branch creation
	Challenge
	Key points
	Where to go from here?

	Chapter 8: Merging
	A look at your branches
	Three-way merges
	Merging a branch
	Fast-forward merge
	Forcing merge commits
	Challenge
	Key points
	Where to go from here?

	Chapter 9: Syncing With a Remote
	Pushing your changes
	Pulling changes
	Dealing with multiple remotes
	Key points
	Where to go from here?

	Chapter 10: Creating a Repository
	Getting started
	Creating a LICENSE file
	Creating a README file
	Creating and syncing a remote
	Key points
	Where to go from here?

	Conclusion
	Appendix A: Installing & Configuring Git
	Installing on Windows
	Installing on macOS
	Configuring credentials
	Setting your username and email
	Persisting your password

