Apprentice

FIRST EDITION
Getting Started with Git Commands & Concepts

By the raywenderlich Tutorial Team
Chris Belanger

Based on material by Sam Davies

Git Apprentice

Chris Belanger
Copyright ©2020 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Dedications

“For Russ and Skip.”

— Chris Belanger

About the Author

Chris Belanger is an author of this book. He is the Editor-in-Chief
of raywenderlich.com. If there are words to wrangle or a paragraph
to ponder, he's on the case. In the programming world, Chris has
over 25 years of experience with multiple database platforms, real-
time industrial control systems, and enterprise healthcare
information systems. When he kicks back, you can usually find
Chris with guitar in hand, looking for the nearest beach, or
exploring the lakes and rivers in his part of the world in a canoe.

About the Editors

- Bhagat Singh is a tech editor for this book. Bhagat started iOS

Development after the release of Swift, and has been fascinated by
it ever since. He likes to work on making apps more usable by
building great user experiences and interactions in his
applications. He also is a contributor in the Raywenderlich tutorial
team. When the laptop lid shuts down, you can find him chilling
with his friends and finding new places to eat. He dedicates all his
success to his mother. You can find Bhagat on Twitter:
@soulful_swift

Cesare Rocchi is a tech editor of this book. Cesare runs Studio
Magnolia, an interactive studio that creates compelling web and
mobile applications. He blogs at upbeat.it, and he’s also building
Podrover and Affiliator You can find him on Twitter at

@_funkyboy.

Manda Frederick is an editor of this book. She has been involved
in publishing for over ten years through various creative,
educational, medical and technical print and digital publications,
and is thrilled to bring her experience to the raywenderlich.com
family as Managing Editor. In her free time, you can find her at the
climbing gym, backpacking in the backcountry, working on poems,
playing guitar and exploring breweries.

Sandra Grauschopf is an editor of this book. Sandra has over 20
years’ experience as a writer, editor, copy editor, and content
manager and has been editing tutorials at raywenderlich.com since
2018. She loves to travel and explore new places, always with a
trusty book close at hand.

Aaron Douglas is the final pass editor for this book. He was that
kid taking apart the mechanical and electrical appliances at five
years of age to see how they worked. He never grew out of that core
interest - to know how things work. He took an early interest in
computer programming, figuring out how to get past security to be
able to play games on his dad’s computer. He’s still that feisty nerd,
but at least now he gets paid to do it. Aaron works for Automattic
(WordPress.com, WooCommerce, Tumblr, SimpleNote) as a Mobile
Lead primarily on the WooCommerce mobile apps. Find Aaron on
Twitter as @astralbodies or at his blog at https://aaron.blog.

About the Artist

Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Table of Contents: Overview

BOOK LICENSEeeeereiersieseiseisesssisssssisses 11
Before YoU Begineeceeeeceeeneenenensenenensenenessesesennes 12
What YOU NEE..... sttt sssssssssssssssssens 13
Book Source Code & FOrums ... nenneneenseseisesseisssssssssssseens 14
ADOUL T COVET ...useresereiseietseissseisssesssssesssssssssssssssssssens 15
INEFOAUCTION ..ottt isssess st ssssasesssessens 17
Section |: Beginning Gitcoeeeeceeerenerneernneeneseenenenes 20
Chapter 1: A Crash Course in Git.....cevececececrennen 21
Chapter 2: Cloning @a REPOeeeeeeeceeeeeeeerevenevenaenens 34
Chapter 3: Committing Your Changes........ccccceeuevrvrueennee. 43
Chapter 4: The Staging Area ... eeeeeeeeeeeeeeesesenens 63
Chapter 5: Ignoring Files in Git ... 76
Chapter 6: Git Log & HiStOry ... 84
Chapter 7: BranChingeeceeeeeceeesevesesessesessenens 99
Chapter 8: MErgiNg ... eeereeereeereseressesessesessesssenes 110
Chapter 9: Syncing With a Remote..........eeeeeerrernneee. 124
Chapter 10: Creating a Repository.......eereeennne. 139
CONCIUSION sttt ssssssssssssssssssssseass 153
Section lI: ApPendiCes.......eeereeeeernereerreneesneneaenes 154
Appendix A: Installing & Configuring Git ... 155

[

Table of Contents: Extended

BOOK LICENSE . ..ot 11
BeforeYouBegin........ccooviiiiiiiiiiiiiiinin. 12
WhatYouNeed ... 13
Book Source Code & Forumsc.ooviiiiiiiiiiiiiin.. 14
Aboutthe Covero 15
Introduction ...t 17
Enterthevideocourses. ... 18
Howtoreadthisbook ... 18
Section l: BeginningGitccooll. 20
Chapter 1: ACrashCourseinGit.............ccoeviiiiiin.. 21
What are remote repositories?o.viiiiiiiiiii i 22
Forking the remote repository..........ccooviiiiiiiiiiiiiiienns 22
Cloningtherepository.......cooiiiiiiii e 25
Creatingabranch. ... e 26
Making and stagingchanges. ..o 28
Committing Changes e 29
Pushing your changes.ovviiiiiiiiii i 30
Creatingapullrequest. ... 31
Chapter 2: CloningaRepo.......ccovviiiiiiiiiiii .. 34
What is Cloning?. . ..o e 35
Using GitHUb ... 35
FOrKINg . o v e e 40
Challenge . ..o 41
KeY POINES. .o 42
Wheretogofromhere?. ... 42

[

Chapter 3: Committing Your Changes....................... 43

Whatisacommit? i 44
Working trees and stagingareasccoiiiiiiiiiiiiiiiiian., 47
Committingyourchangescooviiiiiiiiiii i 53
Adding direCtoriesot 54
Lookingat gitlog.ovvvirii 59
Challenge . ..o 61
KeY POINES. .ot 62
Wheretogofromhere?. ... 62
Chapter4: TheStagingArea........ccoviiiiiiiiiiiiiiiina.. 63
Why staging existsovuiiiii 64
Undoingstagedchanges. ... 66
Movingfilesin Git.......ooiriii e 69
DeletingfilesinGit. ... i 72
Challenge . ..o 74
KeY POINES. . o e 75
Wheretogofromhere?.o 75
Chapter 5: Ignoring FilesinGit 76
Introducing .gitignore. ..o 77
Gettingstarted ... 77
Nesting .gitignorefiles. ... i 79
Looking at the global .gitignore ... 81
Finding sample .gitignorefiles ..., 82
ChalleNgE ..o 82
KeY POINES. .ot 83
Wheretogofromhere?. ... 83
Chapter 6: Git Log & History. ...t 84
Viewing Git history ... 85
Vanillagit log. ..o 85
Limitingresults ... 86

[

Graphical views of your repositorycooiviiiiiiiiiiiiiii, 88

Viewing non-ancestral history............cooiiiiiiiiii i 90
Using Gitshortlog. ... i 90
Searching Git historyovviiiii e 92
Challenges ..o 95
KeY POINES. .ot 97
Wheretogofromhere?. ... 98
Chapter 7:Branching ... 99
Whatisacommit?.o 100
Whatisabranch?. ... 101
Creatingabranch ... e 102
How Gittracksbranches ... 102
Checkingyour currentbranch...............oooiiiiiL 103
Switchingtoanotherbranch ...l 103
Viewing local andremotebranches ..., 105
EXplaining origin. ... 105
Viewing branches graphicallyocoi i, 106
A shortcut for branchcreation ... 107
Challenge. ... e e e 108
KeY POINES .« s 109
Wheretogofromhere? ... i 109
Chapter 8:Merging.coovviiiiiiiiiii e 110
Alookatyourbranches ... 111
Three-Way MergeS. . ..ottt ettt 113
Mergingabranch...........oooi i 115
Fast-forward mergeooviiiiiiii it 118
Forcingmerge commits ..ottt 120
Challenge. ..o 122
KeY POINES .« 123
Wheretogofromhere?o 123

[

Chapter 9: SyncingWithaRemote......................... 124

Pushingyour changesooviiiiiiiiiiii e 125
PUIliNg ChaNgES e e 127
Dealing with multipleremotes ... 133
KeY POINES .« s 138
Wheretogofromhere?o 138
Chapter 10: Creatinga Repository...........ccovvvenin.... 139
Gettingstarted ... e 140
CreatingaLICENSEfile ... 141
CreatingaREADMEfile.o 143
Creatingandsyncingaremote.........coviiiiiiiiiiiiiiininen.n. 146
KeY POINES .t 151
Wheretogofromhere? 152
ConclusSioN. ..o 153
Sectionll: Appendicescccevviiiiiiiinnn... 154
Appendix A: Installing & Configuring Git................... 155
Installing onWIindows.oiiiiiiii e 155
InstallingonmacOsS ... 158
Configuringcredentialsooiiiiiiiiii 160
Setting yourusernameandemail ...l 160
Persisting your password.c.oviiiiiiiiiiiii i 160

Book License

By purchasing Git Apprentice, you have the following license:

» You are allowed to use and/or modify the source code in Git Apprentice in as many
apps as you want, with no attribution required.

» You are allowed to use and/or modify all art, images and designs that are included
in Git Apprentice in as many apps as you want, but must include this attribution
line somewhere inside your app: “Artwork/images/designs: from Git Apprentice,
available at www.raywenderlich.com”.

» The source code included in Git Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in Git Apprentice without prior
authorization.

 This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

[

Before You Begin

This section tells you a few things you need to know before you get started, such as
what you’ll need for hardware and software, where to find the project files for this

book, and more.

What You Need

To follow along with this book, you’ll need the following:

Git 2.28 or later. Git is the software package you’ll use for all the work in this
book. There are installers for macOS, Windows and Linux available for free from
the official Git page here: https://git-scm.com/downloads. We’ve tested this book
on Git 2.28.0, but you can follow along with older versions of Git as well.

Book Source Code &

Forums

Book source code
The materials for this book are all available in the GitHub repository here:
 https://github.com/raywenderlich/gita-materials/tree/editions/1.0

You can download the entire set of materials for the book from that page.

Forum

We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/git-apprentice. This is a great place to ask
questions about the book or to submit any errors you may find.

About the/Cover

\
Git
Apprentice

FIRST EDITION
Getting Started with Git Commands & Concepts

By the rayw

Git Apprentice

While not the most elegant or agile creature, the flightless penguin should not be
underestimated. Very few other animals can boast the wide adaptability of these
birds. Found in both global hemispheres, penguins are both animals of the land and
the sea, spending half of their lives on each.

In water, they are independent, graceful swimmers and formidable hunters, feeding
on fish, squid and other sea life as they swim and dive — sometimes up to depths of
over 500 meters for up to 22 minutes at a time. On land — well, we know about
penguins on land. Their colonies are a comical flurry of waddling, rock-hopping and
belly sliding — but they are also social, gentle and maternal.

[

Like penguins, Git thrives in multiple environments and is incredibly adaptable, and
its utility should not be underestimated. Though Git seems unassuming at first
glance, not many other tools will allow you to leverage your work in so many
environments, both independently and socially. And like these resilient birds who
manage to slip and tumble, getting back up each time, Git will allow you to work
knowing any mistake can be corrected. The key is just to keep waddling along.

It should also be noted that both penguins and the authors of this book look great
dressed in tuxedos.

Introduction

There are usually two reasons a person picks up a book about Git: one, they are
unusually curious about how the software works at a deeper level; or two, they’re
frustrated and need something to solve their problems now.

Whatever situation brought you here, welcome! I'm happy to have you onboard. I
came to write this book for both of the above reasons. I am a tinkerer and hacker by
nature, and I love going deep into the internals of software to see what makes them
tick. But I, like you, found Git at first to be an inscrutable piece of software. My brain,
which had been trained in software development through the late 1990s, found
version control packages like SVN soothing, with their familiar client-server
architecture, Windows shell integration, and rather straightforward, albeit heavy,
processes.

When I came to use Git and GitHub about seven years ago, I found it inscrutable at
best; it seemed no matter which way I turned, Git was telling me [had a merge
conflict, or it was merging changes from the master branch into my current branch,
or quite often complaining about unstaged changes. And why was it called a “pull
request”, when clearly I was trying to push my changes into the master branch?

Little by little, I learned more about how Git worked; how to solve some of the
common issues I encountered, and I eventually got to a point where I felt
comfortable using it on a daily basis.

Enter the video courses

In early 2017, my colleague Sam Davies created a conference talk, titled “Mastering
Git”, and from that, two video courses at raywenderlich.com: “Beginning Git” and
“Mastering Git”. Those two courses form the basis of this book, but it always nagged
me a little that, while Sam’s video version of the material was quite pragmatic and
tied nicely into using both the command line and graphical tools to solve common
Git workflow problems, I always felt like there was a bit of detail missing; the kind of
information that would lead a curious mind to say “I see the how, but I really want to
know more about the why.”

This book gives a little more background on the why: or, in other words, “Why the
%" &$ did you do that to my repository, Git?!” Underneath the hood, you’ll find that
Git has a rather simple and elegant architecture, which is why it scales so well to the
kinds of globally distributed projects that use Git as their version control software,
via GitHub, GitLab, Bitbucket, or other cloud repository management solutions.

And while GUI-based Git frontends like Tower or GitHub Desktop are great at
minimizing effort, they abstract you away from the actual guts of Git. That’s why this
book takes a command-line-first approach, so that you’ll gain a better understanding
of the various actions that Git takes to manage your repositories — and more
importantly, you’ll gain a better understanding of how to fix things when Git does
things that don’t seem to make much sense.

How to read this book

This book covers Beginning Git. If you are still struggling to figure out the
difference between a push and a commit, or you’re coming to Git from a different
version control system, start here. This section takes you through concepts such as
cloning, staging, committing, syncing, merging, viewing logs, and more. The very
first chapter is a crash course on using Git, where you’ll go through the basic Git
workflow to get a handle on the how before you move into the what and the why.

This book works with a small repository that houses a simple ToDo system based on
text files that hold ideas (both good and bad) ideas for content for the website. It’s an
ideal way to learn about Git without getting bogged down in a particular language or
framework.

The next book in our mastering Git series, Advanced Git, which we encourage you to
explore once you’ve completed this book, covers:

[

Mastering Git

If you’ve been using Git for a while, you may choose to start in this section first. If
you know how to do basic staging, committing, merging and .gitignore operations,
then you’ll likely be able to jump right in here. This section walks you through
concepts such as merge conflicts, stashes, rebasing, rewriting history,

fixing .gitignore after the fact, and more.

If you’ve ever come up against a scenario where you feel you just need to delete your
local repository and clone things fresh, then this section is just what you need to
help you solve those sticky Git situations.

Workflows

This section takes a look at some common Git workflows, such as the feature branch
workflow, Gitflow, a basic forking workflow, and even a centralized workflow.
Because of the flexibility of Git, lots of teams have devised interesting workflows for
their teams that work for them — but this doesn’t mean that there’s a single right
way to manage your development.

Learning by doing

Above all, the best advice I can give is to work with Git: find ways to use it in your
daily workflows, find ways to contribute to open-source projects that use Git to
manage their repositories, and don’t be afraid to try some of the more esoteric Git
commands to accomplish something. There’s little chance you’ll screw anything up
beyond repair, and most developers learn best when they inadvertently back
themselves into a technical rabbit-hole — then figure out how to dig themselves out.

A note on master vs. main

At the time that this book went to press, GitHub (and potentially other hosts) were
proposing changing the name of the default repository branch to main, instead of
master, in an attempt to use more culturally-aware language. So if you’re working
through this book and realize that some repos use main as the central reference
branch, don’t worry — simply use main in place of master where you need to in these
commands. If the point comes when there seems to be a consensus on main vs

master in the Git community, we’ll modify the book to match.

I wish you all the best in your Git adventures. Time to Git going! — Chris Belanger

[

Section I: Beginning Git

This section is intended to get newcomers familiar with Git. It will introduce the
basic concepts that are central to Git, how Git differs from other version control
systems, and the basic operations of Git like committing, merging, and pulling.

You may discover things in this section you didn’t quite understand about Git, even
if you’ve used Git for a long time.

Chapter 1: A Crash Course

in|Git

It can be a bit challenging to get started with command-line Git if you haven’t done
much work on the command line before. Since you’ll be interacting with Git through
the command line throughout this book, this chapter will take you through a quick
crash course on how to do it.

There’s a common workflow that serves as the foundation of most interactions you’ll
have with Git:

 Create a fork of an existing repository.
 Copy a remote repository to your own computer.

» Create a separate working area in the repository where you can make changes
without affecting anyone else.

 Flag those changes to be saved to the local copy of the repository.
« Save those changes in your local copy of the repository.
» Synchronize those changes with the remote repository.

» Optionally, notify the repository owner that your changes are ready to be
reviewed.

This chapter will take you through all the above actions to help you get familiar with
the basics of working with Git through the command line.

Although this chapter won’t explain everything in detail, it will give you enough
familiarity with a Git repository and the basic Git workflow to better understand the
chapters to come.

[

What are remote repositories?

A remote repository is simply a collection of all the files of a project, hosted
somewhere other than your local machine. They could be hosted internally on your
network, but more often, you’ll work with remote repositories hosted on cloud
services like GitHub and GitLab.

Having a centralized remote repository makes sharing and contributing to a project
easy. Instead of sending files to interested people, you simply point them to the
hosted remote repository to get them up and running as quickly as possible.

The first step is to create your own personal online copy, or fork, of the remote
repository. That gives you a place to work online and lets you follow the instructions
in this chapter without affecting any of the millions of other people reading this
book and following along themselves.

Forking the remote repository

Navigate to the following URL in a browser:

You’ll see a screen like the following:

©® 0@ () raywenderichjprogrammer-iol X+

<« C & github. jok * @B oD &:
it Apps B RWAdmin B Trello B CofiMigNotes ESJ CnfiRef BS BookAdmin B Calendars BS) Budgets ES BookResources B Mastermind) Create JIRA [Ruf raywenderiich.co. » | £ Other Bookmarks
O Pull requests Issues Marketplace Explore o+ G-
& raywenderlich / programmer-jokes ®uUnwatch> 3 f¢Star 0 Y Fork O
<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings
Sample repository for the Mastering Git book Edit
Manage topics
-0 2 commits ¥ 1branch @ 0 packages © 0 releases. A1 contributor &5 MIT
ran: mastor | ow purosues Crestnewle | Uplaaies | rina e
. crispy8888 Adds programmer jokes. Latest commit cb7e6aa 10 days ago
[LICENSE Initial commit 10 days ago
[README.md Adds programmer jokes. 10 days ago
I README.md 7

In order to understand recursion you must first understand recursion.

There are 10 kinds of people in this world: Those who understand binary, and those who don't.

This is the main GitHub page for the project you’ll use in this book. You’ll cover all
the details about GitHub later.

Ensure you’re logged in with your own GitHub username, then click the Fork button
in the top right-hand corner of the page:

® Unwatch~ | 3 Y Star 0 % Fork 0

Securitv 0 Incinhte Sottinne

Fork programmer-jokes

Where should we fork programmer-jokes?

ﬂ crispy8888

m razeware

Note: If you belong to more than one organization on GitHub, you’ll likely see
a dialog similar to the one below, asking you where to fork the programmer-
jokes repository:

In this case, GitHub isn’t really asking you where to fork to physically; it’s
asking under which account you want to create the fork. Choose your own
username.

You’ll see a progress screen while GitHub creates your repository fork under your
account. When GitHub’s done creating that fork, you’ll see another screen that looks
a lot like the original page, except that now you’re working from a different location:

® 0@ () crispysassiprogrammer-ioke: X+

<« C @ github.com/crispy8888/programmer-jokes % @6 & :
i Apps B RWAdmin [Trello B CnflMigNotes ES CnfiRef ES) Book Admin ES Calendars ES) Budgets [S] Book Resources ES Mastermind €) Create JIRA [Ruf raywer » | B3 Other Bookmarks
O Pullrequests Issues Marketplace Explore L +- B~

crispy8888 / programmer-jokes @®Watch> 0 ystar 0 Yok 1

forked from raywenderlich/programmer-jokes.

<> Code Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings

Sample repository for the Mastering Git book Edit

Manage topics

-0- 2 commits ¥ 1branch @ 0 packages © 0 releases. A 1 contributor Lavig
Branch: master~ New pull request Createnewfile Upload files Find file | [CELCIT TS
This branch is even with raywenderlich:master. 1% Pull request [¥) Compare
. crispy8888 Adds programmer jokes. Latest commit cb7e6aa 10 days ago
[LICENSE Initial commit 10 days ago
[README.md Adds programmer jokes. 10 days ago
OJREADME.md 4

In order to understand recursion you must first understand recursion.

And that’s just what you want. This is an exact replica of the original programmer-
jokes repository, except this copy lives under your own account. That means you can
do anything you like to this repository, even delete it, without affecting the original
repository that lives under the raywenderlich organization.

To get started, you’ll need to copy, or clone, this remote repository to your local
workstation. To do that, you’ll need the remote URL of this repository. It’s easy to get
— simply click the Code button on the page, then click the small clipboard icon next
to the https://github.com/username... URL in the dialog:

Go to file Add file ~ A
S
ich (3 Clone ® M
HTTPS SSH GitHub CLI (New)
o]
https://github.com/belangerc/progrz)
jok 51
Use Git or checkout with SVN using the web URL.
om
) Open with GitHub Desktop R
rog
~ N
() Download ZIP A

You now have the remote URL of this repository in your clipboard.

[

You’re done with this webpage for a bit — you’re now ready to start working with Git
on the command line.

Open Terminal, PowerShell or the appropriate console prompt on your system and
get ready to follow along.

Cloning the repository

At the command prompt, type the following command without pressing the Enter
key:

git clone

After that, press the spacebar to insert a space character. Then paste what’s in your
clipboard to the command line using Command-V or Control-V, depending on what
the Paste command is on your operating system.

You should have something similar to the following in your command prompt:

git clone https://github.com/<your-username>/programmer-—
jokes.git

Now, to break that down a little:

e git is the name of the command-line Git tool. Every interaction you have with Git
on the command line will start with git and be followed by the Git command you
want to execute.

» clone is the name of the command you want to execute. clone tells Git to copy a
specific named repository to your local machine.

e https://github.com/<your-username>/programmer-jokes is the full URL to
the repository you want to clone. Breaking that down further, https://
github.comis the cloud service that hosts the repository, <your—-username> is the
owner of the fork of this repository, and programmer-jokes is the name of the
repository you want to clone.

Press Enter or Return to execute that command. Git gives you a bit of output on the
command line to tell you what it’s done:

Cloning into 'programmer—jokes'...

remote: Enumerating objects: 7, done.

remote: Total 7 (delta @), reused @ (delta @), pack-reused 7
Unpacking objects: 100% (7/7), 2.13 KiB | 311.00 KiB/s, done.

[

The details of that output aren’t important, but do take a look at that first line:
Cloning into 'programmer—jokes'...

Git’s telling you that it’s cloning the remote repository into a new directory it’s
created: programmer-jokes.

Navigate into that directory from the command line with the following command:

cd programmer-jokes

Next, execute the following to get a list of the files in that directory in long format —
just because it’s easier to read:

1s -1
You’ll see output similar to the following:

-rw—r——r—— 1 chrisbelanger staff 1070 29 May 11:25 LICENSE
—-rw—-r—r—— 1 chrisbelanger staff 370 29 May 11:25 README.md

There are two files in this repository: LICENSE, which has some boring legal
information about the contents of the repository, and README.MD, which is a
simple text file that contains some groan-worthy programming jokes.

Now that you have the repository cloned to your local machine, the next step is to
create a separate working space, or branch, where you can change the contents of
README.md without fear of messing up the original contents of the repository.

Creating a branch

Branches are, conceptually, copies of the original contents of the repository. You can
work in a branch without affecting the original contents of the repository until you
are ready to merge all your work back together again.

If you’ve ever made a copy of an important document before you started editing it,
the concept of branching is exactly the same.

At the command line, execute the following to create a new branch:

git branch my-joke

[

Breaking this down:
« git, again, is the name of the command-line tool.
» branch is the name of the command you want Git to execute.

» my-joke is the name of the branch you want to create. The name you give to a
branch isn’t important, but you generally want to give it a descriptive name, just
as you would when creating new folders on your desktop.

You can see that Git’s created a new branch by executing the following command:
git branch

This looks similar to the command above, but in this case, you haven’t supplied a
branch name. Git understands this to mean, “Oh, you don’t want to create a branch,
you just want to look at all the branches I know about.”

Git responds with the following output:

* master
my-joke

master is the original copy of the repository, while my-joke is the branch you just
created. The asterisk * indicates which branch you’re currently working in. Right
now, you’re still on master, but that’s not what you want — you want to change to
my—joke so you don’t affect master.

To switch to the my—joke branch, execute the following:

git checkout my-joke

Ah, a new command: checkout. You might have expected a command like switch-
branch, but Git thinks of switching branches in terms of “checking out”. It’s similar
to how you check out a book at a library: That copy of the book is now exclusively
yours to work with until you return it to the library.

Git responds to the checkout command with the following:

Switched to branch 'my-—joke'
If you’re the paranoid type, like me, you can confirm this with the command below:

git branch

[

Git puts your fears to rest with the following response:

master
* my-joke

The asterisk tells you that you’re now working securely inside the my-joke branch,

and that your changes won’t affect the master copy of the repository.

Now, it’s time for you to add a stunning joke to README.md.

Making and staging changes

README.md is simply a text file. Open it in a text editor of your choice and you’ll
see it has the following contents:

programmer—jokes

In order to understand recursion you must first understand
recursion.

There are 10 kinds of people in this world: Those who understand
binary, and those who don't.

An SEO expert walked into a bar, pub, liquor store, brewery,
alcohol, beer, whiskey, vodka...

Why did the two functions stop calling each other? Because they
had constant arguments.

They’re hilarious, right!? Well, you can definitely improve upon them by adding your
own joke to this list.

Just in case you don’t have a handy stash of programmer jokes at your disposal, add
the following line to the text file:

Why couldn’t the confirmed bachelor use Git? Because he was
afraid to commit!

Save your changes and exit the text editor.

Git’s pretty smart, but it also knows not to assume too much. Just because you’ve
modified a file, Git isn’t going to assume that you want this in the repository.
Instead, it will wait for you to flag those changes to be made to the repository.

[

Execute the command below to flag the change you made to the file, remembering
that case is important:

git add README.md

The add command tells Git to add, or stage, the changes you’ve made to
README.md to the list of things to add to the repository. In this case, you only have
one change to one file, but in practice, you’ll usually have lots of changes to lots of
files.

Now that Git is aware that you want to make that change, you’ll need to commit it to
your local repository.

Committing changes

Git’s got your back here. It knows that sometimes you might add a change, but then
have second thoughts, or you might have other changes that you want to stage at the
same time. That’s why Git separates the act of staging files from the act of
committing those changes.

Committing is the act of saying, “Yes, I have these changes ready, and [want to
formally record those changes in my local copy of the repository.”

Not only does Git record those changes formally, it also allows you to provide a
commit message to give some context about the content of those changes to others
— or even to your future self.

Commit your changes now with the following command:
git commit -m "Adding my new joke"

That tells Git to formally record your current set of changes — although in this case,
you only have one change, which is the joke you added.

Git responds with output similar to the following:

[my-joke f8f8854] Adding my new joke
1 file changed, 1 insertion(+)

That may look confusing, but there’s a lot of information in there:
» my-joke is the branch you’re committing your changes to.

» f8f8854 is the unique identifier for your commit, also known as the commit hash
of your changes. You use this identifier to uniquely reference this specific commit
in the future. Note, if you’re following along and typing commands as you read,
your hash will be different.

+ Adding my new joke is the commit message you added above.

« 1 file changed, 1 insertion(+) provides some context about what was changed in
this commit: one file, with one line added.

You’ve formally recorded these changes in your local repository, but now you need to
get them synchronized, or pushed, back to the remote repository.

Pushing your changes

Most of Git’s actions are performed from the perspective of your local workstation.
So the action you’re taking is to push your local commit to the remote server.

Execute the following command to send your local changes to your forked remote
repository:

git push —-set-upstream origin my-joke

That’s a little obtuse, for sure. Don’t be too concerned at this point; you’ll cover what
this means in future chapters. Essentially, here’s what the various pieces mean:

« push tells Git to put your local changes on the server.

» —set-upstream tells Git to form a tracking link for this branch between your local
repository and the remote repository.

« origin is a convention that references the remote repository.
« my-joke is the branch you want to push.

Git responds with a pile of output:

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.
Delta compression using up to 4 threads
Compressing objects: 100% (3/3), done.

[

Writing objects: 100% (3/3), 396 bytes | 396.00 KiB/s, done.
Total 3 (delta 1), reused @ (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local

object.

remote:

remote: Create a pull request for 'my-joke' on GitHub by
visiting:

remote: https://github.com/<your—-username>/programmer—
jokes/pull/new/my—joke

remote:

To https://github.com/<your—-username>/programmer—jokes.git
* [new branch] my—joke —> my-joke

Branch 'my-joke' set up to track remote branch 'my—-joke' from
‘origin'.

Note: You may be prompted by the command line to enter your GitHub
username and password. If so, then provide them and hit Enter or Return after
you do.

Git’s successfully pushed your changes to the remote repository, but there’s one
thing left to do: Signal to anyone else using this repository that you have something
you’d like to integrate, or pull, into the remote repository. You do that with a
mechanism called a pull request.

Creating a pull request

Return to your browser, and if you don’t already have it open, open the main GitHub
page for your forked repository at https://github.com/<your-username>/
programmer—jokes.

If you look really closely, You’ll notice that the page has changed a little, to reflect
the fact that your changes made it successfully to the remote repository:

¥ master ~ ¥ 2 branches | © 0 tags

You can see GitHub is telling you that there’s now two branches in this repo. Click on
that “2 branches” link, and you’ll see the following page, showing your new branch,
along with a “New pull request” button:

Yours Active Stale All branches Search branches...

Default branch

master Updated 5 months ago by crispy8888 Default Change default branch

Your branches

my-joke Updated 7 minutes ago by crispy8888 o1 1) New pull request v

Click that button and you’ll be taken to another page, where you can enter some
details about your change. Enter Adds a real knee-slapper to the large text box to
give some extra detail about the changes contained in this pull request, then click
the Create pull request button:

® ©® () comparing raywenderlichims: X 4

¢ > ¢ a gt * BoD @ :

i Apps ES) RWAdmin B Trello ES) CnflMigNotes ES] CnfiRef ES] Book Admin B Calendars ES) Budgets ES Book Resources ES) Mastermind €) Create JIRA K raywenderlich.co. » | B3 Other Bookmarks

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

U0 base repository: raywenderlich/programmer-.. base: master~ € | head repository: crispy8888fprogrammer-iok... v | compare: my-joke~

+ Able to merge. These branches can be automatically merged

ﬂ Adding my new joke Reviewers
Noreviews
Write Preview HB I = @& == @ & &~
Assignees
Adds a real knee-slapper Mo onesssion yourselt

Labels

None yet

Projects.

None yet

Attach files by dragging & dropping, selecting or pasting them. m ‘

Milestone

Allow edits by maintainers Create pull request ~ ~ No milestone

Remermber, contributions o tis repository should folow our Github Community Guidelines
© Linked Issues ®
Use Closing keywords i the
descripton to automatically close

GitHub takes you to yet another page, where you can see that your pull request is
now active, along with various information related to your pull request:

® ©® () addingmynewioke bycrispy X 4+

€ o a gt jokesfoull/1 * BoB &:
i Apps B3 RWAdmin B Trello B CnflMigNotes B CnflRef B3] Book Admin £ Calendars ES) Budgets B Book Resources £ Mastermind € Create JIRA Kuf » | B3 Other Bookmarks
O r Pull requests Issues Marketplace Explore £+ 8-
raywenderlich / programmer-jokes ®uUnwatch> 3 f¢Star 0 Yrork 1
Code Issues 0 1 Pull requests 1 Actions Projects 0 Wiki Security 0 Insights Settings
Adding my new joke #1 ot | openith -
crispy8888 wants to merge 1 commit into rayuenderlichimaster from crispyssas:ny-joke ()
Q) Conversation 0 -o- Commits 1 El Checks 0 [Files changed 1 +1-0m
‘:‘\ crispy8888 commented now Member @ -+ Reviewers

No reviews

Adds a real knee-slapper
Stillin progress? Convert to draft

B 1dsing ny new joke bertdoc Assiances
No one—assign yoursel

Add mor by pushing to the my~joke branch on crispy8888/programmer-jokes. Laber
None yet
§'° @ Continuous integration has not been set up
GitHub Actions and several other apps can be used to automatically catch bugs and enforce style.
Projects
. o None yet
This branch has no conflicts with the base branch
Merging can be performed automatically.
Wilestone,

That’s as far as you need to go with this short crash course in Git. If you didn’t
understand quite everything that happened along the way, don’t worry! This chapter
was just to get you familiar with the basic fork — clone — branch — add — commit
— push — pull request mechanism of Git.

The rest of the book will look at each of these steps in detail, along with much, much
more information about the more obscure commands in Git. You’ll also get a tour of
the internals of Git, which may help you understand a little better why Git does what
it does.

Head on to the next chapter, where you’ll start by looking at the clone command in
more depth. See you there!

Chapter 2: Cloning a Repo

The preceding chapter took you through a basic crash course in Git, and got you right
into using the basic mechanisms of Git: cloning a repo, creating branches, switching
to branches, committing your changes, pushing those changes back to the remote
and opening a pull request on GitHub for your changes to be reviewed.

That explains the how aspect of Git, but, if you’ve worked with Git for any length of
time (or haven’t worked with Git for any time at all), you’ll know that the how is not
enough. It’s important to also understand the why of Git to gain not just a better
understanding of what’s going on under the hood, but also to understand how to fix
things when, not if, your repository gets into a weird state.

So, first, you’ll start with the most basic aspect of Git: getting a repository copied to
your local system via cloning.

What is cloning?

Cloning is exactly what it sounds like: creating a copy, or clone, of a repository. A Git
repository is nothing terribly special; it’s simply a directory, containing code, text or
other assets, that tracks its own history. Then there’s a bit of secure file transfer
magic in front of that directory that lets you sync up changes. That’s it.

A Git repository tracks the history of all changes inside the repository through a
hidden .git directory that you usually don’t ever have to bother with — it’s just there
to quietly track everything that happens inside the repository. You’ll learn more
about the structure and function of the hidden .git directory later on in this book.

So since a Git repository is just a special directory, you could, in theory, effect a
pretty cheap and dirty clone operation by zipping up all the files in a repository on
your friend’s or colleague’s workstation and then emailing it to yourself. When you
extract the contents of that zipped-up file, you’d have an exact copy of the
repository on your computer.

However, emailing things around can (and does) get messy. Instead, many
organizations make use of online repository hosts, such as GitHub, GitLab, BitBucket
or others. Some organizations even choose to self-host repositories, but that’s
outside the scope of this book. For now, you’ll stick to using online hosts — in this
example, GitHub.

Using GitHub

GitHub, at its most basic level, is really just a big cloud-based storage solution for
repositories, with account and access management mixed in with some collaboration
tools. But you don’t need to know about all the features of GitHub to start working
with repositories hosted on GitHub, as demonstrated in the Git crash course in the
previous chapter.

Cloning from an online repository is a rather straightforward operation. To get
started, you simply need the following things:

» A working installation of Git on your local system.
» The remote URL of the repository you want to clone.

* Any credentials for the online host.

[

Note: It is generally possible to clone repositories without using credentials,
but you won’t be able to propagate the changes you make on your local copy
back to the online host.

The GitHub repository homepage

There’s a repository already set up on GitHub for you to clone, so you first need to
get the remote URL of the repository.

To start, navigate to https://github.com/raywenderlich/ideas and log in with your
GitHub username and password. If you haven’t already set up an account, you can do
SO NOW.

O Search or jump to.. Pull requests Issues Marketplace Explore £ +- 9~
& raywenderlich / ideas @ Unwatch ~ 5 frstar 8 % Fork 221
<> Code Issues Pull requests Actions Projects Wiki Security Insights Settings
¥ master + | 2branches © 0tags Go to file Add file ~ About @
The "ideas" repository for the
@ crispy88s8 Going to try this livestreaming thing 470849 on Jan 10,2019 D 11 commits raywenderlich.com book Mastering Git

articles Going to try this livestreaming thing 2 years ago @ Readme

books I should write a book on git someday 2 years ago & MIT License

videos Removing brain download as per ethics committee 2 years ago

Releases

O LICENSE Initial commit 2 years ago
D READMEMA il)) No releases published
m nitial commit years ago Crente o mos reloann
README.md 4
Packages
. No packages published
ideas puslisn your frt package

The "ideas" repository for the raywenderlich.com book Mastering Git

The main page for the ideas repository.

Once you’re on the homepage for the repository, have a look at the list of files and
directories listed on the page. These lists and directories represent the contents of
the repository, and they are the files that you’ll clone to your local system.

But where do you find the remote URL of the repository to clone it? Like many things
in Git (and with computers, in general), there are multiple ways to clone a repository.
In this chapter, you’ll use the easiest and most common cloning method, which
starts on the GitHub repository homepage.

Finding the repository clone URL

Look for and click on the Code button on the repository homepage.

The ’Clone or download’ button displays the various cloning options for a repository.

The little pop-up dialog gives you a few options to get a repository cloned to your
local system:

Go to file Add file ~ A

S
ich & Clon@ ® M
JPS SSH™TitHub CLI (New)
O
tps://github.com/belangerc/progre 5
jok a0
Use Git or checkout with SVN using the web URL.
om
) Open with GitHub Desktop @ R
rog

=z

() Download ZIP @ Rl

I

The cloning options for at GitHub repository.

1. This is the main HTTPS URL for the repository. This is the URL that you’ll use in
this chapter to clone from the command line git client.

2. You can also use SSH to clone a repository. Clicking this link lets you toggle
between using SSH and HTTPS to work with the repository.

3. If you have the GitHub Desktop app installed, you can use the Open in Desktop
button to launch GitHub Desktop and clone this repository all in one step.

4. Ifyou just want a zipped copy of what’s in the repository (but not all the
repository bits itself), the Download ZIP button will let you do this.

For now, copy the HTTPS URL that you see in the dialog via the little clipboard icon
button to the right of the URL. This places a copy of the HTTPS URL in your
clipboard so that you can paste it into your command line later.

[

Cloning on the command line

Now, go to your command prompt. Change to a suitable directory where you want
your repositories to live. In this case, I’ll create a directory in my home directory
named GitApprentice where I would like to locally store all of the repos for this
book.

Execute the following command to create the new directory:

mkdir GitApprentice

Now, execute the following command to see the listing of files in the directory (yours
will be different than shown below):

1s

I see the following directories on my system, and there’s my new GitApprentice
directory:

~ $ 1ls

Applications Downloads Music

Dropbox Pictures Library
Public Desktop GitApprentice
Documents Movies

Execute the following command to navigate into the new directory:
cd GitApprentice

You’re now ready to use the command line to clone the repository.

Enter the following command, but don’t press the Enter key or Return key just yet:
git clone

Now, press the Space bar to add one space character and paste in the URL you
copied earlier, so your command looks as follows:

git clone https://github.com/raywenderlich/ideas.git

Now, you can press Enter to execute the command.

You’ll see a brief summary of what Git is doing below:

~/MasteringGit $ git clone https://github.com/raywenderlich/

[

ideas.git

Cloning into 'ideas'...

remote: Enumerating objects: 49, done.

remote: Total 49 (delta @), reused @ (delta 0), pack-reused 49
Unpacking objects: 100% (49/49), done.

Execute the 1s command to see the new contents of your GitApprentice directory:

~/MasteringGit $ 1s
ideas

Use the cd command, followed by the 1s command, to navigate into the new ideas
directory and see what’s inside:

~/MasteringGit $ cd ideas
~/MasteringGit/ideas $ 1s
LICENSE README . md articles books videos

So there’s the content from the repository. Well, the visible content at least. Run the
1s command again with the —a option to show the hidden .git directory discussed
earlier:

~/MasteringGit/ideas $ ls -a
.git README.md books
LICENSE articles videos

Aha — there’s that magical .git hidden directory. Take a look at what’s inside.

Exploring the .git directory

Use the cd command to navigate into the .git directory:
cd .git

Execute the 1s command again to see what dark magic lives inside this directory.
This time, use the —F option so that you can tell which entities are files and which
are directories:

1s -F
You’ll see the following:

~/GitApprentice/ideas/.git $ 1s -F

HEAD config hooks/ info/ objects/
refs/
branches/ description index logs/ packed-refs

[

So it’s not quite the dark arts, I’ll admit. But what is here is a collection of important
files and directories that track and control all aspects of your local Git repository.
Most of this probably won’t make much sense to you at this point, and that’s fine. As
you progress through this book, you’ll learn what most of these bits and pieces do.

For now though, leave everything as-is; there’s seldom any reason to work at this
level of the repository. Pretty much everything you do should happen up in your
working directory, not in the .git subfolder.

So backtrack up one level to the the working directory for your repository with the cd
command:

€@l oo

You’re now back up in the relative safety of the top level of your repository. For now,
it’s enough to know where that .git directory lives and that you really don’t have a
reason to deal with anything in there right now.

Forking

You’ve managed to make a clone of the ideas repository, but although ideas is a
public repository, the ideas repository currently belongs to the raywenderlich
organization. And since you’re not a member of the raywenderlich organization, the
access control settings of the ideas repository mean that you won’t be able to push
any local changes you make back to the server. Bummer.

But with most public repositories, like ideas, you can create a remote copy of the
repository up on the server under your own personal user space. You, or anyone you
grant access to, can then clone that copy locally, make changes and push those
changes back to the remote copy on the server. Creating a remote clone of a
repository is known as forking.

First, you’ll need to rid your machine of the existing local clone of the ideas
repository. It’s of little use to you in its current state, so it’s fine to get rid of it.

First, head up one level, out of your working directory, by executing the following
command:

€el oo

[

You should be back up at the main GitApprentice directory:
~/GitApprentice $

Now, get rid of the local clone with the rm command, and use the -rf options to
recursively delete all subdirectories and files, and to force all files to be deleted:

rm —rf ideas

Execute 1s to be sure the directory is gone:

~/GitApprentice $ 1s
~/GitApprentice $

Looks good. You’re ready to create a fork of the raywenderlich ideas repository...
which leads you to your challenge for this chapter!

Challenge

Challenge: Fork on GitHub and create a local
clone

The goal of this challenge is twofold:

1. Create a fork of the ideas repository under your own user account on GitHub.
2. Clone the forked repository to your local system.

Navigate to the homepage for the ideas repository at https://github.com/
raywenderlich/ideas. In the top right-hand corner of the page, you’ll see the Fork
button. That’s your starting point.

Y Fork 466

The ’Fork’ button lets you create a remote copy of a repository.

The steps to this challenge are:
1. Fork the ideas repository under your own personal user account.
2. Find the clone URL of your new, forked repository.

3. Clone the forked ideas repository to your local system.

[

4. Verify that the local clone created successfully.

5. Bonus: Prove that you’ve cloned the fork of your repo and not the original
repository.

If you get stuck, you can always find the solution to this challenge under this
chapter’s projects/challenge folder inside the materials you downloaded for this
book.

Key points

» Cloning creates a local copy of a remote Git repository.

» Usegit clone along with the clone URL of a remote repository to create a local
copy of a repository.

» Cloning a repository automatically creates a hidden .git directory, which tracks the
activity on your local repository.

» Forking creates a remote copy of a repository under your personal user space.

Where to go from here?

Once you’ve successfully completed the challenge for this chapter, head into the
next chapter where you’ll learn about the status, diff, add and commit commands.
You’ll also learn just a bit about how Git actually tracks the changes that you make in
the local copy of your repository.

Chapter 3: Committing

Your'Changes

The previous chapter showed you how to clone remote repositories down to your
local system. At this point, you’re ready to start making changes to your repository.
That’s great!

But, clearly, just making the changes to your local files isn’t all you need to do. You’ll
need to stage the changes to your files, so that Git knows about the changes. Once
you’re done making your changes, you’ll need to tell Git that you want to commit
those changes into the repository.

What is a commit?

As you’ve probably guessed by now, a Git repo is more than a collection of files;
there’s quite a bit going on beneath the surface to track the various states of your
changes and, even more importantly, what to do with those changes.

To start, head back to the homepage for your forked repository at https://
github.com/[your-username]/ideas, and find the little “11 commits” link at the top of
the repository page:

® 11 commits

Note: If you didn’t complete the challenge for the last chapter, then go create
a fork of https://github.com/raywenderlich/ideas and clone it to your local
workstation.

Click that link, and you’ll see a bit of the history of this repository:

7 belangerc / ideas @ Watch~ 0 H*star 0 0
forked from raywenderlich/ideas
¢ Code Pull requests 0 Projects 0 Wiki Insights Settings

Branch: master v

Commits on Jan 10, 2019

Going to try this livestreaming thing B carosss <

. crispy8888 committed 2 hours ago

Some scratch ideas for the iOS team E2 629ccad <

. crispy8888 committed 2 hours ago

Adding files for article ideas B fbcasd3 <
. crispy8888 committed 2 hours ago
Merge branch 'video_team' B Sfcdcte ¢
. crispy8888 committed 2 hours ago
1'should write a book on git someday B 39c26dd <
. crispy8888 committed 3 hours ago
Adding book ideas file B 43b4ges <
. crispy8888 committed 3 hours ago
Removing brain download as per ethics committee B cfbbcas | <
. crispy8888 committed 3 hours ago
Adding some video platform ideas B 6774 O
. crispy8888 committed 3 hours ago
Adding content ideas for videos B oe6facse <
. crispy8888 committed 3 hours ago
Creating the directory structure B beca762 ¢

[, crispy8888 committed 3 hours ago

Commits on Jan 9, 2019

Initial commit Verified B 7303822 e

[, crispy8888 committed 16 hours ago

Each of those entries is a commit, which is essentially a snapshot of the particular
state of the set of files in the repository at a point in time.

Generally, a commit represents some logical update to your collection of files.
Imagine that you’re adding new items to your ideas lists, and you’ve added as many
as you can think of. You’d like to capture that bit of work as a commit into your
repository.

The state of the repository before you began those updates — your starting point, in
effect — is the parent commit. After you commit your changes — which is the diff —
that next commit would be the child commit. The diagram below explains this a
little more:

hello I\

world world
bonjour
tout le
monde

Example of two commits, the parent on the left, and the child on the right.

In this example, I’ve added new text to a file between commits. The parent commit is
the left-hand file, and the child commit is the right-hand file. The diff between them
are the changes I made to a single file:

bonjour
tout le
monde

The diff is the difference between the above two commits.

And a diff doesn’t just have to be additions to files; creating new content, modifying
content and deleting content are other common changes that you’ll make to the files
in your repository.

[

In Git, there are a few steps between the act of changing a file and creating a commit.
This may seem like a bit of a heavy approach, at first, but, as you move through
building up your commits, you’ll see how each step helps create a workflow that
keeps you in tune with the files in your repository and what’s happened to them.

The easiest way to understand the process of building up commits is to actually
create one. You’ll create a change to a file, see how Git acknowledges that change,
how to stage that change, and, finally, how to commit that change to the repository.

Starting with a change

Open your terminal program and navigate to the ideas repository; in my case, I've
put it inside of the GitApprentice directory. This should be the clone of the forked
repository that you created in the previous chapter.

Note: If you missed completing the challenge at the end of the Chapter 2, go
back now and follow the challenge solution so that you have a local clone of
the forked ideas repository to work with.

Assume that you want to add more ideas to the books file. Open books/
book_ideas.md in any plaintext editor. I like to use nano since it’s quick and easy,
and I don’t need to remember any obscure commands to use it.

Add a line to the end of the file to capture a new book idea: “Care and feeding of
developers.” Take care to follow the same format as the other entries. Your file
should look like this:

Ideas for new book projects

Hotubbing by tutorials

Advanced debugging and reverse engineering
Animal husbandry by tutorials

Beginning tree surgery

CVS by tutorials

Fortran for fun and profit

RxSwift by tutorials

Mastering git

Care and feeding of developers

— e e —
[i S I S S

When you’re done, save your work and return to your terminal program.

[

In the background, Git is watching what you’re doing. Don’t believe me? Execute the
following command to see that Git knows what you’ve done, here:

git status

git status shows you the current state of your working tree — that is, the
collection of files in your directory that you’re working on. In your case, the working
tree is everything inside your ideas directory.

You should see the following output:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master’.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git checkout —- <file>..." to discard changes in working
directory)
modified: books/book_ideas.md

no changes added to commit (use "git add" and/or "git commit
_all)

Ah, there’s the file you just changed: books/book_ideas.md. Git knows that you’ve
modified it... but what does it mean when Git says, Changes not staged for
commit?

It’s time for a short diversion to look at the various states of your files in Git.
Building up a mental model of the various states of Git will go a long way to
understanding what Git is doing... especially when Git does something that you
don’t quite understand.

Working trees and staging areas

The working copy or working tree or working directory (language is great, there’s
always more than one name for something) is the collection of project files on your
disk that you work with and modify directly, just as you did in books/book_ideas.md
above.

[

Git thinks about the files in your working tree as being in three distinct states:
« Unmodified

» Modified

» Staged

Unmodified simply means that you haven’t changed this file since your last commit.
Modified is simply the opposite of that: Git sees that you’ve modified this file in
some fashion since your last commit. But what’s this “staged” state?

If you’re coming from the background of other version control systems, such as
Subversion, you may think of a “commit” as simply saving the current state of all
your modifications to the repository. But Git is different, and a bit more elegant.
Instead, Git lets you build your next commit incrementally as you work, by using the
concept of a staging area.

Note: If you’ve ever moved houses, you’ll understand this paradigm. When
you are packing for the move, you don’t take all of your belongings and throw
them loosely into the back of the moving van. (Well, maybe you do, but you
shouldn’t, really.)

Instead, you take a cardboard box (the staging area), and fill it with similar
things, fiddle around to get everything packed properly in the box, take out a
few things that don’t quite belong, and add a few more things you forgot
about.

When you’re satisfied that the box is just right, you close up the box with
packing tape and put the box in the back of the van. You’ve used the box as
your staging area in this case, and taping up the box and placing on the van is
like making a commit.

Essentially, as you work on bits and pieces of your project, you can mark a change, or
set of changes, as “staged,” which is how you tell Git, “Hey, I want these changes to
go into my next commit... but I might have some more changes for you, so just hold
on to these changes for a bit.” You can add and remove changes from this staging
area as you go about your work, and only commit that set of carefully curated
changes to the repository when you’re good and ready.

Notice above that I said, “Add and remove changes from the staging area,” not “Add
and remove files from the staging area.” There’s a distinct difference, here, and you’ll
see this difference in just a bit as you stage your first few changes.

[

Staging your changes

Git’s pretty useful in that it (usually) tells you what do to in the output to a
command. Look back at the output from git status above, and the Changes not
staged for commit section gives you a few suggestions on what to do:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
directory)

So since you want to get this change eventually committed to the repository, you’ll
try the first suggestion: git add.

Execute the following command:

git add books/book_ideas.md

Then, execute git status to see the results of what you’ve done:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git restore —-staged <file>..." to unstage)
modified: books/book_ideas.md

Ah, that seems a little better. Git recognizes that you’ve now placed this change in
the staging area.

But you have another modification to make to this file that you forgot about: Since
you’re reading this book, you should probably check off that entry for “Mastering git”
in there to mark it as complete.

Open books/book_ideas.md in your text editor and place a lower-case x in the box
to mark that item as complete:

- [x] Mastering git

Save your changes and exit out of your editor. Now, execute git status again (yes,
you’ll use that command often to get your bearings), and see what Git tells you:

~/GitApprentice/ideas $ git status
On branch master
Your branch is up to date with 'origin/master’.

[

Changes to be committed:
(use "git restore ——staged <file>..." to unstage)
modified: books/book_ideas.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working
directory)
modified: books/book_ideas.md

What gives? Git now tells you that books/book_ideas.md is both staged and not
staged? How can that be?

Remember that you’re staging changes here, not files. Git understands this, and tells
you that you have one change already staged for commit (the Care and feeding of
developers change), and that you have one change that’s not yet been staged —
marking Mastering git as complete.

To see this in detail, you can tell Git to show you what it sees as changed. Remember
that diff we talked about earlier?