


Meet Patel

Advanced JavaScript Visualized



Copyright © 2021 by Meet Patel

All rights reserved. No part of this publication may be reproduced, stored or
transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, scanning, or otherwise without written permission
from the publisher. It is illegal to copy this book, post it to a website, or

distribute it by any other means without permission.

Meet Patel asserts the moral right to be identified as the author of this work.

Meet Patel has no responsibility for the persistence or accuracy of URLs for
external or third-party Internet Websites referred to in this publication and

does not guarantee that any content on such Websites is, or will remain,
accurate or appropriate.

Designations used by companies to distinguish their products are often
claimed as trademarks. All brand names and product names used in this book
and on its cover are trade names, service marks, trademarks and registered
trademarks of their respective owners. The publishers and the book are not
associated with any product or vendor mentioned in this book. None of the

companies referenced within the book have endorsed the book.

First edition

This book was professionally typeset on Reedsy
Find out more at reedsy.com

https://reedsy.com


I like to dedicate this book to my engineering which made me
realize I should have started writing earlier :)



The true sign of intelligence is not
knowledge but imagination.

- Albert Einstein



Contents

1. Execution Context, Thread & Callstack

2. Closure - A Deep Dive

3. Prototype , __proto__ & Objects

4. Asynchronous Execution

5. Iterators, Generators, and Async-Await

6. NodeJS, C++, Queues & Servers

7. Bonus



1

Execution Context, Thread &
Callstack

We all know that we always had and have a love and hate relationship with 

JavaScript from the day you or I started learning it. But, sometimes philosophy 

around those weird JavaScript concepts can easily be understood if we just dig down 

the basics and fundamentals.

This is the most important and fundamental chapter of all. So if you get this,
then almost everything will be easy to follow and understand. Welcome to
the exciting journey of JavaScript beyond normal expectations.

—————————————————————————————————

Terminologies

Memory



Processes and Threads
Execution Context
Scope
The Thread of Execution
Callstack

Memory:- A computer is just a machine that takes a set of instructions and executes 

it, but during that time computer needs to hold some information for the 

calculation or for any other task. So, we have storage devices like RAM and ROM 

(HDDs, SSDs) which hold information temporarily or permanently. So, memory is just 

a part where our information is held.

Process:- A currently executing/running program (bundled up instructions) is called 

process. Each process is just a blueprint for what the computer needs to do in 

order to finish a given task.

Thread:- A process is a set of instructions bundled up, but each instruction might 

need to be executed as well to achieve the original process to be finished and so 

the thread is just a simple lightweight running process (a small set of 

instruction/s in execution).

Execution Context:- It's nothing but a currently running code inside memory(every 

running program needs memory) which could be normal function execution or normal 

JavaScript code like if-else, loop, or any other expression.

Memory + Process == Execution Context

Scope:- A Scope is an allocated memory to a specific or currently executing 

function or block of code. That is to say, variables(memory) is not available 

outside of it to functions or block of code.

Scope == Memory Restriction/s for execution context/s 



The Thread of Execution:- A currently running(executing) function or block of code 

is a thread of execution. That is to say, it is a small running process inside our 

main process.

Callstack:- It's a container in which you can add or remove code block/functions 

such that most recently added stuff in this container will get priority for the 

next thread of execution. That is to say Last In First Out (LIFO) pattern. 

Before we move further let me give you a quick overview of how processes
are managed at a high level.

1. Initially, any program(set of instructions) is collected by the
memory(usually in the RAM) and then the processor takes the initiative
to complete that program.

2. A processor then take the program and start executing it and during that
process processor might need to do extra stuff to accomplish a given
task i.e. processor might perform a program inside the program(Set of
instruction might need other instructions as well) AKA thread/s also
needs to be done as well.

3. After finishing the program, the Operating System will take care of the
cleanup and some other dependent task/s.

4. Now, any program is called single-threaded when the given program
can perform a set of instructions one by one, and no extra internal set
of instructions is done(Running JavaScript program is a single-
threaded process).



* * *

After getting an idea about termonologies Let’s now further understand stuff
with a little example

Example 1.1

- First thing if you don’t know then, JavaScript is a single-threaded
and synchronous language which mean JavaScript
engine/Interpreter can execute one line or block of code at one time.
Which means you can’t do multiple things at the same time. Also,
you go through line by line while executing code (synchronously).

- when you execute JavaScript code on a browser or any other
enviroment(nodejs, react-native etc) we run our code in something
called global execution environment(global memory space for
browser tab or global memory for node enviroment first).



- every function we defined are actually first goes inside global
memory space (ignore function defined inside another functions for
now). When we put these function into execution, first they are put
on callstack first and from that callstack functions are getting called
where latest function are made available in thread of execution!

- Before we start understanding the given code it’s important to
create “mental model” for all the stuff we learned so far.

Current JavaScript Mental Model



In our mental model, we can see that every JavaScript program gets
Global memory space (Global Scope). Every function and topmost
declared variables are hoisted in the global scope.
Hoisting is JavaScript’s default behavior of moving all declarations to
the top of the current scope (to the top of the current script or the current
function) - W3SCHOOL (I don’t prefer w3school but sometimes it
explains stuff easilyٌ).
Each line of code or function definition is not called directly in
JavaScript. But instead, it goes to callstack, and then based on callstack
current priority function/s is put in the Thread of execution (Last In First
Out). Why not understand this mental model via example.
Let’s start reading the below code and explore and keep the above
mental model in mind.



Example 1.1

In the first line as you can see we are declaring a variable called
“outerGoal” and assigning a value of 0. That is to say, we are
consuming small memory space inside global memory (scope) and
giving the label called “outerGoal” to that memory.
In the next line of code, we are simply logging that value to the console.
That is to say, we are simply logging value at a label called
“outerGoal”.
One thing to note, I will not draw a global thread of execution diagram
but it’s always when we start executing our javascript code.
Let’s see our “mental model” again how it applies to the current
situation.



Current JavaScript Mental Model

let’s further understand the below code



Example 1.1

As we can see, we are declaring function(a special type of object in js)
and giving the label “addGoal”.
Note that this function declaration has 1 parameter called count which
means count is a label for future memory space address which will be
going to consume by this function later.
Inside function definition whatever we are doing is noting that much
important right now (will see detail when we call it).
After function definition, we are actually declaring variable
“storedEvaluatedValue” in global scope which will be return or
evaluated value from addGoal function call.
In case if you didn’t notice then, we are not leaving global scope or
global thread of execution here.
It’s time to see our “mental model” again.



Current JavaScript Mental Model

let’s continue our understanding of code

Here is the important part comes, we are calling “addGoal()” by putting
braces around it. As soon as we did that we create a brand new
execution context (or local memory space for that function).
Just to know that making the execution context doesn’t happen
magically in JavaScript. Actually, when we call a function instead of
putting that function directly into Execution Thread, we first put that
function into call stack first.
Remember, “stack” data structure means Last In First Out, which
means if we put a function call on the call stack, as long as we don’t



have extra function calls immediately afterward, we take the topmost

function of the call stack & put it into the execution thread.

It’s time for our “mental model” again.

Current JavaScript Mental Model

Before we move further, we need to understand the local scope as well and
what is happening inside the local scope as well.



Mental Model of local function and its scope

As you can see in function execution in execution thread, does create
local memory & we are manipulating local variable called “innerGoal”
inside that call.
But one thing to note, parameter “count” is also part of local memory,
which means the parameter becomes argument only when we run
function & it occupies space in memory only when it is used.
“Placeholder” or so-called “parameters” do not occupy space.
After the function body about to finish execution, we are returning the
“innerGoal” variable. That is to say, the value of it has the label
“innerGoal”.
When we exit out of function execution, the JavaScript engine destroys
the local function execution context. if a function returns a value then
that value will become an evaluated value for that function otherwise it
returns undefined by default.



Mental Model of local scope execution



Mental Model of the current execution

Final Mental Model after execution

Quick Notes:- How variables are stored

Always remember computers are made up of a lot of space (memory
addresses).
when we store/use a space, we are effectively using those memory
addresses of the computer.
Because humans are not good at remembering those memory addresses,
we give a label (variable name) that points to that memory address/es.

TLDR;



The mental model for any programming language is really important
and it plays an exceptional role in the understanding of core concepts.
Keep this mental model for a further chapter in mind and you will enjoy
learning.

* * *



2

Closure - A Deep Dive

When it comes to the most widely used programming languages like JavaScript & 

Python, we can't ignore its most used feature called "Closure" directly or 

indirectly. So, Let's understand how it works under the hood. Also, Before we start 

let's understand what really JavaScript functions are ?!

JavaScript Functions

A JavaScript function is an “Object”!
An Object in JavaScript means it can have key-value pairs, nothing
fancy more than that. (We will understand Objects in much detail in
“Prototype Chapter”).
Functions are a special type of Object, and one of the special features is
to store blocks of code and invoke(run) that later when needed!
Because the function is an object we can store key-value pairs to the
function as well, it seems a little strange if you are coming from other
programming languages. But it’s true!

JavaScript Functions Are First Class



you can pass a function as an argument to function for different kinds
of purposes.
we have a function that can be returned from another function or we can
store an anonymous function in a variable as well (Store in memory)
each function has its own local memory/local variable scope
(explained in chapter 1).

Having a feature of adding any key-value pair to function is a
superpower and that superpower helps JavaScript enable an amazing

feature called closure. Let’s see how!

There are definitions for closure available on the internet but none of
them actually helped me for understanding how the hell it actually

works under the hood. after some research and experiment, I finally
understood what actually it really means and how it works under the

hood. let’s see how with example.

functions are objects

As you can see from the above example we created a function with the
name of calmMan and later using object literal syntax we added 2



properties to the function itself(Yes we can do that !!).

These properties become part of our function object and remain attached
to it always. Let’s see how they look like under the hoods!

function’s internal look

As we can see from the image both properties belong to the function
object and part of it. We can see some other properties (Key-Value
pairs) were added by JavaScript itself as well for its internal use(we
don’t need to worry about that, let JavaScript Engine handle itࡌ).
Now, we have proof of work that functions are objects and can hold
properties in themselves. Now, what if these functions use this key-
value pair internally and make available those key-value pairs to us? and



here are my friends the magic starts.

By the way, if you have noted in the above image we already have 2 of
those internal properties (key-value pairs) made available by
JavaScript(i.e. [[Scopes]]). We will look deep into that but let’s take a
formal definition of closure now and understand it.



MDN

A closure is a combination of a function bundled together (enclosed) with 

references to its surrounding state (the lexical environment). In other words, a 

closure gives you access to an outer function's scope from an inner function. In 

JavaScript, closures are created every time a function is created, at function 

creation time.

It’s just not easy to grasp and the first time and I didn’t like the mdn
definition and explanation also here (It’s the right definition though, it’s just
not easy to grasp with buzzwords).



W3SCHOOL

JavaScript variables can belong to the local or global scope.

Global variables can be made local (private) with closures.

(try to remember our mental model, we will draw it out soon!)

I don’t prefer w3school as a reliable sourceٌ, but this time I felt w3school is
actually more precise, easy to grasp, and has a clear definition.

Now it’s our turn to understand from visualization and for that, I am going to
take a simple example.

Function definition



Function execution

Our first Mental model for function definition goes here.

As per the current mental model as you can see that, from global
memory space to callstack and then from callstack to execution thread
we have put the createCapitial function into execution.
A function createCapital has its own local scope (environment) and
inside that, we have getCapital function definition and stored.
Now let’s see what happens when we finish executing createCapital
and we have returned the getCapital.
Your best guess should be, the entire body and local scope of
createCapital will be destroyed and the getCapital function will be



stored in the variable called accessCapital. Let’s look at our mental

model again.

Function createCapital in execution



Function getCapital in execution

As you can see from both images, we have finally reached the point
where we are going to put the getCapital function into
execution(accessCapital variable is used which is referring to our
original getCapital function definition).
But wait, as per normal behavior we should expect that variable wealth
should be undefined when we execute the getCapital and it should not
have access to the local memory of the executed function(aka memory
of createCapital). But, life is not that simple manٌ‼
Introducing a new friend called backpack to rescue operation.

A backpack is a simple memory store with strings attached to it(imagine as a real 

backpack͈), and where these strings of the backpack will going to be attached is a 

question .



Let’s actually visualize what actually happened when the execution of our
outer function createCapital finished!

Attached backpack to the inner function



As you can see our backpack is nothing but a variable/s of an outer function’s
scope, and when JavaScirpt sees this kind of outer scope combine with inner
scope(outer function returning inner function), instead of wiping the memory
it keeps those variables as internal properties of inner function!

Also, if we want to see those internal properties then we can. Let’s see in the
below image where those are!



Hidden backpack

As we can see above, the local scope (local memory) of the outer
function (createCapitial) gets attached to the inner function’s internal
key-value pair! ([[Scope]]).
[[Scope]] key has 3 array elements and the first element is where our
backpack memory is stored, that is to say, it’s our Closure.
Also, the second element of that function is actually stat that, for which
function that Closure is!
The last element is actually our global scope which is actually available
to every function (It’s like global closure for each function object)
There you have it, my friends. this is closure with a mental model٬!
We can take one example on it to understand it better. Because even if
don’t return an inner function from the outer function, we could have
closure. Let’s see with an example.



This example is almost similar to the previous one except here we are
returning an object instead of a function. This object however has a
function in it. Let’s start visualizing as well.



Arguments in function are also part of local memory for function
execution.



The function inside the object will get local memory of the outer
function when the execution of the outer function gets destroyed. see
belowؾ.





Even without outer function, we are now able to access variables of it
through closure as shown. Moreover, note that both local variables and
arguments are made available through closure.



finally, we completed our execution and the console gave the output.



That is all my friends for closure, sometimes they call our closure/backpack
‘Lexical Scope’ as well. let’s just a have quick note before we move on to
another chapter with a new visualization journey.

Whenever we have an object with function property in it or function inside a 

function, all surrounding variable is made available to object's function property 

or inner function even after execution of parent(outer) function get finished 

through closure. we understood both by example. we will later in the chapter use 

this concept as well.

* * *



3

Prototype , __proto__ & Objects

This chapter is all about shifting your mind if you are coming from other 

programming languages or have traditional OOPs concepts in your mind. JavaScript 

and its prototype nature is a completely different concept. Moreover, JavaScript's 

lot of features try to mimic syntax from other programming languages, and because 

of that a lot of confusion starts. In this chapter, we will see an in-depth look at 

how things work under the hood with visuals.

Let’s start with very simple stuff and that is Objects.



Objects
In JavaScript, objects are simply key-value pairs(you can think of a
collection of variables are put together).
However, just because key-values are put together doesn’t mean they are
stored together in memory. Under the hood, all variables are stored
randomly in memory, but references for those variables know how to
target value exactly based on a key is accessed.
Take a look at how the below object is stored in computer memory.



The main reason to show the above diagram is to show that logically put
together values is not how exactly it is stored in memory.



Objects and Primitive values
In JavaScript everything except primitive values (strings, numbers,
boolean, etc) are objects.
Functions are objects as well.
Arrays are objects
Math, Date, and other helper functions are also objects.
Out of all this, functions are most important. Functions are objects, but
it’s a special type of object.
Functions have two parts available to use. The first part is the function
body where we can store a block of code and later invoke it whenever
we need it. The second part is the object part where we can store key-
value pairs.



We have already seen proof of work in chapter 2 where we added
properties to the function object(recheck if have forgottenٌ). Over here,
we are going to see further what we can do or available to us.
Interestingly, every function object has a prototype property available
by default and every object has __proto__ property available as well.
so, every function will have a prototype and __proto__ property and
every object will have __proto__(no prototype property on a normal
object, only available to function object only) available to us.

In this chapter I will not draw the entire javascript environment as it’s
not needed here, we will purely focus on how objects and function with
their linking works. Let’s start with a simple example below(don’t try to
understand right now, will do that).



As you can see we have created the ArtistCreator function, which
helps us to create objects. you can think of it’s a common function to
create artist objects. we soon visualize it but before we do that let’s
understand what Object.create() does for us.



We have a lot of global objects(key-value pairs) available to us in the
javascript. Object(notice capital ‘O’) is one of them. which has a lot of
key-value pairs and it is made available by javascript.
The “create” is a method of Object is available to us and it has
fundamental below task.

1. Create an empty object.
2. And because every object has __proto__ property available, after the

creation of an empty object whatever we pass as an argument to the
“create” method, will be available to this __proto__ directly to the
newly created object. let’s see how.



we are executing the ArtistCreator function and it’s executing the
Object.create() method with our globally stored commonFunctionality
object.



Object.create() not just created a new empty object but also added a
__proto__ reference to our globally stored commonFunctionalities
object. so, whatever we passed to the create()’s first argument will
available to __proto__ property of the newly created object. Let’s finish
our visualization.







As you can see, we can create a new object using a function, and not
only that we can reuse this function again and again as well.

If we run the same function again, as shown above, we will still able to
reuse its functionality and also we can utilize already declared
commonFunctionalities. See the below diagram we did the same for
the artist2 object as well(go through the mental model on your own just
like we have shown above).



Alright, we have created functionality that allows us to create objects
whenever we need and reuse some of the existing functionalities as well.
Now, what if javascript has this kind of feature available to us٠.
Gladly, we do have, and that what we are going to do next. see below
example and will understand shortly.



In case you have forgotten, the function can have a prototype and
__proto__ properties available by default. same way ArtistCreator will
also have these properties available to them. Let me show that diagram
again. By the way, a prototype is an object and we can add any key-
value pairs to it.



Now what to add to that prototype object is up to us. In our example, we
added two functions isHuman and isCuriuos.

Note, our example now has a new keyword as well. which does a lot of
automation work behind the scene. let’s see how its diagram goes.



let’s execute the below line, note that the new keyword in front of the
function call.

The new keyword does 2 major things.

1. It will create a new empty object and a newly created object will get
this reference. That means inside function execution this will point to
newly created object by new keyword.

2. Moreover, whatever prototype object of function(ArtistCreator
function in our example) has that will refer to __proto__ of newly
created object(let’s visualize of courseٌ).



Every function object has 2 parts as we know, one its function body, and
the second is the object part.
In the below diagram as you can see in ArtistCreator’s object part has a
prototype and __proto__ object.
In our code, we added two functions to the prototype object which are
isHuman and isCurious.
Every object will always have __proto__ property available by default.
That is why the prototype object also has __proto__ property as
well(where this property will point is unknown, but let’s just focus first
on our code execution).



The prototype object of function is referring to the __proto__ property
of a newly created object.
Now, we know the new keyword helps us to set the reference of the
prototype object to __proto__ property of the newly created object. see
below.
One more thing, we have cleared function execution but the object part
of the function remains in global memory. Here we are not copying
objects, but we are just setting the references.





Never forget, function execution has been done, but a memory for that
function will not wipe out from memory. That is why ArtistCreator
function with prototype object will remain in memory.

There you have it, we are now able to create objects from function, and
some common functionalities also available by prototype object as well.
Now, the same thing happens to artist2 as well, so I am not going to
draw that part(you can visualize your own now٬).





We are creating objects using the function, that is why we call it
“function constructor”. so, here ArtistCreator is the constructor
function.
Before we close the above example, let’s just output in the browser
console.

So far so good, but ES6+ has new syntactic sugar available to us which
does the same thing as shown in the above code. It’s just trying to
mimic and simplify the syntax. Under the hood, working remains the



same. Let’s just see the equivalent code for the above example.

The class keyword is introduced in ES6+ to mimic our previous work.
Not too much fancy, simply our prototype methods are defined directly
inside class and constructor works as a function body.

We have learned how to create dynamic and custom objects from the
function constructor. Now, what about extending our functionalities
and using the existing function constructor to create another function
constructor such that it helps us inherit others’ features as well. let’s
see with exampleؾ.Initially we will take non-class version exmple
and later we will create equivaent class version also.



Don’t worry if you can’t understand the above code, we will go piece by
piece how it works. The only thing to note in the above example is that
we can inherit ArtistCreator’s prototype functions into our newly
created Entrepreneur’s function constructor. let’s start visualizing٠.



We are first going to visualize the above line. This will be similar to the
previous example we just show.







So far it was the same as the previous example’s visualization. now,
let’s see what happens when we run the below code.



Also, I am here skipping the execution of line no. 298 to 303 because I
don’t want to confuse you with upcoming diagrams. we are actually
going to see a diagram of line no. 298 to 303 after when finishing
execution on the below-highlighted line.

Don’t forget ArtistCreator’s object part will remain in memory even
after execution is finished and when we call ArtistCreator again then we
will use reference stored from memory instead of creating a copy of it.



We are calling a function with the “call” keyword and passing this is to
as the first argument.

The call() method calls a function with a given this value and arguments provided 

individually.



Because we have used a new keyword in front of the Entrepreneur
function, we are going to create a new empty object and this keyword
will point to that. However, Entrepreneur internally calling ArtistCreator
with call() method and passing the newly created object(this keyword
currently pointing to the newly created empty object!).

Here we are just adding properties to a newly created object.

The arguments are actually made available to the ArtistCreator



function via reference, where the Entrepreneur function is providing
those valuesٌ. Just follow the diagram and you will get it.

By default you know, the newly created object(this) will have a
reference of the prototype object where the object is born.
In our case, we used ArtistCreator as a mother for the newly created
object. so, the newly created object’s __proto__ will point to the
prototype object of ArtistCreator.



After finishing the execution of the ArtistCreator function, we will
continue our execution with our Entrepruer function execution and
here we are adding one more property “communicationSkill” to the
newly created(this) object.
I am keeping the object part of functions here because it’ll help us to
understand better.



Also, as you can see we are now done with our Entrepruener function
execution as well.



Now, the important part has arrived. remember I told you to ignore line
298 to 303. let’s see what happens to them behind the scenes when we
execute it(actually execution already is finished but I am showing right
now because it will be easy to visualize now).

As we know, Object.create() will create an empty object, and
__proto__ of just created empty object will point to whatever we pass to
the argument of create() method.



Because we are reassigning Entrepreneur.prototype, the old prototype
object of the Entrepreneur will be destroyed from memory. whatever we
got back from Object.create() method call will assign to
Entrepreneur.prototypeن.



We are adding one property to Entrepreneur.prototype object as well
which is the hasPatience function.
we are passing ArtistCreator.prototype object to Object.create()
method. So, the prototype object of ArtistCreator will point to __proto__
of the newly created empty object.



As we know, prototype objects of functions remain in memory, that’s
the reason why it’s shown in the diagram.



see how __proto__ and it’s linking works٬.

Woooh, we finally completed our visualization(if you find it a little confusing 

then just go through it againٌ, the first time it always seems a little too much 



to digest.)

Let’s just see the output in our console. compare our above diagram with
the below output you will get itٌ.



What we have achieved then.

We have learned one big important stuff from the previous example.
We are literally able to create dynamic objects and reuse the existing
functionality of other objects and function(don’t call this inheritance
ٌ, here we are composing stuff not inheriting).

Now, how about if ES6+ provides syntactic sugar of above. we
actually do and have simpler syntax to achieve the same thing as above.
Here, working is slightly different to achieve the same thing. let’s see.





Let’s start with our simple class execution for the below line and
visualize it.



In class, we should remember that the constructor method is available



on its prototype object. so whenever we try to execute class with a new
keyword this constructor method from the prototype object is used (class
is syntactic sugar for function and function always has prototype object).
See diagram we are executing constructor of ArtistCreator class.

Here, this keyword will point to the newly created object by the new
keyword.



As per the below diagram, we find that using the class we are adding a
function body for creating a new object and we are calling it constructor and
putting it on the class’s prototype object.



I think execution for ArtistCreator class was easy to grasp. now let’s see what
happens when we execute the below line.



Note here, we have 2 major things.

1. extends keyword
2. super keyword inside the constructor.



extends
the extends keyword behind the scene, set the reference of __proto__ of
the current class (here in our case Entrepreneur) to the parent class’s
constructor(here in our case ArtistCreator.prototype.constructor)
As per the diagram, we can see Entrepreneur.__proto__ =
ArtistCreator.prototype.constructor.



super
The super keyword sends a command to call the method available on
Entrepreneur.__proto__. Here it’s pointing to the parent
class’s(ArtistCreator.prototype.constructor) constructor.
Also, this keyword inside the super() call will create an empty object as
well. Let’s continue our visualization.





After finish executing the super() call, we are now back in call of the
constructor of the current class(Entrepreneur)
In Entrepreneur’s prototype object, we have reference to its own
constructor which we are going to execute next.



Inside the body of an Entrepreneur’s constructor, we are adding one
more property to the newly created object.



Now, the last thing is the newly created object’s __proto__ will have
reference to Entrepreneur.prototype object. see below diagram.



So, long story short. here is what happened by calling Entrepreneur class
with new keyword step by step.

1. An empty object created from the super() call and this keyword will
point to our newly created object.

2. All the properties were added from the super() call(see digram/code).
3. The newly created object’s __proto__ is pointing to the parent’s

prototype object(here ArtistCreator.prototype)
4. After re-entering the constructor of Entrepreneur, we added one more

property to the newly created object.
5. Now, because we are inside Entrepreneur class, we actually updated

__proto__ of newly created object to the Entrepreneur.prototype object.
6. But here we lose the functionalities of parent’s class functions. So, the

extends keyword helped us to set __proto__ property of the newly
created object’s __proto__ to the ArtistCreator.prototype object. (think
of it like this.prototype.__proto__ = ArtistCreator.prototype)

7. And last we finally returned our object to global memory and stored it in
a variable called entrepreneur1.

8. If you still confused then please see the diagrams slowly and read the
above 7 steps againن.



After all execution, you can see our final diagram٬.

Let’s not forget to see the output in our console as well. I hope I don’t



have to explain itٌ.
We call it prototype chaining because we are literally extending
__proto__ with prototype properties of others(mostly prototype object of
function constructor or class).

That was freaking too much under the hood stuff I know, but this is all you need to 

know. 

Before we close this chapter we will see how JavaScript itself uses the above
mechanism.



As we can see, String is a function constructor and it has a prototype
and __proto__ object available to us. The prototype object itself has
__proto__ property.
Every string that we define in JavaScript is actually made from this
String constructor. That is the reason why you can access all string
methods of it via __proto__ reference which points to this prototype
object(String.prototype).



Every JavaScript object literally borns from an Object(notice capital
‘O’). This is the end of our chaining(will see soon).
The Object itself has a prototype and __proto__ property available to it.
The prototype object has methods like hasOwnProperty(), toString()
available which you might have used in your day to day code.
Let’s see how these String and Object has a connection with one
another.



As you can see, String’s __proto__ point to our global Object’s
prototype. One more thing our global Object’s __proto__ object has
call(), bind(), apply() and other function but __proto__ of Object’s
__proto__ is this.prototype. And the last Object is also a function
constructor so the prototype object is available to it. Here, __proto__
of the prototype is null. The main reason is null because here our
__proto__ chain ends٬.
Let’s go through other similar objects as well.





The Function is a special type of constructor. it’s a prototype and __proto__
both points to Object.__proto__. See the below diagramؾ.



Finally combined all diagram’s native constructors. (there are a lot more
than these constructors but no need to show them in the below image as
we understood the nuance of it).



There you have it, my friends, the most complete guide to __proto__, prototype, and 

object linkingؾ. Enjoy the further journey with the next chapters.

* * *



4

Asynchronous Execution

JavaScript (without environment) by default is single-threaded (one task at a time) 

& synchronous (Line by line & top to bottom execution). If you think this is pretty 

bad because we can't do multiple tasks at a time and we are blocking our execution 

until the current line finishes its execution. So, JavaScript needs a way to tackle 

this. Let's see how.



JavaScript alone is not enough!
When you play cricket/football, a single most powerful player is not
enough to win the entire match. you need to play as a team and each
player’s contribution matters.
Same way JavaScript alone is not enough, we need extra players or
rather a team.
That is where the extra “environment” comes and helps JavaScript.
There is 2 famous JavaScript environment we use a lot.

1) Browser
2) NodeJS

In this chapter I will explain only the browser environment, we will
understand the nodejs environment in a later chapter.
We have seen our “mental model” in chapter 1, but I didn’t tell you that
it was incomplete because I didn’t want you to confuse there. It’s time to
show the big “mental model” with the environment surrounding.
Brower environment is so big which include HTML/CSS parsers,
console, network monitoring, storages(local, Indexeddb, web SQL, etc),
performance tool, etc. we only going to focus on how asynchronous part
handle through something called “Queues” & “Event Loop”.



JavaScript is synchronous! (Don’t Forget)
Timing and resource utilization are always important in every single app
or the real world.
JavaScript is synchronous and it’s so important that a lot of people
forget that JavaScript is just a scripting language that is meant for just
making webpage dynamic in its early days.
Ultimately JavaScript never builds for servers or complex rendering that
we do today.
But some people wanted to make javascript more flexible and powerful
without breaking the origin of the language mindset.
In 2004, Google released Gmap and it was built with fully JavaScript on
the browser and stunned the world what potential JavaScript language
has.
Without doing history talk more, let’s come to the actual implementation
of an asynchronous environment.
You will see the new Queues part will be drawn, that is where our
journey of asynchronous startsؾ.
Remember, ‘Queues’ are implemented by the browser so sometimes
you see different output/results than the actual desired one from
different browsers, but we will discuss what is right and what the desired
approach should be. let’s have a sneak peek at our new mental modal!
Don’t try to understand deeply, we will go through it in details soon.



Current Extended Mental Model



Callbacks: functions that are called back!
Before we move further it’s important to talk about callback functions a
little bit.
Callbacks are simple functions that are invoked whenever they are called
back(AKA whenever a particular task has been finished after that).
There are 2 types of callbacks.

1) Sync Callback/s
2) Async Callback/s

1) Sync Callbacks

Sync callbacks are called on iterators which is easy and quick to execute
(fast operations)
An example of a sync callback is given below.

Sync callback

2) Async Callbacks

Async callbacks are time-consuming tasks or error pruning



functions(might finish a task or won’t finish it at all kind of).

An example of async callbacks is given below!
Don’t try to understand deeply, just an exampleٌ. will understand
shortly.

Async callback

We have extended our mental model of course, but one thing to note that
our extended mental model is not just JavaScript. It’s JavaScript +
browser APIs(Those queues’ function are part of the browser
environment, aka setTimeout,setInterval, etc ).
But there is one twist here, promises are more complicated more than
that, they are part of javascript and browser both. will see that in the
mental model.
Currently, let’s see a simpler version mental model with queues.



Mental Model With Queues

Queue: It's a simple data structure where the first in first out rule is 

followed(aka, whoever comes first will go first). Just like a movie ticket purchase 

line.

Task Queue

first of all weird thing is, task queue is actually not a queue, it is a set (in
Cpp world it’s struct).
Tasks are added in task queue are picked and removed it, not like a
queue that it’s dequeued. To keep it simple let’s treat it as a normal



queue(most javascript developers do that and will do the same)ؾ.

Macro Task, is a term used sometimes for task queue.

Job Queue

The job queue is an actual queue where tasks are queued and dequeued.
it’s a real queue.
Micro Task, is a term used sometimes for job queue and but it’s called
Job queue in ES6+ specifications.



Time to understand stuff with an example!

There is a sleep function which I simulated that block the function for
given seconds. Let’s see our mental model of it, how it’s going to be
executed!
setTimeout is a browser feature and it’s not a part of regular
javascript. Waiting for the given time period and then giving the
callback function back to the task queue is done by the browser.



Now let’s see what will happen when we finished executing the sleep
function and try to execute it further.



Also, note that we have delayedTimer function defined but we never
called it. so, it’s still not part of callstack and also it’s passed as an
argument to setTimeout.







As per the above images, we can see that all the execution of callstack is
done including global expressions and statements code.
So in short, JavaScript will execute all synchronous code straight
forward and all async operations are just delegated for later execution.
However, All function references are still stored on global memory
space, they are not copied to the task/job queue.



Time for introduction “Event Loop”!

The event loop is a simple while loop, which keeps tracks that where any work is 

pending in queue/s to be finished or not with continuously checking that whether 

callstack is ready for taking the work from the queue/s or not.

Now because currently our callstack is empty and the queue has pending
tasks to be finished, the event loop will find it. Note that delayedTimer
actually made available to task queue after 2000 milliseconds(which we
provided time, after how much time it’ll become part of task queue



actually!)
The event loop will have task only checking whether the work on
queues are pending or not and which are those tasks.
The function delayedTimer will be pushed to the callstack by the
environment and become part of normal execution࠭.







There you have my friends, this is how async code is executed in
JavaScript. There are little more to explore still. Promises and Async
Await.
In this chapter, I will only explain promises, because async-await
requires little more knowledge that we will discuss in upcoming
chapters.



Promise - An Aesthetic Async Task Resolver
MDN

The Promise object represents the eventual completion (or failure) of an 

asynchronous operation and its resulting value.

Of course, it’s a short and simple definition but also not explaining what
the hell actually happening under the hood!
Let me tell unwill the promise more simply for you with a visual
example.
In the above example, I made a simple sleep function for simulating a
synchronous blocking mechanism for given second/s. we will use this
for our next example too.
There are 2 things different things available to us, we have a Promise
function constructor(notice capital letter) and promise object.
The Promise is a function constructor that will create a promise
object when we use a new keyword in front of the Promise constructor.
let’s start with an example.



Now in the above code, as you can see we will be going to store the
returned object of the Promise function constructor in the promiseObj
variable.
Note here we have made conditional resolve and reject calls based on
whether num > 5 or not.
It’s visualization timeى.







Let’s see our code again so we don’t lose track of that code in our
minds.



As we can see, we have the Promise function constructor which will be
used to create a promise object. but before we visualize everything, let
me tell you what we will get back after executing that Promise function
constructor.
Let’s see which are properties and internal properties are given to us for
the promise object.



As per the diagram, we can see that the promise object has the main 3
key-value pairs(internal and hidden properties actually).
Also, remember we have passed resolved and reject inside the original
Promise function constructor’s first argument.
The return promiseObj has the main 3 important key-value
pairs(hidden/internal).

onFullfillment



It’s an array, which is used as a placeholder for all .then call’s function
arguments. All then methods are in order pushed into this array. (will
visualize soon howى).

onRejection

It’s an array, which is used as a placeholder for .catch call’s function
arguments. catch method is pushed into this array. (will visualize soon
howى).

value

It’s a value holder that will have the resolved value or rejected value.
The importance of this resolve and reject functions are the mapping of
value to the value key of the returned object(we will visualize it).

Let’s see how the below code snippet is working and how its(promiseObj’s)
value is read.



Promise(It’s a function) constructor evaluation is actually a
synchronous task.









We will see how the new keyword works under the hood, but here let
me tell you quickly a new keyword creates an object, and the function
constructor will determine what properties will be available inside that
object.
let’s just keep visualizingٝ.





Now we have 2 possibilities over here.

if we get num > 5, then we are going to call resolve and will pass num
as an argument to resolve.



if we get num < 5, then we are going to call reject and will pass num as
an argument to reject.



Here in both cases, as you can see it’s going to be stored in the value
property of the promise object.

Now, we can see promiseObj(the label given to returned object) is
actually available on currently working scope and whatever
state(resolved or rejected) of promise will have, is actually going to be
stored inside promiseObj’s internal properties and also value will be a
placeholder for resolved/rejected value. But, to access resolved value
or rejected value we need some kind of mechanism.
That’s why we have then and catch methods available to us. both
methods are available to us via __proto__(will understand protoType



and chaining in later chapters in details).

We are missing one part here, onFullfillment and onRejection are
arrays and how it works actually!
Here, after evaluating the value inside a promise object, work for the
Promise function constructor is done. (for both resolve and reject
scenarios).
Let’s first visualize that part.







Woooh, that was a lot. but we still have to figure out for that then and catch
methodsٌ!

One thing I didn’t tell you that, whenever we write then or catch
method inside the regular global context, these methods are actually
made available via reference to the onFullfillment or onRejection key of
promiseObj while it’s creation time(promiseObj creation time).
Not only that but whenever we evaluate the value, the value will be
available to then function’s argument(function as an argument) or catch
function’s argument.
let’s see both scenarios!

Resolve function scenario



There is an illusion is given to us, and illusion is then methodࡓ! so, the
code which looks like we are executing on returned promiseObj is
actually not run by then method. It’s just a function that will act as a
placeholder for another function. so, whatever function we pass as an
argument to then method (here (val) => { console.log(val) }) will be
pushed to the onFullfillment array of promiseObj. Also, I had not
shown this before because I didn’t want to confuse it with other
visualization. A then method is actually accessible via __proto__ of a



promiseObj. let’s visualize it٬.

Remember callstack became empty after all synchronous code finished
its execution.
The function of then’s argument will be added to onFullfillment and
whenever it finishes execution it will be added to the job queue and
later from job queue to callstack.



Here function has no name (Anonymous functionٌ)













That was too much for that little promiseObjٌ, but it’s what happens
under the hood.
Let’s not forget our second scenario as well, it’s almost the same as
above but it will use the onRejection array of promiseObj!
let’s visualize thatن.

Reject function scenario



Let’s see step by step it’s execution.



















And there you have itٌ, a hell of a lot of things under the hood. This is
how a promise works. Now, what about fetch API available in the
browser which is also promise-based! It works almost like the above
example but with a little twistؾ. Why not explore visualization of it
with a simple example٠.



Here, we have a simple console log, little blocking for 2 seconds, and
fetch API code. let’s start visualizing it.













we don’t have any other synchronous code to run so we will exit out of
the global execution context and callstack will become empty.





I think till now everything seems the same as what we visualized earlier,
but here the twist comes. The above shown mental model is still
incompleteٌ.
We have a lot of browser features (AKA browser APIs) which happen
outside of the regular execution context. not only that, these browser
features actually happens through our underline Operating System and
using Kernel. But to keep it short and simple let’s just think these
browser features are happening outside of the actual JavaScript
execution context.
One such feature is the fetch API.
Let’s extend our mental model a little bit moreٌ.



As you can see we added browser features inside our diagram, now you
can sense that our browser environment is not just JavaScript but a lot of
hidden features combined under the hood.

Here, let’s see what happens when hit fetch(’https://test.com’) below
the line when we execute code.
we are going back again to what happens when we actually return
dataPromiseObject.



We can see that, fetch actually make bond two way one in javascript
task and other is networking work. let me continue with visualization☺.

After hitting the fetch line in our code, work for returning promise



object from fetch API gets done immediately but background task for
finishing API call still pending and it’s done by browser and given back
to promise object when it gets completed.
After finishing background work, all other work is the same as before
we visualized ؾ.







This is all my friends, how really promise and fetch API work under the hoodٝ.



* * *



5

Iterators, Generators, and Async-
Await

This chapter will give an in-depth explanation of and importance of iterator and 

generators. Also, how this stuff is utilized in real-world scenarios to make code 

look nicer and easy to read. not only that, this chapter will have a really high 

dense visualization.



Loops
Let’s talk about traditional loops before we move to Iterators.
We use loops to iterate over each element of iterable and do the
operation. Let’s take a simple example of it.

In the above example, we have a simple numberArray and we are
iterating over elements and simply multiplying by 2.
Notice here, we are doing the operation in a single shot. We don’t have
control over in a single shot operation(you can put if-else and other stuff
to control the flow but that is no real control over elements !).
How about if we can get element one at a time and perform some
operation on it. so whenever we need the next element we simply
produce it. At first impression, it might seem a little weird to think but
let me give an example by building a custom iterable.
To make things simple, I will use the smaller diagram of our mental
model and we will make an entire mental model diagram when we
combine all the conceptsى. I will only show the thread of execution and
memory for the below example.



Iterators

We have declared one function called ‘createFlowOfElements’ which is
actually a function that takes an array as an argument and returns an
innerObj. Let’s execute this function.



Now it’s time to visualize what happens when we execute the
createFlowOfElements.



In case you haven’t guessed, here we have a function inside a
function(even if it’s defined inside innerObj). So, if we return innerObj
or function of innerObj we will have a backpack of outer scope (closure
my friendsؾ).
createFlowOfElements is a function that will actually be going to
create iterator!. Let’s visualize it.





Amazing, as we can see here returnNextElement has closure, and not
only that we have the next method inside the object as well(people
usually call a function of the object as methodٌ). Also, I hadn’t shown
two variables of the global scope which are element1 and element2
because real visualization of those variables was not needed in the above
diagrams.

Now, It’s time to see what happens when we execute the next method of
returnNextElement.





Because we don’t have variables inside the function’s local memory so
we look into our closure to find those variables and here we find it.



Now, for element2 same things happen so I am not going to draw a
diagram for thatٌ. Here is our final diagram after all execution finishes.



Great, we just made our first custom iterable, that is to say, now we have
a mechanism to control the flow of data, and instead of doing all stuff in
just a shot. So, instead of throwing it all elements into the pipe directly
now, we have a switch that we can use to get the element. We are
controlling our flow of elements٬.
This is the reason why iterators are important we can get control. It’s a
powerful mechanism and will be helpful to build some ES7+ features
from the scratch(will see soon).
Also, you can imagine an event loop is maintained through iterators,
where we are literally iterating over queued methods one by one and
make them available to callstackؾ.



Generators
The generator is just simply a function that returns an iterator! In the above
example, createFlowOfElements was literally a generator function that
returned an iteratorࡐ!

ES7+ has a native generator function. Let’s see a simple example of
JavaScript’s native generator.

As you can see from the above example, native generators are pretty
simple looking and easy to write. But there is little twist how native
generator works from our custom made generators.
The first major difference is a native generator and a special kind of
function (you see * in function definition ). Native generator function
relies on hidden/internal properties (Remember functions are objects
ٌ).
The second difference is, a generator function is not put in callstack, but
it’s store in memory and put directly on the thread of executionࡐ!



The yield is a special type of keyword that does a lot of hidden stuff
behind the scene. Also, it is completely different from the return
keyword.



return
return keyword immediately stops the function execution and literally
allows you to return any value from a function.
the return keyword is mostly used to do some stuff and the result of the
operation is usually return to the outer scope.



yield
This is a special type of keyword and used inside the generator function.
yield keyword will not stop the execution of the generator function
but it will suspend the execution(pause the execution). so, we can
later use the same suspended execution context.
Now, when we suspend function execution(kind of pausing the
execution of a function), we need some kind of mechanism to keep track
of where exactly our execution was suspended. so, in the next iteration,
we will able to start execution again from where it is suspended
(paused).
We have a hidden/internal property called [[GeneratorLocation]]
available on the returned iterator from the generator function.
yield keyword will suspend the execution and store the location where
function execution is suspended in [[GeneratorLocation]]. let’s seeࡌ.



The reason we have [[GeneratorLocation]] at VM36: 3, because you
can see we have called returnNextElement.next() 2 times. So, a 2-time
value was yielded and the function was paused and continued. So, in the
next iteration, we will start our execution from the 3rd line (rather at the
3rd position of yielded value).
If you click on VM36:3 (VM36 => this is randomly generated by the
console of the browser), we will able to see where our last suspension of
function is.



Now, what if we have some other stuff inside the generator function? like
console.log() or any other operation!



As you can see, it works exactly like before but now we have
[[GeneratorLocation]] relative to our function definition. This means it
is literally keeping track of line number where a function is paused!.
Now if we click on that VM107:4, we can see below where it’s paused.
again because we have used returnNextElement.next() 2 times, that is
why we have paused after at second yielded value.



We still haven’t seen what actually inside the element1 and element2
variablesٌ. Let’s see.

Unlike our previous custom generator where we returned values
directly, here we are returning an object with some key-value pairs.
We have value property itself and done property.
The value holds the whatever was yielded and done tells us is there
anything remained of execution of paused execution function!
But, wait we don’t have closure here then where the hell this object is



retrieved! let’s see.

As you can see we are storing yielded values and keeping them inside
hidden property called [[scopes]].
now what if we run returnNextElement.next() one more time and see
the result.



now again what if we run returnNextElement.next() one more time
and see the result.

As you can see that when we finished all yielding of values, we closed
(finished) the function execution, and the done property became true.
So, long story short generators allow us to create custom iterators and
we can use the next method on our iterable to retrieve yielded
values.
We need to explore one more thing in order to get a full idea of
generators and iterators. Let’s look at the below example.



The common thinking would be, we will yield 4 in the first next() call and in
the second call of next() we will have the newNum variable to be 4. so, the
second next() call should yield us to 9 (5 + 4 == 9). unfortunately, that is not
how it worksٌ.

let’s see what we get in the output.



As you can see in the second call of next() it has a totally different
output than our expectation. The reason why it happened because the
iterator returned from the generator function will allow you to pass an
argument to the next() function and whatever we pass to the next()
function’s argument will become available to wherever our function
suspended execution!
so, ultimately 13 that we passed to second next() call as an argument
made available and got stored in newNum. so, in the next yield, it



became 18 (5 + 13)ى.

What if we didn’t provide or pass any argument to the second next() call ?

As you can see if we don’t provide any argument then newNum will
have a value of undefined.
So, when we second time yielded value it became NaN(5 + undefined).
The above example has a great use case, and that is what we are going to
do next.
Let’s build async-await from scratch٬.



This time we are going to visualize the above codeٌٌ.let me tell you
ahead of time that the diagram that we are going to draw soon will be
the most intense and complicated. It’ll involve almost every single
concept that we have understood so farࡐ. Let’s start then.

Before we move further, let me tell you some color schemas that we will use.
Dark purple - generator function in execution



light purple - generator function in suspended state(paused).

One more thing, generator functions are not normal functions and they
don’t get garbage collected(It stays in memory even after its execution
is finished).
Moreover, the execution of the function is put directly on the thread of
execution.



Regarding that __proto__, it’s actually simple. The *generator function
object was build from the “Generator” object(yes, it’s direct object).
So, generator function object’s __proto__ point to prototype object of
Generator(*generator .__ptoto__ = Generator.prototype).The same way
returnNextElement was build from *generator function. So,
returnNextElement object’s __proto__ point to prototype object of
*generator function(returnNextElement.__proto__ =
*generator.prototype).
Ultimetly, out returnNextElement will have access to next() method via
__proto__ chain.



After finishing the creation of returnNextElement iterator when we use
the next() method on that part we will hit fetch() API part. let’s see how
it goes.



See below diagram, where generator function is directly put into
execution and not only that our fetch API create two-way bonding as
well(background networking work + promise object creation in
javascript execution thread).
Try remembering fetch API’s mental model from the previous chapter
and everything will follow smoothly



As we know when we finish working on our networking task, the result
will be given back to the promise object’s value property and the further
mental model is the same that we learned in the previous chapter for the



promise object.
Just follow the diagrams and you will get itٝ.





After finishing the promise object work, now we are calling again the
next() method of returnNextElement by providing the data argument
to the next() method. see our example code.

Let’s see how it goes in further execution.



Because we called the next() method with data which we got from the
promise object’s value, we will make available that value to the local
variable of the next() iterator.





There you have it, my friends. we have made our own custom async-await from scratch

٬.(you can do the same with a catch scenario as well, which I am not going to show

ٌ)

Before we close this chapter let’s just see the shorten ES7+ syntax of async-
await with example.

As you can see, the async keyword will behave like a generator and the
await keyword will behave like the yield keyword from our example.
That been said this is all under the hood and deep dive for this chapter
ٝ.



* * *



6

NodeJS, C++, Queues & Servers

If someone would ask me, what is the best thing that happens in the javascript 

community?, my immediate answer will be it is none other than NodeJS!.NodeJS is an 

amazing javascript runtime and also a little misunderstood tool. In this chapter, I 

will try to make it as easy as possible and explain the core architecture and 

fundamentals of the nodejs.



What node is not?
1. It’s not a programming language.
2. It’s not a framework/tool for server-side coding (Not like Php).
3. JavaScript is a programming language, the node is not.



What node actually is?
1. It’s a low-level c++ delegated code made available to us by making

JavaScript APIs (AKA JavaScipt version of a c++ features(sometimes
even “c” bound c++ code)).

2. It’s a literally C++ program that takes JavaScript code as a string and
does all the work!

3. Node is a single c++ program, which relies on a lot of other c++
libraries like libUV, V8, c-ares, OpenSSL, etc.

4. We call is nodejs because c++ written features are made available to us
by exposing equivalent JavaScript APIs. so, Node(C++ features) +
JavaScript == NodeJS٬.

NodeJS's core architecture is way more complicated than a browser or any other 

environment. Not only that, on the internet 90% of information related to nodejs 

are partially false or misguidedڱ.

I will try to go very gradually on the core architecture and will split
pieces for you, such that you don’t have to go anywhere to understand
anymore. Let’s start with our basic version of the javascript diagram.



As we can see we have a similar model that we know, queues, callstack,
and our memory space.
Because we are going to perform a lot of system operations on our
computer, the node actually uses a lot of third-party c/c++ libraries
which does all kinds of stuff.
There are major 2 components that we should understand first.



V8 engine
The V8 engine has a fundamental 1 job to perform which is to parse the
JavaScript and convert it into optimized machine code.
However V8 just not convert our javascript code into machine code, but
it does much more than that. It provides the default version of the event
loop(wait what).
The default event loop given to us by v8 can be extended or replaced by
javascript runtime creators.
Node actually does not use the default v8’s event loop. Node uses the
event loop of LibUV’s instead of v8!
Because v8 has a default event loop, the barebone code of v8’s event
loops queue remains there and Promise uses that queue instead of any
other queues.
I have removed the ‘Task Queue’ of v8. The main reason because the
node doesn’t use it or even care about it. Node uses a little different
approach to tackle asynchronous timers.
There is ‘process.nextTick()’ which is provided by node and it always
runs ahead of every single queue by design.





LibUV
This library is the heart of the node. LibUV does not just provide an
event loop but it has a really good mechanism to handle a lot of I/O
operations.
The I/O operation could be anything like a lot of connection requests,
sockets, File systems, etc.
LibUV provides or sometimes uses a lot of queues which we are going
to learn soon.
Let’s just see first our mental model diagram with v8 and libUV
combinedى.





I left out some space above the blue-colored box intentionally and I will
come to that.
As from the diagram you can see we have v8 + LibUV’s queues.
LibUV has major 7 queues(drawn only 6 because Idle and prepare are
combined in one line).

1. Timers: setTimeout() and setInterval().
2. Pending callbacks: Imagine parent process is Nginx server which is

already running on PORT 3000, and you want to start node server on
PORT 3000. So, it will throw an error(system errors). All those kinds of
system call’s or error callbacks are given to this queue.

3. Idle and prepare: we don’t interact with it.ٌ (2 queues drawn in one
as we don’t actually use, libUV uses it internally)

4. Poll: all I/O operations like files handling, client request handling,
sockets, crypto, zlib(compression) operations, etc handled via this
queue.

5. Check: for the setImmediate() callback/s ,we use this queue.
6. Close: All close events from a system like a socket close or clean up

events are added in this queue (but why ? because these are system calls,
not incoming requests, soؾ).

The default libUV and v8 combined mental model is not so hard to
grasp. The problem is a node internally does way much more stuff
than just using these queues and most important part is poll queue٠.

From the diagram, we can see we have some strange stuff like Thread
Pool and Epoll/KQueue(data structure), which is used to do work



delegated from the poll queue.
Not only that we have, Worker Threads which is also a different
thing.
At the bottom, we have our operating system feature or you can say that
heart of the system ‘Kernel’.
Before we move further and explain how all things work combined, let’s
just finish out node architecture.





As we know we are going to write ‘JavaScript’, so any system-level
code needs to be written in JavaScript which will be delegated to our
c++ code. That’s the reason why we have Node Core APIs.
It has major all core modules logic written in c++ and exposed javascript
API which we use as a developer.
C++ Addon and N-API are special features or APIs available to us that
we can use to extends nodejs using c++ (this requires c/c++ knowledge
so I am not going to tell you about thisٌ).



Normal Flow of execution inside the node.

step 1: Scan the entire code and hoist all possible variables. Do garbage
collection of unused references(optimization).

step 2: Complete all synchronous execution from top to bottom.

step 3: All the asynchronous code’s event handlers or callbacks are scanned
and stored in memory as a future placeholder.

step 4: Start executing all finished background code via a queue, and keep
going until we don’t finish all background tasks or kill the process (Event
Loopؾ!)

The order of Queue in the node environment is as shown in the figure.

1. execute all process.nextTick()’s callback/s.
2. execute all promises of the job queue.
3. enter into LibUV’s queues and start from right to left for execution

3.1 complete the timers via the Timer queue.
3.2 complete error handling callback of system calls
via Pending queue.
3.3 complete internally used Idle, prepare queue. 3.4 wait for some
amount of period to try to finish as much as callbacks of the poll queue.
(little complicated, we will understand this deeply later). 3.5 complete
the check queue (setImmediate). 3.6 complete the execution of close
callbacks via the close queue.



step 5: repeat the loop until the node process gets killed.

It's time to understand everything combined with an example and will understand 

deeply what happens in each step.

Ignore how the require() and how the module system works right
now and only focus on our example. Also, I wrote a javascript code



in a way that execution of code will have completely different

unexpected output than logically shown in code.

In our starting, we are reading the content of text files that is file1.txt
and file2.txt.
file1.txt has ‘Hello guys 1’ and file2.txt has ‘Hello guys 2’ in it as
content.

The next statement is the pretty simple synchronous log.

The next thing, we are using process.nextTick() as shown above.



After that, we are calling setImmediate() as above.

Then after, we are making 2 HTTP GET API calls and logging simply
statusMessage from the response.

After that, we are just resolving Promise and have then() call of that
resolved promise.



At last in our code, we have setTimeout() call which has 0 milliseconds
timeout.

It's time to start our visualization of code and see how code actually works under 

the hood ٬!



Initially, we will complete our all synchronous code which in our case,
console statement and Promise function constructor (note here, not the
finished promise object, only Promise constructor execution).





Here we are returning a promise object but we are not storing it in any
variable, so immediately then()’s callback is put into Job Queue and
the object gets garbage collected as it has zero references in memory.
let’s see it below!



Working of Promises does not changes in browser or node
environment as both uses V8 and promises are part of V8 engine
itself.





As you can see, the callback of then() is added to the job queue and the
promise object gets garbage collected. The next thing we did is
continued our execution.
As node made available process.nextTick(), all callback of



process.nextTick() after finishing synchronous execution, we add in

one separate queue as shown in the figure.
so callback of process.nextTick() is stored in the queue which is on our
topmost hierarchy of queues.



We further go through code and store callbacks into their respective
queue which node environment decided. in the above, we added a timer
callback to the timer queue.

As we can see above, all the I/O callbacks are in the poll queue. Both



files read operation and HTTP get API call are part of I/O operation.

Internally poll queue used different approaches based on what operation
is performed on the poll queue(will see soon).

At last, we have setImmediate() which will go into the check queue.



The poll queue actually starts background work and does not take
participation in the first iteration(the first iteration of the event loop) of
the queues call. So, I have made a grey color for that.

Now, let’s start executing our queues. Remember the order for queues



which is top to bottom and right to left.



The next turn is for our job queue (promises).









Now the next turn is for our timersن.







This time turn is for the poll queue, but the poll queue has 4 operations -
> 2 file reads and 2 GET API calls. so, internally timeout is calculated
by libUV whether these operations are going to be finished quickly in a
certain period of time (usually a very few seconds or not) or not. If not,



then immediately we move to check queue. That is why here we are

quickly going to move for setImmediate()’s callback from the check
queue without waiting for 4 operations(2 file reads + 2 GET API calls).



Now, all queues are empty and all pending task has finished except poll
queue. Let’s see how the poll queue is going to perform these tasks.
Poll queue delegate task in major 2 categories.
All operations like file read, crypto and zLib are done through the



Thread pool.

A Thread pool is a collection of worker threads. (it’s different from
worker threads provided by node’s default module). The default size of
the thread pool is 4 but you can overwrite using the
UV_THREADPOOL_SIZE global variable provided by the node. I
have drawn 4 small boxes for thread inside the thread pool.
One thread can perform one task, so 4 threads can perform 4 tasks
simultaneously.
However, as I said file read, crypto, and zLib like tasks only perform in
thread pool by design. So in our case, both files read operation is done
through thread pool and 2 file operation handle through 2 separate
threads and other 2 GET APIs calls are done by some other mechanism
like Epoll/Kqueue(will see soon).

As you can see we are processing 2 file read operations in 2 threads and
when they finish reading result is given back to respective callbacks.



Let’s finish the execution of the completed 2 read operations and run
callbacks of it(Because we are not going to block the poll queue while
waiting to finish API calls).





Great, now we have finished file read operations as well, but still, we
have 2 more operations to complete which are our 2 API calls. So, again
we go through the next iteration of the event loop.



Now the time has come how epoll/Kqueue and poll queue work
together. I will explain epoll, not other mechanisms because all other
mechanisms are almost the same only difference is it’s based on
Operating System Architecture.



epoll(Assuming we are on Linux):
It’s a self-balancing binary tree data structure.
We attach task/s to a node of this data structure and loop through each
task until some timeout.
Let’s assume we have 10 API requests that come to the running node
process at the same time, all are actually given to epoll.
Before giving all requests to epoll, requests are opened in a non-
blocking mode (It’s a Linux feature that allows you to open the
files/fulfill requests in non-blocking mode and wait for them until it’s
done, and then the result is given back).
Now in our assumption, we said we have 10 simultaneous requests
which we are going to open in non-blocking mode and its id(they call it
file descriptor) is stored in epoll. each id will have events attached to it.
(here, our callback functions).
Generally, we loop over epoll for a certain time period. let’s say epoll is
looping for 2 seconds, so out of 10 requests, 4 requests are done in 2
seconds. so, the result of it given back to epoll and from epoll to our poll
queue.
After finishing 4 requests, we move immediately to the check queue.
On the next iteration of the event loop, let’s say in our epoll we
completed 3 more requests(remember here we are literally looping in
epoll for every 2 seconds to check whether work is done or not in the
background). These 3 requests with data given back to the poll queue.
On the next iteration, let’s say we fulfill all remaining 3 requests, and
the result is given back to the poll queue.



Putting requests in non-blocking mode via kernel's feature and handling stuff 

through Epoll data structure will give amazing concurrency without blocking main 

javascript thread as well as without blocking poll queue and spinning new threads. 

This is the reason why nodejs is so popular and amazing.

In our case, we have 2 GET API calls. We will process them through
epoll as we just discussed and the result is given back to the poll queue.
Let’s finish our visualization of the remaining finished 2 API calls.







Now, our all execution has finished as above and all queue became empty so
our program will exit. That’s all my friends this is how node actually works
٬. you learned complex node architecture with the proper mental modelؾ.

Note: Here I have assumed that file1.txt read operation done before file2.txt and 

the same way the first API call finished before the second API call. Which 



operation out of 2 files read will complete before it depends on your OS and 

processer. The same goes for API calls. 

Now let’s talk about some confusing stuff like multi-threading, worker
threads, and multi-processing from the node’s perspective.



Multi-processing
We know, when we start the node program we essentially start the node
process in which we will have 1 instance of v8, 1 instance of event loop
via libUV, and node APIs core layer.
Now, when we use child_process, we create a new separate process
from the parent process(from our node process). we can do anything in
the newly created process.
The important thing to note here, each newly created process will have
its own 1 instance of v8, 1 instance of event loop via libUV as well. That
is the reason why we can parse javascript inside child_process as well if
we want.
If you are a node developer then you most likely know the module
called ‘Cluster’, which is fundamentally used to create a fork/s of our
running node process and each process will be put in the logical core of
your processor!
Let’s visualize it.





Worker Threads
This is a separate module available in the node which allows you to
create real threads and we can run javascript code in that newly created
thread as well.
each thread will have its own v8 and libUV instance in it.

The worker thread can communicate to the parent process’s main thread
via a communication channel and not only that we can pass data back



and forth to different threads as well٠.
Threading in the node is a little different from other programming
languages threading concepts. as we can see we can run CPU-intensive
tasks in a separate thread but each thread will have its v8 and libUV
instances. Because each thread needs v8 and libUV to perform the task
and parse javascript code threads in the node are a little more memory
consuming.
So, even create a tone of threads in a node we will surely run out of
memory in our system or we will overload our system with resource-
hungry threads.
So, it’s better to use worker threads only for big CPU-intensive tasks in
the node. Never use worker threads for serving API requests or serving
files.



Multi-processing vs worker threads
It’s best to use multi-processing for serving node processes on each
CPU-core. Also, inside each node process, we will have enough memory
and storage such that multiple API requests can be accumulated and
later delegate to epoll and thread pool via poll queue to give us really
good concurrency.
Worker threads are can be useful to do CPU-intensive tasks like
calculating highly mathematical formulas in a separate thread and giving
back results to the parent thread (our node main process’s thread).
We can combine the best of both worlds with creating multiple node
processes and for each process for specific CPU-intensive tasks we use
worker threads٬.



Worker threads vs Thread pool
It’s pretty simple, Thread pool has a worker thread(threads which can
perform specific task/s directly) that is used automatically by libUV
whenever we do File I/O, crypto, and zlib operations.
‘Worker threads’(module provided by node) are created by us to do a
specific task/s in a completely different thread/s.
Now, thread pool’s threads are easy to maintain and fast as they don’t
need v8 and libUV instances in it because tasks have already been
known to thread pool ahead of time.
‘Worker threads’ are little resource takers so we don’t create too much
of them. (here, we don’t create threads for serving each client request as
we do in other traditional programming languages like JAVA, because if
we do that then it’ll make our system more resource hungry and
unstable. it’s totally different concept compare to them. we should
always rely on node’s non-blocking I/O for these kinds of purposes).

I hope all the above information has cleared all wrong assumptions and 

misconceptions regarding nodejsٝ.

Now, before we close our journey of the node, I like to explain how
the node’s module system works.
JavaScript is run in different environments, and we don’t have a native
module system by default available to us (ignore ES6+ native modules
which came recently, will discuss later).
Now, when nodejs developed they need to figure out some way how to
give a modularity system to developers, so they created their own



module system which they call “commonjs”. Let’s start understanding

how it works with visualization.
In Nodejs, each javascript file that we are going to use in our project is
treated as a “module” which means they are not just normal
javascript code sitting inside the file, but they have some extra
wrapper and pieces of stuff.
Also, nodejs provides us some global variables which are available to all
“modules”. we call them global variables. Out of those 2 variables, the
“require” function and “module” object(Note that our file “module”
and global keyword “module” are 2 different things hereٌ).
Let’s visualize whatever we have learned so far.

Suppose, we want to add some content of other files(file1.js & file2.js)
to our main file(main.js).



As I said earlier, in running the node process we have some global
variables available to us by default. So, here we are going to need one of
those variables to accomplish our needs.
The require() function is made available to us in each file(module)
which means I can use that helper function in the main.js as well.
But nodejs put something call IIFE(Immediately invoked function
expression) to all our modules(js files) before it even going to required
by another module. let’s see that.

As we can see, in our file1.js we have simple greet() function, which
will be wrapped around by the IFEE function as shown in the
figure(only if we require file1.js in another module then and only of
course).
In the same way, our main.js(main module) also get wrapped around as
well. Because when we are going to start our node process we are going
to start from our main module.



One thing if you have noted then, we have a bunch of
arguments/variables available to wrapper IFEE and one of them is
“require”. let’s see what happens when we use require in our main
module.
The require() function takes the file path as an argument to find another
module.

If you try to run the above code then it will give a “module” not found
error.

But why?
Remember I said every module is wrapped with IFEE, so when we



required a module we actually grab the IFEE not the code of the module

.let’s visualize it .ࡐ

As we can blue color content is actually what “require()” does. so, it’s
wrapped function and all variables and function inside that are locally
scoped. That’s is the reason why we were not able to execute the greet()
function and got the error.
But how then we are able to get this work?
That is where our arguments passed to IFEE are come into the picture.
If we want to use the greet() function then we need to somehow take it
outside of the IFEE scope when we require it.
Nodejs’s IFEE has a “module” object available to us via argument and



there is a “exports” key available to us on the “module” object (see

diagram, the 3rd argument of IFEE).
So, if I use a “module.exports” and add properties to it, then when
we require that it in another module it will have access to it. let’s
visualize it because it’ll easy to grasp.

As we can see from the diagram wrapper of file1.js returns the
module.exports object and we have attached the greet() function to the
module.exports object.
Now, let’s see what happens in our main.js where we required this
module(file1.js).



As per visualization, we can see if we extract whatever is returned from IFEE
then we can get access to greet function via “module.exports” because
“module.exports” is what is returned from that IFEE. Here we are
returning the stuff from IFEE but not stored in a variable such that we can use
it.



Finally, we can see whatever we returned from “module.exports” is
actually stored in the variable called “file1_stuff”. Because
“module.exports” point to greet function, “file1_stuff” will point to
greet functionؾ.
There you have my friends how commonjs module system works under
the hood!
Same way let’s just finish our visualization for file2.js as wellٌ.





We did exact same for file2.js as well and visualized. You can see
whatever we exported from the file can be renamed as your wish as
well.
The last before I close the chapter let me tell you one thing “exports”
(first argument of IFEE) and “module.exports” point to the same place
ٌ.
exports = module.exports.
So, you can you exports keyword directly instead of writing module.
exports every time(just add key-value pair to exports object, don’t re-
assign to entirely to new stuffٌ).
Do this: exports.add = add, exports.greet = greet;
Don’t do this: exports = null or exports = add or exports = greet(If you
do this, then it’ll break the functionality of the default module system’s
behavior);

Lastly, the ES6+ module system is a real module system that doesn’t
follow the above mechanism and natively parse the content of the
file and make it available to us without wrapping.

That is all from my end friends, I hope you enjoyed learning as much as I enjoyed 

writing this book. I will try to add content to this book in future editions as 

well. All future updates will free who has access to the first editionٝ.

* * *



7

Bonus

This chapter is just about some weird javascript factsٌ

1. typeof null is the object which is a bug in javascript.
2. typeof NaN(Not a Number) is actually ‘number’.
3. 1 + 2 == 3 but 1.0 + 2.0 !== 3.0.
4. NaN === NaN; -> false
5. 10/0 -> Infinity; 10/-0 -> -Infinity
6. let newFn = new Function(‘num’, ‘return num * num’); // create

function dynamicallyࡓ.
7. JavaScript is a compiled language, that parses, optimizes, and compiles

code ahead of time and it only interprets code at runtimeٚ.
8. JavaScript is not Java(Always remember this).
9. It is a very easy language to learn. But very hard to master.

10. Below the ‘a’ array has an element in it, but the length is still showing 0
.ق



This is all my friends, I will keep updating this book with more content, till then 

enjoy learning and we will meet someday, sometime with some other book journey. 

Thank you for reading and happy Learning.


	1. Execution Context, Thread & Callstack
	2. Closure - A Deep Dive
	3. Prototype , __proto__ & Objects
	4. Asynchronous Execution
	5. Iterators, Generators, and Async-Await
	6. NodeJS, C++, Queues & Servers
	7. Bonus

