

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-10

OPC Unified Architecture

Part 10: Programs

Release 1.05.00

2021-10-15

Specification
Type:

Industry Standard
Specification

 Comments: Report or view errata:
http://www.opcfoundation.org/errata

Document
Number OPC 10000-10

Title: OPC Unified
Architecture

Part 10 :Programs

 Date: 2021-10-15

Version: Release 1.05.00 Software: MS-Word

 Source: OPC 10000-10 - UA Specification
Part 10 - Programs 1.05.00.docx

Author: Status: Release

1.05.00 v OPC 10000-10: Programs

CONTENTS
1 Scope .. 1

2 Normative references .. 1

3 Terms, definitions and conventions .. 1

3.1 Terms and definitions .. 1

3.2 Abbreviations .. 2

4 Concepts ... 2

4.1 General ... 2

4.2 Programs .. 3

4.2.1 Overview ... 3

4.2.2 Security considerations .. 4

4.2.3 Program Finite State Machine .. 4

4.2.4 Program states .. 5

4.2.5 State transitions .. 6

4.2.6 Program state transition stimuli .. 6

4.2.7 Program Control Methods .. 6

4.2.8 Program state transition effects ... 7

4.2.9 Program result data ... 7

4.2.10 Program lifetime .. 8

5 Model .. 8

5.1 General ... 8

5.2 ProgramStateMachineType ... 9

5.2.1 Overview ... 9

5.2.2 ProgramStateMachineType Properties ... 11

5.2.3 ProgramStateMachineType components .. 12

5.2.4 ProgramStateMachineType causes (Methods) ... 15

5.2.5 ProgramStateMachineType effects (Events) .. 16

5.2.6 AuditProgramTransitionEventType ... 18

5.2.7 FinalResultData ... 18

5.2.8 ProgramDiagnostic2 DataType .. 18

5.2.9 ProgramDiagnostic2Type VariableType ... 19

Annex A (informative) Program example .. 21

A.1 Overview... 21

A.2 DomainDownload Program .. 21

A.2.1 General ... 21

A.2.2 DomainDownload states .. 21

A.2.3 DomainDownload transitions.. 22

A.2.4 DomainDownload Methods .. 23

A.2.5 DomainDownload Events ... 24

A.2.6 DomainDownload model .. 24

OPC 10000-10: Programs vi 1.05.00

FIGURES

Figure 1 – Automation facility control .. 3

Figure 2 – Program illustration .. 4

Figure 3 – Program states and transitions ... 5

Figure 4 – Program Type .. 9

Figure 5 – Program FSM References .. 12

Figure 6 – ProgramStateMachineType causes and effects .. 15

Figure A.1 – Program example .. 21

Figure A.2 – DomainDownload state diagram .. 22

Figure A.3 – DomainDownloadType partial state model ... 28

Figure A.4 – Ready To Running model .. 30

Figure A.5 – Opening To Sending To Closing model .. 32

Figure A.6 – Running To Suspended model ... 33

Figure A.7 – Suspended To Running model ... 34

Figure A.8 – Running To Halted – Aborted model .. 35

Figure A.9 – Suspended To Aborted model .. 35

Figure A.10 – Running To Completed model .. 36

Figure A.11 – Sequence of operations .. 37

1.05.00 vii OPC 10000-10: Programs

TABLES

Table 1 – Program Finite State Machine .. 4

Table 2 – Program states .. 5

Table 3 – Program state transitions .. 6

Table 4 – Program Control Methods .. 7

Table 5 – ProgramStateMachineType ... 10

Table 6 – ProgramStateMachineType Attribute values for child Nodes 11

Table 7 – ProgramStateMachineType Additional References .. 13

Table 8 – ProgramStateMachineType causes ... 15

Table 9 – ProgramTransitionEventType .. 17

Table 10 – AuditProgramTransitionEventType .. 18

Table 11 – ProgramDiagnostic2DataType structure .. 19

Table 12 – ProgramDiagnostic2DataType definition .. 19

Table 13 – ProgramDiagnostic2Type VariableType ... 19

Table A.1 – DomainDownload states ... 23

Table A.2 – DomainDownloadType ... 25

Table A.3 – TransferStateMachineType .. 25

Table A.4 – TransferStateMachineType Attribute values for child Nodes 26

Table A.5 – Finish State Machine Type ... 26

Table A.6 – FinishStateMachineType Attribute values for child Nodes 27

Table A.7 – DomainDownloadType Property Attributes variable values 27

Table A.8 – TransferStateMachineType Additional References ... 28

Table A.9 – Start Method additions ... 30

Table A.10 – StartArguments .. 31

Table A.11 – IntermediateResults Object .. 32

Table A.12 – Intermediate result data Variables .. 33

Table A.13 – FinalResultData ... 35

OPC 10000-10: Programs viii 1.05.00

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an
analysis and design process to develop a standard interface to facilitate the devel opment of applications by multiple
vendors that shall inter-operate seamlessly together.

Copyright © 2006-2021, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark l aws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means --graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specificat ion. All
copies must be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may
require use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which
a license may be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope
of those patents that are brought to its attention. OPC specifications are prospective and advisory only. Prospective
users are responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR
IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS
CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR
COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR
ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is sub ject
to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the
Rights in Technical Data and Computer Software clause at DFARs 252.227 -7013; or (c) the Commercial Computer
Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor /
manufacturer are the OPC Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260 -1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of
hardware and software to use certification marks, trademarks or other special designations to indicate compliance
with these materials. Products developed using this specification may claim compliance or confo rmance with this
specification if and only if the software satisfactorily meets the certification requirements set by the OPC Foundation.
Products that do not meet these requirements may claim only that the product was based on this specification and
must not claim compliance or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have
not been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity
and enforceability of the other provisions shall not be affected thereby.

http://www.opcfoundation.org/

1.05.00 ix OPC 10000-10: Programs

This Agreement shall be governed by and construed under the laws of the State of Minnesota, e xcluding its choice
or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quali ty standards for its published specifications; hence they
undergo constant review and refinement. Readers are encouraged to report any issues and view any existing errata
here: HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

OPC 10000-10: Programs x 1.05.00

Revision 1.05.00 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

5723 StateMachine model is now Part 16 Changed relevant references from Part 5 to Part 16.

5809 Missing relation of types to
conformance units

Added proper conformance unit to the type tables.

6148 Node references missing for
"ToTransition" and "FromTransition"

These are inverse references. Since the forward references are
properly defined, the inverse references have been removed.

In addition, the table format has been aligned with the template
for companion specifications.

https://apps.opcfoundation.org/mantis/view.php?id=5723
https://apps.opcfoundation.org/mantis/view.php?id=5809
https://apps.opcfoundation.org/mantis/view.php?id=6148

1.05.00 1 OPC 10000-10: Programs

OPC Unified Architecture Specification

Part 10: Programs

1 Scope

This part of OPC 10000 defines the Information Model associated with Programs in OPC Unified
Architecture (OPC UA). This includes the description of the NodeClasses, standard Properties,
Methods and Events and associated behaviour and information for Programs.

The complete AddressSpace model including all NodeClasses and Attributes is specified in
OPC 10000-3. The Services such as those used to invoke the Methods used to manage
Programs are specified in OPC 10000-4.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture – Part 1: Overview and Concepts
http://www.opcfoundation.org/UA/Part1/

OPC 10000-3, OPC Unified Architecture – Part 3: Address Space Model
http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture – Part 4: Services
http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture – Part 5: Information Model
http://www.opcfoundation.org/UA/Part5/

OPC 10000-7, OPC Unified Architecture – Part 7: Profiles
http://www.opcfoundation.org/UA/Part7/

OPC 10000-16, OPC Unified Architecture – Part 16: State Machines
http://www.opcfoundation.org/UA/Part16/

3 Terms, definitions and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC
10000-3, as well as the following apply.

3.1.1
Function
programmatic task performed by a Server or device, usually accomplished by computer code
execution

3.1.2
Finite State Machine
sequence of states and valid state transitions along with the causes and effects of those state
transitions that define the actions of a Program in terms of discrete stages

http://www.opcfoundation.org/UA/Part16/

OPC 10000-10: Programs 2 1.05.00

3.1.3
ProgramStateMachineType
type definition of a Program and is a subtype of the FiniteStateMachineType

3.1.4
Program Control Method
Method having specific semantics designed for the control of a Program by causing a state
transition

3.1.5
Program Invocation
unique Object instance of a Program existing on a Server

Note 1 to entry: A Program Invocation is distinguished from other Object instances of the same
ProgramStateMachineType by the object node’s unique browse path .

3.2 Abbreviations

DA Data Access

FSM Finite State Machine

HMI Human Machine Interfaces

UA Unified Architecture

4 Concepts

4.1 General

Integrated automation facilities manage their operations through the exchange of data and the
coordinated invocation of system Functions as illustrated in Figure 1. Services are required to
perform the data exchanges and to invoke the Functions that constitute system operation.
These Functions may be invoked through Human Machine Interfaces, cell controllers, or other
supervisory control and data acquisition type systems. OPC UA defines Methods and Programs
as an interoperable way to advertise, discover, and request these Functions. They provide a
normalizing mechanism for the semantic description, invocation, and result reporting of these
Functions. Together Methods and Programs complement the other OPC UA Services and
ObjectTypes to facilitate the operation of an automation environment using a cl ient-server
hierarchy.

1.05.00 3 OPC 10000-10: Programs

Figure 1 – Automation facility control

Methods and Programs model Functions typically have different scopes, behaviours, lifetimes,
and complexities in OPC Servers and the underlying systems. These Functionsare not normally
characterized by the reading or writing of data which is accomplished with the OPC UA Attribute
service set.

Methods represent basic Functions in the Server that can be invoked by a Client. Programs, by
contrast, model more complex and stateful functionality in the system. For example, a method
call may be used to perform a calculation or reset a counter. A Program is used to run and
control a batch process, execute a machine tool part program, or manage a domain download.
Methods and their invocation mechanism are described in OPC 10000-3 and OPC 10000-4.

This standard describes the extensions to, or specific use of , the core capabilities defined in
OPC 10000-5 and OPC 10000-16 as required for Programs.

4.2 Programs

4.2.1 Overview

Programs are complex Functions in a Server or underlying system that can be invoked and
managed by a Client. Programs can represent any level of functionality within a system or
process in which Client control or intervention is required and progress monitoring is desired.
Figure 2 illustrates the model.

Cleaning Filling

Labelling

Packaging

Palletizing

OPC 10000-10: Programs 4 1.05.00

 Program

Transition Events

Control Methods

________()
________()

________()

Monitor

Manage

State Machine

Result Data

Get Results

Get Description

Figure 2 – Program illustration

Programs are stateful and transition through a prescribed sequence of states as they execute.
Their behaviour is defined by a Program Finite State Machine (PFSM). The elements of the
PFSM describe the phases of a Program’s execution in terms of valid transitions between a set
of states, the stimuli or causes of those transitions, and the resultant effec ts of the transitions.

4.2.2 Security considerations

Since Programs can be used to perform advanced control algorithms or other actions, their use
should be restricted to personnel with appropriate access rights. It is recommended that
AuditUpdateMethodEvents are generated to allow monitoring the number of running Programs
in addition to their execution frequency.

4.2.3 Program Finite State Machine

The states, transitions, causes and effects that compose the Program Finite State Machine are
listed in Table 1 and illustrated in Figure 3.

Table 1 – Program Finite State Machine

No. Transition name Cause From state To state Effect

1 HaltedToReady Reset Method Halted Ready
Report Transition 1
Event/Result

2 ReadyToRunning Start Method Ready Running
Report Transition 2
Event/Result

3 RunningToHalted
Halt Method or
Internal (Error)

Running Halted
Report Transition 3
Event/Result

4 RunningToReady Internal Running Ready
Report Transition 4
Event/Result

5 RunningToSuspended
Suspend
Method

Running Suspended
Report Transition 5
Event/Result

6 SuspendedToRunning
Resume
Method

Suspended Running
Report Transition 6
Event/Result

7 SuspendedToHalted Halt Method Suspended Halted
Report Transition 7
Event/Result

1.05.00 5 OPC 10000-10: Programs

No. Transition name Cause From state To state Effect

8 SuspendedToReady Internal Suspended Ready
Report Transition 8
Event/Result

9 ReadyToHalted Halt Method Ready Halted
Report Transition 9
Event/Result

Figure 3 – Program states and transitions

4.2.4 Program states

A standard set of base states is defined for Programs as part of the Program Finite State
Machine. These states represent the stages in which a Program can exist at an instant in time
as viewed by a Client. This state is the Program’s current state. All Programs shall support this
base set. A Program may or may not require a Client action to cause the state to change. The
states are formally defined in Table 2.

Table 2 – Program states

State Description

Ready The Program is properly initialized and may be started.

Running The Program is executing making progress towards completion.

Suspended
The Program has been stopped prior to reaching a terminal state but may be
resumed.

Halted The Program is in a terminal or failed state, and it cannot be started or resumed
without being reset.

The set of states defined to describe a Program can be expanded. Program substates can be
defined for the base states to provide more resolution of a process and to describe the cause
and effect(s) of additional stimuli and transitions. Standards bodies and industry groups may
extend the base Program Finite State Model to conform to various industry models. For
example, the Halted state can include the substates “Aborted” and “Completed” to indicate if
the Function achieved a successful conclusion prior to the transition to Halted. Transitional
states such as “Starting” or “Suspending” might also be extensions of the Running state, for
example.

3

7

8

5

RUNNING

HALTED

READY

SUSPENDED

1

2 4

6

 9

OPC 10000-10: Programs 6 1.05.00

4.2.5 State transitions

A standard set of state transitions is defined for the Program Finite State Machine. These
transitions define the valid changes to the Program’s current state in terms of an initial state
and a resultant state. The transitions are formally defined in Table 3.

Table 3 – Program state transitions

Transition no. Transition name Initial state Resultant state

1 HaltedToReady Halted Ready

2 ReadyToRunning Ready Running

3 RunningToHalted Running Halted

4 RunningToReady Running Ready

5 RunningToSuspended Running Suspended

6 SuspendedToRunning Suspended Running

7 SuspendedToHalted Suspended Halted

8 SuspendedToReady Suspended Ready

9 ReadyToHalted Ready Halted

4.2.6 Program state transition stimuli

The stimuli or causes for a Program’s state transitions can be internal to the Server or external.
The completion of machining steps, the detection of an alarm condition, or the transmission of
a data packet are examples of internal stimuli. Methods are an example of external stimuli.
Standard Methods are defined which act as stimuli for the control of a Program.

4.2.7 Program Control Methods

Clients manage a Program by calling Methods. The Methods impact a Program’s behaviour by
causing specified state transitions. The state transitions dictate the ac tions performed by the
Program. This standard defines a set of standard Program Control Methods. These Methods
provide sufficient means for a Client to run a Program.

Table 4 lists the set of defined Program Control Methods. Each Method causes transitions from
specified states and shall be called when the Program is in one of those states.

Individual Programs can optionally support any subset of the Program Control Methods. For
example, some Programs may not be permitted to suspend and so would not provide the
Suspend and Resume Methods.

Programs can support additional user defined Methods. User defined Methods shall not change
the behaviour of the base Program Finite State Machine.

1.05.00 7 OPC 10000-10: Programs

Table 4 – Program Control Methods

Method Name Description

Start Causes the Program to transition from the Ready state to the Running state.

Suspend Causes the Program to transition from the Running state to the Suspended state.

Resume Causes the Program to transition from the Suspended state to the Running state.

Halt Causes the Program to transition from the Ready, Running or Suspended state to the
Halted state.

Reset Causes the Program to transition from the Halted state to the Ready state.

All Program Control Methods are defined with their BrowseName on the
ProgramStateMachineType with the OptionalPlaceholder ModellingRule. As defined in OPC
10000-3, this rule allows the inclusion of Arguments to these Methods on sub-types or on
instances. For example, a Start Method may include an options argument that specifies dynamic
options used to determine some program behaviour. The Method Call service specified in OPC
10000-4 defines a return status. This return status indicates the success of the Program Control
Method or a reason for its failure.

4.2.8 Program state transition effects

A Program’s state transition generally has a cause and also yields an effect. The effect is a by
product of a Program state transition that can be used by a Client to monitor the progress of
the Program. Effects can be internal or external. An external effect of a state transition is the
generation of an Event notification. Each Program state transition is associated with a unique
Event. These Events reflect the progression and trajectory of the Program through its set of
defined states. The internal effects of a state transition can be the performance of some
programmatic action such as the generation of data.

4.2.9 Program result data

4.2.9.1 Overview

Result data is generated by a running Program. The result data can be intermediate or final.
Result data may be associated with specific Program state transitions.

4.2.9.2 Intermediate result data

Intermediate result data is transient and is generated by the Program in conjunction with non-
terminal state transitions. The data items that compose the intermediate results are defined in
association with specific Program state transitions. Their values are relevant only at the
transition level.

Each Program state transition can be associated with different result data items. Alternately, a
set of transitions can share a result data item. Percentage complete is an example of
intermediate result data. The value of percentage complete is produced when the state
transition occurs and is available to the Client.

Clients acquire intermediate result data by subscribing to Program state transition Events. The
Events specify the data items for each transition. When the transition occurs, the generated
Event conveys the result data values captured to the subscribed Clients. If no Client is
monitoring the Program, intermediate result data may be discarded.

4.2.9.3 Terminal result data

Terminal result data is the final data generated by the Program as it ceases execution. Total
execution time, number of widgets produced, and fault condition encountered are examples of
terminal result data. When the Program enters the terminal state, this result data can be
conveyed to the Client by the transition Event. Terminal result data is also available within the
Program to be read by a Client after the program stops. This data persists until the Program
Instance is rerun or deleted.

OPC 10000-10: Programs 8 1.05.00

4.2.9.4 Monitoring Programs

Clients can monitor the activities associated with a Program’s execution. These activities
include the invocation of the management Methods, the generation of result data, and the
progression of the Program through its states. Audit Events are provided for Method Calls and
state transitions. These Events allow a record to be maintained of the Clients that interacted
with any Program and the Program state transitions that resulted from that interaction.

4.2.10 Program lifetime

4.2.10.1 Overview

Programs can have different lifetimes. Some Programs may always be present on a Server
while others are created and removed. Creation and removal can be controlled by a Client or
may be restricted to local means.

A Program can be Client creatable. If a Program is Client creatable, then the Client can add the
Program to the Server. The Object Create Method defined in OPC 10000-3, is used to create
the Program instance. The initial state of the Program can be Halted or Ready. Some Programs,
for example, may require that a resource becomes available after its creation and before it is
ready to run. In this case, it would be initialized in the Halted state and transition to Ready when
the resource is delivered.

A Program can be Client removable. If the Program is Client removable, then the Client can
delete the Program instance from the Server. The DeleteNodes Service defined in
OPC 10000-4 is used to remove the Program Instance. The Program shall be in a Halted state
to be removed. A Program may also be auto removable. An auto removable Program deletes
itself when execution has terminated.

4.2.10.2 Program instances

Programs can be multiple instanced or single instanced. A Server can support multiple
instances of a Program if these Program Instances can be run in parallel. For example, the
Program may define a Start Method that has an input argument to specify which resource is
acted upon by its Functions. Each instance of the Program is then started designating use of
different resources. The Client can discover all instances of a Program that are running on a
Server. Each instance of a Program is uniquely identified on the Server and is managed
independently by the Client.

4.2.10.3 Program recycling

Programs can be run once or run multiple times (recycled). A Program that is run once will
remain in the Halted state indefinitely once it has run. The normal course of action would be to
delete it following the inspection of its terminal results.

Recyclable Programs may have a limited or unlimited cycle count. These Programs may require
a reset step to transition from the Halted state to the Ready state. This allows for replenishing
resources or reinitializing parameters prior to restarting the Program. The Program Control
Method “Reset” triggers this state transition and any associated actions or effects.

5 Model

5.1 General

The Program model extends the FiniteStateMachineType and basic ObjectType models
presented in OPC 10000-16. Each Program has a Type Definition that is the subtype of the
FiniteStateMachineType. The ProgramStateMachineType describes the Finite State Machine
model supported by any Program Invocation of that type. The ProgramStateMachineType also
defines the property set that characterizes specific aspects of that Program’s behaviour such
as lifetime and recycling as well as specifying the result data that is produced by the Program.

1.05.00 9 OPC 10000-10: Programs

MyProgram

States

Method
Method

Methods

MyProgramType

ProgramStateMachine

Type

HasSubtype

StateMachineObjectType

HasSubtype
HasComponents

States

Transitions

Figure 4 – Program Type

The base ProgramStateMachineType defines the standard Finite State Machine specified for
all Programs. This includes the states, transitions, and transition causes (Methods) and effects
(Events). Subtypes of the base ProgramStateMachineType can be defined to extend or more
specifically characterize the behaviour of an individual Program as illustrated with
“MyProgramType” in Figure 4.

5.2 ProgramStateMachineType

5.2.1 Overview

The additional properties and components that compose the ProgramStateMachineType are
listed in Table 5. No ProgramStateMachineType specific semantics are assigned to the other
base ObjectType or FiniteStateMachineType Attributes or Properties.

OPC 10000-10: Programs 10 1.05.00

Table 5 – ProgramStateMachineType

Attribute Value

 Includes all attributes specified for the FiniteStateMachineType

BrowseName ProgramStateMachineType

IsAbstract False

References NodeClass BrowseName Data Type TypeDefinition Other

HasProperty Variable Creatable Boolean PropertyType

HasProperty Variable Deletable Boolean PropertyType M

HasProperty Variable AutoDelete Boolean PropertyType M

HasProperty Variable RecycleCount Int32 PropertyType M

HasProperty Variable InstanceCount UInt32 PropertyType

HasProperty Variable MaxInstanceCount UInt32 PropertyType

HasProperty Variable MaxRecycleCount UInt32 PropertyType

HasComponent Variable ProgramDiagnostic ProgramDiagnostic2D
ataType

ProgramDiagnostic2
Type

O

HasComponent Object Halted StateType

HasComponent Object Ready StateType

HasComponent Object Running StateType

HasComponent Object Suspended StateType

HasComponent Object HaltedToReady TransitionType

HasComponent Object ReadyToRunning TransitionType

HasComponent Object RunningToHalted TransitionType

HasComponent Object RunningToReady TransitionType

HasComponent Object RunningToSuspended TransitionType

HasComponent Object SuspendedToRunning TransitionType

HasComponent Object SuspendedToHalted TransitionType

HasComponent Object SuspendedToReady TransitionType

HasComponent Object ReadyToHalted TransitionType

HasComponent Method Start OP

HasComponent Method Suspend OP

HasComponent Method Reset OP

HasComponent Method Halt OP

HasComponent Method Resume OP

HasComponent Object FinalResultData BaseObjectType O

Conformance Units

Program Basic

1.05.00 11 OPC 10000-10: Programs

The component Variables of the ProgramStateMachineType have additional Attributes defined
in Table 6.

Table 6 – ProgramStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Halted

StateNumber

11

Ready

StateNumber

12

Running

StateNumber

13

Suspended

StateNumber

14

HaltedToReady

TransitionNumber

1

ReadyToRunning

TransitionNumber

2

RunningToHalted

TransitionNumber

3

RunningToReady

TransitionNumber

4

RunningToSuspended

TransitionNumber

5

SuspendedToRunning

TransitionNumber

6

SuspendedToHalted

TransitionNumber

7

SuspendedToReady

TransitionNumber

8

ReadyToHalted

TransitionNumber

9

5.2.2 ProgramStateMachineType Properties

The Creatable Property is a boolean that specifies if Program Invocations of this
ProgramStateMachineType can be created by a Client. If False, these Program Invocations are
persistent or may only be created by the Server.

The Deletable Property is a boolean that specifies if a Program Invocation of this
ProgramStateMachineType can be deleted by a Client. If False, these Program Invocations can
only be deleted by the Server.

The AutoDelete Property is a boolean that specifies if Program Invocations of this
ProgramStateMachineType are removed by the Server when execution terminates. If False,
these Program Invocations persist on the Server until they are deleted by the Client. When the
Program Invocation is deleted, any result data associated with the instance is also removed.

The RecycleCount Property is an unsigned integer that specifies the number of times a Program
Invocation of this type has been recycled or restarted from its starting point (not resumed). Note
that the Reset Method may be required to prepare a Program to be restarted.

The MaxRecycleCount Property is an integer that specifies the maximum number of times a
Program Invocation of this type can be recycled or restarted from its starting point (not
resumed). If the value is less than 0, then there is no limit to the number of restarts. If the value
is zero, then the Program may not be recycled or restarted.

The InstanceCount Property is an unsigned integer that specifies the number of Program
Invocations of this type that currently exist.

OPC 10000-10: Programs 12 1.05.00

The MaxInstanceCount Property is an integer that specifies the maximum number of Program
Invocations of this type that can exist simultaneously on this Server. If the value is less than 0,
then there is no limit.

5.2.3 ProgramStateMachineType components

5.2.3.1 Overview

The ProgramStateMachineType components consist of a set of References to the Object
instances of StateTypes, TransitionTypes, EventTypes and the Methods that collectively define
the Program FiniteStateMachine.

Start

FromState

ToState

HasEffect

Has Cause
TransitionType

StateType

ReadyToRunning

Running

Ready

BaseEventType

TransitionEventType

Figure 5 – Program FSM References

Figure 5 illustrates the component References that define the associations between two of the
ProgramStateMachineType’s states, Ready and Running. The complementary ReferenceTypes
have been omitted to simplify the illustration.

5.2.3.2 ProgramStateMachineType states

The state Objects are instances of the StateType defined in OPC 10000-16. Each state is
assigned a unique StateNumber value defined in Table 6. Subtypes of the
ProgramStateMachineType can add references from any state to a subordinate or nested
StateMachine Object to extend the FiniteStateMachine.

The Halted state is the idle state for a Program. It can be an initial state or a terminal state. As
an initial state, the Program Invocation cannot begin execution due to conditions at the Server.
As a terminal state, Halted can indicate either a failed or completed Program. A subordinate
state or result can be used to distinguish the nature of the termination. The Halted state
references four Transition Objects, which identify the allowed state transitions to the Ready
state and from the Ready, Running, and Suspended states.

The Ready state indicates that the Program is prepared to begin execution. Programs that are
ready to begin upon their creation may transition immediately to the Ready state. The Ready
state references four Transition Objects, which identify the allowed state transitions to the
Running and Halted states and from the Halted and Ready states.

The Running state indicates that the Program is actively performing its Function. The Running
state references five Transition Objects, which identify the allowed state transitions to the
Halted, Ready, and Suspended states and from the Ready and Suspended states.

1.05.00 13 OPC 10000-10: Programs

The Suspended state indicates that the Program has stopped performing its Function, but
retains the ability to resume the Function at the point at which it was executing when suspended.
The Suspended state references four Transition Objects, which identify the allowed state
transitions to the Ready, Running, and Halted state and from the Ready state.

5.2.3.3 ProgramStateMachineType transitions

ProgramStateMachineType Transitions are instances of the TransitionType defined in OPC
10000-16 which also includes the definitions of the ToState, FromState, HasCause, and
HasEffect references used. Table 7 specifies the transitions defined for the
ProgramStateMachineType. Each transition is assigned a unique TransitionNumber defined in
Table 6.

Table 7 – ProgramStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

HaltedToReady ToState True Ready

 FromState True Halted

 HasCause True Reset

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

ReadyToRunning ToState True Running

 FromState True Ready

 HasCause True Start

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

RunningToHalted ToState True Halted

 FromState True Running

 HasCause True Halt

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

RunningToReady ToState True Ready

 FromState True Running

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

RunningToSuspended ToState True Running

 FromState True Suspended

 HasCause True Suspend

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

SuspendedToRunning ToState True Running

 FromState True Suspended

 HasCause True Resume

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

SuspendedToHalted ToState True Halted

 FromState True Suspended

 HasCause True Halt

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

SuspendedToReady ToState True Ready

 FromState True Suspended

 HasCause True Reset

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

OPC 10000-10: Programs 14 1.05.00

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

ReadyToHalted ToState True Halted

 FromState True Ready

 HasCause True Halt

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

The HaltedToReady transition specifies the transition from the Halted to Ready states. It may
be caused by the Reset Method.

The ReadyToRunning transition specifies the transition from the Ready to Running states. It is
caused by the Start Method.

The RunningToHalted transition specifies the transition from the Running to Halted states. It is
caused by the Halt Method.

The RunningToReady transition specifies the transition from the Running to Ready states. The
RunningToSuspended transition specifies the Transition from the Running to Suspended states.
It is caused by the Suspend Method.

The SuspendedToRunning transition specifies the transition from the Suspended to Running
states. It is caused by the Resume Method.

The SuspendedToHalted transition specifies the transition from the Suspended to Halted states.
It is caused by the Halt Method.

The SuspendedToReady transition specifies the transition from the Suspended to Ready states.
It is caused internally.

The ReadyToHalted transition specifies the transition from the Ready to Halted states. It is
caused by the Halt Method.

Two HasEffect References are specified for each Program transition. These effects are Events
of ProgramTransitionEventType and AuditProgramTransitionEventType defined in 5.2.5. The
ProgramTransitionEventType notifies Clients of the Program transition and conveys result data.
The AuditProgramTransitionEventType is used to audit transitions that result from Program
Control Methods.

1.05.00 15 OPC 10000-10: Programs

Start

HasEffect

Input

Arguments

HasProperty

Output

Arguments

Has Property

ReadyToRunning

HasCause

TransitionEventType

IntermediateResult

Data

TransitionType

MyVariable

ProgramTransition

EventType

Figure 6 – ProgramStateMachineType causes and effects

5.2.4 ProgramStateMachineType causes (Methods)

5.2.4.1 Overview

The ProgramStateMachineType includes references to the Causes of specific Program state
transitions. These causes refer to Method instances. Programs that do not support a Program
Control Method will omit the Causes reference to that Method from the
ProgramStateMachineType references. If a Method’s Causes reference is omitted from the
ProgramStateMachineType then a Client cannot cause the associated state transition. The
Method instances referenced by the ProgramStateMachineType identify the InputArguments
and OutputArguments required for the Method calls to Program Invocations of that
ProgramStateMachineType. Table 8 specifies the Methods defined as Causes for
ProgramStateMachineTypes. Figure 6 illustrates the References associating the components
and Properties of Methods and Events with Program transitions.

Table 8 – ProgramStateMachineType causes

BrowseName References Target BrowseName Value Target
TypeDefinition

NOTES

Causes

Start HasProperty InputArguments PropertyType Optional

 HasProperty OutputArguments PropertyType Optional

Suspend HasProperty InputArguments PropertyType Optional

 HasProperty OutputArguments PropertyType Optional

Resume HasProperty InputArguments PropertyType Optional

 HasProperty OutputArguments PropertyType Optional

OPC 10000-10: Programs 16 1.05.00

BrowseName References Target BrowseName Value Target
TypeDefinition

NOTES

Halt HasProperty InputArguments PropertyType Optional

 HasProperty OutputArguments PropertyType Optional

Reset HasProperty InputArguments PropertyType Optional

 HasProperty OutputArguments PropertyType Optional

The Start Method causes the ReadyToRunning Program transition.

The Suspend Method causes the RunningToSuspended Program transition.

The Resume Method causes the SuspendedToRunning Program transition.

The Halt Method causes the RunningToHalted, SuspendedToHalted, or ReadyToHalted
Program transition depending on the current state of the Program.

The Reset Method causes the HaltedToReady Program transition.

5.2.4.2 Standard attributes

The Executable Method attribute indicates if a method can currently be executed. For Program
Control Methods, this means that the owning Program has a current state that supports the
transition caused by the Method.

5.2.4.3 Standard properties

Methods can reference a set of InputArguments. For each ProgramStateMachineType, a set of
InputArguments may be defined for the supported Program Control Methods. The data passed
in the arguments supplements the information required by the Program to perform its Function.
All calls to a Program Control Method for each Program Invocation of that
ProgramStateMachineType shall pass the specified arguments.

Methods can reference a set of OutputArguments. For each ProgramStateMachineType, a set
of OutputArguments is defined for the supported Program Control Methods. All calls to a
Program Control Method for each Program Invocation of that ProgramStateMachineType shall
pass the specified arguments.

5.2.5 ProgramStateMachineType effects (Events)

5.2.5.1 Overview

The ProgramStateMachineType includes component references to the Effects of each of the
Program’s state transitions. These Effects are Events. Each Transition shall have a HasEffect
Reference to a ProgramTransitionEventType and can have an
AuditProgramTransitionEventType. When the transition occurs, Event notifications of the
referenced type are generated for subscribed Clients. The Program Invocation may serve as
the EventNotifier for these Events or an owning Object or the Server Object may provide the
notifications.

ProgramTransitionEventTypes provide the means for delivering result data and confirming state
transitions for subscribed Clients on each defined Program State Transition. The
AuditProgramTransitionEventType allows the auditing of changes to the Program’s state in
conjunction with Client Method Calls.

5.2.5.2 ProgramTransitionEventType

The ProgramTransitionEventType is a subtype of the TransitionEventType. It is used with
Programs to acquire intermediate or final results or other data associated with a state transition.
A Program can have a unique ProgramTransitionEventType definition for any transition. Each
ProgramTransitionEventType specifies the IntermediateResult data specific to the designated

1.05.00 17 OPC 10000-10: Programs

state transition on that ProgramStateMachineType. Each transition can yield different
intermediate result data. Table 9 specifies the ProgramTransitionEventType.

Table 9 identifies the ProgramTransitionEventTypes that are specified for
ProgramStateMachineTypes.

Table 9 – ProgramTransitionEventType

Attribute Value

BrowseName ProgramTransitionEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the base TransitionEventType defined in OPC 10000-16.

HasComponent Variable IntermediateResult BaseData
Type

BaseDataVariableType Mandatory

Conformance Units

Program Basic

TransitionNumber identifies the Program transition that triggered the Event.

FromStateNumber identifies the state before the Program transition.

ToStateNumber identifies the state after the Program transition.

The IntermediateResult is an Object that aggregates a set of Variables whose values are
relevant for the Program at the instant of the associated transition. The ObjectType for the
IntermediateResult specifies the collection of Variables using a set of HasComponent
References.

OPC 10000-10: Programs 18 1.05.00

5.2.6 AuditProgramTransitionEventType

The AuditProgramTransitionEventType is a subtype of the AuditUpdateStateEventType. It is
used with Programs to provide a means to audit the Program State transitions associated with
any Client invoked Program Control Method. Servers shall generate
AuditProgramTransitionEvents if auditing is supported.

Table 10 specifies the definition of the AuditProgramTransitionEventType.

Table 10 – AuditProgramTransitionEventType

Attribute Value

BrowseName AuditProgramTransitionEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateStateEventType defined in OPC 10000-16.

HasProperty Variable TransitionNumber UInt32 PropertyType Mandatory

Conformance Units

Program Auditing

This EventType inherits all Properties of the AuditUpdateStateEventType defined in OPC
10000-5, except as noted below.

The Status Property, specified in OPC 10000-5,, identifies whether the state transition resulted
from a Program Control Method call (set Status to TRUE) or not (set Status to FALSE).

The SourceName specified in OPC 10000-5, identifies the Method causing the Program
transition when it is the result of a Client invoked ProgramControlMethod. The SourceName is
prefixed with “Method/” and the name of the ProgramControlMethod, “Method/Start” for
example.

The ClientUserId Property, specified in OPC 10000-5, identifies the user of the Client that
issued the Program Control Method if it is associated with this Program state transition.

The ActionTimeStamp Property, specified in OPC 10000-5 “AuditEventType”, identifies when
the time the Program state transition that resulted in the Event being generated occurred.

The TransitionNumber Property is a Variable that identifies the transition that triggered the
Event.

5.2.7 FinalResultData

The FinalResultData ObjectType specifies the VariableTypes that are preserved when the
Program has completed its Function. The ObjectType includes a HasComponent for a
VariableType of each Variable that comprises the final result data.

5.2.8 ProgramDiagnostic2 DataType

This structure contains elements that chronicle the Program Invocation’s activity and can be
used to aid in the diagnosis of Program problems.

Note The original ProgramDiagnosticDataType had flaws. To avoid collisions with existing implementations, a new
version with name ProgramDiagnostic2DataType has been created.

Its composition is defined in Table 11.

1.05.00 19 OPC 10000-10: Programs

Table 11 – ProgramDiagnostic2DataType structure

Name Type Description

ProgramDiagnostic2DataType structure

 createSessionId NodeId The CreateSessionId contains the SessionId of the Sessionon which the
call to the Create Method was issued to create the Program Invocation.

 createClientName String The CreateClientName is the name of the Clientof the Sessionthat
created the Program Invocation.

 invocationCreationTime UtcTime The InvocationCreationTime identifies the time the Program Invocation
was created.

 lastTransitionTime UtcTime The LastTransitionTime identifies the time of the last Program state
transition that occurred.

 lastMethodCall String The LastMethodCall identifies the last Program Method called on the
Program Invocation.

 lastMethodSessionId NodeId The LastMethodSessionId contains the SessionId of the Sessionon
which the last Program Control Method call to the Program Invocation
was issued.

 lastMethodInputArguments Argument[] The LastMethodInputArguments provides the input arguments on
the last Program Method call.

 lastMethodOutputArguments Argument[] The LastMethodOutputArguments provides the output arguments on the
last Program Method call.

 lastMethodInputValues BaseDataType
[]

The LastMethodInputValues preserves the values of the input
arguments on the last Program Method call. The size and order of
this list matches the size and order of the
lastMethodInputArguments field.

 lastMethodOutputValues BaseDataType
[]

The LastMethodOutputValues preserves the values of the output
arguments on the last Program Method call. The size and order of this
list matches the size and order of the lastMethodOutputArguments field.

 lastMethodCallTime UtcTime The LastMethodCallTime identifies the time of the last Method call to the
Program Invocation.

 lastMethodReturnStatus StatusCode The LastMethodReturnStatus preserves the value of the return status for
the last Program Control Method requested for this Program Invocation.

Its representation in the AddressSpace is defined in Table 12.

Table 12 – ProgramDiagnostic2DataType definition

Attribute Value

BrowseName ProgramDiagnostic2DataType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Program Basic

5.2.9 ProgramDiagnostic2Type VariableType

This VariableType aggregates simple Variables using simple DataTypes that reflect the
elements of the ProgramDiagnosticDataType structure. Its DataVariables have the same
semantic as defined in in 5.2.8.

Note The original ProgramDiagnosticType VariableType had the same flaws as the structure. To avoid collisions with
existing implementations, a new version with name ProgramDiagnostic2Type has been created.

The VariableType is formally defined in Table 13.

Table 13 – ProgramDiagnostic2Type VariableType

Attribute Value

BrowseName ProgramDiagnostic2Type

DataType ProgramDiagnostic2DataType

ValueRank -1 (Scalar)

IsAbstract False

OPC 10000-10: Programs 20 1.05.00

References NodeClass BrowseName DataType / TypeDefinition Modelling
Rule

Subtype of the BaseDataVariableType defined in OPC 10000-5.

HasComponent Variable CreateSessionId NodeId Mandatory

HasComponent Variable CreateClientName String Mandatory

HasComponent Variable InvocationCreationTime UtcTime Mandatory

HasProperty Variable LastTransitionTime UtcTime Mandatory

HasComponent Variable LastMethodCall String Mandatory

HasComponent Variable LastMethodSessionId NodeId Mandatory

HasComponent Variable LastMethodInputArguments Argument[] Mandatory

HasComponent Variable LastMethodOutputArguments Argument[] Mandatory

HasComponent Variable LastMethodInputValues BaseDataType[] Mandatory

HasComponent Variable LastMethodOutputValues BaseDataType[] Mandatory

HasComponent Variable LastMethodCallTime UtcTime Mandatory

HasComponent Variable LastMethodReturnStatus StatusCode Mandatory

Conformance Units

Program Basic

1.05.00 21 OPC 10000-10: Programs

Annex A
(informative)

Program example

A.1 Overview

This example illustrates the use of a Program to manage a domain download into a control
system as depicted in Figure A.1. The download requires the segmented transfer of control
operation data from a secondary storage device to the local memory within a control system.

Figure A.1 – Program example

The domain download has a source and a target location which are identified when the
download is initiated. Each time a segment of the domain is successfully transferred the Client
is notified and informed of the amount of data that has been downloaded. The Client is also
notified when the download is finished. The percentage of the total data receive d is reported
periodically while the download continues. If the download fails, the cause of the failure is
reported. At the completion of the download, the performance information is kept at the Server.

A.2 DomainDownload Program

A.2.1 General

The Client uses the “DomainDownload” Program to manage and monitor the download of a
domain at the Server.

A.2.2 DomainDownload states

The basic state model for the DomainDownload Program is presented in Figure A.2. The
Program has three primary states, Ready, Running, and Halted which are aligned with the
standard states of a ProgramStateMachineType. Additionally, the DomainDownloadType
extends the ProgramStateMachineType by defining subordinate State Machines for the

HMI

Control system

Hard disk

Data

Domain
download

Local memory

Program

Create: Create
the program to
perform the
download.

Start: Initiate the
download
activity.

Pause: Suspend
the download
temporarily.

Resume:
Resume the
download.

Halt: Terminate
the download
prior to
completion.

OPC 10000-10: Programs 22 1.05.00

Program’s Running and Halted states. The subordinate states describe the download
operations in greater detail and allow the Client to monitor the activity of the download at a finer
resolution.

An instance (Program Invocation) of a DomainDownload Program is created by the Client each
time a download is to be performed. The instance exists until explicitly removed by the Client.
The initial state of the Program is Ready and the terminal state is Halted. The DomainDownload
can be temporarily suspended and then resumed or aborted. Once halted, the program may not
be restarted.

Figure A.2 – DomainDownload state diagram

The sequence of state transitions is illustrated in Figure A.2. Once the download is started, The
Program progresses to the Opening state. After the source of the data is opened, a sequence
of transfers occurs in the Sending state. When the transfer completes the Objects are closed
in the Closing state. If the transfer is terminated before all of the data is downloaded or an error
is encountered then the download is halted and the Program transitions to the Aborted state;
otherwise the Program halts in the Completed state. The states are presented in Table A.1
along with the state transitions.

A.2.3 DomainDownload transitions

The valid state transitions specified for the DomainDownload Program are specified in
Table A.1. Each of the transitions defines a start state and end state for the transition and is
identified by a unique number. Five of the transitions are from the base
ProgramStateMachineType and retain the transition identifier numbers specified for Programs.

Running

Opening Closing

Sending

Ready

Suspended

5

6

3

2

1413

17

10 12

Halted

Completed Aborted

1314

11

7

15

16

18

1.05.00 23 OPC 10000-10: Programs

The additional transitions relate the base Program states with the subordinate states defined
for the DomainDownload. These states have been assigned unique transition identifier numbers
that distinguish them from the base Program transition identifiers. In cases where transitions
occur between substates and the Program’s base states, two transitions are specified. One
transition identifies the base state change and a second substate change. For example,
ReadyToRunning and ToOpening occur at the same time.

Table A.1 also specifies the defined states, causes for the transitions, and the effects of each
transition. Program Control Methods are used by the Client to “run” the DomainDownload. The
Methods cause or trigger the specified transitions. The transition effects are the specified
EventTypes which notify the Client of Program activity.

Table A.1 – DomainDownload states

No. Transition name Cause From State To State Effect

2 ReadyToRunning Start Method Ready Running Report Transition 2
Event/Result

3 RunningToHalted Halt
Method/Error or
Internal.

Running Halted Report Transition 3
Event/Result

5 RunningToSuspended Suspend
Method

Running Suspended Report Transition 5
Event/Result

6 SuspendedToRunning Resume Method Suspended Running Report Transition 6
Event/Result

7 SuspendedToHalted Halt Method Suspended Halted Report Transition 7
Event/Result

10 OpeningToSending Internal Opening Sending Report Transition 10
Event/Result

11 SendingToSending Internal Sending Sending Report Transition 11
Event/Result

12 SendingToClosing Internal Sending Closing Report Transition 12
Event/Result

13 SendingToAborted Halt
Method/Error

Opening Aborted Report Transition 13
Event/Result

14 ClosingToCompleted Internal Closing Completed Report Transition 14
Event/Result

15 SendingToSuspended Suspend
Method

Sending Suspended Report Transition 16
Event/Result

16 SuspendedToSending Resume Method Suspended Sending Report Transition 17
Event/Result

18 SuspendedToAborted Halt Method Suspended Aborted Report Transition 18
Event/Result

17 ToOpening Internal Ready Opening Report Transition 19
Event/Result

A.2.4 DomainDownload Methods

A.2.4.1 General

Four standard Program Methods are specified for running the DomainDownload Program, Start,
Suspend, Resume, and Halt. No additional Methods are specified. The base behaviours of these
Methods are defined by the ProgramStateMachineType. The Start Method initiates the
download activity and passes the source and destination locations for the transfer. The Suspend
Method is used to pause the activity temporarily. The Resume Method reinitiates the download,
when paused. The Halt Method aborts the download. Each of the Methods causes a Program
state transition and a substate transition. The specific state transition depends on the current
state at the time the Method is called. If a Method Call is made when the DomainDownload is
in a state for which that Method has no associated transition, the Method returns an error status
indicating invalid state for the Method.

OPC 10000-10: Programs 24 1.05.00

A.2.4.2 Method Arguments

The Start Method specifies three input arguments to be passed when it is called : Domain Name,
DomainSource, and DomainDestination. The other Methods require no input arguments. No
output arguments are specified for the DomainDownload Methods. The resultant error status
for the Program is part of the Call Service.

A.2.5 DomainDownload Events

A.2.5.1 General

A ProgramTransitionEventType is specified for each of the DomainDownload Program
transitions. The EventTypes trigger a specific Event notification to the Client when the
associated state transition occurs in the running Program Instance. The Event notification
identifies the transition. The SendingToSending state transition also includes intermediate
result data.

A.2.5.2 Event information

The SendingToSending Program transition Event relays intermediate result data to the Client
along with the notification. Each time the transition occurs, data items describing the amount
and percentage of data transferred are sent to the Client.

A.2.5.3 Final result data

The DomainDownload Program retains final result data following a completed or aborted
download. The data includes the total transaction time and the size o f the domain. In the event
of an aborted download, the reason for the termination is retained.

A.2.6 DomainDownload model

A.2.6.1 Overview

The OPC UA model for the DomainDownload Program is presented in Clause A.2.6.2.
Collectively they define the components that constitute this Program. For clarity, the figures
present a progression of portions of the model that complement the contents of the tables and
illustrate the Program’s composition.

The type definition for the DomainDownload Program precisely represents the behaviour of the
Program in terms of OPC UA components. These components can be browsed by a Client to
interpret or validate the actions of the Program.

A.2.6.2 DomainDownloadType

The DomainDownloadType is a subtype derived from the ProgramStateMachineType. It
specifies the use or non-use of optional ProgramStateMachineType components, valid
extensions such as subordinate State Machines, and constrained attribute values applied to
instances of DomainDownload Programs.

Table A.2 specifies the optional and extended components defined by the DomainDownload
Type. Note the references to two sub State Machine Types, TransferStateMachine and
FinishStateMachine. The DomainDownloadType omits references to the Reset Program Control
Method and its associated state transition (HaltedToReady), which it does not support.

1.05.00 25 OPC 10000-10: Programs

Table A.2 – DomainDownloadType

Attribute Value

 Includes all non-optional attributes specified for the ProgramStateMachineType

BrowseName DomainDownloadType

IsAbstract False

References NodeClass BrowseName Data
Type

TypeDefinition Modelling
Rule

HasComponent Object TransferStateMachine StateMachineType Mandatory

HasComponent Object FinishStateMachine StateMachineType Mandatory

HasComponent Variable ProgramDiagnostic ProgramDiagnostic2Type Mandatory

HasComponent Object ReadyToRunning TransitionType

HasComponent Object RunningToHalted TransitionType

HasComponent Object RunningToSuspended TransitionType

HasComponent Object SuspendedToRunning TransitionType

HasComponent Object SuspendedToHalted TransitionType

HasComponent Method Start Mandatory

HasComponent Method Suspend Mandatory

HasComponent Method Halt Mandatory

HasComponent Method Resume Mandatory

HasComponent Object FinalResultData BaseObjectType Mandatory

Table A.3 specifies the Transfer State Machine type that is a sub State Machine of the
DomainDownload Program Type. This definition identifies the StateTypes that compose the
substates for the Program’s Running StateType.

Table A.3 – TransferStateMachineType

Attribute Value

 Includes all attributes specified for the FiniteStateMachineType

BrowseName TransferStateMachineType

IsAbstract False

References NodeClass BrowseName Data
Type

TypeDefinition Modelling
Rule

HasComponent Object Opening StateType

HasComponent Object Sending StateType

HasComponent Object Closing StateType

HasComponent Object ReadyToOpening TransitionType

HasComponent Object OpeningToSending TransitionType

HasComponent Object SendingToClosing TransitionType

HasComponent Object SendingToAborted TransitionType

HasComponent Object SendingToSuspended TransitionType

HasComponent Object SuspendedToSending TransitionType

HasComponent Method Start Mandatory

HasComponent Method Suspend Mandatory

HasComponent Method Halt Mandatory

HasComponent Method Resume Mandatory

Table A.3 specifies the StateTypes associated with the Transfer State Machine Type. All of
these states are substates of the Running state of the base ProgramStateMachineType.

The Opening state is the preparation state for the domain download.

OPC 10000-10: Programs 26 1.05.00

The Sending state is the activity state for the transfer in which the data is moved from the source
to destination.

The Closing state is the cleanup phase of the download.

The component Variables of the TransferStateMachineType have additional Attributes defined
in Table A.4.

Table A.4 – TransferStateMachineType Attribute values for child Nodes

Source Path Value Attribute Description Attribute

Statenumbers

Opening

StateNumber

1

Sending

StateNumber

2

Closing

StateNumber

3

Transitionnumbers

ReadyToOpening

TransitionNumber

1

OpeningToSending

TransitionNumber

2

SendingToClosing

TransitionNumber

3

SendingToAborted

TransitionNumber

4

SendingToSuspended

TransitionNumber

5

SuspendedToSending

TransitionNumber

6

Table A.5 specifies the Finish State Machine Type that is a sub State Machine of the
DomainDownload ProgramStateMachineType. This definition identifies the StateTypes that
compose the substate for the Program’s Halted StateType.

Table A.5 – Finish State Machine Type

Attribute Value

 Includes all attributes specified for the FiniteStateMachineType

BrowseName FinishStateMachineType

IsAbstract False

References NodeClass BrowseName Data

Type

TypeDefinition Modelling

Rule

HasComponent Object Completed StateType

HasComponent Object Aborted StateType

The Aborted state is the terminal state that indicates an incomplete or failed domain download
operation.

The Completed state is the terminal state that indicates a successful domain download.

The component Variables of the FinishStateMachineType have additional Attributes defined in
Table A.6.

1.05.00 27 OPC 10000-10: Programs

Table A.6 – FinishStateMachineType Attribute values for child Nodes

Source Path Value Attribute Description Attribute

Statenumbers

Aborted

StateNumber

8

Completed

StateNumber

9

Table A.7 specifies the constraining behaviour of a DomainDownload.

Table A.7 – DomainDownloadType Property Attributes variable values

NodeClass BrowseName Data

Type

Data Value Modelling

Rule

Variable Creatable Boolean True

Variable Deletable Boolean True Mandatory

Variable AutoDelete Boolean False Mandatory

Variable RecycleCount Int32 0 Mandatory

Variable InstanceCount UInt32 PropertyType

Variable MaxInstanceCount UInt32 500

Variable MaxRecycleCount UInt32 0

A DomainDownload Program Invocation can be created and also destroyed by a Client. The
Program Invocation will not delete itself when halted, but will persist until explicitly rem oved by
the Client. A DomainDownload Program Invocation cannot be reset to restart. The Server will
support up to 500 concurrent DomainDownload Program Invocations.

Figure A.3 presents a partial DomainDownloadType model that illustrates the association
between the states and the DomainDownload, Transfer, and Finish State Machines. Note that
the current state number for the sub State Machines is only valid when the DomainDownload
active base state references the sub State Machine, Running for the Transfer current state and
Halted for the Finish current state.

OPC 10000-10: Programs 28 1.05.00

DomainDownload

Ready

Running

Halted

DomainDownload CurrentState

Contains the current state of

the DownloadDomain

Program State Machine (SM)

TransferStateMachine

Opening

TransferStateMachine CurrentState

Contains the current state of

Transfer SM if Download-

Domain is in the Running

State otherwise invalid.

HasSubStateMachine

Sending

Closing

Aborted

CompletedSuspended

HasSubStateMachine

FinishStateMachine CurrentState

Contains the current state of

Finish SM if Download-

Domain is in the Halted State

otherwise invalid.

FinishStateMachine

TransferStateMachine FinishStateMachine

Program Control Methods and State Transitions are omitted for clarity.

StateType

Figure A.3 – DomainDownloadType partial state model

Table A.8 specifies the ProgramTransitionTypes that are defined in addition to the
ProgramTransitionTypes specified for Programs in Table 7. These types associate the Transfer
and Finish sub State Machine states with the states of the base Program.

Table A.8 – TransferStateMachineType Additional References

Source Path Reference Type Is Forward Target Path

ToSending ToState True Sending

1.05.00 29 OPC 10000-10: Programs

Source Path Reference Type Is Forward Target Path

 FromState True Opening

 HasCause True Start

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

SendingToSending ToState True Sending

 FromState True Sending

 HasEffect True ProgramTransitionEventType

SendingToClosing ToState True Closing

 FromState True Sending

 HasEffect True ProgramTransitionEventType

SendingToAborted ToState True Aborted

 FromState True Sending

 HasCause True Halt

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

ClosingToCompleted ToState True Completed

 FromState True Closing

 HasEffect True ProgramTransitionEventType

SendingToSuspended ToState True Suspended

 FromState True Sending

 HasCause True Suspend

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

SuspendedToSending ToState True Sending

 FromState True Suspended

 HasCause True Resume

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

SuspendedToAborted ToState True Aborted

 FromState True Suspended

 HasCause True Halt

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

ReadyToOpening ToState True Opening

 FromState True Ready

 HasCause True Start

 HasEffect True ProgramTransitionEventType

 HasEffect True AuditProgramTransitionEventType

OPC 10000-10: Programs 30 1.05.00

Figure A.4 through Figure A.10 illustrate portions of the DomainDownloadType model. In each
figure, the referenced tates, Methods, transitions, and EventTypes are identified for one or two
state transitions.

Ready

Running Opening

Ready To Running

Start

HasCause

HasEffect

Partial DomainDownloadType Model Part 1

ToState

HasCause

TransitionEventType

19

HasEffect

ToState

To Opening

TransitionEventType

2

StateType

TransitionType

StateType

StartInput
Arguments

HasProperty

InputArguments

FromState

Figure A.4 – Ready To Running model

Figure A.4 illustrates the model for the ReadyToRunning Program transition. The transition is
caused by the Start Method. The Start Method requires three input arguments. The Method Call
service is used by the Client to invoke the Start Method and pass the arguments. When
successful, the Program Invocation enters the Running state and the subordinate Transfer
Opening state. The Server issues two Event notifications, ReadyToRunning (2), and ToOpening
(19).

Table A.9 – Start Method additions

Attribute Value

BrowseName Start

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType

Table A.9 specifies that the Start Method for the DomainDownloadType requires input
arguments. Table A.10 identifies the Start Arguments required.

1.05.00 31 OPC 10000-10: Programs

Table A.10 – StartArguments

Name Type Value

Argument 1 structure

 name String SourcePath

 dataType NodeId StringNodeId

 valueRank Int32 -1 (-1 = scalar)

 arrayDimensions UInt32[] null

 description LocalizedText The source specifier for the domain

Argument 2 structure

 Name String DestinationPath

 dataType NodeId StringNodeId

 valueRank Int32 -1 (-1 = scalar)

 arrayDimensions UInt32[] null

 description LocalizedText The destination specifier for the domain

Argument 3 structure

 name String DomainName

 dataType NodeId StringNodeId

 arrayDimensions UInt32[] null

 valueRank Int32 -1 (-1 = scalar)

 description LocalizedText The name of the domain

Figure A.5 illustrates the model for the Opening To Sending and the Sending to Closing Program
transitions. As specified in the transition table, these state transitions require no Methods to
occur, but rather are driven by the internal actions of the Server. Events are generated for each
state transition (10 to 12), when they occur.

OPC 10000-10: Programs 32 1.05.00

Opening

FromState

Closing

OpeningToSending

HasEffect

ToState

TransitionEventType

12

HasEffect

ToState

SendingToClosing

TransitionEventType

10

StateType

TransitionType

SendingToSending

ToState

ToStateFromState

HasEffect

ProgramTransition

EventType 11
IntermediateResult

Data
PercentComplete

Sending

FromState

StateType

Partial DomainDownloadType Model Part 2

Figure A.5 – Opening To Sending To Closing model

Notice that a state transition can initiate and terminate at the same state (Sending). In this case
the transition serves a purpose. The ProgramTransitionEventType effect referenced by the
SendingToSending state transition has an IntermediateResultData Object Reference. The
IntermediateResultData Object serves to identify two Variables whose values are obtained each
time the state transition occurs. The values are sent to the Client with the Event notification.
Table A.11 defines the IntermediateResults ObjectType and Table A.12 defines the Variables
of the ObjectType.

Table A.11 – IntermediateResults Object

Attribute Value

 Includes all attributes specified for the ObjectType

BrowseName IntermediateResults

IsAbstract False

References NodeClass BrowseName Data

Type

TypeDefinition Modelling

Rule

HasComponent Variable AmountTransferred Long VariableType Mandatory

HasComponent Variable PercentageTransferred Long VariableType Mandatory

1.05.00 33 OPC 10000-10: Programs

Table A.12 – Intermediate result data Variables

Intermediate Result
Variables

Type Value

Variable 1 Structure

 Name String AmountTransferred

 dataType NodeId StringNodeId

 description LocalizedText Bytes of domain data transferred.

Variable 2 Structure

 Name String PercentageTransferred

 dataType NodeId StringNodeId

 description LocalizedText Percentage of domain data transferred.

The model for the Running To Suspended state transition is illustrated in Figure A.6. The cause
for this transition is the Suspend Method. The Client can pause the download of domain data
to the control. The transition from Running to Suspended invokes the Event generation for
TransitionEventTypes 5 and 16. Note that there is no longer a valid current state for the Transfer
State Machine.

Running

Suspended Sending

RunningToSuspended

Suspend

HasCause

HasEffect

ToState

HasCause

TransitionEventType

16

HasEffect

FromState

SendingToSuspended

TransitionEventType

5

StateType

TransitionType

StateType

FromState

Partial DomainDownloadType Model Part 3

Figure A.6 – Running To Suspended model

The model for the SuspendedToRunning state transition is illustrated in Figure A.7. The cause
for this transition is the Resume Method. The Client can resume the download of domain data
to the control. The transition from Suspended to Running generates the Event for
TransitionEventTypes 6 and 17. Now that the Running state is active, the Sending state of the
Transfer State Machine is again specified for the CurrentStateNumber.

OPC 10000-10: Programs 34 1.05.00

Running

Suspended Sending

SuspendedToRunning

Resume

HasCause

HasEffect

FromState

HasCause

TransitionEventType

17

HasEffect

ToState

SuspendedToSending

TransitionEventType

6

StateType

TransitionType

StateType

ToState

Partial DomainDownloadType Model Part 4

Figure A.7 – Suspended To Running model

The model for the Running To Halted state transition for an abnormal termination of the domain
download is illustrated in Figure A.8. The cause for this transition is the Halt Method. The Client
can terminate the download of domain data to the control. The transition from Running To Halted
generates the Event for TransitionEventTypes 3 and 15. The TransitionEventType 15 indicates
the transition from the Sending state as the Running State ends and then to the Aborted state
as the Halted state is entered.

Halted

Running

RunningToHalted

Halt

HasCause

HasEffect

Partial DomainDownloadType Model Part 5

FromState

HasCause

TransitionEventType

15

HasEffect

FromState

SendingToAborted

TransitionEventType

3

StateType

TransitionType

StateType

ToState

Aborted

ToState

Sending

1.05.00 35 OPC 10000-10: Programs

Figure A.8 – Running To Halted – Aborted model

Figure A.9 illustrates the model for the Suspended To Halted state transition for an abnormal
termination of the domain download. The cause for this transition is the Halt Method. The Client
can terminate the download of domain data to the control while it is susp ended. The transition
from SuspendedToHalted invokes the Event notifiers for TransitionEventTypes 7 and 18.

Halted

Suspended

SuspendedToHalted

Halt

HasCause

HasEffect

FromState

HasCause

TransitionEventType

18

HasEffect

FromState

SuspendedToAborted

TransitionEventType

7

StateType

TransitionType

StateType

ToState

Aborted

ToState

Suspended

Partial DomainDownloadType Model Part 7

Figure A.9 – Suspended To Aborted model

The model for the Running To Completed state transition for a normal termination of the domain
download is illustrated in Figure A.10. The cause for this transition is internal. The transition
from Closing To Halted generates the Event for TransitionEventTypes 3 and 14. The
TransitionEventType 14 indicates the transition from the Closing state as the Running state
ends and then to the Completed state as the Halted state is entered.

The DomainDownloadType includes a component reference to a FinalResultData Object. This
Object references Variables that persists information about the domain download once it has
completed. This data can be read by Clients who are not subscribed to Event notifications. The
result data is described in Table A.13.

Table A.13 – FinalResultData

Attribute Value

 Includes all attributes specified for the ObjectType

BrowseName FinalResultData

IsAbstract False

References NodeClass BrowseName Data

Type

TypeDefinition Modelling

Rule

HasComponent Variable DownloadPerformance Double BaseDataVariabl
eType

Mandatory

OPC 10000-10: Programs 36 1.05.00

HasComponent Variable FailureDetails String BaseDataVariabl
eType

Mandatory

The Domain Download net transfer data rate and detailed reason for aborted downloads is
retained as final result data for each Program Invocation.

DownloadPerformance provides the data rate in seconds for domain data transferred.

FailureDetails provides a descriptive reason for an abort.

Halted

Running

RunningToHalted

HasEffect

Partial DomainDownloadType Model Part 6

FromState

TransitionEventType

14

HasEffect

FromState

ClosingToCompleted

TransitionEventType

3

StateType

TransitionType

StateType

ToState

Completed

ToState

Closing

FinalResultData

DownloadPerformance

DomainDownload

Type

Figure A.10 – Running To Completed model

A.2.6.3 Sequence of operations

Figure A.11 illustrates a normal sequence of service exchanges between a Client and Server
that would occur during the life cycle of a DomainDownloadType Program Invocation.

1.05.00 37 OPC 10000-10: Programs

Figure A.11 – Sequence of operations

UA Client UA Server

Create Object Program Invocation created

Call Start Domain Download Initiated

Event Notifier, ReadyToRunning

Event Notifier, ToOpening

Event Notifier, OpeningToSending

Call Suspend Domain Download Paused

Event Notifier, RunningToSuspended

Call Resume Domain Download Resumed

Event Notifier, SuspendedToRunning

Event Notifier, ToSending 20%

Event Notifier, SendingToSending 50%

Event Notifier, SendingToSending 100%

Event Notifier, SendingToClosing

Event Notifier, RunningToHalted

Event Notifier, ClosingToCompleted

Remove Node Program Invocation deleted

	1 Scope
	2 Normative references
	3 Terms, definitions and conventions
	3.1 Terms and definitions
	3.2 Abbreviations

	4 Concepts
	4.1 General
	4.2 Programs
	4.2.1 Overview
	4.2.2 Security considerations
	4.2.3 Program Finite State Machine
	4.2.4 Program states
	4.2.5 State transitions
	4.2.6 Program state transition stimuli
	4.2.7 Program Control Methods
	4.2.8 Program state transition effects
	4.2.9 Program result data
	4.2.9.1 Overview
	4.2.9.2 Intermediate result data
	4.2.9.3 Terminal result data
	4.2.9.4 Monitoring Programs

	4.2.10 Program lifetime
	4.2.10.1 Overview
	4.2.10.2 Program instances
	4.2.10.3 Program recycling

	5 Model
	5.1 General
	5.2 ProgramStateMachineType
	5.2.1 Overview
	5.2.2 ProgramStateMachineType Properties
	5.2.3 ProgramStateMachineType components
	5.2.3.1 Overview
	5.2.3.2 ProgramStateMachineType states
	5.2.3.3 ProgramStateMachineType transitions

	5.2.4 ProgramStateMachineType causes (Methods)
	5.2.4.1 Overview
	5.2.4.2 Standard attributes
	5.2.4.3 Standard properties

	5.2.5 ProgramStateMachineType effects (Events)
	5.2.5.1 Overview
	5.2.5.2 ProgramTransitionEventType

	5.2.6 AuditProgramTransitionEventType
	5.2.7 FinalResultData
	5.2.8 ProgramDiagnostic2 DataType
	5.2.9 ProgramDiagnostic2Type VariableType

	Annex A (informative) Program example
	A.1 Overview
	A.2 DomainDownload Program
	A.2.1 General
	A.2.2 DomainDownload states
	A.2.3 DomainDownload transitions
	A.2.4 DomainDownload Methods
	A.2.4.1 General
	A.2.4.2 Method Arguments

	A.2.5 DomainDownload Events
	A.2.5.1 General
	A.2.5.2 Event information
	A.2.5.3 Final result data

	A.2.6 DomainDownload model
	A.2.6.1 Overview
	A.2.6.2 DomainDownloadType
	A.2.6.3 Sequence of operations

