

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-100

OPC Unified Architecture

Part 100: Devices

Release 1.03.0

2021-03-09

Release 1.03.0 i OPC 10000-100: Devices

Specification
Type

Industry Standard
Specification

Comments:

Document
Number OPC 10000-100

Title: OPC Unified Architecture
Devices

Date: 2021-03-09

Version: Release 1.03.0 Software MS-Word

 Source: OPC 10000-100 - UA
Specification Part 100 - Devices
v1.03.0.docx

Author: OPC Foundation Status: Release

Release 1.03.0 1 OPC 10000-100: Devices

CONTENTS

FIGURES ... 4

TABLES ... 5

1 Scope ... 12

2 Reference documents ... 12

3 Terms, definitions, abbreviated terms, and conventions .. 13

3.1 Terms and definitions ... 13

3.2 Abbreviated terms .. 15

3.3 Conventions used in this document .. 15

3.3.1 Conventions for Node descriptions .. 15

3.3.2 NodeIds and BrowseNames .. 18

3.3.3 Common Attributes ... 19

4 Device model .. 20

4.1 General .. 20

4.2 Usage guidelines .. 21

4.3 TopologyElementType .. 22

4.4 FunctionalGroupType ... 23

4.4.1 Model .. 23

4.4.2 Recommended FunctionalGroup BrowseNames .. 24

4.4.3 UIElement Type .. 25

4.5 Interfaces ... 26

4.5.1 Overview ... 26

4.5.2 VendorNameplate Interface ... 26

4.5.3 TagNameplate Interface .. 28

4.5.4 DeviceHealth Interface .. 29

4.5.5 SupportInfo Interface .. 30

4.6 ComponentType ... 32

4.7 DeviceType .. 33

4.8 SoftwareType ... 35

4.9 DeviceSet entry point ... 35

4.10 DeviceFeatures entry point ... 36

4.11 BlockType .. 37

4.12 DeviceHealth Alarm Types ... 38

4.12.1 General ... 38

4.12.2 DeviceHealthDiagnosticAlarmType .. 39

4.12.3 FailureAlarmType .. 39

4.12.4 CheckFunctionAlarmType ... 40

4.12.5 OffSpecAlarmType .. 40

4.12.6 MaintenanceRequiredAlarmType ... 40

5 Device communication model .. 41

5.1 General .. 41

5.2 ProtocolType .. 42

5.3 Network .. 44

5.4 ConnectionPoint ... 45

5.5 ConnectsTo and ConnectsToParent ReferenceTypes ... 46

5.6 NetworkSet Object ... 48

6 Device integration host model ... 48

OPC 10000-100: Devices 2 Release 1.03.0

6.1 General .. 48

6.2 DeviceTopology Object .. 50

6.3 Online/Offline ... 51

6.3.1 General ... 51

6.3.2 IsOnline ReferenceType .. 52

6.4 Offline-Online data transfer .. 53

6.4.1 Definition .. 53

6.4.2 TransferServices Type .. 53

6.4.3 TransferServices Object .. 54

6.4.4 TransferToDevice Method ... 54

6.4.5 TransferFromDevice Method ... 55

6.4.6 FetchTransferResultData Method .. 56

7 Locking model ... 58

7.1 Overview .. 58

7.2 LockingServices Type .. 59

7.3 LockingServices Object .. 60

7.4 MaxInactiveLockTime Property ... 61

7.5 InitLock Method .. 61

7.6 ExitLock Method ... 62

7.7 RenewLock Method .. 62

7.8 BreakLock Method .. 63

8 Software update model ... 64

8.1 Overview .. 64

8.2 Use Cases ... 64

8.2.1 Supported Use Cases ... 64

8.2.2 Unsupported Use Cases ... 66

8.3 General .. 66

8.3.1 System perspective ... 66

8.3.2 Types of software .. 67

8.3.3 Types of Devices .. 67

8.3.4 Options for the Server ... 67

8.3.5 Software Update Client ... 70

8.3.6 Safety considerations .. 74

8.3.7 Security considerations ... 74

8.3.8 Update Behavior ... 75

8.3.9 Installation of patches ... 75

8.3.10 Incompatible parameters / settings .. 75

8.3.11 AddIn model .. 75

8.4 ObjectTypes ... 76

8.4.1 SoftwareUpdateType ... 76

8.4.2 SoftwareLoadingType ... 79

8.4.3 PackageLoadingType .. 79

8.4.4 DirectLoadingType .. 81

8.4.5 CachedLoadingType ... 82

8.4.6 FileSystemLoadingType .. 84

8.4.7 SoftwareVersionType .. 85

8.4.8 PrepareForUpdateStateMachineType .. 87

8.4.9 InstallationStateMachineType ... 90

8.4.10 PowerCycleStateMachineType .. 94

Release 1.03.0 3 OPC 10000-100: Devices

8.4.11 ConfirmationStateMachineType ... 95

8.5 DataTypes .. 97

8.5.1 SoftwareVersionFileType .. 97

8.5.2 UpdateBehavior OptionSet .. 98

9 Specialized topology elements .. 98

9.1 General .. 98

9.2 Configurable components ... 98

9.2.1 General pattern ... 98

9.2.2 ConfigurableObjectType .. 99

9.3 Block Devices... 100

9.4 Modular Devices... 101

10 Profiles and ConformanceUnits ... 102

10.1 Conformance Units ... 102

10.2 Profiles ... 104

10.2.1 General ... 104

10.2.2 Profile list .. 104

10.2.3 Device Server Facets .. 104

10.2.4 Device Client Facets ... 107

11 Namespaces ... 108

11.1 Namespace Metadata ... 108

11.2 Handling of OPC UA namespaces .. 109

Annex A (normative) Namespace and mappings .. 110

Annex B (informative) Examples .. 111

B.1 Functional Group Usages ... 111

B.2 Identification Functional Group ... 112

B.3 Software Update examples ... 112

B.3.1 Factory Automation Example ... 112

B.3.2 Update sequence using Direct-Loading ... 115

B.3.3 Update sequence using Cached-Loading .. 116

B.3.4 Update sequence using File System based Loading 118

Annex C (informative) Guidelines for the usage of OPC UA for Devices as base for
Companion Specifications ... 121

C.1 Overview .. 121

C.2 Guidelines to define Companion Specifications based on OPC UA for Devices .. 123

C.3 Guidelines on how to combine different companion specifications based on OPC
UA for Devices in one OPC UA application ... 124

C.4 Guidelines to manage the same Variables defined in d ifferent places 126

C.5 Guidelines on how to use functionality in companion specifications 127

Bibliography ... 129

OPC 10000-100: Devices 4 Release 1.03.0

FIGURES
Figure 1 – Device model overview .. 21

Figure 2 – Components of the TopologyElementType ... 22

Figure 3 – FunctionalGroupType .. 24

Figure 4 – Overview of Interfaces for Devices and Device components 26

Figure 5 – VendorNameplate Interface ... 26

Figure 6 – TagNameplate Interface .. 28

Figure 7 – DeviceHealth Interface .. 29

Figure 8 –Support information Interface ... 30

Figure 9 – ComponentType .. 32

Figure 10 – DeviceType ... 33

Figure 11 – SoftwareType .. 35

Figure 12 – Standard entry point for Devices .. 36

Figure 13 – Standard entry point for DeviceFeatures .. 37

Figure 14 – BlockType hierarchy .. 37

Figure 15 – Device Health Alarm type hierarchy ... 39

Figure 16 – Device communication model overview .. 41

Figure 17 – Example of a communication topology ... 42

Figure 18 – Example of a ProtocolType hierarchy with instances that represent specific
communication profiles ... 43

Figure 19 – NetworkType ... 44

Figure 20 – Example of ConnectionPointType hierarchy ... 45

Figure 21 – ConnectionPointType... 45

Figure 22 – ConnectionPoint usage .. 46

Figure 23 – Type Hierarchy for ConnectsTo and ConnectsToParent References 47

Figure 24 – Example with ConnectsTo and ConnectsToParent References 48

Figure 25 – Example of an automation system ... 49

Figure 26 – Example of a Device topology .. 50

Figure 27 – Online component for access to Device data ... 51

Figure 28 – Type hierarchy for IsOnline Reference ... 52

Figure 29 – TransferServicesType .. 53

Figure 30 – TransferServices ... 54

Figure 31 – LockingServicesType ... 59

Figure 32 – LockingServices .. 60

Figure 33 – Example with a device and several software components 67

Figure 34 – Determine the type of update that the Server implements. 70

Figure 35 – Different flows of Direct-Loading, Cached-Loading and FileSystem based
Loading .. 71

Figure 36 – Prepare and Resume activities .. 72

Figure 37 – Installation activity for Direct-Loading .. 73

Figure 38 – Installation activity for Cached-Loading and File System based Loading 73

Figure 39 – Resume activity ... 74

Figure 40 – Example how to add the SoftwareUpdate AddIn to a component 76

Figure 41 – SoftwareUpdateType ... 77

Release 1.03.0 5 OPC 10000-100: Devices

Figure 42 – PackageLoadingType .. 80

Figure 43 – DirectLoadingType... 81

Figure 44 – CachedLoadingType .. 82

Figure 45 – FileSystemLoadingType... 84

Figure 46 – SoftwareVersionType... 86

Figure 47 – PrepareForUpdate state machine .. 87

Figure 48 – PrepareForUpdateStateMachineType .. 88

Figure 49 – Installation state machine .. 91

Figure 50 – InstallationStateMachine .. 91

Figure 51 - PowerCycle state machine ... 95

Figure 52 – Confirmation state machine ... 96

Figure 53 – ConfirmationStateMachineType ... 96

Figure 54 – Configurable component pattern .. 99

Figure 55 – ConfigurableObjectType .. 99

Figure 56 – Block-oriented Device structure example ... 100

Figure 57 – Modular Device structure example ... 101

Figure B.1 – Analyser Device use for FunctionalGroups ... 111

Figure B.2 – PLCopen use for FunctionalGroups .. 111

Figure B.3 – Example of an Identification FunctionalGroup ... 112

Figure B.4 – Example ... 113

Figure B.5 – Example sequence of Direct-Loading ... 115

Figure B.6 – Example sequence of Cached-Loading ... 116

Figure B.7 – Example sequence of File System based Loading .. 119

Figure C.1 – Example of applying two companion specifications based on OPC UA for
Devices .. 122

Figure C.2 – Using composition to compose one device representation defined by two
companion specifications ... 123

Figure C.3 – Example of applying several companion specifications (I) 125

Figure C.4 – Example of applying several companion specifications (II) 126

Figure C.5 – Options how to manage the same Variable .. 127

Figure C.6 – Example on how to use AddIns and Interface ... 127

Figure C.7 – Example on how to use Interface with additional Object 128

TABLES
Table 1 – Examples of DataTypes .. 15

Table 2 – Type Definition Table .. 16

Table 3 – Examples of Other Characteristics .. 16

Table 4 – <some>Type Additional References .. 17

Table 5 – <some>Type Additional Subcomponents .. 17

Table 6 – <some>Type Attribute values for child Nodes ... 18

Table 7 – Common Node Attributes .. 19

Table 8 – Common Object Attributes .. 19

Table 9 – Common Variable Attributes ... 20

OPC 10000-100: Devices 6 Release 1.03.0

Table 10 – Common VariableType Attributes .. 20

Table 11 – Common Method Attributes ... 20

Table 12 – TopologyElementType definition ... 22

Table 13 – TopologyElementType Additional Subcomponents .. 23

Table 14 – FunctionalGroupType definition .. 24

Table 15 – Recommended FunctionalGroup BrowseNames .. 25

Table 16 – UIElementType definition .. 25

Table 17 – IVendorNameplateType definition ... 27

Table 18 – VendorNameplate Mapping to IRDIs ... 28

Table 19 – ITagNameplateType definition .. 29

Table 20 – TagNameplate Mapping to IRDIs .. 29

Table 21 – IDeviceHealthType definition .. 29

Table 22 – DeviceHealthEnumeration values .. 30

Table 23 – ISupportInfoType definition ... 31

Table 24 – ISupportInfoType Additional Subcomponents .. 31

Table 25 – ComponentType definition .. 32

Table 26 – DeviceType definition ... 34

Table 27 – SoftwareType definition .. 35

Table 28 – DeviceSet definition .. 36

Table 29 – DeviceFeatures definition ... 37

Table 30 – BlockType definition.. 38

Table 31 – DeviceHealthDiagnosticAlarmType definition .. 39

Table 32 – FailureAlarmType definition .. 40

Table 33 – CheckFunctionAlarmType definition .. 40

Table 34 – OffSpecAlarmType definition ... 40

Table 35 – MaintenanceRequiredAlarmType definition ... 40

Table 36 – ProtocolType definition ... 43

Table 37 – NetworkType definition ... 44

Table 38 – ConnectionPointType definition ... 46

Table 39 – ConnectsTo ReferenceType .. 47

Table 40 – ConnectsToParent ReferenceType ... 47

Table 41 – NetworkSet definition .. 48

Table 42 – DeviceTopology definition ... 51

Table 43 – IsOnline ReferenceType ... 53

Table 44 – TransferServicesType definition .. 54

Table 45 – TransferToDevice Method arguments ... 55

Table 46 – TransferToDevice Method AddressSpace definition .. 55

Table 47 – TransferFromDevice Method arguments.. 56

Table 48 – TransferFromDevice Method AddressSpace definition .. 56

Table 49 –FetchTransferResultData Method arguments ... 57

Table 50 – FetchTransferResultData Method AddressSpace definition 57

Table 51 – FetchResultDataType structure ... 57

Table 52 – TransferResultError DataType structure .. 57

Release 1.03.0 7 OPC 10000-100: Devices

Table 53 – TransferResultData DataType structure .. 58

Table 54 – LockingServicesType definition ... 59

Table 55 – LockingServicesType Additional Variable Attributes .. 60

Table 56 – MaxInactiveLockTime Property definition .. 61

Table 57 – InitLock Method Arguments ... 61

Table 58 – InitLock Method AddressSpace definition .. 62

Table 59 – ExitLock Method Arguments.. 62

Table 60 – ExitLock Method AddressSpace definition ... 62

Table 61 – RenewLock Method Arguments ... 62

Table 62 – RenewLock Method AddressSpace definition .. 63

Table 63 – BreakLock Method Arguments .. 63

Table 64 – BreakLock Method AddressSpace definition ... 63

Table 65 – SoftwareUpdateType definition ... 77

Table 66 – SoftwareUpdateType Attribute values for child Nodes ... 79

Table 67 – SoftwareLoadingType definition .. 79

Table 68 – PackageLoadingType definition .. 80

Table 69 – TemporaryFileTransferType Result Codes .. 80

Table 70 – DirectLoadingType definition ... 82

Table 71 – CachedLoadingType definition .. 83

Table 72 – FileSystemLoadingType definition ... 84

Table 73 – SoftwareVersionType definition ... 86

Table 74 – PrepareForUpdateStateMachineType definition .. 88

Table 75 – PrepareForUpdateStateMachineType Attribute values for child Nodes 89

Table 76 – PrepareForUpdateStateMachineType Additional References 89

Table 77 – InstallationStateMachineType definition .. 92

Table 78 – InstallationStateMachineType Attribute values for child Nodes 92

Table 79 – InstallationStateMachineType Additional References .. 92

Table 80 – PowerCycleStateMachineType definition .. 95

Table 81 – PowerCycleStateMachineType Attribute values for child Nodes 95

Table 82 – PowerCycleStateMachineType Additional References ... 95

Table 83 – ConfirmationStateMachineType .. 96

Table 84 – ConfirmationStateMachineType Attribute values for child Nodes 97

Table 85 – ConfirmationStateMachineType TargetBrowsePath ... 97

Table 86 – SoftwareVersionFileType Items ... 97

Table 87 – UpdateBehavior OptionSet .. 98

Table 88 – UpdateBehavior OptionSet Definition .. 98

Table 89 – ConfigurableObjectType definition .. 100

Table 90 – Conformance Units for Devices ... 102

Table 91 – Profile URIs for Devices .. 104

Table 92 – DI BaseDevice Server Facet definition .. 105

Table 93 – DI DeviceIdentification Server Facet definition .. 105

Table 94 – DI BlockDevice Server Facet definition ... 105

Table 95 – DI Locking Server Facet definition .. 105

OPC 10000-100: Devices 8 Release 1.03.0

Table 96 – DI DeviceCommunication Server Facet definition .. 105

Table 97 – DI DeviceIntegrationHost Server Facet definition .. 105

Table 98 – DI SU Software Update Base Server Facet ... 106

Table 99 – DI SU Direct Loading Server Facet ... 106

Table 100 – DI SU Cached Loading Server Facet ... 106

Table 101 – DI SU FileSystem Loading Server Facet ... 107

Table 102 – DI BaseDevice Client Facet definition ... 107

Table 103 – DI DeviceIdentification Client Facet definition ... 107

Table 104 – DI BlockDevice Client Facet definition ... 107

Table 105 – DI Locking Client Facet definition .. 107

Table 106 – DI DeviceCommunication Client Facet definition ... 107

Table 107 – DI DeviceIntegrationHost Client Facet definition ... 108

Table 108 – DI SU Software Update Base Client Facet .. 108

Table 109 – DI SU Direct Loading Client Facet ... 108

Table 110 – DI SU Cached Loading Client Facet .. 108

Table 111 – DI SU FileSystem Loading Client Facet ... 108

Table 112 – NamespaceMetadata Object for this Specification ... 109

Table 113 – Namespaces used in an OPC UA for Devices Server 109

Table 114 – Namespaces used in this specification .. 109

Release 1.03.0 9 OPC 10000-100: Devices

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2021, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents tha t
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IM PLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INC LUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC
Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260 -1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Products developed using this specification may claim compliance or conformance with this specification if and

http://www.opcfoundation.org/

OPC 10000-100: Devices 10 Release 1.03.0

only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet
these requirements may claim only that the product was based on this specification and must not claim compliance or
conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications; hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

Release 1.03.0 11 OPC 10000-100: Devices

Revision 1.3.x Highlights

This revision contains extensions to Version 1.3.

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

Issues resolved with revision 1.03.0

6195 LockingService should be usable
outside DI

Moved type-specific semantic to
TopologyElementType and NetworkType.

Made Locking a separate chapter.

6196 Relation of types to conformance units
missing

Added the relevant CU name to the type tables.

6230 Abstract needs to be reversed between
DeviceHealthDiagnosticAlarmType and
its subtypes

Fixed as suggested.

6282 Feature for Software Update needed Added new Software Update Feature (Firmware
Update) as a new chapter.

6514 Mandatory Placeholder in MethodSet Removed the instance declaration and
specified the expected behaviour in text.

http://opcfoundation-onlineapplications.org/mantis/view.php?id=6195
http://opcfoundation-onlineapplications.org/mantis/view.php?id=6196
http://opcfoundation-onlineapplications.org/mantis/view.php?id=6230
http://opcfoundation-onlineapplications.org/mantis/view.php?id=6282
http://opcfoundation-onlineapplications.org/mantis/view.php?id=6514

OPC 10000-100: Devices 12 Release 1.03.0

1 Scope

This part of the OPC UA specification is an extension of the overall OPC Unified Architecture
specification series and defines the information model associated with Devices. This specification
describes three models which build upon each other as follows:

• The (base) Device Model is intended to provide a unified view of devices and their hardware
and software parts irrespective of the underlying device protocols.

• The Device Communication Model adds Network and Connection information elements so
that communication topologies can be created.

• The Device Integration Host Model finally adds additional elements and rules required for
host systems to manage integration for a complete system. It allows reflecting the topology
of the automation system with the devices as well as the connecting commun ication networks.

This document also defines AddIns that can be used for the models in this document but also for
models in other specifications. They are:

• Locking model - a generic AddIn to control concurrent access,

• Software update model – an AddIn to manage software in a Device.

2 Reference documents

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments and errata)
applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

http://www.opcfoundation.org/UA/Part8/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10001-5, OPC Unified Architecture V1.04 - Amendment 5: Dictionary Reference

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part9/

Release 1.03.0 13 OPC 10000-100: Devices

OPC 10001-7, OPC Unified Architecture V1.04 - Amendment 7: Interfaces and AddIns

OPC 10020, OPC UA Companion Specification for Analyser Devices

OPC 30000, OPC UA Companion Specification for PLCopen

IEC 62769, Field Device Integration (FDI)

NAMUR Recommendation NE107: Self-monitoring and diagnosis of field devices

3 Terms, definitions, abbreviated terms, and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-3,
and OPC 10000-8 as well as the following apply.

3.1.1
block
functional Parameter grouping entity

Note 1 to entry: It could map to a function block (see IEC 62769) or to the resource parameters of the Device itself.

3.1.2
blockMode
mode of operation (target mode, permitted modes, actual mode, and normal mode) for a Block

Note 1 to entry: Further details about Block modes are defined by standard organisations.

3.1.3
Communication Profile
fixed set of mapping rules to allow unambiguous interoperability between Devices or Applications,
respectively

Note 1 to entry: Examples of such profiles are the “Wireless communication network and communication profiles for
WirelessHART” in IEC 62591 and the Protocol Mappings for OPC UA in OPC 10000-6.

3.1.4
Connection Point
logical representation of the interface between a Device and a Network

3.1.5
device
independent physical entity capable of performing one or more specified functions in a particular
context and delimited by its interfaces

Note 1 to entry: See IEC 61499-1.

Note 2 to entry: Devices provide sensing, actuating, communication, and/or control functionality. Examples include
transmitters, valve controllers, drives, motor controllers, PLCs, and communication gateways.

Note 3 to entry: A Device can be a system (topology) of other Devices, components, or parts.

3.1.6
Device Integration Host
Server that manages integration of multiple Devices in an automation system

3.1.7
Device Topology
arrangement of Networks and Devices that constitute a communication topology

OPC 10000-100: Devices 14 Release 1.03.0

3.1.8
fieldbus
communication system based on serial data transfer and used in industrial automation or process
control applications

Note 1 to entry: See IEC 61784.

Note 2 to entry: Designates the communication bus used by a Device.

3.1.9
Parameter
variable of the Device that can be used for configuration, monitoring or control purposes

Note 1 to entry: In the information model it is synonymous to an OPC UA DataVariable.

3.1.10
Network
means used to communicate with one specific protocol

3.1.11
Direct-Loading
an update method where the original software is overwritten during the transfer

3.1.12
Cached-Loading
an update method where the new software is stored in a separate area

Note 1 to entry: Installation is performed later as an extra step.

3.1.13
File System based Loading
an update method based on an accessible directory structure and a separate install method

3.1.14
Software Package
a single file that contains the data for the software update in a device specific format

3.1.15
Software Update Client
an update client that can be used for devices of several vendors

Note 1 to entry: There can be different Software Update Clients for different domains (e.g. process industry or
manufacturing).

3.1.16
Current Version
version information of the software that is currently installed

3.1.17
Pending Version
version information for a Software Package that was transferred before and is ready to be installed

3.1.18
Fallback Version
version information about an alternatively installable software that is located on the Server

Note 1 to entry: Examples: factory default version or the version before the latest update

Release 1.03.0 15 OPC 10000-100: Devices

3.2 Abbreviated terms

ADI Analyser Device Integration
CP Communication Processor (hardware module)
CPU Central Processing Unit (of a Device)
DA Data Access
DI Device Integration (the short name for this specification)
ERP Enterprise Resource Planning
IRDI International Registration Data Identifiers
UA Unified Architecture
UML Unified Modelling Language
XML Extensible Mark-up Language

3.3 Conventions used in this document

3.3.1 Conventions for Node descriptions

3.3.1.1 Node definitions

Node definitions are specified using tables (see Table 2).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode
and its NodeClass.

• If the TargetNode is a component of the Node being defined in the table the Attributes of the

composed Node are defined in the same row of the table.

• The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional

array, for multi-dimensional arrays the expression is repeated for each dimension (e.g. [2][3]

for a two-dimensional array). For all arrays the ArrayDimensions is set as identified by

<number> values. If no <number> is set, the corresponding dimension is set to 0, indicating

an unknown size. If no number is provided at all the ArrayDimensions can be omitted. If no

brackets are provided, it identifies a scalar DataType and the ValueRank is set to the

corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to null or is

omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so

either “{Any}” or “{ScalarOrOneDimension}” and the ValueRank is set to the corresponding

value (see OPC 10000-3) and the ArrayDimensions is set to null or is omitted. Examples are

given in Table 1.

Table 1 – Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

0:Int32 0:Int32 -1 omitted or null A scalar Int32.

0:Int32[] 0:Int32 1 omitted or {0} Single-dimensional array of Int32 with an
unknown size.

0:Int32[][] 0:Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown
sizes for both dimensions.

0:Int32[3][] 0:Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for
the first dimension and an unknown size for the
second dimension.

0:Int32[5][3] 0:Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for
the first dimension and a size of 3 for the second
dimension.

0:Int32{Any} 0:Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array
with any number of dimensions.

0:Int32{ScalarOrOneDimensio
n}

0:Int32 -3 omitted or null An Int32 where it is either a single-dimensional
array or a scalar.

• The TypeDefinition is specified for Objects and Variables.

OPC 10000-100: Devices 16 Release 1.03.0

• The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node

points with a HasTypeDefinition Reference to the corresponding Node.

• The ModellingRule of the referenced component is provided by specifying the symbolic

name of the rule in the ModellingRule column. In the AddressSpace, the Node shall use a

HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType
shall be used.

Note that if a symbolic name of a different namespace is used, it is prefixed by the NamespaceIndex
(see 3.3.2.2).

Nodes of all other NodeClasses cannot be defined in the same table; therefore, only the used
ReferenceType, their NodeClass and their BrowseName are specified. A reference to another part of
this document points to their definition.

Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and Other
columns may be omitted and only a Comment column is introduced to point to the Node definition.

Table 2 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“ is used.

References NodeClass BrowseNa
me

DataType TypeDefinition Other

ReferenceTyp
e name

NodeClass
of the target
Node.

BrowseNam
e of the
target Node.

DataType of the
referenced
Node, only
applicable for
Variables.

TypeDefinition of the
referenced Node, only
applicable for Variables
and Objects.

Additional
characteristics of the
TargetNode such as
the ModellingRule or
AccessLevel.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The
TypeDefinition, NodeClass and DataType can be derived from the type definitions, and the symbolic
name can be created as defined in 3.3.3.1. Therefore, those containing components are not explicitly
specified; they are implicitly specified by the type definitions.

The Other column defines additional characteristics of the Node. Examples of characteristics that can
appear in this column are show in Table 3.

Table 3 – Examples of Other Characteristics

Name Short Name Description

0:Mandatory M The Node has the Mandatory ModellingRule.

0:Optional O The Node has the Optional ModellingRule.

0:MandatoryPlaceholder MP The Node has the MandatoryPlaceholder ModellingRule.

0:OptionalPlaceholder OP The Node has the OptionalPlaceholder ModellingRule.

ReadOnly RO The Node AccessLevel has the CurrentRead bit set but not the CurrentWrite
bit.

ReadWrite RW The Node AccessLevel has the CurrentRead and CurrentWrite bits set.

WriteOnly WO The Node AccessLevel has the CurrentWrite bit set but not the CurrentRead
bit.

If multiple characteristics are defined they are separated by commas. The name or the short name
may be used.

Each Node defined in this specification has ConformanceUnits defined in 10.1 that require the Node
to be in the AddressSpace. If a Server supports a ConformanceUnit, it shall expose the Nodes related
to the ConformanceUnit in its AddressSpace. If two Nodes are exposed, all References between the
Nodes defined in this specification shall be exposed as well.

Release 1.03.0 17 OPC 10000-100: Devices

The relations between Nodes and ConformanceUnits are defined at the end of the tables defining
Nodes, one row per ConformanceUnit. The ConformanceUnit is reflected with a Category element in
the UANodeSet file (see OPC 10000-6).

The Nodes defined in a table are not only the Node defined on top level, for example an ObjectType,
but also the Nodes that are referenced, as long as they are not defined in other tables. For example,
the ObjectType TopologyElementType defines its InstanceDeclarations in the same table, so the
InstanceDeclarations are also bound to the ConformanceUnits defined for the table. The table even
indirectly defines additional InstanceDeclarations as components of the top-level
InstanceDeclarations, that are not directly visible in the table. The TypeDefinitions and DataTypes
used in the InstanceDeclarations, and the ReferenceTypes are defined in their individual tables and
not in the table itself, therefore they are not bound to the ConformanceUnits of the table.

3.3.1.2 Additional References

To provide information about additional References, the format as shown in Table 4 is used.

Table 4 – <some>Type Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

SourceBrowsePath is always
relative to the TypeDefinition.
Multiple elements are
defined as separate rows of
a nested table.

ReferenceType
name

True = forward
Reference.

TargetBrowsePath points to another Node, which
can be a well-known instance or a TypeDefinition.
You can use BrowsePaths here as well, which is
either relative to the TypeDefinition or absolute.

If absolute, the first entry needs to refer to a type or
well-known instance, uniquely identified within a
namespace by the BrowseName.

References can be to any other Node.

3.3.1.3 Additional sub-components

To provide information about sub-components, the format as shown in Table 5 is used.

Table 5 – <some>Type Additional Subcomponents

BrowsePath References NodeClass BrowseName DataType TypeDefinition Others

BrowsePath is always
relative to the
TypeDefinition. Multiple
elements are defined as
separate rows of a nested
table

NOTE Same as for Table 2

3.3.1.4 Additional Attribute values

The type definition table provides columns to specify the values for required Node Attributes for
InstanceDeclarations. To provide information about additional Attributes, the format as shown in
Table 6 is used.

OPC 10000-100: Devices 18 Release 1.03.0

Table 6 – <some>Type Attribute values for child Nodes

BrowsePath <Attribute name> Attribute

BrowsePath is
always relative to
the TypeDefinition.
Multiple elements
are defined as
separate rows of a
nested table

The values of attributes are converted to text by adapting the reversible JSON encoding rules

defined in OPC 10000-6.

If the JSON encoding of a value is a JSON string or a JSON number then that value is entered in the

value field. Double quotes are not included.

If the DataType includes a NamespaceIndex (QualifiedNames, NodeIds or ExpandedNodeIds) then

the notation used for BrowseNames is used.

If the value is an Enumeration the name of the enumeration value is entered.

If the value is a Structure then a sequence of name and value pairs is entered. Each pair is followed

by a newline. The name is followed by a colon. The names are the names of the fields in the

DataTypeDefinition.

If the value is an array of non-structures then a sequence of values is entered where each value is

followed by a newline.

If the value is an array of Structures or a Structure with fields that are arrays or with nested Structures
then the complete JSON array or JSON object is entered. Double quotes are not included.

There can be multiple columns to define more than one Attribute.

3.3.2 NodeIds and BrowseNames

3.3.2.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Annex A defines the
actual NodeIds.

The symbolic name of each Node defined in this document is its BrowseName, or, when it is part of
another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case
“part of” means that the whole has a HasProperty or HasComponent Reference to its part. Since all
Nodes not being part of another Node have a unique name in this document, the symbolic name is
unique.

The NamespaceUri for all NodeIds defined in this document is defined in Annex A. The
NamespaceIndex for this NamespaceUri is vendor-specific and depends on the position of the
NamespaceUri in the server namespace table.

Note that this document not only defines concrete Nodes, but also requires that some Nodes shall be
generated, for example one for each Session running on the Server. The NodeIds of those Nodes are
Server-specific, including the namespace. But the NamespaceIndex of those Nodes cannot be the
NamespaceIndex used for the Nodes defined in this document, because they are not defined by this
document but generated by the Server.

3.3.2.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this document is specified in the tables
defining the Nodes. The NamespaceUri for all BrowseNames defined in this document is defined in
Annex A.

For InstanceDeclarations of NodeClass Object and Variable that are placeholders
(OptionalPlaceholder and MandatoryPlaceholder ModellingRule), the BrowseName and the
DisplayName are enclosed in angle brackets (<>) as recommended in OPC 10000-3. If the
BrowseName is not defined by this document, a namespace index prefix is added to the BrowseName
(e.g., prefix '0' leading to ‘0:EngineeringUnits’ or prefix '2' leading to ‘2:DeviceRevision’) . This is
typically necessary if a Property of another specification is overwritten or used in the OPC UA ty pes
defined in this document. Clause 11.2 provides a list of namespaces and their indexes as used in this
document.

Release 1.03.0 19 OPC 10000-100: Devices

3.3.3 Common Attributes

3.3.3.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes
not marked as optional are mandatory and shall be provided by a Server. The following tables define
if the Attribute value is defined by this document or if it is server-specific.

For all Nodes specified in this document, the Attributes named in Table 7 shall be set as specified in
the table.

Table 7 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each Server shall provide the DisplayName identical to
the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated
names for other LocaleIds are server-specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.3.2.1.

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it
shall set all non-server-specific Attributes to not writable. For example, the Description Attribute
may be set to writable since a Server may provide a server-specific description for the Node.
The NodeId shall not be writable, because it is defined for each Node in this document.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask
Attribute apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is server-
specific and depends on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

3.3.3.2 Objects

For all Objects specified in this document, the Attributes named in Table 8 shall be set as specified
in the Table 8. The definitions for the Attributes can be found in OPC 10000-3.

Table 8 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is server-specific.

3.3.3.3 Variables

For all Variables specified in this document, the Attributes named in Table 9 shall be set as specified
in the table. The definitions for the Attributes can be found in OPC 10000-3.

OPC 10000-100: Devices 20 Release 1.03.0

Table 9 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a server-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is server-specific, for all other
Variables defined in this document, the access level shall allow reading; other settings are
server-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is server-specific. It is assumed that all
Variables can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is
server-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is server-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0,
meaning that read and write operations on an individual Variable are atomic, and arrays can
be partly written.

3.3.3.4 VariableTypes

For all VariableTypes specified in this document, the Attributes named in Table 10 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 10 – Common VariableType Attributes

Attributes Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

3.3.3.5 Methods

For all Methods specified in this document, the Attributes named in Table 11 shall be set as specified
in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 11 – Common Method Attributes

Attributes Value

Executable All Methods defined in this document shall be executable (Executable Attribute set to “True”),
unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is server-specific. It is assumed that all Methods can
be executed by at least one user.

4 Device model

4.1 General

Figure 1 depicts the main ObjectTypes of the base device model and their relationship. The drawing
is not intended to be complete. For the sake of simplicity only a f ew components and relations were
captured to give a rough idea of the overall structure.

Release 1.03.0 21 OPC 10000-100: Devices

Examples

OPC-UA

Device Model

OPC-UA

TopologyElementType

BaseObject Type

OPC UA Part 5

DeviceType

FolderType

OPC UA Part 5

Modular

Devices

RemoteIO

Configurable

ObjectType

BlockType

Block

Devices

FF or PROFI

Block Device

CNC

Robot

ComponentType

SoftwareType

FunctionalGroupType

Figure 1 – Device model overview

The boxes in this drawing show the ObjectTypes used in this specification as well as some elements
from other specifications that help understand some modelling decisions. The upper grey box shows
the OPC UA core ObjectTypes from which the TopologyElementType is derived. The grey box in the
second level shows the main ObjectTypes that the device model introduces. The components of those
ObjectTypes are illustrated only in an abstract way in this overall picture.

The grey box in the third level shows real-world examples as they will be used in products and plants.
In general, such subtypes are defined by other organizations.

The TopologyElementType is the base ObjectType for elements in a device topology. Its most
essential aspect is the functional grouping concept.

The ComponentType ObjectType provides a generic definition for a Device or parts of a Device where
parts include mechanics and/or software. DeviceType is commonly used to represent field Devices.

Modular Devices are introduced to support subdevices and Block Devices to support Blocks. Blocks
are typically used by field communication foundations as means to organise the functionality within a
Device. Specific types of Blocks will therefore be specified by these foundations.

The ConfigurableObjectType is used as a general means to create modular topology units. If needed
an instance of this type will be added to the head object of the modular unit. Modular Devices, for
example, will use this ObjectType to organise their modules. Block-oriented Devices use it to expose
and organise their Blocks.

4.2 Usage guidelines

Annex C describes guidelines for the usage of the device model as base for creating companion
specifications as well as guidelines on how to combine different aspects of the same device – defined
in different companion specifications - in one OPC UA application.

OPC 10000-100: Devices 22 Release 1.03.0

4.3 TopologyElementType

This ObjectType defines a generic model for elements in a device or component topology. Among
others, it introduces FunctionalGroups, ParameterSet, and MethodSet. Figure 2 shows the
TopologyElementType. It is formally defined in Table 12.

<some Object> or
ParameterSet

BaseObjectType

FolderType

FunctionalGroupType:
<GroupIdentifier>

TopologyElement

Type
FunctionalGroupType

<ParameterIdentifier>

<MethodIdentifier>

<some Object> or
MethodSet

Organizes

0..n
LockingServicesType:

Lock

Figure 2 – Components of the TopologyElementType

Table 12 – TopologyElementType definition

Attribute Value

BrowseName TopologyElementType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasSubtype ObjectType ComponentType Defined in 4.6

HasSubtype ObjectType BlockType Defined in 4.11

HasSubtype ObjectType ConnectionPointType Defined in 5.4

HasComponent Object <GroupIdentifier> FunctionalGroupType OptionalPlaceholder

HasComponent Object Identification FunctionalGroupType Optional

HasComponent Object Lock LockingServicesType Optional

HasComponent Object ParameterSet BaseObjectType Optional

HasComponent Object MethodSet BaseObjectType Optional

Conformance Units

DI Information Model

The TopologyElementType is abstract. There will be no instances of a TopologyElementType itself,
but there will be instances of subtypes of this type. In this specification, the term TopologyElement
generically refers to an instance of any ObjectType derived from the TopologyElementType.

Release 1.03.0 23 OPC 10000-100: Devices

FunctionalGroups are an essential aspect introduced by the TopologyElementType.
FunctionalGroups are used to structure Nodes like Properties, Parameters and Methods according to
their application such as configuration, diagnostics, asset management, condition monitoring and
others.

FunctionalGroups are specified in 4.4.

A FunctionalGroup called Identification can be used to organise identification information of this
TopologyElement (see 4.4.2). Identification information typically includes the Properties defined by
the VendorNameplate or TagNameplate Interfaces and additional application specific information.

TopologyElements may also support LockingServices (defined in 7).

Clients shall use the LockingServices if they need to make a set of changes (for example, several
Write operations and Method invocations) and where a consistent state is available only after all of
these changes have been performed. The main purpose of locking a TopologyElement is avoiding
concurrent modifications.

The lock applies to the complete TopologyElement (including all components such as blocks or
modules). Servers may expose a Lock Object on a component TopologyElement to allow independent
locking of components, if no lock is applied to the top-level TopologyElement.

If the Online/Offline model is supported (see 6.3), the lock always applies to both the online and the
offline version.

ParameterSet and MethodSet are defined as standard containers for systems that have a flat list of
Parameters or Methods with unique names. In such cases, the Parameters are components of the
“ParameterSet” as a flat list of Parameters. The Methods are kept the same way in the “MethodSet”.

The MethodSet is only available if it includes at least one Method.

The components of the TopologyElementType have additional references as defined in Table 13.

Table 13 – TopologyElementType Additional Subcomponents

Source Path References NodeClass BrowseName DataType TypeDefinition Others

ParameterSet HasComponent Variable <ParameterIdentifier> BaseDataType BaseDataVariableType MandatoryPlaceholder

4.4 FunctionalGroupType

4.4.1 Model

This subtype of the OPC UA FolderType is used to structure Nodes like Properties, Parameters and
Methods according to their application (e.g. maintenance, diagnostics, condition monitoring).
Organizes References should be used when the elements are components in other parts of the
TopologyElement that the FunctionalGroup belongs to. This includes Properties, Variables, and
Methods of the TopologyElement or in Objects that are components of the TopologyElement either
directly or via a subcomponent. The same Property, Parameter or Method might be useful in different
application scenarios and therefore referenced from more than one FunctionalGroup.

FunctionalGroups can be nested.

FunctionalGroups can directly be instantiated. In this case, the BrowseName of a FunctionalGroup
should indicate its purpose. A list of recommended BrowseNames is in 4.4.2.

Figure 3 shows the FunctionalGroupType components. It is formally defined in Table 14.

OPC 10000-100: Devices 24 Release 1.03.0

FunctionalGroupType

FunctionalGroupType:

<GroupIdentifier>

FolderType

Organizes
BaseDataVariableType:

<ParameterIdentifier>

<MethodIdentifier>

0..n

UIElementType:

UIElement
0..1

UIElementType

BaseVariableType

PropertyType:

<PropertyIdentifier>

Figure 3 – FunctionalGroupType

Table 14 – FunctionalGroupType definition

Attribute Value

BrowseName FunctionalGroupType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FolderType defined in OPC 10000-5

HasComponent Object <GroupIdentifier> FunctionalGroupType OptionalPlaceholder

HasComponent Variable UIElement BaseDataType UIElementType Optional

Conformance Units

DI Information Model

All BrowseNames for Nodes referenced by a FunctionalGroup with an Organizes Reference shall be
unique.

The Organizes References may be present only at the instance, not the type. Depending on the
current state of the TopologyElement the Server may decide to hide or unhide certain
FunctionalGroups or (part of) their References. If a FunctionalGroup may be hidden on an instance
the TypeDefinition shall use an appropriate ModellingRule like “Optional”.

If desirable, Nodes can be also children of FunctionalGroups. If such Nodes are defined, it is
recommended to define a subtype of the FunctionalGroupType.

UIElement is the user interface element for this FunctionalGroup. See 4.4.3 for the definition of
UIElements.

Examples in Annex B.1 illustrate the use of FunctionalGroups.

4.4.2 Recommended FunctionalGroup BrowseNames

Table 15 includes a list of FunctionalGroups with name and purpose. If Servers expose a
FunctionalGroup that corresponds to the described purpose, they should use the recommended
BrowseName with the Namespace of this specification.

Release 1.03.0 25 OPC 10000-100: Devices

Table 15 – Recommended FunctionalGroup BrowseNames

BrowseName Purpose

Configuration Parameters representing the configuration items of the TopologyElement. If the
CurrentWrite bit is set in the AccessLevel Attribute they can be modified by Clients.

Tuning Parameters and Methods to optimize the behavior of the TopologyElement.

Maintenance Parameters and Methods useful for maintenance operations.

Diagnostics Parameters and Methods for diagnostics.

Statistics Parameters and Methods for statistics.

Status Parameters which describe the general health of the TopologyElement. This can include
diagnostic Parameters.

Operational Parameters and Methods useful for during normal operation, like process data.

Identification The Properties of the VendorNameplate Interface, like Manufacturer, SerialNumber or
Properties of the TagNameplate will usually be sufficient as identification. If other
Parameters or even Methods are required, all elements needed shall be organised in a
FunctionalGroup called Identification. See Annex B.1 for an example.

4.4.3 UIElement Type

Servers can expose UIElements providing user interfaces in the context of their FunctionalGroup
container. Clients can load such a user interface and display it on the Client side. The hierarchy of
FunctionalGroups represents the tree of user interface elements.

The UIElementType is abstract and is mainly used as filter when browsing a FunctionalGroup. Only
subtypes can be used for instances. No concrete UIElements are defined in this specification. FDI
(Field Device Integration, see IEC 62769) specifies two concrete subtypes

• UIDs (UI Descriptions), descriptive user interface elements, and

• UIPs (UI Plug-Ins), programmed user interface elements.

 The UIElementType is specified in Table 16.

Table 16 – UIElementType definition

Attribute Value

BrowseName UIElementType

IsAbstract True

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseDataVariableType defined in OPC 10000-5.

Conformance Units

DI Information Model

The Value attribute of the UIElement contains the user interface element. Subtypes have to define
the DataType (e.g. XmlElement or ByteString).

OPC 10000-100: Devices 26 Release 1.03.0

4.5 Interfaces

4.5.1 Overview

This clause describes Interfaces with specific functionality that may be applied to multiple types at
arbitrary positions in the type hierarchy.

Interfaces are defined in OPC 10001-7.

Figure 4 shows the Interfaces described in this specification.

BaseInterfaceType

IVendorNameplateType ISupportInfoType IDeviceHealthTypeITagNameplateType

Figure 4 – Overview of Interfaces for Devices and Device components

4.5.2 VendorNameplate Interface

IVendorNameplateType includes Properties that are commonly used to describe a TopologyElement
from a manufacturer point of view. They can be used as part of the identification. The Values of these
Properties are typically provided by the component vendor.

The VendorNameplate Interface is illustrated in Figure 5 and formally defined in Table 17.

IVendorNameplateType

Manufacturer

Model

ProductCode

DeviceClass

HardwareRevision

DeviceRevision

DeviceManual

SoftwareRevision

SerialNumber

ManufacturerUri

ProductInstanceUri

RevisionCounter

Figure 5 – VendorNameplate Interface

Release 1.03.0 27 OPC 10000-100: Devices

Table 17 – IVendorNameplateType definition

Attribute Value

BrowseName IVendorNameplateType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

Product-specific Properties

HasProperty Variable Manufacturer LocalizedText PropertyType Optional

HasProperty Variable ManufacturerUri String PropertyType Optional

HasProperty Variable Model LocalizedText PropertyType Optional

HasProperty Variable ProductCode String PropertyType Optional

HasProperty Variable HardwareRevision String PropertyType Optional

HasProperty Variable SoftwareRevision String PropertyType Optional

HasProperty Variable DeviceRevision String PropertyType Optional

HasProperty Variable DeviceManual String PropertyType Optional

HasProperty Variable DeviceClass String PropertyType Optional

Product instance-specific Properties

HasProperty Variable SerialNumber String PropertyType Optional

HasProperty Variable ProductInstanceUri String PropertyType Optional

HasProperty Variable RevisionCounter Int32 PropertyType Optional

Conformance Units

DI Nameplate

Product type specific Properties:

Manufacturer provides the name of the company that manufactured the item this Interface is applied
to. ManufacturerUri provides a unique identifier for this company. This identifier should be a fully
qualified domain name; however, it may be a GUID or similar construct that ensures global
uniqueness.

Model provides the name of the product.

ProductCode provides a unique combination of numbers and letters used to identify the product. It
may be the order information displayed on type shields or in ERP systems.

HardwareRevision provides the revision level of the hardware.

SoftwareRevision provides the version or revision level of the software component, the
software/firmware of a hardware component, or the software/firmware of the Device.

DeviceRevision provides the overall revision level of a hardware component or the Device. As an
example, this Property can be used in ERP systems together with the ProductCode Property.

DeviceManual allows specifying an address of the user manual. It may be a pathname in the file
system or a URL (Web address).

DeviceClass indicates in which domain or for what purpose a certain item for which the Interface is
applied is used. Examples are “ProgrammableController”, “RemoteIO”, and “TemperatureSensor”.
This standard does not predefine any DeviceClass names. More specific standards that utilize this
Interface will likely introduce such classifications (e.g. IEC 62769, OPC 30000, or OPC 10020).

Product instance specific Properties:

SerialNumber is a unique production number provided by the manufacturer. This is often stamped on
the outside of a physical component and may be used for traceability and warranty purposes.

ProductInstanceUri is a globally unique resource identifier provided by the manufacturer. This is often
stamped on the outside of a physical component and may be used for traceability and warranty

OPC 10000-100: Devices 28 Release 1.03.0

purposes. The maximum length is 255 characters. The recommended syntax of the
ProductInstanceUri is: <ManufacturerUri>/<any string> where <any string> is unique among all
instances using the same ManufacturerUri.

Examples: “some-company.com/5ff40f78-9210-494f-8206-c2c082f0609c”, “some-company.com/snr-
16273849” or “some-company.com/model-xyz/snr-16273849”.

RevisionCounter is an incremental counter indicating the number of times the configuration data has
been modified. An example would be a temperature sensor where the change of the unit would
increment the RevisionCounter but a change of the measurement value would not affect the
RevisionCounter.

Companion specifications may specify additional semantics for the contents of these Properties.

Table 18 specifies the mapping of these Properties to the International Registration Data Identifiers
(IRDI) defined in ISO/ICE 11179-6. They should be used if a Server wants to expose a dictionary
reference as defined in OPC 10001-5.

Table 18 – VendorNameplate Mapping to IRDIs

Property IRDI

Manufacturer 0112/2///61987#ABA565#007

ManufacturerUri 0112/2///61987#ABN591#001

Model 0112/2///61987#ABA567#007

SerialNumber 0112/2///61987#ABA951#007

HardwareRevision 0112/2///61987#ABA926#006

SoftwareRevision 0112/2///61987#ABA601#006

DeviceRevision -

RevisionCounter 0112/2///61987#ABN603#001

ProductCode 0112/2///61987#ABA300#006

ProductInstanceUri 0112/2///61987#ABN590#001

DeviceManual -

DeviceClass 0112/2///61987#ABA566 - type of product

4.5.3 TagNameplate Interface

ITagNameplateType includes Properties that are commonly used to describe a TopologyElement from
a user point of view.

The TagNameplate Interface is illustrated in Figure 6 and formally defined in Table 19.

ITagNameplateType

AssetId

ComponentName

Figure 6 – TagNameplate Interface

https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/e6672c0fb2ccae34c1258518003c4868?OpenDocument&Highlight=0,ABA565
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/ccfaceef7e2ba8fac1258518003c4abe?OpenDocument&Highlight=0,ABN591
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/46f40a30b7b6e058c1258518003c486a?OpenDocument&Highlight=0,ABA567
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/0db563040219c4c2c1258518003c4891?OpenDocument&Highlight=0,ABA951
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/c99e095e33c14ff5c1258518003c488b?OpenDocument&Highlight=0,ABA926
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/ebf0976beee9baf0c1258518003c4876?OpenDocument&Highlight=0,ABA601
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/a895485728559c35c1258518003fd7c5?OpenDocument&Highlight=0,ABN603
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/004c997b8a08b19dc1258518003c483e?OpenDocument&Highlight=0,ABA300
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/ebc479e989fcaf28c1258518003c4abd?OpenDocument&Highlight=0,ABN590
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/5f261d1a0bf49635c125825e001de72c?OpenDocument&Highlight=0,aba566

Release 1.03.0 29 OPC 10000-100: Devices

Table 19 – ITagNameplateType definition

Attribute Value

BrowseName ITagNameplateType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

HasProperty Variable AssetId String PropertyType Optional

HasProperty Variable ComponentName LocalizedText PropertyType Optional

Conformance Units

DI TagNameplate

AssetId is a user writable alphanumeric character sequence uniquely identifying a component. The
ID is provided by the integrator or user of the device. It contains typically an identifier in a branch,
use case or user specific naming scheme. This could be for example a reference to an electric
scheme.

ComponentName is a user writable name provided by the integrator or user of the component.

Table 20 specifies the mapping of these Properties to the International Registration Data Identifiers
(IRDI) defined in ISO/ICE 11179-6. They should be used if a Server wants to expose a dictionary
reference as defined in OPC 10001-5.

Table 20 – TagNameplate Mapping to IRDIs

Property IRDI

AssetId 0112/2///61987#ABA038 - identification code of device

ComponentName 0112/2///61987#ABA251 - designation of device

4.5.4 DeviceHealth Interface

The DeviceHealth Interface includes Properties and Alarms that are commonly used to expose the
health status of a Device. It is illustrated in Figure 7 and formally defined in Table 21.

IDeviceHealthType

DeviceHealth

FolderType
DeviceHealthAlarms

Figure 7 – DeviceHealth Interface

Table 21 – IDeviceHealthType definition

Attribute Value

BrowseName IDeviceHealthType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

HasComponent Variable DeviceHealth DeviceHealth
Enumeration

BaseDataVariableType Optional

HasComponent Object DeviceHealthAlarms FolderType Optional

Conformance Units

DI DeviceHealth

https://cdd.iec.ch/cdd/iec61987/cdddev.nsf/PropertiesAllVersions/0112-2---61987%23ABA038?opendocument
https://cdd.iec.ch/cdd/iec61987/cdddev.nsf/PropertiesAllVersions/0112-2---61987%23ABA251?opendocument

OPC 10000-100: Devices 30 Release 1.03.0

DeviceHealth indicates the status as defined by NAMUR Recommendation NE107. Clients can read
or monitor this Variable to determine the device condition.

The DeviceHealthEnumeration DataType is an enumeration that defines the device condition. Its values
are defined in Table 22.

Table 22 – DeviceHealthEnumeration values

Name Value Description

NORMAL 0 The Device functions normally.

FAILURE 1 Malfunction of the Device or any of its peripherals. Typically caused device-internal or is
process related.

CHECK_FUNCTION 2 Functional checks are currently performed. Examples:

Change of configuration, local operation, and substitute value entered.

OFF_SPEC 3 "Off-spec" means that the Device is operating outside its specified range (e.g. measuring or
temperature range) or that internal diagnoses indicate deviations from measured or set
values due to internal problems in the Device or process characteristics.

MAINTENANCE_REQ
UIRED

4 Although the output signal is valid, the wear reserve is nearly exhausted or a function will
soon be restricted due to operational conditions e.g. build-up of deposits

DeviceHealthAlarms shall be used for instances of the DeviceHealth Alarm Types specified in 4.12.

DeviceHealthAlarms may also be used for other Alarm instances that relate to the health condition of
the Device.

4.5.5 SupportInfo Interface

The SupportInfo Interface defines a number of additional data that a commonly exposed for Devices
and their components. These include mainly images, documents, or protocol-specific data. The
various types of information is organised into different folders. Each information element is
represented by a read-only Variable. The information can be retrieved by reading the Variable value.

Figure 8 Illustrates the SupportInfo Interface. It is formally defined in Table 23.

ISupportInfoType

DeviceTypeImage

0..n

Documentation

0..n

ProtocolSupport

0..n

ImageSet

0..n

BaseVariableType:

<ImageIdentifier>

BaseVariableType:

<DocumentIdentifier>

BaseVariableType:

<FileIdentifier>

BaseVariableType:

<ImageIdentifier>

Figure 8 –Support information Interface

Release 1.03.0 31 OPC 10000-100: Devices

Table 23 – ISupportInfoType definition

Attribute Value

BrowseName ISupportInfoType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

HasComponent Object DeviceTypeImage FolderType Optional

HasComponent Object Documentation FolderType Optional

HasComponent Object ProtocolSupport FolderType Optional

HasComponent Object ImageSet FolderType Optional

Conformance Units

DI DeviceSupportInfo

Clients need to be aware that the contents that these Variables represent may be large. Reading
large values with a single Read operation may not be possible due to configured limits in either the
Client or the Server stack. The default maximum size for an array of bytes is 1 megabyte. It is
recommended that Clients use the IndexRange in the OPC UA Read Service (see OPC 10000-4) to
read these Variables in chunks, for example, one-megabyte chunks. It is up to the Client whether it
starts without an index and repeats with an IndexRange only after an error or whether it always uses
an IndexRange.

The components of the ISupportInfoType have additional references as defined in Table 24.

Table 24 – ISupportInfoType Additional Subcomponents

Source Path References Node
Class

BrowseName Data
Type

TypeDefinition Others

DeviceTypeImage HasComponent Variable <ImageIdentifier> Image BaseDataVariableType MP

Documentation HasComponent Variable <DocumentIdentifier> ByteString BaseDataVariableType MP

ProtocolSupport HasComponent Variable <ProtocolSupportIdentifier> ByteString BaseDataVariableType MP

ImageSet HasComponent Variable <ImageIdentifier> Image BaseDataVariableType MP

Pictures can be exposed as Variables organised in the DeviceTypeImage folder. There may be
multiple images of different resolutions. Each image is a separate Variable.

All images are transferred as a ByteString. The DataType of the Variable specifies the image format.
OPC UA defines BMP, GIF, JPG and PNG (see OPC 10000-3).

Documents are exposed as Variables organized in the Documentation folder. In most cases they will
represent a product manual, which can exist as a set of individual documents.

All documents are transferred as a ByteString. The BrowseName of each Variable will consist of the
filename including the extension that can be used to identify the document type. Typical extensions
are “.pdf” or “.txt”.

Protocol support files are exposed as Variables organised in the ProtocolSupport folder. They may
represent various types of information as defined by a protocol. Examples are a GSD or a CFF file.

All protocol support files are transferred as a ByteString. The BrowseName of each Variable shall
consist of the complete filename including the extension that can be used to identify the type of
information.

Images that are used within UIElements are exposed as separate Variables rather than embedding
them in the element. All image Variables will be aggregated by the ImageSet folder. The UIElement
shall specify an image by its name that is also the BrowseName of the image Variable. Clients can
cache images so they don't have to be transferred more than once.

OPC 10000-100: Devices 32 Release 1.03.0

The DataType of the Variable specifies the image format. OPC UA defines BMP, GIF, JPG and PNG
(see OPC 10000-3).

4.6 ComponentType

Compared to DeviceType the ComponentType is more universal. It includes the same components
but does not mandate any Properties. This makes it usable for representation of a Device or parts of
a Device. Parts include both mechanical and software parts.

The ComponentType applies the VendorNameplate and the TagNameplate Interface. Figure 9
Illustrates the ComponentType. It is formally defined in Table 25.

BaseObjectType

ComponentType

TopologyElement
Type

Interfaces

IVendorNameplateType

ITagNameplateTypeHasInterface

Figure 9 – ComponentType

Table 25 – ComponentType definition

Attribute Value

BrowseName ComponentType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TopologyElementType defined in 4.3.

HasSubtype ObjectType DeviceType Defined in 4.7.

HasSubtype ObjectType SoftwareType Defined in 4.8.

HasInterface ObjectType IVendorNameplateType Defined in 4.5.2.

HasInterface ObjectType ITagNameplateType Defined in 4.5.3.

Applied from IVendorNameplateType

HasProperty Variable Manufacturer LocalizedText PropertyType Optional

HasProperty Variable ManufacturerUri String PropertyType Optional

HasProperty Variable Model LocalizedText PropertyType Optional

HasProperty Variable ProductCode String PropertyType Optional

HasProperty Variable HardwareRevision String PropertyType Optional

HasProperty Variable SoftwareRevision String PropertyType Optional

HasProperty Variable DeviceRevision String PropertyType Optional

HasProperty Variable DeviceManual String PropertyType Optional

HasProperty Variable DeviceClass String PropertyType Optional

HasProperty Variable SerialNumber String PropertyType Optional

HasProperty Variable ProductInstanceUri String PropertyType Optional

HasProperty Variable RevisionCounter Int32 PropertyType Optional

Applied from ITagNameplateType

HasProperty Variable AssetId String PropertyType Optional

HasProperty Variable ComponentName LocalizedText PropertyType Optional

Conformance Units

DI Information Model

Release 1.03.0 33 OPC 10000-100: Devices

The ComponentType is abstract. DeviceType and SoftwareType are subtypes of ComponentType.
There will be no instances of a ComponentType itself, only of concrete subtypes.

IVendorNameplateType and its members are described in 4.5.2.

ITagNameplateType and its members are described in 4.5.3.

4.7 DeviceType

This ObjectType can be used to define the structure of a Device. Figure 10 shows the DeviceType. It
is formally defined in Table 26.

TopologyElementType

ComponentType
Interfaces

ISupportInfoType

IDeviceHealthType

DeviceType

Manufacturer

Model

SerialNumber

HardwareRevision

DeviceRevision

SoftwareRevision

ConnectionPointType
<CPIdentifier>

From ComponentType
But changed to mandatory for
backward compatibility

DeviceHealth

DeviceTypeImage
Documentation

ProtocolSupport
ImageSet

From SupportInfo Interface

From DeviceHealth Interface

HasI nterface

Figure 10 – DeviceType

OPC 10000-100: Devices 34 Release 1.03.0

Table 26 – DeviceType definition

Attribute Value

BrowseName DeviceType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ComponentType defined in 4.6

HasInterface ObjectType ISupportInfoType Defined in 4.5.3.

HasInterface ObjectType IDeviceHealthType Defined in 4.5.3.

HasComponent Object <CPIdentifier> ConnectionPointType OptionalPlaceholder

HasProperty Variable SerialNumber String PropertyType Mandatory

HasProperty Variable RevisionCounter Int32 PropertyType Mandatory

HasProperty Variable Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable Model LocalizedText PropertyType Mandatory

HasProperty Variable DeviceManual String PropertyType Mandatory

HasProperty Variable DeviceRevision String PropertyType Mandatory

HasProperty Variable SoftwareRevision String PropertyType Mandatory

HasProperty Variable HardwareRevision String PropertyType Mandatory

HasProperty Variable DeviceClass String PropertyType Optional

HasProperty Variable ManufacturerUri String PropertyType Optional

HasProperty Variable ProductCode String PropertyType Optional

HasProperty Variable ProductInstanceUri String PropertyType Optional

Applied from IDeviceHealthType

HasComponent Variable DeviceHealth DeviceHealthEn
umeration

BaseDataVariableType Optional

HasComponent Object DeviceHealthAlarms FolderType Optional

Applied from ISupportInfoType

HasComponent Object DeviceTypeImage FolderType Optional

HasComponent Object Documentation FolderType Optional

HasComponent Object ProtocolSupport FolderType Optional

HasComponent Object ImageSet FolderType Optional

Conformance Units

DI DeviceType

DeviceType is a subtype of ComponentType which means it inherits all InstanceDeclarations.

The DeviceType ObjectType is abstract. There will be no instances of a DeviceType itself, only of
concrete subtypes.

ConnectionPoints (see 5.4) represent the interface (interface card) of a DeviceType instance to a
Network. Multiple ConnectionPoints may exist if multiple protocols and/or multiple Communication
Profiles are supported.

The Interfaces and their members are described in 4.5. Some of the Properties inherited from the
ComponentType are declared mandatory for backward compatibility.

Although mandatory, some of the Properties may not be supported for certain types of Devices. In
this case vendors shall provide the following defaults:

• Properties with DataType String: empty string

• Properties with DataType LocalizedText: empty text field

• RevisionCounter Property: - 1

Clients can ignore the Properties when they have these defaults.

When Properties are not supported, Servers should initialize the corresponding Property declaration
on the DeviceType with the default value. Relevant Browse Service requests can then return a
Reference to this Property on the type definition. That way, no extra Nodes are needed.

Release 1.03.0 35 OPC 10000-100: Devices

4.8 SoftwareType

This ObjectType can be used for software modules of a Device or a part of a Device. SoftwareType
is a concrete subtype of ComponentType and can be used directly.

Figure 11 Illustrates the SoftwareType. It is formally defined in Table 27.

TopologyElementType

SoftwareType

ComponentType

Figure 11 – SoftwareType

Table 27 – SoftwareType definition

Attribute Value

BrowseName SoftwareType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ComponentType defined in 4.6.

HasProperty Variable Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable Model LocalizedText PropertyType Mandatory

HasProperty Variable SoftwareRevision String PropertyType Mandatory

Conformance Units

DI Software Component

SoftwareType is a subtype of ComponentType which means it inherits all InstanceDeclarations.

The Properties Manufacturer, Model, and SoftwareRevision inherited from ComponentType are
declared mandatory for SoftwareType instances.

4.9 DeviceSet entry point

The DeviceSet Object is the starting point to locate Devices. It shall either directly or indirectly
reference all instances of a subtype of ComponentType with a Hierarchical Reference. For complex
Devices that are composed of various components that are also Devices, only the root instance shall
be referenced from the DeviceSet Object. The components of such complex Devices shall be
locatable by following Hierarchical References from the root instance. An example is the Modular
Device defined in 9.4 and also illustrated in Figure 12.

Examples:

• UA Server represents a monolithic or modular Device: DeviceSet only contains one
instance

• UA Server represents a host system that has access to a number of Devices that it
manages: DeviceSet contains several instances that the host provides access to.

OPC 10000-100: Devices 36 Release 1.03.0

• UA Server represents a gateway Device that acts as representative for Devices that it has
access to: DeviceSet contains the gateway Device instance and instances for the Devices
that it represents.

• UA Server represents a robotic system consisting of mechanics and controls. DeviceSet
only contains the instance for the root of the robotic system. The mechanics and controls
are represented by ComponentType instances which are organised as sub-components
of the root instance.

Figure 12 shows the AddressSpace organisation with this standard entry point and examples.

Root

FolderType:

Objects
Organizes

<field device>

<complex device>

BaseObjectType:

DeviceSet

ComponentType

DeviceType

 .

<modular device>

CPU

CP

 .

SubDevices

Component_2

Component_1

Component_2a

SoftwareType

 .

Figure 12 – Standard entry point for Devices

The DeviceSet Node is formally defined in Table 28.

Table 28 – DeviceSet definition

Attribute Value

BrowseName DeviceSet

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType BaseObjectType

Conformance Units

DI DeviceSet

4.10 DeviceFeatures entry point

The DeviceFeatures Object can be used to organise other functional entities that are related to the
Devices referenced by the DeviceSet. Companion specifications may standardize such instances and
their BrowseNames. Figure 13 shows the AddressSpace organisation with this standard entry point.

Release 1.03.0 37 OPC 10000-100: Devices

Root

FolderType:

Objects
Organizes

BaseObjectType:

DeviceSet

BaseObjectType:

DeviceFeatures

Figure 13 – Standard entry point for DeviceFeatures

The DeviceFeatures Node is formally defined in Table 29.

Table 29 – DeviceFeatures definition

Attribute Value

BrowseName DeviceFeatures

References NodeClass BrowseName TypeDefinition

OrganizedBy by the DeviceSet Object defined in 4.9

HasTypeDefinition ObjectType BaseObjectType

Conformance Units

DI DeviceSet

4.11 BlockType

This ObjectType defines the structure of a Block Object. Figure 14 depicts the BlockType hierarchy.
It is formally defined in Table 30.

BlockType

FFBlockType PROFIBlockType Other BlockType

TopologyElementType

Figure 14 – BlockType hierarchy

FFBlockType and PROFIBlockType are examples. They are not further defined in this specification.
It is expected that industry groups will standardize general purpose BlockTypes.

OPC 10000-100: Devices 38 Release 1.03.0

Table 30 – BlockType definition

Attribute Value

BrowseName BlockType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TopologyElementType defined in 4.2

HasProperty Variable RevisionCounter Int32 PropertyType Optional

HasProperty Variable ActualMode LocalizedText PropertyType Optional

HasProperty Variable PermittedMode LocalizedText[] PropertyType Optional

HasProperty Variable NormalMode LocalizedText[] PropertyType Optional

HasProperty Variable TargetMode LocalizedText[] PropertyType Optional

Conformance Units

DI Blocks

BlockType is a subtype of TopologyElementType and inherits the elements for Parameters, Methods
and FunctionalGroups.

The BlockType is abstract. There will be no instances of a BlockType itself, but there will be instances
of subtypes of this Type. In this specification, the term Block generically refers to an instance of any
subtype of the BlockType.

The RevisionCounter is an incremental counter indicating the number of times the static data within
the Block has been modified. A value of -1 indicates that no revision information is available.

The following Properties refer to the Block Mode (e.g. “Manual”, “Out of Service”).

The ActualMode Property reflects the current mode of operation.

The PermittedMode defines the modes of operation that are allowed for the Block based on
application requirements.

The NormalMode is the mode the Block should be set to during normal operating conditions.
Depending on the Block configuration, multiple modes may exist.

The TargetMode indicates the mode of operation that is desired for the Block. Depending on the Block
configuration, multiple modes may exist.

4.12 DeviceHealth Alarm Types

4.12.1 General

The DeviceHealth Property defined in 4.5.4 provides a basic way to expose the health state of a
device based on NAMUR NE 107.

This section defines AlarmTypes that can be used to indicate an abnormal device condition together
with diagnostic information text as defined by NAMUR NE 107 as well as additional manufacturer
specific information.

Figure 15 informally describes the AlarmTypes for DeviceHealth.

Release 1.03.0 39 OPC 10000-100: Devices

Defined in [UA Part 9]
InstrumentDiagnostic

AlarmType

DeviceHealthDiagnostic

AlarmType

Failure

AlarmType
CheckFunction

AlarmType
OffSpec

AlarmType
MaintenanceRequired

AlarmType

Figure 15 – Device Health Alarm type hierarchy

4.12.2 DeviceHealthDiagnosticAlarmType

The DeviceHealthDiagnosticAlarmType is a specialization of the InstrumentDiagnosticAlarmType
intended to represent abnormal device conditions as defined by NAMUR NE 107. This type can be
used in filters for monitored items. Only subtypes of this type will be used in actual implementations.
The Alarm becomes active when the device condition is abnormal. It is formally defined in Table 31.

Table 31 – DeviceHealthDiagnosticAlarmType definition

Attribute Value

BrowseName DeviceHealthDiagnosticAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the InstrumentDiagnosticAlarmType defined in OPC 10000-9.

HasSubtype ObjectType FailureAlarmType Defined in clause 4.12.3

HasSubtype ObjectType CheckFunctionAlarmType Defined in clause 4.12.4

HasSubtype ObjectType OffSpecAlarmType Defined in clause 4.12.5

HasSubtype ObjectType MaintenanceRequiredAlarmType Defined in clause 4.12.6

Conformance Units

DI HealthDiagnosticsAlarm

Conditions of subtypes of DeviceHealthDiagnosticAlarmType become active when the device enters
the corresponding abnormal state.

The Message field in the Event notification shall be used for additional information associated with
the health status (e.g. the possible cause of the abnormal state and suggested actions to return to
normal).

A Device may be in more than one abnormal state at a time in which case multiple Conditions will be
active.

4.12.3 FailureAlarmType

The FailureAlarmType is formally defined in Table 32. For description of the FAILURE state see Table
22.

OPC 10000-100: Devices 40 Release 1.03.0

Table 32 – FailureAlarmType definition

Attribute Value

BrowseName FailureAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 4.12.2.

Conformance Units

DI HealthDiagnosticsAlarm

4.12.4 CheckFunctionAlarmType

The CheckFunctionAlarmType is formally defined in Table 33. For description of the
CHECK_FUNCTION state see Table 22.

Table 33 – CheckFunctionAlarmType definition

Attribute Value

BrowseName CheckFunctionAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 4.12.2.

Conformance Units

DI HealthDiagnosticsAlarm

4.12.5 OffSpecAlarmType

The OffSpecAlarmType is formally defined in Table 34. For description of the OFF_SPEC state see
Table 22.

Table 34 – OffSpecAlarmType definition

Attribute Value

BrowseName OffSpecAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 4.12.2.

Conformance Units

DI HealthDiagnosticsAlarm

4.12.6 MaintenanceRequiredAlarmType

The MaintenanceRequiredAlarmType is formally defined in Table 35. For description of the
MAINTENANCE_REQUIRED state see Table 22.

Table 35 – MaintenanceRequiredAlarmType definition

Attribute Value

BrowseName MaintenanceRequiredAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 4.12.2.

Conformance Units

DI HealthDiagnosticsAlarm

Release 1.03.0 41 OPC 10000-100: Devices

5 Device communication model

5.1 General

Clause 5 introduces References, the ProtocolType, and basic TopologyElementTypes needed to
create a communication topology. The types for this model are illustrated in Figure 16.

Examples

Device

Communication

 Model

OPC-UA

TopologyElementType

BaseObject Type

OPC UA Part 5

HART

FF
PROFI

ProtocolType

UA TCP<some fieldbus cp>

UA_TCP_ConnectionType

ConnectionPointType
NetworkType

Figure 16 – Device communication model overview

A ProtocolType ObjectType represents a specific communication protocol (e.g. FieldBus)
implemented by a certain TopologyElement. Examples are shown in Figure 18.

The ConnectionPointType represents the logical interface of a Device to a Network.

A Network is the logical representation of wired and wireless technologies.

OPC 10000-100: Devices 42 Release 1.03.0

Figure 17 provides an overall example.

profinet_io

ModularDevice:

Station 1

Module: CPU

Module: CP

PN Network

PN CP 1

Objects

DeviceSet

Organizes

NetworkSet

FI B101

CP_B1

CP_B2

FI B102

Entry Points

Device

Network

ConnectionPoint

ConnectsTo Reference

profinet_io

profinet_io

profinet_io

Figure 17 – Example of a communication topology

5.2 ProtocolType

The ProtocolType ObjectType and its subtypes are used to specify a specific communication (e.g.
FieldBus) protocol that is supported by a Device (respectively by its ConnectionPoint) or Network.
The BrowseName of each instance of a ProtocolType shall define the Communication Profile (see
Figure 18).

Release 1.03.0 43 OPC 10000-100: Devices

Figure 18 shows the ProtocolType including some specific types and instances that represent
Communication Profiles of that type. It is formally defined in Table 36.

PROFINETType

BaseObjectType

HARTBusType

ProtocolType

PROFIBUSType

FFBusType

other

hart_fsk

Instance

Space
TypeSpace

hart_ip

foundation_hse

profinet_io

OPCUAType

UA_HTTPS

UA_TCP

Figure 18 – Example of a ProtocolType hierarchy with instances
that represent specific communication profiles

Table 36 – ProtocolType definition

Attribute Value

BrowseName ProtocolType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

Conformance Units

DI Network

DI Protocol

OPC 10000-100: Devices 44 Release 1.03.0

5.3 Network

A Network is the logical representation of wired and wireless technologies and represents the
communication means for Devices that are connected to it. A Network instance is qualified by its
Communication Profile components.

Figure 19 shows the type hierarchy and the NetworkType components. It is formally defined in Table
37.

ConnectionPointType:

<CP Identifier>

BaseObjectType

NetworkType 0..n

ProtocolType

Connects

To

LockingServicesType:

Lock

0..1
ProtocolType

<ProfileId>

HART

FF PROFI

Figure 19 – NetworkType

Table 37 – NetworkType definition

Attribute Value

BrowseName NetworkType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Object <ProfileIdentifier> ProtocolType MandatoryPlaceholder

ConnectsTo Object <CPIdentifier> ConnectionPointType OptionalPlaceholder

HasComponent Object Lock LockingServicesType Optional

Conformance Units

DI Network

The <ProfileIdentifier> specifies the Protocol and Communication Profile that this Network is used
for.

<CPIdentifier> (referenced by a ConnectsTo Reference) references the ConnectionPoint(s) that have
been configured for this Network. All ConnectionPoints shall adhere to the same Protocol as the
Network. See also Figure 22 for a usage example. They represent the protocol-specific access points
for the connected Devices.

In addition, Networks may also support LockingServices (defined in 7).

Clients shall use the LockingServices if they need to make a set of changes (for example, several
Write operations and Method invocations) and where a consistent state is available only aft er all of
these changes have been performed. The main purpose of locking a Network is avoiding concurrent
topology changes.

The lock on a Network applies to the Network, all connected TopologyElements and their components.
If any of the connected TopologyElements provides access to a sub-ordinate Network (like a
gateway), the sub-ordinate Network and its connected TopologyElements are locked as well.

Release 1.03.0 45 OPC 10000-100: Devices

If InitLock is requested for a Network, it will be rejected if any of the Devices connected to this Network
or any sub-ordinate Network including their connected Devices is already locked.

 If the Online/Offline model is supported (see 6.3), the lock always applies to both the online and the
offline version.

5.4 ConnectionPoint

This ObjectType represents the logical interface of a Device to a Network. A specific subtype shall
be defined for each protocol. Figure 20 shows the ConnectionPointType including some specific
types.

PROFINET
ConnectionPoint

TopologyElementType

HARTBus
ConnectionPoint

ConnectionPointType

PROFIBUS
ConnectionPoint

FFBus
ConnectionPoint

other

Figure 20 – Example of ConnectionPointType hierarchy

A Device can have more than one such interface to the same or to different Networks. Different
interfaces usually exist for different protocols. Figure 21 shows the ConnectionPointType
components. It is formally defined in Table 38.

BaseObjectType

ConnectionPoint

Type

Topology Element

Type
ProtocolType

HART

FF PROFI

NetworkType:

<Identifier>
ConnectsTo

ProtocolType

<ProfileId>

FunctionalGroupType:

NetworkAddress

Figure 21 – ConnectionPointType

OPC 10000-100: Devices 46 Release 1.03.0

Table 38 – ConnectionPointType definition

Attribute Value

BrowseName ConnectionPointType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TopologyElementType defined in 4.2.

HasComponent Object NetworkAddress FunctionalGroupType Mandatory

HasComponent Object <ProfileIdentifier> ProtocolType MandatoryPlaceholder

ConnectsTo Object <NetworkIdentifier> NetworkType OptionalPlaceholder

Conformance Units

DI ConnectionPoint

ConnectionPoints are components of a Device, represented by a subtype of ComponentType. To
allow navigation from a Network to the connected Devices, the ConnectionPoints shall have the
inverse Reference (ComponentOf) to the Device.

ConnectionPoints have Properties and other components that they inherit from the
TopologyElementType.

The NetworkAddress FunctionalGroup includes all Parameters needed to specify the protocol-specific
address information of the connected Device. These Parameters may be components of the
NetworkAddress FunctionalGroup, of the ParameterSet, or another Object.

<ProfileIdentifier> identifies the Communication Profile that this ConnectionPoint supports.
ProtocolType and Communication Profile are defined in 5.2. It implies that this ConnectionPoint can be
used to connect Networks and Devices of the same Communication Profile.

ConnectionPoints are between a Network and a Device. The location in the topology is configured by
means of the ConnectsTo ReferenceType. Figure 22 illustrates some usage models.

DeviceType

FI B101

Network_B CP_B1

CP_B2

DeviceType

FI B102

<some>DeviceType:

Master

CP_Master

ConnectionPoint

Type

ConnectsToParent

ConnectsTo

ConnectsTo

Figure 22 – ConnectionPoint usage

5.5 ConnectsTo and ConnectsToParent ReferenceTypes

The ConnectsTo ReferenceType is a concrete ReferenceType used to indicate that source and target
Node have a topological connection. It is both hierarchical and symmetric, because this is natural for
this Reference. The ConnectsTo Reference exists between a Network and the connected Devices (or
their ConnectionPoint, respectively). Browsing a Network returns the connected Devices; browsing
from a Device, one can follow the ConnectsTo Reference from the Device’s ConnectionPoint to the
Network.

The ConnectsToParent ReferenceType is a concrete ReferenceType used to define the parent (i.e.
the communication Device) of a Network. It is a subtype of The ConnectsTo ReferenceType.

Release 1.03.0 47 OPC 10000-100: Devices

The two ReferenceTypes are illustrated in Figure 23.

References

HierarchicalReferences

ConnectsTo

ConnectsToParent

Figure 23 – Type Hierarchy for ConnectsTo and ConnectsToParent References

The representation in the AddressSpace is specified in Table 39 and Table 40.

Table 39 – ConnectsTo ReferenceType

Attributes Value

BrowseName ConnectsTo

Symmetric True

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HierarchicalReferences ReferenceType defined in OPC 10000-5.

Conformance Units

DI ConnectsTo

Table 40 – ConnectsToParent ReferenceType

Attributes Value

BrowseName ConnectsToParent

Symmetric True

IsAbstract False

References NodeClass BrowseName Comment

Subtype of ConnectsTo ReferenceType

Conformance Units

DI ConnectsTo

Figure 24 illustrates how this Reference can be used to express topological relationships and parental
relationships. In this example two Devices are connected; the module DPcomm is the communication
Device for the Network.

OPC 10000-100: Devices 48 Release 1.03.0

NetworkType:

DP Network

FieldDeviceType:

DP Device

ConnectionPoint:

DP CP 2

ModularDevice:

Station 2

Module:

DPcomm
ConnectionPoint:

DP CP 1

ConnectsToParent

ConnectsTo

Figure 24 – Example with ConnectsTo and ConnectsToParent References

5.6 NetworkSet Object

All Networks shall be components of the NetworkSet Object.

The NetworkSet Node is formally defined in Table 41.

Table 41 – NetworkSet definition

Attribute Value

BrowseName NetworkSet

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType BaseObjectType

Conformance Units

DI NetworkSet

6 Device integration host model

6.1 General

A Device Integration Host is a Server that manages integration of multiple Devices in an automation
system and provides Clients with access to information about Devices regardless of where the
information is stored, for example, in the Device itself or in a data store. The Device communication
is internal to the host and may be based on field-specific protocols.

The Information Model specifies the entities that can be accessed in a Device Integration Host. This
standard does not define how these elements are instantiated. The host may use network scanning
services, the OPC UA Node Management Services or proprietary configuration tools.

One of the main tasks of the Information Model is to reflect the topology of the automation system.
Therefore it represents the Devices of the automation system as well as the connecting
communication networks including their properties, relationships, and the operations that can be
performed on them.

Figure 25 and Figure 26 illustrate an example configuration and the configured topology as it will
appear in the Server AddressSpace (details left out).

Release 1.03.0 49 OPC 10000-100: Devices

Figure 25 – Example of an automation system

The PC in Figure 25 represents the Server (the Device Integration Host). The Server communicates
with Devices connected to Network “A” via native communication, and it communicates with Devices
connected to Network “B” via nested communication.

“A”

CP

 Device 2

PC
1

Network ”A”

Network ”B”

CPU CPU

Station 1 Station 2

OPC 10000-100: Devices 50 Release 1.03.0

Device Topology

Network “B”

Network “B”

Device

B_CP 2

Station 1

CPU

CP

Network “A”

A_CP 1

Network “A” Card

FolderType:

Objects

Station 2

CPU

B_CP 1

DeviceSet

Organizes

ConnectsTo

ConnectsTo

ConnectsTo

B_ CP 0

ConnectsToParent

A_CP 0

ConnectsToParent

NetworkSet

Entry Points

Device

Network

ConnectionPoint

Figure 26 – Example of a Device topology

Coloured boxes are used to recognize the various types of information.

Entry points assure common behaviour across different implementations:

• DeviceTopology: Starting node for the topology configuration. See 6.2.

• DeviceSet: See 4.9.

• NetworkSet: See 5.6.

6.2 DeviceTopology Object

The Device Topology reflects the communication topology of the Devices. It includes Devices and the
Networks. The entry point DeviceTopology is the starting point within the AddressSpace and is used
to organise the communication Devices for the top level Networks that provide access to all instances
that constitute the Device Topology ((sub-)networks, devices and communication elements).

The DeviceTopology node is formally defined in Table 42.

Release 1.03.0 51 OPC 10000-100: Devices

Table 42 – DeviceTopology definition

Attribute Value

BrowseName DeviceTopology

References NodeClass BrowseName DataType TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType BaseObjectType Defined in OPC 10000-5.

HasProperty Variable OnlineAccess Boolean PropertyType

Conformance Units

DI DeviceTopology

OnlineAccess provides a hint of whether the Server is currently able to communicate to Devices in
the topology. “False” means that no communication is available.

6.3 Online/Offline

6.3.1 General

Management of the Device Topology is a configuration task, i.e., the elements in the topology
(Devices, Networks, and Connection Points) are usually configured “offline” and – at a later time –
will be validated against their physical representative in a real network.

To support explicit access to either the online or the offline information, each element may be
represented by two instances that are schematically identical, i.e., there exist component Objects,
FunctionalGroups, and so on. A Reference connects online and offline representations and allows to
navigate between them.

This is illustrated in Figure 27.

SomeType_A:

Station 1

Module: CPU

Module: CP

NetworkType:
PN Network

PN CP 1

DeviceSet

ConnectsTo

NetworkSet

SomeType_A:

Online

Online

Parameters

Offline

Parameters

IsOnline

ConnectionPoint

Figure 27 – Online component for access to Device data

If Online/Offline is supported, the main (leading) instance represents the offline information. Its
HasTypeDefinition Reference points to the concrete configured or identified ObjectType. All
Parameters of this instance represent offline data points and reading or writing them will typically
result in configuration database access. Properties will also represent offline information.

A Device can be engineered through the offline instance without online access.

OPC 10000-100: Devices 52 Release 1.03.0

The online data for a topology element are kept in an associated Object with the BrowseName Online
as illustrated in Figure 27. The Online Object is referenced via an IsOnline Reference. It is always of
the same ObjectType as the offline instance.

The online Parameter Nodes reflect values in a physical element (typically a Device), i.e., reading or
writing to a Parameter value will then result in a communication request to this element. When
elements are not connected, reading or writing to the online Parameter will return a proper status
code (Bad_NotConnected).

The transfer of information (Parameters) between offline nodes and the physical device in correct
order is supported through TransferToDevice, TransferFromDevice together with
FetchTransferResultData. These Methods are exposed by means of an AddIn instance of
TransferServicesType described in 6.4.2.

Both offline and online are created and driven by the same ObjectType. According to their usability,
certain components (Parameters, Methods, and FunctionalGroups) may exist only in either the online
or the offline element.

A Parameter in the offline ParameterSet and its corresponding counterpart in the online ParameterSet
shall have the same BrowseName. Their NodeIds need to be different, though, since this is the
identifier passed by the Client in read/write requests.

The Identification FunctionalGroup organises Parameters that help identify a topology element.
Clients can compare the values of these Parameters in the online and the offline instance to detect
mismatches between the configuration data and the currently connected element.

6.3.2 IsOnline ReferenceType

The IsOnline ReferenceType is a concrete ReferenceType used to bind the offline representation of
a Device to the online representation. The source and target Node of References of this type shall
be an instance of the same subtype of a ComponentType. Each Device shall be the source of at most
one Reference of type IsOnline.

The IsOnline ReferenceType is illustrated in Figure 28. Its representation in the AddressSpace is
specified in Table 43.

References

HierarchicalReferences

HasChild

Aggregates

IsOnline

Figure 28 – Type hierarchy for IsOnline Reference

Release 1.03.0 53 OPC 10000-100: Devices

Table 43 – IsOnline ReferenceType

Attributes Value

BrowseName IsOnline

InverseName OnlineOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of Aggregates ReferenceType defined in OPC 10000-5.

Conformance Units

DI Offline

6.4 Offline-Online data transfer

6.4.1 Definition

The "Online-offline data transfer" is based on the AddIn model specified in OPC 10001-7.

The transfer of information (Parameters) between offline nodes and the physical device is supported
through OPC UA Methods. These Methods are built on device specific knowledge and functional ity.

The transfer is usually terminated if an error occurs for any of the Parameters. No automatic retry will
be conducted by the Server. However, whenever possible after a failure, the Server should bring the
Device back into a functional state. The Client has to retry by calling the transfer Method again.

The transfer may involve thousands of Parameters so that it can take a long time (up to minutes),
and with a result that may be too large for a single response. Therefore, the initiation of the transfer
and the collection of result data are performed with separate Methods.

The Device shall have been locked by the Client prior to invoking these Methods (see 7).

6.4.2 TransferServices Type

The TransferServicesType provides the Methods needed to transfer data to and from the online
Device. Figure 29 shows the TransferServicesType definition. It is formally defined in Table 44.

BaseObjectType

TransferServicesType

TransferFrom

Device

TransferToDevice

FetchTransfer

ResultData

Figure 29 – TransferServicesType

OPC 10000-100: Devices 54 Release 1.03.0

Table 44 – TransferServicesType definition

Attribute Value

BrowseName TransferServicesType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Method TransferToDevice Mandatory

HasComponent Method TransferFromDevice Mandatory

HasComponent Method FetchTransferResultData Mandatory

Conformance Units

DI Offline

The StatusCode Bad_MethodInvalid shall be returned from the Call Service for Objects where locking
is not supported. Bad_UserAccessDenied shall be returned if the Client User does not have the
permission to call the Methods.

6.4.3 TransferServices Object

The support of TransferServices for an Object is declared by aggregating an instance of the
TransferServicesType as illustrated in Figure 30.

MD002

Instance

Space
TypeSpace

XYZ-DeviceTypeTransferServices

Type

TransferFrom

Device

TransferToDevice

Transfer

FetchTransfer

ResultData

Figure 30 – TransferServices

This Object is used as container for the TransferServices Methods and shall have the BrowseName
Transfer. HasComponent is used to reference from a Device to its “TransferServices” Object.

The TransferServiceType and each instance may share the same Methods.

6.4.4 TransferToDevice Method

TransferToDevice initiates the transfer of offline configured data (Parameters) to the physical device.
This Method has no input arguments. Which Parameters are transferred is based on Server-internal
knowledge.

The Server shall ensure integrity of the data before starting the transfer. Once the transfer has been
started successfully, the Method returns immediately with InitTransferStatus = 0. Any status

Release 1.03.0 55 OPC 10000-100: Devices

information regarding the transfer itself has to be collected using the FetchTransferResultData
Method.

The Server will reset any cached value for Nodes in the online instance representing Parameters
affected by the transfer. That way the cache will be re-populated from the Device next time they are
requested.

The signature of this Method is specified below. Table 45 and Table 46 specify the arguments and
AddressSpace representation, respectively.

Signature

TransferToDevice(

 [out] Int32 TransferID,

 [out] Int32 InitTransferStatus);

Table 45 – TransferToDevice Method arguments

Argument Description

TransferID Transfer Identifier. This ID has to be used when calling FetchTransferResultData.

InitTransferStatus Specifies if the transfer has been initiated.

0 – OK

-1 – E_NotLocked – the Device is not locked by the calling Client

-2 – E_NotOnline – the Device is not online / cannot be accessed

Table 46 – TransferToDevice Method AddressSpace definition

Attribute Value

BrowseName TransferToDevice

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

6.4.5 TransferFromDevice Method

TransferFromDevice initiates the transfer of values from the physical device to corresponding
Parameters in the offline representation of the Device. This Method has no input arguments. Which
Parameters are transferred is based on Server-internal knowledge.

Once the transfer has been started successfully, the Method returns immediately with
InitTransferStatus = 0. Any status information regarding the transfer itself has to be collected using
the FetchTransferResultData Method.

The signature of this Method is specified below. Table 47 and Table 48 specify the arguments and
AddressSpace representation, respectively.

Signature

TransferFromDevice(

 [out] Int32 TransferID,

 [out] Int32 InitTransferStatus);

OPC 10000-100: Devices 56 Release 1.03.0

Table 47 – TransferFromDevice Method arguments

Argument Description

TransferID Transfer Identifier. This ID has to be used when calling FetchTransferResultData.

InitTransferStatus Specifies if the transfer has been initiated.

0 – OK

-1 – E_NotLocked – the Device is not locked by the calling Client

-2 – E_NotOnline – the Device is not online / cannot be accessed

Table 48 – TransferFromDevice Method AddressSpace definition

Attribute Value

BrowseName TransferFromDevice

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

6.4.6 FetchTransferResultData Method

The TransferToDevice and TransferFromDevice Methods execute asynchronously after sending a
response to the Client. Execution status and execution results are collected during execution and can
be retrieved using the FetchTransferResultData Method. The TransferID is used as identifier to
retrieve the data.

The Client is assumed to fetch the result data in a timely manner. However, because of the
asynchronous execution and the possibility of data loss due to transmission errors to the Client, the
Server shall wait some time (some minutes) before deleting data that have not been acknowledged.
This should be even beyond Session termination, i.e. Clients that have to re-establish a Session after
an error may try to retrieve missing result data.

Result data will be deleted with each new transfer request for the same Device.

FetchTransferResultData is used to request the execution status and a set of result data. If called
before the transfer is finished it will return only partial data. The amount of data returned may be
further limited if it would be too large. “Too large” in this context means that the Server is not able to
return a larger response or that the number of results to return exceeds the maximum number of
results that was specified by the Client when calling this Method.

Each result returned to the Client is assigned a sequence number. The Client acknowledges that it
received the result by passing the sequence number in the new call to this Method. The Server can
delete the acknowledged result and will return the next result set with a new sequence number.

Clients shall not call the Method before the previous one returned. If it returns with an error (e.g.
Bad_Timeout), the Client can call the FetchTransferResultData with a sequence number 0. In this
case the Server will resend the last result set.

The Server will return Bad_NothingToDo in the Method-specific StatusCode of the Call Service if the
transfer is finished and no further result data are available.

The signature of this Method is specified below. Table 49 and Table 50 specify the arguments and
AddressSpace representation, respectively.

Signature

FetchTransferResultData(

 [in] Int32 TransferID,

 [in] Int32 SequenceNumber,

 [in] Int32 MaxParameterResultsToReturn,

 [in] Boolean OmitGoodResults,

 [out] FetchResultType FetchResultData);

Release 1.03.0 57 OPC 10000-100: Devices

Table 49 –FetchTransferResultData Method arguments

Argument Description

TransferID Transfer Identifier returned from TransferToDevice or TransferFromDevice.

SequenceNumber The sequence number being acknowledged. The Server may delete the result set
with this sequence number.

“0” is used in the first call after initialising a transfer and also if the previous call of
FetchTransferResultData failed.

MaxParameterResultsToReturn The number of Parameters in TransferResult.ParameterDefs that the Client wants
the Server to return in the response. The Server is allowed to further limit the
response, but shall not exceed this limit.

A value of 0 indicates that the Client is imposing no limitation.

OmitGoodResults If TRUE, the Server will omit data for Parameters which have been correctly
transferred. Note that this causes all good results to be released.

FetchResultData Two subtypes are possible:

• TransferResultError Type is returned if the transfer failed completely

• TransferResultData Type is returned if the transfer was performed. Status
information is returned for each transferred Parameter.

Table 50 – FetchTransferResultData Method AddressSpace definition

Attribute Value

BrowseName FetchTransferResultData

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The FetchResultDataType is an abstract type. It is the base DataType for concrete result types of the
FetchTransferResultData. Its elements are defined in Table 51.

Table 51 – FetchResultDataType structure

Attribute Value

BrowseName FetchResultDataType

IsAbstract True

Subtype of Structure defined in OPC 10000-3

References NodeClass BrowseName DataType

HasSubtype DataType TransferResultErrorDataType Defined in Table 52.

HasSubtype DataType TransferResultDataDataType Defined in Table 53.

The TransferResultErrorDataType is a subtype of the FetchResultDataType and represents an error
result. It is defined in Table 52.

Table 52 – TransferResultError DataType structure

Name Type Description

TransferResultError

DataType

Structure This structure is returned in case of errors. No result data are returned. Further
calls with the same TransferID are not possible.

 status Int32 -1 – Invalid TransferID: The Id is unknown. Possible reason: all results have been
fetched or the result may have been deleted.

-2 – Transfer aborted: The transfer operation was aborted; no results exist.

-3 – DeviceError: An error in the device or the communication to the Device
occurred. “diagnostics” may contain device- or protocol-specific error information.

-4 – UnknownFailure: The transfer failed. “diagnostics” may contain Device- or
Protocol-specific error information.

 diagnostics DiagnosticInfo Diagnostic information. This parameter is empty if diagnostics information was not
requested in the request header or if no diagnostic information was encountered in
processing of the request. The DiagnosticInfo type is defined in OPC 10000-4.

OPC 10000-100: Devices 58 Release 1.03.0

The TransferResultData DataType is a subtype of the FetchResultDataType and includes parameter-
results from the transfer operation. It is defined in Table 53.

Table 53 – TransferResultData DataType structure

Name Type Description

TransferResultData

DataType

Structure A set of results from the transfer operation.

 sequenceNumber Int32 The sequence number of this result set.

 endOfResults Boolean TRUE – all result data have been fetched. Additional FetchTransferResultData
calls with the same TransferID will return a FetchTransferError with
status=InvalidTransferID.

FALSE – further result data shall be expected.

 parameterDefs ParameterResult

DataType []

Specific value for each Parameter that has been transferred. If OmitGoodResults is
TRUE, parameterDefs will only contain Parameters which have not been
transferred correctly.

 NodePath QualifiedName[] List of BrowseNames that represent the relative path from the Device Object to the
Parameter following hierarchical references. The Client may use these names for
TranslateBrowsePathsToNodeIds to retrieve the Parameter NodeId for the online
or the offline representation.

 statusCode StatusCode OPC UA StatusCode as defined in OPC 10000-4 and in OPC 10000-8.

 diagnostics DiagnosticInfo Diagnostic information. This parameter is empty if diagnostics information was not
requested in the request header or if no diagnostic information was encountered in
processing of the request. The DiagnosticInfo type is defined in OPC 10000-4.

7 Locking model

7.1 Overview

The following Locking feature is based on the AddIn model specified in OPC 10001-7.

Locking is the means to avoid concurrent modifications to an Object by restricting access to the entity
(often a Client but could also be an internal process) that initiated the lock . LockingServices are
typically used to make a set of changes (for example, several Write operations and Method
invocations) and where a consistent state is available only after all of these changes have been
performed.

The context of the lock is specific to the ObjectType where it is applied to (subsequently named "lock-
owner"). These specifics need to be described as part of this lock-owner ObjectType. See for example
the section on lock in the TopologyElement (clause 4.3) and the Network (clause 5.3).

By default, a lock allows other Applications to view (navigate/read) the locked element. However,
Servers may choose to implement an exclusive locking where other Applications have no access at
all (e.g. in cases where even read operations require certain settings to Variables).

Release 1.03.0 59 OPC 10000-100: Devices

7.2 LockingServices Type

The LockingServicesType provides Methods to manage the lock and Properties with status
information. This section describes the common semantic. The lock-owner ObjectTypes will often
extend these semantics.

Figure 31 shows the LockingServicesType definition. It is formally defined in Table 54.

LockingServicesType

BaseObjectType

ExitLock

InitLockLocked

LockingClient

LockingUser

Remaining
LockTime

RenewLock

BreakLock

0:DefaultInstanceBrowseName
Value = Lock

Figure 31 – LockingServicesType

Table 54 – LockingServicesType definition

Attribute Value

BrowseName LockingServicesType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Method InitLock Defined in 7.5 Mandatory

HasComponent Method RenewLock Defined in 7.7 Mandatory

HasComponent Method ExitLock Defined in 7.6 Mandatory

HasComponent Method BreakLock Defined in 7.8 Mandatory

HasProperty Variable 0:DefaultInstanceBrowseName QualifiedN
ame

PropertyType

HasProperty Variable Locked Boolean PropertyType Mandatory

HasProperty Variable LockingClient String PropertyType Mandatory

HasProperty Variable LockingUser String PropertyType Mandatory

HasProperty Variable RemainingLockTime Duration PropertyType Mandatory

Conformance Units

DI Locking

The StatusCode Bad_MethodInvalid shall be returned from the Call Service for Objects where locking
is not supported. Bad_UserAccessDenied shall be returned if the Client User does not have the
permission to call the Methods.

The DefaultInstanceBrowseName Property – defined in OPC 10000-3 – is used to specify the
recommended BrowseName for instances of the LockingServicesType. Its Value is defined in Table
55.

OPC 10000-100: Devices 60 Release 1.03.0

Table 55 – LockingServicesType Additional Variable Attributes

Source Path Value

0:DefaultInstanceBrowseName Lock

A lock is typically initiated by a Client calling the InitLock Method and removed by calling the ExitLock
Method. The lock-owner ObjectTypes can define mechanisms that automatically initiate and remove
a lock.

A lock request will be rejected if operations are active that will be prevented by the lock.

The lock is automatically removed if the MaxInactiveLockTime has elapsed (see 7.4). The lock is also
removed when the Session ends during inactivity. This is typically the case when the connection to
the Client breaks and the Session times out.

The following LockingServices Properties offer lock-status information.

Locked when True indicates that this element has been locked by some Application and that no or
just limited access is available for other Applications.

When the lock is initiated by a Client, LockingClient contains the ApplicationUri of the Client as
provided in the CreateSession Service call (see OPC 10000-4). Other options to get this information
can be specified on the lock-owner ObjectType.

LockingUser contains information to identify the user. When the lock is initiated by a Client it is
obtained directly or indirectly from the UserIdentityToken passed by the Client in the ActivateSession
Service call (see OPC 10000-4). Other options to get this information can be specified on the lock-
owner ObjectType.

RemainingLockTime denotes the remaining time in milliseconds after which the lock will automatically
be removed by the Server. This time is based upon MaxInactiveLockTime (see 7.4).

7.3 LockingServices Object

The support of LockingServices for an Object is declared by aggregating an instance of the
LockingServicesType as illustrated in Figure 32.

MD002

Instance

Space
TypeSpace

XYZ-TopologyElement

Type
LockingServices

Type

ExitLock

InitLock

Locked

Locked

Lock

LockingClient

LockingUser

Remaining

LockTime

LockingClient

LockingUser

Remaining

LockTime

RenewLock

BreakLock

Figure 32 – LockingServices

Release 1.03.0 61 OPC 10000-100: Devices

This Object is used as container for the LockingServices Methods and Properties and should have
the BrowseName Lock. It shall be referenced using HasComponent or HasAddIn from the lock-owner
Object (for example, a Device).

The LockingServiceType and each instance may share the same Methods. All Properties are distinct.

7.4 MaxInactiveLockTime Property

The MaxInactiveLockTime Property shall be added to the ServerCapabilities Object (see OPC 10000-
5).It contains a Server-specific period of inactivity in milliseconds after which the Server will revoke
the lock.

The Server will initiate a timer based on this time as part of processing the InitLock request and after
the last activity caused by the initiator of the lock is finished. Calling the RenewLock Method shall
reset the timer.

Inactivity for MaxInactiveLockTime will trigger a timeout. As a result the Server will release the lock.

The MaxInactiveLockTime Property is formally defined in Table 56.

Table 56 – MaxInactiveLockTime Property definition

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable MaxInactiveLockTime Duration PropertyType Mandatory

7.5 InitLock Method

InitLock restricts access for other UA Applications.

A call of this Method for an element that is already locked will be rejected..

While locked, requests from other Applications to modify the locked element (e.g., writing to
Variables, or invoking Methods) will be rejected. However, requests to read or navigate will typically
work. Servers may choose to implement an exclusive locking where other Applications have no
access at all.

The lock is removed when ExitLock is called. It is automatically removed when the
MaxInactiveLockTime elapsed (see 7.4).

The signature of this Method is specified below. Table 57 and Table 58 specify the arguments and
AddressSpace representation, respectively.

Signature

InitLock(

 [in] String Context,

 [out] Int32 InitLockStatus);

Table 57 – InitLock Method Arguments

Argument Description

Context A string used to provide context information about the current activity going on in the
Client.

InitLockStatus 0 – OK

-1 – E_AlreadyLocked – the element is already locked

-2 – E_Invalid – the element cannot be locked

OPC 10000-100: Devices 62 Release 1.03.0

Table 58 – InitLock Method AddressSpace definition

Attribute Value

BrowseName InitLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.6 ExitLock Method

ExitLock removes the lock. This Method may only be called from the same Application which initiated
the lock.

The signature of this Method is specified below. Table 59 and Table 60 specify the arguments and
AddressSpace representation, respectively.

Signature

ExitLock(

 [out] Int32 ExitLockStatus);

Table 59 – ExitLock Method Arguments

Argument Description

ExitLockStatus 0 – OK

-1 – E_NotLocked – the Object is not locked

Table 60 – ExitLock Method AddressSpace definition

Attribute Value

BrowseName ExitLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.7 RenewLock Method

The lock timer is automatically renewed whenever the initiator of the lock issues a request for the
locked element or while Nodes of the locked element are subscribed to. RenewLock is used to reset
the lock timer to the value of the MaxInactiveLockTime Property and prevent the Server from
automatically removing the lock. This Method may only be called from the same Application which
initiated the lock.

The signature of this Method is specified below. Table 61 and Table 62 specify the arguments and
AddressSpace representation, respectively.

Signature

RenewLock(

 [out] Int32 RenewLockStatus);

Table 61 – RenewLock Method Arguments

Argument Description

RenewLockStatus 0 – OK

-1 – E_NotLocked – the Object is not locked

Release 1.03.0 63 OPC 10000-100: Devices

Table 62 – RenewLock Method AddressSpace definition

Attribute Value

BrowseName RenewLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.8 BreakLock Method

BreakLock allows a Client (with sufficiently high user rights) to break the lock. This Method will
typically be available only to users with administrator privileges. BreakLock should be used with care
as the locked element may be in an inconsistent state.

The signature of this Method is specified below. Table 63 and Table 64 specify the arguments and
AddressSpace representation, respectively.

Signature

BreakLock(

 [out] Int32 BreakLockStatus);

Table 63 – BreakLock Method Arguments

Argument Description

BreakLockStatus 0 – OK

-1 – E_NotLocked – the Object is not locked

Table 64 – BreakLock Method AddressSpace definition

Attribute Value

BrowseName BreakLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

OPC 10000-100: Devices 64 Release 1.03.0

8 Software update model

8.1 Overview

The software update model defined in this clause is used to manage the software of a Device. This
can include the installation of new software, the update of existing software, the update of a firmware
and a limited backup and restore of parameters and firmware as far as it is needed for the update.
The specific steps to perform the actual insta llation are only known by the device. They are not
exposed by this Information Model.

The use cases that were considered for this Information Model are described in 8.2. Several options
that can be combined for a concrete SoftwareUpdateType instance are described in 8.3. Valid
combinations of these options are defined in the profiles section. 8.3.5 describes how to implement
a Software Update Client that has to deal with several options. The types for this model are formally
defined in 8.4 and 8.5.

8.2 Use Cases

The software update model is used in several scenarios. The following subsections list common use
cases that are considered by this model. There are also some use cases that that are not covered. A
future version might add features for them.

8.2.1 Supported Use Cases

8.2.1.1 Software Update of constraint devices

The model is intended to be applicable across devices with varying resources and constraints. This
is achieved e.g. by various options for the server implementation (see 8.3.4).

8.2.1.2 Update Devices from different manufacturers with a Software Update Client

Allow devices to be updated via Software Update Client software. To address the domain specific
constraints this can be a domain-specific client software (In the manufacturing domain a machine
often needs to be stopped before the update, whereas in process domain e.g. a redundant device
needs to be activated). 8.3.5 describes the workflow of a Software Update Client.

8.2.1.3 Update of underlying Devices (e.g. IO Link Devices)

Software update is applicable for any device or software component that is exposed in the Server
address space. This can also represent other devices that are just connected to the device hosting
the Server. This can be done using the AddIns described in 8.3.11.

8.2.1.4 Coordinated update of multiple Devices in a machine / plant

When updating several connected devices in a machine or plant the devices might first need to be
set into a special “state” where they wait for the start of the update and don’t start operating again.
After that the updates can be installed in an order defined by the Client (e.g. sensors first, switches
last). Finding the best sequence is task of the client implementation or the operator and not in scope
of this specification.

The “state” is defined depending on the type of machine / plant. For factory automation this normally
means that production and the software on the devices is stopped. For a sensor in process automation
this could mean that a replacement value is configured in the controller for the value measuered in
the device. If a controller needs to be updated in process automation it often needs to be the passive
part of a redundant set of controllers.

A Client also needs to consider the proper sequence when updating the devices. For example, if parts
of the network become unreachable due to the update of an infrastructure device.

Release 1.03.0 65 OPC 10000-100: Devices

A server can support the prepare for update option (8.3.4.2) to enable this use case.

8.2.1.5 Partial update without stopping the software

For some updates it is not necessary to stop the software. This could be the case if parts of a software
are replaced that are currently not used or i f new software is installed. Whether an update can be
installed like this is only known by the device and depends on the concrete update file. To support
this, the Client can read the UpdateBehavior (8.5.2) to determine if stopping is required.

8.2.1.6 Scheduled update

In some cases, it is required to prepare the update and then plan the start for a later time or under
some strategic conditions. In this case the software is transferred to the device first. Later (e.g. at the
end of the shift or on the weekend) and under specific conditions (e.g. nothing to produce) the update
Client can start the update. In this scenario the time and the conditions are known and checked by
the update Client, not by the Server, so for the use of the software update options an established
Client-Server connection is required. The scheduling is a task of the Client and not described in this
specification.

8.2.1.7 Central distribution for later installation

It should be possible to distribute the software to several devices without actual installation . In this
scenario a central tool can determine the required updates and distribute them to all devices. The
actual installation can then be started later by a different Client. This is realized by separating the
transfer (8.4.1.2) from the installation (8.3.4.6).

8.2.1.8 Update of individual parts of a software

Depending on the device there should be several options to partition a software. For example, it
should be possible to structure the firmware of a device in a way that each part can be updated
individually. Additionally, software update should be applicable to the firmware of dev ices and to the
software of components. This is realized with the AddIn model (8.3.11).

If a Software Package becomes very large and only parts of it need to be replaced, there is a need
to maintain the individual files of the Software Package independently on the Server. When all desired
files are on the Server, the installation can be started for the set of files. Here the FileSystem option
(8.3.4.5) can be used.

8.2.1.9 Reliable update of Devices that are out of reach

Especially for devices that are not easy to access for a manual reset or replacement, the updat e shall
always result in a working OPC UA Client – Server connection. This requires an additional
confirmation by the update Client, so that the Server can do an automatic rollback if the
communication cannot be established again after a reboot. A Server can support this with the
confirmation option (8.3.4.9).

8.2.1.10 Backup and restore parameters that are lost during the update

Very constraint devices may lose parameters during the update. The update Client needs to be aware
of that and should be able to backup the parameters in advance. After the update - but before the
device starts operating again - the parameters need to be restored. This can be supported using the
Parameters object (8.3.4.8).

8.2.1.11 Selecting the correct version to install

An update client needs to select the correct version of the Software Package to install. The rules
behind this decision can be complex and can include e.g. dependency checks or a release process
of the distributor and / or operator of the machine. The Server can expose information about the
device (8.3.11) and information about the Current Version (8.4.3.2) which is then used by the Client
to select an update.

OPC 10000-100: Devices 66 Release 1.03.0

Selecting the new version needs to be done by the user with the help of the update client before
transfer and installation. Therfore it is not in scope of this specification.

8.2.1.12 Installation of additional software

Some devices can run several software applications. The Information Model should allow the Client
to transfer and install additional software applications, if the Server supports this. This can be done
using the FileSystem based Loading (8.3.4.5).

8.2.2 Unsupported Use Cases

8.2.2.1 Finding devices that provide the SoftwareUpdate AddIn within a Server

If an OPC UA Server abstracts several devices that support the SoftwareUpdate AddIn, the
Informaiton Model shall provide a defined entry point to find all these devices in an efficient manner.

This Use Case is expected to be addressed in other working groups or in a future v ersion of this
specification.

A possible solution would be to create a SWUpdate FolderType below DeviceFeatues as it is
described in the DI specification. This folder could reference all SoftwareUpdate AddIns

8.2.2.2 Explicit Restarting the device

In most update scenarios the device can restart automatically during or after the installation. However,
there can be situations where it is required to explicitly restart the device by the Client.

This use case is not supported by the current version of this specification. Since this feature might
be useful outside of software update it should be realized somewhere outside this specification.

8.2.2.3 Pulling software from an external source

Sometimes it is desirabe to store all files needed for software update at a central place and have the
devices get the files on their own time and pace. In this case the Client would tell the Server only the
location of the file. Then the actual transfer is initiated by the device.

There is no specific support for this use case in this specification. However, it is possible to use the
described mechanisms to transfer a file that does not contain the actual software but the location of
the external source(s) where the software file(s) should be pulled from.

8.3 General

8.3.1 System perspective

Besides specific Clients for specific devices, this specification also describes Software Update Clients
that can update devices of various vendors (for additional details see 8.3.5).

For devices in operational use it is often necessary to consider the operation state of the software /
machine / plant before performing the update (e.g. stop and start the operation). For this case a
specialized Client can use additional domain-specific Information Models as part of the update
process.

An update can be performed manually by a user for a single device. However, if a lot of devices need
to be maintained on a regular basis an automatic update is desirable. For this scenario the Information
Model also allows the transfer of software to the devices without starting the update process. For the
installation a Client could control several devices simultaneously.

Release 1.03.0 67 OPC 10000-100: Devices

8.3.2 Types of software

This common model can describe several types of software that may need to be updated or installed.
This can be the firmware or operating system of a device but also be one or more software
applications that need to be updated. Configuration and parameters can be maintained as software
as well. Besides the update, it is also desired to install additional software. The Server can expose
all software as a single component or separate it into several smaller components as it is illustrated
in Figure 33.

ExampleDeviceType

ExampleDevice

SoftwareUpdateType

SoftwareUpdate
HasAddIn

SoftwareType

FPGA

SoftwareUpdateType

SoftwareUpdate
HasAddIn

SoftwareType

Application

SoftwareUpdateType

SoftwareUpdate
HasAddIn

SoftwareType

Configuration

SoftwareUpdateType

SoftwareUpdate
HasAddIn

Figure 33 – Example with a device and several software components

8.3.3 Types of Devices

Devices may have different requirements regarding a firmware update, dep ending on their type and
available resource (e.g. memory).

Memory constraint devices like sensors often cannot store an additional firmware. These devices
install the new firmware while it is transferred to the device. In this specification this is called Direct-
Loading (see 8.3.4.3).

Devices with more memory can store a new firmware in a separate memory without installing it which
is referred as Cached-Loading in this specification (see 8.3.4.4). In this case the installation is
separated from the file transfer and can be done later or with a different Client.

Some devices have two memory partitions for the operating system. One a ctive partition that is used
in the boot process and a second alternative fallback partition. These devices install the firmware into
the fallback partition and then perform a restart after swapping the active partition. This has an
advantage if the device detects an issue with the new firmware: The change can easily be reverted
to the old version by switching the partitions again (with another reboot).

Constraint devices like sensors typically do not support a real file system. Devices with more memory
often have a file system which can be used to store files like firmware, parameters and backups. This
Information Model provides update mechanisms for both types of devices (see 8.3.4.5 for FileSystem
based Loading).

8.3.4 Options for the Server

8.3.4.1 Overview

Updating software or firmware of a machine or plant is a complex task and different devices have
different requirements to the update or installation of software. To support this, the
SoftwareUpdateType provides several options where a vendor can select the parts that are necessary
for the software update.

All these options are exposed as optional References of the SoftwareUpdateType. A Server can
choose which options it wants to support (The Profiles section describes valid combinations of
options).

OPC 10000-100: Devices 68 Release 1.03.0

This way the Server can choose between Direct-Loading, Cached-Loading or FileSystem based
Loading and it may use additional optional features like manual power cycle, parameter backup /
restore or confirmation.

A Software Update Client needs to check which options are exposed by the Server and how the
Server behaves during the update (a Software Update Client is described in 8.3.5).

8.3.4.2 Prepare for update option

There are situations where it is preferable to prepare the device explicitly before the installation and
resume operation explicitly after the installation. The PrepareForUpdateStateMachine, which is
described in 8.4.8 can be used for this task.

This can be the case, when several devices of a machine should be updated at once. All devices
have to be prepared first to ensure that all are waiting for an update. After that they can be updated
by the Client. At the end after all individual updates are complete the devices can resume operation.

Or a device requires the behavior to enter a safe state (e.g. reaching a safe area) to be able to update
the software.

If the installation comprises several steps (e.g. backup parameters, install firmware, restore
parameters). The steps can be encapsulated by the Prepare and Resume Methods to ensure
consistency between all the steps.

8.3.4.3 Direct-Loading option

The Direct-Loading option provides a model where the installation is part of the transfer. To support
the Direct-Loading model the Server has to provide the Current Version. This includes parameters
like the version number, a release date or patch identifiers. With this information the Client can decide
if an update is required and which version to install.

The Software Package is transferred using the TemporaryFileTransferType (OPC 10000-5). This
includes the installation itself so that the installation option is not used.

For Direct-Loading the DirectLoadingType is used, which is described in 8.4.4.

8.3.4.4 Cached-Loading option

The Cached-Loading option provides a model where the transfer of the Software Package and its
installation are separate steps. To support the Cached-Loading model the Server has to provide the
Current Version and the Pending Version. Optionally the Fallback Version can be supported.

With the Current Version the Client can decice if an update is required and which version to transfer.
With the Pending Version the Client can ensure to install the desired version. With the Fallback
Version the Client can install an alternative version.

Software Packages are transferred using the TemporaryFileTransferType (OPC 10000-5). The new
software may be transferred in the background without stopping the device. The actual installation of
the software can be done later using the installation option.

For Cached-Loading the CachedLoadingType is used, which is described in 8.4.5.

8.3.4.5 FileSystem option

The Cached-Loading option with a self-contained Software Package and concrete definition of the
version information can be too restrictive for some devices. E.g. if new software should be installed.
For this use case the FileSystem based Loading provides an open structure of files and directories
where a Client can read and write. These files could be e.g. configuration, setup files or recipes.

Release 1.03.0 69 OPC 10000-100: Devices

Note: The FileSystem exposed in the address space may not be congruent with the actual file system
of the device.

The purpose of the directories and fi les is not part of this specification. It needs to be known by the
Client and the Server. Other companion specifications could add this definition for specific types of
devices. If accessed by a Software Update Client, the FileSystem root can be used to store and install
the files.

For FileSystem based Loading the FileSystemLoadingType is used, which is described in 8.4.6.

8.3.4.6 Installation option

Using the Cached-Loading option or the FileSystem option, a transferred Software Package or file
needs to be installed explicitly (compared to the implicit installation of Direct-Loading). Therefore, the
InstallationStateMachineType shall be used (see 8.4.9). It can either be used to install a Software
Package (Cached-Loading) or a list of files from the FileSystem (File System based Loading) .

8.3.4.7 UpdateStatus option

The update Clients are often operated by human users. Since an update normally is a long process,
the user would like to see the current state. At a first glance the percentage can give a hint about
completion of the update, especially if several devices are updated at the same time. But if there are
unexpected delays or errors the user needs a detailed textual description about the current update
action or issue.

This can be accomplished with the UpdateStatus Variable (see 8.4.1.8). A Client can subscribe to it
for a user display. At least if a state machine is in an error state the UpdateStatus should provide a
meaningful error message for the user.

8.3.4.8 Parameter backup / restore option

If the device cannot keep the parameters during the update, it shall support the Parameters Object
of the SoftwareVersionType (see 8.4.1.7). If supported by the Server, the update Client should
perform a backup of the parameters before and restore the parameters after the software update.

8.3.4.9 Confirmation option

The confirmation option supports the use case of 8.2.1.9: A Client may set a ConfirmationTimeout
before the installation. After every reboot of the Server caused by the update, it shall wait this time
for a call to the Confirm Method. If the call is not received the Server shall perform a rollback to
enable a working Client – Server connection again. This state machine is defined in 8.4.11.

8.3.4.10 Power cycle option

The power cycle option is intended for devices where a manual power cycle is required. During the
installation the state WaitingForPowerCycle informs the user that it is time to turn the power off and
on again. The PowerCycleStateMachineType is defined in 8.4.10.

If an instance of the SoftwareUpdateType supports the power cycle option, the UpdateBehavior
RequiresPowerCycle shall indicate if this might happen for an installation.

This power cycle state machine is used in combination with the installation. For Cached-Loading it
may be used in the Installing state of the InstallationStateMachineType. For Direct-Loading it may be
used during the transfer of the new software with the TemporaryFileTransferType (OPC 10000-5) of
the DirectLoadingType.

OPC 10000-100: Devices 70 Release 1.03.0

8.3.5 Software Update Client

The first task of a Software Update Client is to find the components that support software update.
After that it can execute the update of the components one by one or in parallel. The following activity
diagrams illustrate how a Software Update Client can perform an update using the different update
types. The first task is to detect what options are supported by browsing the references of the
SoftwareUpdate AddIn. Then the Client can check the version information to determine whether an
update is necessary. This is illustrated in Figure 34.

verify identity,
determine options
and check version

[DirectLoadingType]

[CachedLoadingType]

FileSystem Loading activity

[FileSystemLoadingType]

Direct-Loading activity Cached-Loading activity

[version up to date]

check type of
Loading Object

Figure 34 – Determine the type of update that the Server implements.

The activities of the different loading types are slightly different. With Cached-Loading the Client can
check CurrentVersion and PendingVersion Objects to determine if the Software Package is already
transferred. With the FileSystem based Loading the Client can browse the FileSystem to find out
which files are already transferred. For Cached-Loading and File System based Loading the transfer
can be done in advance. There are different ways to get the UpdateBehavior, because for Cached-
Loading and File System based Loading this depends on the actual software that should be installed
(with Direct-Loading the server has no information about the new software). For Direct-Loading and

Release 1.03.0 71 OPC 10000-100: Devices

Cached-Loading the validation is done during the transfer. For File System based Loading this needs
to be done before the installation as an extra step. These steps are illustrated in Figure 35.

Cached-Loading flowDirect-Loading flow

Loading.UpdateBehavior
Property

Prepare activity

Direct-loading
Installation activity

Resume activity

Transfer Software-
Package using

Loading.FileTransfer

Prepare actitvity

Explicit Installation
activity

Resume activity

Loading.GetUpdateBehavior()

[desired version
= PendingVersion

or FallbackVersion]

FileSystem based Loading flow

Transfer files using
Loading.FileSystem

Prepare actitvity

Explicit Installation
activity

Resume activity

Loading.GetUpdateBehavior()

[desired files
already deployed]

Loading.ValidateFiles()

Figure 35 – Different flows of Direct-Loading, Cached-Loading and FileSystem based Loading

The prepare activity can be handled equal for all types of loading. This optionally includes a backup
if the device cannot keep the parameters during update. The activity is shown in Figure 36.

OPC 10000-100: Devices 72 Release 1.03.0

Prepare activity

Prepare device / machine / plant
(other information model)

PrepareForUpdate.Prepare()

[PrepareForUpdate Object available]

[PrepareForUpdate
in PreparedForUpdate state]

[PrepareForUpdate in Idle state
or PrepareForUpdate.Abort() called]

Abort Update
(cannot prepare device)

Backup parameters
using Parameters Object

[UpdateBehavior.KeepsParamters
not set]

Figure 36 – Prepare and Resume activities

The actual installation of Direct-Loading is done during the transfer. At the end there can be a manual
power cycle (option). In some cases (if the Server is on the device that is updated) the Server is
rebooted and the Client needs to reconnect to complete the installation. This is illustrated in Figure
37.

Release 1.03.0 73 OPC 10000-100: Devices

Direct-loading Installation activity

Transfer (and install)
using Loading.FileTransfer

Message to User: "Please switch
power off and on again"

[PowerCycle Object available
and in WaitForPowerCycle state]

Reconnect
to Server

[connection lost]

[connection lost]

[Transfer complete]

[PowerCycle Object in
NotWaitingForPowerCycle state]

Figure 37 – Installation activity for Direct-Loading

For Cached-Loading and File System based Loading the installation is done using the
InstallationStateMachineType. For Cached-Loading the InstallSoftwarePackage Method is used and
for File System based Loading the InstallFiles Method is used. During this installation there may also
be a manual power cycle request requiring operator input. The Client might also need to reconnect
one or more times due to automatic reboots. If the Confirmation Object is available, the Client may
use it during the installation. This is illustrated in Figure 38.

Explicit Installation activity

Installation Object in
Installing state

Message to User: "Please switch
power off and on again"

[PowerCycle Object available
and in WaitForPowerCycle state]

Reconnect
to Server

[connection lost]

[connection lost]

[Installation in Idle State]

[PowerCycle Object in
NotWaitingForPowerCycle state]

Confirmation.Confirm()

[Confirmation Object
 available]

Set
Confirmation.ConfirmTimeout

[Confirmation Object available]

Installation.InstallXY()

Figure 38 – Installation activity for Cached-Loading and File System based Loading

OPC 10000-100: Devices 74 Release 1.03.0

The resume activity can be handled equal for all types of loading. This optionally includes restore if
the device cannot keep the parameters during update. The activity is shown in Figure 39.

Resume activity

PrepareForUpdate.Resume()
 wait until

PrepareForUpdate in Idle state

Resume device / machine / plant
(other information model)

[PrepareForUpdate.Resume Method available]

[UpdateBehavior.KeepsParamters
not set]

Restore parameters
using Paramters Object

Figure 39 – Resume activity

8.3.6 Safety considerations

Especially for safety critical devices the update Client needs to inform the user before performing
critical activities. This includes the information if a manual power cycle is required, if the device will
reboot or if it will lose its parameters during the update. This infor mation can be accessed before the
actual update is started. For safety all security considerations also apply.

8.3.7 Security considerations

Security is a critical aspect of software update. The basic requirements can be solved with the existing
UA security mechanisms (secure transport, authorization and role based authentication). Only
authorized users shall be able to install and manage updates.

The Client needs to verify the identity of the device. This can be complished by identification
information provided by OPC UA, by this specification or by companion specifications.

The authenticity (integrity and source) of the Software Package need to be verified. These aspects
can be implemented by the device in a vendor speific way e.g. verify a digital signature of the Software
Package. These mechanisms are out of scope of this specification.

Release 1.03.0 75 OPC 10000-100: Devices

8.3.8 Update Behavior

The concrete process of the installation can depend on the device and on the software that is to be
installed. Therfore the server provides the UpdateBehavior OptionSet (see 8.5.2). The
UpdateBehavior can be determined with the UpdateBehavior Variable (see 8.4.4.3) of the
DirectLoadingType or with one of the GetUpdateBehavior Methods of the CachedLodingType (see
8.4.5.5) or the FileSystemLoadingType (see 8.4.6.3).

8.3.9 Installation of patches

Instead of updating the whole software with a new version, sometimes only a part of it need to be
replaced (“patched”). The installation of such a patch can be implemented in the same way as the
installation of a complete version. The only difference is that the result is not a new SoftwareRevision
but an additional entry in the list of patch-identifiers stored in the PatchIdentifiers Variable (see
8.4.7.5).

8.3.10 Incompatible parameters / settings

If parameters or settings of an old software do not work with the new software, the installation of the
new software can complete but the device still cannot start as before. In this case the Server should
treat the installation as successful. It can inform the incompatibility using e.g. the IDeviceHealthType
Interface (see 4.5.4) of the device / component. This issue can be resolved later by a client that fixes
or updates the parameters.

8.3.11 AddIn model

To support an individual software update for the devices of a Server AddressSpace the software
update model is defined using the AddIn model as it is described in OPC 10001-7. An instance of
SoftwareUpdateType shall be attached to either Objects that implement the Interface
IVendorNameplateType (see 4.5.2) or Objects that support an Identification FunctionalGroup (see
B.2) that implements IVendorNameplateType. For the AddIn instance the fixed BrowseName
“SoftwareUpdate” shall be used. This model gives any device, hardware- or software-component the
opportunity to support SoftwareUpdate.

With this mechanism it is also possible to update parts of a software independently: A Server could
expose parts as additional software components with their own update AddIn.

To identify the device / component that is the target for the software update, the
IVendorNameplateType Interface is used. In this Interface at least the Variables Manufacturer,
ManufacturerUri, ProductCode and SoftwareRevision shall be supported and have valid values.
Optionally Model and HardwareRevision should be supported. These Properties may be shown to the
operator. ManufacturerUri, ProductCode and HardwareRevision should be used to identify the
component.

Note that the Properties SoftwareRevision, Manufacturer and ManufacturerUri also appears in the
CurrentVersion of the PackageLoadingType. Their values may be different, if the manufacturer of the
Device is not the same as the manufacturer of the software. The SoftwareRevision Object shall be
the same at both places.

The ComponentType (see 4.6) already implements the Interface IVendorNameplateType. This makes
it a good candidate for a SoftwareUpdate AddIn as illustrated in the example in Figure 40.

OPC 10000-100: Devices 76 Release 1.03.0

MyComponent

SoftwareUpdate SoftwareUpdateType

ComponentType

IVendorNameplateType

HasInterface

HasAddIn

ManufacturerUri

Manufacturer

Model

ProductCode

SoftwareRevision

HardwareRevision

Figure 40 – Example how to add the SoftwareUpdate AddIn to a component

8.4 ObjectTypes

8.4.1 SoftwareUpdateType

8.4.1.1 Overview

The SoftwareUpdateType defines an AddIn which may be used to extend Objects with software
update features. All software update options are exposed as references of this AddIn. This way a
Client can check for the references of the AddIn to determine which options are provided by a Server.
If an option is available, it shall be used as specified.

The SoftwareUpdateType is illustrated in Figure 41 and formally described in Table 65.

Release 1.03.0 77 OPC 10000-100: Devices

SoftwareUpdateType

PrepareForUpdateStateMachineType

PrepareForUpdate

InstallationStateMachineType

Installation

TemporaryFileTransferType

Parameters

PowerCycleStateMachineType

PowerCycle

ConfirmationStateMachineType

Confirmation

UpdateStatus

0:DefaultInstanceBrowseName

Value=SoftwareUpdate

Loading SoftwareLoadingType

PackageLoadingType

DirectLoadingType

CachedLoadingType

FileSystemLoadingType

Figure 41 – SoftwareUpdateType

Table 65 – SoftwareUpdateType definition

Attribute Value

BrowseName SoftwareUpdateType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Object Loading SoftwareLoadingType Optional

HasComponent Object PrepareForUpdate PrepareForUpdateStateMachine
Type

Optional

HasComponent Object Installation InstallationStateMachineType Optional

HasComponent Object PowerCycle PowerCycleStateMachineType Optional

HasComponent Object Confirmation ConfirmationStateMachineType Optional

HasComponent Object Parameters TemporaryFileTransferType Optional

HasComponent Variable UpdateStatus LocalizedText BaseDataVariableType Optional

HasComponent Variable VendorErrorCode Int32 BaseDataVariableType Optional

HasProperty Variable 0:DefaultInstanceBrowseN
ame

QualifiedName PropertyType

Conformance Units

DI SU Software Update

8.4.1.2 Loading

The optional Loading Object is of type SoftwareLoadingType, which is abstract. The Object can be
one of the concrete sub-types DirectLoadingType (8.4.4), CachedLoadingType (8.4.5) or
FileSystemLoadingType (8.4.6). SoftwareLoadingType is formally defined in 8.4.2.

The Loading Object is required for all variations of software installation, it is not required for read or
restore of device parameters using the Parameters Object.

OPC 10000-100: Devices 78 Release 1.03.0

8.4.1.3 PrepareForUpdate

The optional PrepareForUpdate Object is of type PrepareForUpdateStateMachineType which is
formally defined in 8.4.8.

8.4.1.4 Installation

This optional Installation Object is of type InstallationStateMachineType which is formally defined in
8.4.9.

8.4.1.5 PowerCycle

This optional PowerCycle Object is of type PowerCycleStateMachineType which is formally defined
in 8.4.10.

8.4.1.6 Confirmation

This optional Confirmation Object is of type ConfirmationStateMachineType which is formally defined
in 8.4.11.

8.4.1.7 Parameters

This optional Parameters Object is of type TemporaryFileTransferType (OPC 10000-5). It may be
supported by devices that cannot retain parameters during update. If supported by the
SoftwareUpdate AddIn a Client can read the parameters before the update and restore them after the
update. This is not a general-purpose backup and restore function. It is intended to be used in the
context of software update.

The GenerateFileForRead and GenerateFileForWrite Methods accept an unspecified
generateOptions Parameter. This argument is not used, and Clients shall always pass null. Future
versions of this specification may define concrete DataTypes.

If the restore of parameters succeeds but the software cannot run properly this should not be treated
as an error of the restore. Instead this should be indicated using the IDeviceHealthType Interface of
the device / component.

8.4.1.8 UpdateStatus

This optional localized string provides status and error information for the update. This may be used
whenever a long running update activity can provide detailed information to the user or when a state
machine wants to provide error information to the user.

A Server may provide any text it wants to show to the operator of the software update. Important texts
are the error messages in case anything went wrong, and the installation or preparation could not
complete. These messages should explain what happened and how the operator could resolve the
issue (e.g. “try again with a different version”). During preparation and installation, it is good practice
to inform the operators about the current action to keep them patient and waiting for the completion.
Also, if the installation gets stuck this text would help to find out the reason.

The UpdateStatus may be used together with the PrepareForUpdateStateMachineType (8.4.8), the
InstallationStateMachineType (8.4.9) and for CachedLoadingType (8.4.5), DirectLoadingType (8.4.4)
and FileSystemLoadingType (8.4.6) it may be used during the transfer of the Software Package.

8.4.1.9 VendorErrorCode

The optional VendorErrorCode Property provides a machine-readable error code in case anything
went wrong during the transfer, the installation or the preparation. Comparable to an error message
in UpdateStatus this Variable can provide additional information about the issue. The

Release 1.03.0 79 OPC 10000-100: Devices

VendorErrorCode is an additional information for a Client. It is not required for normal operation and
error handling.

The value 0 shall be interpreted as no error.

The VendorErrorCode may be used together with the PrepareForUpdateStateMachineType (8.4.8)
for prepare and resume, in the InstallationStateMachineType (8.4.9) during the installation. For
CachedLoadingType (8.4.5), DirectLoadingType (8.4.4) and FileSystemLoadingType (8.4.6) it may
be used during the transfer of the Software Package.

8.4.1.10 DefaultInstanceBrowseName

The DefaultInstanceBrowseName Property – defined in OPC 10000-3 – is required for the AddIn
model as specified in 8.3.11. It is used to specify the BrowseName of the instance of the
SoftwareUpdateType. It always has the value “SoftwareUpdate”.

Table 66 – SoftwareUpdateType Attribute values for child Nodes

Source Path Value

0:DefaultInstanceBrowseName SoftwareUpdate

8.4.2 SoftwareLoadingType

8.4.2.1 Overview

The SoftwareLoadingType is the abstract base for all different kinds of loading. The concrete information
and behavior is modeled in its sub-types.

The SoftwareLoadingType is formally defined in Table 71.

Table 67 – SoftwareLoadingType definition

Attribute Value

BrowseName SoftwareLoadingType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasSubtype ObjectType PackageLoadingType

HasSubtype ObjectType FileSystemLoadingType

HasComponent Variable UpdateKey String BaseDataVariableType Optional

Conformance Units

DI SU Software Update

8.4.2.2 UpdateKey

The optional write-only UpdateKey Object can be used if the underlying system requires some key to
unlock the update feature. The format and where to get the key is vendor -specific and not described
in this specification. If UpdateKey is supported, the Client shall set the key before the installation. If
the PrepareForUpdateStateMachine is used, the UpdateKey shall be set before the Prepare Method
is called. The Server shall not keep the value for more than one update.

8.4.3 PackageLoadingType

8.4.3.1 Overview

The PackageLoadingType provides information about the Current Version and allows transfer of a
Software Package to and from the Server.

The PackageLoadingType is illustrated in Figure 42 and formally defined in Table 68.

OPC 10000-100: Devices 80 Release 1.03.0

Figure 42 – PackageLoadingType

Table 68 – PackageLoadingType definition

Attribute Value

BrowseName PackageLoadingType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SoftwareLoadingType

HasComponent Object CurrentVersion SoftwareVersionType Mandatory

HasComponent Object FileTransfer TemporaryFileTransferType Mandatory

HasComponent Variable ErrorMessage LocalizedText BaseDataVariableType Mandatory

HasProperty Variable WriteBlockSize UInt32 PropertyType Optional

HasSubtype ObjectType DirectLoadingType

HasSubtype ObjectType CachedLoadingType

Conformance Units

DI SU Software Update

8.4.3.2 CurrentVersion

To identify the Current Version, the CurrentVersion Object provides ManufacturerUri,
SoftwareRevision and PatchIdentifiers along with other information that allows the user to identify the
currently used software. With this information the Client can determine a suitable update.

Note: This version information is about the installed software. The Manufacturer is not necessarily
the same as the Manufacturer of the physical device that executes the software.

8.4.3.3 FileTransfer

The FileTransfer Object is of type TemporaryFileTransferType as defined in OPC 10000-5. It is used
to create temporary files for download and upload of the software.

In the TemporaryFileTransferType type the GenerateFileForRead and GenerateFileForWrite Methods
take an unspecified generateOptions Parameter. For the FileTransfer Object an Enumeration of type
SoftwareVersionFileType is used for this Parameter. It is used to select the file to upload or download.
All allowed values are defined in Table 86. Additional Result Codes of the GenerateFileForRead and
GenerateFileForWrite Methods are specified in Table 69.

Table 69 – TemporaryFileTransferType Result Codes

Result Code Description

Bad_InvalidState If the PrepareForUpdate is available, the UpdateBehavior requires preparation and the
PrepareForUpdate state machine is not in the state PreparedForUpdate.

Bad_NotFound If there is no file to read from the device.

Bad_NotSupported If the device does not support to upload / download of the Software Package.

PackageLoadingType

SoftwareVersionType

CurrentVersion

TemporaryFileTransferType

FileTransfer

WriteBlockSize

ErrorMessage

Release 1.03.0 81 OPC 10000-100: Devices

For all errors that occur during the file transfer the ErrorMessage Variable should provide an error
message for the user.

It is implementation dependent which version (see SoftwareVersionFileType in 8.5.1) is readable and
which one is writable. Additional restrictions are defined in the concrete sub -types of
PackageLoadingType.

8.4.3.3.1 Transfer to the device

The software is transferred as a single package. File type and content are device specific. If
WriteBlockSize is supported, the Client shall write the file in chunks of this size.

The software should be validated during the transfer process. Errors shall be indicated either in the
Write Method, the CloseAndCommit Method or an asynchronous completion of the file transfer. If the
validation is performed synchronous, the Method returns Bad_InvalidArgument; if the validation is
performed asynchronous, the error is indicated by the Error state of the
FileTransferStateMachineType. If the ErrorMessage Variable is provided, it shall contain an error
message representing the validation error.

8.4.3.3.2 Transfer from the device

The FileTransfer Object may optionally support the transfer of a Software Package from the device
to the Client.

If this transfer is not supported, the Server shall return the Result Code Bad_NotSupported. If it is
supported but there is currently no data, the Result Code Bad_NotFound shall be used instead.

8.4.3.4 ErrorMessage

This is a textual information about errors that can occur with the file transfer. When ever a method of
the TemporaryFileTransferType returns an error, the ErrorMessage Variable should provide a
localized error message for the user. For every new file transfer the value should be reset to an empty
string.

8.4.3.5 WriteBlockSize

Optional size of the blocks (number of bytes) that a Client shall write to the file. The client shall write
the Software Package in chunks of this size to the FileType object (the last block may be smaller).

8.4.4 DirectLoadingType

8.4.4.1 Overview

The DirectLoadingType provides information about the Current Version and allows transfer of a Software
Package to and from the Server. Transfer of the Software Package to the Server also includes the
installation. The Direct-Loading option is described in 8.3.4.3.

The DirectLoadingType is illustrated in Figure 43 and formally defined in Table 70.

DirectLoadingType

UpdateBehavior

WriteTimeout

Figure 43 – DirectLoadingType

OPC 10000-100: Devices 82 Release 1.03.0

Table 70 – DirectLoadingType definition

Attribute Value

BrowseName DirectLoadingType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the PackageLoadingType

HasComponent Variable UpdateBehavior UpdateBehavior BaseDataVariableType Mandatory

HasProperty Variable WriteTimeout Duration PropertyType Optional

Conformance Units

DI SU DirectLoading

8.4.4.2 FileTransfer

The FileTransfer Object is inherited from the PackageLoadingType. In this sub-type the Current
version shall be writable (see SoftwareVersionFileType in 8.5.1). Writing to this file also includes the
actual installation.

8.4.4.3 UpdateBehavior

The UpdateBehavior OptionSet informs the update Client about the specific behavior of the
component during update via Direct-Loading.

8.4.4.4 WriteTimeout

Optional Property that informs the Client about the maximum duration of the call to the Write Method
of FileType (maximum time the write of a block of data can take). If the write operation takes longer
the Client can assume that the Server has an issue.

8.4.5 CachedLoadingType

8.4.5.1 Overview

The CachedLoadingType provides information about the Current Version, the Pending Version and the
Fallback Version (if supported). Additionally, it allows upload and download of different versions of the
software. The Cached-Loading option is described in 8.3.4.4.

The CachedLoadingType is illustrated in Figure 44 and formally defined in Table 71.

CachedLoadingType

SoftwareVersionType

PendingVersion

SoftwareVersionType

FallbackVersion

GetUpdateBehavior

Figure 44 – CachedLoadingType

Release 1.03.0 83 OPC 10000-100: Devices

Table 71 – CachedLoadingType definition

Attribute Value

BrowseName CachedLoadingType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the PackageLoadingType

HasComponent Object PendingVersion SoftwareVersionType Mandatory

HasComponent Object FallbackVersion SoftwareVersionType Optional

HasComponent Method GetUpdateBehavior Mandatory

Conformance Units

DI SU CachedLoading

8.4.5.2 FileTransfer

The FileTransfer Object is inherited from the PackageLoadingType. In this sub-type the Current
version shall not be writable and the Pending version shall be writable (see SoftwareVersionFileType
in 8.5.1).

8.4.5.3 PendingVersion

The PendingVersion Object describes an already transferred new Software Package that is ready to
be installed.

If there is no Software Package available, the values should be empty.

8.4.5.4 FallbackVersion

The optional FallbackVersion Object describes an alternate version on the device. This could be a
factory default version or the version before the last update. Installing the Fallback Version may be
used to revert to a reliable version of the software.

If a Fallback Version is supported by the device the object shall be available. If there is currently no
Fallback Version on the device, the values should be empty.

8.4.5.5 GetUpdateBehavior Method

With this Method the Client may check the specific update behavior for a specified software version.
To identify the version the GetUpdateBehavior Method requires the ManufacturerUri,
SoftwareRevision and PatchIdentifiers Properties of the SoftwareVersionType.

Signature

GetUpdateBehavior(

 [in] String ManufacturerUri,

 [in] String SoftwareRevision,

 [in] String[] PatchIdentifiers,

 [out] UpdateBehavior UpdateBehavior);

Argument Description

ManufacturerUri ManufacturerUri Property of either the Pending or Fallback SoftwareVersionType that
should be installed.

SoftwareRevision SoftwareRevision Property of either the Pending or Fallback SoftwareVersionType that
should be installed.

PatchIdentifiers PatchIdentifiers Property of either the Pending or Fallback SoftwareVersionType that
should be installed. (or empty array if not supported by the SoftwareVersionType
instance)

UpdateBehavior Update behavior option set for the specified SoftwareVersionType instance

OPC 10000-100: Devices 84 Release 1.03.0

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound If the Software Package, identified by the parameters, does not exist.

8.4.6 FileSystemLoadingType

8.4.6.1 Overview

The FileSystemLoadingType enables software update based on an open file system. This enables
the FileSystem based Loading option of 8.3.4.5.

It is illustrated in Figure 45 and formally defined in Table 72.

FileSystemLoadingType

0:FileDirectoryType

0:FileSystem

GetUpdateBehavior

ValidateFiles

Figure 45 – FileSystemLoadingType

Table 72 – FileSystemLoadingType definition

Attribute Value

BrowseName FileSystemLoadingType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SoftwareLoadingType

HasComponent Object 0:FileSystem 0:FileDirectoryType Mandatory

HasComponent Method GetUpdateBehavior Mandatory

HasComponent Method ValidateFiles

Optional

Conformance Units

DI SU FileSystem Loading

8.4.6.2 FileSystem

The FileSystem Object is of type FileDirectoryType as it is defined in OPC 10000-5. It provides access
to a hierarchy of directories and files of the device. The structure may be read and written by the
Client however the device may restrict this for specific folders or files.

8.4.6.3 GetUpdateBehavior Method

This Method may be used to check the specific update behavior for a set of files. The files are
identified by the NodeId of their FileType instance in the FileSystem.

Signature

GetUpdateBehavior(

Release 1.03.0 85 OPC 10000-100: Devices

 [in] NodeId[] NodeIds

 [out]UpdateBehavior UpdateBehavior);

Argument Description

NodeIds NodeIds of the files to install.

UpdateBehavior Update behavior OptionSet for the files specified by NodeId

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound If one or more NodeIds are not found.

8.4.6.4 ValidateFiles Method

This Method may be used to check if the specified set of files are valid and complete for an
installation. This should also include dependency checks if appropriate.

Note: In case of Direct-Loading or Cached-Loading these checks should be part of the transfer and
this method shall not be supported since it is part of the file transfer (e.g. in CloseAndCommit).

Signature

ValidateFiles(

 [in] NodeId[] NodeIds

 [out]ErrorCode Int32

 [out]ErrorMessage LocalizedText);

Argument Description

NodeIds NodeIds of the files to validate.

ErrorCode 0 for success or device specific number for validation issues.

ErrorMessage Message for the user that describes how to resolve the issue.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound If one or more NodeIds are not found.

8.4.7 SoftwareVersionType

8.4.7.1 Overview

The SoftwareVersionType identifies a concrete version of a software. It is used by the
CachedLoadingType (8.4.5) and the DirectLoadingType (8.4.4) to store the version information.

The Description Attribute on the instances of the SoftwareVersionType should be used to provide
additional information about the concrete version of the software to the user (e.g. change notes).

The SoftwareVersionType is illustrated in Figure 46 and formally defined in Table 73.

OPC 10000-100: Devices 86 Release 1.03.0

PatchIdentifiers

Manufacturer

SoftwareRevision

ReleaseDate

SoftwareVersionType

ChangeLogReference

Hash

ManufacturerUri

Figure 46 – SoftwareVersionType

Table 73 – SoftwareVersionType definition

Attribute Value

BrowseName SoftwareVersionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasProperty Variable Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable ManufacturerUri String PropertyType Mandatory

HasProperty Variable SoftwareRevision String PropertyType Mandatory

HasProperty Variable PatchIdentifiers String[] PropertyType Optional

HasProperty Variable ReleaseDate DateTime PropertyType Optional

HasProperty Variable ChangeLogReference String PropertyType Optional

HasProperty Variable Hash ByteString PropertyType Optional

Conformance Units

DI SU Software Update

8.4.7.2 Manufacturer

The read only Manufacturer Property provides the name of the company that created the software.

In case of the Pending Version this shall be empty if there is no pending software to install.

8.4.7.3 ManufacturerUri

The read only ManufacturerUri Property provides a unique identifier for the manufacturer of the
software.

In case of the Pending Version this shall be empty if there is no pending software to install.

8.4.7.4 SoftwareRevision

The read only SoftwareRevision Property defines the version of the software. The format and
semantics of the string is vendor-specific.

In case of the Pending Version this shall be empty if there is no pending software to install.

Release 1.03.0 87 OPC 10000-100: Devices

8.4.7.5 PatchIdentifiers

The read only PatchIdentifiers Property identifies the list of patches that are applied to a software
version. The format and semantics of the strings are vendor-specific. The order of the strings shall
not be relevant.

8.4.7.6 ReleaseDate

The read only ReleaseDate Property defines the date when the software is released. If the version
information is about patches, this should be the date of the latest patch. It is additional information
for the user.

8.4.7.7 ChangeLogReference

The read only ChangeLogReference Property may optionally provide a URL to a web site with detailed
information about the particular version of the software (change notes). In case of a patched software,
the web site should also inform about the patches.

8.4.7.8 Hash

The optional read only Hash Property may be read by a Client to get the hash of a previously
transferred Software Package. The hash value needs to be calculated by the Server with the SHA-
256 algorithm. It can be used to verify if the transferred package matches the one at the Client.

8.4.8 PrepareForUpdateStateMachineType

8.4.8.1 Overview

The PrepareForUpdateStateMachineType may be used if the device requires to be prepared before
the update. Another option is to delay the resuming of normal operation until all update actions are
executed. This supports to prepare for update option of 8.3.4.2.

If a Server implements this state machine, a Client shall use it except if the UpdateBehavior indicates
that this is not necessary for the transferred software. If preparation is required, the installation is
only allowed if the PrepareForUpdateStateMachine is in the PreparedForUpdate state.

The state machine is illustrated in Figure 47, Figure 48 and formally defined in Table 74. The
transitions are formally defined in Table 76.

Idle

PreparedForUpdate

Preparing
Prepare

Resume

Abort

Resuming

Figure 47 – PrepareForUpdate state machine

OPC 10000-100: Devices 88 Release 1.03.0

PrepareForUpdateStateMachineType

Prepare

Resume

States, Transitions

PercentComplete

Abort

Figure 48 – PrepareForUpdateStateMachineType

Table 74 – PrepareForUpdateStateMachineType definition

Attribute Value

BrowseName PrepareForUpdateStateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType defined in OPC 10000-5.

HasComponent Variable PercentComplete Byte BaseDataVariableType Optional

HasComponent Method Prepare Mandatory

HasComponent Method Abort Mandatory

HasComponent Method Resume Optional

HasComponent Object Idle InitialStateType

HasComponent Object Preparing StateType

HasComponent Object PreparedForUpdate StateType

HasComponent Object Resuming StateType

HasComponent Object IdleToPreparing TransitionType

HasComponent Object PreparingToIdle TransitionType

HasComponent Object PreparingToPreparedForUpdate TransitionType

HasComponent Object PreparedForUpdateToResuming TransitionType

HasComponent Object ResumingToIdle TransitionType

Conformance Units

DI SU PrepareForUpdate

The component Variables of the PrepareForUpdateStateMachineType have additional Attributes
defined in Table 75.

Release 1.03.0 89 OPC 10000-100: Devices

Table 75 – PrepareForUpdateStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Idle

0:StateNumber

1

Preparing

0:StateNumber

2

PreparedForUpdate

0:StateNumber

3

Resuming

0:StateNumber

4

IdleToPreparing

0:TransitionNumber

12

PreparingToIdle

0:TransitionNumber

21

PreparingToPreparedForUpdate

0:TransitionNumber

23

PreparedForUpdateToResuming

0:TransitionNumber

34

ResumingToIdle

0:TransitionNumber

41

Table 76 – PrepareForUpdateStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

Transitions

IdleToPreparing FromState True Idle

 ToState True Preparing

 HasEffect True TransitionEventType

PreparingToIdle FromState True Preparing

 ToState True Idle

 HasEffect True TransitionEventType

PreparingToPreparedForUpdate FromState True Preparing

 ToState True PreparedForUpdate

 HasEffect True TransitionEventType

PreparedForUpdateToResuming FromState True PreparedForUpdate

 ToState True Resuming

 HasEffect True TransitionEventType

ResumingToIdle FromState True Resuming

 ToState True Idle

 HasEffect True TransitionEventType

8.4.8.2 PercentComplete

This percentage is a number between 0 and 100 that informs about the progress in the Preparing or
the Resuming States. It may be used whenever the activity takes longer and the user should be
informed about the completion. If the state machine is in Idle or PreparedForUpdate State it shall
have the value 0.

Note: This information is for the user only. It shall not be used to detect completion of the transition.

8.4.8.3 Prepare Method

The Prepare Method may be called to prepare a device for an update. This cal l transitions the device
into the state Preparing.

After the preparation is complete the state machine may perform an automatic transition to the state
PreparedForUpdate.

OPC 10000-100: Devices 90 Release 1.03.0

If the preparation cannot complete and the device does not get prepared for update the state machine
transitions back to Idle. In this case a message with the reason should be provided to the user via
the UpdateStatus.

Signature

Prepare();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidState If the PrepareForUpdateStateMachineType is not in Idle state.

8.4.8.4 Abort Method

If the preparation takes too long or does not complete at all because the required internal conditions
are not met the Abort Method may be called to abort the preparation. This call transitions the device
back to the Idle state.

Note: If the transition from Preparing to Idle cannot complet instantly a Client needs to subscribe for
the events or the state variable of the PrepareForUpdateStateMachine.

Signature

Abort();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidState If the PrepareForUpdateStateMachineType is not in Preparing state.

8.4.8.5 Resume Method

A call to the optional Resume Method transitions the device into the state Resuming. After the
resuming is complete the state machine performs an automatic transition to the Idle state. If the
method is not supported, the transitions to Resuming and back to Idle shall be done by the Server
automatically. If the method is supported, there shall not be an automatic transition to Resuming.
Supporting this method enables the Client to group several activities like backup, install, restore on
a single device or group the update of multiple devices before the devices are allowed to Resume
their operation again.

Signature

Resume();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidState If the PrepareForUpdateStateMachineType is not in PreparedForUpdate state or if the
InstallationStateMachine is still in the state Installing.

8.4.9 InstallationStateMachineType

8.4.9.1 Overview

The InstallationStateMachineType may be used if the device supports explicit installation (Cached-
Loading or File System based Loading). This supports the installation option of 8.3.4.6. It is illustrated
in Figure 49 and Figure 50 and formally defined in Table 77. The transitions are formally defined in
Table 79.

Release 1.03.0 91 OPC 10000-100: Devices

Error

Idle Installing

InstallSoftwarePackage
InstallFiles

Resume

Figure 49 – Installation state machine

InstallSoftwarePackage

Resume

InstallationStateMachineType

States, Transitions

InstallFiles

PercentComplete

InstallationDelay

Figure 50 – InstallationStateMachine

OPC 10000-100: Devices 92 Release 1.03.0

Table 77 – InstallationStateMachineType definition

Attribute Value

BrowseName InstallationStateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType defined in OPC 10000-5.

HasComponent Variable PercentComplete Byte BaseDataVariableType Optional

HasComponent Variable InstallationDelay Duration BaseDataVariableType Optional

HasComponent Method InstallSoftwarePackage Optional

HasComponent Method InstallFiles Optional

HasComponent Method Resume Mandatory

HasComponent Object Idle InitialStateType

HasComponent Object Installing StateType

HasComponent Object Error StateType

HasComponent Object IdleToInstalling TransitionType

HasComponent Object InstallingToIdle TransitionType

HasComponent Object InstallingToError TransitionType

HasComponent Object ErrorToIdle TransitionType

Conformance Units

DI SU Software Update

The component Variables of the InstallationStateMachineType have additional Attributes defined in
Table 78.

Table 78 – InstallationStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Idle

0:StateNumber

1

Installing

0:StateNumber

2

Error

0:StateNumber

3

IdleToInstalling

0:TransitionNumber

12

InstallingToIdle

0:TransitionNumber

21

InstallingToError

0:TransitionNumber

23

ErrorToIdle

0:TransitionNumber

31

Table 79 – InstallationStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

Transitions

IdleToInstalling FromState True Idle

 ToState True Installing

 HasEffect True TransitionEventType

InstallingToIdle FromState True Installing

 ToState True Idle

 HasEffect True TransitionEventType

InstallingToError FromState True Installing

 ToState True Error

 HasEffect True TransitionEventType

ErrorToIdle FromState True Error

 ToState True Idle

 HasEffect True TransitionEventType

Release 1.03.0 93 OPC 10000-100: Devices

8.4.9.2 PercentComplete

This percentage is a number between 0 and 100 that informs the user about the progress of an
installation. It should be used whenever an update activity takes longer and the user should be
informed about the completion. If the state machine is in Idle State it shall have the value 0. In case
of an error the last value should be kept until the Resume is called.

Note: This information is for the user only. It shall not be used to detect completion of the installation.

8.4.9.3 InstallationDelay

The optional InstallationDelay can be set by a Client to delay the actual installation after the call to
InstallSoftwarePackage or InstallFiles is returned by the Server. This can be used when the
installation is started on several devices in parallel and there is a risk that a reboot of one device
could harm the connection to other devices. With a delay the install methods can be called on all
devices before the devices actually start the installation. The InstallationDelay does not delay the
transition from Idle to Installing.

This value could be preconfigured. If a Client wants to set this value it has to be done before the
install method is called.

The Server is expected to stay operational at least during the delay.

8.4.9.4 InstallSoftwarePackage Method

With this Method the Client requests the installation of a Software Package. The package can be
either the previously transferred Pending Version or the alternative Fallback Version. To identify the
version and to prevent conflicts with a second Client that transfers a different version, the
InstallSoftwarePackage Method needs the ManufacturerUri, the SoftwareRevision and
PatchIdentifiers Properties of the SoftwareVersionType.

Optionally an additional hash value may be passed to the Method. This hash could be calculated by
the Client or taken from a trusted source. Before installation the Server may compare the hash against
the calculated hash of the Software Package. This mechanism can be used if there is a risk that the
Software Package is altered during the transfer to the device and if the Server has no other
mechanism to ensure that the Software Package is from a trustworthy source.

If the installation succeeds but the software cannot run properly this should not be treated as an error
of the installation. Instead this should be indicated using the IDeviceHealthType Interface of the
device / component.

This Method shall not return before the state has changed to the Installing state.

Signature

InstallSoftwarePackage(

 [in] String ManufacturerUri,

 [in] String SoftwareRevision,

 [in] String[] PatchIdentifiers,

 [in] ByteString Hash);

Argument Description

ManufacturerUri ManufacturerUri Property of either the Pending or Fallback SoftwareVersionType that should
be installed.

SoftwareRevision SoftwareRevision Property of either the Pending or Fallback SoftwareVersionType that
should be installed.

PatchIdentifiers PatchIdentifiers Property of either the Pending or Fallback SoftwareVersionType that should
be installed. (or empty array if not supported on the SoftwareVersionType instance)

Hash Hash of the Software Package that should be installed. (or empty if not used)

OPC 10000-100: Devices 94 Release 1.03.0

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidState If the InstallationStateMachineType is not in Idle state or if the PrepareForUpdate Object is
available and the PrepareForUpdate state machine is not in the state PreparedForUpdate.

Bad_NotFound If the specified Software Package does not exist.

Bad_InvalidArgument If the Hash does not match the calculated hash of the Software Package.

8.4.9.5 InstallFiles Method

This Method may be called to request the installation of one or more files. The files are identified by
the NodeId of their FileType instance in the FileSystem.

If the installation succeeds but the software cannot run properly this should not be treated as an error
of the installation. Instead this should be indicated using the IDeviceHealthType Interface of the
device / component.

Signature

InstallFiles(

 [in] NodeId[] NodeIds);

Argument Description

NodeIds NodeIds of the files to install.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidState If the InstallationStateMachineType is not in Idle state or if the PrepareForUpdate
Object is available and the PrepareForUpdate state machine is not in the state
PreparedForUpdate.

Bad_NotFound If one or more NodeIds are not found.

8.4.9.6 Resume Method

This Method may be called to resume from the Error state. The Error state can be reached if there
are issues during the installation. The state machine remains in this state until the Client calls the
Resume Method to get back to the Idle state immediately.

Signature

Resume();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidState If the InstallationStateMachineType is not in Error state.

8.4.10 PowerCycleStateMachineType

The PowerCycleStateMachineType is used to inform the user to perform a manual power cycle.

When the server needs a manual power cycle it indicates that to the client by changing the state to
WaitingForPowerCycle. After restart of the device it transitions to NotWaitingForPowerCycle
automatically.

There are no methods, all transitions originate from the installation process. The state machine is
illustrated in Figure 51 and formally defined in Table 80. The transitions are formally defined in Table
82.

Release 1.03.0 95 OPC 10000-100: Devices

NotWaitingForPowerCycle WaitingForPowerCycle

Figure 51 - PowerCycle state machine

Table 80 – PowerCycleStateMachineType definition

Attribute Value

BrowseName PowerCycleStateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType defined in OPC 10000-5.

HasComponent Object NotWaitingForPowerCycle InitialStateType

HasComponent Object WaitingForPowerCycle StateType

HasComponent Object NotWaitingForPowerCycleTo
WaitingForPowerCycle

 TransitionType

HasComponent Object WaitingForPowerCycleToNot
WaitingForPowerCycle

 TransitionType

Conformance Units

DI SU Manual Power Cycle

The component Variables of the PowerCycleStateMachineType have additional Attributes defined in
Table 81.

Table 81 – PowerCycleStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

NotWaitingForPowerCycle

0:StateNumber

1

WaitingForPowerCycle

0:StateNumber

2

NotWaitingForPowerCycleToWaitingForPowerCycle

0:TransitionNumber

12

WaitingForPowerCycleToNotWaitingForPowerCycle

0:TransitionNumber

21

Table 82 – PowerCycleStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

Transitions

NotWaitingForPowerCycleToWaitingForPowerCycle FromState True NotWaitingForPowerCycle

 ToState True WaitingForPowerCycle

 HasEffect True TransitionEventType

WaitingForPowerCycleToNotWaitingForPowerCycle FromState True WaitingForPowerCycle

 ToState True NotWaitingForPowerCycle

 HasEffect True TransitionEventType

8.4.11 ConfirmationStateMachineType

8.4.11.1 Overview

The ConfirmationStateMachineType is used to prove a valid Client – Server connection after a restart
of the OPC UA Server. This supports the confirmation option of 8.3.4.9.

OPC 10000-100: Devices 96 Release 1.03.0

If several instances of this state machine are provided on a device (due to several instances of the
SoftwareUpdateType), all instances should behave as if it is only a single instance. In particular it is
sufficient to call one of the confirm methods after reboot.

The ConfirmationStateMachineType is illustrated in Figure 52 and Figure 53 and formally defined in
Table 83. The transitions are formally defined in Table 85.

NotWaitingForConfirm WaitingForConfirm
Confirm

Figure 52 – Confirmation state machine

ConfirmationStateMachineType

NotWaitingForConfirm

WaitingForConfirm

WaitingForConfirmToNotWaitingForConfirm

NotWaitingForConfirmToWaitingForConfirm

Confirm

ConfirmationTimeout

Figure 53 – ConfirmationStateMachineType

Table 83 – ConfirmationStateMachineType

Attribute Value

BrowseName ConfirmationStateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType defined in OPC 10000-5.

HasComponent Method Confirm Mandatory

HasComponent Variable ConfirmationTimeout Duration BaseDataVariableType Mandatory

HasComponent Object NotWaitingForConfirm InitialStateType

HasComponent Object WaitingForConfirm StateType

HasComponent Object NotWaitingForConfirmToWaiting
ForConfirm

 TransitionType

HasComponent Object WaitingForConfirmToNotWaiting
ForConfirm

 TransitionType

Conformance Units

DI SU Update Confirmation

The component Variables of the ConfirmationStateMachineType have additional Attributes defined in
Table 84.

Release 1.03.0 97 OPC 10000-100: Devices

Table 84 – ConfirmationStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

NotWaitingForConfirm

0:StateNumber

1

WaitingForConfirm

0:StateNumber

2

NotWaitingForConfirmToWaitingForConfirm

0:TransitionNumber

12

WaitingForConfirmToNotWaitingForConfirm

0:TransitionNumber

21

Table 85 – ConfirmationStateMachineType TargetBrowsePath

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

Transitions

NotWaitingForConfirmToWaitingForConfirm FromState True NotWaitingForConfirm

 ToState True WaitingForConfirm

 HasEffect True TransitionEventType

WaitingForConfirmToNotWaitingForConfirm FromState True WaitingForConfirm

 ToState True NotWaitingForConfirm

 HasEffect True TransitionEventType

8.4.11.2 ConfirmationTimeout

The ConfirmationTimeout may be set by a Client to a value other then 0 to enable the confirmation
feature. If the value is not 0 and the Client – Server connection is lost, the ConfirmationTimeout
represents the maximum time that the Client may need to reconnect and call the Confirm Method.
The Server shall automatically reset the value to 0 when the installation is complete.

8.4.11.3 Confirm Method

After a reboot and with a ConfirmationTimeout other than 0 a Client shall call this Method to inform
the Server that it has successfully reconnected. If this Method is not called after a lost connection the
Server shall regard the update as unsuccessful and shall revert it. A Client needs to react within the
time specified in the ConfirmationTimeout Variable .

Signature

Confirm();

8.5 DataTypes

8.5.1 SoftwareVersionFileType

This enumeration is used to identify the version in the methods of the TemporaryFileTransferType
that is used in the PackageLoadingType (8.4.3). The Enumeration is defined in Table 86.

Table 86 – SoftwareVersionFileType Items

Name Value Description

Current 0 The currently used version of the software identified by the CurrentVersion Object.

Pending 1 The Pending Version of the software that could be installed identified by the PendingVersion
Object.

Fallback 2 The Fallback Version of the software identified by the FallbackVersion Object.

OPC 10000-100: Devices 98 Release 1.03.0

8.5.2 UpdateBehavior OptionSet

The UpdateBehavior OptionSet is based on UInt32. It describes how the device can perform the
update. All possible options are described in Table 87. All other values are reserved for future
versions of this specification. The OptionSet is used in the UpateBehavior Property of the
DirectLoadingType (8.4.4.3) and in the GetUpdateBehavior Methods on the CachedLoadingType
(8.4.5.5) and in the FileSystemLoadingType (8.4.6.3).

Table 87 – UpdateBehavior OptionSet

Value Bit No. Description

KeepsParameters 0 If KeepsParameters is not set, the device will lose its configuration during update. The
Client should do a backup of the parameters before the update and restore them
afterwards.

WillDisconnect 1 If WillDisconnect is set, the OPC UA Server will restart during installation. This can be
the case if the update is about the firmware of the device that hosts the OPC UA Server.

RequiresPowerCycle 2 If RequiresPowerCycle is set, the devices require a manual power off / power on for
installation.

WillReboot 3 If WillReboot is set, the device will reboot during the update, inclusive of embedded
infrastructure elements like an integrated switch.
An update Client should take this into account since the devices behind an integrated
switch are not reachable for that time.

NeedsPreparation 4 If NeedsPreparation is not set, the Client can install the update without maintaining the
PrepareForUpdateStateMachine. This can be used to support an installation without
stopping the software.

The UpdateBehavior OptionSet representation in the AddressSpace is defined in Table 88.

Table 88 – UpdateBehavior OptionSet Definition

Attribute Value

BrowseName UpdateBehavior

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of UInt32 defined in OPC 10000-5.

HasProperty Variable OptionSetValues LocalizedText [] PropertyType

Conformance Units

DI SU Software Update

9 Specialized topology elements

9.1 General

This section defines specialized types that are commonly used for Field Devices. It makes use of the
ConfigurableObjectType as a way to add functionality using composition.

9.2 Configurable components

9.2.1 General pattern

Subclause 9.2 defines a generic pattern to expose and configure components. It defines the following
principles:

• A configurable Object shall contain a folder called SupportedTypes that references the list of
Types available for configuring components using Organizes References. Sub-folders can be
used for further structuring of the set. The names of these sub-folders are vendor specific.

• The configured instances shall be components of the configurable Object.

Release 1.03.0 99 OPC 10000-100: Devices

Figure 54 illustrates these principles.

FolderType:

SupportedTypes

BaseObjectType

Some configurable

ObjectType
T_2

T_3

T_4

T_5

T_1

Organizes Organizes

Figure 54 – Configurable component pattern

In some cases the SupportedTypes folder on the instance may be different to the one on the Type
and may contain only a subset. It may be for example that only one instance of each Type can be
configured. In this case the list of supported Types will shrink with each configured component.

9.2.2 ConfigurableObjectType

This ObjectType implements the configurable component pattern and is used when an Object or an
instance declaration needs nothing but configuration capability. Figure 55 illustrates the
ConfigurableObjectType. It is formally defined in Table 89. Concrete examples are in Clauses 9.3
and 9.4.

BaseObjectType:

<ObjectIdentifier>

ConfigurableObject
Type

BaseObjectType

FolderType:

SupportedTypes

Organizes

0..n

T_1

T_2 T_3

Figure 55 – ConfigurableObjectType

OPC 10000-100: Devices 100 Release 1.03.0

Table 89 – ConfigurableObjectType definition

Attribute Value

BrowseName ConfigurableObjectType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Object SupportedTypes FolderType Mandatory

HasComponent Object <ObjectIdentifier> BaseObjectType OptionalPlaceholder

Conformance Units

DI Information Model

The SupportedTypes folder is used to maintain the set of (subtypes of) BaseObjectTypes that can be
instantiated in this configurable Object (the course of action to instantiate components is outside the
scope of this specification).

The configured instances shall be components of the ConfigurableObject.

9.3 Block Devices

A block-oriented Device can be composed using the modelling elements defined in this specification.
A block-oriented Device includes a configurable set of Blocks. Figure 56 shows the general structure
of block-oriented Devices.

Block-Oriented

Device

BlockType:

Block_E

Some

BlockDevice_A

Instance

Space
TypeSpace

DeviceType or

ComponentType

TopologyElement

Type

Some

Block Device Type

BlockType:

Block_B
FolderType:

SupportedTypes

ConfigurableObjectType:

Blocks

BlockType

1..1

1..1

A C DB E

FolderType:

SupportedTypes

ConfigurableObjectType:

Blocks

Figure 56 – Block-oriented Device structure example

An Object called Blocks is used as a container for the actual BlockType instances. It is of the
ConfigurableObjectType which includes the SupportedTypes folder. The SupportedTypes folder for
Blocks is used to maintain the set of (subtypes of) BlockTypes that can be instantiated. The
supported Blocks may be restricted by the block-oriented Device. In Figure 56 the BlockTypes B and
E have already been instantiated. In this example, only one instance of thes e types is allowed and

Release 1.03.0 101 OPC 10000-100: Devices

the SupportedTypes folder therefore does not reference these types anymore. See 9.2.1 for the
complete definition of the ConfigurableObjectType.

9.4 Modular Devices

A Modular Device is represented by a (subtype of) ComponentType that is composed of a top-Device
and a set of subdevices (modules). The top-Device often is the head module with the program logic
but a large part of the functionality depends on the used subdevices. The supported subdevices may
be restricted by the Modular Device. Figure 57 shows the general structure of Modular Devices.

Modular

Device

Module_D

Some

ModularDevice_Z

Instance

Space
TypeSpace

Modules

DeviceType or

ComponentType

TopologyElement

Type

Some

Modular Device Type

Module_C

FolderType:

SupportedTypes

ConfigurableObjectType:

SubDevices
1..1

1..1

A C DB E

FolderType:

SupportedTypes

ConfigurableObjectType:

SubDevices

Figure 57 – Modular Device structure example

The modules (subdevices) of Modular Devices are aggregated in the SubDevices Object. It is of the
ConfigurableObjectType, which includes the SupportedTypes folder. The SupportedTypes folder for
SubDevices is used to maintain the set modules that can be added to the Modular Device. Modules
are not in the DeviceSet Object.

Depending on the actual configuration, Modular Device instances might already have a set of pre-
configured subdevices. Furthermore, the SupportedTypes folder might only refer to a subset of all
possible subdevices for the Modular Device. In Figure 57 the modules C and D have already been
instantiated. In this example, only one instance of these types is allowed and the SupportedTypes
folder therefore does not reference these types anymore. See clause 9.2.1 for the complete definition
of the ConfigurableObjectType.

Subdevices may themselves be Modular Devices.

OPC 10000-100: Devices 102 Release 1.03.0

10 Profiles and ConformanceUnits

10.1 Conformance Units

Table 90 defines the corresponding Conformance Units for the OPC UA Information Model for Devices.

Table 90 – Conformance Units for Devices

Category Title Description

Server DI Information Model Supports Objects that conform to the Device model of this document.
This includes in particular Objects of (subtypes of) ComponentType and
FunctionalGroups.

Server DI DeviceType Supports Objects of DeviceType or a subtype.

Server DI DeviceSet Supports the DeviceSet object to aggregate Device instances.

Server DI Nameplate Supports Properties of the VendorNameplate Interface defined in 4.5.2.

Server DI TagNameplate Supports the TagNameplate Interface defined in 4.5.3.

Server DI Software Component Supports Objects of SoftwareType or a subtype.

Server DI DeviceHealth Supports the DeviceHealth Interface defined in 4.5.4.

Server DI DeviceHealthProperty Supports the DeviceHealth Property defined in 4.5.4.

Server DI HealthDiagnosticsAlarm Supports DeviceHealth Alarms defined in 4.12.

Server DI DeviceSupportInfo Server provides additional data for its Devices as defined in 4.5.5.

Server DI Identification Supports the Identification FunctionalGroup for Devices.

Server DI Protocol Supports the ProtocolType and instances of it to identify the used
communication profiles for specific instances.

Server DI Blocks Supports the BlockType (or subtypes respectively) and the Blocks Object
in some of the instantiated Devices.

Server DI Locking Supports the LockingService for certain TopologyElements.

Server DI BreakLocking Supports the BreakLock Method to break the lock held by another Client.

Server DI Network Supports the NetworkType to instantiate Network instances.

Server DI ConnectionPoint Supports subtypes of the ConnectionPointType.

Server DI NetworkSet Supports the NetworkSet Object to aggregate all Network instances.

Server DI ConnectsTo Supports the ConnectsTo Reference to associate Devices with a Network.

Server DI DeviceTopology Supports the DeviceTopology Object as starting Node for the
communication topology of the Devices to integrate.

Server DI Offline Supports offline and online representations of Devices including the
Methods to transfer data from or to the Device.

Server DI SU Software Update The Address Space contains at least one instance of the
SoftwareUpdateType as AddIn and provides the required Parameters of
IVendorNamePlateType as defined in 8.4.1.

Server DI SU DirectLoading At least one instance of the SoftwareUpdateType supports the
DirectLoadingType as Loading Object.

Server DI SU CachedLoading At least one instance of the SoftwareUpdateType supports the
CachedLoadingType as Loading Object.

Server DI SU FileSystem Loading At least one instance of the SoftwareUpdateType supports the
FileSystemLoadingType as Loading Object.

Server DI SU PrepareForUpdate At least one instance of the SoftwareUpdateType supports the
PrepareForUpdate Object.

Server DI SU Manual Power Cycle At least one instance of the SoftwareUpdateType supports the
PowerCycle Object.

Server DI SU Update Parameter
Backup

At least one instance of the SoftwareUpdateType supports the Parameters
Object.

Server DI SU UpdateStatus At least one instance of the SoftwareUpdateType supports the
UpdateStatus Variable.

Server DI SU VendorErrorCode At least one instance of the SoftwareUpdateType supports the
VendorErrorCode Variable.

Server DI SU Installation for Cached
Loading

At least one instance of the SoftwareUpdateType supports the Installation Object.

The Method InstallSoftwarePackage is mandatory.

The Method InstallFiles shall not be available.

Server DI SU Installation for File
System

At least one instance of the SoftwareUpdateType supports the Installation Object
of SoftwareUpdateType.

The Method InstallFiles is mandatory.

The Method InstallSoftwarePackage shall not be available.

Server DI SU InstallationDelay At least one instance of the InstallationStateMachineType supports the
InstallationDelay Variable.

Server DI SU Update Confirmation At least one instance of the SoftwareUpdateType supports the
Confirmation Object.

Server DI SU FallbackVersion At least one instance of the CachedLoadingType supports the
FallbackVersion Object.

Server DI SU UpdateKey At least one instance of the SoftwareLoadingType supports the
UpdateKey Variable.

Release 1.03.0 103 OPC 10000-100: Devices

Category Title Description

Server DI SU Installation
PercentComplete

At least one instance of the InstallationStateMachineType supports the
PercentComplete Variable.

Server DI SU Resume Update At least one instance of the PrepareForUpdateStateMachineType
supports the Resume Method.

Server DI SU Prepare for Update
PercentComplete

At least one instance of the PrepareForUpdateStateMachineType
supports the PercentComplete Variable.

Server DI SU Update WriteBlockSize At least one instance of a subtype of the PackageLoadingType supports
the WriteBlockSize Variable.

Server DI SU Update WriteTimeout At least one instance of DirectLoadingType supports the WriteTimeout
Variable.

Server DI SU PatchIdentifiers At least one instance of the SoftwareVersionType support the
PatchIdentifiers Property. If implemented on a SoftwareUpdate Object, all
supported versions (CurrentVersion, PendingVersion and
FallbackVersion) shall support the Property.

Server DI SU Update ReleaseDate At least one instance of SoftwareVersionType of a SoftwareUpdate Object
supports the ReleaseDate Property.

Server DI SU ChangeLogReference At least one instance of SoftwareVersionType of a SoftwareUpdate Object
supports the ChangeLogReference Property.

Server DI SU Update Hash At least one instance of SoftwareVersionType of a SoftwareUpdate Object
supports the Hash Property.

Server DI SU ValidateFiles At least one instance of the FileSystemLoadingType supports the
ValidateFiles Method.

Client DI Client Information Model Consumes Objects that conform to the Device model in this document.
This includes in particular Objects of (subtypes of) ComponentType and
FunctionalGroups.

Client DI Client DeviceSet Uses the DeviceSet Object to detect available Devices.

Client DI Client Nameplate Consumes Properties of the VendorNameplate Interface defined in 4.5.2.

Client DI Client TagNameplate Consumes the VendorNameplate Interface defined in 4.5.3.

Client DI Client Software Component Consumes Objects of SoftwareType or a subtype.

Client DI Client DeviceHealth Uses the DeviceHealth Interface defined in 4.5.4.

Client DI Client DeviceHealthProperty Uses the DeviceHealth Property defined in 4.5.4.

Client DI Client
HealthDiagnosticsAlarm

Uses DeviceHealth Alarms defined in 4.12.

Client DI Client DeviceSupportInfo Uses available additional data for Devices as defined in 4.5.5.

Client DI Client Identification Consumes the Identification FunctionalGroup for Devices including the
(optional) reference to supported protocol(s).

Client DI Client Blocks Understands and uses BlockDevices and their Blocks including
FunctionalGroups on both Device and Block level.

Client DI Client Locking Uses the LockingService where available.

Client DI Client BreakLocking Support use of the BreakLock Method to break the lock held by another
Client.

Client DI Client Network Uses the NetworkType to instantiate Network instances.

Client DI Client ConnectionPoint Uses subtypes of the ConnectionPointType.

Client DI Client NetworkSet Uses the NetworkSet Object to store or find Network instances.

Client DI Client ConnectsTo Uses the ConnectsTo Reference to associate Devices with a Network.

Client DI Client DeviceTopology Uses the DeviceTopology Object as starting Node for the communication
topology of the Devices to integrate.

Client DI Client Offline Uses offline and online representations of Devices including the Methods
to transfer data from or to the Device.

Client DI SU Client SoftwareUpdate Uses the IVendorNameplate and the SoftwareUpdate AddIn to perform a
software update.

Client DI SU Client DirectLoading Can use the DirectLoadingType to update the software using Direct-
Loading if supported by the server.

Client DI SU Client CachedLoading Uses the CachedLoadingType and InstallationStateMachineType to
update the software using Cached-Loading if supported by the server.

Client DI SU Client FileSystem
Loading

Uses the FileSystemLoadingType and InstallationStateMachineType to
update the software using FileSytsem based Loading if supported by the
server.

Client DI SU Client
PrepareForUpdate

Uses the PrepareForUpdate Object of SoftwareUpdateType if supported
by the server.

Client DI SU Client Manual Power
Cycle

Uses the PowerCycle Object of SoftwareUpdateType if supported by the
server.

Client DI SU Client Update Parameter
Backup

Uses the Parameters Object of SoftwareUpdateType if supported by the
server.

Client DI SU Client Update
Confirmation

Can use the Confirmation Object of SoftwareUpdateType if supported by
the server.

Client DI SU Client FallbackVersion Supports the installation of the Fallback Version if supported by the
server.

Client DI SU Client UpdateKey Supports update of devices that need an UpdateKey if supported by the
server.

Client DI SU Client Resume Update Can use the Resume Method on the PrepareForUpdate Object of
SoftwareUpdateType if supported by the server.

OPC 10000-100: Devices 104 Release 1.03.0

Category Title Description

Client DI SU Client WriteBlockSize Respects the WriteBlockSize of PackageLoadingType if supported by the
server.

Client DI SU Client Update Hash Can provide the Hash value to the Install Method for verification.

Client DI SU Client ValidateFiles Uses the ValidateFiles Method of the InstallationStateMachineType if
supported by the server.

10.2 Profiles

10.2.1 General

Profiles are named groupings of ConformanceUnits as defined in OPC 10000-7. The term Facet in
the title of a Profile indicates that this Profile is expected to be part of another larger Profile or
concerns a specific aspect of OPC UA. Profiles with the term Facet in their title are expected to be
combined with other Profiles to define the complete functionality of an OPC UA Server or Client.

This specification defines Facets for Servers or Clients when they plan to support OPC UA for
Devices. They are described in 10.2.3 and 10.2.4.

10.2.2 Profile list

Table 91 lists all Profiles defined in this document and defines their URIs.

Table 91 – Profile URIs for Devices

Profile URI

DI BaseDevice Server Facet http://opcfoundation.org/UA-Profile/DI/Server/BaseDevice

DI DeviceIdentification Server Facet http://opcfoundation.org/UA-Profile/DI/Server/DeviceIdentification

DI BlockDevice Server Facet http://opcfoundation.org/UA-Profile/DI/Server/BlockDevice

DI Locking Server Facet http://opcfoundation.org/UA-Profile/DI/Server/Locking

DI DeviceCommunication Server Facet http://opcfoundation.org/UA-Profile/DI/Server/DeviceCommunication

DI DeviceIntegrationHost Server Facet http://opcfoundation.org/UA-Profile/DI/Server/DeviceIntegrationHost

DI SU Software Update Base Server Facet http://opcfoundation.org/UA-Profile/DI/Server/SoftwareUpdateBase

DI SU Direct Loading Server Facet http://opcfoundation.org/UA-Profile/DI/Server/DirectLoading

DI SU Cached Loading Server Facet http://opcfoundation.org/UA-Profile/DI/Server/CachedLoading

DI SU FileSystem Loading Server Facet http://opcfoundation.org/UA-Profile/DI/Server/FileSystemLoading

DI BaseDevice Client Facet http://opcfoundation.org/UA-Profile/DI/Client/BaseDevice

DI DeviceIdentification Client Facet http://opcfoundation.org/UA-Profile/DI/Client/DeviceIdentification

DI BlockDevice Client Facet http://opcfoundation.org/UA-Profile/DI/Client/BlockDevice

DI Locking Client Facet http://opcfoundation.org/UA-Profile/DI/Client/Locking

DI DeviceCommunication Client Facet http://opcfoundation.org/UA-Profile/DI/Client/DeviceCommunication

DI DeviceIntegrationHost Client Facet http://opcfoundation.org/UA-Profile/DI/Client/DeviceIntegrationHost

DI SU Software Update Base Client Facet http://opcfoundation.org/UA-Profile/DI/Client/SoftwareUpdateBase

DI SU Direct Loading Client Facet http://opcfoundation.org/UA-Profile/DI/Client/DirectLoading

DI SU Cached Loading Client Facet http://opcfoundation.org/UA-Profile/DI/Client/CachedLoading

DI SU FileSystem Loading Client Facet http://opcfoundation.org/UA-Profile/DI/Client/FileSystemLoading

10.2.3 Device Server Facets

The following tables specify the Facets available for Servers that implement the Devices information
model. Table 92 describes Conformance Units included in the minimum needed Facet. It includes the
organisation of instantiated Devices in the Server AddressSpace.

http://opcfoundation.org/UA-Profile/DI/Client/DeviceIntegrationHost

Release 1.03.0 105 OPC 10000-100: Devices

Table 92 – DI BaseDevice Server Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Information Model M

DI DI DeviceSet M

DI DI DeviceType O

DI DI Nameplate O

DI DI TagNameplate O

DI DI Software Component O

DI DI DeviceHealth O

DI DI DeviceHealthProperty O

DI DI HealthDiagnosticsAlarm O

DI DI DeviceSupportInfo O

Table 93 defines a Facet for the identification FunctionalGroup of Devices. This includes the option
of identifying the Protocol(s).

Table 93 – DI DeviceIdentification Server Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Identification M

DI DI Protocol O

Table 94 defines extensions specifically needed for BlockDevices.

Table 94 – DI BlockDevice Server Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Blocks M

Table 95 defines a Facet for the Locking AddIn Capability. This includes the option of breaking a lock.

Table 95 – DI Locking Server Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Locking M

DI DI BreakLocking O

Table 96 defines a Facet for the support of the Device Communication model.

Table 96 – DI DeviceCommunication Server Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Network M

DI DI ConnectionPoint M

DI DI NetworkSet M

DI DI ConnectsTo M

Table 97 defines a Facet for the support of the Device Integration Host model .

Table 97 – DI DeviceIntegrationHost Server Facet definition

Group Conformance Unit / Profile Title M / O

DI DI DeviceTopology M

DI DI Offline M

Table 98 defines a Facet that describes the basic infrastructure for software update. It contains the
common part of the Direct Loading, Cached Loading and FileSystem Loading Server Profiles.

OPC 10000-100: Devices 106 Release 1.03.0

Table 98 – DI SU Software Update Base Server Facet

Group Conformance Unit / Profile Title M / O

DI DI SU Software Update M

DI DI SU PrepareForUpdate O

DI DI SU Resume Update O

DI DI SU Prepare for Update PercentComplete O

DI DI SU Manual Power Cycle O

DI DI SU Update Parameter Backup O

DI DI SU UpdateKey O

Table 99 defines a Facet with additional Conformance Units for a Server that implements Direct-
Loading.

Table 99 – DI SU Direct Loading Server Facet

Group Conformance Unit / Profile Title M / O

Profile DI SU Software Update Base Server Facet M

DI DI SU DirectLoading M

DI DI SU UpdateStatus M

DI DI SU Update WriteBlockSize O

DI DI SU Update WriteTimeout O

DI DI SU PatchIdentifiers O

DI DI SU Update ReleaseDate O

DI DI SU ChangeLogReference O

DI DI SU Update Hash O

Table 100 defines a Facet with additional Conformance Units for a Server that implements Cached-
Loading.

Table 100 – DI SU Cached Loading Server Facet

Group Conformance Unit / Profile Title M / O

Profile DI SU Software Update Base Server Facet M

DI DI SU CachedLoading M

DI DI SU Installation for Cached Loading M

DI DI SU UpdateStatus M

DI DI SU Installation PercentComplete O

DI DI SU InstallationDelay O

DI DI SU Update Confirmation O

DI DI SU FallbackVersion O

DI DI SU Update WriteBlockSize O

DI DI SU PatchIdentifiers O

DI DI SU Update ReleaseDate O

DI DI SU ChangeLogReference O

DI DI SU Update Hash O

Table 101 defines a Facet with additional Conformance Units for a Server that implements File
System based Loading.

Release 1.03.0 107 OPC 10000-100: Devices

Table 101 – DI SU FileSystem Loading Server Facet

Group Conformance Unit / Profile Title M / O

Profile DI SU Software Update Base Server Facet M

DI DI SU FileSystem Loading M

DI DI SU Installation for File System M

DI DI SU UpdateStatus O

DI DI SU Installation PercentComplete O

DI DI SU InstallationDelay O

DI DI SU Update Confirmation O

DI DI SU Validate Files O

10.2.4 Device Client Facets

The following tables specify the Facets available for Clients that implement the Devices information
model. Table 102 describes Conformance Units included in the minimum needed Facet.

Table 102 – DI BaseDevice Client Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Client Information Model M

DI DI Client DeviceSet M

DI DI Client Nameplate O

DI DI Client Software Component O

DI DI Client DeviceHealth O

DI DI DeviceHealthProperty O

DI DI HealthDiagnosticsAlarm O

DI DI Client DeviceSupportInfo O

Table 103 defines a Facet for the identification FunctionalGroup of Devices. This includes the option
of identifying the Protocol(s).

Table 103 – DI DeviceIdentification Client Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Client Identification M

Table 104 defines extensions specifically needed for BlockDevices.

Table 104 – DI BlockDevice Client Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Client Blocks M

Table 105 defines a Facet for the Locking AddIn Capability. This includes the option of breaking a
lock.

Table 105 – DI Locking Client Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Client Locking M

DI DI Client BreakLocking O

Table 106 defines a Facet for the use of the Device Communication model.

Table 106 – DI DeviceCommunication Client Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Client Network M

DI DI Client ConnectionPoint M

DI DI Client NetworkSet M

DI DI Client ConnectsTo M

Table 107 defines a Facet for the use of the Device Integration Host model.

OPC 10000-100: Devices 108 Release 1.03.0

Table 107 – DI DeviceIntegrationHost Client Facet definition

Group Conformance Unit / Profile Title M / O

DI DI Client DeviceTopology M

DI DI Client Offline M

Table 98 defines a Facet that describes the basic features of a software update client. It contains the
common part of the Direct Loading, Cached Loading and FileSystem Loading Client Profiles.

Table 108 – DI SU Software Update Base Client Facet

Group Conformance Unit / Profile Title M / O

DI DI SU Client SoftwareUpdate M

DI DI SU Client PrepareForUpdate O

DI DI SU Client Resume Update O

DI DI SU Client Manual Power Cycle O

DI DI SU Client Update Parameter Backup O

DI DI SU Client UpdateKey O

Table 99 defines a Facet with additional Conformance Units for a Client that supports Direct-Loading.

Table 109 – DI SU Direct Loading Client Facet

Group Conformance Unit / Profile Title M / O

Profile DI SU Software Update Base Client Facet M

DI DI SU Client DirectLoading M

DI DI SU Client WriteBlockSize O

DI DI SU Client Update Hash O

Table 100 defines a Facet with additional Conformance Units for a Client that supports Cached-
Loading.

Table 110 – DI SU Cached Loading Client Facet

Group Conformance Unit / Profile Title M / O

Profile DI SU Client SoftwareUpdate M

DI DI SU Client CachedLoading M

DI DI SU Client Update Confirmation O

DI DI SU Client FallbackVersion O

DI DI SU Client WriteBlockSize O

DI DI SU Client Update Hash O

Table 101 defines a Facet with additional Conformance Units for a Client that supports File System
based Loading.

Table 111 – DI SU FileSystem Loading Client Facet

Group Conformance Unit / Profile Title M / O

Profile DI SU Client SoftwareUpdate M

DI DI SU Client FileSystem Loading M

DI DI SU Client Update Confirmation O

DI DI SU Client ValidateFiles O

11 Namespaces

11.1 Namespace Metadata

Table 112 defines the namespace metadata for this specification. The Object is used to provide
version information for the namespace and an indication about static Nodes. Static Nodes are
identical for all Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more
details.

Release 1.03.0 109 OPC 10000-100: Devices

The information is provided as Object of type NamespaceMetadataType. This Object is a component
of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType
ObjectType and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file.
The UANodeSet XML schema is defined in OPC 10000-6.

Table 112 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/DI/

Property DataType Value

0:NamespaceUri 0:String http://opcfoundation.org/UA/DI/

0:NamespaceVersion 0:String 1.03.0

0:NamespacePublicationDate 0:DateTime 2021-03-09

0:IsNamespaceSubset 0:Boolean False

0:StaticNodeIdTypes 0:IdType[] 0

0:StaticNumericNodeIdRange 0:NumericRange[]

0:StaticStringNodeIdPattern 0:String

11.2 Handling of OPC UA namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities.
The Attributes NodeId and BrowseName are identifiers. A Node in the UA Address Space is
unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to
unambiguously identify a Node. Different Nodes may have the same BrowseName. They are used to
build a browse path between two nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the namespace of
the standards body although the namespace of the NodeId reflects something else, for example the
EngineeringUnits Property. All NodeIds of Nodes not defined in this specification shall not use the
standard namespaces.

Table 113 provides a list of mandatory and optional namespaces used in a DI OPC UA Server.

Table 113 – Namespaces used in an OPC UA for Devices Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the
OPC UA specification. This namespace shall have namespace
index 0.

Mandatory

Local Server URI Namespace for Nodes defined in the local Server. This may
include types and instances used in a Device represented by
the Server. This namespace shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA/DI/ Namespace for NodeIds and BrowseNames defined in this
specification. The namespace index is Server specific.

Mandatory

Vendor specific types and instances A Server may provide vendor specific types like types derived
from TopologyElementType or NetworkType or vendor-specific
instances of those types in a vendor specific namespace.

Optional

Table 114 provides a list of namespaces and their index used for BrowseNames in this specification.
The default namespace of this specification is not listed since all BrowseNames without prefix use
this default namespace.

Table 114 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

OPC 10000-100: Devices 110 Release 1.03.0

Annex A
(normative)

Namespace and mappings

This Annex defines the numeric identifiers for all of the numeric NodeIds defined in this standard.
The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance

Node that appears in the specification and the Identifier is the numeric value for the NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the instance
Node to the BrowseName for the containing instance or type. An underscore character is used to
separate each BrowseName in the path. Let’s take for example, the DeviceType ObjectType Node
which has the SerialNumber Property. The SymbolName for the SerialNumber InstanceDeclaration
within the DeviceType declaration is: DeviceType_SerialNumber.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/DI/

The CSV released with this version of the standard can be found at:
http://www.opcfoundation.org/UADevices/1.3/NodeIds.csv

NOTE 1 The latest CSV that is compatible with this version of the standard can be found at:

http://www.opcfoundation.org/UADevices/NodeIds.csv

A computer processible version of the complete Information Model defined in this standard is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema released with this version of the standard can be found at:
http://www.opcfoundation.org/UADevices/1.3/Opc.Ua.Di.NodeSet2.xml

NOTE 2 The latest Information Model schema that is compatible with this version of the standard can be found at:

http://www.opcfoundation.org/UADevices/Opc.Ua.Di.NodeSet2.xml

http://opcfoundation.org/DI/
http://www.opcfoundation.org/UADevices/1.3/NodeIds.csv
http://www.opcfoundation.org/UADevices/NodeIds.csv
http://www.opcfoundation.org/UADevices/1.3/Opc.Ua.Di.NodeSet2.xml
http://www.opcfoundation.org/UADevices/Opc.Ua.Di.NodeSet2.xml

Release 1.03.0 111 OPC 10000-100: Devices

Annex B
(informative)

Examples

This Annex includes examples referenced in the normative sections.

B.1 Functional Group Usages

The examples in Figure B.1 and Figure B.2 illustrate the use of FunctionalGroups:

ParameterSet::
BaseObjectType

DeviceType

Configuration

AnalyserDeviceType

FunctionalGroupType

Status

FactorySettings
Organizes

<ParameterIdentifier>::
BaseDataVariableType

*<GroupIdentifier>

Figure B.1 – Analyser Device use for FunctionalGroups

DeviceType

CtrlConfigurationType

BaseObjectType:

ParameterSet

BaseObjectType:

MethodSet

Start

Stop

FunctionalGroupType:

Diagnostics

FunctionalGroupType:

Configuration

Organizes

Organizes

ResourceType:

<Resource Name>

FunctionalGroupType:

GlobalVars

FunctionalGroupType:

AccessVars

FunctionalGroupType:

ConfigVars

ConfigurableComponentsType:

Resources

Var1

Var3

Var2

Organizes

Organizes

Organizes

Figure B.2 – PLCopen use for FunctionalGroups

OPC 10000-100: Devices 112 Release 1.03.0

B.2 Identification Functional Group

The Properties of a TopologyElement, like Manufacturer, SerialNumber, will usually be sufficient as
identification. If other Parameters or even Methods are required, all elements needed shall be
organised in a FunctionalGroup called Identification. Figure B.3 illustrates the Identification
FunctionalGroup with an example.

Note that companion standards are expected to define the Identification contents for their model.

 Example!

BaseObjectType:

ParameterSet

FunctionalGroupType:

Identification

TopologyElement

Type

BaseDataVariableType:

ManufacturerId

OrganizesBaseDataVariableType:

ModelId

PropertyType:

SerialNumber

ProtocolType:

ProtocolId

Figure B.3 – Example of an Identification FunctionalGroup

B.3 Software Update examples

B.3.1 Factory Automation Example

This example illustrates the use of software update of several devices from the Client point of view.

This is only one example for a specific domain. There will be different Clients for different types of
systems or industries (e.g. for process domain the process will not be stopped and before a sensor
is updated a replacement value needs to be configured in the controller).

Release 1.03.0 113 OPC 10000-100: Devices

PLC

switch

PLC PLC

client

Figure B.4 – Example

The example (illustrated in Figure B.4) describes a production line with several production cells. Each

cell contains a robot and a main PLC that can be updated. A switch connects the cells and is also

updateable via OPC UA.

A Client would perform the following steps:

1. Analyze the system

• Determine the network topology with all devices

• Determine currently installed software and how the devices can perform the update (using
IVendorNameplateType Interface and Loading Object)

• Determine technical preconditions for the update. E.g. if the device uses Direct-, Cached-
or File System based Loading (using the Loading Object).

2. Prepare installation

• The user selects the software to be installed

• Transfer the software and firmware updates to the PLCs, the robots and the switch, except
for Direct-Loading. (using CachedLoadingType, FileSystem)

3. Schedule installation (Client only)

• Determine how the update can be executed (using GetUpdateBehavior Methods of
CachedLoadingType and FileSystemLoadingType)

• Wait for strategic condition (e.g. end of shift; no task in queue)

• Plan the order of update (e.g. robots and PLCs first; infrastructure components last)

4. Prepare devices for installation

• Stop production line software (using an application specific Information Model)

OPC 10000-100: Devices 114 Release 1.03.0

• Bring the robots and PLCs into a state for update (using the PrepareForUpdate state
machine and/or branch specific state machine)

• Wait for technical starting conditions (e.g. robot in standstill) (using the PrepareForUpdate
state machine)

5. Execute installation

• Start the installation of all robots and all PLCs simultaneously (using the Installation state
machine)

• Update the switch when robots & PLCs are done (using the Installation state machine)

6. Restore device state after installation

• Restart robots and PLCs (using the PrepareForUpdate state machine and/or branch
specific state machine)

• Restart production line software (using an application specific Information Model)

Release 1.03.0 115 OPC 10000-100: Devices

B.3.2 Update sequence using Direct-Loading

An example sequence of Direct-Loading is shown in Figure B.5.

If the Server does not implement the properties PrepareForUpdate, PowerCycle or Parameters of the
SoftwareUpdateType, the associated options are not supported by the component and Client-Server
interaction becomes simpler.

In the first steps the device identity and the kind of supported Server options of the device must be
discovered as described in Figure 34.

How to look up and transfer files for an installation is described in Figure 35.

The preparation can be done as described in Figure 36.

The installation itself is described in Figure 37.

Client Server

Check update model and options supported by the device
(List of Properties below SoftwareUpdate)

Get Behavior
(Loading.UpdateBehavior)

Read versions
(Loading.CurrentVersion)

Prepare device
(PrepareForUpdate.Prepare())

Device is ready for update
(PrepareForUpdate => PreparedState)

Transfer (and Install)
(Loading.FileTransfer)

Reconnect

Device needs power cycle
(PowerCycle => WaitingForPowerCycle)

Manual power off + power on

User Device

Reboot

"Please switch
power off

and on again"

Resume device
(PrepareForUpdate.Resume())

Backup parameters
(Parameters .GenerateFileForRead())

Restore parameters
(Parameters.GenerateFileForWrite())

Stop device/machine/plant
(other information model)

Restart device/machine/plant
other information model

select
new firmware

"requires
power cycle and

will reboot"

start Update

Install

"Update complete"

Figure B.5 – Example sequence of Direct-Loading

OPC 10000-100: Devices 116 Release 1.03.0

B.3.3 Update sequence using Cached-Loading

An example sequence of Cached-Loading is shown in Figure B.6.

If the Server does not implement the properties PrepareForUpdate, PowerCycle or Parameters of the
SoftwareUpdateType, the associated options are not supported by the component and Client-Server
interaction becomes simpler.

In the first steps the device identity and the kind of supported Server options of the device must be
discovered as described in Figure 34.

How to look up and transfer files for an installation is described in Figure 35.

The preparation can be done as described in Figure 36.

The installation itself is described in Figure 38.

Client Server

Check update model and options supported by the device
(List of Properties below SoftwareUpdate)

Read versions
(Loading.CurrentVersion)

Prepare device
(PrepareForUpdate.Prepare())

Device is ready for update
(PrepareForUpdate => PreparedState)

Start installation
(Installation.InstallSoftwarePackage())

Reconnect

Device needs power cycle
(PowerCycle => WaitingForPowerCycle)

Manual power off + power on

User Device

Reboot

"Please switch
power off

and on again"

Resme device
(PrepareForUpdate.Resume())

Installation complete
(Installation => Id le)

Backup parameters
(Parameters.GenerateFileForRead())

Restore parameters
(Parameters.GenerateFileForWrite())

Stop device / machine / plant
other information model

Restart device / machine / plant
other information model

Transfer Firmware
(Loading.FileTransfer)

select
new firmware

Get Behavior
(Loading.GetUpdateBehavior)

"requires
power cycle and

will reboot"

Set Confirmation Timeout
(Confirmation.ConfirmationTimeout = 10s)

Confirm working Connection
(Confirmation.Confirm())

"Update complete"

start Update

Figure B.6 – Example sequence of Cached-Loading

Release 1.03.0 117 OPC 10000-100: Devices

OPC 10000-100: Devices 118 Release 1.03.0

B.3.4 Update sequence using File System based Loading

An example sequence of File System based Loading is shown in Figure B.7.

In this example the server provides the PrepareForUpdate state machine and a preparation for a n
installation can only be done locally at the device. So the Resume activity described in Figure 38
cannot be commanded by a Client.

In the first steps the device ident ity and the kind of supported Server options of the device must be
discovered as described in Figure 34.

How to look up and transfer files for an installation is described in Figure 35.

The preparation can be done as described in Figure 36.

The installation itself is described in Figure 38.

Release 1.03.0 119 OPC 10000-100: Devices

Client Server

browse for FileDirectory instance of Loading instance
and provided files in this directory

file download
(0:FileDirectory)

install defined file(s)
(Method: InstallFiles() of InstallationStateMachineType)

User Device

check preparation
(Method: Prepare() of PrepareForUpdateStateMachineType)

transfer files

lookup for files and
decide for update

no files (to install) in this directory available

verify device identity
discover via entry point and lookup instances

providing SoftwareUpdateType AddIn

copy to
file system

optional file
validation

validate file(s)
(Method: ValidateFiles() of FileSystemLoadingType)

validation result
ErrorCode == 0 (success)

validate
files

validation
result

prepare activity
check

preparation

prepared for update
(state change Preparing to PreparedForUpdate

of PrepareForUpdateStateMachineType)

preparation
done

conditions
established

install install

installation
finished

installation fninished
(state change Installing to Idle

of InstallationStateMachineType)

conditions
revoked

resumed
preparation resuming

(internal state change to Resuming
of PrepareForUpdateStateMachineType)

preparation idle
(internal state change to Idle

of PrepareForUpdateStateMachineType)

resume

check type of Loading
Object

lookup type of Loading instance of
SoftwareUpdateType

Loading Instance is a FileSystemLoadingType

check supported
state machines

browse components of SoftwareUpdateType instance
for provided statemachines

Instances PrepareForUpdate and Installation
are available

preparing
(state change Idle to Preparing

of PrepareForUpdateStateMachineType)

installing
(state change Idle to Installing

of InstallationStateMachineType)

Figure B.7 – Example sequence of File System based Loading

OPC 10000-100: Devices 120 Release 1.03.0

Release 1.03.0 121 OPC 10000-100: Devices

Annex C
(informative)

Guidelines for the usage of OPC UA for Devices as base for Companion

Specifications

This informative Annex describes guidelines for the usage of this specification as base for creating
companion specifications as well as guidelines on how to combine different companion specifications
based on this specification describing different aspects of the same device in one OPC UA
application.

C.1 Overview

This specification is used as base for many other companion specifications like

• OPC UA for IEC61131-3

• OPC UA Information Model for FDT Technology

• AutoId

• OPC UA for IO-Link.

Those companion specifications define different aspects of devices, for example

• some specific functionality (like the scan operation of a RFID reader in the AutoId spec),

• the view of the device accessed by a specific protocol (like IO-Link),

• or the configuration capabilities of a device as defined in a vendor-specific device package
(like FDI or FDT).

When an OPC UA application wants to combine those different aspects of one device in its address
space, there are potential problems as shown in Figure C.1. The example shows the application of
the AutoId specification as well as the FDT specification for the same device. For simplicity, only the
base ObjectTypes are shown. In reality, there has to be a subtype of the abstract FdtDeviceType and
there would be very likely a vendor-specific subtype of the RfidReaderDeviceType.

As shown in the figure, there are actually two Objects of different ObjectTypes representing diff erent
aspects of the same device in the real world.

OPC 10000-100: Devices 122 Release 1.03.0

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

MyDevice

FdtDeviceType

MyDevice

Both objects represent
the same device in the

real world

Figure C.1 – Example of applying two companion specifications based on OPC UA for
Devices

In order to avoid multiple-inheritance, which is not further defined in OPC UA, it is not possible to
directly combine both ObjectTypes into one ObjectType containing all aspects of the device. And an
Object cannot be defined by two ObjectTypes. Therefore, in order to expose the information, that
both Objects actually represent different aspects of the same device, composition should be used as
shown in Figure C.2.

Release 1.03.0 123 OPC 10000-100: Devices

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

AutoIdView

FdtDeviceType

FDTView

MyDevice

MyDeviceType

Figure C.2 – Using composition to compose one device representation defined by two
companion specifications

In this case, the device is represented by an Object “MyDevice” where the vendor of the OPC UA
Application can provide its specific knowledge of the device. In addition, the Object has two
components called FDTView and AutoIdView in the figure, containing the information as defined in
the corresponding companion specifications.

C.2 Guidelines to define Companion Specifications based on OPC UA for Devices

As shown in the previous section, composition can be used to combine the ObjectTypes defined by
various specifications describing aspects of a device in order to combine the information in one OPC
UA application. This can lead, as shown in the example in Figure C.2, to the usage of several
instances of the DeviceType to represent one device. In order to avoid this, it is recommended that
companion specifications do not directly derive from the DeviceType but instead derive from the
TopologyElementType or other subtypes of the TopologyElementType (but not the DeviceType). This
allows an OPC UA application to represent the device by one instance of the DeviceType and
compose potentially several other aspects without the need to use the DeviceType again.

The DeviceType defines several Properties identifying the device as mandatory. By the above
described approach, the Properties do not need to be repeated several times as ne eded in the
example in Figure C.2. Here, the mandatory SerialNumber is a Property of MyDevice, FDTView, and
AutoIdView. However, companion specification can still define some of those Properties on their
ObjectTypes, either optional in order to allow the usage of their ObjectTypes without an additional
Object (for example if only one companion specification is supported by the OPC UA application) or
mandatory, if a specific access-path to the information shall be exposed. For example, the
SerialNumber accessed by a specific protocol might be different than the SerialNumber managed
directly by the DeviceVendor. Whereas Profibus or IO-Link represent the SerialNumber as a String,
the HART protocol uses three Bytes. So, if a companion specification should expose the

OPC 10000-100: Devices 124 Release 1.03.0

SerialNumber accessed via HART, it can add it as mandatory Property to its ObjectType. To conclude,
it is recommended that companion specification provide the Properties of the DeviceType by
implementing the IVendorNameplateType, which adds all the Properties optionally to the ObjectType.
If desired, they can make some of those Properties mandatory to force that a specific access path is
used (e.g. via a specific protocol).

In order to easily identify the components representing different views on the device, it is
recommended to use the AddIn concept to define a standardized BrowseName for the Object
(DefaultInstanceBrowseName Property). In the example in Figure C.2 that would mean that
FdtDeviceType would have defined a DefaultInstanceBrowseName “FDTView”, and thus OPC UA
Clients can easily find the FDT specific data of the dev ice by looking for an Instance called “FDTView”,
for example by using the TranslateBrowsePathsToNodeIds Service.

C.3 Guidelines on how to combine different companion specifications based on
OPC UA for Devices in one OPC UA application

When supporting several companion specifications in one OPC UA application it is recommended to
use the composition approach as described in section C.1. To expose the possibilities further, the
example is extended as shown in Figure C.3. Again, subtypes for the concrete type of device are not
considered for simplicity. The IOLinkDeviceType is already not derived from DeviceType but

Release 1.03.0 125 OPC 10000-100: Devices

TopologyElementType. As the FDT and AutoID specifications derive from DeviceType, the device is
represented by several instances of the DeviceType.

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

AutoIdView

FdtDeviceType

FDTView

MyDevice

TopologyElementType

OPC UA for IO-Link

IOLinkDeviceType

IO-LinkView

MyDeviceType

ComponentType

Figure C.3 – Example of applying several companion specifications (I)

In order to limit the usage of DeviceType instances, an alternative approach is shown in Figure C.4.
Here, the RfidReaderDeviceType is used as main Object to represent the device, and the objects
defined by the other companion specifications are composed.

OPC 10000-100: Devices 126 Release 1.03.0

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

FdtDeviceType

FDTView

MyDevice

TopologyElementType

OPC UA for IO-Link

IOLinkDeviceType

IO-LinkView

ComponentType

Figure C.4 – Example of applying several companion specifications (II)

It is recommended to use one of the two approaches described above.

C.4 Guidelines to manage the same Variables defined in different places

Deploying several Information Models based on this specification on the same device may lead to the
situation, that the same Variable (e.g. the Property SerialNumber) for the same device is used in
several places.

When the Property is the same, and the value of the Property is the same, it is recommended to
avoid, that the value is managed in the Server in two different places (see Figure C.5, left). One
solution is, that the two Variables reference the same internal memory managing the value (see
Figure C.5, middle). Another solution is, that the Variable is only managed once in the Server, just
referenced from different places (see Figure C.5, right). The solution using the same Node is the most
optimized one in terms of memory consumption.

MyDeviceType::

MyDevice

PropertyType::

SerialNumber

RfidReaderDeviceType::

AutoIdView

PropertyType::

SerialNumber

Internal Memory

xxx

123

xxx

459

Information Duplicated – Not Recomended!

MyDeviceType::

MyDevice

PropertyType::

SerialNumber

RfidReaderDeviceType::

AutoIdView

PropertyType::

SerialNumber

Internal Memory

xxx

123

xyz

459

Internally using same data

MyDeviceType::

MyDevice

PropertyType::

SerialNumber

RfidReaderDeviceType::

AutoIdView

Internal Memory

xxx

123

xyz

459

Using same Node

Release 1.03.0 127 OPC 10000-100: Devices

Figure C.5 – Options how to manage the same Variable

C.5 Guidelines on how to use functionality in companion specifications

In the previous sections it was shown how to use this specification when you want to use at least the
TopologyElementType, providing you the capabilities to manage Parameters and Methods via
ParameterSet and MethodSet and FunctionalGroups.

If the companion specification only wants to reuse other aspects of this specification, defined in the
Interfaces in 4.5 or the AddIns "Locking" in 7 or Software update in 8, the companion specification
does not need to derive from the ObjectTypes defined in this specification. Instead of, it can just
implement the Interfaces or use the AddIns in their ObjectTypes and build an ObjectType-Hierarchy
independent of this specification.

In Figure C.5, an example is given. The companion specification defines an ObjectType hierarchy,
and uses the AddIns in the appropriate places (Lock and Transfer). The Interfaces can either be
implemented by the ObjectTypes directly (Figure C.5), or by a sub-component in order to group the
functionality (Figure C.7). In the second approach, the RootType does not implement the
IVendorNameplate directly, but uses a component (Identification) implementing the Interface. Here,
the FunctionalGroupType and the predefined name Identification is used. The B_Type extends the
Identification and also implements the ITagNameplateType.

RootType

A_Type B_Type C_Type

A1_Type A2_Type

LockingServiceType::

Lock
HasAddIn

LockingServiceType::

Lock
HasAddIn

TranbsferServiceType::

Transfer
HasAddIn

TranbsferServiceType::

Transfer

HasAddIn

IVendorNameplateType

ITagNameplateType

Figure C.6 – Example on how to use AddIns and Interface

The advantage of the first approach is, that the content of the Interface is directly at the ObjectType,
whereas the advantage of the second approach is, that the content of the Interface is grouped in the
sub-component. When the content of the Interface and the additional content of the ObjectType and
its expected subtypes is rather small, the first approach is recommended. If the content of the
Interface or the additional content of the ObjectType or its subtypes is rather large, the additional
grouping Object is recommended, as it does not provide a flat list of sub-components, but groups
them accordingly and thus makes it easier to use.

OPC 10000-100: Devices 128 Release 1.03.0

RootType

B_Type

IVendorNameplateType

ITagNameplateType

FunctionalGroupType::

Identification

FunctionalGroupType::

Identification

Figure C.7 – Example on how to use Interface with additional Object

Release 1.03.0 129 OPC 10000-100: Devices

Bibliography

IEC 61784: Industrial Communication Networks - Profiles

IEC 61499-1 ed2.0: Function Blocks –Part 1: Architecture

IEC 62591: Industrial communication networks - Wireless communication network and communication
profiles - WirelessHART™

IEC 61131, IEC standard for Programmable Logic Controllers (PLCs)

	1 Scope
	2 Reference documents
	3 Terms, definitions, abbreviated terms, and conventions
	3.1 Terms and definitions
	3.2 Abbreviated terms
	3.3 Conventions used in this document
	3.3.1 Conventions for Node descriptions
	3.3.1.1 Node definitions
	3.3.1.2 Additional References
	3.3.1.3 Additional sub-components
	3.3.1.4 Additional Attribute values

	3.3.2 NodeIds and BrowseNames
	3.3.2.1 NodeIds
	3.3.2.2 BrowseNames

	3.3.3 Common Attributes
	3.3.3.1 General
	3.3.3.2 Objects
	3.3.3.3 Variables
	3.3.3.4 VariableTypes
	3.3.3.5 Methods

	4 Device model
	4.1 General
	4.2 Usage guidelines
	4.3 TopologyElementType
	4.4 FunctionalGroupType
	4.4.1 Model
	4.4.2 Recommended FunctionalGroup BrowseNames
	4.4.3 UIElement Type

	4.5 Interfaces
	4.5.1 Overview
	4.5.2 VendorNameplate Interface
	4.5.3 TagNameplate Interface
	4.5.4 DeviceHealth Interface
	4.5.5 SupportInfo Interface

	4.6 ComponentType
	4.7 DeviceType
	4.8 SoftwareType
	4.9 DeviceSet entry point
	4.10 DeviceFeatures entry point
	4.11 BlockType
	4.12 DeviceHealth Alarm Types
	4.12.1 General
	4.12.2 DeviceHealthDiagnosticAlarmType
	4.12.3 FailureAlarmType
	4.12.4 CheckFunctionAlarmType
	4.12.5 OffSpecAlarmType
	4.12.6 MaintenanceRequiredAlarmType

	5 Device communication model
	5.1 General
	5.2 ProtocolType
	5.3 Network
	5.4 ConnectionPoint
	5.5 ConnectsTo and ConnectsToParent ReferenceTypes
	5.6 NetworkSet Object

	6 Device integration host model
	6.1 General
	6.2 DeviceTopology Object
	6.3 Online/Offline
	6.3.1 General
	6.3.2 IsOnline ReferenceType

	6.4 Offline-Online data transfer
	6.4.1 Definition
	6.4.2 TransferServices Type
	6.4.3 TransferServices Object
	6.4.4 TransferToDevice Method
	6.4.5 TransferFromDevice Method
	6.4.6 FetchTransferResultData Method

	7 Locking model
	7.1 Overview
	7.2 LockingServices Type
	7.3 LockingServices Object
	7.4 MaxInactiveLockTime Property
	7.5 InitLock Method
	7.6 ExitLock Method
	7.7 RenewLock Method
	7.8 BreakLock Method

	8 Software update model
	8.1 Overview
	8.2 Use Cases
	8.2.1 Supported Use Cases
	8.2.1.1 Software Update of constraint devices
	8.2.1.2 Update Devices from different manufacturers with a Software Update Client
	8.2.1.3 Update of underlying Devices (e.g. IO Link Devices)
	8.2.1.4 Coordinated update of multiple Devices in a machine / plant
	8.2.1.5 Partial update without stopping the software
	8.2.1.6 Scheduled update
	8.2.1.7 Central distribution for later installation
	8.2.1.8 Update of individual parts of a software
	8.2.1.9 Reliable update of Devices that are out of reach
	8.2.1.10 Backup and restore parameters that are lost during the update
	8.2.1.11 Selecting the correct version to install
	8.2.1.12 Installation of additional software

	8.2.2 Unsupported Use Cases
	8.2.2.1 Finding devices that provide the SoftwareUpdate AddIn within a Server
	8.2.2.2 Explicit Restarting the device
	8.2.2.3 Pulling software from an external source

	8.3 General
	8.3.1 System perspective
	8.3.2 Types of software
	8.3.3 Types of Devices
	8.3.4 Options for the Server
	8.3.4.1 Overview
	8.3.4.2 Prepare for update option
	8.3.4.3 Direct-Loading option
	8.3.4.4 Cached-Loading option
	8.3.4.5 FileSystem option
	8.3.4.6 Installation option
	8.3.4.7 UpdateStatus option
	8.3.4.8 Parameter backup / restore option
	8.3.4.9 Confirmation option
	8.3.4.10 Power cycle option

	8.3.5 Software Update Client
	8.3.6 Safety considerations
	8.3.7 Security considerations
	8.3.8 Update Behavior
	8.3.9 Installation of patches
	8.3.10 Incompatible parameters / settings
	8.3.11 AddIn model

	8.4 ObjectTypes
	8.4.1 SoftwareUpdateType
	8.4.1.1 Overview
	8.4.1.2 Loading
	8.4.1.3 PrepareForUpdate
	8.4.1.4 Installation
	8.4.1.5 PowerCycle
	8.4.1.6 Confirmation
	8.4.1.7 Parameters
	8.4.1.8 UpdateStatus
	8.4.1.9 VendorErrorCode
	8.4.1.10 DefaultInstanceBrowseName

	8.4.2 SoftwareLoadingType
	8.4.2.1 Overview
	8.4.2.2 UpdateKey

	8.4.3 PackageLoadingType
	8.4.3.1 Overview
	8.4.3.2 CurrentVersion
	8.4.3.3 FileTransfer
	8.4.3.3.1 Transfer to the device
	8.4.3.3.2 Transfer from the device

	8.4.3.4 ErrorMessage
	8.4.3.5 WriteBlockSize

	8.4.4 DirectLoadingType
	8.4.4.1 Overview
	8.4.4.2 FileTransfer
	8.4.4.3 UpdateBehavior
	8.4.4.4 WriteTimeout

	8.4.5 CachedLoadingType
	8.4.5.1 Overview
	8.4.5.2 FileTransfer
	8.4.5.3 PendingVersion
	8.4.5.4 FallbackVersion
	8.4.5.5 GetUpdateBehavior Method

	8.4.6 FileSystemLoadingType
	8.4.6.1 Overview
	8.4.6.2 FileSystem
	8.4.6.3 GetUpdateBehavior Method
	8.4.6.4 ValidateFiles Method

	8.4.7 SoftwareVersionType
	8.4.7.1 Overview
	8.4.7.2 Manufacturer
	8.4.7.3 ManufacturerUri
	8.4.7.4 SoftwareRevision
	8.4.7.5 PatchIdentifiers
	8.4.7.6 ReleaseDate
	8.4.7.7 ChangeLogReference
	8.4.7.8 Hash

	8.4.8 PrepareForUpdateStateMachineType
	8.4.8.1 Overview
	8.4.8.2 PercentComplete
	8.4.8.3 Prepare Method
	8.4.8.4 Abort Method
	8.4.8.5 Resume Method

	8.4.9 InstallationStateMachineType
	8.4.9.1 Overview
	8.4.9.2 PercentComplete
	8.4.9.3 InstallationDelay
	8.4.9.4 InstallSoftwarePackage Method
	8.4.9.5 InstallFiles Method
	8.4.9.6 Resume Method

	8.4.10 PowerCycleStateMachineType
	8.4.11 ConfirmationStateMachineType
	8.4.11.1 Overview
	8.4.11.2 ConfirmationTimeout
	8.4.11.3 Confirm Method

	8.5 DataTypes
	8.5.1 SoftwareVersionFileType
	8.5.2 UpdateBehavior OptionSet

	9 Specialized topology elements
	9.1 General
	9.2 Configurable components
	9.2.1 General pattern
	9.2.2 ConfigurableObjectType

	9.3 Block Devices
	9.4 Modular Devices

	10 Profiles and ConformanceUnits
	10.1 Conformance Units
	10.2 Profiles
	10.2.1 General
	10.2.2 Profile list
	10.2.3 Device Server Facets
	10.2.4 Device Client Facets

	11 Namespaces
	11.1 Namespace Metadata
	11.2 Handling of OPC UA namespaces

	Annex A (normative) Namespace and mappings
	Annex B (informative) Examples
	B.1 Functional Group Usages
	B.2 Identification Functional Group
	B.3 Software Update examples
	B.3.1 Factory Automation Example
	B.3.2 Update sequence using Direct-Loading
	B.3.3 Update sequence using Cached-Loading
	B.3.4 Update sequence using File System based Loading

	Annex C (informative) Guidelines for the usage of OPC UA for Devices as base for Companion Specifications
	C.1 Overview
	C.2 Guidelines to define Companion Specifications based on OPC UA for Devices
	C.3 Guidelines on how to combine different companion specifications based on OPC UA for Devices in one OPC UA application
	C.4 Guidelines to manage the same Variables defined in different places
	C.5 Guidelines on how to use functionality in companion specifications

	Bibliography

