

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-11

OPC Unified Architecture

Part 11: Historical Access

Release 1.04

2018-01-09

OPC 10000-11: Historical Access ii Release 1.04

Specification
Type

Industry Standard
Specification

Document
Number

OPC 10000-11

Title: OPC Unified
Architecture

Historical Access

Date: 2018-01-09

Version: Release 1.04 Software MS-Word

 Source: OPC 10000-11 - UA
Specification Part 11 -
Historical Access
1.04.docx

Author: OPC Foundation Status: Release

Release 1.04 iii OPC 10000-11: Historical Access

CONTENTS

FIGURES ... iv

TABLES ... iv

1 Scope ... 1

2 Normative references .. 1

3 Terms, definitions, and abbreviations .. 1

3.1 Terms and definitions ... 1

3.2 Abbreviations ... 3

4 Concepts .. 3

4.1 General .. 3

4.2 Data architecture .. 3

4.3 Timestamps .. 4

4.4 Bounding Values and time domain ... 5

4.5 Changes in AddressSpace over time .. 6

5 Historical Information Model .. 6

5.1 HistoricalNodes .. 6

 General ... 6

 Annotations Property... 6

5.2 HistoricalDataNodes ... 7

 General ... 7

 HistoricalDataConfigurationType ... 7

 HasHistoricalConfiguration ReferenceType ... 9

 Historical Data Configuration Object ... 9

 HistoricalDataNodes Address Space Model ... 10

 Attributes .. 10

5.3 HistoricalEventNodes ... 11

 General ... 11

 HistoricalEventFilter Property .. 11

 HistoricalEventNodes Address Space Model ... 11

 HistoricalEventNodes Attributes .. 12

5.4 Exposing supported functions and capabilities ... 12

 General ... 12

 HistoryServerCapabilitiesType .. 13

5.5 Annotation DataType .. 15

5.6 Historical Audit Events ... 16

 General ... 16

 AuditHistoryEventUpdateEventType .. 16

 AuditHistoryValueUpdateEventType .. 17

 AuditHistoryAnnotationUpdateEventType .. 17

 AuditHistoryDeleteEventType .. 18

 AuditHistoryRawModifyDeleteEventType ... 18

 AuditHistoryAtTimeDeleteEventType ... 19

 AuditHistoryEventDeleteEventType ... 19

6 Historical Access specific usage of Services ... 20

6.1 General .. 20

6.2 Historical Nodes StatusCodes .. 20

 Overview ... 20

OPC 10000-11: Historical Access iv Release 1.04

 Operation level result codes .. 20

 Semantics changed ... 22

6.3 Continuation Points .. 22

6.4 HistoryReadDetails parameters .. 22

 Overview ... 22

 ReadEventDetails structure ... 23

 ReadRawModifiedDetails structure .. 24

 ReadProcessedDetails structure ... 26

 ReadAtTimeDetails structure ... 28

 ReadAnnotationDataDetails structure .. 29

6.5 HistoryData parameters returned .. 29

 Overview ... 29

 HistoryData type ... 29

 HistoryModifiedData type .. 29

 HistoryEvent type .. 30

 HistoryAnnotationData type ... 30

6.6 HistoryUpdateType Enumeration .. 30

6.7 PerformUpdateType Enumeration ... 30

6.8 HistoryUpdateDetails parameter ... 31

 Overview ... 31

 UpdateDataDetails structure ... 33

 UpdateStructureDataDetails structure ... 34

 UpdateEventDetails structure .. 35

 DeleteRawModifiedDetails structure .. 37

 DeleteAtTimeDetails structure ... 37

 DeleteEventDetails structure ... 38

Annex A (informative) Client conventions .. 39

A.1 How clients may request timestamps .. 39

A.2 Determining the first historical data point .. 40

Bibliography ... Error! Bookmark not defined.

FIGURES

Figure 1 – Possible OPC UA Server supporting Historical Access .. 4

Figure 2 – ReferenceType hierarchy ... 9

Figure 3 – Historical Variable with Historical Data Configuration and Annotations 10

Figure 4 – Representation of an Event with History in the AddressSpace 12

Figure 5 – Server and HistoryServer Capabilities ... 13

TABLES

Table 1 – Bounding Value examples .. 5

Table 2 – Annotations Property .. 7

Table 3 – HistoricalDataConfigurationType definition ... 7

Table 4 – ExceptionDeviationFormat Values .. 8

Table 5 – HasHistoricalConfiguration ReferenceType ... 9

Release 1.04 v OPC 10000-11: Historical Access

Table 6 – Historical Access configuration definition .. 9

Table 7 – Historical Events Properties .. 11

Table 8 – HistoryServerCapabilitiesType Definition .. 14

Table 9 – Annotation Structure ... 16

Table 10 – AuditHistoryEventUpdateEventType definition .. 16

Table 11 – AuditHistoryValueUpdateEventType definition .. 17

Table 12 – AuditHistoryAnnotationUpdateEventType definition ... 17

Table 13 – AuditHistoryDeleteEventType definition .. 18

Table 14 – AuditHistoryRawModifyDeleteEventType definition ... 18

Table 15 – AuditHistoryAtTimeDeleteEventType definition ... 19

Table 16 – AuditHistoryEventDeleteEventType definition ... 20

Table 17 – Bad operation level result codes ... 20

Table 18 – Good operation level result codes ... 21

Table 19 – HistoryReadDetails parameterTypeIds .. 23

Table 20 – ReadEventDetails ... 23

Table 21 – ReadRawModifiedDetails .. 24

Table 22 – ReadProcessedDetails .. 27

Table 23 – ReadAtTimeDetails ... 28

Table 24 – ReadAnnotaionDataDetails ... 29

Table 25 – HistoryData Details ... 29

Table 26 – HistoryModifiedData Details .. 29

Table 27 – HistoryEvent Details ... 30

Table 28 – HistoryData Details ... 30

Table 29 – HistoryUpdateType Enumeration ... 30

Table 30 – PerformUpdateType Enumeration ... 30

Table 31 – HistoryUpdateDetails parameter TypeIds .. 32

Table 32 – UpdateDataDetails .. 33

Table 33 – UpdateStructureDataDetails.. 34

Table 34 – UpdateEventDetails .. 35

Table 35 – DeleteRawModifiedDetails .. 37

Table 36 – DeleteAtTimeDetails ... 37

Table 37 – DeleteEventDetails ... 38

Table A.1 – Time keyword definitions ... 40

Table A.2 –Time offset definitions .. 40

OPC 10000-11: Historical Access vi Release 1.04

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is for developers of OPC UA clients and servers. The specification is a result of an analysis and design
process to develop a standard interface to facilitate the development of servers and clients by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2018, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems --without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
https://opcfoundation.org/.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting lega l inquiries into the legal validity or scope of those patents that are
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents .

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials .
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specif ication and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

https://opcfoundation.org/

Release 1.04 vii OPC 10000-11: Historical Access

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the Stat e of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata he re:
https://opcfoundation.org/developer-tools/specifications-unified-architecture/errata/ .

https://opcfoundation.org/developer-tools/specifications-unified-architecture/errata/

OPC 10000-11: Historical Access viii Release 1.04

Revision 1.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis ID Summary Resolution

2478 Annotations, how do you use
them?

Added clarifications on how to add, insert, modify,
and delete annotations.

2558 Annotations; How to Insert the
first annotation?

The text for Annotation propery has been clarified.

3273 Read Raw Functionality
conflicting/incomplete
statements

The confilicting text was clarified and combined into
one statement.

3518 There is mismatch in
modificationInfo member order
in specification

There is mismatch in modificationInfo member order
in specification (part11) and
https://opcfoundation.org/UA/2008/02/Types.xsd. The
order in the xsd has been used.

3632 Determining the first historical
data point

A new method for determining the first historical point
has been added.

3875 Read of Annotations Added new HistoryRead parameter for reading

Annotations.

3876 Need a new Event sub

Audit type for adding

Annotations

The new event

AuditHistoryAnnotationUpdateEventType was

added for when working with Structured Data.

http://opcfoundation-onlineapplications.org/mantis/view.php?id=2478
http://opcfoundation-onlineapplications.org/mantis/view.php?id=2558
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3273
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3518
https://opcfoundation.org/UA/2008/02/Types.xsd
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3632
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3875
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3876

OPC 10000-11: Historical Access 1 Release 1.04

OPC Unified Architecture

Part 11: Historical Access

1 Scope

This part of the OPC Unified Architecture standard series and defines the information model
associated with Historical Access (HA). It particularly includes additional and complementary
descriptions of the NodeClasses and Attributes needed for Historical Access, additional
standard Properties, and other information and behaviour.

The complete AddressSpace Model including all NodeClasses and Attributes is specified in
OPC 10000-3. The predefined Information Model is defined in OPC 10000-5. The Services to
detect and access historical data and events, and description of the ExtensibleParameter types

are specified in OPC 10000-4.

This standard includes functionality to compute and return Aggregates like minimum, maximum,
average etc. The Information Model and the concrete working of Aggregates are defined inOPC

10000-13.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mapping

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

http://www.opcfoundation.org/UA/Part8/

 OPC 10000-13, OPC Unified Architecture - Part 13: Aggregates

http://www.opcfoundation.org/UA/Part13/

3 Terms, definitions, and abbreviations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-

3, OPC 10000-4, andOPC 10000-13 as well as the following apply.

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part13/

Release 1.04 2 OPC 10000-11: Historical Access

Annotation
metadata associated with an item at a given instance in time

Note 1 to entry: An Annotation is metadata that is associated with an item at a given instance in time.

BoundingValues
values associated with the starting and ending time

Note 1 to entry: BoundingValues are the values that are associated with the starting and ending time of a
ProcessingInterval specified when reading from the historian. BoundingValues may be required by Clients to
determine the starting and ending values when requesting raw data over a time range. If a raw data value exists at
the start or end point, it is considered the bounding value even though it is part of the data request. If no raw data
value exists at the start or end point, then the Server will determine the boundary value, which may require data from
a data point outside of the requested range. See 4.4 for details on using BoundingValues.

HistoricalNode
Object, Variable, Property or View in the AddressSpace where a Client can access historical
data or Events

Note 1 to entry: A HistoricalNode is a term used in this document to represent any Object, Variable, Property or
View in the AddressSpace for which a Client may read and/or update historical data or Events. The terms
“HistoricalNode ’s history” or “history of a HistoricalNode” will refer to the time series data or Events stored for this

HistoricalNode. The term HistoricalNode refers to both HistoricalDataNodes and HistoricalEventNodes.

HistoricalDataNode
Variable or Property in the AddressSpace where a Client can access historical data

Note 1 to entry: A HistoricalDataNode represents any Variable or Property in the AddressSpace for which a Client
may read and/or update historical data. “HistoricalDataNode’s history” or “history of a HistoricalDataNode” refers to
the time series data stored for this HistoricalNode. Examples of such data are:

 device data (like temperature sensors)

 calculated data

 status information (open/closed, moving)

 dynamically changing system data (like stock quotes)

 diagnostic data

The term HistoricalDataNodes is used when referencing aspects of the standard that apply to accessing historical
data only.

HistoricalEventNode
Object or View in the AddressSpace for which a Client can access historical Events

Note 1 to entry: “HistoricalEventNode ’s history” or “history of a HistoricalEventNode” refers to the time series
Events stored in some historical system. Examples of such data are:

 Notifications

 system Alarms

 operator action Events

 system triggers (such as new orders to be processed)

The term HistoricalEventNode is used when referencing aspects of the standard that apply to accessing historical
Events only.

modified values
HistoricalDataNode ’s value that has been changed (or manually inserted or deleted) after it was
stored in the historian

Note 1 to entry: For some Servers, a lab data entry value is not a modified value, but if a user corrects a lab value,
the original value would be considered a modified value, and would be returned during a request for modified values.
Also manually inserting a value that was missed by a standard collection system may be considered a modified value.
Unless specified otherwise, all historical Services operate on the current, or most recent, value for the specified
HistoricalDataNode at the specified timestamp. Requests for modified values are used to access values that have
been superseded, deleted or inserted. It is up to a system to determine what is considered a modified value.
Whenever a Server has modified data available for an entry in the historical collection it shall set the ExtraData bit

in the StatusCode.

OPC 10000-11: Historical Access 3 Release 1.04

raw data
data that is stored within the historian for a HistoricalDataNode

Note 1 to entry: The data may be all data collected for the DataValue or it may be some subset of the data depending
on the historian and the storage rules invoked when the item ’s values were saved.

StartTime/EndTime
bounds of a history request which define the time domain

Note 1 to entry: For all requests, a value falling at the end time of the time domain is not included in the domain,
so that requests made for successive, contiguous time domains will include every value in th e historical collection
exactly once.

TimeDomain
interval of time covered by a particular request, or response

Note 1 to entry: In general, if the start time is earlier than or the same as the end time, the time domain is considered
to begin at the start time and end just before the end time; if the end time is earlier than the start time, the time
domain still begins at the start time and ends just before the end time, with time "running backward" for the particular
request and response. In both cases, any value which falls exactly at the end time of the TimeDomain is not included
in the TimeDomain. See the examples in 4.4. BoundingValues effect the time domain as described in 4.4.

All timestamps which can legally be represented in a UtcTime DataType are valid timestamps, and the Server may
not return an invalid argument result code due to the timestamp being outside of the range for which the Server has

data. See OPC 10000-3 for a description of the range and granularity of this DataType. Servers are expected to
handle out-of-bounds timestamps gracefully, and return the proper StatusCodes to the Client.

Structured History Data
structured data stored in a history collection where parts of the structure are used to uniquely
identify the data within the data collection

Note 1 to entry: Most historical data applications assume only one current value per timestamp. Therefore the
timestamp of the data is considered the unique identifier for that value. Some data or meta data such as Annotations
may permit multiple values to exist at a single timestamp. In such cases the Server would use one or more
parameters of the Structured History Data entry to uniquely identifiy each element within the history collection.
Annotations are examples of Structured History Data.

3.2 Abbreviations

DA Data Access
HA Historical Access
HDA Historical Data Access
UA Unified Architecture

4 Concepts

4.1 General

This standard defines the handling of historical time series data and historical Event data in the
OPC Unified Architecture. Included is the specification of the representation of historical data
and Events in the AddressSpace.

4.2 Data architecture

A Server supporting Historical Access provides Clients with transparent access to different
historical data and/or historical Event sources (e.g. process historians, event historians, etc.).

The historical data or Events may be located in a proprietary data collection, database or a
short term buffer within the memory. A Server supporting Historical Access will provide historical
data and Events for all or a subset of the available Variables, Objects, Properties or Views
within the Server AddressSpace.

Figure 1 illustrates how the AddressSpace of a UA Server might consist of a broad range of
different historical data and/or historical Event sources.

Release 1.04 4 OPC 10000-11: Historical Access

Operator

Station 2

Operator

Display

Event

Logger, etc.

OPC UA

Historical Access

Server

server client

OPC UA

Historical

Access

Server

OPC-COM

Server

(DA or A&E)

Other data

source

Proprietary

Data Server

OPC UA

Server

Figure 1 – Possible OPC UA Server supporting Historical Access

The Server may be implemented as a standalone OPC UA Server that collects data from another
OPC UA Server or another data source. The Client that references the OPC UA Server
supporting Historical Access for historical data may be simple trending packages that just desire
values over a given time frame or they may be complex reports that require data in multiple
formats.

4.3 Timestamps

The nature of OPC UA Historical Access requires that a single timestamp reference be used to
relate the multiple data points, and the Client may request which timestamp will be used as the
reference. See OPC 10000-4 for details on the TimestampsToReturn enumeration. An OPC UA
Server supporting Historical Access will treat the various timestamp settings as described
below. A HistoryRead with invalid settings will be rejected with
Bad_TimestampsToReturnInvalid (see OPC 10000-4).

For HistoricalDataNodes, the SourceTimestamp is used to determine which historical data

values are to be returned.

The request is in terms of SourceTimestamp but the reply could be in SourceTimestamp,
ServerTimestamp or both timestamps. If the reply has the Server timestamp the timestamps

could fall outside of the range of the requested time.

SOURCE_0 Return the SourceTimestamp.

SERVER_1 Return the ServerTimestamp.

BOTH_2 Return both the SourceTimestamp and ServerTimestamp.

NEITHER_3 This is not a valid setting for any HistoryRead accessing HistoricalDataNodes.

Any reference to timestamps in this context throughout this standard will represent either
ServerTimestamp or SourceTimestamp as dictated by the type requested in the HistoryRead
Service. Some Servers may not support historizing both SourceTimestamp and
ServerTimestamp, but it is expected that all Servers will support historizing SourceTimestamp
(see OPC 10000-7 for details on Server Profiles).

If a request is made requesting both ServerTimestamp and SourceTimestamp and the Server
is only collecting the SourceTimestamp the Server shall return

Bad_TimestampsToReturnInvalid.

OPC 10000-11: Historical Access 5 Release 1.04

For HistoricalEventNodes this parameter does not apply. This parameter is ignored since the
entries returned are dictated by the Event Filter. See OPC 10000-4 for details.

4.4 Bounding Values and time domain

When accessing HistoricalDataNodes via the HistoryRead Service, requests can set a flag,
returnBounds, indicating that BoundingValues are requested. For a complete description of the
Extensible Parameter HistoryReadDetails that include StartTime, EndTime and
NumValuesPerNode, see 6.4. The concept of Bounding Values and how they affect the time
domain that is requested as part of the HistoryRead request is further explained in 4.4. 4.4 also
provides examples of TimeDomains to further illustrate the expected behaviour.

When making a request for historical data using the HistoryRead Service, the required
parameters include at least 2 of these three parameters: startTime, endTime and
numValuesPerNode. What is returned when Bounding Values are requested varies according
to which of these parameters are provided. For a historian that has values stored at 5:00, 5:02,
5:03, 5:05 and 5:06, the data returned when using the Read Raw functionality is given by Table
1. In the table, FIRST stands for a tuple with a value of null, a timestamp of the specified
StartTime, and a StatusCode of Bad_BoundNotFound. LAST stands for a tuple with a value of
null, a timestamp of the specified EndTime, and a StatusCode of Bad_BoundNotFound.

In some cases, attempting to locate bounds, particularly FIRST or LAST points , may be
resource intensive for Servers. Therefore how far back or forward to look in history for Bounding
Values is Server dependent, and the Server search limits may be reached before a bounding
value can be found. There are also cases, such as reading Annotations or Attribute data where
Bounding Values may not be appropriate. For such use cases it is permissible for the Server to
return a StatusCode of Bad_BoundNotSupported.

Table 1 – Bounding Value examples

Start Time End Time numValuesPerNode Bounds Data Returned

5:00 5:05 0 Yes 5:00, 5:02, 5:03, 5:05

5:00 5:05 0 No 5:00, 5:02, 5:03

5:01 5:04 0 Yes 5:00, 5:02, 5:03, 5:05

5:01 5:04 0 No 5:02, 5:03

5:05 5:00 0 Yes 5:05, 5:03, 5:02, 5:00

5:05 5:00 0 No 5:05, 5:03, 5:02

5:04 5:01 0 Yes 5:05, 5:03, 5:02, 5:00

5:04 5:01 0 No 5:03, 5:02

4:59 5:05 0 Yes FIRST, 5:00, 5:02, 5:03, 5:05

4:59 5:05 0 No 5:00, 5:02, 5:03

5:01 5:07 0 Yes 5:00, 5:02, 5:03, 5:05, 5:06,
LAST

5:01 5:07 0 No 5:02, 5:03, 5:05, 5:06

5:00 5:05 3 Yes 5:00, 5:02, 5:03

5:00 5:05 3 No 5:00, 5:02, 5:03

5:01 5:04 3 Yes 5:00, 5:02, 5:03

5:01 5:04 3 No 5:02, 5:03

5:05 5:00 3 Yes 5:05, 5:03, 5:02

5:05 5:00 3 No 5:05, 5:03, 5:02

5:04 5:01 3 Yes 5:05, 5:03, 5:02

5:04 5:01 3 No 5:03, 5:02

4:59 5:05 3 Yes FIRST, 5:00, 5:02

4:59 5:05 3 No 5:00, 5:02, 5:03

5:01 5:07 3 Yes 5:00, 5:02, 5:03

5:01 5:07 3 No 5:02, 5:03, 5:05

5:00 UNSPECIFIED 3 Yes 5:00, 5:02, 5:03

5:00 UNSPECIFIED 3 No 5:00, 5:02, 5:03

Release 1.04 6 OPC 10000-11: Historical Access

Start Time End Time numValuesPerNode Bounds Data Returned

5:00 UNSPECIFIED 6 Yes 5:00, 5:02, 5:03, 5:05, 5:06,

LASTa

5:00 UNSPECIFIED 6 No 5:00, 5:02, 5:03, 5:05, 5:06

5:07 UNSPECIFIED 6 Yes 5:06, LAST

5:07 UNSPECIFIED 6 No NODATA

UNSPECIFIED 5:06 3 Yes 5:06,5:05,5:03

UNSPECIFIED 5:06 3 No 5:06,5:05,5:03

UNSPECIFIED 5:06 6 Yes 5:06,5:05,5:03,5:02,5:00,FIRST
b

UNSPECIFIED 5:06 6 No 5:06, 5:05, 5:03, 5:02, 5:00

UNSPECIFIED 4:48 6 Yes 5:00, FIRST

UNSPECIFIED 4:48 6 No NODATA

4:48 4:48 0 Yes FIRST,5:00

4:48 4:48 0 No NODATA

4:48 4:48 1 Yes FIRST

4:48 4:48 1 No NODATA

4:48 4:48 2 Yes FIRST,5:00

5:00 5:00 0 Yes 5:00,5:02c

5:00 5:00 0 No 5:00

5:00 5:00 1 Yes 5:00

5:00 5:00 1 No 5:00

5:01 5:01 0 Yes 5:00, 5:02

5:01 5:01 0 No NODATA

5:01 5:01 1 Yes 5:00

5:01 5:01 1 No NODATA

a The timestamp of LAST cannot be the specified End Time because there is no specified End Time. In this
situation the timestamp for LAST will be equal to the previous timestamp returned plus one second.

b The timestamp of FIRST cannot be the specified End Time because there is no specified Start Time. In this
situation the timestamp for FIRST will be equal to the previous timestamp returned minus one second.

c When the Start Time = End Time (there is data at that time), and Bounds is set to True, the start bounds will
equal the Start Time and the next data point will be used for the end bounds.

4.5 Changes in AddressSpace over time

Clients use the browse Services of the View Service Set to navigate through the AddressSpace
to discover the HistoricalNodes and their characteristics. These Services provide the most
current information about the AddressSpace. It is possible and probable that the AddressSpace
of a Server will change over time (i.e. TypeDefinitions may change; NodeIds may be modified,

added or deleted).

Server developers and administrators need to be aware that modifying the AddressSpace may
impact a Client’s ability to access historical information. If the history for a HistoricalNode is
still required, but the HistoricalNode is no longer historized, then the Object should be
maintained in the AddressSpace, with the appropriate AccessLevel Attribute and Historizing
Attribute settings (see OPC 10000-3 for details on access levels).

5 Historical Information Model

5.1 HistoricalNodes

 General

The Historical Access model defines additional Properties that are applicable for both
HistoricalDataNodes and HistoricalEventNodes.

 Annotations Property

The DataVariable or Object that has Annotation data will add the Annotations Property as shown

in Table 2.

OPC 10000-11: Historical Access 7 Release 1.04

Table 2 – Annotations Property

Name Use Data Type Description

Standard Properties

 Annotations O Annotation The Annotations Property is used to indicate that the history
collection exposed by a HistoricalDataNode supports Annotation
data. Annotation DataType is defined in Subclause 5.5.

Since it is not allowed for Properties to have Properties, the Annotations Property is only
available for DataVariables or Objects.

The Annotations Property shall be present on every HistoricalDataNode that supports
modifications, deletions, or additions of Annotations weather or not Annotations currently exist.
Annotation data is accessed using the standard HistoryRead functions. Annotations are
modified, inserted or deleted using the standard HistoryUpdate functions and the
UpdateStructuredDataDetails structure. The presence of the Annotations Property does not
indicate the presence of Annotations on the HistoricalDataNode.

A Server shall add the Annotations Property to a HistoricalDataNode only if it will also support
Annotations on that HistoricalDataNode. See OPC 10000-4 for adding Properties to Nodes. A
Server shall remove all Annotation data if it removes the Annotations Property from an existing
HistoricalDataNode.

As with all HistoricalNodes, modifications, deletions or additions of Annotations will raise the
appropriate Historical Audit Event with the corresponding NodeId.

5.2 HistoricalDataNodes

 General

The Historical Data model defines additional ObjectTypes and Objects. These descriptions also
include required use cases for HistoricalDataNodes.

 HistoricalDataConfigurationType

The Historical Access Data model extends the standard type model by defining the
HistoricalDataConfigurationType. This Object defines the general characteristics of a Node that
defines the historical configuration of any HistoricalDataNode that is defined to contain history.

It is formally defined in Table 3.

All Instances of the HistoricalDataConfigurationType use the standard BrowseName as defined

in Table 6.

Table 3 – HistoricalDataConfigurationType definition

Attribute Value

BrowseName HistoricalDataConfigurationType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object AggregateConfiguration -- AggregateConfigura
tionType

Mandatory

HasComponent Object AggregateFunctions -- FolderType Optional

HasProperty Variable Stepped Boolean PropertyType Mandatory

HasProperty Variable Definition String PropertyType Optional

HasProperty Variable MaxTimeInterval Duration PropertyType Optional

HasProperty Variable MinTimeInterval Duration PropertyType Optional

HasProperty Variable ExceptionDeviation Double PropertyType Optional

HasProperty Variable ExceptionDeviationFormat Enum PropertyType Optional

HasProperty Variable StartOfArchive UtcTime PropertyType Optional

Release 1.04 8 OPC 10000-11: Historical Access

HasProperty Variable StartOfOnlineArchive UtcTime PropertyType Optional

HasProperty Variable ServerTimestampSupported Boolean PropertyType Optional

AggregateConfiguration Object represents the browse entry point for information on how the
Server treats Aggregate specific functionality such as handling Uncertain data. This Object is
required to be present even if it contains no Aggregate configuration Objects. Aggregates are

defined inOPC 10000-13.

AggregateFunctions is an entry point to browse to all Aggregate capabilities supported by the
Server for Historical Access. All HistoryAggregates supported by the Server should be able to
be browsed starting from this Object. Aggregates are defined inOPC 10000-13.

The Stepped Variable specifies whether the historical data was collected in such a manner that
it should be displayed as SlopedInterpolation (sloped line between points) or as
SteppedInterpolation (vertically-connected horizontal lines between points) when raw data is
examined. This Property also effects how some Aggregates are calculated. A value of True
indicates the stepped interpolation mode. A value of False indicates SlopedInterpolation mode.

The default value is False.

The Definition Variable is a vendor-specific, human readable string that specifies how the value
of this HistoricalDataNode is calculated. Definition is non-localized and will often contain an
equation that can be parsed by certain Clients.

 Example: Definition::= “(TempA – 25) + TempB”

The MaxTimeInterval Variable specifies the maximum interval between data points in the history
repository regardless of their value change (see OPC 10000-3 for definition of Duration).

The MinTimeInterval Variable specifies the minimum interval between data points in the history
repository regardless of their value change (see OPC 10000-3 for definition of Duration).

The ExceptionDeviation Variable specifies the minimum amount that the data for the
HistoricalDataNode shall change in order for the change to be reported to the history database.

The ExceptionDeviationFormat Variable specifies how the ExceptionDeviation is determined.

Its values are defined in Table 4.

The StartOfArchive Variable specifies the date before which there is no data in the archive

either online or offline.

The StartOfOnlineArchive Variable specifies the date of the earliest data in the online archive.

The ServerTimestampSupported Variable indicates support for the ServerTimestamp capability.
A value of True indicates the Server supports ServerTimestamps in addition to
SourceTimestamp. The default is False.

Table 4 – ExceptionDeviationFormat Values

Value Description

ABSOLUTE_VALUE_0 ExceptionDeviation is an absolute Value.

PERCENT_OF_VALUE_1 ExceptionDeviation is a percentage of Value.

PERCENT_OF_RANGE_2 ExceptionDeviation is a percentage of InstrumentRange (see OPC
10000-8).

PERCENT_OF_EU_RANGE_3 ExceptionDeviation is a percentage of EURange (see OPC 10000-8).

UNKNOWN_4 ExceptionDeviation type is Unknown or not specified.

OPC 10000-11: Historical Access 9 Release 1.04

 HasHistoricalConfiguration ReferenceType

This ReferenceType is a concrete ReferenceType that can be used directly. It is a subtype of
the Aggregates ReferenceType and will be used to refer from a Historical Node to one or more
HistoricalDataConfigurationType Objects.

The semantic indicates that the target Node is “used” by the source Node of the Reference.
Figure 2 informally describes the location of this ReferenceType in the OPC UA hierarchy. Its
representation in the AddressSpace is specified in Table 5.

References

HierarchicalReferences NonHierarchicalReferences

HasHistoricalConfiguration

HasChild

Aggregates

Figure 2 – ReferenceType hierarchy

Table 5 – HasHistoricalConfiguration ReferenceType

Attributes Value

BrowseName HasHistoricalConfiguration

InverseName HistoricalConfigurationOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

The subtype of Aggregates ReferenceType is defined in OPC 10000-5.

 Historical Data Configuration Object

This Object is used as the browse entry point for information about HistoricalDataNode
configuration. The content of this Object is already defined by its type definition in Table 3. It is
formally defined in Table 6. If a HistoricalDataNode has configuration defined then one instance
shall have a BrowseName of ‘HA Configuration’. Additional configurations may be defined with
different BrowseNames. All Historical Configuration Objects shall be referenced using the
HasHistoricalConfiguration ReferenceType. It is also highly recommended that display names
are chosen that clearly describe the historical configuration e.g. “1 Second Collection”, “Long
Term Configuration” etc.

Table 6 – Historical Access configuration definition

Attribute Value

Release 1.04 10 OPC 10000-11: Historical Access

BrowseName HA Configuration

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasTypeDefinition Object

Type

HistoricalDataConfigurationType Defined in Table 3

 HistoricalDataNodes Address Space Model

HistoricalDataNodes are always a part of other Nodes in the AddressSpace. They are never
defined by themselves. A simple example of a container for HistoricalDataNodes would be a
“Folder Object”.

Figure 3 illustrates the basic AddressSpace Model of a DataVariable that includes History.

Boiler_01 (Object)

Pressure (Variable)

Attribute

Value

DataType

AccessLevel

Historizing

Instance

Type

Definitons

Definition

AggregateConfigurationType

MaxTimeInterval

MinTimeInterval

ExceptionDeviation

ExceptionDeviationFormat

Annotations

HA Configuration

HasHistorical

Configuration

HistoricalDataConfigurationType

AggregateConfiguration

Figure 3 – Historical Variable with Historical Data Configuration and Annotations

Each HistoricalDataNode with history shall have the Historizing Attribute (see OPC 10000-3)
defined and may reference a HistoricalAccessConfiguration Object. In the case where the
HistoricalDataNode is itself a Property then the HistoricalDataNode inherits the values from the
Parent of the Property.

Not every Variable in the AddressSpace might contain history data. To see if history data is
available, a Client will look for the HistoryRead/Write states in the AccessLevel Attribute (see
OPC 10000-3 for details on use of this Attribute).

Figure 3 only shows a subset of Attributes and Properties. Other Attributes that are defined for
Variables in OPC 10000-3, may also be available.

 Attributes

Subclause 5.2.6 lists the Attributes of Variables that have particular importance for historical

data. They are specified in detail in OPC 10000-3.

 AccessLevel

 Historizing

OPC 10000-11: Historical Access 11 Release 1.04

5.3 HistoricalEventNodes

 General

The Historical Event model defines additional Properties. These descriptions also include
required use cases for HistoricalEventNodes.

Historical Access of Events uses an EventFilter. It is important to understand the differences
between applying an EventFilter to current Event Notifications, and historical Event retrieval.

In real time monitoring Events are received via Notifications when subscribing to an
EventNotifier. The EventFilter provides the filtering and content selection of Event
Subscriptions. If an Event Notification conforms to the filter defined by the where parameter of
the EventFilter, then the Notification is sent to the Client.

In historical Event retrieval the EventFilter represents the filtering and content selection used
to describe what parameters of Events are available in history. These may or may not include
all of the parameters of the real-time Event, i.e. not all fields available when the Event was

generated may have been stored in history.

The HistoricalEventFilter may change over time so a Client may specify any field for any
EventType in the EventFilter. If a field is not stored in the historical collection then the field is
set to null when it is referenced in the selectClause or the whereClause.

 HistoricalEventFilter Property

A HistoricalEventNode that has Event history available will provide the Property. This Property

is formally defined in Table 7.

Table 7 – Historical Events Properties

Name Use Data Type Description

Standard Properties

HistoricalEventFilter M EventFilter A filter used by the Server to determine which HistoricalEventNode
fields are available in history. It may also include a where clause that
indicates the types of Events or restrictions on the Events that are
available via the HistoricalEventNode.

The HistoricalEventFilter Property can be used as a guideline for
what Event fields the Historian is currently storing. But this field may
have no bearing on what Event fields the Historian is capable of
storing.

 HistoricalEventNodes Address Space Model

HistoricalEventNodes are Objects or Views in the AddressSpace that expose historical Events.
These Nodes are identified via the EventNotifier Attribute, and provide some historical subset
of the Events generated by the Server.

Each HistoricalEventNode is represented by an Object or View with a specific set of Attributes.
The HistoricalEventFilter Property specifies the fields available in the history.

Not every Object or View in the AddressSpace may be a HistoricalEventNode. To qualify as
HistoricalEventNodes, a Node has to contain historical Events. To see if historical Events are
available, a Client will look for the HistoryRead/Write states in the EventNotifier Attribute. See

OPC 10000-3 for details on the use of this Attribute.

Figure 4 illustrates the basic AddressSpace Model of an Event that includes History.

Release 1.04 12 OPC 10000-11: Historical Access

Area_1 (Object)
Instance

Type

Definitons

HasNotifier

HasEventSource

Condition Type

LimitAlarm Type

HasCondition

HasNotifier

Status

Level
Level

HasNotifier

HasEventSource

HasEventSource

HasCondition

BaseEvent Type

LimitAlarm Type

Boiler 2 (Object)

Attribute

EventNotifier ->subscribToEvent=1

EventNotifier ->HistoryRead=1

EventNotifier ->HistoryWrite=1

Boiler 1 (Object)

Attribute

EventNotifier ->subscribToEvent=1

EventNotifier ->HistoryRead=1

EventNotifier ->HistoryWrite=1

Valve 1 (Object)

Attribute

EventNotifier ->subscribToEvent=1

EventNotifier ->HistoryRead=1

EventNotifier ->HistoryWrite=1

HistoricalEventFilter

Figure 4 – Representation of an Event with History in the AddressSpace

 HistoricalEventNodes Attributes

Subclause 5.3.4 lists the Attributes of Objects or Views that have particular importance for
historical Events. They are specified in detail in OPC 10000-3. The following Attributes are
particularly important for HistoricalEventNodes.

 EventNotifier

The EventNotifier Attribute is used to indicate if the Node can be used to read and/or update
historical Events.

5.4 Exposing supported functions and capabilities

 General

OPC UA Servers can support several different functionalities and capabilities. The following
standard Objects are used to expose these capabilities in a common fashion, and there are
several standard defined concepts that can be extended by vendors. The Objects are outlined
in OPC 10000-1.

OPC 10000-11: Historical Access 13 Release 1.04

AggregateFunctions

(Part 13 – Aggregates)

HistoryServer Capabilities
(Part 11 – Historical Access)

Server Capabilities
(Part 5 – Information Model)

AccessHistoryDataCapability

InsertDataCapability

MaxReturnEventValues

AccessEventsCapability

ReplaceDataCapabilityUpdateCapability

DeleteRawCapability

DeleteAtTimeCapability

MaxReturnDataValues

AggregateFunctions

(Part 13 – Aggregates)

<Aggregates>
<Aggregates>

<Aggregates>

<Aggregates>
<Aggregates>

<Aggregates>

Figure 5 – Server and HistoryServer Capabilities

 HistoryServerCapabilitiesType

The ServerCapabilitiesType Objects for any OPC UA Server supporting Historical Access shall
contain a Reference to a HistoryServerCapabilitiesType Object.

The content of this BaseObjectType is already defined by its type definition in OPC 10000-5.
The Object extensions are formally defined in Table 8.

These properties are intended to inform a Client of the general capabilities of the Server. They
do not guarantee that all capabilities will be available for all Nodes. For example not all Nodes
will support Events, or in the case of an aggregating Server where underlying Servers may not
support Insert or a particular Aggregate. In such cases the HistoryServerCapabilities Property
would indicate the capability is supported, and the Server would return appropriate StatusCodes

for situations where the capability does not apply.

Release 1.04 14 OPC 10000-11: Historical Access

Table 8 – HistoryServerCapabilitiesType Definition

Attribute Value

BrowseName HistoryServerCapabilitiesType

IsAbstract False

References NodeClass Browse Name Data
Type

Type Definition ModelingRule

HasProperty Variable AccessHistoryDataCapability Boolean PropertyType Mandatory

HasProperty Variable AccessHistoryEventsCapability Boolean PropertyType Mandatory

HasProperty Variable MaxReturnDataValues UInt32 PropertyType Mandatory

HasProperty Variable MaxReturnEventValues UInt32 PropertyType Mandatory

HasProperty Variable InsertDataCapability Boolean PropertyType Mandatory

HasProperty Variable ReplaceDataCapability Boolean PropertyType Mandatory

HasProperty Variable UpdateDataCapability Boolean PropertyType Mandatory

HasProperty Variable DeleteRawCapability Boolean PropertyType Mandatory

HasProperty Variable DeleteAtTimeCapability Boolean PropertyType Mandatory

HasProperty Variable InsertEventCapability Boolean PropertyType Mandatory

HasProperty Variable ReplaceEventCapability Boolean PropertyType Mandatory

HasProperty Variable UpdateEventCapability Boolean PropertyType Mandatory

HasProperty Variable DeleteEventCapability Boolean PropertyType Mandatory

HasProperty Variable InsertAnnotationsCapability Boolean PropertyType Mandatory

HasComponent Object AggregateFunctions -- FolderType Mandatory

HasComponent Variable ServerTimestampSupported Boolean PropertyType Optional

All UA Servers that support Historical Access shall include the HistoryServerCapabilities as part
of its ServerCapabilities.

The AccessHistoryDataCapability Variable defines if the Server supports access to historical
data values. A value of True indicates the Server supports access to the history for
HistoricalNodes, a value of False indicates the Server does not support access to the history
for HistoricalNodes. The default value is False. At least one of AccessHistoryDataCapability or
AccessHistoryEventsCapability shall have a value of True for the Server to be a valid OPC UA
Server supporting Historical Access.

The AccessHistoryEventCapability Variable defines if the server supports access to historical
Events. A value of True indicates the server supports access to the history of Events, a value
of False indicates the Server does not support access to the history of Events. The default value
is False. At least one of AccessHistoryDataCapability or AccessHistoryEventsCapability shall
have a value of True for the Server to be a valid OPC UA Server supporting Historical Access.

The MaxReturnDataValues Variable defines the maximum number of values that can be
returned by the Server for each HistoricalNode accessed during a request. A value of 0 indicates
that the Server forces no limit on the number of values it can return. It is valid for a Server to
limit the number of returned values and return a continuation point even if MaxReturnValues =
0. For example, it is possible that although the Server does not impose any restrictions, the
underlying system may impose a limit that the Server is not aware of. The default value is 0.

Similarily, the MaxReturnEventValues specifies the maximum number of Events that a Server
can return for a HistoricalEventNode.

The InsertDataCapability Variable indicates support for the Insert capability. A value of True
indicates the Server supports the capability to insert new data values in history, but not
overwrite existing values. The default value is False.

OPC 10000-11: Historical Access 15 Release 1.04

The ReplaceDataCapability Variable indicates support for the Replace capability. A value of
True indicates the Server supports the capability to replace existing data values in history, but
will not insert new values. The default value is False.

The UpdateDataCapability Variable indicates support for the Update capability. A value of True
indicates the Server supports the capability to insert new data values into history if none exists,

and replace values that currently exist. The default value is False.

The DeleteRawCapability Variable indicates support for the delete raw values capability. A
value of True indicates the Server supports the capability to delete raw data values in history.

The default value is False.

The DeleteAtTimeCapability Variable indicates support for the delete at time capability. A value
of True indicates the Server supports the capability to delete a data value at a specified time.

The default value is False.

The InsertEventCapability Variable indicates support for the Insert capability. A value of True
indicates the Server supports the capability to insert new Events in history. An insert is not a

replace. The default value is False.

The ReplaceEventCapability Variable indicates support for the Replace capability. A value of
True indicates the Server supports the capability to replace existing Events in history. A replace
is not an insert. The default value is False.

The UpdateEventCapability Variable indicates support for the Update capability. A value of True
indicates the Server supports the capability to insert new Events into history if none exists, and

replace values that currently exist. The default value is False.

The DeleteEventCapability Variable indicates support for the deletion of Events capability. A
value of True indicates the Server supports the capability to delete Events in history. The default

value is False.

The InsertAnnotationCapability Variable indicates support for Annotations. A value of True
indicates the Server supports the capability to insert Annotations. Some Servers that support
Inserting of Annotations will also support editing and deleting of Annotations. The default value

is False.

AggregateFunctions is an entry point to browse to all Aggregate capabilities supported by the
Server for Historical Access. All HistoryAggregates supported by the Server should be able to
be browsed starting from this Object. Aggregates are defined inOPC 10000-13. If the Server
does not support Aggregates the Folder is left empty.

The ServerTimestampSupported Variable indicates support for the ServerTimestamp capability.
A value of True indicates the Server supports ServerTimestamps in addition to
SourceTimestamp. The default is False. This property is optional but it is expected all new
Servers include this property.

5.5 Annotation DataType

This DataType describes Annotation information for the history data items. Its elements are
defined in Table 9.

Release 1.04 16 OPC 10000-11: Historical Access

Table 9 – Annotation Structure

Name Type Description

Annotation Structure

 message String Annotation message or text.

 username String The user that added the Annotation, as supplied by the underlying system.

 annotationTime UtcTime The time the Annotation was added. This will probably be different than the
SourceTimestamp.

5.6 Historical Audit Events

 General

AuditEvents are generated as a result of an action taken on the Server by a Client of the Server.
For example, in response to a Client issuing a write to a Variable, the Server would generate
an AuditEvent describing the Variable as the source and the user and Client Session as the
initiators of the Event. Not all Servers support auditing, but if a Server supports auditing then it
shall support audit Events as described in 5.6. Profiles (see OPC 10000-7) can be used to
determine if a Server supports auditing. Servers shall generate Events of the
AuditHistoryUpdateEventType or a sub-type of this type for all invocations of the HistoryUpdate
Service on any HistoricalNode. See OPC 10000-3 and OPC 10000-5 for details on the
AuditHistoryUpdateEventType model. In the case where the HistoryUpdate Service is invoked
to insert Historical Events, the AuditHistoryEventUpdateEventType Event shall include the
EventId of the inserted Event and a description that indicates that the Event was inserted. In
the case where the HistoryUpdate Service is invoked to delete records, the
AuditHistoryDeleteEventType or one of its sub-types shall be generated. See 6.7 for details on
updating historical data or Events.

In particular using the Delete raw or Delete modified functionality shall generate an
AuditHistoryRawModifyDeleteEventType Event or a sub-type of it. Using the Delete at time
functionality shall generate an AuditHistoryAtTimeDeleteEventType Event or a sub-type of it.
Using the Delete Event functionality shall generate an AuditHistoryEventDeleteEventType
Event or a sub-type of it. All other updates shall follow the guidelines provided in the
AuditHistoryUpdateEventType model.

 AuditHistoryEventUpdateEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of History
Event update related Events. This type follows all the behaviour of its parent type. Its
representation in the AddressSpace is formally defined in Table 10.

Table 10 – AuditHistoryEventUpdateEventType definition

Attribute Value

BrowseName AuditHistoryEventUpdateEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryUpdateEventType defined in OPC 10000-3, i.e. it has HasProperty References to the same Nodes.

HasProperty Variable UpdatedNode NodeId PropertyType Mandatory

HasProperty Variable PerformInsertReplace PerformUpdateType PropertyType Mandatory

HasProperty Variable Filter EventFilter PropertyType Mandatory

HasProperty Variable NewValues HistoryEventFieldList [] PropertyType Mandatory

HasProperty Variable OldValues HistoryEventFieldList [] PropertyType Mandatory

This EventType inherits all Properties of the AuditHistoryUpdateEventType. Their semantic is
defined in OPC 10000-3.

The UpdateNode identifies the Attribute that was written on the SourceNode.

OPC 10000-11: Historical Access 17 Release 1.04

The PerformInsertReplace enumeration reflects the parameter on the Service call.

The Filter reflects the Event filter passed on the call to select the Events that are to be updated.

The NewValues identify the value that was written to the Event.

The OldValues identify the value that the Events contained before the update. It is acceptable
for a Server that does not have this information to report a null value. In the case of an insert it

is expected to be a null value.

Both the NewValues and the OldValues will contain Events with the appropriate fields, each

with appropriately encoded values.

 AuditHistoryValueUpdateEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of history
value update related Events. This type follows all the behaviour of its parent type. Its
representation in the AddressSpace is formally defined in Table 11.

Table 11 – AuditHistoryValueUpdateEventType definition

Attribute Value

BrowseName AuditHistoryValueUpdateEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryUpdateEventType defined in OPC 10000-3, i.e. it has HasProperty References to the same
Nodes.

HasProperty Variable UpdatedNode NodeId PropertyType Mandatory

HasProperty Variable PerformInsertReplace PerformUpdateType PropertyType Mandatory

HasProperty Variable NewValues DataValue[] PropertyType Mandatory

HasProperty Variable OldValues DataValue[] PropertyType Mandatory

This EventType inherits all Properties of the AuditHistoryUpdateEventType. Their semantic is

defined in OPC 10000-3.

The UpdatedNode identifies the Attribute that was written on the SourceNode.

The PerformInsertReplace enumeration reflects the parameter on the Service call.

The NewValues identify the value that was written to the Event.

The OldValues identify the value that the Event contained before the write. It is acceptable for
a Server that does not have this information to report a null value. In the case of an insert it is

expected to be a null value.

Both the NewValues and the OldValues will contain a value in the DataType and encoding used

for writing the value.

 AuditHistoryAnnotationUpdateEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of structured
data update related Events. This type follows all the behaviour of its parent type. Its
representation in the AddressSpace is formally defined in Table 12.

Table 12 – AuditHistoryAnnotationUpdateEventType definition

Attribute Value

BrowseName AuditHistoryAnnotationUpdateEventType

IsAbstract False

Release 1.04 18 OPC 10000-11: Historical Access

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryUpdateEventType defined in OPC 10000-3, i.e. it has HasProperty References to the same
Nodes.

HasProperty Variable PerformInsertReplace PerformUpdateType PropertyType Mandatory

HasProperty Variable NewValues DataValue[] AnnotationType Mandatory

HasProperty Variable OldValues DataValue[] AnnotationType Mandatory

This EventType inherits all Properties of the AuditHistoryUpdateEventType. Their semantic is

defined in OPC 10000-3.

The PerformInsertReplace enumeration reflects the coresponding parameter on the Service

call.

The NewValues identify the Annotaion that was written. In the case of a remove it is expected

to be a null value.

The OldValues identify the value that the Annotation contained before the write. It is acceptable
for a Server that does not have this information to report a null value. In the case of an insert

or remove it is expected to be a null value.

Both the NewValues and the OldValues will contain a value in the DataType and encoding used

for writing the value.

 AuditHistoryDeleteEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of history
delete related Events. This type follows all the behaviour of its parent type. Its representation
in the AddressSpace is formally defined in Table 13.

Table 13 – AuditHistoryDeleteEventType definition

Attribute Value

BrowseName AuditHistoryDeleteEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryUpdateEventType defined in OPC 10000-3, i.e. it has HasProperty References to the same Nodes.

HasProperty Variable UpdatedNode NodeId PropertyType Mandatory

HasSubtype ObjectType AuditHistoryRawModifyDeleteEventType

HasSubtype ObjectType AuditHistoryAtTimeDeleteEventType

HasSubtype ObjectType AuditHistoryEventDeleteEventType

This EventType inherits all Properties of the AuditUpdateEventType. Their semantic is defined

in OPC 10000-3.

The UpdatedNode property identifies the NodeId that was used for the delete operation.

 AuditHistoryRawModifyDeleteEventType

This is a subtype of AuditHistoryDeleteEventType and is used for categorization of history
delete related Events. This type follows all the behaviour of its parent type. Its representation
in the AddressSpace is formally defined in Table 14.

Table 14 – AuditHistoryRawModifyDeleteEventType definition

Attribute Value

BrowseName AuditHistoryRawModifyDeleteEventType

OPC 10000-11: Historical Access 19 Release 1.04

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryDeleteEventType defined in Table 13, i.e. it has HasProperty References to the same
Nodes.

HasProperty Variable IsDeleteModified Boolean PropertyType Mandatory

HasProperty Variable StartTime UtcTime PropertyType Mandatory

HasProperty Variable EndTime UtcTime PropertyType Mandatory

HasProperty Variable OldValues DataValue[] PropertyType Mandatory

This EventType inherits all Properties of the AuditHistoryDeleteEventType. Their semantic is

defined in 5.6.5.

The isDeleteModified reflects the isDeleteModified parameter of the call .

The StartTime reflects the starting time parameter of the call.

The EndTime reflects the ending time parameter of the call.

The OldValues identify the value that history contained before the delete. A Server should report
all deleted values. It is acceptable for a Server that does not have this information to report a
null value. The OldValues will contain a value in the DataType and encoding used for writing

the value.

 AuditHistoryAtTimeDeleteEventType

This is a subtype of AuditHistoryDeleteEventType and is used for categorization of history
delete related Events. This type follows all the behaviour of its parent type. Its representation
in the AddressSpace is formally defined in Table 15.

Table 15 – AuditHistoryAtTimeDeleteEventType definition

Attribute Value

BrowseName AuditHistoryAtTimeDeleteEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryDeleteEventType defined in Table 13, i.e. it has HasProperty References to the same Nodes.

HasProperty Variable ReqTimes UtcTime[] PropertyType Mandatory

HasProperty Variable OldValues DataValues[] PropertyType Mandatory

This EventType inherits all Properties of the AuditHistoryDeleteEventType. Their semantic is

defined in 5.6.8.

The ReqTimes reflect the request time parameter of the call.

The OldValues identifies the value that history contained before the delete. A Server should
report all deleted values. It is acceptable for a Server that does not have this information to
report a null value. The OldValues will contain a value in the DataType and encoding used for
writing the value.

 AuditHistoryEventDeleteEventType

This is a subtype of AuditHistoryDeleteEventType and is used for categorization of history
delete related Events. This type follows all the behaviour of its parent type. Its representation
in the AddressSpace is formally defined in Table 16.

Release 1.04 20 OPC 10000-11: Historical Access

Table 16 – AuditHistoryEventDeleteEventType definition

Attribute Value

BrowseName AuditHistoryEventDeleteEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditHistoryDeleteEventType defined in Table 13, i.e. it has HasProperty References to the same Nodes.

HasProperty Variable EventIds ByteString[] PropertyType Mandatory

HasProperty Variable OldValues HistoryEventFieldList PropertyType Mandatory

This EventType inherits all Properties of the AuditHistoryDeleteEventType. Their semantic is

defined in 5.6.5.

The EventIds reflect the EventIds parameter of the call .

The OldValues identify the value that history contained before the delete. A Server should report
all deleted values. It is acceptable for a Server that does not have this information to report a
null value. The OldValues will contain an Event with the appropriate fields, each with

appropriately encoded values.

6 Historical Access specific usage of Services

6.1 General

OPC 10000-4 specifies all Services needed for OPC UA Historical Access. In particular:

 The Browse Service Set or Query Service Set to detect HistoricalNodes and their
configuration.

 The HistoryRead and HistoryUpdate Services of the Attribute Service Set to read and
update history of HistoricalNodes.

6.2 Historical Nodes StatusCodes

 Overview

6.2 defines additional codes and rules that apply to the StatusCode when used for
HistoricalNodes.

The general structure of the StatusCode is specified in OPC 10000-4. It includes a set of
common operational result codes which also apply to historical data and/or Events.

 Operation level result codes

In OPC UA Historical Access the StatusCode is used to indicate the conditions under which a
Value or Event was stored, and thereby can be used as an indicator of its usability. Due to the
nature of historical data and/or Events, additional information beyond the basic quality and call
result code needs to be conveyed to the Client, for example, whether the value is actually stored
in the data repository, whether the result was Interpolated, whether all data inputs to a

calculation were of good quality, etc.

In the following, Table 17 contains codes with Bad severity indicating a failure; Table 18
contains Good (success) codes.

It is important to note that these are the codes that are specific for OPC UA Historical Access
and supplement the codes that apply to all types of data and are therefore defined in OPC

10000-4 , OPC 10000-8 andOPC 10000-13.

Table 17 – Bad operation level result codes

Symbolic Id Description

Bad_NoData No data exists for the requested time range or Event filter.

OPC 10000-11: Historical Access 21 Release 1.04

Symbolic Id Description

Bad_BoundNotFound No data found to provide upper or lower bound value.

Bad_BoundNotSupported Bounding Values are not applicable or the Server has reached its search limit
and will not return a bound.

Bad_DataLost Data is missing due to collection started/stopped/lost.

Bad_DataUnavailable Expected data is unavailable for the requested time range due to an un-
mounted volume, an off-line historical collection, or similar reason for
temporary unavailability.

Bad_EntryExists The data or Event was not successfully inserted because a matching entry
exists.

Bad_NoEntryExists The data or Event was not successfully updated because no matching entry
exists.

Bad_TimestampNotSupported The Client requested history using a TimestampsToReturn the Server does
not support (i.e. requested Server Timestamp when Server only supports
SourceTimestamp).

Bad_InvalidArgument One or more arguments are invalid or missing.

Bad_AggregateListMismatch The list of Aggregates does not have the same length as the list of
operations.

Bad_AggregateConfigurationRejected The Server does not support the specified AggregateConfiguration for the
Node.

Bad_AggregateNotSupported The specified Aggregate is not valid for the specified Node.

Bad_ArgumentsMissing See OPC 10000-4 for the description of this result code.

Bad_TypeDefinitionInvalid See OPC 10000-4 for the description of this result code.

Bad_SourceNodeIdInvalid See OPC 10000-4 for the description of this result code.

Bad_OutOfRange See OPC 10000-4 for the description of this result code.

Bad_NotSupported See OPC 10000-4 for the description of this result code.

Bad_IndexRangeInvalid See OPC 10000-4 for the description of this result code.

Bad_NotWriteable See OPC 10000-4 for the description of this result code.

Table 18 – Good operation level result codes

Symbolic Id Description

Good_NoData No data exists for the requested time range or Event filter.

Good_EntryInserted The data or Event was successfully inserted into the historical database

Good_EntryReplaced The data or Event field was successfully replaced in the historical database

Good_DataIgnored The Event field was ignored and was not inserted into the historical database.

It may be noted that there are both Good and Bad Status codes that deal with cases of no data
or missing data. In general Good_NoData is used for cases where no data was found when
performing a simple ‘Read’ request. Bad_NoData is used in cases where some action is
requested on an interval and no data could be found. The distinction exists if users are
attempting an action on a given interval where they would expect data to exist, or would like to
be notified that the requested action could not be performed.

Good_NoData is returned for cases such as:

– ReadEvents where startTime=endTime

– ReadEvent data is requested and does not exist

– ReadRaw where data is requested and does not exist

Bad_NoData is returned for cases such as:

Release 1.04 22 OPC 10000-11: Historical Access

– ReadEvent data is requested and underlying historian does not support the requested
field

– ReadProcessed where data is requested and does not exist

– Any Delete requests where data does not exist

The above use cases are illustrative examples. Detailed explanations on when each status code
is returned are found in 6.4 and 6.7

 Semantics changed

The StatusCode in addition contains an informational bit called Semantics Changed (see OPC

10000-4).

UA Servers that implement OPC UA Historical Access should not set this bit; rather they should
propagate the StatusCode which has been stored in the data repository. The Client should be

aware that the returned data values may have this bit set.

6.3 Continuation Points

The continuationPoint parameter in the HistoryRead Service is used to mark a point from which
to continue the read if not all values could be returned in one response. The value is opaque
for the Client and is only used to maintain the state information for the Server to continue from.
For HistoricalDataNode requests, a Server may use the timestamp of the last returned data
item if the timestamp is unique. This can reduce the need in the Server to store state information

for the continuation point.

The Client specifies the maximum number of results per operation in the request Message. A
Server shall not return more than this number of results but it may return fewer results. The
Server allocates a ContinuationPoint if there are more results to return. The Server may return
fewer results due to buffer issues or other internal constraints. It may also be required to return
a continuationPoint due to HistoryRead parameter constraints. If a request is taking a long time
to calculate and is approaching the timeout time, the Server may return partial results with a
continuation point. This may be done if the calculation is going to take more time than the Client
timeout. In some cases it may take longer than the Client timeout to calculate even one result.
Then the Server may return zero results with a continuation point that allows the Server to
resume the calculation on the next Client read call. For additional discussions regarding
ContinuationPoints and HistoryRead please see the individual extensible HistoryReadDetails

parameter in 6.4.

If the Client specifies a ContinuationPoint, then the HistoryReadDetails parameter and the
TimestampsToReturn parameter are ignored, because it does not make sense to request
different parameters when continuing from a previous call. It is permissible to change the
dataEncoding parameter with each request.

If the Client specifies a ContinuationPoint that is no longer valid, then the Server shall return a
Bad_ContinuationPointInvalid error.

If the releaseContinuationPoints parameter is set in the request the Server shall not return any
data and shall release all ContinuationPoints passed in the request. If the ContinuationPoint for
an operation is missing or invalid then the StatusCode for the operation shall be
Bad_ContinuationPointInvalid.

6.4 HistoryReadDetails parameters

 Overview

The HistoryRead Service defined in OPC 10000-4 can perform several different functions. The
HistoryReadDetails parameter is an Extensible Parameter that specifies which function to
perform and the details that are specific to that function. See OPC 10000-4 for the definition of
Extensible Parameter. Table 19 lists the symbolic names of the valid Extensible Parameter
structures. Some structures will perform different functions based on the setting of its
associated parameters. For simplicity a functionality of each structure is listed. For example,
text such as ‘using the Read modified functionality’ refers to the function the HistoryRead
Service performs using the Extensible Parameter structure ReadRawModifiedDetails with the

isReadModified Boolean parameter set to TRUE.

OPC 10000-11: Historical Access 23 Release 1.04

Table 19 – HistoryReadDetails parameterTypeIds

Symbolic Name Functionality Description

ReadEventDetails Read event This structure selects a set of Events from the history database by
specifying a filter and a time domain for one or more Objects or
Views. See 6.4.2.1.

When this parameter is specified the Server returns a HistoryEvent
structure for each operation (see 6.5.4).

ReadRawModifiedDetails Read raw This structure selects a set of values from the history database by
specifying a time domain for one or more Variables. See 6.4.3.1.

When this parameter is specified the Server returns a HistoryData
structure for each operation (see 6.5.2).

ReadRawModifiedDetails Read
modified

This parameter selects a set of modified values from the history
database by specifying a time domain for one or more Variables. See
6.4.3.1.

When this parameter is specified the Server returns a
HistoryModifiedData structure for each operation (see 6.5.3).

ReadProcessedDetails Read
processed

This structure selects a set of Aggregate values from the history
database by specifying a time domain for one or more Variables. See
6.4.4.1.

When this parameter is specified the Server returns a HistoryData
structure for each operation (see 6.5.2)

ReadAtTimeDetails Read at time This structure selects a set of raw or interpolated values from the
history database by specifying a series of timestamps for one or
more Variables. See 6.4.5.1.

When this parameter is specified the Server returns a HistoryData
structure for each operation (see Clause 6.5.2).

ReadAnnotationDataDetails Read
Annotation
Data

This structure selects a set of Annotation Data from the history
database by specifying a series of timestamps for one or more
Variables. See 6.4.6.1.

When this parameter is specified the Server returns a
HistoryAnnotationData structure for each operation (see Clause
6.5.5).

 ReadEventDetails structure

6.4.2.1 ReadEventDetails structure details

Table 20 defines the ReadEventDetails structure. This parameter is only valid for Objects that
have the EventNotifier Attribute set to TRUE (see OPC 10000-3). Two of the three parameters,
numValuesPerNode, startTime, and endTime shall be specified.

Table 20 – ReadEventDetails

Name Type Description

ReadEventDetails Structure Specifies the details used to perform an Event history read.

 numValuesPerNode Counter The maximum number of values returned for any Node over the time
range. If only one time is specified, the time range shall extend to return
this number of values. The default value of 0 indicates that there is no
maximum.

 startTime UtcTime Beginning of period to read. The default value of DateTime.MinValue
indicates that the startTime is Unspecified.

 endTime UtcTime End of period to read. The default value of DateTime.MinValue indicates
that the endTime is Unspecified.

 Filter EventFilter A filter used by the Server to determine which HistoricalEventNode
should be included. This parameter shall be specified and at least one
EventField is required. The EventFilter parameter type is an Extensible
parameter type. It is defined and used in the same manner as defined

for monitored data items which are specified in OPC 10000-4. This filter
also specifies the EventFields that are to be returned as part of the
request.

Release 1.04 24 OPC 10000-11: Historical Access

6.4.2.2 Read Event functionality

The ReadEventDetails structure is used to read the Events from the history database for the
specified time domain for one or more HistoricalEventNodes. The Events are filtered based on
the filter structure provided. This filter includes the EventFields that are to be returned. For a

complete description of filter refer to OPC 10000-4.

The startTime and endTime are used to filter on the Time field for Events.

The time domain of the request is defined by startTime, endTime, and numValuesPerNode; at
least two of these shall be specified. If endTime is less than startTime, or endTime and
numValuesPerNode alone are specified then the data will be returned in reverse order with
later/newer data provided first as if time were flowing backward. If all three are specified then
the call shall return up to numValuesPerNode results going from startTime to endTime, in either
ascending or descending order depending on the relative values of startTime and endTime. If
numValuesPerNode is 0 then all of the values in the range are returned. The default value is
used to indicate when startTime, endTime or numValuesPerNode are not specified.

It is specifically allowed for the startTime and the endTime to be identical. This allows the Client
to request the Event at a single instance in time. When the startTime and endTime are identical
then time is presumed to be flowing forward. If no data exists at the time specified then the
Server shall return the Good_NoData StatusCode.

If a startTime, endTime and numValuesPerNode are all provided, and if more than
numValuesPerNode Events exist within that time range for a given Node, then only
numValuesPerNode Events per Node are returned along with a ContinuationPoint. When a
ContinuationPoint is returned, a Client wanting the next numValuesPerNode values should call
HistoryRead again with the continuationPoint set.

If the request takes a long time to process then the Server can return partial results with a
ContinuationPoint. This might be done if the request is going to take more time than the Client
timeout hint. It may take longer than the Client timeout hint to retrieve any results. In this case
the Server may return zero results with a ContinuationPoint that allows the Server to resume
the calculation on the next Client HistoryRead call.

For an interval in which no data exists, the corresponding StatusCode shall be Good_NoData.

The filter parameter is used to determine which historical Events and their corresponding fields
are returned. It is possible that the fields of an EventType are available for real time updating,
but not available from the historian. In this case a StatusCode value will be returned for any
Event field that cannot be returned. The value of the StatusCode shall be Bad_NoData.

If the requested TimestampsToReturn is not supported for a Node then the operation shall
return the Bad_TimestampNotSupported StatusCode . When reading Events this only applies to
Event fields that are of type DataValue.

 ReadRawModifiedDetails structure

6.4.3.1 ReadRawModifiedDetails structure details

Table 21 defines the ReadRawModifiedDetails structure. Two of the three parameters,
numValuesPerNode, startTime, and endTime shall be specified.

Table 21 – ReadRawModifiedDetails

Name Type Description

ReadRawModifiedDetails Structure Specifies the details used to perform a “raw” or “modified” history read.

 isReadModified Boolean TRUE for Read Modified functionality, FALSE for Read Raw
functionality. Default value is FALSE.

 startTime UtcTime Beginning of period to read. Set to default value of DateTime.MinValue if
no specific start time is specified.

 endTime UtcTime End of period to read. Set to default value of DateTime.MinValue if no
specific end time is specified.

OPC 10000-11: Historical Access 25 Release 1.04

Name Type Description

 numValuesPerNode Counter The maximum number of values returned for any Node over the time
range. If only one time is specified, the time range shall extend to return
this number of values. The default value 0 indicates that there is no
maximum.

 returnBounds Boolean A Boolean parameter with the following values:

 TRUE Bounding Values should be returned

 FALSE All other cases

6.4.3.2 Read raw functionality

When this structure is used for reading Raw Values (isReadModified is set to FALSE), it reads
the values, qualities, and timestamps from the history database for the specified time domain
for one or more HistoricalDataNodes. This parameter is intended for use by a Client that wants
the actual data saved within the historian. The actual data may be compressed or may be all
raw data collected for the item depending on the historian and the storage rules invoked when
the item values were saved. When returnBounds is TRUE, the Bounding Values for the time
domain are returned. The optional Bounding Values are provided to allow the Client to

interpolate values for the start and end times when trending the actual data on a display.

The time domain of the request is defined by startTime, endTime, and numValuesPerNode; at
least two of these shall be specified. If endTime is less than startTime, or endTime and
numValuesPerNode alone are specified then the data will be returned in reverse order, with
later data coming first as if time were flowing backward. If a startTime, endTime and
numValuesPerNode are all provided and if more than numValuesPerNode values exist within
that time range for a given Node then only numValuesPerNode values per Node shall be
returned along with a continuationPoint. When a continuationPoint is returned, a Client wanting
the next numValuesPerNode values shall call ReadRaw again with the continuationPoint set. If
numValuesPerNode is 0, then all the values in the range are returned. A default value of
DateTime.MinValue (see OPC 10000-6) is used to indicate when startTime or endTime is not

specified.

It is specifically allowed for the startTime and the endTime to be identical. This allows the Client
to request just one value. When the startTime and endTime are identical then time is presumed
to be flowing forward. It is specifically not allowed for the Server to return a
Bad_InvalidArgument StatusCode if the requested time domain is outside of the Server 's range.

Such a case shall be treated as an interval in which no data exists.

If the request takes a long time to process then the Server can return partial results with a
ContinuationPoint. This might be done if the request is going to take more time than the Client
timeout hint. It may take longer than the Client timeout hint to retrieve any results. In this case
the Server may return zero results with a ContinuationPoint that allows the Server to resume
the calculation on the next Client HistoryRead call.

If Bounding Values are requested and a non-zero numValuesPerNode was specified then any
Bounding Values returned are included in the numValuesPerNode count. If numValuesPerNode
is 1 then only the start bound is returned (the end bound if the reverse order is needed). If
numValuesPerNode is 2 then the start bound and the first data point are returned (the end
bound if reverse order is needed). When Bounding Values are requested and no bounding value
is found then the corresponding StatusCode entry will be set to Bad_BoundNotFound, a
timestamp equal to the start or end time as appropriate, and a value of null. How far back or
forward to look in history for Bounding Values is Server dependent.

For an interval in which no data exists, if Bounding Values are not requested, then the
corresponding StatusCode shall be Good_NoData. If Bounding Values are requested and one

or both exist, then the result code returned is Success and the bounding value(s) are returned.

For cases where there are multiple values for a given timestamp, all but the most recent are
considered to be Modified values and the Server shall return the most recent value. If the Server
returns a value which hides other values at a timestamp then it shall set the ExtraData bit in
the StatusCode associated with that value. If the Server contains additional information

Release 1.04 26 OPC 10000-11: Historical Access

regarding a value then the ExtraData bit shall also be set. It indicates that ModifiedValues are
available for retrieval, see 6.4.3.3.

If the requested TimestampsToReturn is not supported for a Node, the operation shall return
the Bad_TimestampNotSupported StatusCode.

6.4.3.3 Read modified functionality

When this structure is used for reading Modified Values (isReadModified is set to TRUE), it
reads the modified values, StatusCodes, timestamps, modification type, the user identifier, and
the timestamp of the modification from the history database for the specified time domain for
one or more HistoricalDataNodes. If there are multiple replaced values the Server shall return
all of them. The updateType specifies what value is returned in the modification record. If the
updateType is INSERT the value is the new value that was inserted. If the updateType is
anything else the value is the old value that was changed. See 6.8 HistoryUpdateDetails

parameter for details on what updateTypes are available.

The purpose of this function is to read values from history that have been Modified. The
returnBounds parameter shall be set to FALSE for this case, otherwise the Server returns a
Bad_InvalidArgument StatusCode.

The domain of the request is defined by startTime, endTime, and numValuesPerNode; at least
two of these shall be specified. If endTime is less than startTime, or endTime and
numValuesPerNode alone are specified, then the data shall be returned in reverse order with
the later data coming first. If all three are specified then the call shall return up to
numValuesPerNode results going from StartTime to EndTime, in either ascending or
descending order depending on the relative values of StartTime and EndTime. If more than
numValuesPerNode values exist within that time range for a given Node then only
numValuesPerNode values per Node are returned along with a continuationPoint. When a
continuationPoint is returned, a Client wanting the next numValuesPerNode values should call
ReadRaw again with the continuationPoint set. If numValuesPerNode is 0 then all of the values
in the range are returned. If the Server cannot return all modified values for a given timestamp
in a single response then it shall return modified values with the same timestamp in subsequent
calls.

If the request takes a long time to process then the Server can return partial results with a
ContinuationPoint. This might be done if the request is going to take more time than the Client
timeout hint. It may take longer than the Client timeout hint to retrieve any results. In this case
the Server may return zero results with a ContinuationPoint that allows the Server to resume
the calculation on the next Client HistoryRead call.

If a value has been modified multiple times then all values for the time are returned. This means
that a timestamp can appear in the array more than once. The order of the returned values with
the same timestamp should be from the most recent to oldest modification timestamp, if
startTime is less than or equal to endTime. If endTime is less than startTime, then the order of
the returned values will be from the oldest modification timestamp to the most recent. It is
Server dependent whether multiple modifications are kept or only the most recent.

A Server does not have to create a modification record for data when it is first added to the
historical collection. If it does then it shall set the ExtraData bit and the Client can read the
modification record using a ReadModified call. If the data is subsequently modified the Server
shall create a second modification record which is returned along with the original modification
record whenever a Client uses the ReadModified call if the Server supports multiple modification

records per timestamp.

If the requested TimestampsToReturn is not supported for a Node then the operation shall
return the Bad_TimestampNotSupported StatusCode .

 ReadProcessedDetails structure

6.4.4.1 ReadProcessedDetails structure details

Table 22 defines the structure of the ReadProcessedDetails structure.

OPC 10000-11: Historical Access 27 Release 1.04

Table 22 – ReadProcessedDetails

Name Type Description

ReadProcessedDetails Structure Specifies the details used to perform a “processed”
history read.

 startTime UtcTime Beginning of period to read.

 endTime UtcTime End of period to read.

 ProcessingInterval Duration Interval between returned Aggregate values. The value
0 indicates that there is no ProcessingInterval defined.

 aggregateType[] NodeId The NodeId of the HistoryAggregate object that
indicates the list of Aggregates to be used when

retrieving the processed history. SeeOPC 10000-13 for
details.

 aggregateConfiguration Aggregate

Configuration

Aggregate configuration structure.

 useSeverCapabilitiesDefaults Boolean As described in OPC 10000-4.

 TreatUncertainAsBad Boolean As described inOPC 10000-13.

 PercentDataBad UInt8 As described inOPC 10000-13.

 PercentDataGood UInt8 As described inOPC 10000-13.

 UseSlopedExtrapolation Boolean As described inOPC 10000-13.

SeeOPC 10000-13 for details on possible NodeId values for the aggregateType parameter.

6.4.4.2 Read processed functionality

This structure is used to compute Aggregate values, qualities, and timestamps from data in the
history database for the specified time domain for one or more HistoricalDataNodes. The time
domain is divided into intervals of duration ProcessingInterval. The specified Aggregate Type
is calculated for each interval beginning with startTime by using the data within the next
ProcessingInterval.

For example, this function can provide hourly statistics such as Maximum, Minimum , and
Average for each item during the specified time domain when ProcessingInterva l is 1 hour.

The domain of the request is defined by startTime, endTime, and ProcessingInterval. All three
shall be specified. If endTime is less than startTime then the data shall be returned in reverse
order with the later data coming first. If startTime and endTime are the same then the Server
shall return Bad_InvalidArgument as there is no meaningful way to interpret such a case. If the
ProcessingInteval is specified as 0 then Aggregates shall be calculated using one interval
starting at startTime and ending at endTime.

The aggregateType[] parameter allows a Client to request multiple Aggregate calculations per
requested NodeId. If multiple Aggregates are requested then a corresponding number of entries

are required in the NodesToRead array.

For example, to request Min Aggregate for NodeId FIC101, FIC102, and both Min and Max
Aggregates for NodeId FIC103 would require NodeId FIC103 to appear twice in the

NodesToRead array request parameter.

aggregateType[] NodesToRead[]

 Min FIC101

 Min FIC102

 Min FIC103

 Max FIC103

If the array of Aggregates does not match the array of NodesToRead then the Server shall
return a StatusCode of Bad_AggregateListMismatch.

Release 1.04 28 OPC 10000-11: Historical Access

The aggregateConfiguration parameter allows a Client to override the Aggregate configuration
settings supplied by the AggregateConfiguration Object on a per call basis. SeeOPC 10000-13
for more information on Aggregate configurations. If the Server does not support the ability to
override the Aggregate configuration settings then it shall return a StatusCode of Bad_
AggregateConfigurationRejected. If the Aggregate is not valid for the Node then the StatusCode
shall be Bad_AggregateNotSupported.

The values used in computing the Aggregate for each interval shall include any value that falls
exactly on the timestamp at the beginning of the interval, but shall not include any value that
falls directly on the timestamp ending the interval. Thus, each value shall be included only once
in the calculation. If the time domain is in reverse order then we consider the later timestamp
to be the one beginning the subinterval, and the earlier timestamp to be the one ending it. Note
that this means that simply swapping the start and end times will not result in getting the same
values back in reverse order as the intervals being requested in the two cases are not the same.

If an Aggregate is taking a long time to calculate then the Server can return partial results with
a continuation point. This might be done if the calculation is going to take more time than the
Client timeout hint. In some cases it may take longer than the Client timeout hint to calculate
even one Aggregate result. Then the Server may return zero results with a continuation point
that allows the Server to resume the calculation on the next Client read call.

Refer toOPC 10000-13 for handling of Aggregate specific cases.

 ReadAtTimeDetails structure

6.4.5.1 ReadAtTimeDetails structure details

Table 23 defines the ReadAtTimeDetails structure.

Table 23 – ReadAtTimeDetails

Name Type Description

ReadAtTimeDetails Structure Specifies the details used to perform an “at time” history read .

 reqTimes [] UtcTime The entries define the specific timestamps for which values are to be
read.

 useSimpleBounds Boolean Use SimpleBounds to determine the value at the specific timestamp.

6.4.5.2 Read at time functionality

The ReadAtTimeDetails structure reads the values and qualities from the history database for
the specified timestamps for one or more HistoricalDataNodes. This function is intended to
provide values to correlate with other values with a known timestamp. For example, a Client

may need to read the values of sensors when lab samples were collected.

The order of the values and qualities returned shall match the order of the timestamps supplied
in the request.

When no value exists for a specified timestamp, a value shall be Interpolated from the
surrounding values to represent the value at the specified timestamp. The interpolation will
follow the same rules as the standard Interpolated Aggregate as outlined inOPC 10000-13.

If the useSimpleBounds flag is True and Interpolation is required then simple bounding values
will be used to calculate the data value. If useSimpleBounds is False and Interpolation is
required then interpolated bounding values will be used to calculate the data value. SeeOPC

10000-13 for the definition of simple bounding values and interpolated bounding values .

If a value is found for the specified timestamp, then the Server will set the StatusCode InfoBits
to be Raw. If the value is Interpolated from the surrounding values, then the Server will set the
StatusCode InfoBits to be Interpolated.

If the read request is taking a long time to calculate then the Server may return zero results
with a ContinuationPoint that allows the Server to resume the calculation on the next Client
HistoryRead call.

OPC 10000-11: Historical Access 29 Release 1.04

If the requested TimestampsToReturn is not supported for a Node, then the operation shall
return the Bad_TimestampNotSupported StatusCode .

 ReadAnnotationDataDetails structure

6.4.6.1 ReadAnnotationDataDetails structure details

Table 24 defines the ReadAnnotationDataDetails structure.

Table 24 – ReadAnnotaionDataDetails

Name Type Description

ReadAnnotationDataDetails Structure Specifies the details used to perform an “at time” history read .

 reqTimes [] UtcTime The entries define the specific timestamps for which values are to be
read.

6.4.6.2 Read Annotation Data functionality

The ReadAnnotationDataDetails structure reads the Annotaion Data from the history database
for the specified timestamps for one or more HistoricalDataNodes.

The order of the Annotations Data returned shall match the order of the timestamps supplied in

the request.

If Annotation Data is not supported for a HistoricalDataNode then the StatusCode shall be
Bad_HistoryOperationUnsupported.

If the read request is taking a long time to calculate then the Server may return zero results
with a ContinuationPoint that allows the Server to resume the calculation on the next Client
HistoryRead call.

6.5 HistoryData parameters returned

 Overview

The HistoryRead Service returns different types of data depending on whether the request
asked for the value Attribute of a Node or the history Events of a Node. The historyData is an
Extensible Parameter whose structure depends on the functions to perform for the
HistoryReadDetails parameter. See OPC 10000-4 for details on Extensible Parameters.

 HistoryData type

Table 25 defines the structure of the HistoryData used for the data to return in a HistoryRead.

Table 25 – HistoryData Details

Name Type Description

dataValues[] DataValue An array of values of history data for the Node. The size of the array
depends on the requested data parameters.

 HistoryModifiedData type

Table 26 defines the structure of the HistoryModifiedData used for the data to return in a
HistoryRead when IsReadModified = True.

Table 26 – HistoryModifiedData Details

Name Type Description

dataValues[] DataValue An array of values of history data for the Node. The size of the
array depends on the requested data parameters.

modificationInfos[] ModificationInfo

 modificationTime UtcTime The time the modification was made. Support for this field is
optional. A null shall be returned if it is not defined.

Release 1.04 30 OPC 10000-11: Historical Access

 updateType HistoryUpdateType The modification type for the item.

 Username String The name of the user that made the modification. Support for
this field is optional. A null shall be returned if it is not defined.

 HistoryEvent type

Table 27 defines the HistoryEvent parameter used for Historical Event reads.

The HistoryEvent defines a table structure that is used to return Event fields to a Historical
Read. The structure is in the form of a table consisting of one or more Events, each containing
an array of one or more fields. The selection and order of the fields returned for each Event are
identical to the selected parameter of the EventFilter.

Table 27 – HistoryEvent Details

Name Type Description

Events [] HistoryEventFieldList The list of Events being delivered.

 eventFields [] BaseDataType List of selected Event fields. This will be a one-to-one match
with the fields selected in the EventFilter.

 HistoryAnnotationData type

Table 25 defines the structure of the HistoryAnnotationData used for the data to return in a
HistoryRead.

Table 28 – HistoryData Details

Name Type Description

dataValues[] DataValue An array of values of Annotation data (See 5.5). The size of the array
depends on the requested data parameters.

6.6 HistoryUpdateType Enumeration

Table 29 defines the HistoryUpdate enumeration.

Table 29 – HistoryUpdateType Enumeration

Name Description

INSERT_1 Data was inserted.

REPLACE_2 Data was replaced.

UPDATE_3 Data was inserted or replaced.

DELETE_4 Data was deleted.

6.7 PerformUpdateType Enumeration

Table 30 defines the PerformUpdateType enumeration.

Table 30 – PerformUpdateType Enumeration

Name Description

INSERT_1 Data was inserted.

REPLACE_2 Data was replaced.

UPDATE_3 Data was inserted or replaced.

DELETE_4 Data was deleted.

OPC 10000-11: Historical Access 31 Release 1.04

6.8 HistoryUpdateDetails parameter

 Overview

The HistoryUpdate Service defined in OPC 10000-4 can perform several different functions. The
historyUpdateDetails parameter is an Extensible Parameter that specifies which function to
perform and the details that are specific to that function. See OPC 10000-4 for the definition of
Extensible Parameter. Table 31 lists the symbolic names of the valid Extensible Parameter
structures. Some structures will perform different functions based on the setting of its
associated parameters. For simplicity a functionality of each structure is listed. For example
text such as ‘using the Replace data functionality’ refers to the function the HistoryUpdate
Service performs using the Extensible Parameter structure UpdateDataDetails with the
performInsertReplace enumeration parameter set to REPLACE_2.

Release 1.04 32 OPC 10000-11: Historical Access

Table 31 – HistoryUpdateDetails parameter TypeIds

Symbolic Name Functionality Description

UpdateDataDetails Insert data This function inserts new values into the history database at the
specified timestamps for one or more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateDataDetails Replace data This function replaces existing values into the history database at
the specified timestamps for one or more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateDataDetails Update data This function inserts or replaces values into the history database
at the specified timestamps for one or more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateStructureDataDetails Insert data This function inserts new Structured History Data or Annotations
into the history database at the specified timestamps for one or
more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateStructureDataDetails Replace data This function replaces existing Structured History Data or
Annotations into the history database at the specified timestamps
for one or more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateStructureDataDetails Update data This function inserts or replaces Structured History Data or
Annotations into the history database at the specified timestamps
for one or more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateStructureDataDetails Remove data This function removes Structured History Data or Annotations
from the history database at the specified timestamps for one or
more HistoricalDataNodes.

The Variable’s value is represented by a composite value defined
by the DataValue data type.

UpdateEventDetails Insert events This function inserts new Events into the history database for one
or more HistoricalEventNodes.

UpdateEventDetails Replace events This function replaces values of fields in existing Events into the
history database for one or more HistoricalEventNodes.

UpdateEventDetails Update events This function inserts new Events or replaces existing Events in
the history database for one or more HistoricalEventNodes.

DeleteRawModifiedDetails Delete raw This function deletes all values from the history database for the
specified time domain for one or more HistoricalDataNodes.

DeleteRawModifiedDetails Delete modified Some historians may store multiple values at the same
Timestamp. This function will delete specified values and
qualities for the specified timestamp for one or more
HistoricalDataNodes.

DeleteAtTimeDetails Delete at time This function deletes all values in the history database for the
specified timestamps for one or more HistoricalDataNodes.

DeleteEventDetails Delete event This function deletes Events from the history database for the
specified filter for one or more HistoricalEventNodes.

The HistoryUpdate Service is used to update or delete, DataValues, Annotations or Events. For
simplicity the term “entry” will be used to mean either DataValue, Annotation, or Event
depending on the context in which it is used. Auditing requirements for History Services are
described in OPC 10000-4. This description assumes the user issuing the request and the Server
that is processing the request support the capability to update entries. See OPC 10000-3 for a
description of Attributes that expose the support of Historical Updates.

If the HistoryUpdate Service is called with two or more of DataValues, Events or Annotations in
the same call the Server operational limits MaxNodesPerHistoryUpdateData and

OPC 10000-11: Historical Access 33 Release 1.04

MaxNodesPerHistoryUpdateEvents (See OPC 10000-5) may be ignored. The Server may return
the service result code Bad_TooManyOperations if it is not able to handle the combination of
DataValues, Events or Annotations. It is recommended to call the HistoryUpdate Service
individually with DataValues, Events or Annotations.

 UpdateDataDetails structure

6.8.2.1 UpdateDataDetails structure details

Table 32 defines the UpdateDataDetails structure.

Table 32 – UpdateDataDetails

Name Type Description

UpdateDataDetails Structure The details for insert, replace, and insert/replace history
updates.

 nodeId NodeId Node id of the Object to be updated.

 performInsertReplace PerformUpdateType Value determines which action of insert, replace, or update is
performed.

Value Description

INSERT_1 See 6.8.2.2.

REPLACE_2 See 6.8.2.3.

UPDATE_3 See 6.8.2.4.

 updateValues[] DataValue New values to be inserted or to replace.

6.8.2.2 Insert data functionality

Setting performInsertReplace = INSERT_1 inserts entries into the history database at the
specified timestamps for one or more HistoricalDataNodes. If an entry exists at the specified
timestamp, then the new entry shall not be inserted; instead the StatusCode shall indicate
Bad_EntryExists.

This function is intended to insert new entries at the specified timestamps, e.g., the insertion of
lab data to reflect the time of data collection.

If the Time does not fall within range that can be stored then the related operationResults entry
shall indicate Bad_OutOfRange.

6.8.2.3 Replace data functionality

Setting performInsertReplace = REPLACE_2 replaces entries in the history database at the
specified timestamps for one or more HistoricalDataNodes. If no entry exists at the specified
timestamp, then the new entry shall not be inserted; otherwise the StatusCode shall indicate
Bad_NoEntryExists.

This function is intended to replace existing entries at the specified timestamp, e.g., correct lab
data that was improperly processed, but inserted into the history database.

6.8.2.4 Update data functionality

Setting performInsertReplace = UPDATE_3 inserts or replaces entries in the history database
for the specified timestamps for one or more HistoricalDataNodes. If the item has an entry at
the specified timestamp, then the new entry will replace the old one. If there is no entry at that
timestamp, then the function will insert the new data.

A Server can create a modified value for a value being replaced or inserted (see 3.1.6) however

it is not required.

This function is intended to unconditionally insert/replace values and qualities , e.g., correction
of values for bad sensors.

Good as a StatusCode for an individual entry is allowed when the Server is unable to say
whether there was already a value at that timestamp. If the Server can determine whether the

Release 1.04 34 OPC 10000-11: Historical Access

new entry replaces an entry that was already there, then it should use Good_EntryInserted or
Good_EntryReplaced to return that information.

If the Time does not fall within range that can be stored then the related operationResults entry
shall indicate Bad_OutOfRange.

 UpdateStructureDataDetails structure

6.8.3.1 UpdateStructureDataDetails structure details

Table 32 defines the UpdateStructureDataDetails structure.

Table 33 – UpdateStructureDataDetails

Name Type Description

UpdateStructureDataDetails Structure The details for Structured Data History updates.

 nodeId NodeId Node id of the Object to be updated.

 performInsertReplace PerformUpdateType Value determines which action of insert, replace, or
update is performed.

Value Description

INSERT_1 See 6.8.3.3.

REPLACE_2 See 6.8.3.4.

UPDATE_3 See 6.8.3.5.

REMOVE_4 See 6.8.3.6.

 updateValue[] DataValue New values to be inserted, replaced or removed. Such
as Annotation data for Annotations.

6.8.3.2 Specfied Uniqueness of Structured History Data

Structured History Data provides metadata describing an entry in the history database. The
Server shall define what uniqueness means for each Structured History Data structure type.
For example, a Server may only allow one Annotation per timestamp which means the
timestamp is the unique key for the structure . Another Server may allow Annotations to exist
per user, so a combination of a username and timestamp may be used as the unique key for
the structure. In 6.8.3.3, 6.8.3.4, 6.8.3.5, and 6.8.3.6 the terms ‘Structured History Data exists’
and ‘at the specified parameters’ means a matching entry has been found at the specified
timestamp using the Server’s criteria for uniqueness.

In the case where the Client wishes to replace a parameter that is part of the uniqueness criteria,
then the resulting StatusCode would be Bad_NoEntryExists. The Client shall remove the

existing structure and then Insert the new structure.

6.8.3.3 Insert functionality

Setting performInsertReplace = INSERT_1 inserts Structured History Data such as Annotations
into the history database at the specified parameters for one or more Properties of
HistoricalDataNodes.

If a Structured History Data entry already exists at the specified parameters the StatusCode
shall indicate Bad_EntryExists.

If the Time does not fall within range that can be stored then the related operationResults entry
shall indicate Bad_OutOfRange.

6.8.3.4 Replace functionality

Setting performInsertReplace = REPLACE_2 replaces Structured History Data such as
Annotations in the history database at the specified parameters for one or more Properties of
HistoricalDataNodes.

If a Structured History Data entry does not already exist at the specified parameters, then the
StatusCode shall indicate Bad_NoEntryExists.

OPC 10000-11: Historical Access 35 Release 1.04

6.8.3.5 Update functionality

Setting performInsertReplace = UPDATE_3 inserts or replaces Structured History Data such as
Annotations in the history database at the specified parameters for one or more Properties of
HistoricalDataNodes.

If a Structure History Data entry already exists at the specified parameters then it is deleted
and the value provided by the Client is inserted. If no existing entry exists then the new entry

is inserted.

If an existing entry was replaced successfully then the StatusCode shall be
Good_EntryReplaced. If a new entry was created the StatusCode shall be Good_EntryInserted.
If the Server cannot determine whether it replaced or inserted an entry then the StatusCode
shall be Good.

If the Time does not fall within range that can be stored then the related operationResults entry
shall indicate Bad_OutOfRange.

6.8.3.6 Remove functionality

Setting performInsertReplace = REMOVE_4 removes Structured History Data such as
Annotations from the history database at the specified parameters for one or more Properties
of HistoricalDataNodes.

If a Structure History Data entry exists at the specified parameters it is deleted. If Structured
History Data does not already exist at the specified parameters, then the StatusCode shall
indicate Bad_NoEntryExists.

 UpdateEventDetails structure

6.8.4.1 UpdateEventDetails structure detail

Table 34 defines the UpdateEventDetails structure.

Table 34 – UpdateEventDetails

Name Type Description

UpdateEventDetails Structure The details for insert, replace, and insert/replace history Event
updates.

 nodeId NodeId Node id of the Object to be updated.

 performInsertReplace PerformUpdateType Value determines which action of insert, replace, or update is
performed.

Value Description

INSERT_1 Perform Insert Event (see 6.8.4.2).

REPLACE_2 Perform Replace Event (see 6.8.4.3).

UPDATE_3 Perform Update Event (see 6.8.4.4).

 filter EventFilter If the history of Notification conforms to the EventFilter, the
history of the Notification is updated.

 eventData[] HistoryEventFieldList List of Event Notifications to be inserted or updated (see 6.5.4
for HistoryEventFieldList definition).

6.8.4.2 Insert event functionality

This function is intended to insert new entries, e.g., backfilling of historical Events.

Setting performInsertReplace = INSERT_1 inserts entries into the Event history database for
one or more HistoricalEventNodes. The whereClause parameter of the EventFilter shall be
empty. The SelectClause shall as a minimum provide the following Event fields: EventType
and Time. It is also recommended that the SourceNode and the SourceName fields are
provided. If one of the required fields is not provided then the statusCode shall indicate
Bad_ArgumentsMissing. If the historian does not support archiving the specified EventType
then the statusCode shall indicate Bad_TypeDefinitionInvalid. If the SourceNode is not a valid

Release 1.04 36 OPC 10000-11: Historical Access

source for Events then the related operationResults entry shall indicate
Bad_SourceNodeIdInvalid. If the Time does not fall within range that can be stored then the
related operationResults entry shall indicate Bad_OutOfRange. If the selectClause does not
include fields which are mandatory for the EventType then the statusCode shall indicate
Bad_ArgumentsMissing. If the selectClause specifies fields which are not valid for the
EventType or cannot be saved by the historian then the related operationResults entry shall
indicate Good_DataIgnored. Additional information about the ignored fields shall be provided
through DiagnosticInformation related to the operationResults. The symbolicId contains the
index of each ignored field separated with a space and the localizedText contains the symbolic
names of the ignored fields.

The EventId is a Server generated opaque value and a Client cannot assume that it knows how
to create valid EventIds. A Server shall be able to generate an appropriate default value for the
EventId field. If a Client does specify the EventId in the selectClause and it matches an existing
Event then the statusCode shall indicate Bad_EntryExists. A Client shall use a HistoryRead to
discover any automatically generated EventIds.

If any errors occur while processing individual fields then the related operationResults entry
shall indicate Bad_InvalidArgument and the invalid fields shall be indicated in the
DiagnosticInformation related to the operationResults entry.

The IndexRange parameter of the SimpleAttributeOperand is not valid for insert operations and
the StatusCode shall specify Bad_IndexRangeInvalid if one is specified.

A Client may instruct the Server to choose a suitable default value for a field by specifying a
value of null. If the Server is not able to select a suitable default then the corresponding entry
in the operationResults array for the affected Event shall be Bad_InvalidArgument.

6.8.4.3 Replace event functionality

This function is intended to replace fields in existing Event entries, e.g., correct Event data that

contained incorrect data due to a bad sensor.

Setting performInsertReplace = REPLACE_2 replaces entries in the Event history database for
the specified EventIds for one or more HistoricalEventNodes. The SelectClause parameter of
the EventFilter shall specify the EventId Property and the eventData shall contain the EventId
which will be used to find the Event to be replaced. If no entry exists matching the specified
EventId then no replace operation will be performed; instead the operationResults entry for the
eventData entry shall indicate Bad_NoEntryExists. The whereClause parameter of the
EventFilter shall be empty.

If the selectClause specifies fields which are not valid for the EventType or cannot be saved or
changed by the historian then the operationResults entry for the affected Event shall indicate
Good_DataIgnored. Additional information about the ignored fields shall be provided through
DiagnosticInformation related to the operationResults. The symbolicId contains the index of
each ignored field separated with a space and the localizedText contains the symbolic names
of the ignored fields.

If fatal errors occur while processing individual fields then the operationResults entry for the
affected Event shall indicate Bad_InvalidArgument and the invalid fields shall be indicated in
the DiagnosticInformation related to the operationResults entry.

6.8.4.4 Update event functionality

This function is intended to unconditionally insert/replace Events, e.g., synchronizing a backup
Event database.

Setting performInsertReplace = UPDATE_3 inserts or replaces entries in the Event history
database for the specified filter for one or more HistoricalEventNodes.

The Server will, based on its own criteria, attempt to determine if the Event already exists; if it
does exist then the Event will be deleted and the new Event will be inserted (retaining the
EventId). If the EventID was provided then the EventID will be used to determine if the Event

OPC 10000-11: Historical Access 37 Release 1.04

already exists. If the Event does not exist then a new Event will be inserted, including the
generation of a new EventId.

All of the restrictions, behaviours, and errors specified for the Insert functionality (see 6.8.4.2)
also apply to this function.

If an existing Event entry was replaced successfully then the related operationResults entry
shall be Good_EntryReplaced. If a new Event entry was created then the related
operationResults entry shall be Good_EntryInserted. If the Server cannot determine whether it
replaced or inserted an entry then the related operationResults entryshall be Good.

 DeleteRawModifiedDetails structure

6.8.5.1 DeleteRawModifiedDetails structure detail

Table 35 defines the DeleteRawModifiedDetails structure.

Table 35 – DeleteRawModifiedDetails

Name Type Description

DeleteRawModifiedDetails Structure The details for delete raw and delete modified history updates.

 nodeId NodeId Node id of the Object for which history values are to be deleted.

 isDeleteModified Boolean TRUE for MODIFIED, FALSE for RAW. Default value is FALSE.

 startTime UtcTime Beginning of period to be deleted.

 endTime UtcTime End of period to be deleted.

These functions are intended to be used to delete data that has been accidentally entered into
the history database, e.g., deletion of data from a source with incorrect timestamps. Both
startTime and endTime shall be defined. The startTime shall be less than the endTime, and
values up to but not including the endTime are deleted. It is permissible for startTime =
endTime, in which case the value at the startTime is deleted.

6.8.5.2 Delete raw functionality

Setting isDeleteModified = FALSE deletes all Raw entries from the history database for the
specified time domain for one or more HistoricalDataNodes.

If no data is found in the time range for a particular HistoricalDataNode, then the StatusCode
for that item is Bad_NoData.

6.8.5.3 Delete modified functionality

Setting isDeleteModified = TRUE deletes all Modified entries from the history database for the
specified time domain for one or more HistoricalDataNodes.

If no data is found in the time range for a particular HistoricalDataNode, then the StatusCode
for that item is Bad_NoData.

 DeleteAtTimeDetails structure

6.8.6.1 DeleteAtTimeDetails structure detail

Table 36 defines the structure of the DeleteAtTimeDetails structure.

Table 36 – DeleteAtTimeDetails

Name Type Description

DeleteAtTimeDetails Structure The details for delete raw history updates

 nodeId NodeId Node id of the Object for which history values are to be deleted.

 reqTimes [] UtcTime The entries define the specific timestamps for which values are to be
deleted.

Release 1.04 38 OPC 10000-11: Historical Access

6.8.6.2 Delete at time functionality

The DeleteAtTime structure deletes all raw values, modified values, and annotations in the
history database for the specified timestamps for one or more HistoricalDataNodes.

This parameter is intended to be used to delete specific data from the history database , e.g.,
lab data that is incorrect and cannot be correctly reproduced.

 DeleteEventDetails structure

6.8.7.1 DeleteEventDetails structure detail

Table 37 defines the structure of the DeleteEventDetails structure.

Table 37 – DeleteEventDetails

Name Type Description

DeleteEventDetails Structure The details for delete raw and delete modified history updates.

 nodeId NodeId Node id of the Object for which history values are to be deleted.

 eventId[] ByteString An array of EventIds to identify which Events are to be deleted.

6.8.7.2 Delete event functionality

The DeleteEventDetails structure deletes all Event entries from the history database matching
the EventId for one or more HistoricalEventNodes.

If no Events are found that match the specified filter for a HistoricalEventNode, then the
StatusCode for that Node is Bad_NoData.

OPC 10000-11: Historical Access 39 Release 1.04

Annex A
(informative)

Client conventions

A.1 How clients may request timestamps

The OPC HDA COM based specifications allowed a Client to programmatically request historical
time periods as absolute time (Jan 01, 2006 12:15:45) or a string representation of relative time
(NOW -5M). The OPC UA specification does not allow for using a string representation to pass
date/time information using the standard Services.

OPC UA Client applications that wish to visually represent date/time in a relative string format
shall convert this string format to UTC DateTime values before sending requests to the UA
Server. It is recommended that all OPC UA Clients use the syntax defined in Clause A.1 to

represent relative times in their user interfaces.

The format for the relative time is:

 keyword+/-offset+/-offset…

where keyword and offset are as specified in Table A.1 below. Whitespace is ignored. The time
string shall begin with a keyword. Each offset shall be preceded by a signed integer that
specifies the number and direction of the offset. If the integer preceding the offset is unsigned
then the value of the preceding sign is assumed (beginning default sign is positive). The
keyword refers to the beginning of the specified time period. DAY means the timestamp at the
beginning of the current day (00:00 hours, midnight) . MONTH means the timestamp at the
beginning of the current month, etc.

For example, “DAY -1D+7H30M” could represent the start time for data requested for a daily
report beginning at 7:30 in the morning of the previous day (DAY = the first timestamp for today,
-1D would make it the first timestamp for yesterday, +7H would take it to 7 a.m. yesterday,
+30M would make it 7:30 a.m. yesterday (the + on the last term is carried over from the last
term)).

Similarly, “MONTH-1D+5H” would be 5 a.m. on the last day of the previous month, “NOW -
1H15M” would be an hour and fifteen minutes ago, and “YEAR+3MO” would be the first
timestamp of April 1 this year.

Resolving relative timestamps is based upon what Microsoft has done with Excel, thus for
various questionable time strings we have these results:

10-Jan-2001 + 1 MO = 10-Feb-2001

29-Jan-1999 + 1 MO = 28-Feb-1999

31-Mar-2002 + 2 MO = 30-May-2002

29-Feb-2000 + 1 Y = 28-Feb-2001

In handling a gap in the calendar (due to different numbers of days in the month, or in the year),
when one is adding or subtracting months or years:

Month: If the answer falls in the gap then it is backed up to the same time of day on the last
day of the month.

Year: If the answer falls in the gap (February 29) then it is backed up to the same time of
day on February 28.

Note that the above does not hold true for cases of adding or subtracting weeks or days, but
only for adding or subtracting months or years which may have different numbers of da ys in
them.

Note that all keywords and offsets are specified in uppercase.

Release 1.04 40 OPC 10000-11: Historical Access

Table A.1 – Time keyword definitions

Keyword Description

NOW The current UTC time as calculated on the Server.

SECOND The start of the current second.

MINUTE The start of the current minute.

HOUR The start of the current hour.

DAY The start of the current day.

WEEK The start of the current week.

MONTH The start of the current month.

YEAR The start of the current year.

Table A.2 –Time offset definitions

Offset Description

S Offset from time in seconds.

M Offset from time in minutes.

H Offset from time in hours.

D Offset from time in days.

W Offset from time in weeks.

MO Offset from time in months.

Y Offset from time in years.

A.2 Determining the first historical data point

In some cases Servers are required to return the first available data point for a historical Node;
Clause A.2 recommends the way that a Client should request this information so that Servers
can optimize this call, if desired. Although there are multiple calls that could return the first data
value, the recommended practice will be to use the StartOfArchive Property.

If this Property isn’t available then use one of the following queries using

ReadRawModifiedDetails parameters:

returnBounds=false

numValuesPerNode=1

startTime=DateTime.MinValue+1 second

endTime= DateTime.MinValue

Or:

returnBounds=false

numValuesPerNode=1

startTime=DateTime.MinValue

endTime= DateTime.MaxValue

	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviations
	3.1 Terms and definitions
	3.2 Abbreviations

	4 Concepts
	4.1 General
	4.2 Data architecture
	4.3 Timestamps
	4.4 Bounding Values and time domain
	4.5 Changes in AddressSpace over time

	5 Historical Information Model
	5.1 HistoricalNodes
	5.1.1 General
	5.1.2 Annotations Property

	5.2 HistoricalDataNodes
	5.2.1 General
	5.2.2 HistoricalDataConfigurationType
	5.2.3 HasHistoricalConfiguration ReferenceType
	5.2.4 Historical Data Configuration Object
	5.2.5 HistoricalDataNodes Address Space Model
	5.2.6 Attributes

	5.3 HistoricalEventNodes
	5.3.1 General
	5.3.2 HistoricalEventFilter Property
	5.3.3 HistoricalEventNodes Address Space Model
	5.3.4 HistoricalEventNodes Attributes

	5.4 Exposing supported functions and capabilities
	5.4.1 General
	5.4.2 HistoryServerCapabilitiesType

	5.5 Annotation DataType
	5.6 Historical Audit Events
	5.6.1 General
	5.6.2 AuditHistoryEventUpdateEventType
	5.6.3 AuditHistoryValueUpdateEventType
	5.6.4 AuditHistoryAnnotationUpdateEventType
	5.6.5 AuditHistoryDeleteEventType
	5.6.6 AuditHistoryRawModifyDeleteEventType
	5.6.7 AuditHistoryAtTimeDeleteEventType
	5.6.8 AuditHistoryEventDeleteEventType

	6 Historical Access specific usage of Services
	6.1 General
	6.2 Historical Nodes StatusCodes
	6.2.1 Overview
	6.2.2 Operation level result codes
	6.2.3 Semantics changed

	6.3 Continuation Points
	6.4 HistoryReadDetails parameters
	6.4.1 Overview
	6.4.2 ReadEventDetails structure
	6.4.2.1 ReadEventDetails structure details
	6.4.2.2 Read Event functionality

	6.4.3 ReadRawModifiedDetails structure
	6.4.3.1 ReadRawModifiedDetails structure details
	6.4.3.2 Read raw functionality
	6.4.3.3 Read modified functionality

	6.4.4 ReadProcessedDetails structure
	6.4.4.1 ReadProcessedDetails structure details
	6.4.4.2 Read processed functionality

	6.4.5 ReadAtTimeDetails structure
	6.4.5.1 ReadAtTimeDetails structure details
	6.4.5.2 Read at time functionality

	6.4.6 ReadAnnotationDataDetails structure
	6.4.6.1 ReadAnnotationDataDetails structure details
	6.4.6.2 Read Annotation Data functionality

	6.5 HistoryData parameters returned
	6.5.1 Overview
	6.5.2 HistoryData type
	6.5.3 HistoryModifiedData type
	6.5.4 HistoryEvent type
	6.5.5 HistoryAnnotationData type

	6.6 HistoryUpdateType Enumeration
	6.7 PerformUpdateType Enumeration
	6.8 HistoryUpdateDetails parameter
	6.8.1 Overview
	6.8.2 UpdateDataDetails structure
	6.8.2.1 UpdateDataDetails structure details
	6.8.2.2 Insert data functionality
	6.8.2.3 Replace data functionality
	6.8.2.4 Update data functionality

	6.8.3 UpdateStructureDataDetails structure
	6.8.3.1 UpdateStructureDataDetails structure details
	6.8.3.2 Specfied Uniqueness of Structured History Data
	6.8.3.3 Insert functionality
	6.8.3.4 Replace functionality
	6.8.3.5 Update functionality
	6.8.3.6 Remove functionality

	6.8.4 UpdateEventDetails structure
	6.8.4.1 UpdateEventDetails structure detail
	6.8.4.2 Insert event functionality
	6.8.4.3 Replace event functionality
	6.8.4.4 Update event functionality

	6.8.5 DeleteRawModifiedDetails structure
	6.8.5.1 DeleteRawModifiedDetails structure detail
	6.8.5.2 Delete raw functionality
	6.8.5.3 Delete modified functionality

	6.8.6 DeleteAtTimeDetails structure
	6.8.6.1 DeleteAtTimeDetails structure detail
	6.8.6.2 Delete at time functionality

	6.8.7 DeleteEventDetails structure
	6.8.7.1 DeleteEventDetails structure detail
	6.8.7.2 Delete event functionality

	Annex A (informative) Client conventions
	A.1 How clients may request timestamps
	A.2 Determining the first historical data point

