

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-12

OPC Unified Architecture

Part 12: Discovery and Global Services

Release 1.04

2018-02-07

Specification
Type

Industry Standard
Specification

Comments:

Document
Number

OPC 10000-12

Title: OPC Unified
Architecture
Discovery and Global
Services

Date: 2018-02-07

Version: Release 1.04 Software MS-Word

 Source: OPC 10000-12 - UA Specification Part 12
- Discovery and Global Services
1.04.docx

Author: OPC Foundation Status: Release

OPC 10000-12: Discovery, Global Services ii Release 1.04

CONTENTS

Page

FIGURES ... vi

TABLES .. vii

1 Scope .. 1

2 Normative references .. 1

3 Terms, definitions, and conventions ... 2

3.1 Terms and definitions.. 2

3.2 Abbreviations and symbols ... 4

3.3 Conventions for Namespaces ... 4

4 The Discovery Process .. 5

4.1 Overview .. 5

4.2 Registration and Announcement of Applications .. 5

 Overview ... 5

 Hosts with a LocalDiscoveryServer .. 5

 Hosts without a LocalDiscoveryServer ... 6

4.3 The Discovery Process for Clients to Find Servers .. 6

 Overview ... 6

 Security ... 7

 Simple Discovery with a DiscoveryUrl .. 7

 Local Discovery ... 7

 MulticastSubnet Discovery ... 8

 Global Discovery ... 8

 Combined Discovery Process for Clients ... 9

5 Local Discovery Server .. 10

5.1 Overview .. 10

5.2 Security Considerations for Multicast DNS .. 10

6 Global Discovery Server .. 10

6.1 Overview .. 10

6.2 Network Architectures ... 11

 Overview ... 11

 Single MulticastSubnet .. 12

 Multiple MulticastSubnet .. 12

 No MulticastSubnet ... 13

 Domain Names and MulticastSubnets .. 13

6.3 Information Model ... 14

 Overview ... 14

 Directory .. 14

 DirectoryType .. 14

 FindApplications .. 15

 ApplicationRecordDataType .. 16

 RegisterApplication .. 16

 UpdateApplication ... 17

 UnregisterApplication .. 17

 GetApplication ... 18

 QueryApplications ... 18

 QueryServers (depreciated) ... 20

Release 1.04 iii OPC 10000-12: Discovery, Global Services

 ApplicationRegistrationChangedAuditEventType.. 21

7 Certificate Management Overview ... 21

7.1 Overview .. 21

7.2 Pull Management .. 22

7.3 Push Management .. 23

7.4 Provisioning .. 24

7.5 Common Information Model .. 24

 Overview ... 24

 TrustListType... 24

 OpenWithMasks .. 25

 CloseAndUpdate .. 25

 AddCertificate .. 26

 RemoveCertificate ... 27

 TrustListDataType ... 27

 TrustListMasks .. 28

 TrustListOutOfDateAlarmType ... 28

 CertificateGroupType ... 28

 CertificateType .. 29

 ApplicationCertificateType ... 29

 HttpsCertificateType .. 29

 UserCredentialCertificateType ... 30

 RsaMinApplicationCertificateType ... 30

 RsaSha256ApplicationCertificateType ... 30

 CertificateGroupFolderType ... 30

 TrustListUpdatedAuditEventType ... 31

7.6 Information Model for Pull Certificate Management ... 31

 Overview ... 31

 CertificateDirectoryType .. 32

 StartSigningRequest .. 33

 StartNewKeyPairRequest .. 34

 FinishRequest ... 36

 GetCertificateGroups ... 37

 GetTrustList ... 37

 GetCertificateStatus .. 38

 CertificateRequestedAuditEventType ... 39

 CertificateDeliveredAuditEventType ... 39

7.7 Information Model for Push Certificate Management ... 40

 Overview ... 40

 ServerConfiguration ... 40

 ServerConfigurationType ... 40

 UpdateCertificate ... 41

 ApplyChanges ... 42

 CreateSigningRequest ... 43

 GetRejectedList ... 44

 CertificateUpdatedAuditEventType .. 44

8 KeyCredential Management ... 45

8.1 Overview .. 45

8.2 Pull Management .. 45

8.3 Push Management .. 46

OPC 10000-12: Discovery, Global Services iv Release 1.04

8.4 Information Model for Pull Management .. 47

 Overview ... 47

 KeyCredentialManagement .. 48

 KeyCredentialServiceType ... 48

 StartRequest ... 49

 FinishRequest ... 50

 Revoke .. 50

 KeyCredentialAuditEventType ... 51

 KeyCredentialRequestedAuditEventType ... 51

 KeyCredentialDeliveredAuditEventType ... 52

 KeyCredentialRevokedAuditEventType .. 52

8.5 Information Model for Push Management .. 52

 KeyCredentialConfiguration ... 53

 KeyCredentialConfigurationType ... 53

 UpdateCredential ... 54

 DeleteCredential .. 54

 KeyCredentialUpdatedAuditEventType .. 55

 KeyCredentialDeletedAuditEventType ... 55

9 Authorization Services ... 56

9.1 Overview .. 56

9.2 Implicit .. 56

9.3 Explicit .. 57

9.4 Chained .. 58

9.5 Information Model for Requesting Access Tokens ... 59

 Overview ... 59

 AuthorizationServices .. 60

 AuthorizationServiceType .. 60

 RequestAccessToken .. 61

 GetServiceDescription ... 62

 AccessTokenIssuedAuditEventType .. 62

9.6 Information Model for Configuring Servers .. 63

 Overview ... 63

 AuthorizationServices .. 63

 AuthorizationServiceConfigurationType ... 63

Annex A (informative) Deployment and Configuration .. 65

A.1 Firewalls and Discovery .. 65

A.2 Resolving References to Remote Servers ... 67

Annex B (normative) Constants.. 69

B.1 Numeric Node Ids ... 69

Annex C (normative) OPC UA Mapping to mDNS ... 70

C.1 DNS Server (SRV) Record Syntax .. 70

C.2 DNS Text (TXT) Record Syntax .. 70

C.3 DiscoveryUrl Mapping ... 71

Annex D (normative) Server Capability Identifiers .. 72

Annex E (normative) DirectoryServices .. 73

E.1 Global Discovery via Other Directory Services .. 73

E.2 UDDI... 73

E.3 LDAP .. 74

Release 1.04 v OPC 10000-12: Discovery, Global Services

Annex F (normative) Local Discovery Server ... 76

F.1 Certificate Store Directory Layout ... 76

F.2 Installation Directories on Windows .. 76

Annex G (normative) Application Installation Process .. 78

G.1 Provisioning with Pull Management ... 78

G.2 Provisioning with the Push Management ... 78

G.3 Setting Permissions .. 79

Annex H (informative) Comparison with RFC 7030 .. 80

H.1 Overview .. 80

H.2 Obtaining CA Certificates .. 80

H.3 Initial Enrolment .. 80

H.4 Client Certificate Reissuance .. 80

H.5 Server Key Generation .. 81

H.6 Certificate Signing Request (CSR) Attributes Request .. 81

OPC 10000-12: Discovery, Global Services vi Release 1.04

FIGURES
Figure 1 – The Registration Process with an LDS ... 6

Figure 2 – The Simple Discovery Process ... 7

Figure 3 – The Local Discovery Process ... 7

Figure 4 – The MulticastSubnet Discovery Process ... 8

Figure 5 – The Global Discovery Process ... 9

Figure 6 – The Discovery Process for Clients .. 9

Figure 7 – The Relationship Between GDS and other components .. 11

Figure 8 – The Single MulticastSubnet Architecture .. 12

Figure 9 – The Multiple MulticastSubnet Architecture .. 12

Figure 10 – The No MulticastSubnet Architecture ... 13

Figure 11 – The Address Space for the GDS .. 14

Figure 12 – The Pull Certificate Management Model ... 22

Figure 13 – The Push Certificate Management Model ... 23

Figure 14 – The Certificate Management AddressSpace for the GlobalDiscoveryServer 32

Figure 15 – The AddressSpace for the Server that supports Push Management 40

Figure 16 – The Pull Model for KeyCredential Management .. 46

Figure 17 – The Push Model for KeyCredential Management .. 47

Figure 18 – The Address Space used for Pull KeyCredentia l Management............................ 48

Figure 19 – The Address Space used for Push KeyCredential Management 53

Figure 20 – Roles and Authorization Services ... 56

Figure 21 – Implicit Authorization .. 57

Figure 22 – Explicit Authorization .. 58

Figure 23 – Chained Authorization .. 59

Figure 24 – The Model for Requesting Access Tokens from Authorization Services 60

Figure 25 – The Model for Configuring Servers to use Authorization Services 63

Figure 26 – Discovering Servers Outside a Firewall .. 65

Figure 27 – Discovering Servers Behind a Firewall ... 66

Figure 28 – Using a Discovery Server with a Firewall .. 67

Figure 29 – Following References to Remote Servers ... 68

Figure 30 – The UDDI or LDAP Discovery Process ... 73

Figure 31 – UDDI Registry Structure ... 74

Figure 32 – Sample LDAP Hierarchy ... 75

Release 1.04 vii OPC 10000-12: Discovery, Global Services

TABLES
Table 1 – GDS NamespaceMetadataType Object Definition .. 4

Table 2 – Directory Object Definition ... 14

Table 3 – DirectoryType Definition .. 14

Table 4 – FindApplications Method AddressSpace Definition .. 16

Table 5 – ApplicationRecordDataType Definition .. 16

Table 6 – RegisterApplication Method AddressSpace Definition .. 17

Table 7 – UpdateApplication Method AddressSpace Definition ... 17

Table 8 – UnregisterApplication Method AddressSpace Definition ... 18

Table 9 – GetApplication Method AddressSpace Definition ... 18

Table 10 – QueryApplications Method AddressSpace Definition .. 20

Table 11 – QueryServers Method AddressSpace Definition .. 21

Table 12 – ApplicationRegistrationChangedAuditEventType Definition 21

Table 13 – TrustListType Definition ... 24

Table 14 – OpenWithMasks Method AddressSpace Definition ... 25

Table 15 – CloseAndUpdate Method AddressSpace Definition .. 26

Table 16 – AddCertificate Method AddressSpace Definition .. 27

Table 17 – RemoveCertificate Method AddressSpace Definition ... 27

Table 18 – TrustListDataType Definition ... 27

Table 19 – TrustListMasks Values .. 28

Table 20 – TrustListOutOfDateAlarmType definition .. 28

Table 21 – CertificateGroupType Definition ... 28

Table 22 – CertificateType Definition .. 29

Table 23 – ApplicationCertificateType Definition ... 29

Table 24 – HttpsCertificateType Definition .. 29

Table 25 – UserCredentialCertificateType Definition ... 30

Table 26 – RsaMinApplicationCertificateType Definition ... 30

Table 27 – RsaSha256ApplicationCertificateType Definition ... 30

Table 28 – CertificateGroupFolderType Definition ... 30

Table 29 – TrustListUpdatedAuditEventType Definition ... 31

Table 30 – CertificateDirectoryType ObjectType Definition.. 32

Table 31 – StartSigningRequest Method AddressSpace Definition .. 34

Table 32 – StartNewKeyPairRequest Method AddressSpace Definition 36

Table 33 – FinishRequest Method AddressSpace Definition .. 37

Table 34 – GetCertificateGroups Method AddressSpace Definition 37

Table 35 – GetTrustList Method AddressSpace Definition ... 38

Table 36 – GetCertificateStatus Method AddressSpace Definition ... 39

Table 37 – CertificateRequestedAuditEventType Definition ... 39

Table 38 – CertificateDeliveredAuditEventType Definition ... 39

Table 39 – ServerConfiguration Object Definition .. 40

Table 40 – ServerConfigurationType Definition ... 40

Table 41 – UpdateCertificate Method AddressSpace Definition ... 42

Table 42 – ApplyChanges Method AddressSpace Definition ... 43

OPC 10000-12: Discovery, Global Services viii Release 1.04

Table 43 – CreateSigningRequest Method AddressSpace Definition 44

Table 44 – GetRejectedList Method AddressSpace Definition ... 44

Table 45 – CertificateUpdatedAuditEventType Definition .. 45

Table 46 – KeyCredentialManagement Object Definition ... 48

Table 47 – KeyCredentialServiceType Definition ... 48

Table 48 – StartRequest Method AddressSpace Definition .. 49

Table 49 – FinishRequest Method AddressSpace Definition .. 50

Table 50 – Revoke Method AddressSpace Definition .. 51

Table 51 – KeyCredentialAuditEventType Definition ... 51

Table 52 – KeyCredentialRequestedAuditEventType Definition ... 52

Table 53 – KeyCredentialDeliveredAuditEventType Definition ... 52

Table 54 – KeyCredentialRevokedAuditEventType Definition .. 52

Table 55 – KeyCredentialConfiguration Object Definition .. 53

Table 56 – KeyCredentialConfigurationType Definition.. 53

Table 57 – UpdateCredential Method AddressSpace Definition ... 54

Table 58 – DeleteCredential Method AddressSpace Definition .. 55

Table 59 – KeyCredentialUpdatedAuditEventType Definition .. 55

Table 60 – KeyCredentialUpdatedAuditEventType Definition .. 55

Table 61 – AuthorizationServices Object Definition ... 60

Table 62 – AuthorizationServiceType Definition .. 60

Table 63 – RequestAccessToken Method AddressSpace Definition 62

Table 64 – GetServiceDescription Method AddressSpace Definition 62

Table 65 – AccessTokenIssuedAuditEventType Definition .. 62

Table 66 – AuthorizationServices Object Definition ... 63

Table 67 – AuthorizationServiceConfigurationType Definition ... 63

Table 68 – Allowed mDNS Service Names .. 70

Table 69 – DNS TXT Record String Format... 70

Table 70 – DiscoveryUrl to DNS SRV and TXT Record Mapping ... 71

Table 71 – Examples of ServerCapabilityIdentifiers .. 72

Table 72 – UDDI tModels .. 74

Table 73 – LDAP Object Class Schema .. 75

Table 74 – Application Certificate Store Directory Layout .. 76

Table 75 – Verifying that a Server is allowed to Provide Certificates 80

Table 76 – Verifying that a Client is allowed to request Certificates 80

Release 1.04 ix OPC 10000-12: Discovery, Global Services

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis
and design process to develop a standard interface to facilitate the development of applications by multiple vendors that
shall inter-operate seamlessly together.

Copyright © 2006-2018, OPC Foundation, Inc.

UAGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, direct ly from the OPC Foundation Web site
http://www.opcfoundation.org.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents tha t
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH
REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights
in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the
OPC Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260 -1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Products developed using this specification may claim compliance or conformance with this specification if and
only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not
meet these requirements may claim only that the product was based on this specification and must not claim compliance
or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

OPC 10000-12: Discovery, Global Services x Release 1.04

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata.

http://www.opcfoundation.org/errata

Release 1.04 xi OPC 10000-12: Discovery, Global Services

Revision 1.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis ID Summary Resolution

3046 There should be a subtype of
"CertificateType" for user
certificates.

Added 7.5.14.

3062 Add references Discovery Endpoint
term defined in OPC 10000-4.

Add references to the new term in clauses
4 and 6.

3185 Not precise enough about the
visibility of objects that have
security related access restrictions.

Added restrictions to 7.7.2.

3343 Missing defaults for
MaxTrustlistSize.

Added default to 7.7.3.

3501 7.6.4 clarification of Domain
Names.

Added text to 7.6.4.

3502 7.6.4 RSA key length of 1024 is
ok?.

Removed text from 7.6.4.

3534 ApplyChanges() - clarifications
needed regarding private keys and
existing/new connections.

Added text to 7.7.5.

3582 RegisterApplication and handling
of duplications.

Added text to 6.3.6.

3584 The spec does not actually allow
the client to use GDS to discover
server's applicationUri and other
info about the server.

Added QueryApplications Method in
6.3.10.

3627 Need a way to manage Broker
credentials.

Added clause 8.

3648 Clarify who can use the Pull and
Push Models.

Clarified text in 7.4.

3751 Need model to Request Tokens
from Authorization Services.

Added clause 9.

3752 Clarify encoding of PEM private
keys.

Add reference to RFC 5958 in 7.6.4.

3839 Change Part Name to Discovery
and Global Services.

Changed Part Name.

3892 Required trust list update time
should be indicated by GDS.

Updated 7.5.2, 7.5.9 and 7.5.10.

3898 LDS-ME must return IP addresses
in order for the multi-subnet use
case to work.

Added 6.2.5.

4081 CA certificates with CRLs with
AddCertificate/RemoveCertificate.

Updated 7.5.5.

https://www.opcfoundation.org/mantis/view.php?id=3046
https://www.opcfoundation.org/mantis/view.php?id=3062
https://www.opcfoundation.org/mantis/view.php?id=3185
https://www.opcfoundation.org/mantis/view.php?id=3343
https://www.opcfoundation.org/mantis/view.php?id=3501
https://www.opcfoundation.org/mantis/view.php?id=3502
https://www.opcfoundation.org/mantis/view.php?id=3534
https://www.opcfoundation.org/mantis/view.php?id=3582
https://www.opcfoundation.org/mantis/view.php?id=3584
https://www.opcfoundation.org/mantis/view.php?id=3627
https://www.opcfoundation.org/mantis/view.php?id=3648
https://www.opcfoundation.org/mantis/view.php?id=3751
https://www.opcfoundation.org/mantis/view.php?id=3752
https://www.opcfoundation.org/mantis/view.php?id=3839
https://www.opcfoundation.org/mantis/view.php?id=3892
https://www.opcfoundation.org/mantis/view.php?id=3898
https://www.opcfoundation.org/mantis/view.php?id=4081

Release 1.04 1 OPC 10000-12: Discovery, Global Services

OPC UNIFIED ARCHITECTURE

Part 12: Discovery and Global Services

1 Scope

This part specifies how OPC Unified Architecture (OPC UA) Clients and Servers interact with
DiscoveryServers when used in different scenarios. It specifies the requirements for the
LocalDiscoveryServer, LocalDiscoveryServer-ME and GlobalDiscoveryServer. It also defines
information models for Certificate management, KeyCredential management and Authorization
Services.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-14, OPC Unified Architecture - Part 14: PubSub

http://www.opcfoundation.org/UA/Part14/

Auto-IP: Dynamic Configuration of IPv4 Link-Local Addresses

http://www.ietf.org/rfc/rfc3927.txt

DNS-Name: Domain Names – Implementation and Specification

http://www.ietf.org/rfc/rfc1035.txt

DHCP: Dynamic Host Configuration Protocol

http://www.ietf.org/rfc/rfc2131.txt

mDNS: Multicast DNS

http://www.ietf.org/rfc/rfc6762.txt

DNS-SD: DNS Based Service Discovery

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part14/
http://www.ietf.org/rfc/rfc3927.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc6762.txt

OPC 10000-12: Discovery, Global Services 2 Release 1.04

http://www.ietf.org/rfc/rfc6763.txt

RFC 5958: Asymmetric Key Packages

http://www.ietf.org/rfc/rfc5958.txt

PKCS #10: Certification Request Syntax Specification

http://www.ietf.org/rfc/rfc2986.txt

PKCS #12: Personal Information Exchange Syntax

http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11301-wp-pkcs-12v1-1-personal-
information-exchange-syntax.pdf

RFC 7030: Enrollment over Secure Transport

http://www.ietf.org/rfc/rfc7030.txt

DI: OPC Unified Architecture for Devices (DI)

https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-
architecture-for-devices-di/

ADI: OPC Unified Architecture for Analyzer Devices (ADI)

https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-
architecture-for-analyzer-devices-adi/

PLCopen: OPC Unified Architecture / PLCopen Information Model

https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-
architecture-plcopen-information-model/

FDI: OPC Unified Architecture for FDI

https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-
architecture-for-fdi/

ISA-95: ISA-95 Common Object Model

https://opcfoundation.org/developer-tools/specifications-unified-architecture/isa-95-
common-object-model/

X.500: ISO/IEC 9594-1:2017 – The Directory

https://www.iso.org/standard/72550.html

3 Terms, definitions, and conventions

3.1 Terms and definitions

For the purposes of this document the following terms and definitions as well as the terms and
definitions given in The following documents, in whole or in part, are normatively referenced in
this document and are indispensable for its application. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including
any amendments and errata) applies.

OPC 10000-1, OPC 10000-2, OPC 10000-3, OPC 10000-4, OPC 10000-6 and OPC 10000-9
apply.

CertificateManagement Server
a software application that manages the Certificates used by Applications in an administrative

domain.

Certificate Group
a context used to describe the Trust List and Certificate(s) associated with an Application.

Certificate Request
a PKCS #10 encoded structure used to request a new Certificate from a Certificate Authority.

http://www.ietf.org/rfc/rfc6763.txt
http://www.ietf.org/rfc/rfc5958.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11301-wp-pkcs-12v1-1-personal-information-exchange-syntax.pdf
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11301-wp-pkcs-12v1-1-personal-information-exchange-syntax.pdf
http://tools.ietf.org/search/rfc7030
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-for-devices-di/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-for-devices-di/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-for-analyzer-devices-adi/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-for-analyzer-devices-adi/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-plcopen-information-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-plcopen-information-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-for-fdi/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-for-fdi/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/isa-95-common-object-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/isa-95-common-object-model/
https://www.iso.org/standard/72550.html

Release 1.04 3 OPC 10000-12: Discovery, Global Services

KeyCredential

a unique identifier and a secret used to access a Server, an Authorization Service or a Broker.

Note 1 to entry: a user name and password is an example of a credential.

KeyCredentialService
a software application that provides KeyCredentials needed to access a Server, an
Authorization Service or a Broker.

DirectoryService

a software application, or a set of applications, that stores and organizes information about
resources such as computers or services.

DiscoveryServer
an Application that maintains a list of OPC UA Servers that are available on the network and

provides mechanisms for Clients to obtain this list.

DiscoveryUrl
a URL for a network Endpoint that provides the information required to connect to a Client or
Server.

GlobalDiscoveryServer (GDS)

a DiscoveryServer that maintains a list of OPC UA Applications available in an administrative

domain.

Note 1 to entry: a GDS may also provide certificate management services.

IPAddress

a unique number assigned to a network interface that allows Internet Protocol (IP) requests to
be routed to that interface.

Note 1 to entry: An IPAddress for a host may change over time.

LocalDiscoveryServer (LDS)

a DiscoveryServer that maintains a list of all Servers that have registered with it.

Note 1 to entry: Servers normally register with the LDS on the same host.

LocalDiscoveryServer-ME (LDS-ME)
a LocalDiscoveryServer that includes the MulticastExtension.

MulticastExtension
an extension to a LocalDiscoveryServer that adds support for the mDNS protocol.

MulticastSubnet

a network that allows multicast packets to be sent to all nodes connected to the network.

Note 1 to entry: a MulticastSubnet is not necessarily the same as a TCP/IP subnet.

Network Service

a secured resource on a network that provides functionality used by Clients and/or Servers.

OPC 10000-12: Discovery, Global Services 4 Release 1.04

Note 1 to entry: an Authorization Service (AS) is an example of a Network Service.

ServerCapabilityIdentifier

a short identifier which uniquely identifies a set of discoverable capabilities supported by a
Server.

Note 1 to entry: the list of the currently defined ServerCapabilityIdentifiers is in Annex D.

3.2 Abbreviations and symbols

API Application Programming Interface
CA Certificate Authority
CRL Certificate Revocation List
CSR Certificate Signing Request
DER Distinguished Encoding Rules
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
EST Enrolment over Secure Transport
GDS Global Discovery Server
IANA The Internet Assigned Numbers Authority
LDAP Lightweight Directory Access Protocol
LDS Local Discovery Server
LDS-ME Local Discovery Server with the Multicast Extension
mDNS Multicast Domain Name System
NAT Network Address Translation
PEM Privacy Enhanced Mail
PFX Personal Information Exchange
PKCS Public Key Cryptography Standards
SHA1 Secure Hash Algorithm
SSL Secure Socket Layer
TLS Transport Layer Security
UA Unified Architecture
UDDI Universal Description, Discovery and Integration

3.3 Conventions for Namespaces

This standard uses multiple namespaces to define Nodes. The following abbreviations are used
in the definitions for these Nodes:

 CORE http://opcfoundation.org/UA/
 GDS http://opcfoundation.org/UA/GDS/

The default namespace for each Node is defined at the top of the table. All of the BrowseNames
in the table use the default namespace unless the BrowseName is preceded by one of the above
abbreviations.

The NamespaceMetadataType Object for the GDS namespace is defined Table 1.

Table 1 – GDS NamespaceMetadataType Object Definition

Attribute Value

BrowseName http://opcfoundation.org/UA/GDS/

Namespace GDS (see 3.3)

TypeDefinition NamespaceMetadataType defined in OPC 10000-5.

References NodeClass BrowseName Value

HasProperty Variable NamespaceUri http://opcfoundation.org/UA/GDS/

HasProperty Variable NamespaceVersion 1.04

HasProperty Variable NamespacePublicationDate 2016-12-31

Release 1.04 5 OPC 10000-12: Discovery, Global Services

4 The Discovery Process

4.1 Overview

The discovery process allows applications to find other applications on the network and then
discover how to connect to them. Note that this discussion builds on the discovery related
concepts defined in OPC 10000-4. Discoverable applications are generally Servers, however,
some Clients will support reverse connections as described in OPC 10000-6 and want Servers

to be able to discover them.

Clients and Servers can be on the same host, on different hosts in the same subnet, or even
on completely different locations in an administrative domain. The following clauses describe
the different configurations and how discovery can be accomplished.

The mechanisms for Clients to discover Servers are specified in 4.3.

The mechanisms for Servers to make themselves discoverable are specified in 4.2.

The Discovery Services are specified in OPC 10000-4. They are implemented by individual
Servers and by dedicated DiscoveryServers. The following dedicated DiscoveryServers provide

a way for applications to discover registered OPC UA applications in different situations:

 A LocalDiscoveryServer (LDS) maintains discovery information for all applications that

have registered with it, usually all applications available on the host that it runs on.

 A LocalDiscoveryServer with the MulticastExtension (LDS-ME) maintains discovery
information for all applications that have been announced on the local MulticastSubnet.

 A GlobalDiscoveryServer (GDS) maintains discovery information for applications
available in an administrative domain.

LDS and LDS-ME are specified in Clause 5. The GDS is specified in Clause 6.

4.2 Registration and Announcement of Applications

 Overview

The clause describes how an application registers itself so it can be discovered. Most
Applications will want other applications to discover them. Applications that do not wish to be
discovered openly should not register with a DiscoveryServer. In this case such Applications
should only publish a DiscoveryUrl via some out-of-band mechanism to be discovered by
specific Applications.

 Hosts with a LocalDiscoveryServer

Applications register themselves with the LDS on the same host if they wish to be discovered.
The registration ensures that the applications is visible for local discovery (see 4.3.4) and
MulticastSubnet discovery if the LDS is a LDS-ME (see 4.3.5).

The OPC UA Standard (OPC 10000-4) defines a RegisterServer2 Service which provides
additional registration information. All Applications and LocalDiscoveryServer the shall support
the RegisterServer2 Service and, for backwards compatibility, the older RegisterServer Service.
If an Application encounters an older LDS that returns a Bad_ServiceUnsupported error when
calling RegisterServer2 Service it shall try again with RegisterServer Service.

The RegisterServer2 Service allows the Application to specify zero or more ServerCapability
Identifiers. ServerCapabilityIdentifiers are short, string identifiers of well-known OPC UA
features. Applications can use these identifiers as a filter during discovery.

The set of known ServerCapabilityIdentifiers is specified in Annex D and is limited to features
which are considered to be important enough to report before an appl ication makes a
connection. For example, support for the GDS information model or the Alarms information
model are Server capabilities that have a ServerCapabilityIdentifier defined.

OPC 10000-12: Discovery, Global Services 6 Release 1.04

Before an application registers with the LDS it should call the GetEndpoints Service and choose
the most secure endpoint supported by the LDS and then call RegisterServer2 or
RegisterServer.

Registration with LDS or LDS-ME is illustrated in Figure 1.

Start

RegisterServer2
succeeded?

Call RegisterServer2
with IsOnline=True

on Local LDS

Call RegisterServer
with IsOnline=True

on Local LDS

No

Wait For Re-
Registration

Timer to Expire
Yes

No
Server

Shutdown?
Yes

End

Call RegisterServer2
or RegisterServer

with IsOnline=False

Figure 1 – The Registration Process with an LDS

See OPC 10000-4 for more information on the re-registration timer and the IsOnline flag.

 Hosts without a LocalDiscoveryServer

Dedicated systems (usually embedded systems) with exactly one Server installed may not have
a separate LDS. Such Servers shall become their own LDS or LDS-ME by implementing
FindServers and GetEndpoints Services at the well-known address for an LDS. They should
also announce themselves on the MulticastSubnet with a basic MulticastExtension. This
requires a small subset of an mDNS Responder (see mDNS and Annex C) that announces the
Server and responds to mDNS probes. The Server may not provide the caching and address

resolution implemented by a full mDNS Responder.

4.3 The Discovery Process for Clients to Find Servers

 Overview

The discovery process allows Clients to find Servers on the network and then discover how to
connect to them. Once a Client has this information it can save it and use it to connect directly
to the Server again without going through the discovery process. Clients that cannot connect
with the saved connection information should assume the Server configuration has changed
and therefore repeat the discovery process.

A Client has several choices for finding Servers:

 Out-of-band discovery (i.e. entry into a GUI) of a DiscoveryUrl for a Server;

 Calling FindServers on the LDS installed on the Client host;

 Calling FindServers on a remote LDS, where the HostName for the remote host is
manually entered;

 Calling FindServersOnNetwork (see OPC 10000-4) on the LDS-ME installed on Client
host;

 Supporting the LDS-ME functionality locally in the Client.

 Searching for Servers known to a GlobalDiscoveryServer.

Release 1.04 7 OPC 10000-12: Discovery, Global Services

The DiscoveryUrl provides all of the information a Client needs to connect to a
DiscoveryEndpoint (see 4.3.3).

 Security

Clients should be aware of rogue DiscoveryServers that might direct them to rogue Servers.
Clients can use the SSL/TLS server certificate (if available) to verify that the DiscoveryServer
is a server that they trust and/or ensure that they trust any Server provided by the
DiscoveryServer. See OPC 10000-2 for a detailed discussion of these issues.

 Simple Discovery with a DiscoveryUrl

Every Server has one or more DiscoveryUrls that allow access to its Endpoints. Once a Client
obtains (e.g. via manual entry into a form) the DiscoveryUrl for the Server, it reads the
EndpointDescriptions using the GetEndpoints Service defined in OPC 10000-4.

The discovery process for this scenario is illustrated in Figure 2.

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Figure 2 – The Simple Discovery Process

 Local Discovery

In many cases Clients do not know which Servers exist but possibly know which hosts might
have Servers on them. In this situation the Client will look for the LocalDiscoveryServer on a
host by constructing a DiscoveryUrl using the Well-Known Addresses defined in OPC 10000-6.

If a Client finds a LocalDiscoveryServer then it will call the FindServers Service on the LDS to
obtain a list of Servers and their DiscoveryUrls. The Client would then call the GetEndpoints
service for one of the Servers returned. The discovery process for this scenario is illustrated in

Figure 3.

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Local

Discovery Server

FindServers()

ApplicationDescription[]

Figure 3 – The Local Discovery Process

OPC 10000-12: Discovery, Global Services 8 Release 1.04

 MulticastSubnet Discovery

In some situations Clients will not know which hosts have Servers. In these situations the Client
will look for a LocalDiscoveryServer with the MulticastExtension on its local host and requests
a list of DiscoveryUrls for Servers and DiscoveryServers available on the MulticastSubnet.

The discovery process for this scenario is illustrated in Figure 4.

Client
Local

DiscoveryServer

FindServersOnNetwork

DiscoveryUrls[]

Local

DiscoveryServer

Multicast Probe

Multicast Announce

Lookup Cache

GetEndpoints()

CreateSecureChannel()

Server

EndpointDescription[]

Discovery

Endpoint
Session

Endpoint

RegisterServer2

or RegisterServer

Figure 4 – The MulticastSubnet Discovery Process

In this scenario the Server uses the RegisterServer2 Service to tell a LocalDiscoveryServer to
announce the Server on the MulticastSubnet. The Client will receive the DiscoveryUrl and
ServerCapabilityIdentifiers for the Server when it calls FindServersOnNetwork and then
connects directly to the Server. When a Client calls FindServers it only receives the Servers

running on the same host as the LDS.

Clients running on embedded systems may not have a LDS-ME available on the system, These
Clients can support an mDNS Responder which understands how OPC UA concepts are
mapped to mDNS messages and maintains the same table of servers as maintained by the
LDS-ME. This mapping is described in Annex C.

 Global Discovery

A GDS is an OPC UA Server which allows Clients to search for Servers in the administrative
domain. It may also provide Certificate Services (see Clause 7). It provides Methods that allow
applications to search for other applications (See Clause 6). To access the GDS, the Client will
create a Session with the GDS and use the Call service to invoke the QueryApplications Method
(see 6.3.11). The QueryServers Method is similar to the FindServers service except that it
provides more advanced search and filter criteria. The discovery process is illustrated in Figure
5.

Release 1.04 9 OPC 10000-12: Discovery, Global Services

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Global

Discovery Server

Call() (QueryServers)

ServerOnNetwork[]

Figure 5 – The Global Discovery Process

The GDS may be coupled with any of the previous network architectures. For each
MulticastSubnet, one or more LDSs may be registered with a GDS.

The Client can also be configured with the URL of the GDS using an out of band mechanism.

The complete discovery process is shown in Figure 6.

 Combined Discovery Process for Clients

The use cases in the preceding clauses imply a number of choices that have to be made by
Clients when a Client needs to connect to a Server. These choices are combined together in

Figure 6.

Start
Have a

Server URL?
Have a

HostName?
No

Have a GDS
URL?

No
Call FindServers

OnNetwork
on LDS

No

No Error
and

URL Found?

Is GDS URL?

Is LDS URL?

Yes

No

Call
QueryServers

on GDS

Yes

Yes

Can Find
HostName

Out of Band?
No

Yes

Can Find URL
Out of Band?

No

Yes

Call FindServers
on LDS

Yes

Yes

Call
GetEndpoints

on Server

Yes

Connected

No, it is a Server

Construct URL
from HostName

Failed

No

Figure 6 – The Discovery Process for Clients

FindServersOnNetwork can be called on the local LDS, however, It can also be called on a
remote LDS which is part of a different MulticastSubnet.

OPC 10000-12: Discovery, Global Services 10 Release 1.04

An out-of-band mechanism is a way to find a URL or a HostName that is not described by this
standard. For example, a user could manually enter a URL or use system specific APIs to
browse the network neighbourhood.

A Client that goes through the discovery process can save the URL that was discovered. If the
Client restarts later it can use that URL and bypass the discovery process. If reconnection fails
the Client will have to go through the process again.

5 Local Discovery Server

5.1 Overview

Each host that could have multiple discoverable applications installed should have a standalone
LocalDiscoveryServer installed. The LocalDiscoveryServer shall expose one or more Endpoints
which support the FindServers and GetEndpoints services defined in OPC 10000-4 for all
applications on the host. In addition, the LocalDiscoveryServer shall provide at least one
Endpoint which implements the RegisterServer service for these applications .

In systems (usually embedded systems) with exactly one Server installed this Server may also

be the LDS (see 4.2.3).

An LDS-ME will announce all applications that it knows about on the local MulticastSubnet. In
order to support this, a LocalDiscoveryServer supports the RegisterServer2 Service defined in
OPC 10000-4. For backward compatibility a LocalDiscoveryServer also supports the
RegisterServer Service which is defined in OPC 10000-4.

Each host with OPC UA Applications (Clients and Servers) installed s hould have a
LocalDiscoveryServer with a MulticastExtension.

The MulticastExtension incorporates the functionality of the mDNS Responder described in the
Multicast DNS (mDNS) specification (see mDNS). In addition the LocalDiscoveryServer that
supports the MulticastExtension supports the FindServersOnNetwork Service described in OPC

10000-4.

5.2 Security Considerations for Multicast DNS

The Multicast DNS (mDNS) specification is used for various commercial and consumer
applications. This provides a benefit in that implementations exist, however, system
administrators could choose to disable Multicast DNS operations. For this reason, Applications

shall not rely on Multicast DNS capabilties.

Multicast DNS operations are insecure because of their nature; therefore they should be
disabled in environments where an attacker could cause problems by impersonating another
host. This risk is minimized if OPC UA security is enabled and all Applications use Certificate
TrustLists to control access.

6 Global Discovery Server

6.1 Overview

The LocalDiscoveryServer is useful for networks where the host names can be discovered.
However, this is typically not the case in large systems with multiple servers on multip le
subnets. For this reason there is a need for an enterprise wide DiscoveryServer called a
GlobalDiscoveryServer. The GlobalDiscoveryServer (GDS) is an OPC UA Server which allows
Clients to search for Servers in the administrative domain. It provides methods that allow
applications to register themselves and to search for other applications.

The essential element of a GlobalDiscoveryServer (GDS) is that it can provide the Certificate
management services defined in Clause 7. These services can simplify Certificate management
even in medium to small systems, therefore, a GDS can be deployed in smaller systems.
Different implementations are expected. Some of them will likely provide a front -end to an
existing DirectoryService such as LDAP (See Annex E). By standardizing on an OPC UA based
interface, OPC UA Clients do not need to have knowledge of different DirectoryServices.

Release 1.04 11 OPC 10000-12: Discovery, Global Services

If an administrator registers a LocalDiscoveryServer with the GDS, then the GDS shall
periodically update its database by calling FindServersOnNetwork or FindServers on the LDS.
Figure 7 shows the relationship between a GDS and the LDS-ME or LDS.

Global
DirectoryService

Local
DiscoveryServer

Server or
Client

Client

LDS w/
Multicast Extension

Multicast
Extension

Figure 7 – The Relationship Between GDS and other components

The steps shown in Figure 7 are:

1 The Server calls RegisterServer2 on the LDS running on the same machine.

2 The administrator registers LDS-ME installations with the GDS.

3 The GDS calls FindServersOnNetwork on the LDS-ME to find all applications on
the same MulticastSubnet.

4 The GDS creates a record for each application returned by the LDS-ME. These
records shall be approved before they are made available to Clients of the GDS.
This approval can be obtained from an Administrator or the GDS can connect to
the Server and verifies that it has a trusted Certfiicate.

5 The Client calls QueryServers Method on the GDS to discover applications.

The Information Model used for registration and discovery is shown in clause 6.2. Any Client
shall be able to call the QueryServers Method to find applications known to GDS. The complete

definitions for each of the types used are described in clause 7.5.

6.2 Network Architectures

 Overview

The discovery mechanisms defined in this standard are expected to be used in many different
network architectures. The following three architectures are Illustrated:

 Single MulticastSubnet;

 Multiple MulticastSubnets;

 No MulticastSubnet (or multiple MulticastSubnets with exactly one host each);

A MulticastSubnet is a network segment where all hosts on the segment can receive multicast
packets from the other hosts on the segment. A physical LAN segment is typically a

OPC 10000-12: Discovery, Global Services 12 Release 1.04

MulticastSubnet unless the administrator has specifically disabled multicast communication. In
some cases multiple physical LAN segments can be connected as a single MulticastSubnet

 Single MulticastSubnet

The Single MulticastSubnet Architecture is shown in Figure 8.

mDNSmDNS

LDS-
ME

Client
A

Server
B

Register
LDS-
ME

Server
C

Register

LDS-
ME

Client

Server
D

Register
FindServers: D
FindServersOnNetwork: A, B, C, D

FindServers: C
FindServersOnNetwork: A, B, C, D

Client

Figure 8 – The Single MulticastSubnet Architecture

In this architecture every host has an LDS-ME and uses mDNS to maintain a cache of the
applications on the MulticastSubnet. A Client can call FindServersOnNetwork on any LDS-ME
and receive the same set of applications. When a Client calls FindServers it only receives the

applications running on the same host as the LDS.

 Multiple MulticastSubnet

The Multiple MulticastSubnet Architecture is shown in Figure 9.

mDNSmDNS

LDS-
ME

Client
A

Server
B

Register

LDS-ME
Server

C
Register

LDS-
ME

Client

Server
D

Register
FindServers: D
FindServersOnNetwork: A, B, D

FindServers: C
FindServersOnNetwork: C

mDNSmDNS

LDS-
ME

Client

Figure 9 – The Multiple MulticastSubnet Architecture

Release 1.04 13 OPC 10000-12: Discovery, Global Services

This architecture is the same as the previous architecture except in this architecture the mDNS
messages do not pass through routers connecting the MulticastSubnets. This means that a
Client calling FindServersOnNetwork will only receive a list of applications running on the
MulticastSubnets that the LDS-ME is connected to.

A Client that wants to connect to a remote MulticastSubnet shall use out of band discovery (i.e.
manual entry) of a HostName or DiscoveryUrl. Once a Client finds an LDS-ME on a remote
MulticastSubnet it can use FindServersOnNetwork to discover all applications on that
MulticastSubnet.

 No MulticastSubnet

The No MulticastSubnet Architecture is shown in Figure 10.

LDS-
ME

A

B

Register
LDS-
ME

CRegister

LDS-
ME

Client

D

Register
FindServers: D
FindServersOnNetwork: D

FindServers: C
FindServersOnNetwork: C

FindServers: A, B
FindServersOnNetwork: A, B

Figure 10 – The No MulticastSubnet Architecture

In this architecture the mDNS is not used at all because the Administrator has disabled multicast
at a network level or by turning off multicast capabilities of each LDS-ME.

A Client that wants to discover a applications needs to use an out of band mechanism to find
the HostName and call FindServers on the LDS of that host. FindServersOnNetwork may also
work but it will never return more than what FindServers returns.

 Domain Names and MulticastSubnets

The mDNS specification requires that fully qualified domain name be annouced on the network.
If a Server is not configured with a fully qualified domain name then mDNS requires that the
‘local’ top level domain be appended to the domain names. The ‘local’ top level domain indicates
that the domain can only be consided to be unique wi thin the subnet where the domain name
was used. This means Clients need to be be aware that URLs received from any LDS-ME other
than the one on the Client’s machine could contain ‘local’ domains which are not reachable or
will connect to a different machine with the same domain name that happens to be on the same
subnet as the Client. It is recommended that Clients ignore all URLs with the ‘local’ top level
domain unless they are returned from the LDS-ME running on the same machine.

System administrators can eliminate this problem by configuring a normal DNS with the fully
qualilfied domain names for all machines which need to be accessed by Clients outside the
MulticastSubnet.

Servers configured with fully qualified domain names should specify the fully qualified domain
name in its ApplicationInstance Certificate. Servers shall not specify domains with the ‘local’
top level domain in their Certificate. Clients using a URL returned from an LDS-ME shall ignore
the ‘local’ top level domain when checking the domain against the Server Certificate.

OPC 10000-12: Discovery, Global Services 14 Release 1.04

Note that domain name validation is a necessary but not sufficient check against rogue Servers
or man-in-the-middle attacks when Server Certificates do not contain fully qualified domain
names. The Certificate trust relationship established by administrators is the primary

mechanism used to protect against these risks.

6.3 Information Model

 Overview

The GlobalDiscoveryServer Information Model used for discovery is shown in Figure 11. Most
of the interactions between the GlobalDiscoveryServer and Application administrator or the
Client will be via Methods defined on the Directory folder.

DirectoryType:

Directory

FolderType:

Applications

FindApplications

Register

Application

Unregister

Application

GetApplication

QueryServers

Update

Application

FindApplications

ByEndpoint

Figure 11 – The Address Space for the GDS

 Directory

This Object is the root of the GlobalDiscoveryServer AddressSpace and it is the target of an
Organizes reference from the Objects folder defined in OPC 10000-5. It organizes the
information that can be accessed into subfolders. The implementation of a GDS can customize
and organize the folders in any manner it desires. For example folders may exist for information
models, or for optional services or for various locations in an administrative domain. It is defined
in Table 2.

Table 2 – Directory Object Definition

Attribute Value

BrowseName Directory

Namespace GDS (see 3.3)

TypeDefinition DirectoryType defined in 6.3.3.

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

 DirectoryType

DirectoryType is the ObjectType for the root of the GlobalDiscoveryServer AddressSpace. It
organizes the information that can be accessed into subfolders It also provides methods that
allow applications to register or find applications. It is defined in Table 3.

Table 3 – DirectoryType Definition

Attribute Value

BrowseName DirectoryType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Release 1.04 15 OPC 10000-12: Discovery, Global Services

Subtype of the FolderType defined in OPC 10000-5.

Organizes Object Applications - FolderType Mandatory

HasComponent Method FindApplications Defined in 6.3.4. Mandatory

HasComponent Method RegisterApplication Defined in 6.3.6. Mandatory

HasComponent Method UpdateApplication Defined in 6.3.7. Mandatory

HasComponent Method UnregisterApplication Defined in 6.3.8. Mandatory

HasComponent Method GetApplication Defined in 6.3.9. Mandatory

HasComponent Method QueryApplications Defined in 6.3.10. Mandatory

HasComponent Method QueryServers Defined in 6.3.11. Mandatory

The Applications folder may contain Objects representing the Applications known to the GDS.
These Objects may be organized into subfolders as determined by the GDS. Some
characteristics for organizing applications are the networks, the physical location, or the
supported profiles. The QueryServers Method can be used to search for OPC UA Applications
based on various criteria.

A GDS is not required to expose its Applications as browsable Objects in its AddressSpace,
however, each Application shall have a unique NodeId which can be passed to Methods used

to administer the GDS.

The FindApplications Method returns the Applications associated with an ApplicationUri. It can
be called by any Client application.

The RegisterApplication Method is used to add a new Application to the GDS. It requires

administrative privileges.

The UpdateApplication Method is used to update an existing Application in the GDS. It requires

administrative privileges.

The UnregisterApplication Method is used to remove an Application from the GDS. It requires

administrative privileges.

The QueryApplications Method is used to find Client or Server applications that meet the criteria
provided. This Method replaces the QueryServers Method.

The QueryServers Method is used to find Servers that meet the criteria specified. It can be
called by any Client application. This Method has been replaced by the QueryApplications
Method

 FindApplications

FindApplications is used to find the ApplicationId for an OPC UA Application known to the GDS.
In normal situations the list of records returned will not have more than one entry, however,
system configuration errors can create situations where the GDS has multiple entries for a
single ApplicationUri. If this happens a human will likely have to look at records to determine
which record is the true match for the ApplicationUri.

If the returned array is null or zero length then the GDS does not have an entry for the
ApplicationUri.

Signature

FindApplications(

[in] String applicationUri

[out] ApplicationRecordDataType[] applications

);

Argument Description

applicationUri The ApplicationUri that identifies the Application of interest.

applications A list of application records that match the ApplicationUri.
The ApplicationRecordDataType is defined in 6.3.5.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

OPC 10000-12: Discovery, Global Services 16 Release 1.04

Table 4 specifies the AddressSpace representation for the FindApplications Method.

Table 4 – FindApplications Method AddressSpace Definition

Attribute Value

BrowseName FindApplications

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 ApplicationRecordDataType

This type defines a DataType which represents a record in the GDS .

Table 5 – ApplicationRecordDataType Definition

Name Type Value

applicationId NodeId The unique identifier assigned by the GDS to the record.
This NodeId may be passed to other Methods.

applicationUri String The URI for the Application associated with the record.

applicationType ApplicationType The type of application.

This type is defined in OPC 10000-4.

applicationNames LocalizedText[] One or more localized names for the application.
The first element is the default ApplicationName for the application when
a non-localized name is needed.

productUri String A globally unique URI for the product associated with the application.
This URI is assigned by the vendor of the application.

discoveryUrls String[] The list of discovery URLs for an application.
The first element is the default if a Client needs to choose one URL.
The first HTTPS URL specifies the domain used as the Common Name
of HTTPS Certificates.
If the ApplicationType is Client then all of the URLs shall have the ‘inv+’
prefix which indicates they support reverse connect.

serverCapability
Identifiers

String[] The list of server capability identifiers for the application.
The allowed values are defined in Annex D.

 RegisterApplication

RegisterApplication is used to register a new Application Instance with a
GlobalDiscoveryServer.

This Method shall only be invoked by authorized users.

Servers that support transparent redundancy shall register as a single application and pass the
DiscoveryUrls for all available instances and/or network paths.

RegisterApplication will create duplicate records if the ApplicationUri already exists since
misconfiguration of applications can result in different applications having the same
ApplicationUri. Before calling this Method the Client shall call FindApplications to check if a
record for the application it is using already exists. If records are found which appear to belong
to different applications (e.g. the DiscoveryUrls are different) then the Client shall report a

warning before continuing.

If registration was successful and auditing is supported, the GDS shall generate the
ApplicationRegistrationChangedAuditEventType (see 6.3.12).

Signature

RegisterApplication(

[in] ApplicationRecordDataType application

 [out] NodeId applicationId

);

Argument Description

application The application that is to be registered with the GlobalDiscoveryServer.

applicationId A unique identifier for the registered Application.

Release 1.04 17 OPC 10000-12: Discovery, Global Services

This identifier is persistent and is used in other Methods used to administer
applications.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The application or one of the fields of the application record is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Table 6 specifies the AddressSpace representation for the RegisterApplication Method.

Table 6 – RegisterApplication Method AddressSpace Definition

Attribute Value

BrowseName RegisterApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 UpdateApplication

UpdateApplication is used to update an existing Application in a GlobalDiscoveryServer.

This Method shall only be invoked by authorized users.

If the update was successful and auditing is supported, the GDS shall generate the
ApplicationRegistrationChangedAuditEventType (see 6.3.12).

Signature

UpdateApplication(

 [in] ApplicationRecordDataType application

);

Argument Description

application The application that is to be updated in the GDS database.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId is not known to the GDS.

Bad_InvalidArgument The application or one of the fields of the application record is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Table 7 specifies the AddressSpace representation for the UpdateApplication Method.

Table 7 – UpdateApplication Method AddressSpace Definition

Attribute Value

BrowseName UpdateApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

 UnregisterApplication

UnregisterApplication is used to remove an Application from a GlobalDiscoveryServer.

This Method shall only be invoked by authorized users.

A Server Application that is unregistered may be automatically added again if the GDS is
configured to populate itself by calling FindServersOnNetwork and the Server Application is still
registering with its local LDS.

If un-registration was successful and auditing is supported, the GDS shall generate the
ApplicationRegistrationChangedAuditEventType (see 6.3.12).

OPC 10000-12: Discovery, Global Services 18 Release 1.04

Signature

UnregisterApplication(

 [in] NodeId applicationId

);

Argument Description

applicationId The identifier assigned by the GDS to the Application.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The ApplicationId is not known to the GDS.

Bad_UserAccessDenied The current user does not have the rights required.

Table 8 specifies the AddressSpace representation for the UnregisterApplication Method.

Table 8 – UnregisterApplication Method AddressSpace Definition

Attribute Value

BrowseName UnregisterApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

 GetApplication

GetApplication is used to find an OPC UA Application known to the GDS.

Signature

GetApplication(

[in] NodeId applicationId

[out] ApplicationRecordDataType application

);

Argument Description

applicationId The ApplicationId that identifies the Application of interest.

application The application record that matches the ApplicationId.
The ApplicationRecordDataType is defined in6.3.5

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The no record found for the specified ApplicationId.

Bad_UserAccessDenied The current user does not have the rights required.

Table 9 specifies the AddressSpace representation for the GetApplication Method.

Table 9 – GetApplication Method AddressSpace Definition

Attribute Value

BrowseName GetApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 QueryApplications

QueryApplications is used to find Client or Server applications that meet the specified filters.
The only Clients returns are those that support the reverse connection capability described in
OPC 10000-6.

Release 1.04 19 OPC 10000-12: Discovery, Global Services

QueryApplications returns ApplicationDescriptions instead of the ServerOnNetwork Structures
returned by QueryServers. This is more useful to some Clients because it matches the return
type of FindServers.

Any Client is able to call this Method, however, the set of results returned may be restricted
based on the Client’s user credentials.

The applications returned shall pass all of the filters provided (i.e. the filters are combined in
an AND operation). The capabilities parameter is an array and an application will pass this filter

if it supports all of the specified capabilities.

Each time the GDS creates or updates an application record it shall assign a monotonically
increasing identifier to the record. This allows Clients to request records in batches by
specifying the identifier for the last record received in the last call to QueryApplications. To
support this the GDS shall return records in order starting from the lowest record identifier. The
GDS shall also return the last time the counter was reset . If a Client detects that this time is
more recent than the last time the Client called the Method it shall call the Method again with a
startingRecordId of 0.

Signature

QueryApplications(

 [in] UInt32 startingRecordId

 [in] UInt32 maxRecordsToReturn

 [in] String applicationName

 [in] String applicationUri

 [in] UInt32 applicationType

 [in] String productUri

 [in] String[] capabilities

 [out] DateTime lastCounterResetTime

 [out] UInt32 nextRecordId

 [out] ApplicationDescription[] applications

);

Argument Description

INPUTS

startingRecordId Only records with an identifier greater than this number will be returned.
Specify 0 to start with the first record in the database.

maxRecordsToReturn The maximum number of records to return in the response.
0 indicates that there is no limit.

applicationName The ApplicationName of the applications to return.

Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.

Not used if an empty string is specified.
The filter is only applied to the default ApplicationName.

applicationUri The ApplicationUri of the applications to return.

Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.

Not used if an empty string is specified.

applicationType A mask indicating what types of applications are returned.
The mask values are:
 0x1 – Servers;
 0x2 – Clients; :
If the mask is 0 then all applications are returned.

productUri The ProductUri of the applications to return.

Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.

Not used if an empty string is specified.

capabilities The capabilities supported by the applications returned.
The applications returned shall support all of the capabilities specified.
If no capabilities are provided this filter is not used.

OUTPUTS

lastCounterResetTime The last time the counters were reset.

nextRecordId The identifier of the next record. It is passed as the startingRecordId in subsequent
calls to QueryApplications to fetch the next batch of records. It is 0 if there are no
more records to return.

applications A list of Applications which meet the criteria.

The ApplicationDescription structure is defined in OPC 10000-4.

Method Result Codes (defined in Call Service)

OPC 10000-12: Discovery, Global Services 20 Release 1.04

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 11 specifies the AddressSpace representation for the QueryApplications Method.

Table 10 – QueryApplications Method AddressSpace Definition

Attribute Value

BrowseName QueryApplications

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 QueryServers (depreciated)

QueryServers is used to find Server applications that meet the specified filters.

Any Client is able to call this Method, however, the set of results returned may be restricted
based on the Client’s user credentials.

The applications returned shall pass all of the filters provided (i.e. the filters are combined in
an AND operation). The serverCapabilities parameter is an array and an application will pass

this filter if it supports all of the specified capabilities.

Each time the GDS creates or updates an application record it shall assign a monotonically
increasing identifier to the record. This allows Clients to request records in batches by
specifying the identifier for the last record received in the last call to QueryServers. To support
this the GDS shall return records in order starting from the lowest record identifier. The GDS
shall also return the last time the counter was reset. If a Client detects that this time is more
recent than the last time the Client called the Method it shall call the Method again with a
startingRecordId of 0.

Signature

QueryServers(

 [in] UInt32 startingRecordId

 [in] UInt32 maxRecordsToReturn

 [in] String applicationName

 [in] String applicationUri

 [in] String productUri

 [in] String[] serverCapabilities

 [out] DateTime lastCounterResetTime

 [out] ServerOnNetwork[] servers

);

Argument Description

INPUTS

startingRecordId Only records with an identifier greater than this number will be returned.
Specify 0 to start with the first record in the database.

maxRecordsToReturn The maximum number of records to return in the response.
0 indicates that there is no limit.

applicationName The ApplicationName of the Applications to return.

Supports the syntax used by the LIKE FilterOperator described in OPC 10000-
4.

Not used if an empty string is specified.
The filter is only applied to the default ApplicationName.

applicationUri The ApplicationUri of the Servers to return.

Supports the syntax used by the LIKE FilterOperator described in OPC 10000-
4.

Not used if an empty string is specified.

productUri The ProductUri of the Servers to return.

Supports the syntax used by the LIKE FilterOperator described in OPC 10000-
4.

Not used if an empty string is specified.

Release 1.04 21 OPC 10000-12: Discovery, Global Services

serverCapabilities The applications returned shall support all of the server capabilities specified. If
no server capabilities are provided this filter is not used.

OUTPUTS

lastCounterResetTime The last time the counters were reset.

servers A list of Servers which meet the criteria.

The ServerOnNetwork structure is defined in OPC 10000-4.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 11 specifies the AddressSpace representation for the QueryServers Method.

Table 11 – QueryServers Method AddressSpace Definition

Attribute Value

BrowseName QueryServers

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 ApplicationRegistrationChangedAuditEventType

This event is raised when the RegisterApplication, UpdateApplication or UnregisterApplication
Methods are called.

Its representation in the AddressSpace is formally defined in Table 12.

Table 12 – ApplicationRegistrationChangedAuditEventType Definition

Attribute Value

BrowseName ApplicationRegistrationChangedAuditEventType

Namespace GDS (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantics
are defined in OPC 10000-5.

7 Certificate Management Overview

7.1 Overview

Certificate management functions comprise the management and distribution of certificates and
Trust Lists for OPC UA Applications. An application that provides the certificate management
functions is called CertificateManager. GDS and CertificateManager will typically be combined
in one application. The basic concepts regarding Certificate management are described in OPC

10000-2.

There are two primary models for Certificate management: pull and push management. In pull
management, the application acts as a Client and uses the Methods on the CertificateManager
to request and update Certificates and Trust Lists. The application is responsible for ensuring
the Certificates and Trust Lists are kept up to date. In push management the application acts
as a Server and exposes Methods which the CertificateManager can call to update the
Certificates and Trust Lists as required.

The GDS is intended to work in conjunction with different Certificate Management services such
as Active Directory. The GDS provides a standard OPC UA based information model that all
OPC UA applications can support without needing to know the specifics of a particular
Certificate Management system.

The CertificateManager shall support the following use cases:

OPC 10000-12: Discovery, Global Services 22 Release 1.04

 Provisioning (First time setup for a device/application);

 Renewal (Renewing expired or compromised certificates);

 Trust List Update (Updating the Trust Lists including the Revocation Lists);

 Revocation (Removing a device/application from the system).

Although it is generally assumed that Client applications will use the Pull model and Server
applications will use the Push model, this is not required.

During provisioning, the CertificateManager shall be able to operate in a mode where any Client
is allowed to connect securely with any valid Certificate and user credentials are used to
determine the rights a Client has; this eliminates the need to configure Trust Lists before
connecting to the CertificateManager for provisioning.

Application vendors may decide to build the interaction with the CertificateManager as a
separate component, e.g. as part of an administration application with access to the OPC UA
configuration of this Application. This is transparent for the CertificateManager and will not be

considered further in the rest of this chapter.

This standard does not define how to administer a CertificateManager but a CertificateManager

shall provide an integrated system that includes both push and pull management.

7.2 Pull Management

Pull Management is performed by using the CertificateManager information model – in particular
the Methods - defined in 7.6. The interactions between Application and CertificateManager

during Pull Management are illustrated in Figure 12.

loop

Application
Administration

Certificate
Manager

Application
Configuration

Database

RegisterApplication

StartSigningRequest or StartNewKeyPairRequest

RequestId

FinishRequest

Wait

Certificate

GetTrustList

Trust List

Certificate

Trust List

Read Configuration

Figure 12 – The Pull Certificate Management Model

Release 1.04 23 OPC 10000-12: Discovery, Global Services

The Application Administration component may be part of the Application or a standalone utility
that understands how the Application persists its configuration information in its Configuration
Database.

A similar process is used to renew certificates or to periodically update Trust List.

Security in Pull management requires an encrypted channel and the use of Administrator
credentials for the CertificateManager that ensure only authorized users can register new
Applications and request an initial new Certificate. Once an Application has a Certificate it can
use this Certificate to renew the Certificate or to update Trust Lists and Revocation lists. It is
important that a CertificateManager does not provide certificate renewals except to the

applications that already own the prior certificate.

7.3 Push Management

Push management is targeted at Server applications and relies on Methods defined in 7.7 to
get a Certificate Request which can be passed onto the CertificateManager. After the
CertificateManager signs the Certificate the new Certificate is pushed to the Server with the
UpdateCertificate Method.

The interactions between a Server Application and CertificateManager during Push

Management are illustrated in Figure 13.

looploop

Administration
Component

Administration
Component

Certificate
Manager

Certificate
Manager

ServerServer
Configuration

Database
Configuration

Database

GetTrustList

Trust List

UpdateCertificate

TrustList.Open

Trust List

Certificate

TrustList.Write

TrustList.CloseAndUpdate

CreateSigningRequest

Certificate Request (CSR)

StartSigningRequest

FinishRequest

Certificate

Update
Cert.

Update
Trust
List

Figure 13 – The Push Certificate Management Model

The Administration Component may be part of the CertificateManager or a standalone utility
that uses OPC UA to communicate with the CertificateManager (see 7.2 for a more complete
description of the interactions required for this use case). The Configuration Database is used
by the Server to persist its configuration information. The RegisterApplication Method (or

internal equivalent) is assumed to have been called before the sequence in the diagram starts.

A similar process is used to renew certificates or to periodically update Trust List.

OPC 10000-12: Discovery, Global Services 24 Release 1.04

Security when using the Push Management Model requires an encrypted channel and the use
of Administrator credentials for the Server that ensure only authorized users can update
Certificates or Trust Lists. In addition, separate Administrator credentials are required for the
CertificateManager that ensure only authorized users can register new Servers and request
new Certificates.

7.4 Provisioning

Provisioning is the initial installation of an OPC UA Server or Client into a system in which a
GDS is available and managing all certificates. For applications using Client interface
provisioning can be accomplished using a pull model. Applications using the Server interface

can be provisioned using the push model.

OPC UA Servers will typically auto-generate a self-signed Certificate when they first start. They
may also have a pre-configured Trust List with Applications that are allowed to provision the
Server. For example, a device vendor may use a CA that is used to issue Certificates to
Applications used by their field technicians.

For embedded devices, the Server should allow any Client that provides the proper
Administrator credentials to create the secure connection needed for provisioning using push
management. Once the device has been given its initial Trust List the Server should then restrict
access to those Clients with Certificates in the Trust List. A vendor specific process for
provisioning is required if a device does not allow any Client to connect securely for

provisioning.

See G.1 for more specific examples of how to provision an application.

7.5 Common Information Model

 Overview

The common information model defines types that are used in both the Push and the Pull Model.

 TrustListType

This type defines a FileType that can be used to access a Trust List.

The CertificateManager uses this type to implement the Pull Model.

Servers use this type when implementing the Push Model.

An instance of a TrustListType shall restrict access to appropriate users or applications. This
may be a CertificateManager administrative user that can change the contents of a Trust List,
it may be an Administrative user that is reading a Trust List to deploy to an Application host or

it may be an Application that can only access the Trust List assigned to it.

The Trust List file is a UA Binary encoded stream containing an instance of TrustListDataType

(see 7.5.7).

The Open Method shall not support modes other than Read (0x01) and the Write +

EraseExisting (0x06).

When a Client opens the file for writing the Server will not actually update the Trust List until
the CloseAndUpdate Method is called. Simply calling Close will discard the updates. The bit
masks in TrustListDataType structure allow the Client to only update part of the Trust List.

When the CloseAndUpdate Method is called the Server will validate all new Certificates and
CRLs. If this validation fails the Trust List is not updated and the Server returns the appropriate
Certificate error code (see OPC 10000-4).

Table 13 – TrustListType Definition

Attribute Value

BrowseName TrustListType

Namespace CORE (see 3.3)

IsAbstract False

Release 1.04 25 OPC 10000-12: Discovery, Global Services

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the FileType defined in OPC 10000-5.

HasProperty Variable LastUpdateTime UtcTime PropertyType Mandatory

HasProperty Variable UpdateFrequency Duration PropertyType Optional

HasComponent Method OpenWithMasks Defined in 7.5.3. Optional

HasComponent Method CloseAndUpdate Defined in 7.5.4. Optional

HasComponent Method AddCertificate Defined in 7.5.5. Optional

HasComponent Method RemoveCertificate Defined in 7.5.6. Optional

The LastUpdateTime indicates when the Trust List was last updated via Trust List Object
Methods. This can be used to determine if a device has an up to date Trust List or to detect
unexpected modifications. Out of band changes are not necessarily reported by this value.

The UpdateFrequency Property specifies how often the Trust List needs to be checked for
changes. When the CertificateManager specifies this value, all Clients that read a copy of the
Trust List should connect to the CertificateManager and check for updates to the Trust List
within 2 times the UpdateFrequency. If the Trust List Object is contained within a
ServerConfiguration Object then this value specifies how frequently the Server expects the
Trust List to be updated.

If auditing is supported, the CertificateManager shall generate the
TrustListUpdatedAuditEventType (see 7.5.18) if the CloseAndUpdate, AddCertificate or
RemoveCertificate Methods are called.

 OpenWithMasks

The OpenWithMasks Method allows a Client to read only the portion of the Trust List.

This Method can only be used to read the Trust List.

Signature

OpenWithMasks(

 [in] UInt32 masks

 [out] UInt32 fileHandle

);

Argument Description

masks The parts of the Trust List that are include in the file to read.
The masks are defined in 7.5.8.

fileHandle The handle of the newly opened file.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 14 specifies the AddressSpace representation for the OpenWithMasks Method.

Table 14 – OpenWithMasks Method AddressSpace Definition

Attribute Value

BrowseName OpenWithMasks

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 CloseAndUpdate

The CloseAndUpdate Method closes the file and applies the changes to the Trust List. It can
only be called if the file was opened for writing. If the Close Method is called any cached data
is discarded and the Trust List is not changed.

OPC 10000-12: Discovery, Global Services 26 Release 1.04

The Server shall verify that every Certificate in the new Trust List is valid according to the
mandatory rules defined in OPC 10000-4. If an invalid Certificate is found the Server shall return
an error and shall not update the Trust List. If only part of the Trust List is being updated the
Server creates a temporary Trust List that includes the existing Trust List plus any updates and
validates the temporary Trust List.

If the file cannot be processed this Method still closes the file and discards the data before
returning an error. This Method is required if the Server supports updates to the Trust List.

The structure uploaded includes a mask (see 7.5.8) which specifies which fields are updated.
If a bit is not set then the associated field is not changed.

Signature

CloseAndUpdate(

 [in] UInt32 fileHandle

 [out] Boolean applyChangesRequired

);

Argument Description

fileHandle The handle of the previously opened file.

applyChangesRequired A flag indicating whether the ApplyChanges Method (see 7.7.5) shall be called
before the new Trust List will be used by the Server.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_CertificateInvalid The Server could not validate all Certificates in the Trust List.
The DiagnosticInfo shall specify which Certificate(s) are invalid and the specific
error.

Table 15 specifies the AddressSpace representation for the CloseAndUpdate Method.

Table 15 – CloseAndUpdate Method AddressSpace Definition

Attribute Value

BrowseName CloseAndUpdate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 AddCertificate

The AddCertificate Method allows a Client to add a single Certificate to the Trust List. The
Server shall verify that the Certificate is valid according to the rules defined in OPC 10000-4. If
an invalid Certificate is found the Server shall return an error and shall not update the Trust
List.

If the Certificate is issued by a CA then the Client shall provide the entire chain in the certificate
argument (see OPC 10000-6). After validating the Certificate, the Server shall add the CA
Certificates to the Issuers list in the Trust List. The leaf Certificate is added to the list specified
by the isTrustedCertificate argument.

This method cannot be called if the file object is open.

AddCertificate(

 [in] ByteString certificate

 [in] Boolean isTrustedCertificate

);

Argument Description

Certificate The DER encoded Certificate to add.

Release 1.04 27 OPC 10000-12: Discovery, Global Services

isTrustedCertificate If TRUE the Certificate is added to the Trusted Certificates List.
If FALSE the Certificate is added to the Issuer Certificates List.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_CertificateInvalid The certificate to add is invalid.

Bad_InvalidState The object is opened.

Table 16 specifies the AddressSpace representation for the AddCertificate Method.

Table 16 – AddCertificate Method AddressSpace Definition

Attribute Value

BrowseName AddCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

 RemoveCertificate

The RemoveCertificate Method allows a Client to remove a single Certificate from the Trust
List. It returns Bad_InvalidArgument if the thumbprint does not match a Certificate in the Trust
List.

If the Certificate is a CA Certificate with associated CRLs then all CRLs are removed as well.

This method cannot be called if the file object is open.

RemoveCertificate(

 [in] String thumbprint

 [in] Boolean isTrustedCertificate

);

Argument Description

Thumbprint The SHA1 hash of the Certificate to remove.

isTrustedCertificate If TRUE the Certificate is removed from the Trusted Certificates List.
If FALSE the Certificate is removed from the Issuer Certificates List.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_InvalidArgument The certificate to remove was not found.

Bad_InvalidState The object is opened.

Table 17 specifies the AddressSpace representation for the RemoveCertificate Method.

Table 17 – RemoveCertificate Method AddressSpace Definition

Attribute Value

BrowseName RemoveCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

 TrustListDataType

This type defines a DataType which stores the Trust List of a Server. Its values are defined in

Table 18.

Table 18 – TrustListDataType Definition

Name Type Value

TrustListDataType structure

specifiedLists TrustListMasks A bit mask which indicates which lists contain information.

OPC 10000-12: Discovery, Global Services 28 Release 1.04

The TrustListMasks enumeration in 7.5.8 defines the allowed values.

trustedCertificates ByteString[] The list of Application and CA Certificates which are trusted.

trustedCrls ByteString[] The CRLs for the Certificates in the trustedCertificates list.

issuerCertificates ByteString[] The list of CA Certificates which are necessary to validate Certificates.

issuerCrls ByteString[] The CRLs for the CA Certificates in the issuerCertificates list.

 TrustListMasks

This is a DataType that defines the values used for the SpecifiedLists field in the
TrustListDataType. Its values are defined in Table 19.

Table 19 – TrustListMasks Values

Value Value

None_0 No fields are provided.

TrustedCertificates_1 The TrustedCertificates are provided.

TrustedCrls_2 The TrustedCrls are provided.

IssuerCertificates_4 The IssuerCertificates are provided.

IssuerCrls_8 The IssuerCrls are provided.

All_15 All fields are provided.

 TrustListOutOfDateAlarmType

This SystemOffNormalAlarmType is raised by the Server when the UpdateFrequency elapses
and the Trust List has not been updated. This alarm automatically returns to normal when the
Trust List is updated.

Table 20 – TrustListOutOfDateAlarmType definition

Attribute Value

BrowseName TrustListOutOfDateAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemOffNormalAlarmType defined in OPC 10000-9.

HasProperty Variable TrustListId NodeId PropertyType Mandatory

HasProperty Variable LastUpdateTime UtcTime PropertyType Mandatory

HasProperty Variable UpdateFrequency Duration PropertyType Mandatory

TrustListId Property specifies the NodeId of the out of date Trust List Object.

LastUpdateTime Property specifies when the Trust List was last updated.

UpdateFrequency Property specifies how frequently the Trust List needs to be updated.

 CertificateGroupType

This type is used for Objects which represent Certificate Groups in the AddressSpace. A
Certificate Group is a context that contains a Trust List and one or more Certificates that can
be assigned to an Application. This type exists to allow an Application which has multiple Trust
Lists and/or Application Certificates to express them in its AddressSpace. This type is defined

in Table 21.

Table 21 – CertificateGroupType Definition

Attribute Value

BrowseName CertificateGroupType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Object TrustList - TrustListType Mandatory

HasProperty Variable CertificateTypes NodeId[] PropertyType Mandatory

HasComponent Object CertificateExpired CertificateExpir
ationAlarmType

Optional

HasComponent Object TrustListOutOfDate TrustListOutOfD
ateAlarmType

Optional

Release 1.04 29 OPC 10000-12: Discovery, Global Services

The TrustList Object is the Trust List associated with the Certificate Group.

The CertificateTypes Property specifies the NodeIds of the CertificateTypes which may be
assigned to Applications which belong to the Certificate Group. For example, a Certificate
Group with the NodeId of RsaMinApplicationCertificateType (see 7.5.15) and the NodeId
RsaSha256ApplicationCertificate (see 7.5.16) specified allows an Application to have one
Application Instance Certificates for each type. Abstract base types may be used in this value
and indicate that any subtype is allowed. If this l ist is empty then the Certificate Group does not
allow Certificates to be assigned to Applications (i.e. the Certificate Group exists to allow the
associated Trust List to be read or updated). All CertificateTypes for a given Certificate Group
shall be subtypes of a single common type which shall be either ApplicationCertificateType or
HttpsCertificateType.

The CertificateExpired Object is an Alarm which is raised when the Certificate associated with
the CertificateGroup is about to expire. The CertificateExpirationAlarmType is defined in OPC
10000-9.

The TrustListOutOfDate Object is an Alarm which is raised when the Trust List has not been
updated within the period specified by the UpdateFrequency (see 7.5.2). The
TrustListOutOfDateAlarmType is defined in 7.5.9.

 CertificateType

This type is an abstract base type for types that describe the purpose of a Certificate. This type

is defined in Table 22.

Table 22 – CertificateType Definition

Attribute Value

BrowseName CertificateType

Namespace CORE (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasSubtype ObjectType ApplicationCertificateType Defined in 7.5.12.

HasSubtype ObjectType HttpsCertificateType Defined in 7.5.13.

HasSubtype ObjectType UserCredentialCertificateType Defined in 7.5.14.

 ApplicationCertificateType

This type is an abstract base type for types that describe the purpose of an
ApplicationInstanceCertificate. This type is defined in Table 23.

Table 23 – ApplicationCertificateType Definition

Attribute Value

BrowseName ApplicationCertificateType

Namespace CORE (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the CertificateType defined in 7.5.11.

HasSubtype ObjectType RsaMinApplicationCertificateType Defined in 7.5.15.

HasSubtype ObjectType RsaSha256ApplicationCertificateType Defined in 7.5.16.

 HttpsCertificateType

This type is used to describe Certificates that are intended for use as HTTPS Certificates. This

type is defined in Table 24.

Table 24 – HttpsCertificateType Definition

Attribute Value

BrowseName HttpsCertificateType

OPC 10000-12: Discovery, Global Services 30 Release 1.04

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the CertificateType defined in 7.5.11.

 UserCredentialCertificateType

This type is used to describe Certificates that are intended for use as user credentials. This
type is defined in Table 25.

Table 25 – UserCredentialCertificateType Definition

Attribute Value

BrowseName UserCredentialCertificateType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the CertificateType defined in 7.5.11.

 RsaMinApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an RSA key size of 1024 or 2048 bits. All Applications which support the
Basic128Rsa15 and Basic256 profiles (see OPC 10000-7) shall have a Certificate of this type.

This type is defined in Table 26.

Table 26 – RsaMinApplicationCertificateType Definition

Attribute Value

BrowseName RsaMinApplicationCertificateType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the ApplicationCertificateType defined in 7.5.12

 RsaSha256ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an RSA key size of 2048, 3072 or 4096 bits. All Applications which support the
Basic256Sha256 profile (see OPC 10000-7) shall have a Certificate of this type. This type is

defined in Table 27.

Table 27 – RsaSha256ApplicationCertificateType Definition

Attribute Value

BrowseName RsaSha256ApplicationCertificateType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the ApplicationCertificateType defined in 7.5.12

 CertificateGroupFolderType

This type is used for Folders which organize Certificate Groups in the AddressSpace. This type
is defined in Table 21.

Table 28 – CertificateGroupFolderType Definition

Attribute Value

BrowseName CertificateGroupFolderType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the FolderType defined in OPC 10000-5.

Organizes Object DefaultApplicationGroup CertificateGroupType Mandatory

Organizes Object DefaultHttpsGroup CertificateGroupType Optional

Release 1.04 31 OPC 10000-12: Discovery, Global Services

Organizes Object DefaultUserTokenGroup CertificateGroupType Optional

Organizes Object <AdditionalGroup> CertificateGroupType Optional
Placeholder

The DefaultApplicationGroup Object represents the default Certificate Group for Applications.
It is used to access the default Application Trust List and to define the CertificateTypes allowed
for the ApplicationInstanceCertificate . This Object shall specify the ApplicationCertificateType
NodeId (see 7.5.12) as a single entry in the CertificateTypes list or it shall specify one or more
subtypes of ApplicationCertificateType.

The DefaultHttpsGroup Object represents the default Certificate Group for HTTPS
communication. It is used to access the default HTTPS Trust List and to define the
CertificateTypes allowed for the HTTPS Certificate. This Object shall specify the
HttpsCertificateType NodeId (see 7.5.13) as a single entry in the CertificateTypes list or it shall
specify one or more subtypes of HttpsCertificateType.

This DefaultUserTokenGroup Object represents the default Certificate Group for validating user
credentials. It is used to access the default user credential Trust List and to define the
CertificateTypes allowed for user credentials Certificate. This Object shall leave
CertificateTypes list empty.

 TrustListUpdatedAuditEventType

This event is raised when a Trust List is changed.

This is the result of a CloseAndUpdate Method on a TrustListType Object being called.

It shall also be raised when the AddCertificate or RemoveCertificate Method causes an update
to the Trust List.

Its representation in the AddressSpace is formally defined in Table 29.

Table 29 – TrustListUpdatedAuditEventType Definition

Attribute Value

BrowseName TrustListUpdatedAuditEventType

Namespace CORE (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

7.6 Information Model for Pull Certificate Management

 Overview

The GlobalDiscoveryServer AddressSpace used for Certificate management is shown in Figure
14. Most of the interactions between the GlobalDiscoveryServer and Application administrator
or the Client will be via Methods defined on the Directory folder.

OPC 10000-12: Discovery, Global Services 32 Release 1.04

Figure 14 – The Certificate Management AddressSpace for the GlobalDiscoveryServer

 CertificateDirectoryType

This ObjectType is the TypeDefinition for the root of the CertificateManager AddressSpace. It
provides additional Methods for Certificate management which are shown in Table 30.

Table 30 – CertificateDirectoryType ObjectType Definition

Attribute Value

BrowseName CertificateDirectoryType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataTy
pe

TypeDefinition Modelling
Rule

Subtype of the DirectoryType defined in 6.3.3.

Organizes Object CertificateGroups CertificateGroup
FolderType

Mandatory

HasComponent Method StartSigningRequest Defined in 7.6.3. Mandatory

HasComponent Method StartNewKeyPairRequest Defined in 7.6.4. Mandatory

HasComponent Method FinishRequest Defined in 7.6.5. Mandatory

HasComponent Method GetCertificateGroups Defined in 7.6.6. Mandatory

HasComponent Method GetTrustList Defined in 7.6.6. Mandatory

HasComponent Method GetCertificateStatus Defined in 7.6.8. Mandatory

The CertificateGroups Object organizes the Certificate Groups supported by the
CertificateManager. It is described in 7.5.17. CertificateManagers shall support the
DefaultApplicationGroup and may support the DefaultHttpsGroup or the
DefaultUserTokenGroup. CertificateManagers may support additional Certificate Groups
depending on their requirements. For example, a CertificateManager with multiple Certificate
Authorities would represent each as a CertificateGroupType Object organized by
CertificateGroups Folder. Clients could then request Certificates issued by a specific CA by
passing the appropriate NodeId to the StartSigningRequest or StartNewKeyPairRequest
Methods.

The StartSigningRequest Method is used to request a new a Certificate that is signed by a CA
managed by the CertificateManager. This Method is recommended when the caller already has
a private key.

Certificate

DirectoryType:

Directory

CertificateGroup

FolderType:

CertificateGroups

StartSigning

Request

StartNewKey

PairRequest

FinishRequest

GetCertificate

Groups

GetCertificate

Status

GetTrustList

CertificateGroupType:

DefaultApplicationGroup

CertificateGroupType:

DefaultHttpsGroup

CertificateGroupType:

DefaultUser

TokenGroup

Release 1.04 33 OPC 10000-12: Discovery, Global Services

The StartNewKeyPairRequest Method is used to request a new Certificate that is signed by a
CA managed by the CertificateManager along with a new private key. This Method is used only
when the caller does not have a private key and cannot generate one.

The FinishRequest Method is used to check that a Certificate request has been approved by
the CertificateManager Administrator. If successful the Certificate and Private Key (if requested)
are returned.

The GetCertificateGroups Method returns a list of NodeIds for CertificateGroupType Objects
that can be used to request Certificates or Trust Lists for an Application.

The GetTrustList Method returns a NodeId of a TrustListType Object that can be used to read
a Trust List for an Application.

The GetCertificateStatus Method checks whether the Application needs to update its Certificate.

 StartSigningRequest

StartSigningRequest is used to initiate a request to create a Certificate which uses the private
key which the caller currently has. The new Certificate is returned in the FinishRequest
response.

Signature

StartSigningRequest(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [in] ByteString certificateRequest

 [out] NodeId requestId

);

Argument Description

applicationId The identifier assigned to the Application record by the CertificateManager.

certificateGroupId The NodeId of the Certificate Group which provides the context for the new
request.
If null the CertificateManager shall choose the DefaultApplicationGroup.

certificateTypeId The NodeId of the CertificateType for the new Certificate.
If null the CertificateManager shall generate a Certificate based on the value
of the certificateGroupId argument.

certificateRequest A CertificateRequest used to prove possession of the Private Key.
It is a PKCS #10 encoded blob in DER format.
This blob shall include the subjectAltName extension that is in the Certificate.

requestId The NodeId that represents the request.
This value is passed to FinishRequest .

The call returns the NodeId that is passed to the FinishRequest Method.

The certificateGroupId parameter allows the caller to specify a Certificate Group that provides
context for the request. If null the CertificateManager shall choose the DefaultApplicationGroup.
The set of available Certificate Groups are found in the CertificateGroups folder described in
7.6.2. The Certificate Groups allowed for an Application are returned by the
GetCertificateGroups Method (see 7.6.6).

The certificateTypeId parameter specifies the type of Certificate to return. The permitted values
are specified by the CertificateTypes Property of the Object specified by the certificateGroupId
parameter.

The certificateRequest parameter is a DER encoded Certificate Request. The subject name,
subject alternative name and public key are copied into the new Certificate.

If the certificateTypeId is a subtype of ApplicationCertificateType the subject name shall have
an organization (O=) or domain name (DC=) field. The public key length shall meet the length
restrictions for the CertificateType. If the certificateType is a subtype of HttpsCertificateType
the Certificate common name (CN=) shall be the same as a domain from a DiscoveryUrl which
uses HTTPS and the subject name shall have an organization (O=) field. The public key length
shall be greater than or equal to 1024 bits.

OPC 10000-12: Discovery, Global Services 34 Release 1.04

The ApplicationUri shall be specified in the CSR. The CertificateManager shall return
Bad_CertificateUriInvalid if the stored ApplicationUri for the Application is different from what
is in the CSR.

For Servers, the list of domain names shall be specified in the CSR. The domains shall include
the domain(s) in the DiscoveryUrls known to the CertificateManager.

This Method can be invoked by a configuration tool which has provided user credentials with
necessary access permissions. It can also be invoked by the Application that owns the private
key used to sign the CertificateRequest (e.g. the private key shall be the private key used to
create the SecureChannel).

If auditing is supported, the CertificateManager shall generate the
CertificateRequestedAuditEventType (see 7.6.9) if this Method succeeds or fails.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId, certificateTypeId or certificateRequest is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The current configuration of the CertificateManager does not allow the request.
The text associated with the error should indicate the exact reason.

Bad_CertificateUriInvalid The ApplicationUri was not specified in the CSR or does not match the
Application record.

Bad_NotSupported The signing algorithm, public algorithm or public key size are not supported by
the CertificateManager. The text associated with the error shall indicate the
exact problem.

Table 31 specifies the AddressSpace representation for the StartSigningRequest Method.

Table 31 – StartSigningRequest Method AddressSpace Definition

Attribute Value

BrowseName StartSigningRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 StartNewKeyPairRequest

This Method is used to start a request for a new Certificate and Private Key. The Certificate
and private key are returned in the FinishRequest response.

Signature

StartNewKeyPairRequest(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [in] String subjectName

 [in] String[] domainNames

 [in] String privateKeyFormat

 [in] String privateKeyPassword

 [out] NodeId requestId

);

Argument Description

applicationId The identifier assigned to the Application Instance by the CertificateManager.

certificateGroupId The NodeId of the Certificate Group which provides the context for the new
request.
If null the CertificateManager shall choose the DefaultApplicationGroup.

certificateTypeId The NodeId of the CertificateType for the new Certificate.
If null the CertificateManager shall generate a Certificate based on the value of
the certificateGroupId argument.

subjectName The subject name to use for the Certificate.

Release 1.04 35 OPC 10000-12: Discovery, Global Services

If not specified the ApplicationName and/or domainNames are used to create a
suitable default value.
The format of the subject name is a sequence of name value pairs separated by
a ‘/’. The name shall be one of ‘CN’, ‘O’, ‘OU’, ‘DC’, ‘L’, ‘S’ or ‘C’ and shall be
followed by a ‘=’ and then followed by the value. The value may be any printable
character except for ‘”’. If the value contains a ‘/’ or a ‘=’ then it shall be enclosed
in double quotes (‘”’).

domainNames The domain names to include in the Certificate.
If not specified the DiscoveryUrls are used to create suitable defaults.

privateKeyFormat The format of the private key.
The following values are always supported:
 PFX - PKCS #12 encoded
 PEM - Base64 encoded DER (see RFC 5958).

privateKeyPassword The password to use for the private key.

requestId The NodeId that represents the request.
This value is passed to FinishRequest.

The call returns the NodeId that is passed to the FinishRequest Method.

The certificateGroupId parameter allows the caller to specify a Certificate Group that provides
context for the request. If null the CertificateManager shall choose the DefaultApplicationGroup.
The set of available Certificate Groups are found in the CertificateGroups folder described in
7.6.2. The Certificate Groups allowed for an Application are returned by the
GetCertificateGroups Method (see 7.6.6).

The certificateTypeId parameter specifies the type of Certificate to return. The permitted values
are specified by the CertificateTypes Property of the Object specified by the certificateGroupId
parameter.

The subjectName parameter is a sequence of X.500 name value pairs separated by a ‘/’. For
example: CN=ApplicationName/OU=Group/O=Company.

If the certificateType is a subtype of ApplicationCertificateType the Certificate subject name
shall have an organization (O=) or domain name (DC=) field. The public key length shall meet
the length restrictions for the CertificateType. The domain name field specified in the subject
name is a logical domain used to qualify the subject name that may or may not be the same as
a domain or IP address in the subjectAltName field of the Certificate.

If the certificateType is a subtype of HttpsCertificateType the Certificate common name (CN=)
shall be the same as a domain from a DiscoveryUrl which uses HTTPS and the subject name

shall have an organization (O=) field.

If the subjectName is blank or null the CertificateManager generates a suitable default.

The domainNames parameter is list of domains to be includes in the Certificate. If it is null or
empty the GDS uses the DiscoveryUrls of the Server to create a list. For Clients the
domainNames are omitted from the Certificate if they are not explicitly provided.

The privateKeyFormat specifies the format of the private key returned. All CertificateManager

implementations shall support “PEM” and “PFX”.

The privateKeyPassword specifies the password on the private key. The CertificateManager

shall not persist this information and shall discard it once the new private key is generated.

This Method can be invoked by a configuration tool which has provided user credentials with

necessary access permissions.

If auditing is supported, the CertificateManager shall generate the CertificateRequested
AuditEventType (see 7.6.9) if this Method succeeds or fails.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NodeIdUnknown The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId, certificateTypeId, subjectName, domainNames or
privateKeyFormat parameter is not valid.

OPC 10000-12: Discovery, Global Services 36 Release 1.04

The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The current configuration of the CertificateManager does not allow the request.
The text associated with the error should indicate the exact reason.

Table 32 specifies the AddressSpace representation for the StartNewKeyPairRequest Method.

Table 32 – StartNewKeyPairRequest Method AddressSpace Definition

Attribute Value

BrowseName StartNewKeyPairRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 FinishRequest

FinishRequest is used to finish a certificate request started with a call to
StartNewKeyPairRequest or StartSigningRequest.

Signature

FinishRequest (

 [in] NodeId applicationId

 [in] NodeId requestId

 [out] ByteString certificate

 [out] ByteString privateKey

 [out] ByteString[] issuerCertificates

);

Argument Description

applicationId The identifier assigned to the Application Instance by the GDS.

requestId The NodeId returned by StartNewKeyPairRequest or StartSigningRequest.

certificate The DER encoded Certificate.

privateKey The private key encoded in the format requested.
If a password was supplied the blob is protected with it.
This field is null if no private key was requested.

issuerCertificates The Certificates required to validate the new Certificate.

This call is passes the NodeId returned by a previous call to StartNewKeyPairRequest or
StartSigningRequest.

It is expected that a Client will periodically call this Method until the GDS has approved the
request.

This Method can be invoked by a configuration tool which has provided user credentials with
necessary access permissions. It can also be invoked by the Application that owns the
Certificate (e.g. the private key used to create the channel shall be the same as the private key
used to sign the request passed to StartSigningRequest).

The Method shall only be called via a SecureChannel with encryption enabled.

If auditing is supported, the GDS shall generate the CertificateDeliveredAuditEventType (see
7.6.10) if this Method succeeds or if it fails with anything but Bad_NothingToDo.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The requestId is does not reference to a valid request for the Application.

Bad_NothingToDo There is nothing to do because request has not yet completed.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The CertificateManager rejected the request.
The text associated with the error should indicate the exact reason.

Table 33 specifies the AddressSpace representation for the FinishRequest Method.

Release 1.04 37 OPC 10000-12: Discovery, Global Services

Table 33 – FinishRequest Method AddressSpace Definition

Attribute Value

BrowseName FinishRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 GetCertificateGroups

GetCertificateGroups returns the Certificate Groups assigned to Application.

Signature

GetCertificateGroups(

 [in] NodeId applicationId

 [out] NodeId[] certificateGroupIds

);

Argument Description

applicationId The identifier assigned to the Application by the GDS.

certificateGroupIds An identifier for the Certificate Groups assigned to the Application.

A Certificate Group provides a Trust List and one or more CertificateTypes which may be
assigned to an Application. The values returned by this Method are passed to the GetTrustList
(see 7.6.7), StartSigningRequest (see 7.6.3) or StartNewKeyPairRequest (see 7.6.4) Methods.

This Method can be invoked by a configuration tool which has provided user credentials with
necessary access permissions. It can also be invoked by the Application identified by the
applicationId (e.g. the private key used to create the channel shall be private key associated
with the Certificate assigned to the Application).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_UserAccessDenied The current user does not have the rights required.

Table 35 specifies the AddressSpace representation for the GetCertificateGroups Method.

Table 34 – GetCertificateGroups Method AddressSpace Definition

Attribute Value

BrowseName GetCertificateGroups

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 GetTrustList

GetTrustList is used to retrieve the NodeId of a Trust List assigned to an Application.

Signature

GetTrustList(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [out] NodeId trustListId

);

Argument Description

applicationId The identifier assigned to the Application by the GDS.

certificateGroupId An identifier for a Certificate Group that the Application belongs to.

trustListId The NodeId for a Trust List Object that can be used to download the Trust
List assigned to the Application.

OPC 10000-12: Discovery, Global Services 38 Release 1.04

Access permissions also apply to the Trust List Objects which are returned by this Method. This
Trust List includes any Certificate Revocation Lists (CRLs) associated with issuer Certificates
in the Trust List.

This Method can be invoked by a configuration tool which has provided user credentials with
necessary access permissions. It can also be invoked by the Application identified by the
applicationId (e.g. the private key used to create the channel shall be private key associated
with the Certificate assigned to the Application).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId parameter is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Table 35 specifies the AddressSpace representation for the GetTrustList Method.

Table 35 – GetTrustList Method AddressSpace Definition

Attribute Value

BrowseName GetTrustList

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 GetCertificateStatus

GetCertificateStatus is used to check if an Application needs to update its Certificate.

Signature

GetCertificateStatus(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [out] Boolean updateRequired

);

Argument Description

applicationId The identifier assigned to the Application Instance by the GDS.

certificateGroupId The NodeId of the Certificate Group which provides the context.
If null the CertificateManager shall choose the DefaultApplicationGroup.

certificateTypeId The NodeId of the CertificateType for the Certificate.
If null the CertificateManager shall select a Certificate based on the value
of the certificateGroupId argument.

updateRequired TRUE if the Application needs to request a new Certificate from the GDS.
FALSE if the Application can keep using the existing Certificate.

Access permissions that apply to CreateSigningRequest Method shall apply to this Method.

This Method can be invoked by a configuration tool which has provided user credentials with
necessary access permissions. It can also be invoked by the Application identified by the
applicationId (e.g. the private key used to create the channel shall be private key associated
with the Certificate assigned to the Application).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId or certificateTypeId parameter is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Release 1.04 39 OPC 10000-12: Discovery, Global Services

Table 36 specifies the AddressSpace representation for the GetCertificateStatus Method.

Table 36 – GetCertificateStatus Method AddressSpace Definition

Attribute Value

BrowseName GetCertificateStatus

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 CertificateRequestedAuditEventType

This event is raised when a new certificate request has been accepted or rejected by the GDS.

This can be the result of a StartNewKeyPairRequest or StartSigningRequest Method calls.

 Its representation in the AddressSpace is formally defined in Table 37.

Table 37 – CertificateRequestedAuditEventType Definition

Attribute Value

BrowseName CertificateRequestedAuditEventType

Namespace GDS (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

HasProperty Variable CertificateGroup NodeId PropertyType Mandatory

HasProperty Variable CertificateType NodeId PropertyType Mandatory

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is

defined in OPC 10000-5.

The CertificateGroup Property specifies the Certificate Group that was affected by the update.

The CertificateType Property specifies the type of Certificate that was updated.

 CertificateDeliveredAuditEventType

This event is raised when a certificate is delivered by the GDS to a Client.

This is the result of a FinishRequest Method completing successfully.

Its representation in the AddressSpace is formally defined in Table 38.

Table 38 – CertificateDeliveredAuditEventType Definition

Attribute Value

BrowseName CertificateDeliveredAuditEventType

Namespace GDS (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

HasProperty Variable CertificateGroup NodeId PropertyType Mandatory

HasProperty Variable CertificateType NodeId PropertyType Mandatory

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The CertificateGroup Property specifies the Certificate Group that was affected by the update.

The CertificateType Property specifies the type of Certificate that was updated.

OPC 10000-12: Discovery, Global Services 40 Release 1.04

7.7 Information Model for Push Certificate Management

 Overview

If a Server supports Push Management it is required to support an information model as part of
its address space. It shall support the ServerConfiguration Object shown in Figure 15. This
Object shall only be visible and accessible to administrators and/or the GDS.

ServerType:

Server

Server

ConfigurationType:

ServerConfiguration

Apply

Changes

Update

Certificate

Create

SigningRequest

GetRejectedList

CertificateGroupType:

DefaultApplicationGroup

CertificateGroupType:

DefaultHttpsGroup

CertificateGroupType:

DefaultUserTokenGroup

CertificateGroup

FolderType:

CertificateGroups

Figure 15 – The AddressSpace for the Server that supports Push Management

All access to Methods defined on the ServerConfiguration Object shall be over an encrypted

channel. In addition, Servers should have user credentials with administrator privileges.

 ServerConfiguration

This Object allows access to the Server’s configuration and it is the target of an HasComponent
reference from the Server Object defined in OPC 10000-5.

This Object and its immediate children shall be visible (i.e. browse access is available) to users
who can access the Server Object. The children of the CertificateGroups Object should only be

visible to authorized administrators.

Its representation in the AddressSpace is formally defined in Table 39.

Table 39 – ServerConfiguration Object Definition

Attribute Value

BrowseName ServerConfiguration

Namespace CORE (see 3.3)

TypeDefinition ServerConfigurationType defined in 7.7.3.

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

 ServerConfigurationType

This type defines an ObjectType which represents the configuration of a Server which supports
Push Management . Its values are defined in Table 40. There is always exactly one instance in
the Server AddressSpace.

Table 40 – ServerConfigurationType Definition

Attribute Value

Release 1.04 41 OPC 10000-12: Discovery, Global Services

BrowseName ServerConfigurationType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType Type
Definition

Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Object CertificateGroups CertificateGroup
FolderType

Mandatory

HasProperty Variable ServerCapabilities String[] PropertyType Mandatory

HasProperty Variable SupportedPrivateKeyFormats String[] PropertyType Mandatory

HasProperty Variable MaxTrustListSize UInt32 PropertyType Mandatory

HasProperty Variable MulticastDnsEnabled Boolean PropertyType Mandatory

HasComponent Method UpdateCertificate See 7.7.4 Mandatory

HasComponent Method ApplyChanges See 7.7.5. Optional

HasComponent Method CreateSigningRequest See 7.7.6. Mandatory

HasComponent Method GetRejectedList See 7.7.7. Mandatory

The CertificateGroups Object organizes the Certificate Groups supported by the Server. It is
described in 7.5.17. Servers shall support the DefaultApplicationGroup and may support the
DefaultHttpsGroup or the DefaultUserTokenGroup. Servers may support additional Certificate
Groups depending on their requirements. For example, a Server with two network interfaces
should have a different Trust List for each interface. The second Trust List would be represented
as a new CertificateGroupType Object organized by CertificateGroups Folder.

The ServerCapabilities Property specifies the capabilities from Annex D which the Server
supports. The value is the same as the value reported to the LocalDiscoveryServer when the
Server calls the RegisterServer2 Service.

The SupportedPrivateKeyFormats specifies the PrivateKey formats supported by the Server.
Possible values include “PEM” (see RFC 5958) or “PFX” (see PKCS #12). The array is empty
if the Server does not allow external Clients to update the PrivateKey.

The MaxTrustListSize is the maximum size of the Trust List in bytes. 0 means no limit. The

default is 65 535 bytes.

If MulticastDnsEnabled is TRUE then the Server announces itself using multicast DNS. It can
be changed by writing to the Variable.

The GetRejectedList Method returns the list of Certificates which have been rejected by the
Server. It can be used to track activity or allow administrators to move a rejected Certificate
into the Trust List.

The UpdateCertificate Method is used to update a Certificate.

The ApplyChanges Method is used to apply any security related changes if the Server sets the
applyChangesRequired flag when another Method is called. Servers should minimize the impact
of applying the new configuration, however, it could require that all existing Sessions be closed
and re-opened by the Clients.

The CreateSigningRequest Method asks the Server to create a PKCS #10 encoded Certificate
Request that is signed with the Server’s private key.

 UpdateCertificate

UpdateCertificate is used to update a Certificate for a Server.

There are the following three use cases for this Method:

 The new Certificate was created based on a signing request created with the Method
CreateSigningRequest defined in 7.7.6. In this case there is no privateKey provided.

 A new privateKey and Certificate was created outside the Server and both are updated
with this Method.

 A new Certificate was created and signed with the information from the old Certificate.
In this case there is no privateKey provided.

OPC 10000-12: Discovery, Global Services 42 Release 1.04

The Server shall do all normal integrity checks on the Certificate and all of the issuer
Certificates. If errors occur the Bad_SecurityChecksFailed error is returned.

The Server shall report an error if the public key does not match the existing Certificate and the

privateKey was not provided.

If the Server returns applyChangesRequired=FALSE then it is indicating that it is able to satisfy
the requirements specified for the ApplyChanges Method.

This Method requires an encrypted channel and that the Client provides credentials with

administrative rights on the Server.

Signature

UpdateCertificate(

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [in] ByteString certificate

 [in] ByteString[] issuerCertificates

 [in] String privateKeyFormat

 [in] ByteString privateKey

[out] Boolean applyChangesRequired

);

Argument Description

certificateGroupId The NodeId of the Certificate Group Object which is affected by the update.
If null the DefaultApplicationGroup is used.

certificateTypeId The type of Certificate being updated. The set of permitted types is specified by
the CertificateTypes Property belonging to the Certificate Group.

certificate The DER encoded Certificate which replaces the existing Certificate.

issuerCertificates The issuer Certificates needed to verify the signature on the new Certificate.

privateKeyFormat The format of the Private Key (PEM or PFX). If the privateKey is not specified the
privateKeyFormat is null or empty.

privateKey The Private Key encoded in the privateKeyFormat.

applyChangesRequired Indicates that the ApplyChanges Method shall be called before the new
Certificate will be used.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The certificateTypeId or certificateGroupId is not valid.

Bad_CertificateInvalid The Certificate is invalid or the format is not supported.

Bad_NotSupported The PrivateKey is invalid or the format is not supported.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityChecksFailed Some failure occurred verifying the integrity of the Certificate.

Table 41 specifies the AddressSpace representation for the UpdateCertificate Method.

Table 41 – UpdateCertificate Method AddressSpace Definition

Attribute Value

BrowseName UpdateCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 ApplyChanges

ApplyChanges is used to tell the Server to apply any security changes.

This Method should only be called if a previous call to a Method that changed the configuration
returns applyChangesRequired=true (see 7.7.4).

If the Server Certificate has changed, Secure Channels using the old Certificate will eventually
be interrupted. The only leeway the Server has is with the timing. In the best case, the Server
can close the TransportConnections for the affected Endpoints and leave any Subscriptions

Release 1.04 43 OPC 10000-12: Discovery, Global Services

intact. This should appear no different than a network interruption from the perspective of the
Client. The Client should be prepared to deal with Certificate changes during its reconnect logic.
In the worst case, a full shutdown which affects all connected Clients will be necessary. In the
latter case, the Server shall advertise its intent to interrupt connections by setting the
SecondsTillShutdown and ShutdownReason Properties in the ServerStatus Variable.

If the Secure Channel being used to call this Method will be affected by the Certificate change
then the Server shall introduce a delay long enough to allow the caller to receive a reply.

This Method requires an encrypted channel and that the Client provide credentials with
administrative rights on the Server.

Signature

ApplyChanges();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 42 specifies the AddressSpace representation for the ApplyChanges Method.

Table 42 – ApplyChanges Method AddressSpace Definition

Attribute Value

BrowseName ApplyChanges

References NodeClass BrowseName DataType TypeDefinition ModellingRule

 CreateSigningRequest

CreateSigningRequest Method asks the Server to create a PKCS #10 DER encoded Certificate
Request that is signed with the Server’s private key. This request can be then used to request
a Certificate from a CA that expects requests in this format.

This Method requires an encrypted channel and that the Client provide credentials with
administrative rights on the Server.

Signature

CreateSigningRequest(

 [in] NodeId certificateGroupId,

[in] NodeId certificateTypeId,

 [in] String subjectName,

 [in] Boolean regeneratePrivateKey,

[in] ByteString nonce,

 [out] ByteString certificateRequest

);

Argument Description

certificateGroupId The NodeId of the Certificate Group Object which is affected by the request.
If null the DefaultApplicationGroup is used.

certificateTypeId The type of Certificate being requested. The set of permitted types is specified by
the CertificateTypes Property belonging to the Certificate Group.

subjectName The subject name to use in the Certificate Request.
If not specified the SubjectName from the current Certificate is used.
The format of the subjectName is defined in 7.6.4.

regeneratePrivateKey If TRUE the Server shall create a new Private Key which it stores until the matching
signed Certificate is uploaded with the UpdateCertificate Method. Previously
created Private Keys may be discarded if UpdateCertificate was not called before
calling this method again. If FALSE the Server uses its existing Private Key.

nonce Additional entropy which the caller shall provide if regeneratePrivateKey is TRUE.
It shall be at least 32 bytes long.

certificateRequest The PKCS #10 DER encoded Certificate Request.

Method Result Codes (defined in Call Service)

Result Code Description

OPC 10000-12: Discovery, Global Services 44 Release 1.04

Bad_InvalidArgument The certificateTypeId, certificateGroupId or subjectName is not valid.

Bad_UserAccessDenied The current user does not have the rights required.

Table 43 specifies the AddressSpace representation for the CreateSigningRequest Method.

Table 43 – CreateSigningRequest Method AddressSpace Definition

Attribute Value

BrowseName CreateSigningRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 GetRejectedList

GetRejectedList Method returns the list of Certificates that have been rejected by the Server.

No rules are defined for how the Server updates this list or how long a Certificate is kept in the
list. It is recommended that every valid but untrusted Certificate be added to the rejected list as
long as storage is available. Servers should omit older entries from the list returned if the

maximum message size is not large enough to allow the entire list to be returned.

This Method requires an encrypted channel and that the Client provides credentials with
administrative rights on the Server.

Signature

GetRejectedList(

 [out] ByteString[] certificates

);

Argument Description

certificates The DER encoded form of the Certificates rejected by the Server.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 44 specifies the AddressSpace representation for the GetRejectedList Method.

Table 44 – GetRejectedList Method AddressSpace Definition

Attribute Value

BrowseName GetRejectedList

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 CertificateUpdatedAuditEventType

This event is raised when the Application Certificate is changed.

This is the result of a UpdateCertificate Method completing successfully or failing.

Release 1.04 45 OPC 10000-12: Discovery, Global Services

Its representation in the AddressSpace is formally defined in Table 45.

Table 45 – CertificateUpdatedAuditEventType Definition

Attribute Value

BrowseName CertificateUpdatedAuditEventType

Namespace CORE (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

HasProperty Variable CertificateGroup NodeId PropertyType Mandatory

HasProperty Variable CertificateType NodeId PropertyType Mandatory

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is

defined in OPC 10000-5.

The CertificateGroup Property specifies the Certificate Group that was affected by the update.

The CertificateType Property specifies the type of Certificate that was updated.

8 KeyCredential Management

8.1 Overview

KeyCredential management functions allow the management and distribution of KeyCredentials
which OPC UA Applications use to access Authorization Services and/or Brokers. An
application that provides the KeyCredential management functions is called a
KeyCredentialService and is typically combined with the GDS into a single application.

There are two primary models for KeyCredential management: pull and push management. In
pull management, the application acts as a Client and uses the Methods on the
KeyCredentialService to request and update KeyCredentials. The application is responsible for
ensuring the KeyCredentials are kept up to date. In push management the application acts as
a Server and exposes Methods which the KeyCredentialService can call to update the
KeyCredentials as required.

A KeyCredentialService can directly manage the KeyCredentials it supplies or it may act as an
intermediary between a Client and a system that does not support OPC UA such as Azure AD

or LDAP.

Note that KeyCredentials are secrets that are directly passed to Authorization Services and/or
Brokers and are not Certificates with private keys. Certificate distribution is managed by the
Certificate management model described in 7. For example, Authorization Services that support
OAuth2 often require the client to provide a client_id and client_secret parameter with any
request. The KeyCredentials are the values that the application shall place in these parameters.

8.2 Pull Management

Pull management is performed by using a KeyCredentialManagement Object (see 8.4.3). It
allows Clients to request credentials for Authorization Services or Brokers which are supported
by the KeyCredentialService. The interactions between the Client and the KeyCredentialService
during pull management are illustrated in Figure 16.

OPC 10000-12: Discovery, Global Services 46 Release 1.04

looploop

Application
Administration

Application
Administration

KeyCredential
Service

KeyCredential
Service

ClientClient
Configuration

Database1
Configuration

Database1

StartRequest

RequestId

FinishRequest

Wait

KeyCredential

KeyCredential1

Read Configuration1

1 These elements are examples to illustrate how a complete application could work. They are not part of the specification.

Figure 16 – The Pull Model for KeyCredential Management

The Application Administration component may be part of the Client or a standalone utility that
understands how the Client persists its configuration information in its Configuration Database.
The administration and database components are examples to illustrate how an application
could be built and are not a requirement.

Requesting credentials is a two stage process because some KeyCredentialServices require a
human to review and approve requests. The calls to the FinishKeyCredentialRequest Method
may not be periodic and could be initiated by events such as a user starting up the application
or interacting with a UI element such as a button.

KeyCredentials can only be requested for Clients which are trusted by the
KeyCredentialService.

Security in pull management requires an encrypted channel and the use of administrator
credentials for the KeyCredentialService that ensure only authorized users can request
KeyCredentials.

8.3 Push Management

Push management is performed by using a KeyCredentialConfiguration Object (see 8.5.2)
which is a component of the KeyCredentialManagement Folder which is component of the
ServerConfiguration Object in a Server. The interactions between the Administration application
and the KeyCredentialService during push management are illustrated in Figure 17.

Release 1.04 47 OPC 10000-12: Discovery, Global Services

Administration
Component

Administration
Component

Credential
Service

Credential
Service

ServerServer
Configuration

Database1

Configuration
Database1

UpdateKeyCredential

Credential1

StartRequest

FinishRequest

Credential

GetEndpoints

Server Certificates

1 These elements are examples to illustrate how a complete application could work. They are not part of the specification.

Figure 17 – The Push Model for KeyCredential Management

The Administration Component may use internal APIs to manage KeyCredentials or it could be
a standalone utility that uses OPC UA to communicate with a Server which supports the pull
model (see 8.2). The Configuration Database is used by the Server to persist its configuration
information. The administration and database components are examples to illustrate how an
application could be built and are not a requirement.

To ensure security of the KeyCredentials, the KeyCredentialService component can require that
secrets be encrypted with a key only known to the intended recipient of the KeyCredentials. For
this reason, the Administration Component uses the GetEndpoints Service to read the
Certificate from the Server before initiating the credential request on behalf of the Server.

Security, when using the push management model, requires an encrypted channel and the use
of administrator credentials for the Server that ensure only authorized users can update
KeyCredentials. If the KeyCredentialService component is separate from the Administration
Component then different administrator credentials are required for the Server that exposes the
that ensure only authorized users can request new KeyCredentials on behalf of Servers.

8.4 Information Model for Pull Management

 Overview

The AddressSpace used for pull management is shown in Figure 18. Clients interact with the
Nodes defined in this model when they need to request or revoke KeyCredentials for themselves
or for another application. The KeyCredentialManagement Folder is a well-known Object that
appears in the AddressSpace of any Server which supports KeyCredential management.

OPC 10000-12: Discovery, Global Services 48 Release 1.04

KeyCredentialManagement:
FolderType

<ServiceName>

ResourceUri

ProfileUris

StartRequest

FinishRequest

Revoke

KeyCredential
ServiceType

Objects:
FolderType

Figure 18 – The Address Space used for Pull KeyCredential Management

 KeyCredentialManagement

This Object is an instance of FolderType. It contains the KeyCredentialService Objects which
may be accessed via the Server. It is the target of an Organizes reference from the Objects
Folder defined in OPC 10000-5. It is defined in Table 46.

Table 46 – KeyCredentialManagement Object Definition

Attribute Value

BrowseName KeyCredentialManagement

Namespace GDS (see 3.3)

TypeDefinition FolderType defined in OPC 10000-5.

References NodeClass BrowseName TypeDefinition Modelling Rule

HasComponent Object <ServiceName> KeyCredentialServiceType OptionalPlaceholder

 KeyCredentialServiceType

This ObjectType is the TypeDefinition for an Object that allows the management of
KeyCredentials. It is defined in Table 47.

Table 47 – KeyCredentialServiceType Definition

Attribute Value

BrowseName KeyCredentialServiceType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasProperty Variable ResourceUri String PropertyType Mandatory

HasProperty Variable ProfileUris String[] PropertyType Mandatory

HasComponent Method StartRequest Defined in 8.4.4. Mandatory

HasComponent Method FinishRequest Defined in 8.4.5. Mandatory

HasComponent Method Revoke Defined in 8.4.6. Optional

The ResourceUri Property uniquely identifies the resource that accepts the KeyCredentials
provided by the KeyCredentialService Object.

The ProfileUris Property specifies URIs assigned in OPC 10000-7 to the authentication
mechanism used to communicate with the resource that accepts KeyCredentials provided by
the Object. For example, it could specify that the resource returns JWTs using OAuth2 HTTP
based APIs. As another example, it could specify an MQTT broker that expects a
username/password.

The StartRequest Method is used to initiate a request for new KeyCredentials for an application.

This request may complete immediately or it can require offline approval by an administrator.

Release 1.04 49 OPC 10000-12: Discovery, Global Services

The FinishRequest Method is used to complete a request created by calling StartRequest . If
the KeyCredential is available it is returned. If request is not yet completed it returns
Bad_NothingToDo.

The Revoke Method is used to revoke a previously issued KeyCredential.

 StartRequest

StartRequest is used to request a new KeyCredential.

The KeyCredential secret may be encrypted with the public key of the Certificate supplied in
the request. The SecurityPolicyUri specifies the security profile used for the encryption.

This Method requires an encrypted channel and that the Client provides credentials with

administrative rights for the application requesting the credentials.

Signature

StartRequest (

 [in] String applicationUri,

 [in] ByteString certificate,

 [in] String securityPolicyUri,

 [in] NodeId[] requestedRoles,

 [out] NodeId requestId

);

Argument Description

applicationUri The applicationUri of the application receiving the KeyCredentials.
The request is rejected applicationUri does not uniquely identify an application
known to the GDS (see 6.3.6).
If the requestor is not the same as the application used to create the Secure
Channel then a Certificate should be provided.

certificate The Certificate containing the key used to encrypt the returned KeyCredential
secret. This is the DER encoded form of an X.509 v3 Certificate as described in

OPC 10000-6. Not specified if no encryption is required.

If the securityPolicyUri is provided this field shall be provided.

securityPolicyUri The SecurityPolicy used to encrypt the secret.
If the certificate is provided this field shall be provided.

requestedRoles A list of Roles which should be assigned to the KeyCredential.
If not provided the Server chooses suitable defaults.
The Server ignores Roles which it does not recognize or if the caller is not
authorized to request access to the Role.

requestId A unique identifier for the request.
This identifier shall be passed to the FinishRequest (see 8.4.5).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationUri is not known to the GDS.

Bad_ConfigurationError The applicationUri is used by multiple records in the GDS.

Bad_CertificateInvalid The Certificate is invalid.

Bad_SecurityPolicyRejected The SecurityPolicy is unrecognized or not allowed or does not match the
Certificate.

Bad_UserAccessDenied The current user does not have the rights required.

Table 48 specifies the AddressSpace representation for the StartRequest Method.

Table 48 – StartRequest Method AddressSpace Definition

Attribute Value

BrowseName StartRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

OPC 10000-12: Discovery, Global Services 50 Release 1.04

 FinishRequest

FinishRequest is used to retrieve a KeyCredential.

If a Certificate was provided in the request then the KeyCredential secret is encrypted using an
asymmetric encryption algorithm specified by the SecurityPolicyUri provided in the request.

The format of the signed and encrypted credentialSecret is the same as the Version 2 Token
Secret Format defined in OPC 10000-4. When used for the credentialSecret, the signature is
provided by the source of the KeyCredential which can be the GDS Application Instance
Certificate. The serverNonce is a random number generated by the GDS.

If the return code is Bad_RequestNotComplete then the request has not been processed and
the Client should call again. The recommended time between calls depends on the GDS.

This Method requires an encrypted channel and that the Client provides credentials with

administrative rights for the application requesting the credentials .

Signature

FinishRequest (

 [in] NodeId requestId,

 [in] Boolean cancelRequest,

 [out] String credentialId,

 [out] ByteString credentialSecret,

 [out] NodeId[] grantedRoles

);

Argument Description

requestId The identifier returned from a previous call to StartRequest.

cancelRequest If TRUE the request is cancelled and no KeyCredentials are returned.
If FALSE the normal processing proceeds.

credentialId The unique identifier for the KeyCredential.

credentialSecret The secret associated with the KeyCredential.

certificateThumbprint The thumbprint of the Certificate containing the key used to encrypt the secret.
Not specified if the secret is not encrypted.

securityPolicyUri The SecurityPolicy used to encrypt the secret.
If not specified the secret is not encrypted.

grantedRoles A list of Roles which have been granted to KeyCredential.
If empty then the information is not relevant or not available.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The requestId is does not reference to a valid request for the Application.

Bad_RequestNotComplete The request has not been processed by the Server yet..

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The KeyCredential manager rejected the request.
The text associated with the error should indicate the exact reason.

Table 49 specifies the AddressSpace representation for the FinishRequest Method.

Table 49 – FinishRequest Method AddressSpace Definition

Attribute Value

BrowseName FinishRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 Revoke

Revoke is used to revoke a KeyCredential used by a Server.

This Method requires an encrypted channel and that the Client provides credentials with
administrative rights for the application which is having the credentials revoked.

Release 1.04 51 OPC 10000-12: Discovery, Global Services

Signature

Revoke (

 [in] String credentialId

);

Argument Description

credentialId The unique identifier for the KeyCredential.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The credentialId is does not reference a valid KeyCredential.

Bad_UserAccessDenied The current user does not have the rights required.

Table 50 specifies the AddressSpace representation for the RevokeKeyCredential Method.

Table 50 – Revoke Method AddressSpace Definition

Attribute Value

BrowseName Revoke

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

 KeyCredentialAuditEventType

This abstract event is raised when an operation affecting KeyCredentials occur

This Event and it subtypes are security related and Servers shall only report them to users

authorized to view security related audit events.

Its representation in the AddressSpace is formally defined in Table 52.

Table 51 – KeyCredentialAuditEventType Definition

Attribute Value

BrowseName KeyCredentialAuditEventType

Namespace CORE (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

HasProperty Variable ResourceUri String PropertyType Mandatory

HasSubtype ObjectType KeyCredentialRequestedAuditEventType Defined in 8.4.8.

HasSubtype ObjectType KeyCredentialDeliveredAuditEventType Defined in 8.4.9.

HasSubtype ObjectType KeyCredentialRevokedAuditEventType Defined in 8.4.10.

HasSubtype ObjectType KeyCredentialUpdatedAuditEventType Defined in 8.5.5.

HasSubtype ObjectType KeyCredentialDeletedAuditEventType Defined in 8.5.6.

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The ResourceUri Property specifies the URI for the resource which accepts the KeyCredential.

 KeyCredentialRequestedAuditEventType

This event is raised when a new KeyCredential request has been accepted or rejected by the
Server.

This can be the result of a StartKeyCredentialRequest Method call.

OPC 10000-12: Discovery, Global Services 52 Release 1.04

Its representation in the AddressSpace is formally defined in Table 52.

Table 52 – KeyCredentialRequestedAuditEventType Definition

Attribute Value

BrowseName KeyCredentialRequestedAuditEventType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the KeyCredentialAuditEventType defined in 8.4.7.

This EventType inherits all Properties of the KeyCredentialAuditEventType.

 KeyCredentialDeliveredAuditEventType

This event is raised when a KeyCredential is delivered by the Server to an application.

This is the result of a FinishKeyCredentialRequest Method completing.

Its representation in the AddressSpace is formally defined in Table 53.

Table 53 – KeyCredentialDeliveredAuditEventType Definition

Attribute Value

BrowseName KeyCredentialDeliveredAuditEventType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the KeyCredentialAuditEventType defined in 8.4.7.

This EventType inherits all Properties of the KeyCredentialAuditEventType.

 KeyCredentialRevokedAuditEventType

This event is raised when a KeyCredential is revoked.

This is the result of a RevokeKeyCredential Method completing.

Its representation in the AddressSpace is formally defined in Table 54.

Table 54 – KeyCredentialRevokedAuditEventType Definition

Attribute Value

BrowseName KeyCredentialRevokedAuditEventType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the KeyCredentialAuditEventType defined in 8.4.7.

This EventType inherits all Properties of the KeyCredentialAuditEventType.

8.5 Information Model for Push Management

The AddressSpace used for push management is shown in Figure 19. Clients interact with the
Nodes defined in this model when they need update the KeyCredentials used by a Server to
access resources such as Brokers or Authorization Servers. The NetworkResources Folder is
a well-known Object that appears in the AddressSpace of any Server which supports
KeyCredential management.

Release 1.04 53 OPC 10000-12: Discovery, Global Services

Server
Configuration

KeyCredentialManagement:
FolderType

Uri

Enable d

UpdateKey
Credential

KeyCredential
ConfigurationType

ServiceStatus

<ResourceName>

ProfileUri

EndpointUrls

DeleteKey
Credential

Figure 19 – The Address Space used for Push KeyCredential Management

 KeyCredentialConfiguration

This Object is an instance of FolderType. It contains The Objects which make be accessed via
the Server. It is the target of an HasComponent reference from the ServerConfiguration Object

defined in 7.7.2. It is defined in Table 46.

Table 55 – KeyCredentialConfiguration Object Definition

Attribute Value

BrowseName KeyCredentialConfiguration

Namespace CORE (see 3.3)

TypeDefinition FolderType defined in OPC 10000-5.

References NodeClass BrowseName TypeDefinition Modelling Rule

HasComponent Object <ServiceName> KeyCredentialConfigurationType OptionalPlaceholder

 KeyCredentialConfigurationType

This ObjectType is the TypeDefinition for an Object that allows the configuration of
KeyCredentials used by the Server. It also includes basic status information which report
problems accessing the resource that might be related to bad KeyCredentials. It is defined in

Table 56.

Table 56 – KeyCredentialConfigurationType Definition

Attribute Value

BrowseName KeyCredentialConfigurationType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasProperty Variable ResourceUri String PropertyType Mandatory

HasProperty Variable ProfileUri String PropertyType Mandatory

HasProperty Variable EndpointUrls String[] PropertyType Optional

HasProperty Variable ServiceStatus StatusCode PropertyType Optional

HasComponent Method UpdateCredential Defined in 8.5.3. Optional

HasComponent Method DeleteCredential Defined in 8.5.4. Optional

The ResourceUri Property uniquely identifies the resource that accepts the KeyCredentials.

The ProfileUri Property specifies the protocol used to access the resource.

The EndpointUrls Property specifies the URLs that the Server uses to access the resource.

OPC 10000-12: Discovery, Global Services 54 Release 1.04

The ServiceStatus Property indicates the result of the last attempt to communicate with the

resource. The following common error values are defined:

ServiceStatus Description

Bad_OutOfService Communication was not attempted by the Server because Enabled is FALSE.

Bad_IdentityTokenRejected Communication failed because the KeyCredentials are not valid.

Bad_NoCommunication Communication failed because the endpoint is not reachable.
Where possible a more specific error code should be used.

See OPC 10000-4 for a complete list of standard StatusCodes.

The UpdateKeyCredential Method is used to change the KeyCredentials used by the Server.

The DeleteKeyCredential Method is used to delete the KeyCredentials stored by the Server.

 UpdateCredential

UpdateCredential is used to update a KeyCredential used by a Server.

The KeyCredential secret may be encrypted with the public key of the Server’s Certificate. The
SecurityPolicyUri species the algorithm used for encryption. The format of the encrypted data
is described in 8.4.5.

This Method requires an encrypted channel and that the Client provides credentials with
administrative rights on the Server.

Signature

UpdateCredential(

 [in] String credentialId,

 [in] ByteString credentialSecret,

 [in] String certificateThumbprint,

 [in] String securityPolicyUri

);

Argument Description

credentialId The unique identifier associated with the KeyCredential.

credentialSecret The secret associated with the KeyCredential.

certificateThumbprint The thumbprint of the Certificate used to encrypt the secret.
This shall be one of the Application Instance Certificates assigned to the Server.
Not specified if the secret is not encrypted.

securityPolicyUri The SecurityPolicy used to encrypt the secret.
If not specified the secret is not encrypted.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The credentialId or credentialSecret is not valid.

Bad_CertificateInvalid The Certificate is invalid or it is not one of the Server’s Certificates.

Bad_SecurityPolicyRejected The SecurityPolicy is unrecognized or not allowed.

Bad_UserAccessDenied The current user does not have the rights required.

Table 57 specifies the AddressSpace representation for the UpdateKeyCredential Method.

Table 57 – UpdateCredential Method AddressSpace Definition

Attribute Value

BrowseName UpdateCredential

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 DeleteCredential

DeleteCredential is used to delete a KeyCredential used by a Server.

This Method requires an encrypted channel and that the Client provides credentials with
administrative rights on the Server.

Release 1.04 55 OPC 10000-12: Discovery, Global Services

Signature

DeleteCredential()

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 57 specifies the AddressSpace representation for the DeleteKeyCredential Method.

Table 58 – DeleteCredential Method AddressSpace Definition

Attribute Value

BrowseName DeleteCredential

References NodeClass BrowseName DataType TypeDefinition ModellingRule

 KeyCredentialUpdatedAuditEventType

This event is raised when a KeyCredential is updated.

This Event and its subtypes report sensitive security related information. Servers shall only
report these Events to Clients which are authorized to view such information.

This is the result of a UpdateCredential Method completing.

Its representation in the AddressSpace is formally defined in Table 59.

Table 59 – KeyCredentialUpdatedAuditEventType Definition

Attribute Value

BrowseName KeyCredentialUpdatedAuditEventType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the KeyCredentialAuditEventType defined in 8.4.7.

HasProperty Variable ResourceUri String PropertyType Mandatory

This EventType inherits all Properties of the KeyCredentialAuditEventType.

 KeyCredentialDeletedAuditEventType

This event is raised when a KeyCredential is updated.

This is the result of a DeleteCredential Method completing.

Its representation in the AddressSpace is formally defined in Table 60.

Table 60 – KeyCredentialUpdatedAuditEventType Definition

Attribute Value

BrowseName KeyCredentialDeletedAuditEventType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the KeyCredentialAuditEventType defined in 8.4.7.

HasProperty Variable ResourceUri String PropertyType Mandatory

This EventType inherits all Properties of the KeyCredentialAuditEventType.

OPC 10000-12: Discovery, Global Services 56 Release 1.04

9 Authorization Services

9.1 Overview

Authorization Services provide Access Tokens to Clients that may use them to access
resources. A Server, such as a GDS, with Authorization Service capabilities may support one
or more AuthorizationService Objects (see 9.5.2) which may represent an internal Authorization
Service or be an API to an external Authorization Service. The Authorization Service is best
used in conjunction with the Role model defined in OPC 10000-5. In this scenario, the mapping
rules assigned to the Roles known to the Server are used to populate an Access Token with
the Roles associated with the UserIdentity provided when the Client submits the request. This

scenario is illustrated in Figure 20.

Client

Mapping
Rules

Authorization
Service

Server

Role
Permissions

Access Token
{Roles}

2

3

Access Token
{Roles}

UserIdentity
Token1

4

5

6

Node

7

8

Figure 20 – Roles and Authorization Services

When requesting Access Tokens from an AuthorizationService Object there are three primary
use cases based on where the UserIdentityToken comes from: Implicit, Explicit and Chained.
These use cases are discussed below. The Implicit and Explicit use cases are implementations
of the ‘Indirect’ model for Authorization Services described in OPC 10000-4. The Chained use

case is an implementation of the ‘Direct’ model.

9.2 Implicit

The implicit use case means the Client’s Application Certificate and any UserIdentityToken
associated with the Session is used to determine whether an Access Token is permitted and

what claims are available. This use case is illustrated in Figure 21.

Release 1.04 57 OPC 10000-12: Discovery, Global Services

ClientClient
Target
Server
Target
Server

Authorization
Server

Authorization
Server

GetEndpoints

UserTokenPolicy[]

GetEndpoints

UserTokenPolicy[]

CreateSession/ActivateSession(UserName)

SessionId

RequestAccessToken(null)

Access Token (JWT)

CreateSession(Access Token(JWT))

SessionId

Figure 21 – Implicit Authorization

The Target Server is the Server that the Client wishes to access. It publishes a UserTokenPolicy
that indicates that it accepts Access Tokens from an Authorization Server at a URL specified in
the policy. The policy also contains the NodeId of the AuthorizationService Object which the is
used to request the Access Token.

The Client needs to be trusted by the Authorization Server and this could require the Client to
present user credentials. These credentials can be provided to the Client out-of-band (e.g. an
administrator specified them in the Client configuration file).

The Session may be created explicitly with a call to CreateSession or it can be implicit via a
Session-less Method Call.

After creating the Session, the Client calls the RequestAccessToken Method on the
AuthorizationService Object. The Authorization Server determines if the Client is permitted to
receive an Access Token and populates it with any claims granted to the Client. This claims
may include Roles granted to the Session by applying the mapping rules for the Roles (see

OPC 10000-3).

Once the Client has the Access Token, it passes the Access Token to the Target Server which
validates the Access Token, as described in OPC 10000-4. The Target Server is configured
out-of-band with the Certificate needed to validate the Access Tokens issued by the
Authorization Server.

9.3 Explicit

The explicit use case means the Client provides the UserIdentityToken used to determine
whether an Access Token is permitted and what claims are available in the call to
RequestAccessToken. This use case is illustrated in Figure 22.

OPC 10000-12: Discovery, Global Services 58 Release 1.04

ClientClient
Target
Server
Target
Server

Authorization
Server

Authorization
Server

GetEndpoints

UserTokenPolicy[]

GetEndpoints

UserTokenPolicy[]

CreateSession/ActivateSession(null)

SessionId

GetServiceDescription

UserTokenPolicy[]

RequestAccessToken(UserName)

Access Token (JWT)

CreateSession(Access Token(JWT))

SessionId

Figure 22 – Explicit Authorization

The Target Server is the Server that the Client wishes to access. The initial interactions are the

same as with the Implicit use case described in 9.2.

The Session may be created explicitly with a call to CreateSession or it can be implicit via a
Session-less Method Call.

After creating the Session, the Client reads the available UserTokenPolicies from the
AuthorizationService Object if it has not previously cached the information . It then chooses one
that matches credentials that it has been provided out-of-band. The Client then calls the
RequestAccessToken Method on the AuthorizationService Object.

The Authorization Server determines if the Client is permitted to receive an Access Token. The
rest of the interactions are the same as described in 9.2.

9.4 Chained

The chained use case means the Client provides an Access Token issued by another
Authorization Service acting as an Identity Provider. This use case is illustrated in Figure 23.

Release 1.04 59 OPC 10000-12: Discovery, Global Services

ClientClient
Target
Server
Target
Server

Authorization
Server

Authorization
Server

Identity
Provider
Identity
Provider

GetEndpoints

UserTokenPolicy[]

GetEndpoints

UserTokenPolicy[]

CreateSession/ActivateSession(null)

SessionId

GetServiceDescription

UserTokenPolicy[]

OAuth2 Authorize (authorization_code)

Access Token (Identity Provider)

RequestAccessToken(Access Token (Identity Provider))

Access Token (JWT)

CreateSession(Access Token (JWT))

SessionId

Figure 23 – Chained Authorization

The Target Server is the Server that the Client wishes to access. The initial interactions are the

same as with the Implicit use case described in 9.2.

The Session may be created explicitly with a call to CreateSession or it can be implicit via a
Session-less Method Call.

After creating the Session, the Client reads the available UserTokenPolicies from the
AuthorizationService Object if it has not previously cached the information . It then chooses one
that references an Identity Provider for the user identities that it has available. The user
identities may be provided out-of-band or they may be provided by an interactive user. The
Client then requests an Access Token from the Identity Provider.

The Client then calls the RequestAccessToken Method on the AuthorizationService Object and
passes the Access Token from the Identity Provider.

The Authorization Server determines if the Client is permitted to receive an Access Token based
on the claims granted by the Identity Provider. The rest of the interactions are the same as

described in 9.2.

9.5 Information Model for Requesting Access Tokens

 Overview

The information model for Authorization Services which allow Clients to request Access Tokens
from a Server is shown in Figure 24.

OPC 10000-12: Discovery, Global Services 60 Release 1.04

Authorization
Services

<ServiceName>

ServiceUri

UserTokenPolicies

Request
AccessToken

Authorization
ServiceType

Service
Certificate

Objects:
FolderType

GetService
Description

Figure 24 – The Model for Requesting Access Tokens from Authorization Services

 AuthorizationServices

This Object is an instance of FolderType. It contains The AuthorizationService Objects which
may be accessed via the GDS. It is the target of an Organizes reference from the Objects Folder

defined in OPC 10000-5. It is defined in Table 61.

Table 61 – AuthorizationServices Object Definition

Attribute Value

BrowseName AuthorizationServices

Namespace GDS (see 3.3)

TypeDefinition FolderType defined in OPC 10000-5.

References NodeClass BrowseName TypeDefinition Modelling Rule

HasComponent Object <ServiceName> AuthorizationServiceType OptionalPlaceholder

 AuthorizationServiceType

This ObjectType is the TypeDefinition for an Object that allows access to an Authorization
Service. It is defined in Table 62.

Table 62 – AuthorizationServiceType Definition

Attribute Value

BrowseName AuthorizationServiceType

Namespace GDS (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasProperty Variable ServiceUri String PropertyType Mandatory

HasProperty Variable ServiceCertificate ByteString PropertyType Mandatory

HasProperty Variable UserTokenPolicies UserTokenPolicy [] PropertyType Optional

HasComponent Method GetServiceDescription Defined in 9.5.5. Mandatory

HasComponent Method RequestAccessToken Defined in 9.5.4. Optional

The ServiceUri is a globally unique identifier that allows a Client to correlate an instance of
AuthorizationServiceType with instances of AuthorizationServiceConfigurationType (see 9.6.3).

The ServiceCertificate is the complete chain of Certificates needed to validate the Access
Tokens (see OPC 10000-6 for information on encoding chains).

The UserTokenPolicies Property specifies the UserIdentityTokens which are accepted by the
RequestAccessToken Method.

Release 1.04 61 OPC 10000-12: Discovery, Global Services

The GetServiceDescription Method is used read the metadata needed to request Access
Tokens.

The RequestAccessToken Method is used to request an Access Token from the Authorization
Service.

 RequestAccessToken

RequestAccessToken is used to request an Access Token from an Authorization Service. The
scenarios where this this Method is used are described fully in 9.2, 9.3 and 9.4.

The PolicyId and UserTokenType of the identityToken shall match one of the elements of the
UserTokenPolicies Property. If the identityToken is not provided the Server should use the
ApplicationInstanceCertificate and/or the UserIdentityToken provided for the Session (or the
request if using a Session-less Method Call) to determine privileges.

If the associated UserTokenPolicy provides a SecurityPolicyUri, then the identityToken is
encrypted and digitally signed using the format defined for UserIdentityToken secrets in OPC
10000-4.

For UserNameIdentityTokens the secret is the password and the signature is created with the
Client ApplicationInstanceCertificate . The signed and encrypted secret is passed in the
password field.

For X.509 v3IdentityTokens the secret is null and signature is created with the key associated
with user Certificate. The signed and encrypted secret is passed in the certificateData field.

For IssuedIdentityTokens the secret is the token and the signature is created with the key
associated a user Certificate or the Client ApplicationInstanceCertificate. The signed and
encrypted secret is passed in the tokenData field.

The Server shall check the signingTime in against the current system clock. The Server shall
reject the request if the signingTime is outside of a configurable range. A suitable default value
is 5 minutes. The permitted clock skew is a Server configuration parameter.

This Method requires an encrypted channel and that the Client provides credentials with
administrative rights for the application which is having the credentials revoked.

Signature

RequestAccessToken (

 [in] UserIdentityToken identityToken,

 [in] String resourceId,

 [out] String accessToken

);

Argument Description

identityToken The identity used to authorize the Access Token request.

resourceId The identifier for the Resource that the Access Token is used to access.
This is usually the ApplicationUri for a Server.

accessToken The Access Token granted to the application.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_IdentityTokenInvalid The identityToken does not match one of the allowed UserTokenPolicies.

Bad_IdentityTokenRejected The identityToken was rejected.

Bad_NotFound The resourceId is not known to the Server.

Bad_UserAccessDenied The current user does not have the rights required.

Table 63 specifies the AddressSpace representation for the RequestAccessToken Method.

OPC 10000-12: Discovery, Global Services 62 Release 1.04

Table 63 – RequestAccessToken Method AddressSpace Definition

Attribute Value

BrowseName RequestAccessToken

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 GetServiceDescription

GetServiceDescription is used to read the metadata needed to request Access Tokens from the
Authorization Service.

Signature

GetServiceDescription (

 [out] String serviceUri

 [out] ByteString serviceCertificate

 [out] UserTokenPolicy[] policies

);

Argument Description

serviceUri A globally unique identifier for the Authorization Service.

serviceCertificate The complete chain of Certificates needed to validate the Access Tokens
provided by the Authorization Service.

policies The UserIdentityTokens accepted by the Authorization Service.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 64 specifies the AddressSpace representation for the GetServiceDescription Method.

Table 64 – GetServiceDescription Method AddressSpace Definition

Attribute Value

BrowseName GetServiceDescription

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 AccessTokenIssuedAuditEventType

This event is raised when a AccessToken is issued.

This is the result of a RequestAccessToken Method completing.

This Event and it subtypes are security related and Servers shall only report them to users

authorized to view security related audit events.

Its representation in the AddressSpace is formally defined in Table 65.

Table 65 – AccessTokenIssuedAuditEventType Definition

Attribute Value

BrowseName AccessTokenIssuedAuditEventType

Namespace GDS (see 3.3)

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5.

Release 1.04 63 OPC 10000-12: Discovery, Global Services

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is

defined in OPC 10000-5.

9.6 Information Model for Configuring Servers

 Overview

The information model used to provide Servers with the information needed to accept Access
Tokens from Authorization Services in Figure 24.

Server
Configuration

AuthorizationServices:
FolderType

ServiceUri

AuthorizationService
ConfigurationType

ServiceCertif icate

<ServiceName>

IssuerEndpointUrl

Figure 25 – The Model for Configuring Servers to use Authorization Services

If a Server is also a Client that needs to access the Authorization Service, the necessary
KeyCredentials can be provided with the push configuration management model (see 8.3).

 AuthorizationServices

This Object is an instance of FolderType. It contains The AuthorizationServiceConfiguration
Objects which may be accessed via the Server. It is the target of an HasComponent reference
from the ServerConfiguration Object defined in 7.7.2. It is defined in Table 61.

Table 66 – AuthorizationServices Object Definition

Attribute Value

BrowseName AuthorizationServices

Namespace CORE (see 3.3)

TypeDefinition FolderType defined in OPC 10000-5.

References NodeClass BrowseName TypeDefinition Modelling Rule

HasComponent Object <ServiceName> AuthorizationServiceConfiguration
Type

OptionalPlaceholder

 AuthorizationServiceConfigurationType

This ObjectType is the TypeDefinition for an Object that allows the configuration of an
Authorization Service used by a Server. It is defined in Table 67.

Table 67 – AuthorizationServiceConfigurationType Definition

Attribute Value

BrowseName AuthorizationServiceConfigurationType

Namespace CORE (see 3.3)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasProperty Variable ServiceUri String PropertyType Mandatory

HasProperty Variable ServiceCertificate ByteString PropertyType Mandatory

OPC 10000-12: Discovery, Global Services 64 Release 1.04

HasProperty Variable IssuerEndpointUrl String PropertyType Mandatory

The ServiceUri Property uniquely identifies the Authorization Service.

The ServiceCertificate Property has the Certificate(s) needed to verify Access Tokens issued
by the Authorization Service. The value is the complete chain of Certificate needed for

verification (see OPC 10000-6 for information on encoding chains).

The IssuerEndpointUrl is the value of the IssuerEndpointUrl in UserTokenPolicies which require
the use of the Authorization Service. This contents of the field depend on the Authorization
Service and are described in OPC 10000-6.

Release 1.04 65 OPC 10000-12: Discovery, Global Services

Annex A
(informative)

Deployment and Configuration

A.1 Firewalls and Discovery

Many systems will have multiple networks that are isolated by firewalls. These firewalls will
frequently hide the network addresses of the hosts behind them unless the Administrator has
specifically configured the firewall to allow external access. In some networks the Administrator
will place hosts with externally available Servers outside the firewall as shown in Figure 26.

Figure 26 – Discovering Servers Outside a Firewall

In this configuration Servers running on the publicly visible network will have the same network
address from the perspective of all Clients which means the URLs returned by DiscoveryServers
are not affected by the location of the Client.

In other networks the Administrator will configure the firewall to allow access to selected
Servers. An example is shown in Figure 27.

Client

Firewall

Server

Publicly Visible Network

Client

Internal Network

Server

Internet

OPC 10000-12: Discovery, Global Services 66 Release 1.04

Client

Firewall

Client

Internal Network

Server

Internet

Discovery Server

Firewall
DMZ

Internal Network

Figure 27 – Discovering Servers Behind a Firewall

In this configuration the address of the Server that the Internet Client sees will be different from
the address that the Internet Client sees. This means that the Server’s DiscoveryEndpoint would
return incorrect URLs to the Internet Client (assuming it was configured to provide the internal

URLs).

Administrators can correct this problem by configuring the Server to use multiple HostNames.
A Server that has multiple HostNames shall look at the EndpointUrl passed to the GetEndpoints
or CreateSession services and return EndpointDescriptions with URLs that use the same
HostName. A Server with multiple HostNames shall also return an Application Instance
Certificate that specifies the HostName used in the URL it returns. An Administrator may create
a single Certificate with multiple HostNames or assign different Certificates for each HostName
that the Server supports.

Note that Servers may not be aware of all HostNames which can be used to access the Server
(i.e. a NAT firewall) so Clients need to handle the case where the URL used to access the
Server is different from the HostNames in the Certificate. This is discussed in more detail in
OPC 10000-4.

Administrators may also wish to set up a DiscoveryServer that is configured with the
ApplicationDescriptions for Servers that are accessible to external Clients. This
DiscoveryServer would have to substitute its own Endpoint for the DiscoveryUrls in all
ApplicationDescriptions that it returns when a Client calls FindServers. This would tell the Client
to call the DiscoveryServer back when it wishes to connect to the Server. The DiscoveryServer
would then request the EndpointDescriptions from the actual Server as shown in Figure 28. At
this point the Client would have all the information it needs to establish a secure channel with
the Server behind the firewall.

Release 1.04 67 OPC 10000-12: Discovery, Global Services

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Discovery Server

FindServers()

ServerDescription[]

GetEndpoints()

EndpointDescription[]

Figure 28 – Using a Discovery Server with a Firewall

In this example, the DiscoveryServer outside of the firewall allows the Administrator to close off
the Server’s DiscoveryEndpoints to every Client other than the DiscoveryServer. The
Administrator could eliminate that hole as well if it stored the EndpointDescriptions on the
DiscoveryServer. This allows an Administrator to configure a system in which no public access
is allowed to any application behind the firewall. The only access behind the firewall is via a
secure connection.

The DiscoveryServer could also be replaced with a DirectoryService that stores the
ApplicationDescriptions and/or the EndpointDescriptions for the Servers behind the firewalls.

A.2 Resolving References to Remote Servers

The UA AddressSpace supports references between Nodes that exist in different Server
AddressSpace spaces. These references are specified with a ExpandedNodeId that includes
the URI of the Server which owns the Node. A Client that wishes to follow a reference to an
external Node should map the ApplicationUri onto an EndpointUrl that it can use. A Client can
do this by using the GlobalDiscoveryServer that knows about the Server. The process of
connecting to a Server containing a remote Node is illustrated in Figure 29.

OPC 10000-12: Discovery, Global Services 68 Release 1.04

Client Server 1 GDS Server 2

Browse

ExpandedNodeId

(ServerUri=‘Server 2’)

Find Discovery Server

QueryServers (ApplicationUri = ‘Server 2’)

ServerOnNetwork

GetEndpoints

EndpointDescriptions

CreateSession

Figure 29 – Following References to Remote Servers

If a GDS not available Client may use other strategies to find the Server associated with the

URI.

Release 1.04 69 OPC 10000-12: Discovery, Global Services

Annex B
(normative)

Constants

B.1 Numeric Node Ids

This document defines Nodes which are part of the base OPC UA Specification. The numeric
identifiers for these Nodes are part of the complete list of identifiers defined in OPC 10000-6.

In addition, this document defines Nodes which are only used by GlobalDiscoveryServers.

The NamespaceUri for any GDS specific NodeIds is http://opcfoundation.org/UA/GDS/

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Gds.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas//Opc.Ua.Gds.NodeIds.csv

http://opcfoundation.org/UA/GDS
http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Gds.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Gds.NodeIds.csv

OPC 10000-12: Discovery, Global Services 70 Release 1.04

Annex C
(normative)

OPC UA Mapping to mDNS

C.1 DNS Server (SRV) Record Syntax

Annex Cdescribes the OPC UA specific requirements which are above and beyond the more
general requirements of the mDNS specification.

mDNS uses DNS SRV records to advertise the services (a.k.a. the DiscoveryUrls for the
Servers) available on the network.

An SRV record has the form:

_service._proto.name TTL class SRV priority weight port target

service: the symbolic name of the desired service. For OPC UA this field shall be one of service

names for OPC UA which are defined in Table 68.

Table 68 – Allowed mDNS Service Names

Service Name Description

_opcua-tcp The DiscoveryUrl supports the OPC UA TCP mapping (see OPC 10000-6).

This name is assigned by IANA.

_opcua-tls The DiscoveryUrl supports the OPC UA WebSockets mapping (see OPC 10000-6).

Note that WebSockets mapping supports multiple encodings. If a Client supports more than
one encoding it should attempt to use the alternate encodings if an error occurs during
connect.
This name is assigned by IANA.

proto: the transport protocol of the desired service; For OPC UA this field shall be ‘_tcp’.

The other fields have no OPC UA specific requirements.

An example SRV record in textual form that might be found in a zone file might be the following:

_opcua-tcp._tcp.example.com. 86400 IN SRV 0 5 4840 uaserver.example.com.

This points to a server named uaserver.example.com listening on TCP port 4840 for OPC

UA TCP requests. The priority given here is 0, and the weight is 5 (the priority and weights are
not important for OPC UA). The mDNS specification describes the rest of the fields in detail.

C.2 DNS Text (TXT) Record Syntax

The SRV record has a TXT record associated with it that provides additional information about
the DiscoveryUrl. The format of this record is a sequence of strings prefixed by a length. This

specifications adopts the key-value syntax for TXT records described in DNS-SD.

Table 69 defines the syntax for strings that may in the TXT record.

Table 69 – DNS TXT Record String Format

Key-Value Format Description

path=/<path> Specifies the text that appears after the port number when constructing a
URL. This text always starts with a forward slash (/).

caps=<capability1>,<capability2> Specifies the capabilities supported by the Server.
These are short (<=8 character) strings which are published by the OPC
Foundation (see Annex D). The number of capabilities supported by a
Server should be less than 10.

http://en.wikipedia.org/wiki/Zone_file

Release 1.04 71 OPC 10000-12: Discovery, Global Services

The MulticastExtension shall convert DiscoveryUrls to and from these SRV records.

C.3 DiscoveryUrl Mapping

An DiscoveryUrl has the form:

scheme://hostname:port/path

scheme: the protocol used to establish a connection.

hostname: the domain name or IPAddress of the host where the Server is running.

port: the TCP port on which the Server is to be found.

path: additional data used to identify a specific Server.

Table 70 – DiscoveryUrl to DNS SRV and TXT Record Mapping

URL Field Mapping

scheme The scheme maps onto SRV record service field.
The following mappings are defined at this time:

opc.tcp _opcua-tcp._tcp.

opc.wss _opcua-tls._tcp.

https _opcua-https._tcp.

The first two are OPC UA service names assigned by IANA.
Additional service names may be added in the future.
The endpoint shall support the default transport profile for the scheme.

hostname The hostname maps onto the SRV record target field.
If the hostname is an IPAddress then it shall be converted to a domain name.
If this cannot be done then LDS shall report an error.

port The port maps onto the SRV record port field.

path The path maps onto the path string in the TXT record (see Table 69).

Suitable default values should be chosen for fields in a SRV record that do not have a mapping
specified in Table 70. e.g. TTL=86400, class=IN, priority=0, weight=5

OPC 10000-12: Discovery, Global Services 72 Release 1.04

Annex D
(normative)

Server Capability Identifiers

Clients benefit if they have more information about a Server before they connect, however,
providing this information imposes a burden on the mechanisms used to discover Servers. The

challenge is to find the right balance between the two objectives.

ServerCapabilityIdentifiers are the way this specification achieves the balance. These
identifiers are short and map onto a subset of OPC UA features which are likely to be useful
during the discovery process. The identifiers are short because of length restrictions for fields
used in the mDNS specification. Table 71 is a non-normative list of possible identifiers.

Table 71 – Examples of ServerCapabilityIdentifiers

Identifier Description

NA No capability information is available. Cannot be used in combination with any other capability.

DA Provides current data.

HD Provides historical data.

AC Provides alarms and conditions that may require operator interaction.

HE Provides historical alarms and events.

GDS Supports the Global Discovery Server information model.

LDS Only supports the Discovery Services. Cannot be used in combination with any other capability.

DI Supports the Device Integration (DI) information model (see DI).

ADI Supports the Analyser Device Integration (ADI) information model (see ADI).

FDI Supports the Field Device Integration (FDI) information model (see FDI).

FDIC Supports the Field Device Integration (FDI) Communication Server information model (see FDI).

PLC Supports the PLCopen information model (see PLCopen).

S95 Supports the ISA95 information model (see ISA-95).

RCP Supports the reverse connect capabilities defined in OPC 10000-6.

PUB Supports the Publisher capabilities defined in OPC 10000-14.

SUB Supports the Subscriber capabilities defined in OPC 10000-14.

The normative set of ServerCapabilityIdentifiers can be found here:

http://www.opcfoundation.org/UA/schemas/1.04/ServerCapabilities.csv

Application developers shall always use the linked CSV.

Client applications that support the PUB or SUB capability can send or receive PubSub

Messages but do not support the PubSub information model.

Client applications that support the RCP capability allow Servers to connect, however, they do
not support GetEndpoints Service.

http://www.opcfoundation.org/UA/schemas/1.04/ServerCapabilities.csv

Release 1.04 73 OPC 10000-12: Discovery, Global Services

Annex E
(normative)

DirectoryServices

E.1 Global Discovery via Other Directory Services

Many organizations will deploy DirectoryServices such as LDAP or UDDI to manage resources
available on their network. A Client can use these services as a way to find Servers by using
APIs specific to DirectoryService to query for UA Servers or UA DiscoveryServers available on
the network. The Client would then use the URLs for DiscoveryEndpoints stored in the
DirectoryService to request the EndpointDescriptions necessary to connect to an individual

servers

Some implementations of a GlobalDiscoveryServer will be a front-end for a standard Directory
Service. In these cases, the QueryServers method will return the same information as the
DirectoryService API. The discovery process for this scenario is illustrated in Figure 30 .

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

UDDI or LDAP

Server

Query()

BusinessEntity/Object[]

Figure 30 – The UDDI or LDAP Discovery Process

E.2 UDDI

UDDI registries contain businessEntities which provide one or more businessServices. The
businessServices have one or more bindingTemplates. bindingTemplates specify a physical
address and a Server Interface (called a tModel). Figure 31 illustrates the relationships between

the UDDI registry elements.

OPC 10000-12: Discovery, Global Services 74 Release 1.04

Logical Node

(businessEntity)

UA Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Server Interface

(tModel)

UA Discovery Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Discovery Interface

(tModel)

Figure 31 – UDDI Registry Structure

This specification defines standard tModels which shall be referenced by businessServices that
support UA. The standard UA tModels shown in Table 72.

Table 72 – UDDI tModels

Name domainKey uuidKey

Server uddi:server.ua.opcfoundation.org uddi:AA206B41-EC9E-49a4-B789-
4478C74120B5

DiscoveryServer uddi:discoveryserver.ua.opcfoundation.org uddi:AA206B42-EC9E-49a4-B789-
4478C74120B5

The name of the businessService elements should be the same as the ApplicationName for the
UA application. The serviceKey shall be the ApplicationUri. At least one bindingTemplate shall
be present and the accessPoint shall be the URL of the DiscoveryEndpoint for the UA server
identified by the serviceKey. Servers with multiple DiscoveryEndpoints would have multiple

bindingTemplates

A UDDI registry will generally only contain UA servers, however, there are situations where the
administrators cannot know what Servers are available at any given time and will find it more
convenient to place a DiscoveryServer in the registry instead.

E.3 LDAP

LDAP servers contain objects organized into hierarchies. Each object has an objectClass which
specifies a number of attributes. Attributes have values which describe an object. Figure 32

illustrates a sample LDAP hierarchy which contains entries describing UA servers.

Release 1.04 75 OPC 10000-12: Discovery, Global Services

Root

(objectClass=top)

Company

(objectClass=organization)

Machine X

(objectClass=device)

Machine Y

(objectClass=device)

UA Server

(objectClass=OPCUA-Server)

UA Discovery Server

(objectClass=OPCUA-Server)

IsDiscoveryServer=False IsDiscoveryServer=True

Figure 32 – Sample LDAP Hierarchy

UA applications are stored in LDAP servers as entries with the UA defined objectClasses
associated with them. The schema for the objectClasses defined for UA are shown in Table 73.

Table 73 – LDAP Object Class Schema

Name LDAP Name Type OID

Application opcuaApplication Structural 1.2.840.113556.1.8000.2264.1.12.1

 ApplicationName cn String (Required) Built-in

 HostName dNSName String Built-in

 ApplicationUri opcuaApplicationUri Name 1.2.840.113556.1.8000.2264.1.12.1.1

 ApplicationType opcuaApplicationType Boolean 1.2.840.113556.1.8000.2264.1.12.1.3

 DiscoveryUrl opcuaDiscoveryUrl String, Multi-valued 1.2.840.113556.1.8000.2264.1.12.1.4

This OID is globally unique and can use used with any LDAP implementation.

Administrators may extend the LDAP schema by adding new attributes.

OPC 10000-12: Discovery, Global Services 76 Release 1.04

Annex F
(normative)

Local Discovery Server

F.1 Certificate Store Directory Layout

A recommended directory layout for Applications that store their Certificates on a file system is

shown in Table 74. The Local Discovery Server shall use this structure.

This structure is based on the rules defined in OPC 10000-6.

Table 74 – Application Certificate Store Directory Layout

Path Description

<root> A descriptive name for the trust list.

<root>/own The Certificate store which contains private keys used by the application.

<root>/own/certs Contains the X.509 v3 Certificates associated with the private keys in the ./private
directory.

<root>/own/private Contains the private keys used by the application.

<root>/trusted The Certificate store which contains trusted Certificates.

<root>/trusted/certs Contains the X.509 v3 Certificates which are trusted.

<root>/trusted/crl Contains the X.509 v3 CRLs for any Certificates in the ./certs directory.

<root>/issuer The Certificate store which contains the CA Certificates needed for validation.

<root>/issuer/certs Contains the X.509 v3 Certificates which are needed for validation.

<root>/issuer/crl Contains the X.509 v3 CRLs for any Certificates in the ./certs directory.

<root>/rejected The Certificate store which contains certificates which have been rejected.

<root>/rejected/certs Contains the X.509 v3 Certificates which have been rejected.

All X.509 v3 certificates are stored in DER format and have a ‘.der’ extension on the file name.

All CRLs are stored in DER format and have a ‘.crl’ extension on the file name.

Private keys should be in PKCS #12 format with a ‘.pfx’ extension or in the OpenSSL PEM
format. The OpenSSL PEM format is not formally defined and should only be used by
applications which use the OpenSSL libraries to implement security. Other private key formats
may exist.

The base name of the Private Key file shall be the same as the base file name for the matching
Certificate file stored in the ./certs directory.

A recommended naming convention is:

<CommonName> [<Thumbprint>].(der | pem | pfx)

Where the CommonName is the CommonName of the Certificate and the Thumbprint is the
SHA1 hash of the certificate formatted as a hexadecimal string.

F.2 Installation Directories on Windows

The LocalDiscoveryServer executable shall be installed in the following location:

%CommonProgamFiles%\OPC Foundation\UA\Discovery

where %CommonProgamFiles% is the value of the CommonProgamFiles environment variable
on 32-bit systems. On 64-bit systems the value of the CommonProgamFiles(x86) environment

variable is used instead.

The configuration files used by the LocalDiscoveryServer executable shall be installed in the

following location:

%CommonApplicationData%\OPC Foundation\UA\Discovery

Release 1.04 77 OPC 10000-12: Discovery, Global Services

where %CommonApplicationData% is the location of the application data folder shared by all
users. The exact location depends on the operating system, however, under Windows 7 or later
the common application data folder is usually C:\ProgramData.

The certificates stores used by the LocalDiscoveryServer shall be organized as described in
F.1. The root of the certificates stores shall be in the following location:

%CommonApplicationData%\OPC Foundation\UA\pki

OPC 10000-12: Discovery, Global Services 78 Release 1.04

Annex G
(normative)

Application Installation Process

G.1 Provisioning with Pull Management

Applications that use Pull Management (see 7.2) to initialize their configuration need to know
the location of the CertificateManager which they can use to request Certificates and download
Trust Lists. This location may be auto-discovered via mDNS by looking for servers with the GDS
capability (see Annex D) or by providing a URL via and out of band mechanism such as e -mail
or a web page.

Once the location is known the Application can connect to the CertificateManager and establish
a secure channel. This will require that the Application trust the Certificate provided by the
CertificateManager even if it is not in the Application’s Trust List. If there is an interactive user
the Application should warn the user before proceeding. If there is no interactive user the
Application should ensure the domain in the URL matches one of the domains in the Certificate.

In some cases, the Application distributor or installer will know the CA used to sign the
Certificate used by the CertificateManager and can add this CA to the Application’s Trust List
during installation. If practical, this approach provides the best protection against accidental
registration with rogue CertificateManagers.

After establishing a secure channel with the CertificateManager, the Application shall provide
user credentials which allow it to register new applications and request new Certificates. The
credentials may be provided by prompting a user or they may be one time use credentials
delivered via some out of band mechanism such as a web site during the installation process.

For embedded systems it can be impractical to enter user credentials. As an alternative, a
unique ApplicationInstance Certificate can be provided during manufacture and the Certificate
or a unique identifier for the Certificate should be provided to the device installer. The installer
would then register the unique identifier or Certificate with the CertificateManager which would
allow the device to request a new Certificate by creating a Secure Channel with the
manufacturer’s Certificate.

Once an Application has received its first Certificate then the Certificate can be used in lieu of
user credentials when the Application needs to renew its Certificate or update its Trust List.

G.2 Provisioning with the Push Management

Servers that use Push Management (see 7.3) to initialize their configuration shall have a default
Certificate assigned before the Push Management process can start.

In addition, Servers shall go into a “provisioning state” that makes it possible for remote clients
to update the security configuration via the ServerConfiguration Object (see 7.7.2). When a
Server is in the “provisioning state” it should limit the available functionality.

Once a Server has been configured it automatically leaves the “provisioning state”. This step is
necessary to ensure that security is not compromised.

A possible workflow for implementing the “provisioning state” include:

1. A flag in the configuration file that defaults to ON;

2. Always allow Clients to connect securely if the Trust List is empty;

3. Connect to the Server and provide administrator credentials where:

o Toggle a physical switch on the device which enables access for a short period
or

o Provide one-time use password specified via an out-of-band mechanism;

Release 1.04 79 OPC 10000-12: Discovery, Global Services

4. Provide a new Certificate (optional) and Trust List;

5. Set the configuration flag to OFF;

Subsequent updates to Trust Lists or Certificates can be allowed if the Client has a trusted
Certificate and valid administrator credentials.

In some cases, the Application distributor or installer will know the CA used to sign the
Certificate used by the CertificateManager and can add this CA to the Application’s Trust List
during installation. If practical, this approach provides the best protection against accidental
configuration by malicious Clients .

If the device is automatically discovered by the CertificateManager the CertificateManager
needs some way to ensure that the device belongs on the network. The manufacturer can
provide a unique ApplicationInstance Certificate during manufacture and provide the serial
numbers to the device installer. The installer would then register the serial number or Certificate
with the CertificateManager. When the CertificateManager discovers the device it would check
that the Certificate is for one of the pre-authorized devices and continue with automatic
provisioning of the device.

G.3 Setting Permissions

If a Private Key is stored on a regular file system it shall be protected from unauthorized access.
This is best done by setting operating system permissions on the private key file that deny
read/write access to anyone who is not using an account authorized to run the Application.

In some cases, additional protection can be added by protecting the Private Key with a
password. Saving Private Key passwords in files should be avoided. This mode may also work
in conjunction with “smart cards” that use hardware to protect the Private Key.

In addition to the Private Key, Applications shall be protected from unauthorized updates to
their Trust List. This can also be done by setting operating system permissions on the directory
where the Trust List is stored that deny write access to anyone who is not using an account
authorized to administer the Application.

Finally, Applications may depend on one or more configuration files and/or databases which tell
them where there Trust List and Private Key can be found. The source of any security related
configuration information shall be protected from unauthorized updates. The exact mechanism
used to implement these protections depends on the source of the information.

OPC 10000-12: Discovery, Global Services 80 Release 1.04

Annex H
(informative)

Comparison with RFC 7030

H.1 Overview

RFC 7030 (Enrolment over Secure Transport or EST) defines a mechanism for the distribution
of Certificates to devices. This appendix summarizes the capabilities provided by EST and how
the same capabilities are provided by the CertificateManager defined in Clause 7.

H.2 Obtaining CA Certificates

In EST a web operation returns the CA certificates. In OPC UA the CA Certificates are returned
when the CertificateManager client reads the Trust List assigned to the application from the
CertificateManager. Prior to these operations the Client should verify that the server is
authorized to provide CAs. Table 75 compares how EST clients verify the EST server with how
CertificateManager clients verify a CertificateManager.

Table 75 – Verifying that a Server is allowed to Provide Certificates

EST OPC UA

Compare the URL for the EST server with the HTTPS
certificate returned in the TLS handshake.

Compare the URL for the CertificateManager with the
OPC UA Certificate returned in GetEndpoints.

Preconfigure the client to trust the EST Server’s
HTTPS certificate.

Preconfigure the client by adding the
CertificateManager Certificate to the client Trust List.

Manual approval of the CA Certificate after comparing
the certificate with out of band information.

Manual approval of the CertificateManager Certificate
after comparing the Certificate with out of band
information.

Pre-shared credentials for use with certificate-less
TLS.

No equivalent.

H.3 Initial Enrolment

In EST a web operation is used to enrol a client. The EST server authenticates and authorizes
the EST client before allowing the operation to proceed. In OPC UA, a Method is used to request
a Certificate. The CertificateManager also authenticates and authorizes the client before
allowing the operation to proceed. Table 76 compares how EST servers verify the EST client
with how a CertificateManager verifies a CertificateManager client.

Table 76 – Verifying that a Client is allowed to request Certificates

EST OPC UA

TLS with a client certificate which is previously issued
by the EST server.

The CertificateManager client has a previously
certificate previously issued by the GDS.

TLS with a previously installed certificate which is
trusted by the EST server.

The CertificateManager client has a certificate which
is trusted by the CertificateManager.

Shared credentials distributed out of band which are
used for certificate-less TLS.

No equivalent.

HTTPS username/password authentication. The CertificateManager client provides appropriate
user credentials when it establishes the session.

H.4 Client Certificate Reissuance

In EST a certificate issued by the EST server can be used to as an HTTPS client certificate.
This can be used to authorize the re-issue of the certificate. In OPC UA a certificate issued by

Release 1.04 81 OPC 10000-12: Discovery, Global Services

the GDS can be used to establish a secure channel. This would then allow the GDS client to
request that the certificate be re-issued.

In both EST and OPC UA clients can fall back to the authentication mechanisms used for Initial
Enrolment if it is not possible to use the current certificate to establish a secu re channel with
the server.

H.5 Server Key Generation

Both EST and OPC UA allow clients to request new private keys. Both specifications require
that encryption be used when returning private key data.

EST allows clients to explicitly request that separate encryption be applied to the private key.
The algorithms are specified in the CSR (certificate signing request).

OPC UA allows clients to password protect the key (which uses encryption), however, OPC UA
does not allow the client to directly specify the algorithm used. That said, the envelope used to
transport private keys can be specified with the PrivateKeyFormat parameter and the set of
envelope formats supported by the CertificateManager is published in the Address Space. It is
expected that the envelope format will specify the algorithms used either by explicitly encoding
the algorithm within the envelope or as part of the definition of the envelope.

H.6 Certificate Signing Request (CSR) Attributes Request

EST allows the client to request the list of CSR att ributes the EST server supports. The
attributes can indicate what additional metadata the client can provide or the algorithms that
will be used.

In OPC UA the CSR metadata required is fixed by the specification and there is no mechanism
to publish extensions. Clients are free to include additional metadata in the CSR, however, the
CertificateManager may ignore it.

There is no mechanism in OPC UA to publish the algorithms which need to be used for the
CSR, however, the CertificateManager will reject CSRs that do not meet its requirements.

	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions, and conventions
	3.1 Terms and definitions
	3.2 Abbreviations and symbols
	3.3 Conventions for Namespaces

	4 The Discovery Process
	4.1 Overview
	4.2 Registration and Announcement of Applications
	4.2.1 Overview
	4.2.2 Hosts with a LocalDiscoveryServer
	4.2.3 Hosts without a LocalDiscoveryServer

	4.3 The Discovery Process for Clients to Find Servers
	4.3.1 Overview
	4.3.2 Security
	4.3.3 Simple Discovery with a DiscoveryUrl
	4.3.4 Local Discovery
	4.3.5 MulticastSubnet Discovery
	4.3.6 Global Discovery
	4.3.7 Combined Discovery Process for Clients

	5 Local Discovery Server
	5.1 Overview
	5.2 Security Considerations for Multicast DNS

	6 Global Discovery Server
	6.1 Overview
	6.2 Network Architectures
	6.2.1 Overview
	6.2.2 Single MulticastSubnet
	6.2.3 Multiple MulticastSubnet
	6.2.4 No MulticastSubnet
	6.2.5 Domain Names and MulticastSubnets

	6.3 Information Model
	6.3.1 Overview
	6.3.2 Directory
	6.3.3 DirectoryType
	6.3.4 FindApplications
	6.3.5 ApplicationRecordDataType
	6.3.6 RegisterApplication
	6.3.7 UpdateApplication
	6.3.8 UnregisterApplication
	6.3.9 GetApplication
	6.3.10 QueryApplications
	6.3.11 QueryServers (depreciated)
	6.3.12 ApplicationRegistrationChangedAuditEventType

	7 Certificate Management Overview
	7.1 Overview
	7.2 Pull Management
	7.3 Push Management
	7.4 Provisioning
	7.5 Common Information Model
	7.5.1 Overview
	7.5.2 TrustListType
	7.5.3 OpenWithMasks
	7.5.4 CloseAndUpdate
	7.5.5 AddCertificate
	7.5.6 RemoveCertificate
	7.5.7 TrustListDataType
	7.5.8 TrustListMasks
	7.5.9 TrustListOutOfDateAlarmType
	7.5.10 CertificateGroupType
	7.5.11 CertificateType
	7.5.12 ApplicationCertificateType
	7.5.13 HttpsCertificateType
	7.5.14 UserCredentialCertificateType
	7.5.15 RsaMinApplicationCertificateType
	7.5.16 RsaSha256ApplicationCertificateType
	7.5.17 CertificateGroupFolderType
	7.5.18 TrustListUpdatedAuditEventType

	7.6 Information Model for Pull Certificate Management
	7.6.1 Overview
	7.6.2 CertificateDirectoryType
	7.6.3 StartSigningRequest
	7.6.4 StartNewKeyPairRequest
	7.6.5 FinishRequest
	7.6.6 GetCertificateGroups
	7.6.7 GetTrustList
	7.6.8 GetCertificateStatus
	7.6.9 CertificateRequestedAuditEventType
	7.6.10 CertificateDeliveredAuditEventType

	7.7 Information Model for Push Certificate Management
	7.7.1 Overview
	7.7.2 ServerConfiguration
	7.7.3 ServerConfigurationType
	7.7.4 UpdateCertificate
	7.7.5 ApplyChanges
	7.7.6 CreateSigningRequest
	7.7.7 GetRejectedList
	7.7.8 CertificateUpdatedAuditEventType

	8 KeyCredential Management
	8.1 Overview
	8.2 Pull Management
	8.3 Push Management
	8.4 Information Model for Pull Management
	8.4.1 Overview
	8.4.2 KeyCredentialManagement
	8.4.3 KeyCredentialServiceType
	8.4.4 StartRequest
	8.4.5 FinishRequest
	8.4.6 Revoke
	8.4.7 KeyCredentialAuditEventType
	8.4.8 KeyCredentialRequestedAuditEventType
	8.4.9 KeyCredentialDeliveredAuditEventType
	8.4.10 KeyCredentialRevokedAuditEventType

	8.5 Information Model for Push Management
	8.5.1 KeyCredentialConfiguration
	8.5.2 KeyCredentialConfigurationType
	8.5.3 UpdateCredential
	8.5.4 DeleteCredential
	8.5.5 KeyCredentialUpdatedAuditEventType
	8.5.6 KeyCredentialDeletedAuditEventType

	9 Authorization Services
	9.1 Overview
	9.2 Implicit
	9.3 Explicit
	9.4 Chained
	9.5 Information Model for Requesting Access Tokens
	9.5.1 Overview
	9.5.2 AuthorizationServices
	9.5.3 AuthorizationServiceType
	9.5.4 RequestAccessToken
	9.5.5 GetServiceDescription
	9.5.6 AccessTokenIssuedAuditEventType

	9.6 Information Model for Configuring Servers
	9.6.1 Overview
	9.6.2 AuthorizationServices
	9.6.3 AuthorizationServiceConfigurationType

	Annex A (informative) Deployment and Configuration
	A.1 Firewalls and Discovery
	A.2 Resolving References to Remote Servers

	Annex B (normative) Constants
	B.1 Numeric Node Ids

	Annex C (normative) OPC UA Mapping to mDNS
	C.1 DNS Server (SRV) Record Syntax
	C.2 DNS Text (TXT) Record Syntax
	C.3 DiscoveryUrl Mapping

	Annex D (normative) Server Capability Identifiers
	Annex E (normative) DirectoryServices
	E.1 Global Discovery via Other Directory Services
	E.2 UDDI
	E.3 LDAP

	Annex F (normative) Local Discovery Server
	F.1 Certificate Store Directory Layout
	F.2 Installation Directories on Windows

	Annex G (normative) Application Installation Process
	G.1 Provisioning with Pull Management
	G.2 Provisioning with the Push Management
	G.3 Setting Permissions

	Annex H (informative) Comparison with RFC 7030
	H.1 Overview
	H.2 Obtaining CA Certificates
	H.3 Initial Enrolment
	H.4 Client Certificate Reissuance
	H.5 Server Key Generation
	H.6 Certificate Signing Request (CSR) Attributes Request

