FOUNDATION

OPC 10000-14

OPC Unified Architecture
Part 14: PubSub

Release 1.04
2018-02-06

uoneosyioads vN 9dO

Specification
Type:

Document
Number

Title:

Version:

Author:

Industry Standard
Specification

OPC 10000-14

OPC Unified
Architecture

Part 14 :PubSub

Release 1.04

OPC Foundation

Comments:

Date:

Software:
Source:

Status:

2018-02-06

MS-Word

OPC 10000-14 - UA Specification
Part 14 - PubSub 1.04.docx

Release

OPC 10000-14: PubSub ii Release 1.04

CONTENTS

F GU R E S ..o i e e et iv
T A B LE S <o %
1 ST o] o T PP 1
2 N Lo] 3= LAY T = =T = Lo F 1
3 Terms, definitions and CONVENTIONSiiiiiii e e e eas 2
3.1 Terms and definitioNS 2
3.2 Abbreviations and SYmMbOIS ... 3

O © 1LY YT PP 3
4.1 Fields of appliCatioN ..o 3
4.2 PN 015 = e 0] T = V7= £ 4
4.3 Decoupling by use of MiddleWare ... 4
4.4 SYNErgy Of MOAEIS. ... e 5

5 U] o 11U] o I @ g o =1 o £ 6
5.1 T} (oo [UTo 1T] o HPU PP 6
5.2 (D= U= 0] = PP 7
521 GBI Al it 7
522 DaAtA S Bt aS S . v ittt e 8
523 DataSetMeEtaD ata. . .ot 8

5.3 MBS S g S ..t 9
5.3.1 LT = 1= = | 9
53.2 DataSetMessage field . ..o 9
533 DAt S EtM S S AT ... et 10
534 NETWOIKIMESSATE ... initiit i eas 10
5.3.5 MESSAGE SECUIITY Luiiitiiti ettt e s 10
536 TrANSPOIT SECUIITY ...ttt e e eaeeeas 11
5.3.7 =Tl U1 21471 C Lo U] o PP UPT PR PPTPPTRN 11

5.4] = PP 11
541 PUDB SN .. . 11
54.2 SUD S I DT it 14
543 SECUNLY KBY SBIVICE e 15
544 Message Oriented MiddIEWAre ..o 18

6 PubSub Communication Parametersc.oiiiiiii e 22
6.1 (O XYY VT PSPPSR 22
6.2 Common Configuration Parameters 23
6.2.1 PubSubState State MacChine........cccoiiiiiii e 23
6.2.2 PublishedDataSet Parameterscciiiiiiiiiiiiii e 24
6.2.3 DataSetWriter Parameters .o 30
6.2.4 Shared PUbSUDGroup Parametersooooiiiiiiiiiii e 34
6.2.5 WIItErGroUP ParamMEeIS .. .uuiee ittt 35
6.2.6 PubSubConnection Parametersc.coiiiiiiiii i 37
6.2.7 ReaderGroup Parameters ...t 39
6.2.8 DataSetReader Parameterso..iuii i 40
6.2.9 SubscribedDataSet Parameterscccoviiiiiii e 43

6.2.10 Information flow and status handlingccooeiiiiiii 45

Release 1.04 iii OPC 10000-14: PubSub

6.2.11 PubSubConfigurationDataTyYPe ..o 46
6.3 Message Mapping Configuration Parameters...........ovv i 47
6.3.1 UADP MeSSAQe MaAPPING ovuiiiiiiieiieiieie ettt e e 47
6.3.2 JSON MESSAGE MAPPING .. eetiiitiitieiie et e e e e 54
6.4 Transport Protocol Mapping Configuration Parameters.........cc.ccoovoviiiiiiiiniineineenenn. 56
6.4.1 Datagram Transport ProtOCO!cuuiiiuiiiiiiiee e 56
6.4.2 Broker Transport ProtoColvuii e 57
T PUDSUD MaPPINGgS et 62
7.1 LT = = | 62
7.2 Y eTSEST o TR =1 o] o1 o 1< 62
7.2.1 (T 1= - | PP 62
7.2.2 UADP MeSSAJE MaAPPING ovuiiiiiiiiiiieii ettt e s 62
723 JSON MESSAGE MAPPING .. etiiiiiititi ittt e e eanes 76
7.3 Transport ProtoCOl MapPingsS ... e iiuiiiieitie e e e et e 79
7.3.1 GBNEBIAL e e 79
7.3.2 OP C UA UD PP e e 79
7.3.3 OPC UA B NBINeE e 80
7.3.4 A P Lt e 80
7.3.5 V[0 X OO TR URPURTTURRRTT 85
8 PubSub Security Key Service MOdelcouiiiiii e 87
8.1 @1 =T V1= TP 87
8.2 PUbliShSUDSCIIDE ODJECT ...uiiiei e 87
8.3 PUD SUDKEY S EIVICETYPE ..ttt 88
8.4 GetSecUrityKeys Methodo e 88
8.5 GetSecurityGroup Methodcouiiii 90
8.6 ST Yot UYL €T o TUT oI 15/ o 1= 90
8.7 SECUItYGIOUPF Ol O Ty PO it 91
8.8 AddSecurityGroup Method. 91
8.9 RemoveSecurityGroup Method ... 92
9 PubSub Configuration MOlc..iii e 93
9.1 Common Configuration MoOdel 93
9.1.1 (T 1= - | 93
9.1.2 Configuration Behaviours ... 95
9.1.3 Types for the PublishSubscribe Object..........coiiiiiiii e, 96
9.1.4 Published DataSet MOdelooeniiiiii e 100
9.1.5 (@07 o T= o3 10T 0 1, Vo T = 113
9.1.6 GrOUP MO ..o e e 116
9.1.7 DataSetWriter MOloouii e 122
9.1.8 DataSetReader MOoiuiiiii e 124
9.1.9 Subscribed DataSet MOdel..... ..o 128
9.1.10 PUbSUD Status ObDJECT ...t 130
9.1.11 PubSub DiagnostiCS ODJECES ...c.uuiieiiiiiiiee e 131
9.1.12 PUDSUD Status EVENTS ..iviiiiiiie e e e ees 138
9.2 Message Mapping Configuration Modelcooviiiiiiiiii 139
9.2.1 UADP MeSSage MaAPPING ovuietiitiiitietieet e 139
9.2.2 JSON MESSAGE MaAPPING . .etiiitiitieitie e e ettt e eaes 141
9.3 Transport Protocol Mapping Configuration Model ..o 142
9.3.1 Datagram Transport ProtoCol Mappingoceuvveriiiiiiiiiiiiieece e 142

9.3.2 Broker Transport Protocol Mappingoceuvveeiieniieiiiii e 143

OPC 10000-14: PubSub iv Release 1.04

Annex A (NOrmative) COMMON TYPES 1uuiuiiiiiiei ettt e e e e et e e e e e e e aenns 146
Al DataType Schema Header SIrUCIUIESccuiiuiiiiiii e 146
A.l.1 DataTypeSchemaHEaAdEriueiiii e 146
A.1.2 DataTYPEDESCIIPLION ...ttt 146
A.1.3 StrUCTUIEDESCIIPIION vt e ea e 147
A.l1.4 ENUMDESCIIPIION ..ottt 147
A.1.5 SIMPIETYPEDESCIIPLION e e 147

A.2 UABINAIYFIEDataT Y PO . .iviiii et e e e e e enaees 148
A.3 NetwWOrkKAdAress MOdel. e 148
A.3.1 NEtWOIKAAArES S TY PO ottt ittt e e e e e enaees 148
A.3.2 NetWOrKAAAreSSU T Y P e . e 149
Annex B (informative) Client Server vs. Publish Subscribeccocoi 150
B.1 L@ N =T VT L P 150
B.2 Client Server SUDSCIIPLIONS ..o e 150
B.3 PUDBIISN-SUDSCIIDE ..o 151
B.4 Synergy Of MOAEIS.o 152

FIGURES

Figure 1 — Publish Subscribe Model OVErVIEWc.oiiiiiiii e 4
Figure 2 — Publisher and Subscriber entities ... 6
Figure 3 — DataSet in the process of publisShing.........cooooiii 7
Figure 4 — OPC UA PUDSUD MESSAQE LaYerS . .cuiuiiiiiiiii et e e e e e e 9
Figure 5 — PUDliSher details. ... e 12
Figure 6 — Publisher message sending SEQUENCEoouuiiiuiiitiiiiiii e 13
Figure 7 — SUDSCrIber detailS. ... 14
Figure 8 — Subscriber message reception SEQUENCEciuiiiiiiii i 15
Figure 9 — SecurityGroup Management SEQUENCE ..ottt e e e e eee e ae e aaeaaenas 16
Figure 10 — Handshake used to pull keys from SKSo, 17
Figure 11 — Handshake used to push keys to Publishers and Subscribersc...ccoooe. 17
Figure 12 — Handshake with a Security Key ServiCeccooviiiiiiiiiii e 18
Figure 13 — PubSub using network infraStruCtureoooiiiiiii e 19
Figure 14 — UDP MUILICAST OVEIVIEWiitiiitiit it 19
Figure 15 — PUDSUD USING DIOKET ...oeii e e 20
FiQUuIe 16 — BrOKEIr OVEIVIEW ..uiiiiii ittt e et et et et e e e eneenas 21
Figure 17 — PUbSUD COmMPONENt OVEIVIEBW ...c.uuiitiiiiii e 22
Figure 18 — PubSub Mapping Specific Parameters OVerVIiEeWcovuvieiiiiiiiiiiii e, 23
Figure 19 — PubSub Component State DependencCiescoiiiiiiiiiiii e 24
Figure 20 — PubSubState State Machine ... 24
Figure 21 — PubSub Information Flow dependency to field representationccooceenee. 32
Figure 22 — PUbSub Information FIOW 45
Figure 23 — Start of the periodic publisher execution ... 47
Figure 24 — Timing offsets in a PublishingInterval ... 48
Figure 25 — DataSetOrdering and MaxNetworkMessageSizeoccovviviiiiiiiii i, 49

Figure 26 — PublishingOffset options for multiple NetworkMessagescccocevveiviiiiiniennnn. 51

Release 1.04 v OPC 10000-14: PubSub

Figure 27 — UADP NetWOIrKMES S0 . ..u it it iitiitiiee et e e e e e e e e e e et e e e e eneens 63
Figure 28 — UADP DataSet PaylOadccuiiuiiiiiiiiiie et 68
Figure 29 — DataSetMessage Header SIrUCIUIEc.uiveeiiiiiiii i 69
Figure 30 — Data Key Frame DataSetMessage Data.........coocovvviiiiiiiiiei e eas 71
Figure 31 — Data Delta Frame DataSetMeSSaA0Ecuuiiuiiiii i eas 72
Figure 32 — EVENt DataSetMESSAQEuiiuiiitiiii ittt 73
Figure 33 — KEEPAIVE MESSAGE .. ceuiiit ittt et eeas 74
Figure 34 — PublishSubscribe Object TYpes OVEIVIEWvvviiiiiiiiici e eas 87
Figure 35 — PubSub Configuration Model OVErVIEWcooiiiiiiiiii e 93
Figure 36 — PUDSUD EXample ODJECTS . ..uuiitiieiiiie e 94
Figure 37 — PUbSUb INfOrmation FIOW..........iieuiiiii e 94
Figure 38 — PublishSubscribe Object Types OVeIrVIEWc.viiiiiiiiiciii e 96
Figure 39 — Published DataSet OVEeIVIEWcc.iuiiiiiiiiie i ee e e 100
Figure 40 — PUubSubConnectionTyPe OVEIVIEW ... ccuuiiuiiiieiieiieie e 114
Figure 41 — PUDSUDGIOUPTYPE OVEIVIEW ..cuuiiiiiiiiiiei ettt 117
Figure 42 — DataSet Writer MOdel OVEIVIEWiuiiiiiiiii i 123
Figure 43 — DataSet Reader Model OVEIVIEWcuiiiiiiiiie i eae e 125
Figure 44 — PUbDSUD DiagnoStiCS OVEIVIEWcuuiiiiiiiiiei et 132
Figure 45 — PubSubDiagnostiCSCOUNIEITYPE ..ttt 132
Figure B.46 — Subscriptions in OPC UA Client Server Modelcoocoiiiiiiiiiiiiicnceeee, 151
Figure B.47 — Publish Subscribe Model OVEeIrVIEW........coviiiiiii e 152
TABLES
Table 1 — PUDSUDSEAtE ValUBS 23
Table 2 — PubSubState State MaChine ... 24
Table 3 — DataSetMetaDataType StrUCTUIE . ..co.iitiiiiii e 25
Table 4 — DataSetMetaDataType Definitioncccoooiii e, 25
Table 5 — FieldMetaData StrUCTUIEcouiiiiiiiei e 25
Table 6 — DataSetFieldFlags ValUues... ... 26
Table 7 — DataSetFieldFlags Definitiono 27
Table 8 — ConfigurationVersionDataType SIrUCIUIEc.iiniiiiii e 27
Table 9 — PublishedDataSetDataType StrUCIUIE ..ot 28
Table 10 — PublishedDataSetSourceDataType Definition.........coooiiiiiiiniii e, 28
Table 11 — PublishedVariableDataType StrUCTUIEcvuiiiiiiiieii e 29
Table 12 — PublishedDataltemsDataType StrUCTUIE........ccuiiuiitiiiiiiie e 29
Table 13 — PublishedEventsDataType StrUCIUIEcuuieeii e 30
Table 14 — DataSetFieldContentMask ValUes ..o 31
Table 15 — DataSetFieldContentMask Definitioncoooiiiiiiiiii e, 31
Table 16 — DataSetMessage field representation OptionNscoooviiiiiiiiii e 32
Table 17 — DataSetWriterDataType SIIUCTUIE ... cuiuie e 33
Table 18 — DataSetWriterTransportDataType Definition........c.coovviiiiniini e, 33

Table 19 — DataSetWriterMessageDataType SIrUCIUIEooviiiiiiiiiii e 33

OPC 10000-14: PubSub Vi Release 1.04

Table 20 — PubSubGroupDataType StrUCTUIEvvii i e 35
Table 21 — PubSubGroupDataType Definition ..o 35
Table 22 — WriterGroupDataTyPe StrUCTUIEc.uiit it 36
Table 23 — WriterGroupDataType Definitioncocoviiii i 36
Table 24 — WriterGroupTransportDataType Definitioncoocoiiiiiiici e 37
Table 25 — WriterGroupMessageDataType StrUCTUIEco.iieiiiiiiieiiei e 37
Table 26 — PubSubConnectionDataType StrUCIUIEc..viviiiiiiiiie e 38
Table 27 — ConnectionTransportDataType Definitioncoocoiiiiiiii e 38
Table 28 — NetworkAddressDataType StrUCTUIEccuieniiii i e 38
Table 29 — NetworkAddressDataType Definitioncoooiiiiiiii e 39
Table 30 — NetworkAddressUrIDataType SIIUCIUIE ... couuiiiiiiiiieie e 39
Table 31 — NetworkAddressUrIDataType Definitioncoooiiiiiiiii e, 39
Table 32 — ReaderGroupDataType SIrUCIUIEeuieiie i e e 39
Table 33 — ReaderGroupDataType Definitioncoviiiiiiiiiii e 40
Table 34 — ReaderGroupTransportDataType Definitionc.cooviiiiiiiniiniin e, 40
Table 35 — ReaderGroupMessageDataType StrUCIUIec.oviiiiiiiiiie e 40
Table 36 — DataSetReaderDataType SIrUCIUIEc.iveiiii i 42
Table 37 — DataSetReaderTransportDataType StrUCLUIEcouiiiiiiiiiiiieiieiee e 42
Table 38 — DataSetReaderTransportDataType Definition.........cc.ccovviiiiiiiiicien, 42
Table 39 — DataSetReaderMessageDataType StruCIUreccvvviiiiiiiiiiiei e 42
Table 40 — DataSetReaderMessageDataType Definition...........c.cooceeiiiiiii e, 43
Table 41 — SubscribedDataSetDataType SrUCTUIEcc.iiviiiiiii e 43
Table 42 — SubscribedDataSetDataType Definitionccooiiiiiiiinii e 43
Table 43 — TargetVariablesDataType StrUCLUIecc.iveiiiii e 43
Table 44 — FieldTargetDataType SIrUCIUIEiuiiii i 44
Table 45 — OverrideValueHandling ValUues ... 44
Table 46 — SubscribedDataSetMirrorDataType SIrUCIUIEovvuiiiiiii e 45
Table 47 — Source to message iNPUL MaPPING «..euiuiiiiiei e aeae e 46
Table 48 — Message output to target MapPinNgocuveiii e 46
Table 49 — PubSubConfigurationDataType SIrUCIUIEcouuiiiiiiiiiie e 46
Table 50 — PubSubConfiguration File Contentccoiviiiiii e 47
Table 51 — DataSetOrderingTYPe ValUBSc.iiiiiiiii e 48
Table 52 — UadpNetworkMessageContentMask Valuesc.cooviiiiiiiic i, 50
Table 53 — UadpNetworkMessageContentMask Definitionccocovviiiiiiiciinneeee 50
Table 54 — UadpWriterGroupMessageDataType StrUCIUIecc.vviiiiiiiiniiiiie e 51
Table 55 — UadpDataSetMessageContentMask Valuesccooiiiiiiiiiiiiiieee 52
Table 56 — UadpDataSetMessageContentMask Definition ..o, 52
Table 57 — UadpDataSetWriterMessageDataType StruCtUrecooevviiiiiniiineiineinecneeeeenen 53
Table 58 — UadpDataSetReaderMessageDataType StruCtureccovevieiiiiiineiineiineineceenne, 54
Table 59 — JsonNetworkMessageContentMask Valuescooviiiiiiiiiiiieeeee 54
Table 60 — JsonNetworkMessageContentMask Definition ..o, 55
Table 61 — JsonWriterGroupMessageDataType StrUCIUIeccviiiiiiiiiiiiiiiie e 55

Table 62 — JsonDataSetMessageContentMask Valuescoovviiiiiiiii i 55

Release 1.04 Vii OPC 10000-14: PubSub

Table 63 — JsonDataSetMessageContentMask Definitionccocovvieiii i, 55
Table 64 — JsonDataSetWriterMessageDataType StruCtUreccoveivieiiiiiiiiineiieieeeeeeene 56
Table 65 — JsonDataSetReaderMessageDataType StrUCIUIecoevviiiiiiiiiiiiiiiieeeeeeene 56
Table 66 — DatagramConnectionTransportDataType StruCturecooeveeiiiiiiiiiiiiiiciee e 56
Table 67 — DatagramWriterGroupTransportDataType StruCtureccceeeeviiiiiiiiiiiieieeeeeen 57
Table 68 — BrokerConnectionTransportDataType StruCtUrecoooeiiiiiiiieiiieiiiceceeeeene 58
Table 69 — BrokerTransportQualityOfService Values ..o 58
Table 70 — BrokerWriterGroupTransportDataType StruCtUre........coovveiieiiiiiiiiiiicineee e 59
Table 71 — BrokerDataSetWriterTransportDataType StruCtureccoeeeeveviiiiiiiiiiiiiiieeeeeen, 60
Table 72 — BrokerDataSetReaderTransportDataType StruCturec.ccvevvieiieineiineineeeennen 61
Table 73 — UADP NetWOIrKMESSAGE ... ittt ettt ettt 64
Table 74 — Layout of the key data for UADP message SeCUrtYcccvveeviiiiiiiiiiiieiieieienean, 66
Table 75 — Layout of the MessageNonce for AES-CTR......ccciiiiiiiiii e, 66
Table 76 — Layout of the counter block for UADP message SECUTtYccovvvvieiineiineiineinneennn. 67
Table 77 — Chunked NetworkMessage Payload Header..........ccoooiiiiiiniiiniiiie e 67
Table 78 — Chunked NetworkMessage Payload Fields............c.cooviiiiiiiiie, 67
Table 79 — UADP DataSet Payload Headercccvviiiiiiii e 68
Table 80 — UADP DataSet Payloadcc.ooiiiiiiii e 68
Table 81 — DataSetMessage Header StrUCIUIEi.vieiie i e 70
Table 82 — Data Key Frame DataSetMessage StruCtUIecvviieiiiiii e 71
Table 83 — Data Delta Frame DataSetMessage StruCturecocoveeeiiiiiiiiiiiiieee e, 72
Table 84 — Event DataSetMesSage STtrUCTUIE ...t 73
Table 85 — Discovery Request Header STtrUCIUIeoveiiiiiiiii e 75
Table 86 — Publisher Information Request Message StruCture............coooviviviiiiiiiieiiiieeeneen, 75
Table 87 — Discovery Response Header StrUCtUIe.........ouiiiiiiiiii e 75
Table 88 — Publisher ENdpoints MesSSage StrUCtUIecouiieiiiiiiiie e 76
Table 89 — DataSetMetaData MeSSage STrUCTUIEiiuiiiiiiiiieii e 76
Table 90 — DataSetWriter Configuration Message StruCtureccoovveeiiiiiiiiiiiieee e, 76
Table 91 — JSON NetworkMessage Definition ..., 77
Table 92 — JSON DataSetMessage Definitiono 78
Table 93 — JSON DataSetMetaData Definition.........ccoooviiiiiiiiii e 79
Table 94 — UADP message transported over UDP ... 79
Table 95 — UADP message transported over Ethernet...............ccoiii e, 80
Table 96 — AMQP Standard Header Fields ..o, 82
Table 97 - OPC UA AMQP Standard Header QualifiedName Name mappingscc.ccoeeeene. 83
Table 98 — OPC UA AMQP Header Field Conversion RUIEScccooiiiiiiiiiiiiiie, 84
Table 99 — PublishSubscribe Object Definition ..o 88
Table 100 — PubSubKeyServiceType Definitionoooiiiiiiii e 88
Table 101 — SecurityGroupType Definition ... 90
Table 102 — SecurityGroupFolderType Definition.........coooiiiiiiiiii e 91
Table 103 — PublishSubscribeType Definition oo 96
Table 104 — HasPubSubConnection ReferenCeType. . coi i 99

Table 105 — PublishedDataSetType Definitionc..viiiiii e 101

OPC 10000-14: PubSub viii Release 1.04

Table 106 — ExtensionFieldsType Definitionc.viiiii e 102
Table 107 — Well-Known Extension Field Namesoooiiiiiiiiii e 102
Table 108 — DataSetToWTriter RefEreNCEeTYPE ...ttt 103
Table 109 — PublishedDataltemsType Definition...........cooooiiiiiiiiii e 104
Table 110 — PublishedEventsType Definitiono 106
Table 111 — DataSetFolderType Definitionc.oiiiiiiiiii e 108
Table 112 — PubSubConnectionType Definition...........cooviiiiiii 114
Table 113 — ConnectionTransportType Definitioncocooiiiiiii e 116
Table 114 — PubSubGroupType Definition......ccoeiii e 117
Table 115 — WriterGroupType Definitiono 118
Table 116 — HasDataSetWriter ReferenCeTYPe ...t 120
Table 117 — WriterGroupTransportType Definition ... 120
Table 118 — WriterGroupMessageType Definition ..o 120
Table 119 — ReaderGroupType Definitiono 120
Table 120 — HasDataSetReader ReferenCeTYPEe ..ot 122
Table 121 — ReaderGroupTransportType Definition..........cooiiiiiiiiii e 122
Table 122 — ReaderGroupMessageType Definition ..o 122
Table 123 — DataSetWriterType Definitionccoooiiiiii e 123
Table 124 — DataSetWriterTransportType Definitionocooviiiiiiiii e, 124
Table 125 — DataSetWriterMessageType Definitioncocooiiiiii i 124
Table 126 — DataSetReaderType Definition........ccooiiiiiiii e 125
Table 127 — DataSetReaderTransportType Definitioncoooviiiiiiiii e, 126
Table 128 — DataSetReaderMessageType Definitioncocoviiiiiiiiii i, 126
Table 129 — SubscribedDataSetType Definitioncoooiiiiiiii e 128
Table 130 — TargetVariablesType Definition ..o 128
Table 131 — SubscribedDataSetMirrorType Definitioncooviiiiiiii 130
Table 132 — PubSubStatusType Definition.o 130
Table 133 — Status Object Definition ... 131
Table 134 — PUbSUBDIagNOStiCS TYPE 1ot e e 132
Table 135 — Counters for PUbSubDIiagnOStiCSTYPEuiiuiiiiiiiii e 133
Table 136 — DiagnoStiCSLEVElI VAIUESiuiiiie e 134
Table 137 — PubSubDiagnostiCSCOUNIEITYPE ..u.viii it e e e 134
Table 138 — PubSubDiagnosticsCounterClassification Valuesccocoiiiiiiiiicnennns 135
Table 139 — PubSubDiagnoStiCSROOITYPE . ccuuiiiiitiii e 135
Table 140 — LiveValues for PubSubDiagnostiCSROOtTYPEvvuiiiiiiiiiiiiii e 135
Table 141 — PubSubDiagnosticSCONNECHONTYPE .. cuiuiiiit i 135
Table 142 — LiveValues for PubSubDiagnosticsConnectionTypeccocoviiiiiiiiiniiiiiiiennennns 136
Table 143 — PubSubDiagnostiCSWIiterGroUPTYPE . ccuuiet it 136
Table 144 — Counters for PubSubDiagnosticSWriterGroupTYPevevveniiiniiiiiiiei e, 136
Table 145 — LiveValues for PubSubDiagnosticSWriterGroupTYPe ..cc.veevieiiiiiiiiiiiieieeeeeennes 136
Table 146 — PubSubDiagnosticSReaderGroUPTYPE ..c.oeuieiiiiiiieeee e 136
Table 147 — Counters for PubSubDiagnosticSReaderGroupTyPec.vvevvieiiiiiiiiii e, 137

Table 148 — LiveValues for PubSubDiagnosticSReaderGroupTypec.cvvevvienviiniiinniinninnnnn. 137

Release 1.04 iX OPC 10000-14: PubSub

Table 149 — PubSubDiagnosticsDataSetWriterTYPe ...ovvivviiiiiiiiiei e eeas 137
Table 150 — Counters for PubSubDiagnosticsDataSetWriterTypeccovveviiiiiiiiiiiniiicee, 137
Table 151 — LiveValues for PubSubDiagnosticsDataSetWriterTypecccoevvveiviiiniininnnn. 137
Table 152 — PubSubDiagnosticsDataSetReaderTYPeovvivviiiiiii e eas 138
Table 153 — Counters for PubSubDiagnosticsDataSetReaderTypeccocevviviiviiieiieieennnnnns 138
Table 154 — LiveValues for PubSubDiagnosticsDataSetReaderTypecccoccovvvviiiiiinninnnnn. 138
Table 155 — PubSubStatusEventType Definitiono 138
Table 156 — PubSubTransportLimitsExceedEventType Definitioncocoviiiiiinnnnns 139
Table 157 — PubSubCommunicationFailureEventType Definitioncocoviiiiiinnenns 139
Table 158 — UadpWriterGroupMessageType Definition..........occoviiiiiiiiii i 140
Table 159 — UadpDataSetWriterMessageType Definition............ccovviiiiiiiiii e, 140
Table 160 — UadpDataSetReaderMessageType Definition...........cccooviiiiiiiciiiic e 141
Table 161 — JsonWriterGroupMessageType Definitioncccooiiiiiiiiiicieee 141
Table 162 — JsonDataSetWriterMessageType Definition...........coooviiiiiiiii i, 142
Table 163 — JsonDataSetReaderMessageType Definition...........ccovviiiiiiiiiii e, 142
Table 164 — DatagramConnectionTransportType Definitioncocoooiiiiiiiiiiii e 142
Table 165 — DatagramWriterGroupTransportType Definition.............ccooviiiiiiie e 143
Table 166 — BrokerConnectionTransportType Definitionc.c.coviiiiiiiii i, 143
Table 167 — BrokerWriterGroupTransportType Definition............ccooiiiiii i, 143
Table 168 — BrokerDataSetWriterTransportType Definition............ccocoviiiiiiciivieneens 144
Table 169 — Broker Writer Well-Known Extension Field Namescoocoviiiiniiininennennns 144
Table 170 — BrokerDataSetReaderTransportType Definition...........ccoviiiiiiiiii e, 144
Table A.1 — DataTypeSchemaHeader StrUCtUIecooviiiiiiii e 146
Table A.2 — DataTypeSchemaHeader Definition ..o 146
Table A.3 — DataTypeDesCription StrUCIUIEc.iiiiii e 146
Table A.4 — DataTypeDescription Definition ..o 147
Table A.5 — StructureDesCription StrUCTUIEcue i e 147
Table A.6 — StructureDescription Definition ..o 147
Table A.7 — ENUMDESCIIPLION StrUCIUIE ... e e e e 147
Table A.8 — EnumDescription Definitiono 147
Table A.9 — SIMpleTypeDesCription STrUCTUIEoouiie e 148
Table A.10 — UABInaryFileDataType SIrUCIUIEoviriiiiiic e 148
Table A.11 — UABinaryFileDataType Definition..........ccocoiiiiiii e 148
Table A.12 — NetworkAddressType Definitiono 149

Table A.13 — NetworkAddressUrIType Definition ..o 149

OPC 10000-14: PubSub X Release 1.04

OPC FOUNDATION

UNIFIED ARCHITECTURE -

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis and
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2014-2018, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
http://www.opcfoundation.org..

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

Release 1.04 Xi OPC 10000-14: PubSub

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING
The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo

constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata

http://www.opcfoundation.org/errata

OPC 10000-14: PubSub 1 Release 1.04

OPC Unified Architecture Specification

Part 14: PubSub

1 Scope

This specification defines the OPC Unified Architecture (OPC UA) PubSub communication
model. It defines an OPC UA publish subscribe pattern which complements the client server
pattern defined by the Services in OPC 10000-4. See The following documents, in whole or in
part, are normatively referenced in this document and are indispensable for its application. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments and errata) applies.

OPC 10000-1 for an overview of the two models and their distinct uses.

PubSub allows distributing data and events from an OPC UA information source to interested
observers inside a device network as well as in IT and analytics cloud systems.

The specification consists of
e a general introduction of the PubSub concepts,
o a definition of the PubSub configuration parameters,

e mapping of PubSub concepts and configuration parameters to messages and transport
protocols,

e and a PubSub configuration model.

Not all OPC UA Applications will need to implement all defined message and transport protocol
mappings. OPC 10000-7 defines the Profile that dictate which mappings need to be implemented
in order to be compliant with a particular Profile.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts
http://www.opcfoundation.org/UA/Partl1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model
http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model
http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC UA Specification - Part 4: Services
http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model
http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings
http://www.opcfoundation.org/UA/Part6/

Release 1.04 2 OPC 10000-14: PubSub

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles
http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access
http://www.opcfoundation.org/UA/Part8/

OPC 10000-12, OPC Unified Architecture - Part 12: Discovery and Global Services
http://www.opcfoundation.org/UA/Part12/

ISO/IEC 19464:2014: Advanced Message Queuing Protocol (AMQP) v1.0
ISO/IEC 20922:2016: Message Queuing Telemetry Transport (MQTT) v3.1.1

RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format
http://www.ietf.org/rfc/rfc7159.txt

3 Terms, definitions and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in The following documents,
in whole or in part, are normatively referenced in this document and are indispensable for its
application. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments and errata) applies.

OPC 10000-1, OPC 10000-3, and OPC 10000-4, as well as the following apply.

3141
DataSetClass
template declaring the content of a DataSet

Note 1 to entry: A DataSetClass is used to type DataSets for use in several Publishers and for filtering in
Subscribers.

3.1.2

DataSetMetaData

describes the content and semantic of a DataSet

313
DataSetReader
entity receiving DataSetMessages from a Message Oriented Middleware

Note 1 to entry: A DataSetReader is the component that extracts a DataSetMessage from a NetworkMessage
received from the Message Oriented Middleware and decodes the DataSetMessage to a DataSet for further
processing in the Subscriber.

314

DataSetWriter

entity creating DataSetMessages from DataSets and publishing them through a Message
Oriented Middleware

Note 1 to entry: A DataSetWriter encodes a DataSet to a DataSetMessage and includes the DataSetMessage
into a NetworkMessage for publishing through a Message Oriented Middleware.

3.1.5

PublishedDataSet

configuration of application-data to be published as DataSet

Note 1 to entry: A PublishedDataSet can be a list of monitored Variables or an Event selection.

3.1.6
SecurityGroup
grouping of security settings and security keys used to access messages from a Publisher

Note 1 to entry: A SecurityGroup is an abstraction that represents the security settings and security keys that can
be used to access messages from a Publisher. A SecurityGroup is identified with a unique identifier called the
SecurityGroupld. The SecurityGroupld is unique within the Security Key Service.

http://www.ietf.org/rfc/rfc7159.txt

OPC 10000-14: PubSub 3 Release 1.04

3.1.7

SubscribedDataSet
configuration for dispatching of received DataSets

Note 1 to entry: A SubscribedDataSet can be a mapping of DataSet fields to Variables in the Subscriber
AddressSpace.

3.2

Abbreviations and symbols

AMQP Advanced Message Queuing Protocol

AS
CA
CRL
CTL
HMI
IGMP
MIME
MQTT
MTU
PCP
QoS
SKS
STS
UA
UADP
UDP
URI
URL
VID

Authorization Service

Certificate Authority

Certificate Revocation List
Certificate Trust List

Human Machine Interface

Internet Group Management Protocol
Multipurpose Internet Mail Extensions
MQ Telemetry Transport

Maximum Transmission Unit

Priority Code Point

Quality of Service

Security Key Service

Security Token Service

Unified Architecture

UA Datagram Protocol

User Datagram Protocol

Uniform Resource Identifier

Uniform Resource Locator

VLAN Identifier

4 Overview

4.1

Fields of application

In PubSub the participating OPC UA Applications with their roles as Publishers and Subscribers
are decoupled. The number of Subscribers receiving data from a Publisher does not influence
the Publisher. This makes PubSub suitable for applications where location independence and/or
scalability are required.

The following are some example uses for PubSub:

Configurable peer to peer communication between controllers and between controllers
and HMIs. The peers are not directly connected and do not even need to know about
the existence of each other. The data exchange often requires a fixed time-window; it
may be point-to-point connection or data distribution to many receivers.

Asynchronous workflows. For example, an order processing application can place an
order on a message queue or an enterprise service bus. From there it can be processed
by one or more workers.

Logging to multiple systems. For example, sensors or actuators can write logs to a
monitoring system, an HMI, an archive application for later querying, and so on.

OPC UA Servers representing services or devices can stream data to applications
hosted in the cloud. For example, backend servers, big data analytics for system
optimization and predictive maintenance.

Release 1.04 4 OPC 10000-14: PubSub

4.2 Abstraction layers

PubSub is designed to be flexible and is not bound to a particular messaging system. All
components and activities are first described abstractly in this clause and do not represent a
specification for implementation. The concrete communication parameters are specified in 6.
The concrete transport protocol mappings and message mappings are later specified in 7.

Defined with these abstraction layers, PubSub can be used to transport different types of
information through networks with different characteristics as illustrated with two examples:

e PubSub with UDP transport and binary encoded messages may be well-suited in
production environments for frequent transmission of small amounts of data. It also
allows data exchange in one-to-one and one-to-many configurations.

e The use of established standard messaging protocols (e.g. AMQP or MQTT) with JSON
data encoding supports the cloud integration path and readily allows handling of the
information in modern stream and batch analytics systems.

4.3 Decoupling by use of middleware

In PubSub the participating OPC UA Applications can assume the roles Publisher and
Subscriber. Publishers are the sources of data, while Subscribers consume that data.
Communication in PubSub is message-based. Publishers send messages to a Message
Oriented Middleware, without knowledge of what, if any, Subscribers there may be. Similarly,
Subscribers express interest in specific types of data, and process messages that contain this
data, without knowledge of what Publishers there are.

Message Oriented Middleware is software or hardware infrastructure that supports sending and
receiving messages between distributed systems. The implementation of this distribution
depends on the Message Oriented Middleware.

Figure 1 illustrates that Publishers and Subscribers only interact with the Message Oriented
Middleware which provides the means to forward the data to one or more receivers.

(Publisher) %:(Subscriber)

VINGISWEYI | — (Subscriber)

/ Q %
(Subscriber) \ C Publisher)

Figure 1 — Publish Subscribe Model Overview

To cover a large number of use cases, OPC UA PubSub supports two largely different
Message Oriented Middleware variants. These are:

e A broker-less form, where the Message Oriented Middleware is the network infrastructure
that is able to route datagram-based messages. Subscribers and Publishers use
datagram protocols like UDP.

OPC 10000-14: PubSub 5 Release 1.04

e A broker-based form, where the core component of the Message Oriented Middleware is
a message Broker. Subscribers and Publishers use standard messaging protocols like
AMQP or MQTT to communicate with the Broker. All messages are published to specific
gueues (e.g. topics, nodes) that the Broker exposes and Subscribers can listen to these
gueues. The Broker may translate messages from the formal messaging protocol of the
Publisher to the formal messaging protocol of the Subscriber.

4.4 Synergy of models

PubSub and Client Server are both based on the OPC UA Information Model. PubSub therefore
can easily be integrated into OPC UA Servers and OPC UA Clients. Quite typically, a Publisher
will be an OPC UA Server (the owner of information) and a Subscriber is often an OPC UA
Client. Above all, the PubSub Information Model for configuration (see 6.2.2) promotes the
configuration of Publishers and Subscribers using the OPC UA Client Server model.

Nevertheless, the PubSub communication does not require such a role dependency. l.e., OPC
UA Clients can be Publishers and OPC UA Servers can be Subscribers. In fact, there is no
necessity for Publishers or Subscribers to be either an OPC UA Server or an OPC UA Client to
participate in PubSub communications.

Release 1.04 6 OPC 10000-14: PubSub

5 PubSub Concepts

5.1 Introduction
This clause describes the general OPC UA PubSub concepts.

The DataSet constitutes the payload of messages provided by the Publisher and consumed by
the Subscriber. The DataSet is described in 5.2. The mapping to messages is described in 5.3.
The participating entities like Publisher and Subscriber are described in 5.4.

The abstract communication parameters are described in clause 6.

The mapping of this model to concrete message and transport protocol mappings is defined in
clause 7.

The OPC UA Information Model for PubSub configuration in clause 9 specifies the standard
Objects in an OPC UA AddressSpace used to create, modify and expose an OPC UA PubSub
configuration.

Figure 2 provides an overview of the Publisher and Subscriber entities. It illustrates the flow of
messages from a Publisher to one or more Subscribers. The PubSub communication model
supports many other scenarios; for example, a Publisher may send a DataSet to multiple
Message Oriented Middleware and a Subscriber may receive messages from multiple
Publishers.

Register g
Publishers _ _————7"77"7"7"+= -
St g -
-7 I_ 5 Ry s Query
3 ~
e > Publishers
. - == DataSetMetaData ~
Publisher e _- - N
_~ " Exchange T~
independent

of messages
Message
Oriented
Middleware
Messages
I I —
Transport

-

N -~
GetSecur'ityKey; e Security Key - - GetSecurlityKeys
SetSecurityKeys Server SetSecurityKeys

Figure 2 — Publisher and Subscriber entities

Publishers and Subscribers are loosely coupled. They often will not even know each other.
Their primary relation is the shared understanding of specific types of data (DataSets), the
publish characteristics of messages that include these data, and the Message Oriented
Middleware.

The “messages” in Figure 2 represent NetworkMessages. Each NetworkMessage includes
header information (e.g. identification and security data) and one or more DataSetMessages
(the payload). The DataSetMessages may be signed and encrypted in accordance with the
configured message security. A Security Key Server is responsible for the distribution of the
security keys needed for message security.

Each DataSetMessage is created from a DataSet. A component of a Publisher called
DataSetWriter generates a continuous sequence of DataSetMessages. Syntax and semantics
of DataSets are described by DataSetMetaData. The selection of information for a DataSet in

OPC 10000-14: PubSub 7 Release 1.04

the Publisher and the data acquisition parameters are called PublishedDataSet. DataSet,
DataSetMetaData and PublishedDataSet are detailed in 5.2.

Note 1: The PubSub directory is an optional entity that allows Publishers to advertise their PublishedDataSets and
their communication parameters. This directory functionality is planned for a future release of this specification.

5.2 DataSet

5.21 General

A DataSet can be thought of as a list of name and value pairs representing an Event or a list of
Variable Values.

A DataSet can be created from an Event or from a sample of Variable Values. The configuration
of this application-data collector is called PublishedDataSet. DataSet fields can be defined to
represent any information, for example, they could be internal Variables in the Publisher, Events
from the Publisher or collected by the Publisher, network data, or data from sub-devices.

DataSetMetaData described in 5.2.3 defines the structure and content of a DataSet.

For publishing, a DataSet will be encoded into a DataSetMessage. One or more
DataSetMessages are combined to form the payload of a NetworkMessage.

Figure 3 illustrates the use of DataSets for publishing.

DataSetMetaData

Publisher

L1

o
_______ pata | —7]
/’

collector

List of
Values
Timestamp

el

Header H

Quality
— NetworkMessage
Data — —
collector p— :‘>
————— i —
Published DataSet
DataSets DataSets Writers

Figure 3 — DataSet in the process of publishing

A PublishedDataSet is similar to either an Event Monitoredltem or a list of data Monitoredltems
in the Client Server Subscription model. Similar to an Event Monitoredltem, a PublishedDataSet
can select a list of Event fields. Similar to data Monitoredltems, the PublishedDataSet can
contain a list of Variables.

A DataSet does not define the mechanism to encode, secure and transport it. A DataSetWriter
handles the creation of a DataSetMessage for a DataSet. The DataSetWriter contains settings
for the encoding and transport of a DataSetMessage. Most of these settings depend on the
selected Message Oriented Middleware.

The configuration of DataSets and the way the data is obtained for publishing can be configured
using the PubSub configuration model defined in clause 8.2 or with vendor specific configuration
tools.

Release 1.04 8 OPC 10000-14: PubSub

522 DataSetClass

DataSets can be individual for a Publisher or they can be derived from a DataSetClass. Such a
DataSetClass acts as template declaring the content of a DataSet. The DataSetClass is
identified by a globally unique id — the DataSetClassld (see 6.2.2.2).

The DataSetMetaData is identical for all PublishedDataSets that are configured based on this
DataSetClass. The DataSetClassld shall be in the corresponding field of the DataSetMetaData.

When all DataSetMessages of a NetworkMessage are created from DataSets that are instances
of the same DataSetClass, the DataSetClassld of this class can be provided in the
NetworkMessage header.

523 DataSetMetaData

DataSetMetaData describes the content and semantic of a DataSet. The structure description
includes overall DataSet attributes (e.g. name and version) and a set of fields with their name
and data type. The order of the fields in the DataSetMetaData shall match the order of values
in the published DataSetMessages.

The DataSetMetaDataType is defined in 6.2.2.1.2.

Example description (simplified, in pseudo-language):

Name : “Temperature-Sensor Measurement”
Fields: [1] Name=DeviceName, Type=String
[2] Name=Temperature, Type=Float, Unit=Celsius, Range={1,100}

Subscribers use the DataSetMetaData for decoding the values of a DataSetMessage to a
DataSet. Subscribers may use name and data type for further processing or display of the
published data.

Each DataSetMessage also includes the version of the DataSetMetaData that it complies with.
This allows Subscribers to verify if they have the corresponding DataSetMetaData. The related
ConfigurationVersionDataType is defined in 6.2.2.1.5.

DataSetMetaData may be specific to a single PublishedDataSet or identical for all
PublishedDataSets that are configured based on a DataSetClass (see 5.2.2).

There are multiple options for Subscribers to get the initial DataSetMetaData:

e The Subscriber is an OPC UA Client and is able to get the necessary configuration
information from the PubSub configuration model (see 9.1.4.2.1) provided by the
Publisher, from a configuration server or from a directory server.

e The Subscriber supports the OPC UA configuration Methods defined in the PubSub
configuration model.

e The Subscriber receives the DataSetMetaData as NetworkMessage from the Publisher.
This may require an option for the Subscriber to request this NetworkMessage from the
Publisher.

e The Subscriber is configured with product specific configuration means.

There are multiple options to exchange the DataSetMetaData between Publisher and
Subscriber if the configuration changes.

e The DataSetMetaData is sent as a NetworkMessage from the Publisher to the
Subscriber before DataSetMessages with changed content are sent. The used Message
Oriented Middleware should ensure reliable delivery of the message. The mapping for
the Message Oriented Middleware defines a way for the Subscriber to request the
DataSetMetaData. The Subscriber goes to an error state if it has not received the new
DataSetMetaData that matches the ConfigurationVersion of the received
DataSetMessage.

OPC 10000-14: PubSub 9 Release 1.04

e The Subscriber is automatically updated via the OPC UA configuration Methods defined
in the PubSub configuration model when the DataSet in the Publisher is updated.

e The Subscriber is an OPC UA Client and is able to obtain the update from the Publisher
or a configuration server via the information exposed by the PubSub configuration
model.

e The Subscriber is updated with product specific configuration means when the DataSet
in the Publisher is changed.

5.3 Messages
5.31 General

The term message is used with various intentions in the messaging world. It sometimes only
refers to the payload (the application data) and sometimes to the network packet that also
includes protocol-, security-, or encoding-specific data. To avoid confusion, this specification
formally defines the term DataSetMessage to mean the application data (the payload) supplied
by the Publisher and the term NetworkMessage to mean the message handed off and received
from a specific Message Oriented Middleware. DataSetMessages are embedded in
NetworkMessages. Figure 4 shows the relationship of these message types.

DataSetMessage field

DataSetMessage

NetworkMessage

Transport
Protocol

Figure 4 — OPC UA PubSub Message Layers

The transport protocol-specific headers and definitions are described in 7.3.

Following is an abstract definition of DataSetMessage and NetworkMessage. The concrete
structure depends on the message mapping and is described in 7.2.

5.3.2 DataSetMessage field

A DataSetMessage field is the representation of a DataSet field in a DataSetMessage.

A DataSet field contains the actual value as well as additional information about the value like
status and timestamp.

A DataSet field can be represented as a DataValue, as a Variant or as a RawData in the
DataSetMessage field. The representation depends on the DataSetFieldContentMask defined
in 6.2.3.2.

The representation as a DataValue is used if value, status and timestamp should be included
in the DataSetMessage.

The representation as Variant is used if value or bad status should be included in the
DataSetMessage.

The representation as RawData is the most efficient format and is used if a common status and
timestamp per DataSet is sufficient.

Release 1.04 10 OPC 10000-14: PubSub

5.3.3 DataSetMessage
A DataSetMessage is created from a DataSet. It consists of a header and the encoded fields of
the DataSet.

Depending on the configured DataSetMessageContentMask, a DataSetMessage may exist in
different forms and with varying detail. DataSetMessages do not contain any information about
the data acquisition or information source in the Publisher.
Additional header information includes:

DataSetWriterld Identifies the DataSetWriter and indirectly the PublishedDataSet.

Sequence number A number that is incremented for each DataSetMessage. Can be
used to verify the ordering and to detect missing messages.

Timestamp A timestamp describing when the data in this DataSetMessage was
obtained.

Version Version information about the configuration of the DataSetMetaData.

Status Status information about the data in this DataSetMessage.

Keep alive When no DataSetMessages are sent for a configured time period, a

keep alive DataSetMessage is sent to signal the Subscribers that the
Publisher is still alive.

Some encodings differentiate between key frame DataSetMessages and delta frame
DataSetMessages. A key frame DataSetMessage includes values for all fields of the DataSet. A
delta frame DataSetMessage only contains the subset that changed since the previous
DataSetMessage.

A key frame DataSetMessage is sent after a configured number of DataSetMessages.

5.34 NetworkMessage

The NetworkMessage is a container for DataSetMessages and includes information shared
between DataSetMessages. This information consists of:

Publisherld Identifies the Publisher.

Security data Only available for encodings that support message security. The
relevant information is specified in the message mapping.

Promoted fields Selected fields out of the DataSet also sent in the header.

Payload One or more DataSetMessages.

The payload, consisting of the DataSetMessages will be encrypted in accordance with the
configured message security. Individual fields of a DataSetMessage can be marked as being
“promoted fields”. Such fields are intended for filtering or routing and therefore are never
encrypted. How and where the values for promoted fields are inserted depends on the
NetworkMessage format and the used protocol. The NetworkMessage header is not encrypted
to enable efficient filtering.

5.3.5 Message Security

Message security in PubSub concerns integrity and confidentiality of the published message
payload. The level of security can be:

e No security
e Signing but no encryption
e Signing and encryption
Message security is end-to-end security (from Publisher to Subscriber) and requires common

knowledge of the cryptographic keys necessary to sign and encrypt on the Publisher side as
well as validate signature and decrypt on the Subscriber side.

OPC 10000-14: PubSub 11 Release 1.04

The keys used for message security are managed in the context of a SecurityGroup. The basic
concepts of a SecurityGroup are described in 5.3.7.

This standard defines a general distribution framework for cryptographic keys. This framework
is introduced in 5.4.3.

All parameters that are relevant for message security are described in 6.2.4. These parameters
are independent of any Broker level transport security.

The message security for PubSub is independent of the transport protocol mapping and is
completely defined by OPC UA.

5.3.6 Transport Security
The transport security is specific to the transport protocol mapping.

When using a broker-based middleware (see 5.4.4.2.2), confidentiality and integrity can be
ensured with the transport security between Publishers and the Broker as well as Subscribers
and the Broker. The Broker level security in addition requires all Publishers and Subscribers to
have credentials that grant them access to a Broker resource.

Transport security may be hop-by-hop security with some risk of man-in-the-middle attacks. It
also requires trusting the Broker since the Broker can read the messages. Combining transport
security with message security reduces this risk.

5.3.7 SecurityGroup

A SecurityGroup is an abstraction that represents the message security settings and security
keys for a subset of NetworkMessages exchanged between Publishers and Subscribers. The
security keys are used to encrypt and decrypt NetworkMessages and to generate and check
signatures on a NetworkMessage.

A Security Key Service (SKS) manages SecurityGroups and maintains a mapping between
Roles and their access Permissions for a SecurityGroup. This mapping defines if a Publisher
or Subscriber has access to the security keys of a SecurityGroup. The SKS is described in more
detail in 5.4.3.

A SecurityGroup is identified with a unique identifier called the SecurityGroupld. It is unique
within the SKS. A Publisher for its PublishedDataSets must know the SecurityGroupld. For
Subscribers the SecurityGroupld is distributed as metadata together with the DataSetMetaData.
The metadata for a SecurityGroupld includes the EndpointDescription of the responsible SKS.
Publishers and Subscribers use the EndpointDescription to access the SKS and the
SecurityGroupld to obtain the security keys for a SecurityGroup.

5.4 Entities
541 Publisher

54.1.1 General

The Publisher is the PubSub entity that sends NetworkMessages to a Message Oriented
Middleware. It represents a certain information source, for example, a control device, a
manufacturing process, a weather station, or a stock exchange.

Commonly, a Publisher is also an OPC UA Server. For the abstract PubSub concepts, however,
it is an arbitrary entity and should not be assumed to be an individual or even a specific network
node (an IP or a MAC address) or a specific application. Figure 5 illustrates a Publisher with data
collection, encoding and message sending.

Release 1.04 12 OPC 10000-14: PubSub

DataSetMetaData

/
_______ Data | —7|
(Information Space)} —| collector | 7|
List of
Values
Timestamp

~ Quality
Data | —
collector p :‘,>
______ _ =
Published T DataSet
DataSets ~ DataSets Writers

Publisher

Figure 5 — Publisher details

A single Publisher may support multiple PublishedDataSets and multiple DataSetWriters to one
or more Message Oriented Middleware. A DataSetWriter is a logical component of a Publisher.
See 5.4.1.2 for further information about the DataSet writing process.

If the Publisher is an OPC UA Server, it can expose the Publisher configuration in its
AddressSpace. This information may be created through product specific configuration tools or
through the OPC UA defined Methods. The OPC UA Information Model for PubSub configuration
is specified in clause 9.

5.4.1.2 Message sending

Figure 6 illustrates the process inside a Publisher when creating and sending messages and
the parameters required to accomplish it. The components, like DataSet collection or
DataSetWriter should be considered abstract. They may not exist in every Publisher as
independent entities. However, comparable processes have to exist to generate the OPC UA PubSub
messages.

OPC 10000-14: PubSub 13 Release 1.04

NetworkMessage

Message
Transport

DataSet
collection

DataSet

T T T T T T TN

DataSet
Writer

collection

PublishedDataSet Parameters DataSetWriter Parameters WriterGroup Parameters Parameters
Field selection DataSetWriterld Publisherld Address
List of Variables DataSetMetaData DataSetFieldContentMask WriterGroupld
or DataSetClassld DataSetMessageContentMask | | PublishingInterval
Event Filter ConfigurationVersion || KeyFrameCount KeepAliveTime
Priority
Security settings
NetworkMessageContentMask

Figure 6 — Publisher message sending sequence

The sending process is guided by different parameters for different logical steps. The
parameters define for example when and how often to trigger the sending sequence and the
encoding and security of the messages. The PubSub communication parameters are defined in
6.

The first step is the collection of data (DataSet) to be published. The configuration for such a
collection is called PublishedDataSet. The PublishedDataSet also defines the
DataSetMetaData. Collection is a generic expression for various different options, like
monitoring of Variables in an OPC UA Server AddressSpace, processing OPC UA Events, or
for example reading data from network packets. In the end, the collection process produces
values for the individual fields of a DataSet.

In the next step, a DataSetWriter takes the DataSet and creates a DataSetMessage.
DataSetMessages from DataSetWriters in one WriterGroup can be inserted into a single
NetworkMessage. The creation of a DataSetMessage is guided by the following parameters:

e The DataSetFieldContentMask (see 6.2.3.2) controls which attributes of a value shall
be encoded.

e The DataSetMessageContentMask (see 6.3.1.2.2) controls which header fields shall be
encoded.

e The KeyFrameCount controls whether a key frame or a delta frame DataSetMessage is
to be created.

The resulting DataSetMessage is passed on to the next step together with the DataSetWriterld
(see 6.2.3.1), the DataSetClassld (see 6.2.2.2), the ConfigurationVersion of the
DataSetMetaData (see 6.2.2.1.5), and a list of values that match the configured propagated
fields.

Next is the creation of the NetworkMessage. It uses the data provided from the previous step
together with the Publisherld (see 6.2.6.1) defined on the WriterGroup. The structure of this
message is protocol specific. If the SecurityMode (see 6.2.4.2) requires message security, the
SecurityGroupld (see 6.2.4.3) is used to fetch the SecurityPolicy and the security keys from the
SKS (see 5.4.3). This information is used to encrypt and/or sign the NetworkMessage as
required by the SecurityMode.

Release 1.04 14 OPC 10000-14: PubSub

The final step is delivery of the NetworkMessage to the Message Oriented Middleware through
the configured Address.

54.2 Subscriber

5.4.2.1 General

Subscribers are the consumers of NetworkMessages from the Message Oriented Middleware.
They may be OPC UA Clients, OPC UA Servers or applications that are neither Client nor Server
but only understand the structure of OPC UA PubSub messages. Figure 7 illustrates a
Subscriber with filtering, decoding and dispatching of NetworkMessages.

‘ DataSetMetaData

Quality

j\> Dispatcher

Dispatcher
List of Values
] ey

DataSet DataSet Subscribed
Readers DataSet

Subscriber

Figure 7 — Subscriber details

To determine for which DataSetMessages and on which Message Oriented Middleware to
subscribe, the Subscriber has to be configured and/or use discovery mechanisms.

Subscribers shall be prepared to receive messages that they do not understand or are
irrelevant. Each NetworkMessage provides unencrypted data in the NetworkMessage header
to support identifying and filtering of relevant Publishers, DataSetMessages, DataSetClasses
or other relevant message content (see 5.3).

If a NetworkMessage is signed or signed and encrypted, the Subscriber will need the proper
security keys (see 5.3.5) to verify the signature and decrypt the relevant DataSetMessages.

Once a DataSetMessage has been selected as relevant, it will be forwarded to the corresponding
DataSetReader for decoding into a DataSet. See 5.4.2.2 for further information about this
DataSet reading process. The resulting DataSet is then further processed or dispatched in the
Subscriber.

If the Subscriber is an OPC UA Server, it can expose the reader configuration in its
AddressSpace. This information may be created through product specific configuration tools or
through the OPC UA defined configuration model. The OPC UA Information Model for PubSub
configuration is specified in clause 9.

5.4.2.2 Message reception

Figure 8 illustrates the process inside a Subscriber when receiving, decoding and interpreting
messages and the parameter model required for accomplishing it. As for the Publisher, the
components should be considered abstract.

OPC 10000-14: PubSub 15 Release 1.04

NetworkMessage DataSetMessage DataSet

\
I
I
Message I DataSet DataSet |
Transport Reader dispatching |
I
I
I
]
Parameters Filter Parameters SubscribedDataSet
Address Publisherld DataSetMetaData List of target Variables
WriterGroupld ConfigurationVersion
DataSetWriterld DataSetFieldContentMask
DataSetClassld Security settings

Promoted fields

Figure 8 — Subscriber message reception sequence

The Subscriber has to select the required Message Oriented Middleware and establish a
connection to it using the provided Address. Such a connection may simply be a multi-cast
address when using OPC UA UDP or a connection to a message Broker when using MQTT or
AMQP. Once subscribed, the Subscriber will start listening. The sequence starts when a
NetworkMessage is received. The Subscriber may have configured filters (like a Publisherld,
DataSetWriterld or a DataSetClassld) so that it can drop all messages that do not match the
filter.

Once a NetworkMessage has been accepted, it has to be decrypted and decoded. The security
parameters are the same as for the Publisher.

Each DataSetMessage of interest is passed on to a DataSetReader. Here, the
DataSetMetaData is used to decode the DataSetMessage content to a DataSet. The
DataSetMetaData in particular provides the complete field syntax including the name, data type,
and other relevant Properties like engineering units. Version information that exists in both the
DataSetMessage and the DataSetMetaData allows the Subscriber to detect version changes. If a
major change occurs, the Subscriber needs to get an updated DataSetMetaData.

Any further processing is application-specific. For example, an additional dispatching step may
map the received values to Nodes in the Subscribers OPC UA AddressSpace. The configuration
for such a dispatching is called SubscribedDataSet.

543 Security Key Service
5.4.3.1 General

A Security Key Service (SKS) provides keys for message security that can be used by the
Publisher to sign and encrypt NetworkMessages and by the Subscriber to verify the signature
of NetworkMessages and to decrypt them.

The SKS is responsible for managing the keys used to publish or consume PubSub
NetworkMessages. Separate keys are associated with each SecurityGroupld in the system. The
GetSecurityKeys Method exposed by the SKS shall be called to receive necessary key material
for a SecurityGroupld. GetSecurityKeys can return more than one key. In this case the next key
can be used when the current key is outdated without calling GetSecurityKeys for every key
needed. The PubSubKeyServiceType defined in 8.2 specifies the GetSecurityKeys Method.

The GetSecurityKeys Method can be implemented by a Publisher or by a central SKS. In both
cases, the well-known Nodelds for the PublishSubscribe Object and the related
GetSecurityKeys Method are used to call the GetSecurityKeys Method. The PublishSubscribe
Object is defined in 8.4.

Release 1.04 16 OPC 10000-14: PubSub

The SetSecurityKeys Method is typically used by a central SKS to push the security keys for a
SecurityGroup into a Publisher or Subscriber. The Method is exposed by Publishers or
Subscribers that have no OPC UA Client functionality. The Method is part of the
PublishSubscribeType defined in 9.1.3.2.

5.4.3.2 SecurityGroup Management

The SKS is the entity with knowledge of SecurityGroups and it maintains a mapping between
Roles and SecurityGroups. The related User Authorization model is defined in OPC 10000-3.
The User Authorization model defines the mapping of identities to Roles and the mechanism to
set Permissions for Roles on a Node. The Permissions on a SecurityGroup Object is used to
determine if a Role has access to the keys for the SecurityGroup.

An example for setting up a SecurityGroup and the configuration of affected Publishers and
Subscribers is shown in Figure 9.

Configuration Security Key Publisher or

Tool Service (SKS) Subscriber
T T T

:—AddSecurityGroupgb:
| |
|

I
Write RolePermissions Attribute) |
| of the SecurityGroup Object |

|
Read SecurityGroupld >

of SecurityGroup Object I
|
|

Set SecurityGroupld and SKS Endp'ointDescription)
on MessageSecurity Object of PubSub Groups |
1

Figure 9 — SecurityGroup Management Sequence

To secure NetworkMessages, the NetworkMessages must be secured with keys provided in the
context of a SecurityGroup. A SecurityGroup is created on a SKS using the Method
AddSecurityGroup.

To limit access to the SecurityGroup and therefore to the security keys, Permissions must be
set on the SecurityGroup Object. This requires the management of Roles and Permissions in
the SKS.

To set the SecurityGroup relation on the Publishers and Subscribers, the SecurityGroupld and
the SKS EndpointDescriptions are configured in a PubSub groups.

5.4.3.3 Key Acquisition Handshakes

The Publisher or Subscriber use keys provided by an SKS to secure messages exchanged via
the Message Oriented Middleware. The handshake to pull the keys from a SKS is shown in
Figure 10. The handshake to push the keys from a SKS to Publishers and Subscribers is shown
in Figure 11.

OPC 10000-14: PubSub

Publisher or
Subscriber

Establish encrypted connection and provide
credentials that allow access to keys for SecurityGroup

17

Release 1.04

Security Key Message Oriented
Service (SKS) Middleware
T T

>
|

GetSecurityKeys(SecurityG roupld)4>:

1
Publish Message secured with Keys (Publishers)—————

1
Receive Message secured with Keys (Subscribers)
1

Figure 10 — Handshake used to pull keys from SKS

To pull keys, the Publisher or Subscriber creates an encrypted connection and provides
credentials that allow it access to the SecurityGroup. Then it passes the identifier of the
SecurityGroup to the GetSecurityKeys Method that verifies the identity and returns the keys
used to secure messages for the PubSubGroup. The GetSecurityKeys Method is defined in 8.4.

The access to the GetSecurityKeys Method may use Sessionlessinvoke Service calls. These
calls typically use an Access Token that is retrieved from an Authorization Service. Both
concepts are defined in OPC 10000-4.

Security Key
Service (SKS)

Publisher or
Subscriber

Establish encrypted

connection and provide
credentials that allow it to
set keys for SecurityGroup

Keys and Expiry Time

SetSecurityKeys

—>

|
|—Publish Message secured with Keys (Publishers)

I&Receive Message secured with Keys (Subscribers)

Message Oriented
Middleware

—>,

Figure 11 — Handshake used to push keys to Publishers and Subscribers

To push keys, the SKS creates an encrypted connection to a Publisher or Subscriber and
provides credentials that allow it to provide keys for a SecurityGroup. Then it passes the
identifier of the SecurityGroup and the keys used to secure messages for the SecurityGroup to
the SetSecurityKeys Method. The SetSecurityKeys Method is defined in 9.1.3.3.

5.43.4

Authorization Services and Security Key Service

Access to the SKS can be managed by an Authorization Service as shown in Figure 12.

Release 1.04 18 OPC 10000-14: PubSub

Authorization Identity Security Key

Service Provider Service
T T T T

:—Browse PubSubGroups—b:
|<_ PubSubGroup with |
| MessageSecurity Info |

L ClientID+5KS ID + Role———ppl

Subscriber Publisher

| I | . h

| | |7Ver|fy Credentlals—}l

| | kZ---Validation Result-----]

| ! | |

<—-—-—-——--- Access Token- — — — — — — — |

| | | |

I f CreateSession f

| | . . o | |

I T ActivateSession W|th Access Token T >|
1

: : GetSecurityKeys : }:
1

I< | |

|

Figure 12 — Handshake with a Security Key Service

The SKS is a Server that exposes a Method called GetSecurityKeys. The Access Token is used
to determine if the calling application is allowed to access the keys. One way to do this would
be to check the Permissions assigned to the SecurityGroup Object identified by the
GetSecurityKeys Method arguments. Publishers and Subscribers can request keys if the Access
Token they provide is mapped to Roles that have been granted Permission to Browse the
SecurityGroup Object.

544 Message Oriented Middleware

54.4.1 General

Message Oriented Middleware as used in this specification is any infrastructure supporting
sending and receiving NetworkMessages between distributed applications. OPC UA does not
define a Message Oriented Middleware, rather it uses protocols that allow connecting, sending
and receiving data. The transport protocol mappings for PubSub are described in 7.3.

This part describes two general types of Message Oriented Middleware to cover a large number
of use cases. The two types, broker-less and broker-based middleware are described in 5.4.4.2
and 5.4.4.3.

5.4.4.2 Broker-less Middleware

54.4.2.1 General

With this option, OPC UA PubSub relies on the network infrastructure to deliver
NetworkMessages to one or more receivers. Network devices — like network routers, switches,
or bridges — are typically used for this purpose.

One example is a switched network and the use of UDP with unicast or multicast messages
shown in Figure 13.

OPC 10000-14: PubSub 19 Release 1.04

Publisher
Subscriber

Publisher »

R4 0 p Subscriber
ﬁgiu ‘

Network Infrastructure | *.

“*& Subscriber

Figure 13 — PubSub using network infrastructure

Advantages of this model include:

e Only requires standard network equipment and no additional software components like a
Broker.

¢ Message delivery is assumed to be direct without software intermediaries and therefore
provides reduced latency and overhead.

o UDP protocol supports multiple subscribers using multicast addressing.

5.4.4.2.2 Broker-less model with OPC UA UDP

Figure 14 depicts the applications, entities and messages involved in peer to peer
communication using UDP as a protocol that does not require a Broker.

OPC UA Subscriber
OPC UA Subscrib M i
ubscrioer zs;gge OPC UA Subscriber
Mezs;gge - oono - Message
ooo o
Oo0Oo
/
, \
y \
, \
) \
Message SRS
76 - 276
OO 080
OPC UA) OPC UA application
licati - UDP Multicast Grou
application Publisher 224.0.51 P
_ o _-v A
_ ~ mm ==

r— — " -
| Connection L1 ~

~ Connection ,
S

L_Growp _

Figure 14 — UDP Multicast Overview

The PublishSubscribe Object contains a connection Object for each address like an IP multicast

address. The connection can have one or more groups with DataSetWriters. A group can
publish DataSets at the defined publishing interval.

In each publishing interval, a DataSet is collected for a PublishedDataSet which can be a list
of sampled data items in the Publisher OPC UA Address Space. For each DataSet a

Release 1.04 20 OPC 10000-14: PubSub

DataSetMessage is created. The DataSetMessages are sent in a NetworkMessage to the IP
multicast address.

OPC UA Applications like HMI applications would use the values of the DataSetMessage that
they are interested in.

An OPC UA Application that maps data fields from UADP DataSetMessages to internal
Variables can be configured through the DataSetReader Object and dispatcher in the
Subscriber. The configuration of a DataSetReader defines how to decode the DataSetMessage
to a DataSet. The SubscribedDataSet defines which field in the DataSet is mapped to which
Variable in the OPC UA Application.

With OPC UA UDP there is no guarantee of timeliness, delivery, ordering, or duplicate
protection. The sequence numbers in DataSetMessages provide a solution for ordering and
duplicate detection. The reliability is improved by the option to send the complete DataSet in
every DataSetMessage or with the option to repeat NetworkMessages.

Other transport protocol mappings used with the broker-less model could provide guarantee of
timeliness, delivery, ordering, or duplicate protection.

5.4.4.3 Broker-based Middleware
54.4.3.1 General

This option assumes a messaging Broker in the middle as shown in Figure 15. No application
is speaking directly to other applications. All the communication is passed through the Broker.
The Broker routes the NetworkMessages to the right applications based on business criteria

("queue name", "routing key", "topic" etc.) rather than on physical topology (IP addresses, host
names).

J'Subscrlber

Publisher L
~~~~~~~ >
RUBISHEN - - - - - - - - - > BROKER 1 | » Subscriber
R 4

‘\
@ “ Subscriber

Figure 15 — PubSub using broker

Advantages of this model (partly depending on used Broker and its configuration) include:

e Publisher and Subscriber do not have to be directly addressable. They can be anywhere as
long as they have access to the Broker.

e Fan out can be handled to a very large list of Subscribers, multiple networks or even chained
Brokers or scalable Brokers.

e Publisher and Subscriber lifetimes do not have to overlap. The Publisher application can push
NetworkMessages to the Broker and terminate. The NetworkMessages will be available for
the Subscriber application later.

e Publisher and Subscriber can use different messaging protocols to communicate with the
Broker.

In addition, the Broker model is to some extent resistant to the application failure. So, if the application
is buggy and prone to failure, the NetworkMessages that are already in the Broker will be retained even
if the application fails.



OPC 10000-14: PubSub 21 Release 1.04

5.4.4.3.2 Broker-based model

Figure 16 depicts the applications, entities and messages involved in typical communication
scenarios with a Broker. It requires use of messaging protocols that a Broker understands, like
AMQP defined in ISO/IEC 19464:2014 or MQTT defined in ISO/IEC 20922:2016. In this model the
Message Oriented Middleware will be a Broker that relays NetworkMessages from Publishers to
Subscribers. The Broker may also be able to queue messages and send the same message to
multiple Subscribers.

Note that the Broker functionality is outside the scope of this specification. In terms of the
messaging protocols, the Broker is a messaging server (the OPC UA Publisher and the OPC
UA Subscriber are messaging clients). The messaging protocols define how to connect to a
messaging server and what fields in a message influence the Broker functionality.

Generic Broker (Messaging Server)
Messaging

— -
Client (Pub) Topic/Queue
Messaging Client
OPC UA Subscriber
Message Message

276
276
Do o ooo
Messaging
Client

OPC UA
Application

Generic Messaging

- Messaging Client Client (Sub)
Publisher OPC UA Subscriber

Message
TR e Message 276
L WriterGroup | 276 oo0Oo
I~ OoooOo

DataSetWriter I

Figure 16 — Broker Overview

An OPC UA Publisher that publishes data may be configured through the PubSub configuration
model. It contains a connection Object per Broker. The Broker is configured through an URL in
the connection. The connection can have one or more groups which identity specific queues or
topics. Each group may have one or more DataSetWriters that format a DataSet as required for
the messaging protocol. A DataSet can be collected from a list of Event fields and/or selected
Variables. Such a configuration is called PublishedDataSet.

Each DataSet is sent as a separate DataSetMessage serialized with a format that depends on
the DataSetWriter. One DataSetMessage format is the JSON message mapping which
represents the DataSet in a format which Subscribers can understand without knowledge of
OPC UA. Another DataSetMessage format is the UADP message mapping.

Message confidentiality and integrity with the Broker based communication model can be
ensured at two levels:

e transport security between Publishers or Subscribers and the Broker or
e message security as end-to-end security between Publisher and Subscriber.

The Broker level security requires all Publishers and Subscribers to have credentials that grant
them access to the necessary queue or topic. In addition, all communication with the Broker
uses transport level security to ensure confidentiality. The security parameters are specified on
the connection and group.

The message security provided by the Publisher is only defined for the UADP message
mapping.



Release 1.04 22 OPC 10000-14: PubSub

6 PubSub Communication Parameters

6.1 Overview

PubSub defines different configuration parameters for the various PubSub components. They
define the behaviour of Publisher and Subscriber. The parameters are grouped by component
and are partitioned into ‘common’, ‘'message mapping’, and ‘transport protocol mapping’.

The common parameters are defined in 6.2. The parameters for the different message mappings
are defined in 6.3. The parameters for the different transport protocol mappings are defined in
6.4.

The application of communication parameters for concrete message and transport protocol
mappings is defined in clause 7.

Configuration of these parameters can be performed through the OPC UA Information Model
for PubSub configuration defined in clause 9 or through vendor-specific mechanisms. The
parameter groupings in this clause define the parameters and also define Structures used to
represent the parameters of the groupings. These Structures are used in the PubSub
configuration model described in clause 9 but they can also be used for offline configuration or
vendor-specific configuration mechanisms.

Figure 17 depicts the different components and their relation to each other. The WriterGroup,
DataSetWriter and PublishedDataSet components define the data acquisition for the DataSets,
the message generation and the sending on the Publisher side. These parameters need to be
known on the Subscriber side to configure DataSetReaders and to filter and process
DataSetMessages.

1 0..n
| PublishSubscribe |—| PublishedDataSet |
Transport Protocol
0.n
4| PubSubConnection | 77777777777777 > | |

1

I NetworkMessage

0.n .
4| WriterGroup | N > | |

1

0.n

4| DataSetWriter | -——————————— > | | | DataSetMessage
0.n

4' ReaderGroup |

I:I Publisher !

: 0.n 1 0.1
D Subscriber 4| DataSetReader |—| SubscribedDataSet

Figure 17 — PubSub Component Overview

The figure shows the following components:

e PublishedDataSet contains the DataSetMetaData describing the content of the
DataSets produced by the PublishedDataSet and the corresponding data acquisition
parameters.

e DataSetWriter parameters are necessary for creating DataSetMessages. Each
DataSetWriter is bound to a single PublishedDataSet. A PublishedDataSet can have
multiple DataSetWriters.

o WriterGroup parameters are necessary for creating a NetworkMessage. Each writer
group can have one or more DataSetWriters. Some of these parameters are used for
creating the DataSetMessages. They are grouped here since they are the same for all
DataSetMessages in a single NetworkMessage.

e PubSubConnection parameters represent settings needed for the transport protocol.
One connection can have a number of writer groups and reader groups.



OPC 10000-14: PubSub 23

Release 1.04

ReaderGroup is used to group a list of DataSetReaders and contains a few shared
settings for them. It is not symmetric to a WriterGroup and it is not related to a particular

NetworkMessage. The NetworkMessage related filter settings are on the
DataSetReaders.
e DataSetReader parameters represent settings for filtering of received

NetworkMessages and DataSetMessages as well as settings for decoding of the
DataSetMessages of interest.

SubscribedDataSet parameters define the processing of the decoded DataSet in the
Subscriber for one DataSetReader.

PublishSubscribe is the overall management of the PubSub groupings. It contains a list
of PublishedDataSets and a list of PubSubConnections.

The different PubSub mapping specific parameter groupings are shown in Figure 18.

PubSubConnection Transport
77777 >
Transport | Protocol
1 |
o |
- WriterGroup
7777777 NetworkMessage
Transport Message
1
0.. .
L DataSetWriter ——————- DataSetMessage
Transport Message o~ ~_ ]
AN -
A DataSetMessage Field
Settings specific to transport protocol mapping -

Settings specific to message mapping for NetworkMessages and DataSetMessages

Figure 18 — PubSub Mapping Specific Parameters Overview

Transport protocol mapping specific parameters may be defined for the PubSubConnection, the
WriterGroup or the DataSetWriter.

Message mapping specific parameters are defined for the NetworkMessages on the
WriterGroup and for the DataSetMessages on the DataSetWriter.

6.2
6.2.1

Common Configuration Parameters
PubSubState State Machine

The PubSubState is used to expose and control the operation of a PubSub component. It is an
enumeration of the possible states. The enumeration values are described in Table 1.

Table 1 — PubSubState Values

Value Description
Disabled 0 The PubSub component is configured but currently disabled.
Paused_1 The PubSub component is enabled but currently paused by a parent component. The

parent component is either Disabled_0 or Paused 1.

Operational_2 The PubSub component is operational.

Error_3 The PubSub component is in an error state.




Release 1.04 24 OPC 10000-14: PubSub

Figure 19 depicts the PubSub components that have a PubSub state and their parent-child
relationship. State changes of children are based on changes of the parent state. The root of
the hierarchy is the PublishSubscribe component.

PubSubWriterGroup - DataSetWriter

PublishSubscribe I PubSubConnection

PubSubReaderGroup - DataSetReader

Figure 19 — PubSub Component State Dependencies

Figure 20 describes the formal state machine with the possible transitions.

Parent changed to Disabled or Paused

Parent changed to
Disabled or Paused

Parent changed
to Operational

Error resolved

Enabled
Disabled but parent Operational Error
not Operational
Error situation
Enabled
Disabled
Disabled
Disabled
Figure 20 — PubSubState State Machine
Table 2 formally defines the transitions of the state machine.
Table 2 - PubSubState State Machine
Source State Target State Trigger Description
Disabled_0 Paused_1 The component was successfully enabled but the parent component is in the state
Disabled_0 or Paused_1.
Disabled_0 Operational_2 | The component was successfully enabled.
Paused_1 Disabled_0 The component was successfully disabled.
Paused_1 Operational_2 | The state of the parent component changed to Operational_2.
Operational_2 Disabled_0 The component was successfully disabled.
Operational_2 Paused_1 The state of the parent component changed to Disabled_0 or Paused_1.
Operational_2 Error_3 There is a pending error situation for the related PubSub component.
Error_3 Disabled_0 The component was successfully disabled.
Error_3 Paused_1 The state of the parent component changed to Disabled_0 or Paused_1.
Error_3 Operational_2 | The error situation was resolved for the related PubSub component.

6.2.2 PublishedDataSet Parameters
6.2.2.1 DataSetMetaData
6.2.2.1.1 General

DataSetMetaData describe the content and semantic of a DataSet. The order of the fields in the
DataSetMetaData shall match the order of DataSet fields when they are included in the published
DataSetMessages. The DataSetMetaDataType is defined in 6.2.2.1.2.




OPC 10000-14: PubSub 25 Release 1.04

6.2.2.1.2 DataSetMetaDataType

This Structure DataType is a subtype of DataTypeSchemaHeader and is used to provide the
metadata for a DataSet. The DataSetMetaDataType is formally defined in Table 3.

The DataTypeSchemaHeader provides OPC UA DataType definitions used in the
DataSetMetaData. The DataTypeSchemaHeader is defined in A.1.1.

Table 3 — DataSetMetaDataType Structure

Name Type Description
DataSetMetaDataType Structure
name String Name of the DataSet.
description LocalizedText Description of the DataSet.
The default value is a null LocalizedText.
fields FieldMetaDatal(] The metadata for the fields in the DataSet.
The FieldMetaData DataType is defined in 6.2.2.1.3.
dataSetClassld Guid This field provides the globally unique identifier of the class of DataSet
if the DataSet is based on a DataSetClass. In this case, this field shall
match the DataSetClassld of the concrete DataSet configuration.
If the DataSets are not created from a class, this field is null.
configurationVersion | Configuration The configuration version for the current configuration of the DataSet.
VersionDataType

Its representation in the AddressSpace is defined in Table 4.

Table 4 — DataSetMetaDataType Definition

Attributes Value

BrowseName DataSetMetaDataType
IsAbstract False

Subtype of DataTypeSchemaHeader defined in A.1.1.

6.2.2.1.3 FieldMetaData

This Structure DataType is used to provide the metadata for a field in a DataSet. The
FieldMetaData is formally defined in Table 5.

Table 5 - FieldMetaData Structure

Name Type Description
FieldMetaData Structure
name String Name of the field.
The name shall be unique in the DataSet.
description LocalizedText Description of the field.
The default value shall be a null LocalizedText.
fieldFlags DataSetFieldFlags | Flags for the field.
builtinType Byte The built-in data type of the field. The possible built-in type values are defined

in OPC 10000-6.

All data types are transferred in DataSetMessages as one of the built-in data
types. In most cases the identifier of the DataType Nodeld matches the built-in
type. The following special cases must be handled in addition:

(1) Abstract types always have the built-in type Variant since they can result in
different concrete types in a DataSetMessage. The dataType field may provide
additional restrictions e.g. if the abstract type is Number. Abstract types shall
not be used if the field is represented as RawData set by the
DataSetFieldContentMask defined in 6.2.3.1.

(2) Enumeration DataTypes are encoded as Int32. The Enumeration strings
are defined through a DataType referenced through the dataType field.

(3) Structure and Union DataTypes are encoded as ExtensionObject. The
encoding rules are defined through a DataType referenced through the
dataType field.

(4) DataTypes derived from built-in types have the BuiltinType of the
corresponding base DataType. The concrete subtype is defined through the
dataType field.

(5) OptionSet DataTypes are either encoded as one of the concrete Ulnteger
DataTypes or as an instance of an OptionSetType in an ExtensionObject.

dataType Nodeld The Nodeld of the DataType of this field.




Release 1.04

26 OPC 10000-14: PubSub

Name

Type

Description

If the DataType is an Enumeration or an OptionSet, the semantic of the
Enumeration DataType is provided through the enumDataTypes field of the
DataSetMetaData.

If the DataType is a Structure or Union, the encoding and decoding description
of the Structure DataType is provided through the structureDataTypes field of
the DataSetMetaData.

valueRank

Int32

Indicates whether the dataType is an array and how many dimensions the
array has.

It may have the following values:

n > 1: the dataType is an array with the specified number of dimensions.
OneDimension (1): The dataType is an array with one dimension.
OneOrMoreDimensions (0): The dataType is an array with one or more
dimensions.

Scalar (-1): The dataType is not an array.

Any (-2): The dataType can be a scalar or an array with any number of
dimensions.

ScalarOrOneDimension (-3): The dataType can be a scalar or a one
dimensional array.

NOTE All DataTypes are considered to be scalar, even if they have array-like
semantics like ByteString and String.

arrayDimensions

Uint32[]

This field specifies the maximum supported length of each dimension. If the
maximum is unknown the value shall be 0.

The number of elements shall be equal to the value of the valueRank field.
This field shall be null if valueRank < 0.

The maximum number of elements of an array transferred on the wire is
2147483647 (max Int32). It is the total number of elements in all dimensions
based on the UA Binary encoding rules for arrays.

maxStringLength

UInt32

If the dataType field is a String or ByteString then this field specifies the
maximum supported length. If the maximum is unknown the value shall be 0.
If the dataType field is not a String or ByteString the value shall be 0.

If the valueRank is greater than O this field applies to each element of the
array.

dataSetFieldld

Guid

The unique ID for the field in the DataSet. The ID is generated when the field is
added to the list. A change of the position of the field in the list shall not
change the ID.

properties

KeyValuePair(] List of Property values providing additional semantic for the field.

If at least one Property value changes, the MajorVersion of the
ConfigurationVersion shall be updated.

If the Property is EngineeringUnits, the unit of the Field Value shall match the
unit of the FieldMetaData.

The KeyValuePair DataType is defined in OPC 10000-5. For this field the key
in the KeyValuePair structure is the BrowseName of the Property and the value
in the KeyValuePair structure is the Value of the Property.

6.2.2.1.4 DataSetFieldFlags
This DataType defines flags for DataSet fields.

The DataSetFieldFlags is formally defined in Table 6.

Table 6 — DataSetFieldFlags Values

Value

Bit No.

Description

PromotedField

The flag indicates if the field is promoted to the NetworkMessages or transport protocol
header.

Setting this flag increases the size of the NetworkMessages since information from the
DataSetMessage body is also promoted to the header.

Depending on the used security, the header including the field may be unencrypted.
Promoted fields are always included in the header even if the DataSetMessage payload is
a delta frame and the DataSet field is not included in the delta frame. In this case the last
sent value is sent in the header.

The order of the fields in the DataSetMetaData promoted to the header shall match the
order of the fields in the header unless the header includes field names.

The DataSetFieldFlags representation in the AddressSpace is defined in Table 7.




OPC 10000-14: PubSub 27 Release 1.04

Table 7 — DataSetFieldFlags Definition

Attributes Value

BrowseName DataSetFieldFlags

IsAbstract False

References NodeClass | BrowseName | DataType
Subtype of UInt16 defined in OPC 10000-5.

HasProperty | Variable | OptionSetValues | LocalizedText [ ]

6.2.2.1.5 ConfigurationVersionDataType

This Structure DataType is used to indicate configuration changes in the information published
for a DataSet. The ConfigurationVersionDataType is formally defined in Table 8.

Table 8 — ConfigurationVersionDataType Structure

Name Type Description
ConfigurationVersionDataType | Structure
majorVersion VersionTime The MajorVersion reflects the time of the last major change of the
DataSet content. The VersionTime DataType is defined in OPC
10000-4.

To assure interoperability, the Subscriber has to use
DataSetMetaData for decoding with a MajorVersion that matches the
MajorVersion in DataSetMessages sent by the Publisher.

Removing fields from the DataSet content, reordering fields, adding
fields in between other fields or a DataType change in fields shall
result in an update of the MajorVersion.

If at least one Property value of a DataSetMetaData field changes,
the MajorVersion shall be updated.

There can be situations where older configurations of a Publisher are
loaded and changed with product specific configuration tools. In this
case the MajorVersion shall be updated if the configuration tool is not
able to verify if the change only extends the configuration and does
not change the existing content.

Additional criteria for changing MajorVersion or MinorVersion are
defined in this specification.

minorVersion VersionTime The MinorVersion reflects the time of the last change.

Only the MinorVersion shall be updated if fields are added at the end
of the DataSet content.

If the MajorVersion version is updated, the MinorVersion is updated
to the same value as MajorVersion.

6.2.2.2 DataSetClassld

DataSetMetaData may be specific to a single Publisher and a single selection of information or
universal e.g. defined by a standard organisation or by a plant operator as a DataSetClass.
DataSets that conform to such a DataSetClass are identified with a DataSetClasslid.

The DataSetClassld is the globally unique identifier (Guid) of a DataSetClass. It is included in
the DataSetMetaData. The NetworkMessageContentMask controls the availability of the
DataSetClassld in the NetworkMessage.

6.2.2.3 ExtensionFields

The ExtensionFields parameter allows the configuration of fields with values to be included in
the DataSet when the existing AddressSpace of the Publisher does not provide the necessary
information. The ExtensionFields are represented as array of KeyValuePair Structures.

6.2.2.4 PublishedDataSetDataType

This  Structure DataType represents the PublishedDataSet parameters. The
PublishedDataSetDataType is formally defined in Table 9.




Release 1.04 28 OPC 10000-14: PubSub

Table 9 — PublishedDataSetDataType Structure

Name Type Description
PublishedDataSetDataType Structure
name String Name of the PublishedDataSet.

The name of the PublishedDataSet shall be unique
in the Publisher.

dataSetFolder String[] Optional path of the DataSet folder used to group
PublishedDataSets where each entry in the String
array represents one level in a DataSet folder
hierarchy.

If no grouping is needed the parameter is a null
String array.

dataSetMetaData DataSetMetaData Defined in 6.2.2.1.
extensionFields KeyValuePair(] Defined in 6.2.2.3.
dataSetSource PublishedDataSetSourceDataType Defined in 6.2.2.5.

6.2.2.5 PublishedDataSetSourceDataType

The PublishedDataSetSourceDataType Structure is an abstract base type without fields for the
definition of the PublishedDataSet source. Its representation in the AddressSpace is defined in
Table 10.

Table 10 — PublishedDataSetSourceDataType Definition

Attributes Value

BrowseName PublishedDataSetSourceDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType PublishedDataltemsDataType FALSE Defined in 6.2.2.6.2.
HasSubtype DataType PublishedEventsDataType FALSE Defined in 6.2.2.7.4.

6.2.2.6 Published Data Items
6.2.2.6.1 PublishedData

The parameter PublishedData defines the content of a DataSet created from Variable Values
and therefore the content of the DataSetMessage sent by a DataSetWriter. The sources of the
DataSet fields are defined through an array of PublishedVariableDataType.

The index into the array has an important role for Subscribers and for configuration tools. It is
used as a handle to reference the Value in DataSetMessages received by Subscribers. The
index may change after configuration changes. Changes are indicated by the
ConfigurationVersion of the DataSet and applications working with the index shall always check
the ConfigurationVersion before using the index.

If an entry of the PublishedData references one of the ExtensionFields, the substituteValue
shall contain the QualifiedName of the ExtensionFields entry. All other fields of this
PublishedVariableDataType array element shall be null.

The DataType PublishedVariableDataType represents the configuration information for one
Variable. The PublishedVariableDataType is formally defined in Table 11.



OPC 10000-14: PubSub

29 Release 1.04

Table 11 — PublishedVariableDataType Structure

Name Type

Description

PublishedVariableDataType Structure

publishedVariable Nodeld

The Nodeld of the published Variable.

Some transport protocols require knowledge on the message receiver
side about the DataType, ValueRank and ArrayDimensions to be able
to decode the message content. This information is provided through
the DataSetMetaData provided for the DataSet.

attributeld Integerld

Id of the Attribute to publish e.g. the Value Attribute. This shall be a
valid Attribute id.

The Attributes are defined in OPC 10000-3. The Integerld DataType
is defined in OPC 10000-4. The Integerlds for the Attributes are
defined in OPC 10000-6.

samplinglintervalHint Duration

A recommended rate of acquiring new values for change or deadband
evaluation. A Publisher should use this value as hint for setting the
internal sampling rate.

The value 0 indicates that the Server should use the fastest practical
rate.

The value -1 indicates that the default sampling interval defined by the
Publishinglnterval of the WriterGroup is requested. Any negative
number is interpreted as -1.

deadbandType UInt32

A value that defines the Deadband type and behaviour.
Value Description
None_0 No Deadband calculation should be applied.
Absolute_1 AbsoluteDeadband (This type is specified in
OPC 10000-4)
Percent_2 PercentDeadband (This type is specified in
OPC 10000-8).

deadbandValue Double

The deadband value for the corresponding DeadbandType. The
meaning of the value depends on DeadbandType.

indexRange NumericRange

This parameter is used to identify a single element of an array, or a
single range of indexes for arrays. The NumericRange type and the
logic for IndexRange are defined in OPC 10000-4.

substituteValue BaseDataType

The value that is included in the DataSet if the StatusCode of the
DataValue is Bad. In this case the StatusCode is set to
Uncertain_SubstituteValue.

This Value shall match the DataType of the PublishedVariable since
DataSetWriters may depend on a valid Value with the right DataType
that matches the ConfigurationVersion.

If the SubstituteValue is Null, the StatusCode of the DataValue is
processed.

The handling of the SubstituteValue is defined in 6.2.10.

metaDataProperties QualifiedName [ ]

This parameter specifies an array of Properties to be included in the
FieldMetaData created for this Variable.

It shall be used to populate the properties element of the resulting field
in the DataSetMetaData.

6.2.2.6.2 PublishedDataltemsDataType

This Structure DataType is used to represent PublishedDataltems specific parameters. It is a
subtype of the PublishedDataSetSourceDataType defined in 6.2.2.5.

The PublishedDataltemsDataType is formally defined in Table 12.

Table 12 — PublishedDataltemsDataType Structure

Name Type Description
PublishedDataltemsDataType Structure
publishedData PublishedVariableDataType[] Defined in 6.2.2.6.1.

6.2.2.7 Published Events
6.2.2.7.1 EventNotifier

The parameter EventNotifier defines the Nodeld of the Object in the event notifier tree of the
OPC UA Server from which Events are collected.




Release 1.04 30 OPC 10000-14: PubSub

6.2.2.7.2 SelectedFields

The parameter SelectedFields defines the selection of Event fields contained in the DataSet
generated for an Event and sent through the DataSetWriter. The SimpleAttributeOperand
DataType is defined in OPC 10000-4. The DataType of the selected Event field in the EventType
defines the DataType of the DataSet field. Event fields can be null or the field value can be a
StatusCode. The encoding of Event based DataSetMessages shall be able to handle these
cases. ExtensionFields defined for the instance of the PublishedEventsType can be included in
the SelectedFields by specifying the PublishedEventsType Nodeld as typeld in the
SimpleAttributeOperand and the BrowseName of the extension field in the browsePath of the
SimpleAttributeOperand.

The index into the list of entries in the SelectedFields has an important role for Subscribers. It
is used as handle to reference the Event field in DataSetMessages received by Subscribers.
The index may change after configuration changes. Changes are indicated by the
ConfigurationVersion and applications working with the index shall always check the
ConfigurationVersion before using the index. If a change of the SelectedFields adds additional
fields, the MinorVersion of the ConfigurationVersion shall be updated. If a change of the
SelectedFields removes fields, the MajorVersion of the ConfigurationVersion shall be updated.
The ConfigurationVersionDataType and the rules for setting the version are defined in 6.2.2.1.5.

6.2.2.7.3 Filter

The parameter Filter defines the filter applied to the Events. It allows the reduction of the
DataSets generated from Events through a filter. The ContentFilter DataType is defined in OPC
10000-4.

6.2.2.7.4 PublishedEventsDataType

This Structure DataType is used to represent PublishedEvents specific parameters. It is a
subtype of the PublishedDataSetSourceDataType defined in 6.2.2.5.

The PublishedEventsDataType is formally defined in Table 13.

Table 13 — PublishedEventsDataType Structure

Name Type Description
PublishedEventsDataType Structure
eventNotifier Nodeld Defined in 6.2.2.7.1.
selectedFields SimpleAttributeOperand]] Defined in 6.2.2.7.2.
filter ContentFilter Defined in 6.2.2.7.3.

6.2.3 DataSetWriter Parameters
6.2.3.1 DataSetWriterld

The DataSetWriterld with DataType UIntl16 defines the unique ID of the DataSetWriter for a
PublishedDataSet. It is used to select DataSetMessages for a PublishedDataSet on the
Subscriber side.

It shall be unique across all DataSetWriters for a Publisherld.
All values, except for 0, are valid DataSetWriterlds. The value 0 is defined as null value.

6.2.3.2 DataSetFieldContentMask

A DataSet field consists of a value and related metadata. In most cases the value comes with
status and timestamp information.

This DataType defines flags to include DataSet field related information like status and
timestamp in addition to the value in the DataSetMessage.

The DataSetFieldContentMask is formally defined in Table 14.

The handling of bad status for different field representations is defined in Figure 21 and Table
16.



OPC 10000-14: PubSub 31 Release 1.04

Table 14 — DataSetFieldContentMask Values

Value | Bit No. [ Description

DataSet fields can be represented as RawData, Variant or DataValue as described in 5.3.2.

If none of the flags are set, the fields are represented as Variant.

If the RawData flag is set, the fields are represented as RawData and all other bits are ignored.

If one of the bits 0 to 4 is set, the fields are represented as DataValue.

StatusCode 0 The DataValue structure field StatusCode is included in the DataSetMessages.
If this flag is set, the fields are represented as DataValue.

SourceTimestamp 1 The DataValue structure field SourceTimestamp is included in the
DataSetMessages.

If this flag is set, the fields are represented as DataValue.

ServerTimestamp 2 The DataValue structure field ServerTimestamp is included in the
DataSetMessages.

If this flag is set, the fields are represented as DataValue.

SourcePicoSeconds 3 The DataValue structure field SourcePicoSeconds is included in the
DataSetMessages.

If this flag is set, the fields are represented as DataValue. This flag is ignored if
the SourceTimestamp flag is not set.

ServerPicoSeconds 4 The DataValue structure field ServerPicoSeconds is included in the
DataSetMessages.

If this flag is set, the fields are represented as DataValue. This flag is ignored if
the ServerTimestamp flag is not set.

RawData 5 If this flag is set, the values of the DataSet are encoded as Structure and all other
field related flags shall be ignored.

The RawData representation is handled like a Structure DataType where the
DataSet fields are handled like Structure fields and fields with Structure
DataType are handled like nested structures. All restrictions for the encoding of
Structure DataTypes also apply to the RawData Field Encoding. Fields shall not
have an abstract DataType or shall have a fixed ValueRank. Fields shall have
dimensions defined if the DataType is String or ByteString or if it is an array. This
includes Structure fields with such fields. The flag shall be ignored and the fields
shall be represented as Variant if the fields do not fulfil these requirements.

The DataSetFieldContentMask representation in the AddressSpace is defined in Table 15.

Table 15 — DataSetFieldContentMask Definition

Attributes Value

BrowseName DataSetFieldContentMask

IsAbstract False

References NodeClass | BrowseName | DataType
Subtype of UInt32 defined in OPC 10000-5.

HasProperty | Variable | OptionSetValues | LocalizedText [ ]

The DataSetFieldContentMask defines different options that influence the information flow from
Publisher to Subscriber in the case of a Bad Value Status or other error situations. Figure 21
depicts the parameters and the information flow from DataSet field to DataSetMessage creation
on Publisher side and the decoded DataSet field on the Subscriber side. The
DataSetFieldContentMask controls the representation of the DataSet fields in a
DataSetMessage.



Release 1.04 32 OPC 10000-14: PubSub

Value will be Legend
replaced with DataSet outl
StatusCode if the Message Condition | s
Status is Bad Field L~
In Out2
e @ sy
Value
Variant I—O Indicates a switch with different
- O ~—— results based on the condition
Field I—O Value
Representation Status

Value Value
—Y O Status (Status)

Value DataValue TimeStamp (TimeStamp)
?’?:::Sstam Decoded DataSet

P in Subscriber
DataSet
i i O Value
in Publisher RawData

Value must be
provided

Figure 21 — PubSub Information Flow dependency to field representation

The representation of the DataSet fields in a DataSetMessage on the Publisher side and the
decoding back to the DataSet fields on the Subscriber side is defined in Table 16. The
representation on the Publisher side depends on the field representation defined in the
DataSetFieldContentMask.

Table 16 — DataSetMessage field representation options

DataSet Publisher Field DataSetMessage DataSet Subscriber
Value Status® Value Status® Value Status®
Value 1 Good_* Variant Value 1 N/A @ Value 1 N/A @
Value 1 Uncertain_* Value 1 Value 1

Null Bad_* Bad_*® Null Bad_*
Value 1 Good_* DataValue Value 1 Good_* Value 1 Good_*
Value 1 Uncertain_* Value 1 Uncertain_* | Value 1 Uncertain_*
Null Bad_* Null Bad_* Null Bad_*
Value 1 Good_* RawData Value 1 N/A Value 1 N/A
Value 1 Uncertain_* Value 1@ Value 1

Null Bad_* DefaultValue® DefaultValue

Note 1: A bad status is transferred instead of a value. An uncertain status is not transferred for a field. If
the status field is included in the DataSetMessage header, the status is set to uncertain if one of
the fields has an uncertain status.

Note 2:  If the worst status for one or more fields is uncertain, the DataSetMessage status shall be set to
Uncertain.

Note 3: If the worst status for one or more fields is bad, the DataSetMessage status shall be set to Bad.

Note 4: If no specific StatusCode is used, the grouping into severity Good, Uncertain or Bad is used.

In this case, the resulting Status matches the input Status.

6.2.3.3 KeyFrameCount

The KeyFrameCount with DataType UInt32 is the multiplier of the Publishinglnterval that
defines the maximum number of times the Publishinginterval expires before a key frame
message with values for all published Variables is sent. The delta frame DataSetMessages
contains just the changed values. If no changes exist, the delta frame DataSetMessage shall
not be sent. If the KeyFrameCount is set to 1, every message contains a key frame.

For PublishedDataSets like PublishedDataltems that provide cyclic updates of the DataSet, the
value shall be greater or equal to 1. For non-cyclic PublishedDataSets, like PublishedEvents,
that provide event based DataSets, the value shall be 0.

6.2.3.4 DataSetWriterProperties

The DataSetWriterProperties parameter is an array of DataType KeyValuePair that specifies
additional properties for the configured DataSetWriter. The KeyValuePair DataType is defined
in OPC 10000-5 and consists of a QualifiedName and a value of BaseDataType.



OPC 10000-14: PubSub

33

Release 1.04

The mapping of the name and value to concrete functionality may be defined by transport
protocol mappings, future versions of this specification or vendor specific extensions.

6.2.3.5
6.2.3.5.1

This Structure DataType

DataSetWriterDataType is formally defined in Table 17.

DataSetWriter Structure
DataSetWriterDataType

is used to represent

the DataSetWriter

parameters. The

Table 17 — DataSetWriterDataType Structure

Name Type Description

DataSetWriterDataType Structure
name String The name of the DataSetWriter.
enabled Boolean The enabled state of the DataSetWriter.
dataSetWriterld UInt16 Defined in 6.2.3.1.

dataSetFieldContentMask

DataSetFieldContentMask

Defined in 6.2.3.2.

keyFrameCount UInt32 Defined in 6.2.3.3.

dataSetName String The name of the corresponding
PublishedDataSet.

dataSetWriterProperties KeyValuePair(] Defined in 6.2.3.4.

transportSettings

DataSetWriterTransportDataType

Transport mapping specific DataSetWriter

parameters. The abstract base type is defined in
6.2.3.5.2. The concrete subtypes are defined in
the sections for transport mapping specific
parameters.

messageSettings DataSetWriterMessageDataType DataSetMessage mapping specific
DataSetWriter parameters. The abstract base
type is defined in 6.2.3.5.3. The concrete
subtypes are defined in the sections for

message mapping specific parameters.

6.2.3.5.2

This Structure DataType is an abstract base type for transport mapping specific DataSetWriter
parameters. The abstract DataType does not define fields.

DataSetWriterTransportDataType

The DataSetWriterTransportDataType Structure representation in the AddressSpace is defined
in Table 18.

Table 18 — DataSetWriterTransportDataType Definition

Attributes Value

BrowseName DataSetWriterTransportDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract | Description

Subtype of Structure defined in OPC 10000-5.

HasSubtype | DataType | BrokerDataSetWriterTransportDataType | FALSE | Defined in 6.4.2.3.7.
6.2.3.5.3 DataSetWriterMessageDataType

This Structure DataType is an abstract base type for message mapping specific DataSetWriter
parameters. The abstract DataType does not define fields.

The DataSetWriterMessageDataType Structure representation in the AddressSpace is defined
in Table 19.

Table 19 — DataSetWriterMessageDataType Structure

Attributes Value

BrowseName DataSetWriterMessageDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType UadpDataSetWriterMessageDataType FALSE Defined in 6.3.1.2.6.
HasSubtype DataType JsonDataSetWriterMessageDataType FALSE Defined in 6.3.2.2.2.




Release 1.04 34 OPC 10000-14: PubSub

6.2.4 Shared PubSubGroup Parameters
6.2.4.1 General
The parameters are shared between WriterGroup and ReaderGroup.

The parameters are related to PubSub NetworkMessage security. See 5.4.3 for an introduction
of PubSub security and 8 for the definition of the PubSub Security Key Service.

6.2.4.2 SecurityMode

The SecurityMode indicates the level of security applied to the NetworkMessages published by
a WriterGroup or received by a ReaderGroup. The MessageSecurityMode DataType is defined
in OPC 10000-4.

6.2.4.3 SecurityGroupld

The SecurityGroupld with DataType String is the identifier for a SecurityGroup in the Security
Key Server. It is unique within a SKS.

The parameter is null if the SecurityMode is NONE_1.

If the SecurityMode is not NONE_1 the SecurityGroupld identifies the SecurityGroup. The
SecurityGroup defines the SecurityPolicy and the security keys used for the NetworkMessage
security. The PubSubGroup defines the SecurityMode for the NetworkMessages sent by the

group.
6.2.4.4 SecurityKeyServices

SecurityKeyServices is an array of the DataType EndpointDescription and defines one or more
Security Key Servers (SKS) that manage the security keys for the SecurityGroup assigned to
the PubSubGroup. The EndpointDescription DataType is defined in OPC 10000-4.

The parameter is null if the SecurityMode is NONE_1.

Each element in the array is an Endpoint for an SKS that can supply the security keys for the
SecurityGroupld. Multiple Endpoints exist because an SKS may support multiple transport
profiles and/or may have multiple redundant instances. The UserTokenPolicies in each
Endpoint specify what user credentials are required. OPC 10000-4 describes UserTokenPolicies
in more detail.

6.2.4.5 MaxNetworkMessageSize

The MaxNetworkMessageSize with DataType UInt32 indicates the maximum size in bytes for
NetworkMessages created by the WriterGroup. It refers to the size of the complete
NetworkMessage including padding and signature without any additional headers added by the
transport protocol mapping. If the size of a NetworkMessage exceeds the
MaxNetworkMessageSize, the behaviour depends on the message mapping.

The transport protocol mappings defined in 7.3 may define restrictions for the maximum value
of this parameter.

Note 1: The value for the MaxNetworkMessageSize should be configured in a way that ensures that
NetworkMessages together with additional headers added by the transport protocol are still smaller or equal than the
transport protocol MTU.

6.2.4.6 GroupProperties

The GroupProperties parameter is an array of DataType KeyValuePair that specifies additional
properties for the configured group. The KeyValuePair DataType is defined in OPC 10000-5 and
consists of a QualifiedName and a value of BaseDataType.

The mapping of the name and value to concrete functionality may be defined by transport
protocol mappings, future versions of this specification or vendor specific extensions.
6.2.4.7 PubSubGroup Structure

This Structure DataType is an abstract base type for PubSubGroups. The
PubSubGroupDataType is formally defined in Table 20.



OPC 10000-14: PubSub 35 Release 1.04

Table 20 — PubSubGroupDataType Structure

Name Type Description

PubSubGroupDataType Structure
name String The name of the PubSubGroup.
enabled Boolean The enabled state of the PubSubGroup.
securityMode MessageSecurityMode Defined in 6.2.4.2.
securityGroupld String Defined in 6.2.4.3.
securityKeyServices EndpointDescription[] Defined in 6.2.4.4.
maxNetworkMessageSize Uint32 Defined in 6.2.4.5.
groupProperties KeyValuePair[] Defined in 6.2.4.6.

The PubSubGroupDataType Structure representation in the AddressSpace is defined in Table
21.

Table 21 — PubSubGroupDataType Definition

Attributes Value

BrowseName PubSubGroupDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType WriterGroupDataType FALSE Defined in 6.2.5.6.1.
HasSubtype DataType ReaderGroupDataType FALSE Defined in 6.2.7.2.1.

6.2.5 WriterGroup Parameters
6.2.5.1 WriterGroupld

The WriterGroupld with DataType UInt16 is an identifier for the WriterGroup and shall be unique
across all WriterGroups for a Publisherld. All values, except for 0, are valid. The value 0 is
defined as null value.

6.2.5.2 Publishinginterval

The Publishinglnterval with the DataType Duration defines the interval in milliseconds for
publishing NetworkMessages and the embedded DataSetMessages created by the related
DataSetWriters.

In the case of Event based DataSets, this may result in zero to many DataSetMessages
produced for one PublishedDataSet in a Publishinglnterval. All Events that occur between two
Publishinglntervals shall be buffered until the next NetworkMessage is sent. If the number of
Events exceeds the buffer capability of the DataSetWriter, an Event of type
EventQueueOverflowEventType is inserted into the buffer.

The Duration DataType is a subtype of Double and allows configuration of intervals smaller
than a millisecond.
6.2.5.3 KeepAliveTime

The KeepAliveTime with DataType Duration defines the time in milliseconds until the Publisher
sends a keep alive DataSetMessage in the case where no DataSetMessage was sent in this
period by a DataSetWriter. The minimum value shall equal the Publishinginterval.

6.2.5.4 Priority

The Priority with DataType Byte defines the relative priority of the WriterGroup to all other
WriterGroups across all PubSubConnections of the Publisher.

If more than one WriterGroup needs to be processed, the priority number defines the order of
processing. The highest priority is processed first.

The lowest priority is zero and the highest is 255.



Release 1.04 36 OPC 10000-14: PubSub

6.2.5.5 Localelds

The Localelds with DataType Localeld defines a list of locale ids in priority order for localized
strings for all DataSetWriters in the WriterGroup. The first Localeld in the list has the highest
priority.

If the Publisher sends a localized String, the Publisher shall send the translation with the highest
priority that it can. If it does not have a translation for any of the locales identified in this list,
then it shall send the String value that it has and include the Localeld with the String. If no
locale id is configured, the Publisher shall use any that it has. See OPC 10000-3 for more detalil
on Localeld.

6.2.5.6 WriterGroup Structures

6.2.5.6.1 WriterGroupDataType

This Structure DataType is used to represent the configuration parameters for WriterGroups. It
is a subtype of PubSubGroupDataType defined in 0.

The WriterGroupDataType is formally defined in Table 22.

Table 22 — WriterGroupDataType Structure

Name Type Description
WriterGroupDataType Structure
writerGroupld UInt16 Defined in 6.2.5.1.
publishinglnterval Duration Defined in 6.2.5.2.
keepAliveTime Duration Defined in 6.2.5.3.
priority Byte Defined in 6.2.5.4.
localelds String[] Defined in 6.2.5.5.
transportSettings WriterGroupTransportDataType Transport mapping specific WriterGroup

parameters. The abstract base type is defined
in 6.2.5.6.2. The concrete subtypes are
defined in the sections for transport mapping
specific parameters.

messageSettings WriterGroupMessageDataType NetworkMessage mapping specific
WriterGroup parameters. The abstract base
type is defined in 6.2.5.6.3. The concrete
subtypes are defined in the sections for
message mapping specific parameters.
dataSetWriters DataSetWriterDataType[] The DataSetWriters contained in the
WriterGroup. The DataSetWriter parameters
are defined in 6.2.3.

The WriterGroupDataType Structure representation in the AddressSpace is defined in Table
23.

Table 23 — WriterGroupDataType Definition

Attributes Value

BrowseName WriterGroupDataType

IsAbstract False

References NodeClass | BrowseName | IsAbstract
Subtype of PubSubGroupDataType defined in 0.

6.2.5.6.2 WriterGroupTransportDataType
This Structure DataType is an abstract base type for transport mapping specific WriterGroup
parameters. The abstract DataType does not define fields.

The WriterGroupTransportDataType Structure representation in the AddressSpace is defined
in Table 24.



OPC 10000-14: PubSub 37 Release 1.04

Table 24 — WriterGroupTransportDataType Definition

Attributes Value

BrowseName | WriterGroupTransportDataType

IsAbstract True

References | NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType DatagramWriterGroupTransportDataType FALSE Defined in 6.4.1.2.3.
HasSubtype DataType BrokerWriterGroupTransportDataType FALSE Defined in 6.4.2.2.6.

6.2.5.6.3 WriterGroupMessageDataType

This Structure DataType is an abstract base type for message mapping specific WriterGroup
parameters. The abstract DataType does not define fields.

The WriterGroupMessageDataType Structure representation in the AddressSpace is defined in
Table 25.

Table 25 — WriterGroupMessageDataType Structure

Attributes Value

BrowseName WriterGroupMessageDataType

IsAbstract True

References NodeClass [ BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType UadpWriterGroupMessageDataType | FALSE Defined in 6.3.1.1.7.
HasSubtype DataType JsonWriterGroupMessageDataType FALSE Defined in 6.3.2.1.2.

6.2.6 PubSubConnection Parameters
6.2.6.1 Publisherld

The Publisherld is a unique identifier for a Publisher within a Message Oriented Middleware. It
can be included in sent NetworkMessage for identification or filtering. The value of the Publisherld
is typically shared between PubSubConnections but the assignment of the Publisherld is vendor
specific.

The Publisherld parameter is only relevant for the Publisher functionality inside a
PubSubConnection. The filter setting on the Subscriber side is contained in the DataSetReader
parameters.

Valid DataTypes are Ulnteger and String.

6.2.6.2 TransportProfileUri

The TransportProfileUri parameter with DataType String indicates the transport protocol
mapping and the message mapping used.

The possible TransportProfileUri values are defined as URI of the transport protocols defined
as PubSub transport Facet in OPC 10000-7.

6.2.6.3 Address

The Address parameter contains the network address information for the communication
middleware. The different Structure DataTypes used to represent the Address are defined in
6.2.6.5.3.

6.2.6.4 ConnectionProperties

The ConnectionProperties parameter is an array of DataType KeyValuePair specifies additional
properties for the configured connection. The KeyValuePair type is defined in OPC 10000-5 and
consists of a QualifiedName and a value of BaseDataType.

The mapping of the namespace, name, and value to concrete functionality may be defined by
transport protocol mappings, future versions of this specification or vendor specific extensions.



Release 1.04

6.2.6.5
6.2.6.5.1

This Structure DataType is used to represent

38

PubSubConnection Structure
PubSubConnectionDataType

OPC 10000-14: PubSub

the configuration parameters for

PubSubConnections. The PubSubConnectionDataType is formally defined in Table 26.

Table 26 — PubSubConnectionDataType Structure

Name Type Description
PubSubConnectionDataType Structure

name String The name of the PubSubConnection.

enabled Boolean The enabled state of the PubSubConnection.

publisherld BaseDataType Defined in 6.2.6.1.

transportProfileUri String Defined in 6.2.6.2.

address NetworkAddressDataType Defined in 6.2.6.3.
The NetworkAddressDataType is defined in
6.2.6.5.3.

connectionProperties KeyValuePair[] Defined in 6.2.6.4.

transportSettings ConnectionTransportDataType Transport mapping specific
PubSubConnection parameters. The abstract
base type is defined in 6.2.6.5.2. The concrete
subtypes are defined in the sections for
transport mapping specific parameters.

writerGroups WriterGroupDataType[] The WriterGroups contained in the
PubSubConnection. The WriterGroup is
defined in 6.2.5.

readerGroups ReaderGroupDataType[] The ReaderGroups contained in the
PubSubConnection. The ReaderGroup is
defined in 6.2.7.

6.2.6.5.2 ConnectionTransportDataType

This Structure DataType is an abstract base

type for transport mapping specific

PubSubConnection parameters. The abstract DataType does not define fields.

The ConnectionTransportDataType Structure representation in the AddressSpace is defined in

Table 27.
Table 27 — ConnectionTransportDataType Definition
Attributes Value
BrowseName ConnectionTransportDataType
IsAbstract True
References NodeClass | BrowseName | IsAbstract
Subtype of Structure defined in OPC 10000-5.

6.2.6.5.3

NetworkAddressDataType

Subtypes of this abstract Structure DataType are used to represent network address
information. The NetworkAddressDataType is formally defined in Table 28.

Table 28 — NetworkAddressDataType Structure

Name Type Description
NetworkAddressDataType Structure
networklinterface String The name of the network interface used for

the communication relation.

The NetworkAddressDataType Structure representation in the AddressSpace is defined in

Table 29.



OPC 10000-14: PubSub 39 Release 1.04

Table 29 — NetworkAddressDataType Definition

Attributes Value

BrowseName NetworkAddressDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype | DataType | NetworkAddressUrlDataType | False | Defined in 6.2.6.5.4.

6.2.6.5.4 NetworkAddressUrIDataType

This Structure DataType is used to represent network address information in the form of an
URL String. The NetworkAddressUrIDataType is formally defined in Table 30.

Table 30 — NetworkAddressUrIDataType Structure

Name Type Description
NetworkAddressUrIDataType Structure
url String The address string for the communication
relation in the form on an URL String.

The NetworkAddressUrIDataType Structure representation in the AddressSpace is defined in
Table 31.

Table 31 — NetworkAddressUrIDataType Definition

Attributes Value

BrowseName NetworkAddressUrIDataType

IsAbstract False

References NodeClass | BrowseName | IsAbstract
Subtype of NetworkAddressDataType defined in 6.2.6.5.3.

6.2.7 ReaderGroup Parameters

6.2.7.1 General

The ReaderGroup does not add parameters to the shared PubSubGroup parameters.

The ReaderGroup is used to group a list of DataSetReaders. It is not symmetric to a

WriterGroup and it is not related to a particular NetworkMessage. The NetworkMessage related
filter settings are on the DataSetReaders.

6.2.7.2 ReaderGroup Structures
6.2.7.2.1 ReaderGroupDataType

This Structure DataType is used to represent the configuration parameters for ReaderGroups.
The ReaderGroupDataType is formally defined in Table 32.

Table 32 — ReaderGroupDataType Structure

Name Type Description
ReaderGroupDataType Structure
transportSettings ReaderGroupTransportDataType Transport mapping specific ReaderGroup

parameters. The abstract base type is defined
in 6.2.7.2.2. The concrete subtypes are
defined in the sections for transport mapping
specific parameters.

messageSettings ReaderGroupMessageDataType NetworkMessage mapping specific
ReaderGroup parameters. The abstract base
type is defined in 6.2.7.2.3. The concrete
subtypes are defined in the sections for
message mapping specific parameters.
dataSetReaders DataSetReaderDataType[] The DataSetReaders contained in the
ReaderGroup. The DataSetReader is defined
in 6.2.8.




Release 1.04

40

OPC 10000-14: PubSub

The ReaderGroupDataType Structure representation in the AddressSpace is defined in Table

33.
Table 33 — ReaderGroupDataType Definition
Attributes Value
BrowseName ReaderGroupDataType
IsAbstract False
References NodeClass | BrowseName | IsAbstract
Subtype of PubSubGroupDataType defined in 0.
6.2.7.2.2 ReaderGroupTransportDataType

This Structure DataType is an abstract base type for transport mapping specific ReaderGroup
parameters. The abstract DataType does not define fields.

The ReaderGroupTransportDataType Structure representation in the AddressSpace is defined
in Table 34.

Table 34 — ReaderGroupTransportDataType Definition

Attributes Value

BrowseName ReaderGroupTransportDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract
Subtype of Structure defined in OPC 10000-5.

6.2.7.2.3

This Structure DataType is an abstract base type for message mapping specific ReaderGroup
parameters. The abstract DataType does not define fields.

ReaderGroupMessageDataType

The ReaderGroupMessageDataType Structure representation in the AddressSpace is defined
in Table 35.

Table 35 — ReaderGroupMessageDataType Structure

Attributes Value

BrowseName ReaderGroupMessageDataType

IsAbstract True

References NodeClass [ BrowseName | IsAbstract
Subtype of Structure defined in OPC 10000-5.

6.2.8 DataSetReader Parameters
6.2.8.1 Publisherld

The parameter Publisherld defines the Publisher to receive NetworkMessages from.

If the value is null, the parameter shall be ignored and all received NetworkMessages pass the
Publisherld filter.

Valid DataTypes are Ulnteger and String.

6.2.8.2

The parameter WriterGroupld with DataType UInt16 defines the identifier of the corresponding
WriterGroup.

WriterGroupld

The default value 0 is defined as null value, and means this parameter shall be ignored.

6.2.8.3 DataSetWriterld

The parameter DataSetWriterld with DataType UIntl16 defines the DataSet selected in the
Publisher for the DataSetReader.



OPC 10000-14: PubSub 41 Release 1.04

If the value is 0 (null), the parameter shall be ignored and all received DataSetMessages pass
the DataSetWriterld filter.
6.2.8.4 DataSetMetaData

The parameter DataSetMetaData provides the information necessary to decode
DataSetMessages from the Publisher. If the DataSetMetaData changes in the Publisher and
the MajorVersion was changed, the DataSetReader needs an update of the DataSetMetaData
for further operation. If the update cannot be retrieved in the duration of the
MessageReceiveTimeout, the State of the DataSetReader shall change to Error_3. The related
PublishedDataSet is defined in 6.2.2. The DataSetMetaDataType is defined in 6.2.2.1.2. The
options for retrieving the update of the DataSetMetaData are described in 5.2.3.

6.2.8.5 DataSetFieldContentMask

The parameter DataSetFieldContentMask with DataType DataSetFieldContentMask indicates
the fields of a DataValue included in the DataSetMessages.

The DataSetFieldContentMask DataType is defined in 6.2.3.2.

6.2.8.6 MessageReceiveTimeout

The parameter MessageReceiveTimeout is the maximum acceptable time between two
DataSetMessages. If there is no DataSetMessage received within this period, the
DataSetReader State shall be changed to Error_3 until the next DataSetMessage is received.
The DataSetMessages can be data or keep alive messages.

The MessageReceiveTimeout is related to the Publisher side parameters Publishinginterval,
KeepAliveTime and KeyFrameCount.

6.2.8.7 SecurityMode
The parameter is defined in 6.2.4.2.

This parameter overwrites the corresponding setting on the ReaderGroup if the value is not
INVALID_O.

6.2.8.8 SecurityGroupld
The parameter is defined in 6.2.4.3.

The parameter shall be null if the SecurityMode is INVALID_O.

6.2.8.9 SecurityKeyServices
The parameter is defined in 6.2.4.4.

The parameter shall be null if the SecurityMode is INVALID_O.

6.2.8.10 DataSetReaderProperties

The DataSetReaderProperties parameter is an array of DataType KeyValuePair that specifies
additional properties for the configured DataSetReader. The KeyValuePair DataType is defined
in OPC 10000-5 and consists of a QualifiedName and a value of BaseDataType.

The mapping of the name and value to concrete functionality may be defined by transport
protocol mappings, future versions of this specification or vendor specific extensions.

6.2.8.11 DataSetReader Structure

6.2.8.11.1 DataSetReaderDataType

This Structure DataType is used to represent the DataSetReader parameters. The
DataSetReaderDataType is formally defined in Table 36.



Release 1.04 42

OPC 10000-14: PubSub

Table 36 — DataSetReaderDataType Structure

Name Type Description

DataSetReaderDataType Structure
name String The name of the DataSetReader.
enabled Boolean The enabled state of the DataSetReader.
publisherld BaseDataType Defined in 6.2.8.1.
writerGroupld UInt16 Defined in 6.2.8.2.
dataSetWriterld Uint16 Defined in 6.2.8.3.
dataSetMetaData DataSetMetaDataType Defined in 6.2.8.4.

dataSetFieldContentMask

DataSetFieldContentMask

Defined in 6.2.8.5.

messageReceiveTimeout

Duration

Defined in 6.2.8.6.

securityMode MessageSecurityMode Defined in 6.2.8.7.

securityGroupld String Defined in 6.2.8.8.

securityKeyServices EndpointDescription[] Defined in 6.2.8.9.

dataSetReaderProperties KeyValuePair[] Defined in 6.2.8.10.

transportSettings DataSetReaderTransportDataType Transport specific DataSetReader parameters.

The abstract base type is defined in 6.2.8.11.2.
The concrete subtypes are defined in the sections
for transport mapping specific parameters

messageSettings DataSetReaderMessageDataType

DataSetMessage mapping specific DataSetReader
parameters. The abstract base type is defined in
6.2.8.11.3. The concrete subtypes are defined in
the sections for message mapping specific
parameters.

subscribedDataSet SubscribedDataSetDataType The SubscribedDataSet specific parameters. The
abstract base type and the concrete subtypes are
defined 6.2.9.
6.2.8.11.2 DataSetReaderTransportDataType

This Structure DataType is an abstract base type for transport specific DataSetReader
parameters. The DataSetReaderTransportDataType is formally defined in Table 37.

Table 37 — DataSetReaderTransportDataType Structure

Name Type

Description

Structure

DataSetReaderTransportDataType

The DataSetReaderTransportDataType Structure representation in the AddressSpace is

defined in Table 38.

Table 38 — DataSetReaderTransportDataType Definition

Attributes Value

BrowseName DataSetReaderTransportDataType

IsAbstract True

References NodeClass | BrowseName [ IsAbstract [ Description

Subtype of Structure defined in OPC 10000-5.

HasSubtype | DataType

| BrokerDataSetReaderTransportDataType I FALSE

| Defined in 6.4.2.4.6.

6.2.8.11.3 DataSetReaderMessageDataType

This Structure DataType is an abstract base type for message mapping specific DataSetReader
parameters. The DataSetReaderMessageDataType is formally defined in Table 39.

Table 39 — DataSetReaderMessageDataType Structure

Name Type

Description

DataSetReaderMessageDataType Structure

The DataSetReaderMessageDataType Structure representation in the AddressSpace is defined

in Table 40.




OPC 10000-14: PubSub 43 Release 1.04

Table 40 — DataSetReaderMessageDataType Definition

Attributes Value

BrowseName | DataSetReaderMessageDataType

IsAbstract True

References | NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType UadpDataSetReaderMessageDataType | FALSE Defined in 6.3.1.3.10.
HasSubtype DataType JsonDataSetReaderMessageDataType FALSE Defined in 6.3.2.3.3.

6.2.9 SubscribedDataSet Parameters
6.2.9.1 SubscribedDataSetDataType

This Structure DataType is an abstract base type for SubscribedDataSet parameters. The
SubscribedDataSetDataType is formally defined in Table 41.

Table 41 — SubscribedDataSetDataType Structure

Name Type Description
SubscribedDataSetDataType Structure

The SubscribedDataSetDataType Structure representation in the AddressSpace is defined in
Table 42.

Table 42 — SubscribedDataSetDataType Definition

Attributes Value

BrowseName SubscribedDataSetDataType

IsAbstract True

References NodeClass | BrowseName | IsAbstract | Description
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType TargetVariablesDataType FALSE Defined in 6.2.9.2.2.
HasSubtype DataType SubscribedDataSetMirrorDataType FALSE Defined in 6.2.9.3.3.

6.2.9.2 TargetVariables
6.2.9.2.1 General

The SubscribedDataSet option TargetVariables defines a list of Variable mappings between
received DataSet fields and target Variables in the Subscriber AddressSpace. The
FieldTargetDataType is defined in 6.2.9.2.3. Target Variables shall only be used once within
the same TargetVariables list.

6.2.9.2.2 TargetVariablesDataType

This Structure DataType is used to represent TargetVariables specific parameters. It is a
subtype of the SubscribedDataSetDataType defined in 6.2.9.1.

The TargetVariablesDataType is formally defined in Table 43.

Table 43 — TargetVariablesDataType Structure

Name Type Description
TargetVariablesDataType Structure
targetVariables FieldTargetDataType[] Defined in 6.2.9.2.1.

6.2.9.2.3 FieldTargetDataType

This DataType is used to provide the metadata for the relation between a field in a
DataSetMessage and a target Variable in a DataSetReader. The FieldTargetDataType is
formally defined in Table 44.




Release 1.04

44 OPC 10000-14: PubSub

Table 44 — FieldTargetDataType Structure

Name

Type

Description

FieldTargetDataType

Structure

dataSetFieldld

Guid

The unique ID of the field in the DataSet. The fields and their
unique IDs are defined in the DataSetMetaData Structure.

receiverindexRange

NumericRange

Index range used to extract parts of an array out of the received
data.

It is used to identify a single element of an array, or a single range
of indexes for arrays for the received DataSet field. If a range of
elements is specified, the values are returned as a composite. The
first element is identified by index O (zero). The NumericRange
type is defined in OPC 10000-4.

This parameter is null if the specified Attribute is not an array.
However, if the specified Attribute is an array, and this parameter
is null, then the complete array is used.

The resulting data array size of this NumericRange shall match the
resulting data array size of the writelndexRange NumericRange
setting.

targetNodeld

Nodeld

The Nodeld of the Variable where to write the received
DataSetMessage field value to.

attributeld

Integerld

Id of the Attribute to write e.g. the Value Attribute. This shall be a
valid Attributeld.

The Attributes are defined in OPC 10000-3. The Integerld
DataType is defined in OPC 10000-4. The Integerlds for the
Attributes are defined in OPC 10000-6.

writeIndexRange

NumericRange

The index range used for writing received data to the target node.
It is used to identify a single element of an array, or a single range
of indexes for arrays for the write operation to the target Node. If a
range of elements is specified, the values are written as a
composite. The first element is identified by index O (zero). The
NumericRange type is defined in OPC 10000-4.

This parameter is null if the specified Attribute is not an array.
However, if the specified Attribute is an array, and this parameter
is null, then the complete array is used.

overrideValueHandling

OverrideValueHandling

The value is used to define the override value handling behaviour if
the State of the DataSetReader is not Operational_2 or if the
corresponding field in the DataSet contains a Bad StatusCode.
The handling of the OverrideValue in different scenarios is defined
in 6.2.10.

The OverrideValueHandling enumeration DataType is defined in
6.2.9.2.4.

overrideValue

Variant

This value is used if the OverrideValueHandling is set to
OverrideValue_2 and the State of the DataSetReader is not
Operational_2 or if the corresponding field in the DataSet contains
a Bad StatusCode.

The handling of the OverrideValue in different scenarios is defined
in 6.2.10.

This Value shall match the DataType of the target Node.

6.2.9.2.4

OverrideValueHandling

The OverrideValueHandling is an enumeration that specifies the possible options for the
handling of Override values. The possible enumeration values are described in Table 45.

Table 45 — OverrideValueHandling Values

Value

Description

Disabled 0

The override value handling is disabled.

LastUsableValue_1

In the case of an error, the last usable value is used. If no last useable value is
available, the default value for the data type is used.

OverrideValue_2

In the case of an error, the configured override value is used.

6.2.9.3
6.2.9.3.1

SubscribedDataSetMirror

ParentNodeName

This parameter with DataType String defines the BrowseName and DisplayName of the parent
Node for the Variables representing the fields of the subscribed DataSet.




OPC 10000-14: PubSub 45 Release 1.04

6.2.9.3.2 RolePermissions

This parameter with DataType RolePermissionType defines the value of the RolePermissions
Attribute to be set on the parent Node. This value is also used as RolePermissions for all
Variables of the DataSet mirror.

6.2.9.3.3 SubscribedDataSetMirrorDataType

This Structure DataType is used to represent SubscribedDataSetMirror specific parameters. It
is a subtype of the SubscribedDataSetDataType defined in 6.2.9.1.

The SubscribedDataSetMirrorDataType is formally defined in Table 46.

Table 46 — SubscribedDataSetMirrorDataType Structure

Name Type Description
SubscribedDataSetMirrorDataType Structure
parentNodeName String Defined in 6.2.9.3.1.
rolePermissions RolePermissionType[] Defined in 6.2.9.3.2.

6.210 Information flow and status handling

The configuration model defines different parameters that influence the information flow from
Publisher to Subscriber in the case of a Bad Value Status or other error situations. Figure 22
depicts the parameters and the information flow inside a Publisher and inside a Subscriber.

The parameters and behaviour relevant for the encoding of a DataSetMessage on the Publisher
side and the decoding of the DataSetMessage on the Subscriber side are defined in 6.2.3.1
together with the DataSetFieldContentMask.

Substitute Publisher Subscriber Override Value Handing
Value Disabled_0 Overwrite LastUsableValue_1
Controlled by field encoding Value_2

defined in DataSetFieldContentMask

Substitute Override value
value handling
configured
Value Status
Value Status

Source Reader State Target
Value - -~ Value
Status Dat:laSet j‘> DataSet :‘I> DataSet O \C (Status)
" Writer Message Reader 3
TimeStamp Value Value (TimeStamp)
Status (Status)
TimeStamp (TimeStamp)
Value will be replaced with
Substitute value and status is set DataSet Decoded DataSet . .
to Uncertain_SubstituteValue if in Publisher Legend in Subscriber Value will be replaced with
Status is Bad and Substitute Legend Override value and status is set
value is configured Inl Condition to Good_LocalOverride if Status
=0 is Bad or Reader state is Error
\ and Override value is configured
In2 Out
—)
Indicates a switch with different
inputs based on the condition

Figure 22 — PubSub Information Flow

The mapping of source value and status to the DataSet in the Publisher depends on the
substitute value. The dependencies are defined in Table 47.




Release 1.04

46

OPC 10000-14: PubSub

Table 47 — Source to message input mapping

Source Substitute DataSet Publisher side

Value Status® Value Value Status®

Value 1 Good_* Value 2 Value 1 Good_*

Value 1 Uncertain_* Value 1 Uncertain_*

Null Bad_* Value 2 Uncertain_SubstituteValue

Value 1 Good_* Null Value 1 Good_*

Value 1 Uncertain_* Value 1 Uncertain_*

Null Bad_* Null Bad_*

Note 1: If no specific StatusCode is used, the grouping into severity Good, Uncertain or Bad is used.
In this case, the resulting Status matches the input Status.

The mapping of the decoded DataSet on the Subscriber side to the value and status of the
target Variable depends on the override value. The dependencies are defined in Table 48.

Table 48 — Message output to target mapping

Decoded DataSet Override Value Override Reader Target

Subscriber Handling Enum Value State

Value Status® Value Status®

Value 1 | Good_* OverrideValue_2 Value 2 Operational_2 | Value 1 Good_*

Value 1 | Uncertain_* Value 1 Uncertain_*

Null Bad_* Value 2 Good_LocalOverride

Value 1 | Good_* LastUsableValue_1 Null Value 1 Good_*

Value 1 | Uncertain_* Value 1 Uncertain_*

Null Bad_* Lastvalue® | Uncertain_LastUsableValue

Value 1 | Good_* Disabled_0 Null Value 1 Good_*

Value 1 | Uncertain_* Value 1 Uncertain_*

Null Bad_* Null Bad_*

No message received. OverrideValue_2 Value 2 Diabled_0 Value 2 Good_LocalOverride

The target values are LastUsableValue 1 | Null Paused_1 LastValue® | Uncertain_LastUsableValue

updated once after a Disabled_0 Null Null Bad_OutOfService

reader state change. OverrideValue_2 Value 2 Error_3 Value 2 Good_LocalOverride
LastUsableValue_1 | Null Lastvalue® | Uncertain_LastUsableValue
Disabled_0 Null Null Bad_NoCommunication

Note 1:

In this case, the resulting Status matches the input Status.

Note 2:

If no specific StatusCode is used, the grouping into severity Good, Uncertain or Bad is used.

The last value is either the last received value or the default value for the data type if there was never a value
received before.

6.2.11

PubSubConfigurationDataType

This Structure DataType is used to represent the PubSub configuration of an OPC UA
Application. The PubSubConfigurationDataType is formally defined in Table 49.

Table 49 — PubSubConfigurationDataType Structure

Name

Type

Description

PubSubConfigurationDataType

Structure

publishedDataSets

PublishedDataSetDataType[]

The PublishedDataSets contained in the configuration.
The PublishedDataSet is defined in 6.2.2.

connections PubSubConnectionDataType[] | The PubSubConnections contained in the configuration.
The PubSubConnection is defined in 6.2.6.
The connection includes WriterGroups and
ReaderGroups.

enabled Boolean The enabled state of the PubSub configuration.

If the PubSub configuration is stored in a file, the UABinaryFileDataType and the related

definitions

in A.2 shall

be used

to encode

the file content. The values of the

UABinaryFileDataType structure are described in Table 50.



OPC 10000-14: PubSub 47 Release 1.04

Table 50 — PubSubConfiguration File Content

Field Type Value
namespaces String[] null
The DataTypes used for configuration are defined in the
OPC UA namespace.
StructureDescription[] null
DataTypes used for configuration are defined by OPC UA.

structureDataTypes

null
DataTypes used for configuration are defined by OPC UA.

enumDataTypes EnumDescription[]

null

SimpleTypeDescription[]
DataTypes used for configuration are defined by OPC UA.

simpleDataTypes
schemalocation String null
fileHeader KeyValuePair[] null
body BaseDataType PubSubConfigurationDataType Structure
The PubSub configuration represented by the
PubSubConfigurationDataType.

6.3 Message Mapping Configuration Parameters

6.3.1 UADP Message Mapping
6.3.1.1 UADP NetworkMessage Writer

6.3.1.1.1 Relationship of Timing Parameters
The Publishinginterval, the SamplingOffset the PublishingOffset and the timestamp in the

NetworkMessage header shall use the same time base.
If an underlying network provides a synchronized global clock, this clock shall be used as the
time base for the Publisher and Subscriber.

The beginning of a Publishinginterval shall be a multiple of the PublishingInterval relative to the
start of the time base. The reference start time of the Publishsinglnterval can be calculated by

using the following formula:
Start of periodic execution =

current time + PublishinglInterval — (current time % Publishinglnterval)

Current time is the number of nanoseconds since the start of epoch used by the reference clock

Publishinglnterval is the duration in nanoseconds.
Start of periodic execution is the number of nanoseconds since the start of epoch which is the
next possible start of a PublishingInterval.

Figure 23 shows an example how to select the possible start of a Publishinglnterval.

Possible start of the periodic publisher/
subscriber execution

Publishing ; . .
e nterval g
1 S dimeb
) . » ) Y *. \A. ime base
| ) T 7 °°°°=° / T v v )
1 2 xX+1 X+2 X+3

Figure 23 — Start of the periodic publisher execution

The different timing offsets inside a Publishinginterval cycle on Publisher and Subscriber side
are shown in Figure 24. The SamplingOffset and PublishingOffset are defined as parameters
of the UADP WriterGroup. The ReceiveOffset and the ProcessingOffset are defined as

parameters of the UADP DataSetReader in 6.3.1.3.



Release 1.04 48 OPC 10000-14: PubSub

DataSource (Sensor or Information Space)

‘l’ Reference point for the SamplingOffset

Publisher Application TimeStamp in NetworkMessage header

and SamplingOffset

Publisher ‘l’ o
Device represent the same point in time.
Publisher Network Stack Reference point for the PublishingOffset
Network Middleware
‘1’ Reference point for the ReceiveOffset
Subscriber Network Stack
Subscriber ¢
Device

Subscriber Application

\ 4

Reference point for the ProcessingOffset

DataSink (Actuator or Information Space)
Figure 24 — Timing offsets in a PublishingInterval

6.3.1.1.2 GroupVersion
The GroupVersion with DataType VersionTime reflects the time of the last layout change of the

content of the NetworkMessages published by the WriterGroup. The VersionTime DataType is
defined in OPC 10000-4. The GroupVersion changes when one of the following parameters is
modified:

e NetworkMessageContentMask of this WriterGroup

o Offset of any DataSetWriter in this WriterGroup

e MinorVersion of the DataSet of any DataSetWriter in this WriterGroup

e DataSetFieldContentMask of any DataSetWriter in this WriterGroup

e DataSetMessageContentMask of any DataSetWriter in this WriterGroup

o DataSetWriterld of any DataSetWriter in this WriterGroup

The GroupVersion is valid for all NetworkMessages resulting from this WriterGroup.

6.3.1.1.3 DataSetOrdering

The DataSetOrdering defines the ordering of the DataSetMessages in the NetworkMessages.
Possible values for DataSetOrdering are described in Table 51. The default value is
Undefined_0.

The DataSetOrderingType is an enumeration that specifies the possible options for the ordering
of DataSetMessages inside NetworkMessages. The possible enumeration values are described
in Table 51.

Table 51 — DataSetOrderingType Values

Value Description

Undefined 0 The ordering of DataSetMessages is not specified.

AscendingWriterld_1 DataSetMessages are ordered ascending by the value of their corresponding
DataSetWriterlds.

AscendingWriterldSingle_2 DataSetMessages are ordered ascending by the value of their corresponding
DataSetWriterlds and only one DataSetMessage is sent per NetworkMessage.




OPC 10000-14: PubSub 49 Release 1.04

If DataSetOrdering is Undefined_0 any ordering between DataSets and their distribution into
NetworkMessages is allowed. Ordering and distribution even may change between each
Publishinginterval. If DataSetOrdering is set to AscendingWriterld_1 the Publisher has to fill up
each NetworkMessage with DataSets with an ascending order of the related DataSetWriterlds
as long as the accumulated DataSet sizes will not exceed the MaxNetworkMessageSize. The
different options are shown in Figure 25.

Example of PubSubWriterGroup DS1  DS2 DS3 DS4  DS5 (Signing, padding and encryption blocks are not shown here)
with five DataSets:

PublishinglInterval n PublishingInterval n+1 PublishingInterval n+2
MaxNetworkMessageSize MaxNetworkMessageSjze MaxNetworkMessageSijze

DataS.etOrderlng: Nw-Msg 1 DS2 DS1 DS4| Nw-Msg 1 DS2 DS4 Nw-Msg 1 H DS2
Undefined

Nw-Msg 2 DS5 DS3 Nw-Msg 2 DS3 DS1 Nw-Msg 2 H Ds4 DS3
Number and size of e
each NetworkMessage e Nw-Msg 3 D IEisg H il
may vary between NetworkMessage
Publishinglintervals. 9 sy DS5

Header
D el Nw-Msg 1 DS1 DS2 Nw-Msg 1 DS1 DS2
a n W- W-

AscendingWriterld g g
Number and size of Nw-Msg 2 DS3 DS4 Nw-Msg 2 DS3 DS4
each NetworkMessage
is fixed as long sizes of Nw-Msg 3 DS5 Nw-Msg 3 DS5
DataSets do not change.
DataSethderlng = i Nw-Msg 1 DS1 Nw-Msg 1 DS1
AscendingWriterldSingle

Nw-Msg 2 DS2 Nw-Msg 2 Ds2

Nw-Msg 3 DEE Nw-Msg 3 DIsE)

Nw-Msg 4 Dy Nw-Msg 4 D

Nw-Msg 5 DS5 Nw-Msg 5 DSS

Figure 25 — DataSetOrdering and MaxNetworkMessageSize

6.3.1.1.4 NetworkMessageContentMask

The parameter NetworkMessageContentMask defines the optional header fields to be included
in the NetworkMessages produced by the WriterGroup. The DataType for the UADP
NetworkMessage mapping is UadpNetworkMessageContentMask.

The DataType UadpNetworkMessageContentMask is formally defined in Table 52.



Release 1.04 50 OPC 10000-14: PubSub

Table 52 — UadpNetworkMessageContentMask Values

Value Bit No. Description
Publisherld 0 The Publisherld is included in the NetworkMessages.
GroupHeader 1 The GroupHeader is included in the NetworkMessages.
WriterGroupld 2 The WriterGroupld field is included in the GroupHeader.

The flag is only valid if Bit 1 is set.
GroupVersion 3 The GroupVersion field is included in the GroupHeader.

The flag is only valid if Bit 1 is set.
NetworkMessageNumber | 4 The NetworkMessageNumber field is included in the GroupHeader.

The field is required if more than one NetworkMessage is needed to transfer all
DataSets of the group.
The flag is only valid if Bit 1 is set.

SequenceNumber 5 The SequenceNumber field is included in the GroupHeader.
The flag is only valid if Bit 1 is set.
PayloadHeader 6 The PayloadHeader is included in the NetworkMessages.
Timestamp 7 The sender timestamp is included in the NetworkMessages.
PicoSeconds 8 The sender PicoSeconds portion of the timestamp is included in the
NetworkMessages.
DataSetClassld 9 The DataSetClassld is included in the NetworkMessages.
PromotedFields 10 The PromotedFields are included in the NetworkMessages.

The UadpNetworkMessageContentMask representation in the AddressSpace is defined in
Table 53.

Table 53 — UadpNetworkMessageContentMask Definition

Attributes Value

BrowseName UadpNetworkMessageContentMask

IsAbstract False

References NodeClass | BrowseName I DataType
Subtype of UInt32 defined in OPC 10000-5.

HasProperty | Variable | OptionSetValues | LocalizedText []

6.3.1.1.5 SamplingOffset
The SamplingOffset with the DataType Duration defines the time in milliseconds for the offset
of creating the NetworkMessage in the Publishinginterval cycle.

Any negative value indicates that the optional parameter is not configured. In this case the
Publisher shall calculate the time before the PublishingOffset that is necessary to create the
NetworkMessage in time for sending at the PublishingOffset.

The Duration DataType is a subtype of Double and allows configuration of intervals smaller
than a millisecond.

6.3.1.1.6 PublishingOffset

The PublishingOffset is an array of DataType Duration that defines the time in milliseconds for
the offset in the Publishinginterval cycle of sending the NetworkMessage to the network.

The Duration DataType is a subtype of Double and allows configuration of intervals smaller
than a millisecond.

Figure 26 depicts how the different variations of PublishingOffset settings affect sending of
multiple NetworkMessages.



OPC 10000-14: PubSub 51 Release 1.04

PublishingOffset = 20

<« [

PublishingOffset = [20,40,50,70]

<« N [

PublishingOffset = [20,40,50]

<« (5 5 O 1 I

h > >c—>
A _A__«

10 20 30 40 50 60 70 80 90

PublishingInterval = 100

Figure 26 — PublishingOffset options for multiple NetworkMessages

If all DataSets of a group are transferred with a single NetworkMessage, the scalar value or the
first value in the array defines the offset for sending the NetworkMessage relative to the start
of the Publishinglinterval cycle. If the DataSets of a group are sent in a series of
NetworkMessages, the values in the array define the offsets of sending the NetworkMessages
relative to the start of the Publishinginterval cycle. If a scalar value is configured, the first
NetworkMessage is sent at the offset and the following NetworkMessages are sent immediately
after each other. If more NetworkMessages are available for sending than offset values in the
array, the offset for the remaining NetworkMessages are extrapolated from the last two offset
values in the array.

The Publishinginterval, the SamplingOffset the PublishingOffset and the timestamp in the
NetworkMessage header shall use the same time base.

6.3.1.1.7 UadpWriterGroupMessageDataType Structure

This Structure DataType is used to represent the UADP NetworkMessage mapping specific
WriterGroup parameters. It is a subtype of WriterGroupMessageDataType defined in 6.2.5.6.3.

The UadpWriterGroupMessageDataType is formally defined in Table 54.

Table 54 — UadpWriterGroupMessageDataType Structure

Name Type Description
UadpWriterGroupMessageDataType | Structure
groupVersion UInt32 Defined in 6.3.1.1.2.
dataSetOrdering DataSetOrderingType Defined in 6.3.1.1.3.
networkMessageContentMask UadpNetworkMessageContentMask | Defined in 6.3.1.1.4.
samplingOffset Duration Defined in 6.3.1.1.5.
publishingOffset Duration[] Defined in 6.3.1.1.6.

6.3.1.2 UADP DataSetMessage Writer
6.3.1.2.1 General

The configuration of the DataSetWriters in a WriterGroup can result in a fixed NetworkMessage
layout where all DataSets have a static position between NetworkMessages.

In this case the parameters NetworkMessageNumber and DataSetOffset provide information
about the static position of the DataSetMessage in a NetworkMessage Subscribers can rely on.
If the value of one of the two parameters is 0, the position is not guaranteed to be static.



Release 1.04 52 OPC 10000-14: PubSub

Note 1: A Publisher can only provide valid values for the parameters NetworkMessageNumber and DataSetOffset if
the message mapping allows keeping the value for these Properties constant unless the configuration of the
WriterGroup is changed.

6.3.1.2.2 DataSetMessageContentMask

The DataSetMessageContentMask defines the flags for the content of the DataSetMessage
header. The UADP message mapping specific flags are defined by the
UadpDataSetMessageContentMask DataType.

The UadpDataSetMessageContentMask DataType is formally defined in Table 55.

Table 55 — UadpDataSetMessageContentMask Values

Value Bit No. Description

Timestamp 0 If this flag is set, a timestamp shall be included in the DataSetMessage header.

PicoSeconds 1 If this flag is set, a PicoSeconds timestamp field shall be included in the
DataSetMessage header. This flag is ignored if the HeaderTimestamp flag is not
set.

Status 2 If this flag is set, the DataSetMessage status is included in the DataSetMessage
header. The rules for creating the DataSetMessage status are defined in Table
16.

MajorVersion 3 If this flag is set, the ConfigurationVersion.MajorVersion is included in the
DataSetMessage header.

MinorVersion 4 If this flag is set, the ConfigurationVersion.MinorVersion is included in the
DataSetMessage header.

SequenceNumber 5 If this flag is set, the DataSetMessageSequenceNumber is included in the
DataSetMessage header.

The UadpDataSetMessageContentMask representation in the AddressSpace is defined in Table
56.

Table 56 — UadpDataSetMessageContentMask Definition

Attributes Value

BrowseName UadpDataSetMessageContentMask

IsAbstract False

References NodeClass | BrowseName | DataType
Subtype of UInt32 defined in OPC 10000-5.

HasProperty | Variable | OptionSetValues | LocalizedText []

6.3.1.2.3 ConfiguredSize

The parameter ConfiguredSize with the DataType UIntl6 defines the fixed size in bytes a
DataSetMessage uses inside a NetworkMessage. The default value is 0 and it indicates a
dynamic length. If a DataSetMessage would be smaller in size (e.g. because of the current
values that are encoded) the DataSetMessage is padded with bytes with value zero. In case it
would be larger, the Publisher shall set bit 0 of the DataSetFlags1 to false to indicate that the
DataSetMessage is not valid.

Note 1 to entry: The parameter ConfiguredSize can be used for different reasons. One reason is the reservation of
space inside a NetworkMessage by setting ConfiguredSize to a higher value than the assigned DataSet actually
requires. Modifications (e.g. extensions) of the DataSet would then not change the required bandwidth on the network
which reduces the risk of side effects. Another reason would be to maintain predictable network behaviour even when
using a volatile field DataTypes like String or ByteString.

6.3.1.2.4 NetworkMessageNumber

The parameter NetworkMessageNumber with the DataType UInt16 is a read-only parameter set
by the Publisher in the case of a fixed NetworkMessage layout. The default value is 0 and
indicates that the position of the DataSetMessage in a NetworkMessage is not fixed.

If the NetworkMessage layout is fixed and all DataSetMessages of a WriterGroup fit into one
single NetworkMessage the value of NetworkMessageNumber shall be 1. |If the
DataSetMessages of a WriterGroup are distributed or chunked over more than one
NetworkMessage the first NetworkMessage in a Publishinglnterval shall be generated with the
value 1, the following NetworkMessages shall be generated with incrementing



OPC 10000-14: PubSub 53 Release 1.04

NetworkMessageNumbers. To avoid a roll-over the number of NetworkMessages generated
from one WriterGroup within one Publishinglnterval is limited to 65535.
6.3.1.2.5 DataSetOffset

The parameter DataSetOffset with the DataType UIntl6 is a read-only parameter set by the
Publisher that specifies the offset in bytes inside a NetworkMessage at which the
DataSetMessage is located, relative to the beginning of the NetworkMessage. The default value
0 indicates that the position of the DataSetMessage in a NetworkMessage is not fixed.

6.3.1.2.6 UadpDataSetWriterMessageDataType Structure

This Structure DataType is used to represent UADP DataSetMessage mapping specific
DataSetWriter parameters. It is a subtype of the DataSetWriterMessageDataType defined in
6.2.3.5.3.

The UadpDataSetWriterMessageDataType is formally defined in Table 57.

Table 57 — UadpDataSetWriterMessageDataType Structure

Name Type Description
UadpDataSetWriterMessageDataType Structure
dataSetMessageContentMask UadpDataSetMessageContentMask Defined in 6.3.1.2.2.
configuredSize Uint16 Defined in 6.3.1.2.3.
networkMessageNumber Uint16 Defined in 6.3.1.2.4.
dataSetOffset Uint16 Defined in 6.3.1.2.5.

6.3.1.3 UADP DataSetMessage Reader
6.3.1.3.1 GroupVersion

The parameter GroupVersion with DataType VersionTime defines the expected value in the
field GroupVersion in the header of the NetworkMessage. The default value 0 is defined as null
value, and means this parameter shall be ignored.

6.3.1.3.2 NetworkMessageNumber

The parameter NetworkMessageNumber with DataType UIntl6 is the number of the
NetworkMessage inside a Publishinglnterval in which this DataSetMessage is published. The
default value 0 is defined as null value, and means this parameter shall be ignored.

6.3.1.3.3 DataSetOffset

The parameter DataSetOffset with DataType UInt16 defines the offset for the DataSetMessage
inside the corresponding NetworkMessage. The default value 0 is defined as null value, and
means this parameter shall be ignored.

6.3.1.3.4 DataSetClasslid

The parameter DataSetClassld with DataType Guid defines a DataSet class related filter. If the
value is null, the DataSetClassld filter is not applied.

6.3.1.3.5 NetworkMessageContentMask

The NetworkMessageContentMask with DataType UadpNetworkMessageContentMask
indicates the optional header fields included in the received NetworkMessages. The
UadpNetworkMessageContentMask DataType is defined in 6.3.1.1.4.

6.3.1.3.6 DataSetMessageContentMask

The DataSetMessageContentMask with the DataType UadpDataSetMessageContentMask
indicates the optional header fields included in the DataSetMessages.

The UadpDataSetMessageContentMask DataType is defined in 6.3.1.2.2.



Release 1.04 54 OPC 10000-14: PubSub

6.3.1.3.7

The Publishinginterval with DataType Duration indicates the rate the Publisher sends
NetworkMessages related to the DataSet. The start time for the periodic execution of the
Subscriber shall be calculated according to 6.3.1.1.1.

Publishinglnterval

6.3.1.3.8

The ReceiveOffset with DataType Duration defines the time in milliseconds for the offset in the
Publishinginterval cycle for the expected receive time of the NetworkMessage for the DataSet
from the network.

ReceiveOffset

6.3.1.3.9

The ProcessingOffset with DataType Duration defines the time in milliseconds for the offset in
the Publishinglnterval cycle when the received DataSet must be processed by the application
in the Subscriber.

ProcessingOffset

The different timing offsets inside a Publishinginterval cycle on Publisher and Subscriber side
are shown in Figure 24.

6.3.1.3.10

This Structure DataType is used to represent UADP message mapping specific DataSetReader
parameters. It is a subtype of the DataSetReaderMessageDataType defined in 6.2.8.11.3.

UadpDataSetReaderMessageDataType

The UadpDataSetReaderMessageDataType is formally defined in Table 58.

Table 58 — UadpDataSetReaderMessageDataType Structure

Name Type Description
UadpDataSetReaderMessageDataType Structure
groupVersion VersionTime Defined in 6.3.1.3.1.
networkMessageNumber Uint16 Defined in 6.3.1.3.2.
dataSetOffset Uint16 Defined in 6.3.1.3.3.
dataSetClassld Guid Defined in 6.3.1.3.4.

networkMessageContentMask

UadpNetworkMessageContentMask

Defined in 6.3.1.3.5.

dataSetMessageContentMask

UadpDataSetMessageContentMask

Defined in 6.3.1.3.6.

publishingInterval

Duration

Defined in 6.3.1.3.7.

receiveOffset

Duration

Defined in 6.3.1.3.8.

processingOffset

Duration

Defined in 6.3.1.3.9.

6.3.2 JSON Message Mapping
6.3.2.1 JSON NetworkMessage Writer
6.3.2.1.1 NetworkMessageContentMask

The parameter NetworkMessageContentMask defines the optional header fields to be included
in the NetworkMessages produced by the WriterGroup. The DataType for the JSON
NetworkMessage mapping is JsonNetworkMessageContentMask.

The DataType JsonNetworkMessageContentMask is formally defined in Table 59.

Table 59 — JsonNetworkMessageContentMask Values

Value Bit No.
NetworkMessageHeader 0

Description

The JSON NetworkMessage header is included in the NetworkMessages.
If this bit is false, bits 2 to 4 shall be 0.

The JSON DataSetMessage header is included in each DataSetMessage.

If this bit is false then the DataSetMessageContentMask for the DataSetWriters
are ignored (see 6.3.2.2.1).

Each JSON NetworkMessage contains only one DataSetMessage.
The Publisherld is included in the NetworkMessages.

The DataSetClassld is included in the NetworkMessages.

The ReplyTo is included in the NetworkMessages.

DataSetMessageHeader 1

SingleDataSetMessage
Publisherld
DataSetClassld
ReplyTo

ajlbhfwiN




OPC 10000-14: PubSub 55 Release 1.04

The JsonNetworkMessageContentMask representation in the AddressSpace is defined in Table
60.

Table 60 — JsonNetworkMessageContentMask Definition

Attributes Value

BrowseName JsonNetworkMessageContentMask

IsAbstract False

References NodeClass | BrowseName | DataType
Subtype of UInt32 defined in OPC 10000-5.

HasProperty | Variable | OptionSetValues | LocalizedText []

6.3.2.1.2 JsonWriterGroupMessageDataType Structure

This Structure DataType is used to represent the JSON NetworkMessage mapping specific
WriterGroup parameters. It is a subtype of WriterGroupMessageDataType defined in 6.2.5.6.3.

The JsonWriterGroupMessageDataType is formally defined in Table 61.

Table 61 — JsonWriterGroupMessageDataType Structure

Name Type Description
JsonWriterGroupMessageDataType Structure
networkMessageContentMask JsonNetworkMessageContentMask Defined in 6.3.2.1.1.

6.3.2.2 JSON DataSetMessage Writer
6.3.2.2.1 DataSetMessageContentMask

The DataSetMessageContentMask defines the flags for the content of the DataSetMessage
header. The JSON message mapping specific flags are defined by the
JsonDataSetMessageContentMask DataType.

The JsonDataSetMessageContentMask DataType is formally defined in Table 62.

Table 62 — JsonDataSetMessageContentMask Values

Value Bit No. Description

DataSetWriterld 1 If this flag is set, a DataSetWriterld shall be included in the DataSetMessage
header.

MetaDataVersion 2 If this flag is set, the ConfigurationVersion is included in the DataSetMessage
header.

SequenceNumber 3 If this flag is set, the DataSetMessageSequenceNumber is included in the
DataSetMessage header.

Timestamp 4 If this flag is set, a timestamp shall be included in the DataSetMessage header.

Status 5 If this flag is set, an overall status is included in the DataSetMessage header.

The JsonDataSetMessageContentMask representation in the AddressSpace is defined in Table
63.

Table 63 — JsonDataSetMessageContentMask Definition

Attributes Value

BrowseName JsonDataSetMessageContentMask

IsAbstract False

References NodeClass | BrowseName | DataType
Subtype of UInt32 defined in OPC 10000-5.

HasProperty | Variable | OptionSetValues | LocalizedText []

6.3.2.2.2 JsonDataSetWriterMessageDataType Structure

This Structure DataType is used to represent JSON DataSetMessage mapping specific
DataSetWriter parameters. It is a subtype of the DataSetWriterMessageDataType defined in
6.2.3.5.3.

The JsonDataSetWriterMessageDataType is formally defined in Table 64.



Release 1.04 56 OPC 10000-14: PubSub

Table 64 — JsonDataSetWriterMessageDataType Structure

Name Type Description
JsonDataSetWriterMessageDataType Structure
dataSetMessageContentMask JsonDataSetMessageContentMask Defined in 6.3.2.2.1.

6.3.2.3 JSON DataSetMessage Reader

6.3.2.3.1 NetworkMessageContentMask

The NetworkMessageContentMask with DataType JsonNetworkMessageContentMask
indicates the optional header fields included in the received NetworkMessages. The
JsonNetworkMessageContentMask DataType is defined in 6.3.2.1.1.

6.3.2.3.2 DataSetMessageContentMask

The DataSetMessageContentMask with the DataType JsonDataSetMessageContentMask
indicates the optional header fields included in the DataSetMessages.

The JsonDataSetMessageContentMask DataType is defined in 6.3.2.2.1.

6.3.2.3.3 JsonDataSetReaderMessageDataType Structure

This Structure DataType is used to represent JSON DataSetMessage mapping specific
DataSetReader parameters. It is a subtype of the DataSetReaderMessageDataType defined in
6.2.8.11.3.

The JsonDataSetReaderMessageDataType is formally defined in Table 65.

Table 65 — JsonDataSetReaderMessageDataType Structure

Name Type Description
JsonDataSetWriterMessageDataType Structure
networkMessageContentMask JsonNetworkMessageContentMask Defined in 6.3.2.3.1.
dataSetMessageContentMask JsonDataSetMessageContentMask Defined in 6.3.2.3.2.

6.4 Transport Protocol Mapping Configuration Parameters
6.4.1 Datagram Transport Protocol

6.4.1.1 Datagram PubSubConnection

6.4.1.1.1 DiscoveryAddress

The DiscoveryAddress parameter contains the network address information used for the
discovery request and response messages. The different Structure DataTypes used to
represent the Address are defined in 6.2.6.5.3.

6.4.1.1.2 DatagramConnectionTransportDataType Structure

This Structure DataType is used to represent the configuration parameters for the Datagram
transport protocol specific settings of PubSubConnections. It is a subtype of the
ConnectionTransportDataType defined in 6.2.6.4.

The DatagramConnectionTransportDataType is formally defined in Table 66.

Table 66 — DatagramConnectionTransportDataType Structure

Name Type Description
DatagramConnectionTransportDataType | Structure
discoveryAddress NetworkAddressDataType Defined in 6.4.1.1.1.
The NetworkAddressDataType is defined in
6.2.6.5.3.

6.4.1.2 Datagram WriterGroup
6.4.1.2.1 MessageRepeatCount

The MessageRepeatCount with DataType Byte defines how many times every NetworkMessage
is repeated. The default value is 0 and disables the repeating.



OPC 10000-14: PubSub 57 Release 1.04

6.4.1.2.2 MessageRepeatDelay

The MessageRepeatDelay with DataType Duration defines the time between NetworkMessage
repeats in milliseconds. The parameter shall be ignored if the parameter MessageRepeatCount
is setto O.

6.4.1.2.3 DatagramWriterGroupTransportDataType Structure

This Structure DataType is used to represent the datagram specific transport mapping
parameters for WriterGroups. It is a subtype of the WriterGroupTransportDataType defined in
6.2.5.6.2.

The DatagramWriterGroupTransportDataType is formally defined in Table 67.

Table 67 — DatagramWriterGroupTransportDataType Structure

Name Type Description
DatagramWriterGroupTransportDataType Structure
messageRepeatCount Byte Defined in 6.4.1.2.1.
messageRepeatDelay Duration Defined in 6.4.1.2.2.

6.4.1.3 Datagram DataSetWriter Parameters
There are no datagram specific transport mapping parameters defined for the DataSetWriter.

6.4.1.4 Datagram DataSetReader
There are no datagram specific transport mapping parameters defined for the DataSetReader.

6.4.2 Broker Transport Protocol
6.4.2.1 Broker PubSubConnection
6.4.2.1.1 ResourceUri

The ResourceUri parameter of DataType String enables the transport implementation to look
up a configured key from the corresponding KeyCredentialConfigurationType instance defined
in OPC 10000-12 to use for authenticating access to the broker at the connection level or for
gueues configured below the connection.

If null, no authentication or anonymous authentication shall be assumed as default unless
authentication settings are provided on a subordinated WriterGroup or a DataSetWriter to
authenticate access to individual queues.

6.4.2.1.2 AuthenticationProfileUri

The parameter AuthenticationProfileUri of DataType String allows the selection of the
authentication protocol used by the transport implementation. This maps to the ProfileUri
Property in the KeyCredentialConfigurationType instance selected through the ResourceUri and
AuthenticationProfileUri Strings.

This parameter is optional. If more than one ProfileUri describing the protocol to use for
authentication is configured and this value is null, the transport will choose one. If the transport
cannot fine a suitable authentication mechanism in the ProfileUri array, the transport sets the
State of the PubSubConnection is set to Error_3.

6.4.2.1.3 BrokerConnectionTransportDataType Structure

This Structure DataType is used to represent the Broker specific transport mapping parameters
for the PubSubConnection. It is a subtype of the ConnectionTransportDataType defined in
6.2.6.4.

The BrokerConnectionTransportDataType is formally defined in Table 68.



Release 1.04 58 OPC 10000-14: PubSub

Table 68 — BrokerConnectionTransportDataType Structure

Name Type Description
BrokerConnectionTransportDataType Structure
resourceUri String Defined in 6.4.2.1.1.
authenticationProfileUri String Defined in 6.4.2.1.2.

6.4.2.2 Broker WriterGroup
6.4.2.2.1 QueueName

The QueueName parameter with DataType String specifies the queue in the Broker that receives
NetworkMessages sent by the Publisher. This could be the name of a queue or topic defined in
the Broker.

6.4.2.2.2 ResourceUri

The ResourceUri property of DataType String allows the transport implementation to look up
the configured key from the corresponding KeyCredentialConfigurationType instance defined in
OPC 10000-12 to use for authenticating access to the specified queue.

If this String is not null, it overrides the ResourceUri of the PubSubConnection authentication
settings.
6.4.2.2.3 AuthenticationProfileUri

The parameter AuthenticationProfileUri of DataType String allows the selection of the
authentication protocol used by the transport implementation for authenticating access to the
specified queue.

If this String is not null, it overrides the AuthenticationProfileUri of the PubSubConnection transport
settings defined in 6.4.2.1.2.
6.4.2.2.4 RequestedDeliveryGuarantee

The RequestedDeliveryGuarantee parameter with DataType BrokerTransportQualityOfService
specifies the delivery guarantees that shall apply to all NetworkMessages published by the
WriterGroup unless otherwise specified on the DataSetWriter transport settings. The DataType
BrokerTransportQualityOfService is defined in 6.4.2.2.5.

The value NotSpecified_0 is not allowed on the WriterGroup. If the selected delivery guarantee
cannot be applied, the WriterGroup shall set the state to Error_3.

6.4.2.2.5 BrokerTransportQualityOfService Enumeration
The BrokerTransportQualityOfService Enumeration DataType is formally defined in Table 71.

The mapping of quality of service to the broker transport specific implementation is defined in
7.3.4.5 for AMQP and 7.3.5.5 for MQTT.

Table 69 — BrokerTransportQualityOfService Values

Value Description

NotSpecified_0 The value is not specified and the value of the parent object shall be used.

BestEffort_1 The transport shall make the best effort to deliver a message. Worst case this means
data loss or data duplication are possible.

AtLeastOnce_2 The transport guarantees that the message shall be delivered at least once, but
duplication is possible. Readers must de-duplicate based on message id or sequence
number.

AtMostOnce_3 The transport guarantees that the message shall be sent once, but if it is lost it is not
sent again.

ExactlyOnce_4 The transport handshake guarantees that the message shall be delivered to the

broker exactly once and not more or less.




OPC 10000-14: PubSub 59 Release 1.04

6.4.2.2.6 BrokerWriterGroupTransportDataType Structure

This Structure DataType is used to represent the Broker specific transport mapping parameters
for WriterGroups. It is a subtype of the WriterGroupTransportDataType defined in 6.2.5.6.2.

The BrokerWriterGroupTransportDataType is formally defined in Table 70.

Table 70 — BrokerWriterGroupTransportDataType Structure

Name Type Description
BrokerWriterGroupTransportDataType Structure
gqueueName String Defined in 6.4.2.2.1.
resourceUri String Defined in 6.4.2.2.2.
authenticationProfileUri String Defined in 6.4.2.2.3.
requestedDeliveryGuarantee BrokerTransportQualityOfService Defined in 6.4.2.2.4.

6.4.2.3 Broker DataSetWriter
6.4.2.3.1 QueueName

The QueueName parameter with DataType String specifies the queue in the Broker that receives
NetworkMessages sent by the Publisher for the DataSetWriter. This could be the name of a
gueue or topic defined in the Broker. This parameter is only valid if the NetworkMessages from
the WriterGroup contain only one DataSetMessage.

If this String is not null, it overrides the QueueName of the WriterGroup transport settings.

6.4.2.3.2 ResourceUri

The ResourceUri property of DataType String allows the transport implementation to look up
the configured key from the corresponding KeyCredentialConfigurationType instance defined in
OPC 10000-12 to use for authenticating access to the specified queue.

If this String is not null, it overrides the ResourceUri of the WriterGroup authentication settings.

6.4.2.3.3 AuthenticationProfileUri

The parameter AuthenticationProfileUri of DataType String allows the selection of the
authentication protocol used by the transport implementation for authenticating access to the
specified queue.

If this String is not null, it overrides the AuthenticationProfileUri of the WriterGroup transport
settings.

6.4.2.3.4 RequestedDeliveryGuarantee

The RequestedDeliveryGuarantee parameter with DataType BrokerTransportQualityOfService
specifies the delivery guarantees that shall apply to all messages published by the
DataSetWriter. The DataType BrokerTransportQualityOfService is defined in 6.4.2.2.5.

If the value is not NotSpecified 0, it overrides the RequestedDeliveryGuarantee of the
WriteGroup transport settings.

If the selected delivery guarantee cannot be applied, the DataSetWriter shall set the state to
Error_3.

6.4.2.3.5 MetaDataQueueName

For message mappings like UADP, the Subscriber needs access to the DataSetMetaData to
process received DataSetMessages. The Publisher can provide the DataSetMetaData through
a dedicated queue.

The parameter MetaDataQueueName with the DataType String specifies the Broker queue that
receives messages with DataSetMetaData sent by the Publisher for this DataSetWriter. This
could be the name of a queue or topic defined in the Broker.



Release 1.04 60 OPC 10000-14: PubSub

6.4.2.3.6 MetaDataUpdateTime

Specifies the interval in milliseconds with Data Type Duration at which the Publisher shall send
the DataSetMetaData to the MetaDataQueueName. A value of 0 or any negative value shall be
interpreted as infinite interval.

The broker transport shall publish all messages with an expiration time that is equal or greater
than this value.

If the update time is infinite, a broker transport shall attempt to negotiate message retention if
possible. In this case the DataSetMetaData is only sent if the ConfigurationVersion of the
corresponding DataSetMetaData is changed and DataSetWriters shall try to negotiate
AtLeastOnce_2 or ExactlyOnce_4 delivery guarantees with the broker for any DataSetMetaData
sent to ensure meta data is available to readers.

The DataSetWriterProperties settings apply also to DataSetMetaData sent to the queue named
through the MetaDataQueueName parameter.

6.4.2.3.7 BrokerDataSetWriterTransportDataType Structure

This Structure DataType is used to represent the Broker specific transport mapping parameters
for DataSetWriters. It is a subtype of the DataSetWriterTransportDataType defined in 6.2.3.5.2.

The BrokerDataSetWriterTransportDataType is formally defined in Table 71.

Table 71 — BrokerDataSetWriterTransportDataType Structure

Name Type Description

BrokerDataSetWriterTransportDataType Structure
queueName String Defined in 6.4.2.3.1.
resourceUri String Defined in 6.4.2.3.2.
authenticationProfileUri String Defined in 6.4.2.3.3.
requestedDeliveryGuarantee BrokerTransportQualityOfService Defined in 6.4.2.3.4.
metaDataQueueName String Defined in 6.4.2.3.5.
metaDataUpdateTime Duration Defined in 6.4.2.3.6.

6.4.2.4 Broker DataSetReader
6.4.2.4.1 QueueName

The QueueName parameter with DataType String specifies the queue in the Broker where the
DataSetReader can receive NetworkMessages with the DataSet of interest sent by the
Publisher. This could be the name of a queue or topic defined in the Broker. This parameter is
only valid if the NetworkMessages from the WriterGroup contain only one DataSetMessage.

6.4.2.4.2 ResourceUri

The ResourceUri property of DataType String allows the transport implementation to look up
the configured key from the corresponding KeyCredentialConfigurationType instance defined in
OPC 10000-12 to use for authenticating access to the specified queue.

If this String is not null, it overrides the ResourceUri of the PubSubConnection authentication
settings.

6.4.2.4.3 AuthenticationProfileUri

The parameter AuthenticationProfileUri of DataType String allows the selection of the
authentication protocol used by the transport implementation for authenticating access to the
specified queue.

If this String is not null, it overrides the AuthenticationProfileUri of the PubSubConnection transport
settings defined in 6.4.2.1.2.




OPC 10000-14: PubSub 61 Release 1.04

6.4.2.4.4 RequestedDeliveryGuarantee

The RequestedDeliveryGuarantee parameter with DataType BrokerTransportQualityOfService
specifies the delivery guarantees the DataSetReader negotiates with the broker for all
messages received. The DataType BrokerTransportQualityOfService is defined in 6.4.2.2.5.

The value NotSpecified 0 is not allowed on the DataSetReader. If the selected delivery
guarantee cannot be applied, the DataSetReader shall set the state to Error_3.
6.4.2.4.5 MetaDataQueueName

The parameter MetaDataQueueName with the DataType String specifies the Broker queue that
provides messages with DataSetMetaData sent by the Publisher for the DataSet of interest.
This could be the name of a queue or topic defined in the Broker.

6.4.2.4.6 BrokerDataSetReaderTransportDataType Structure

This Structure DataType is used to represent the Broker specific transport mapping parameters
for DataSetWriters. It is a subtype of the DataSetReaderTransportDataType defined in
6.2.8.11.2.

The BrokerDataSetReaderTransportDataType is formally defined in Table 72.

Table 72 — BrokerDataSetReaderTransportDataType Structure

Name Type Description
BrokerDataSetReaderTransportDataType Structure
gqueueName String Defined in 6.4.2.4.1.
resourceUri String Defined in 6.4.2.4.2.
authenticationProfileUri String Defined in 6.4.2.4.3.
requestedDeliveryGuarantee BrokerTransportQualityOfService Defined in 6.4.2.4.4.
metaDataQueueName String Defined in 6.4.2.4.5.




Release 1.04 62 OPC 10000-14: PubSub

7 PubSub Mappings

7.1 General

This clause specifies the mapping between the PubSub concepts described in clause 5 and the
PubSub configuration parameters defined in clause 6 to concrete message mappings and
tranposrt protocol mappings that can be used to implement them.

DataSetMessage mappings, NetworkMessage mappings and transport protocol mappings are
combined together to create transport profiles defined in OPC 10000-7. All PubSub applications
shall implement at least one transport profile.

7.2 Message Mappings

7.21 General

Message mappings specify a specific structure and encoding for NetworkMessages. Such a
structure represents the payload for transport protocol mappings like UDP, MQTT or AMQP.
Different mappings are defined for different use cases.

7.2.2 UADP Message Mapping

7.2.2.1 General

The UADP message mapping uses optimized UA Binary encoding and provides message
security for OPC UA PubSub. The available protocol mappings are defined in 7.3.

The UADP message mapping defines different optional header fields, variations of field settings
and different message types and data encodings.

A Publisher shall support all variations it allows through configuration. The required set of
features is defined through profiles in OPC 10000-7.

A Subscriber shall be able to process all possible NetworkMessages and shall be able to skip
information the Subscriber is not interested in. The Subscriber may not support all security



OPC 10000-14: PubSub 63 Release 1.04

policies. The capabilities related to processing different DataSet encodings is defined in OPC
10000-7.

7.2.2.2 NetworkMessage

7.2.2.2.1 General

The UADP NetworkMessage header and other parts of the NetworkMessage are shown in
Figure 27.

When using security, the payload and the Padding field are encrypted and after that, the whole
NetworkMessage is signed if signing and encryption is active. The NetworkMessage shall be
signed without being encrypted if only the signing is active.

1Byte (1 Byte) (1 Byte) (1..n Byte) (16 Byte) (8 Byte) (2 Byte) (n Byte) 1Byte  4Byte 1Byte n Byte
Version | Extended | Extended . . Pico . Security | Security | Nonce
ks Flags1 Flags2 Publisherld | DataSetClassld Timestamp seconds PromotedFields Flags | Tokenld | Length Nonce
NetworkMessage Header NetworkMessage Header Extended Security Header
1..n Byte 0..n Byte 0..n Byte
NetworkMessage Extended Network | Securit Securit: .
& GroupHeader | Payload Header ¥ Payload ¥ Signature
Header MessageHeader Header Footer
Group Header
Group Writer . NetworkMessage | Sequence
GroupVersion
Flags Groupld Number Number Data to Encrypt
(1Byte) (2 Byte) (4 Byte) (2 Byte) (2 Byte)
Data to Sign

Figure 27 — UADP NetworkMessage

7.2.2.2.2 NetworkMessage Layout
The encoding of the UADP NetworkMessage is specified in Table 73.

The NetworkMessageContentMask setting of the Publisher controls the flags in the fields
UADPFlags and ExtendedFlagsl. The SecurityMode setting of the Publisher controls the
security enabled flag of the ExtendedFlagsl1. The setting of the flags shall not change until the
configuration of the Publisher is changed.



Release 1.04 64 OPC 10000-14: PubSub

Table 73 — UADP NetworkMessage

Name Type Description
UADPVersion Bit[0-3] Bit range 0-3: Version of the UADP NetworkMessage.
The UADPVersion for this specification version is 1.
UADPFlags Bit[4-7] Bit 4: Publisherld enabled
If the Publisherld is enabled, the type of Publisherld is indicated in the
ExtendedFlags1 field.

Bit 5: GroupHeader enabled
Bit 6: PayloadHeader enabled
Bit 7: ExtendedFlags1 enabled
The bit shall be false, if ExtendedFlags1 is O.

ExtendedFlagsl Byte The ExtendedFlagsl shall be omitted if bit 7 of the UADPFlags is false.
If the field is omitted, the Subscriber shall handle the related bits as false.
Bit range 0-2: Publisherld Type
000 The Publisherld is of DataType Byte
This is the default value if ExtendedFlags1 is omitted
001 The Publisherld is of DataType UInt16
010 The Publisherld is of DataType UInt32
011 The Publisherld is of DataType Ulnt64
100 The Publisherld is of DataType String
101 Reserved
11x Reserved
111 Reserved
Bit 3: DataSetClassld enabled
Bit 4: Security enabled
If the SecurityMode is SIGN_1 or SIGNANDENCRYPT_2, this flag is set,
message security is enabled and the SecurityHeader is contained in the
NetworkMessage header.
If this flag is not set, the SecurityHeader is omitted.
Bit 5: Timestamp enabled
Bit 6: PicoSeconds enabled
Bit 7: ExtendedFlags2 enabled
The bit shall be false, if ExtendedFlags? is 0.

ExtendedFlags?2 Byte The ExtendedFlags2 shall be omitted if bit 7 of the ExtendedFlags1 is false.
If the field is omitted, the Subscriber shall handle the related bits as false.
Bit 0: Chunk message defined inin 7.2.2.2.4.
Bit 1: PromotedFields enabled
Promoted fields can only be sent if the NetworkMessage contains only one
DataSetMessage.
Bit range 2-4: UADP NetworkMessage type
00ONetworkMessage with DataSetMessage payload defined in
7.2.2.2.4. If the ExtendedFlags2 field is not provided, this is the
default NetworkMessage type.
001NetworkMessage with discovery request payload
defined in 7.2.2.3.4.
010NetworkMessage with discovery response payload
defined in 7.2.2.4.2.
011 Reserved
1xx Reserved
Bit 5: Reserved
Bit 6: Reserved
Bit 7: Reserved for further extended flag fields

Publisherld Byte[*] The Publisherld shall be omitted if bit 4 of the UADPFlags is false.

The Id of the Publisher that sent the data. Valid DataTypes are Ulnteger
and String.

The DataType is indicated by bits 0-2 of the ExtendedFlagsl.

A Subscriber can skip NetworkMessages from Publishers it does not expect
NetworkMessages from.

DataSetClassld Guid The DataSetClassld associated with the DataSets in the NetworkMessage.
All DataSetMessages in the NetworkMessage shall have the same
DataSetClassld.

The DataSetClassld shall be omitted if bit 3 of the ExtendedFlags1 is false.




OPC 10000-14: PubSub

65 Release 1.04

GroupHeader The group header shall be omitted if bit 5 of the UADPFlags is false.

GroupFlags Byte Bit 0: WriterGroupld enabled
Bit 1: GroupVersion enabled
Bit 2: NetworkMessageNumber enabled
Bit 3: SequenceNumber enabled
Bits 4-6: Reserved
Bit 7: Reserved for further extended flag fields

WriterGroupld Uint16 Unique id for the WriterGroup in the Publisher.

A Subscriber can skip NetworkMessages from WriterGroups it does not expect
NetworkMessages from.
This field shall be omitted if bit 0 of the GroupFlags is false.

GroupVersion VersionTime Version of the header and payload layout configuration of the
NetworkMessages sent for the group.

This field shall be omitted if bit 1 of the GroupFlags is false.

NetworkMessage Uint16 Unigue number of a NetworkMessage across the combination of Publisherld

Number and WriterGroupld within one Publishinginterval.

The number is needed if the DataSetMessages for one group are split into

more than one NetworkMessage in a Publishinginterval.

The value 0 is invalid.

This field shall be omitted if bit 2 of the GroupFlags is false.
SequenceNumber Uintl6 Sequence number for the NetworkMessage.

This field shall be omitted if bit 3 of the GroupFlags is false.

PayloadHeader Byte [*] The payload header depends on the UADP NetworkMessage Type flags
defined in the ExtendedFlags?2 bit range 0-3. The default is DataSetMessage if
the ExtendedFlagsz2 field is not enabled.

The PayloadHeader shall be omitted if bit 6 of the UADPFlags is false.

The PayloadHeader is not contained in the payload but it is contained in the
unencrypted NetworkMessage header since it contains information necessary
to filter DataSetMessages on the Subscriber side.

Timestamp DateTime The time the NetworkMessage was created.

The Timestamp shall be omitted if bit 5 of ExtendedFlagsl1 is false.

The Publishinglinterval, the SamplingOffset the PublishingOffset and the
Timestamp and PicoSeconds in the NetworkMessage header shall use the
same time base.

PicoSeconds Uintl6 Specifies the number of 10 picoseconds (1,0 e-11 seconds) intervals which
shall be added to the Timestamp.

The PicoSeconds shall be omitted if bit 6 of ExtendedFlagsl is false.

PromotedFields The PromotedFields shall be omitted if bit 4 of the ExtendedFlags? is false.

If the PromotedFields are provided, the number of DataSetMessages in the
Network Message shall be one.
Size Uint16 Total size in Bytes of the Fields contained in the PromotedFields.
Fields BaseDataType[] | Array of promoted fields. The size, order and DataTypes of the fields depend
on the settings in the FieldMetaData of the DataSetMetaData associated with
the DataSetMessage contained in the NetworkMessage.
SecurityHeader The security header shall be omitted if bit 4 of the ExtendedFlagsl is false.
SecurityFlags Byte Bit 0: NetworkMessage Signed
Bit 1: NetworkMessage Encrypted
Bit 2: SecurityFooter enabled
Bit 3: Force key reset
This bit is set if all keys will be made invalid. It is set until the new key is
used. The publisher must give subscribers a reasonable time to request
new keys. The minimum time is five times the KeepAliveTime configured
for the corresponding PubSub group.
This flag is typically set if all keys are invalidated to exclude Subscribers,
that no longer have access to the keys.

Bit range 4-7: Reserved

SecurityTokenld Integerld The ID of the security token that identifies the security key in a SecurityGroup.
The relation to the SecurityGroup is done through DataSetWriterlds contained
in the NetworkMessage.

Noncelength Byte The length of the Nonce used to initialize the encryption algorithm.

MessageNonce Byte A number used exactly once for a given security key. For a given security key

[NonceLength] a unique nonce shall be generated for every NetworkMessage. The rules for
constructing the MessageNonce are defined for the UADP Message Security in
7.2.2.2.3.

SecurityFooterSize | UInt16 The size of the SecurityFooter.

The security footer size shall be omitted if bit 2 of the SecurityFlags is false.

Payload Byte [*] The payload depends on the UADP NetworkMessage Type flags defined in
the ExtendedFlags?2 bit range 2-5.

SecurityFooter Byte [*] Optional security footer shall be omitted if bit 2 of the SecurityFlags is false.
The content of the security footer is defined by the SecurityPolicy.

Signature Byte [*] The signature of the NetworkMessage.




Release 1.04 66 OPC 10000-14: PubSub

7.2.2.2.3 UADP Message Security
7.2.2.2.3.1 General

The algorithm and nonce length used of the UADP NetworkMessage security depend on the
selected SecurityPolicy. They are defined by SymmetricPubSubEncryptionAlgorithm and
SymmetricPubSubNonceLength.

The keys used to encrypt and sign messages are returned from the GetSecurityKeys method
(see 8.4). This Method returns a sequence of random data with a length that depends on the
SecurityPolicyUri, which is also returned by the Method. The layout of the random data is
defined in Table 74.

Table 74 — Layout of the key data for UADP message security

Name Type Description

SigningKey Byte [SymmetricSignatureAlgorithm Key Length] | Signing key part of the key data returned from
GetSecurityKeys. The SymmetricSignatureAlgorithm is
defined in the SecurityPolicy.

EncryptingKey | Byte [SymmetricEncryptionAlgorithm KeyLength] | Encryption key part of the key data returned from
GetSecurityKeys. The SymmetricEncryptionAlgorithm
is defined in the SecurityPolicy.

KeyNonce Byte [SymmetricPubSubNonceLength] Nonce part of the key data returned from
GetSecurityKeys.

7.2.2.2.3.2 AES-CTR
The layout of the MessageNonce for AES-CTR mode is defined in Table 75.

Table 75 — Layout of the MessageNonce for AES-CTR

Name Type Description

Random Byte [4] The random part of the MessageNonce. This number does not need to be a
cryptographically random number, it can be pseudo-random.

SequenceNumber | UInt32 A strictly monotonically increasing sequence number assigned by the publisher to each

NetworkMessage sent for a SecurityTokenld and Publisherld combination.

The sequence number is reset to 1 after the key and SecurityTokenld are updated in the
Publisher.

A receiver should ignore older NetworkMessages than the last sequence processed if it
does not handle reordering of NetworkMessages. Receivers need to be aware of
sequence numbers roll over (change from 4294967295 to 0).

To determine whether a received NetworkMessages is newer than the last processed
NetworkMessages the following formula shall be used:

(4294967295 + received sequence number — last processed sequence number) modulo
4294967296.

Results below 1073741824 indicate that the received NetworkMessages is newer than
the last processed NetworkMessages and the received NetworkMessages is processed.
Results above 3221225472 indicate that the received message is older (or same) than
the last processed NetworkMessages and the received NetworkMessages should be
ignored if reordering of NetworkMessages is not necessary.

Other results are invalid and the NetworkMessages shall be ignored.

The key lifetime should be selected in a way that a new key is used before a rollover for
the SequenceNumber happens.

Subscribers shall reset the records they keep for sequence numbers if they do not
receive messages for two times the keep alive time to deal with Publishers that are out of
service and were not able to continue from the last used SequenceNumber.

The message encryption and decryption with AES-CTR mode uses a secret and a counter block.
The secret is the EncryptingKey from the key data defined in Table 74. The layout and content
of the counter block is defined in Table 76.




OPC 10000-14: PubSub 67 Release 1.04

Table 76 — Layout of the counter block for UADP message security

Name Type Description

KeyNonce Byte [4] The KeyNonce portion of the key data returned from GetSecurityKeys.

MessageNonce Byte [8] The first 8 bytes of the Nonce in the SecurityHeader of the NetworkMessage.
For AES-CTR mode the length of the SecurityHeader Nonce shall be 8 Bytes.

BlockCounter Byte [4] The counter for each encrypted block of the NetworkMessage.

The counter is a 32-bit big endian integer (the opposite of the normal encoding for UInt32
values in OPC UA. This convention comes from the AES-CTR RFC).

The counter starts with 0 at the first block. The counter is incremented by 1 for each
block.

AES-CTR mode takes the counter block and encrypts it using the encrypting key. The encrypted
key stream is then logically XORed with the data to encrypt or decrypt. The process is repeated
for each block in the plain text. No padding is added to the end of the plain text. AES-CTR does
not change the size of the plain text data and can be applied directly to a memory buffer
containing the message.

The signature is calculated on the entire NetworkMessage including any encrypted data. The
signature algorithm is specified by the SecurityPolicyUri in OPC 10000-7.

When a Subscriber receives a NetworkMessage, it shall verify the signature first. If verification
fails, it drops the NetworkMessage.

Other SecurityPolicy may specify different key lengths or cryptography algorithms.

7.2.2.2.4 UADP Chunk NetworkMessage

If a NetworkMessage payload like a DataSetMessage or a discovery response message has to
be split across multiple NetworkMessages the chunks are sent with the payload header defined
in Table 77 and the payload defined in Table 78. A chunk NetworkMessage can only contain
chunked payload of one DataSetMessage.

Table 77 — Chunked NetworkMessage Payload Header

Name Type Description

DataSetWriterld Uintl6 DataSetWriterld contained in the NetworkMessage.

The DataSetWriterld identifies the PublishedDataSet and the
DataSetWriter responsible for sending Messages for the DataSet.

A Subscriber can skip DataSetMessages from DataSetWriters it does
not expect DataSetMessages from.

The DataSetWriterld shall be set to 0 for discovery response messages.

Table 78 — Chunked NetworkMessage Payload Fields

Name Type Description

MessageSequenceNumber Uint16 Sequence number of the payload as defined for the NetworkMessage
type like DataSetMessageSequenceNumber in a DataSetMessage.
NetworkMessages may be received out of order. In this case, a chunk
for the next payload can be received before the last chunk of the
previous payload was received.

If the next sequence number is received by a Subscribers that can
handle only one payload, the chunks of the previous payload are skipped
if they are not completely received yet.

ChunkOffset Uint32 The byte offset position of the chunk in the complete NetworkMessage
payload. The last chunk is received if ChunkOffset plus the size of the
current chunk equals TotalSize.

The reassembled NetworkMessage payload can be processed after all
chunks are received.

TotalSize Ulnt32 Total size of the NetworkMessage payload in bytes.

ChunkData ByteString The pieces of the original DataSetMessage, are copied into the chunk
until the maximum size allowed for a single NetworkMessage is reached
minus space for the signature. The data copied into next chunk starts
with the byte after the last byte copied into current chunk.

A DataSetMessage is completely received when all chunks are received
and the DataSetMessage can be processed completely.




Release 1.04 68 OPC 10000-14: PubSub

7.2.2.3 DataSetMessage

7.2.2.3.1 General

The UADP DataSet payload header and other parts of the NetworkMessage are shown in Figure
28.

Different types of DataSetMessage can be combined in on NetworkMessage.

1 Byte 2 Byte 2 Byte
Message DataSet DataSet DataSet
Count | Writerld[0] | Writerld[1] | Writerld[N] N = MessageCount - 1

Payload Header

1..n Byte 0..n Byte 0..n Byte  0..n Byte
NetworkMessage | Group | Payload |Extended Network| Security Security .
Header Header | Header MessageHeader | Header Feilerd Footer Signature
Sizes [0] Sizes [1] Sizes [N] DataSetMessage [0] DataSetMessage [1] DataSetMessage [N]
Sizes of DataSet Messages DataSet Messages

Figure 28 — UADP DataSet Payload

7.2.2.3.2 DataSet Payload Header

The encoding of the UADP DataSet payload header is specified in Table 79. The payload header
is unencrypted. This header shall be omitted if bit 6 of the UADPFlags is false.

Table 79 — UADP DataSet Payload Header

Name Type Description

Count Byte Number of DataSetMessages contained in the NetworkMessage. The
NetworkMessage shall contain at least one DataSetMessages if the
NetworkMessage type is DataSetMessage payload.

DataSetWriterlds UInt16 [Count] List of DataSetWriterlds contained in the NetworkMessage. The size of
the list is defined by the Count.

The DataSetWriterld identifies the PublishedDataSet and the
DataSetWriter responsible for sending Messages for the DataSet.

A Subscriber can skip DataSetMessages from DataSetWriters it does
not expect DataSetMessages from.

7.2.2.3.3 DataSet Payload
The DataSet payload is defined in Table 80. The payload is encrypted.

Table 80 — UADP DataSet Payload

Name Type Description

Sizes UInt16 [Count] List of byte sizes of the DataSetMessages.
The size of the list is defined by the Count in the DataSet payload
header.

If the payload size exceeds 65535, the DataSetMessages shall be
allocated to separate NetworkMessages. If a single DataSetMessage
exceeds the payload size it shall be split into Chunk NetworkMessages.
This field shall be omitted if count is one or if bit 6 of the UADPFlags is
false.

DataSetMessages | DataSetMessage [Count] DataSetMessages contained in the NetworkMessage. The size of the list
is defined by the Count in the DataSet payload header.

The type of encoding used for the DataSetMessages is defined by the
DataSetWriter.

The encodings for the DataSetMessage are defined in 7.2.2.3.4.




OPC 10000-14: PubSub 69 Release 1.04

7.2.2.3.4 DataSetMessage Header

The DataSetMessage header structure and the relation to other parts in a NetworkMessage is
shown in Figure 29.

1 Byte 2 Byte 2 Byte
Message DataSet DataSet DataSet _
Count | Writerld[0] | Writerld[1] | = | Writerld[N] N = MessageCount - 1

Payload Header

1..n Byte 0..n Byte 0..n Byte 0..n Byte

Security
Footer

NetworkMessage | Group | Payload |Extended Network| Security

Header Header | Header MessageHeader | Header Signature

Sizes of DataSet Messages DataSet Messages

DataSet Message Header

DataSet | DataSet Message Timestam Pico Status | Major Minor
Flagsl Flags2 SequenceNumber P Seconds| Code |Version | Version

1 Byte (1 Byte) (2 Byte) (8 Byte) (2Byte) (2Byte) (4Byte) (4 Byte)

Message Data

Figure 29 — DataSetMessage Header Structure

The encoding of the DataSetMessage header structure is specified in Table 81.

The DataSetFieldContentMask and the DataSetMessageContentMask settings of the
DataSetWriter control the flags in the fields DataSetFlagsl and DataSetFlags2. The setting of
the flags shall not change until the configuration of the DataSetWriter is changed.



Release 1.04

70 OPC 10000-14: PubSub

Table 81 — DataSetMessage Header Structure

Name

Type

Description

DataSetFlags1

Byte

Bit 0: DataSetMessage is valid.
If this bit is set to false, the rest of this DataSetMessage is considered invalid,
and shall not be processed by the Subscriber.
Bit range 1-2: Field Encoding
00 The DataSet fields are encoded as Variant
The Variant can contain a StatusCode instead of the expected DataType if
the status of the field is Bad.
The Variant can contain a DataValue with the value and the statusCode if
the status of the field is Uncertain.
01  RawbData Field Encoding
The DataSet fields are encoded in the DataTypes specified in the
DataSetMetaData for the DataSet.
The encoding is handled like a Structure DataType where the DataSet
fields are handled like Structure fields and fields with Structure DataType
are handled like nested structures.
All restrictions for the encoding of Structure DataTypes also apply to the
RawData Field Encoding.
10 DataValue Field Encoding
The DataSet fields are encoded as DataValue. This option is set if the
DataSet is configured to send more than the Value.
11  Reserved
Bit 3: DataSetMessageSequenceNumber enabled
Bit 4: Status enabled
Bit 5: ConfigurationVersionMajorVersion enabled
Bit 6: ConfigurationVersionMinorVersion enabled
Bit 7: DataSetFlags2 enabled
The bit shall be false, if DataSetFlags? is 0.

DataSetFlags2

Byte

The DataSetFlags?2 shall be omitted if bit 7 of the DataSetFlags1 is false.
If the field is omitted, the Subscriber shall handle the related bits as false.
Bit range 0-3: UADP DataSetMessage type
0000 Data Key Frame (see 7.2.2.3.5)
If the DataSetFlags? field is not provided, this is the default
DataSetMessage type.
0001 Data Delta Frame (see 7.2.2.3.6)
0010 Event (see 7.2.2.3.7)
0011 Keep Alive (see 7.2.2.3.8)
01xx Reserved
1xxx Reserved
Bit 4: Timestamp enabled
Bit 5: PicoSeconds included in the DataSetMessage header
Bit 6: Reserved
Bit 7: Reserved for further extended flag fields

DataSetMessage
SequenceNumber

Uintl6

A strictly monotonically increasing sequence number assigned by the publisher to
each DataSetMessage sent.

A receiver should ignore older DataSetMessage than the last sequence processed if
it does not handle reordering of DataSetMessages. Receivers need to be aware of
sequence numbers roll over (change from 65535 to 0).

To determine whether a received DataSetMessage is newer than the last processed
DataSetMessage the following formula shall be used:

(65535 + received sequence number — last processed sequence number) modulo
65536

Results below 16384 indicate that the received DataSetMessage is newer than the
last processed DataSetMessage and the received DataSetMessage is processed.
Results above 49162 indicate that the received message is older (or same) than the
last processed DataSetMessage and the received DataSetMessage should be
ignored if reordering of DataSetMessages is not necessary.

Other results are invalid and the DataSetMessage shall be ignored.

The field shall be omitted if Bit 2 of DataSetFlagsl is false.

Timestamp

UtcTime

The time the Data was collected.
The Timestamp shall be omitted if Bit 3 of DataSetFlags1 is false.

PicoSeconds

Uint16

Specifies the number of 10 picoseconds (1,0 e-11 seconds) intervals which shall be
added to the Timestamp.
The field shall be omitted if Bit 4 of DataSetFlags? is false.

Status

Uintl16

The overall status of the DataSet.

This is the high order 16 bits of the StatusCode DataType representing the numeric
value of the Severity and SubCode of the StatusCode DataType.

The field shall be omitted if Bit 4 of DataSetFlagsl is false.




OPC 10000-14: PubSub 71 Release 1.04

ConfigurationVersion Version The major version of the configuration version of the DataSet used as consistency
MajorVersion Time check with the DataSetMetaData available on the Subscriber side.

The field shall be omitted if Bit 5 of DataSetFlags1 is false.
ConfigurationVersion Version The minor version of the configuration version of the DataSet used as consistency
MinorVersion Time check with the DataSetMetaData available on the Subscriber side.

The field shall be omitted if Bit 6 of DataSetFlagsl is false.

7.2.2.3.5 Data Key Frame DataSetMessage
The data key frame DataSetMessage data and related headers are shown in Figure 30.

NetworkMessage | Group | Payload |Extended Network| Security Security Signature
Header Header | Header MessageHeader | Header Footer g
Sizes of DataSetMessages DataSetMessages
N = MessageCount - 1
DataSetMessages Header Data Key Frame DataSetMessage Data
DataSet DataSet Sequence Field . - DataSetField
Flagsl Flags2 Number Count PEIERSTRE ] | EERRE | oo [FieldCount - 1]
1 Byte (1 Byte) (2 Byte) (2 Byte)
Figure 30 — Data Key Frame DataSetMessage Data
The encoding of the data key DataSetMessage structure is specified in Table 82.
Table 82 — Data Key Frame DataSetMessage Structure
Name Type Description
FieldCount Uint16 Number of fields of the DataSet contained in the DataSetMessage.

The FieldCount shall be omitted if RawData field encoding is set in
the EncodingFlags defined in 7.2.2.3.4.

DataSetFields BaseDataType[] The field values of the DataSet.

The field encoding depends on the EncodingFlags of the
DataSetMessage Header defined in 7.2.2.3.4. The default
encoding is Variant if bit 0 and 1 are not set.




Release 1.04 72 OPC 10000-14: PubSub

7.2.2.3.6
The data delta frame DataSetMessage data and the related headers are shown in Figure 31.

Data Delta Frame DataSetMessage

NetworkMessage| Group | Payload [Extended Network | Security Security Sionature
Header Header | Header MessageHeader | Header Footer g
Sizes of DataSetMessages DataSetMessages
N = MessageCount - 1
DataSetMessage Header Data Delta Frame DataSetMessage Data

DataSet DataSet Sequence Field | Index | Field [ Index | Field Index Field
Flagsl Flags2 Number Count | [0] [0] [1] [1] [FieldCount -1] | [FieldCount -1]

1 Byte 1 Byte 2 Byte 2 Byte 2 Byte

Figure 31 — Data Delta Frame DataSetMessage

The information for a single value in delta frame messages is larger because of the additional
index necessary for sending just changed data. The Publisher shall send a key frame message
if the delta frame message is larger than a key frame message.

The encoding of the data delta frame DataSetMessage structure is specified in Table 83.

Table 83 — Data Delta Frame DataSetMessage Structure

Name Type Description

FieldCount Uint16 Number of fields of the DataSet contained in the DataSetMessage.

DeltaFrameFields Structure[] The subset of field values of the DataSet contained in the delta
frame.

Fieldindex UInt16 The index of the Field in the DataSet. The index is based on the
field position in the DataSetMetaData with the configuration
version defined in the ConfigurationVersion field.

Fieldvalue BaseDataType The field values of the DataSet.

The field encoding depends on the EncodingFlags of the
DataSetMessage Header defined in 7.2.2.3.4. The default
encoding is Variant if bit 2 and 3 are not set.




OPC 10000-14: PubSub

73 Release 1.04

7.2.2.3.7 Event DataSetMessage
The Event DataSetMessage data and the related headers are shown in Figure 32.
NetworkMessage| Group | Payload [Extended Network | Security Security Sienature
Header Header | Header MessageHeader | Header Footer J
Sizes of DataSetMessages DataSetMessages
N = MessageCount - 1
DataSetMessages Header Event DataSetMessage Data

DataSet DataSet Sequence Field . - DataSetField

Flagsl Flags2 Number Count PREEIARE 0] PRESEIARE o [FieldCount - 1]

1 Byte 1 Byte 2 Byte 2 Byte

Figure 32 — Event DataSetMessage

The encoding of the Event DataSetMessage structure is specified in Table 84.

Table 84 — Event DataSetMessage Structure

Name Type Description
FieldCount Uint16 Number of fields of the DataSet contained in the DataSetMessage.
DataSetFields BaseDataType[] The field values of the DataSet.

The fields of Event DataSetMessages shall be encoded as Variant.
The Field Encoding DataSetFlagsl of the DataSetMessage header
(bit 1 and 2) defined in 7.2.2.3.4 shall be set to false.




Release 1.04 74 OPC 10000-14: PubSub

7.2.2.3.8 KeepAlive Message

The keep alive message does not add any additional fields. The message and the related
headers are shown in Figure 33.

NetworkMessage | Group | Payload |Extended Network| Security
Header Header | Header MessageHeader | Header

Security

Signature
Footer g

Sizes of DataSetMessages DataSetMessages

N = MessageCount - 1

DataSetMessage Header

DataSet DataSet Sequence
Flagsl Flags2 Number
1 Byte 1 Byte 2 Byte

Figure 33 — KeepAlive Message

The sequence number contains the next expected sequence number for the DataSetWriter.

7.2.2.4 Discovery Messages
7.2.2.4.1 UADP Discovery Request NetworkMessage
7.22.4.1.1 General
The NetworkMessage flags used with the discovery request messages shall use the following
bit values.
o UADPFlags bits 5 and 6 shall be false, bits 4 and 7 shall be true
e ExtendedFlagsl bits 3, 5 and 6 shall be false, bits 4 and 7 shall be true
o ExtendedFlags2 bit 2 shall be true, all other bits shall be false

The setting of the flags ensures a known value for the first five fields in the NetworkMessage
on the Publisher as receiver. The actual security settings for the NetworkMessage are indicated
by the SecurityHeader.

7.2.2.4.1.2 Traffic Reduction

A variety of rules are used to reduce the amount of traffic on the network in the case of multicast
or broadcast communication.

A Subscriber should cache configuration information for Publisherld and DataSetWriterlds of
interest.

If a Subscriber requires information from Publishers after a startup or version change detection,
discovery requests shall be randomly delayed in the range of 100-500 ms. The request shall be
skipped if the information is already received during this time or another Subscriber sent already
a request and the response to this request is used.

Discovery requests for different DataSetWriters in one WriterGroup shall be aggregated into
one discovery response.

A Publisher shall delay subsequent responses for a combination of request type and identifier
like the DataSetWriterld for at least 500 ms. Duplicate requests, that have not yet been
responded to, shall be discarded by the Publisher.



OPC 10000-14: PubSub 75 Release 1.04

A Subscriber shall wait for a response at least 500 ms. As long as not all responses are
received, the Subscriber requests the missing information. It shall double the time period
between follwing requests until all needed response are received or denied.

7.2.2.4.1.3 Discovery Request Header
The encoding of the discovery request header structure is specified in Table 85.

Table 85 — Discovery Request Header Structure

Name Type Description
RequestType Byte The following types of discovery request messages are defined.

0 Reserved
1 Publisher information request message (see 7.2.2.4.1.4)

7.2.2.4.1.4 Publisher Information Request Message
The encoding of the Publisher information request message structure is specified in Table 86.

Table 86 — Publisher Information Request Message Structure

Name Type Description
InformationType Byte The following types of Publisher information requests are defined.
0 Reserved

1 Publisher Server Endpoints

2 DataSetMetaData

3 DataSetWriter configuration

DataSetWriterlds UInt16[] List of DataSetWriterlds the information is requested for.

If the request is not related to DataSet, the array shall be null.

7.2.2.4.2 UADP Discovery Response NetworkMessage
7.22.4.2.1 General

The NetworkMessage flags used with the discovery response messages shall use the following
bit values.

e UADPFlags bits 5 and 6 shall be false, bits 4 and 7 shall be true
e ExtendedFlagsl bits 3, 5 and 6 shall be false, bit 7 shall be true

o ExtendedFlags2 bit 1 shall be false and the NetworkMessage type shall be discovery
response

The setting of the flags ensures a known value for the first five fields in the NetworkMessage
for Publishers expected by the Subscriber. The actual security settings for the NetworkMessage
are indicated by the SecurityHeader.

7.2.2.4.2.2 Discovery Response Header

The encoding of the discovery response header structure is specified in Table 87.

Table 87 — Discovery Response Header Structure

Name Type Description
ResponseType Byte The following types of discovery response messages are defined.
0 Reserved

1 Publisher Endpoint message (see 7.2.2.4.2.3)
2 DataSet Metadata message (see 7.2.2.4.2.4)
3 DataSetWriter configuration message (see 7.2.2.4.2.5)

SequenceNumber Uintl6 A strictly monotonically increasing sequence number assigned to each discovery
response sent in the scope of a Publisherld.

7.2.2.4.2.3 Publisher Endpoints Message
The encoding of the available Endpoints of a Publisher is specified in Table 88.




Release 1.04 76 OPC 10000-14: PubSub

Table 88 — Publisher Endpoints Message Structure

Name Type Description

Endpoints EndpointDescription[] The OPC UA Server Endpoints of the Publisher. The
EndpointDescription is defined in OPC 10000-4.

statusCode StatusCode Status code indicating the capability of the Publisher to provide
Endpoints.

7.2.2.4.2.4 DataSetMetaData Message

The encoding of the DataSet metadata message structure is specified in Table 89. It contains
the current layout and DataSetMetaData for the DataSet.

The ConfigurationVersion in the DataSetMessage header shall match the ConfigurationVersion
in the DataSetMetaData.

The Publisher shall send this message without a corresponding discovery request if the
DataSetMetaData changed for the DataSet.

Table 89 — DataSetMetaData Message Structure

Name Type Description

DataSetWriterld Uint16 DataSetWriterld of the DataSet described with the MetaData.

MetaData DataSetMetaDataType The current DataSet metadata for the DataSet related to the
DataSetWriterld. The DataSetMetaDataType is defined in 6.2.2.1.2.

statusCode StatusCode Status code indicating the capability of the Publisher to provide
MetaData for the DataSetWriterld.

7.2.2.4.2.5 DataSetWriter Configuration Message

The encoding of the DataSetWriter configuration data message structure is specified in Table
90. It contains the current configuration of the WriterGroup and the DataSetWriter for the
DataSet.

The Publisher shall send this message without a corresponding discovery request if the
configuration of the WriterGroup changed.

Table 90 — DataSetWriter Configuration Message Structure

Name Type Description

DataSetWriterlds UInt16[] DataSetWriterlds contained in the configuration information.

DataSetWriterConfig | WriterGroupDataType The current WriterGroup and DataSetWriter settings for the DataSet
related to the DataSetWriterld. The WriterGroupDataType is defined in
6.2.5.6.

The field DataSetWriters of the WriterGroupDataType shall contain only
the entry for the requested or changed DataSetWriters in the
WriterGroup.

statusCodes StatusCode[] Status codes indicating the capability of the Publisher to provide
configuration information for the DataSetWriterlds. The size of the array
shall match the size of the DataSetWriterlds array.

7.2.3 JSON Message Mapping
7.2.3.1 General
JSON is a format that uses human readable text. It is defined in RFC 7159.

The JSON based message mapping allows OPC UA Applications to interoperate with web and
enterprise software that use this format.

7.2.3.2 NetworkMessage

Each JSON NetworkMessage contains one or more JSON DataSetMessages. The JSON
NetworkMessage is a JSON object with the fields defined in Table 91.




OPC 10000-14: PubSub 77 Release 1.04

Table 91 — JSON NetworkMessage Definition

Name Type Description
Messageld String A globally unique identifier for the message.
This value is mandatory.
MessageType String This value shall be “ua-data”.
This value is mandatory.
Publisherld String A unique identifier for the Publisher. It identifies the source of the message.

This value is optional. The presence of the value depends on the setting in the
JsonNetworkMessageContentMask.
The source is the Publisherld on a PubSubConnection (see 6.2.6.1).

DataSetClassld String The DataSetClassld associated with the DataSets in the NetworkMessage.

This value is optional. The presence of the value depends on the setting in the
JsonNetworkMessageContentMask.

If specified, all DataSetMessages in the NetworkMessage shall have the same
DataSetClassld.

The source is the DataSetClassld on the PublishedDataSet (see 6.2.2.2) associated
with the DataSetWriters that produced the DataSetMessages.

Messages * A JSON array of JSON DataSetMessages (see 7.2.3.3).
This value is mandatory.

All fields with a concrete DataType defined are encoded using reversible OPC UA JSON Data
Encoding defined in OPC 10000-6.

The fields in the JSON NetworkMessage are controlled by the NetworkMessageContentMask
of the JSON NetworkMessage mapping (see 6.3.2.1.1).

If the NetworkMessageHeader bit of the NetworkMessageContentMask is not set, the
NetworkMessage is the contents of the Messages field (e.g. a JSON array of
DataSetMessages).

If the DataSetMessageHeader bit of the NetworkMessageContentMask is not set, the content
of the Messages field is an array of content from the Payload field for each DataSetMessage
(see 7.2.3.3).

If the SingleDataSetMessage bit of the NetworkMessageContentMask is set, the content of the
Messages field is a JSON object containing a single DataSetMessage.

If the NetworkMessageHeader and the DataSetMessageHeader bits are not set and
SingleDataSetMessage bit is set, the NetworkMessage is a JSON object containing the set of
name/value pairs defined for a single DataSet.

If the JSON encoded NetworkMessage size exceeds the Broker limits the message is dropped
and a PubSubTransportLimitsExceeded Event is reported.

7.2.3.3 DataSetMessage

A DataSetMessage is produced by a DataSetWriter and contains list of name/value pairs which
are specified by the PublishedDataSet associated with the DataSetWriter. The contents of the
DataSetMessage are formally described by a DataSetMetData Objects. A DataSetMessage is
a JSON object with the fields defined in Table 92.

DataSetWriters may periodically provide keep-alive messages which are DataSetMessages
without any Payload field.



Release 1.04 78 OPC 10000-14: PubSub

Table 92 — JSON DataSetMessage Definition

Name Type Description

DataSetWriterld String An identifier for DataSetWriter which created the DataSetMessage.

This value is mandatory.

It is unique within the scope of a Publisher.

SequenceNumber | UInt32 A strictly monotonically increasing sequence number assigned to the
DataSetMessage by the DataSetWriter.

This value is optional. The presence of the value depends on the setting in the
JsonDataSetMessageContentMask.

MetaDataVersion ConfigurationVersion | The version of the DataSetMetaData which describes the contents of the
DataType Payload.

This value is optional. The presence of the value depends on the setting in the
JsonDataSetMessageContentMask.

Timestamp DateTime A timestamp which applies to all values contained in the DataSetMessage.
This value is optional. The presence of the value depends on the setting in the
JsonDataSetMessageContentMask.

Status StatusCode A status code which applies to all values contained in the DataSetMessage.
This value is optional. The presence of the value depends on the setting in the
JsonDataSetMessageContentMask.

Payload Object A JSON object containing the name-value pairs specified by the
PublishedDataSet.

The format of the value depends on the DataType of the field and the flags
specified by the DataSetMessageContentMask.

All fields with a concrete DataType are encoded using reversible OPC UA JSON Data Encoding
defined in OPC 10000-6.

The fields in the DataSetMessage are specified by the DataSetFieldContentMask in the
DataSetWriter parameters.

DataSetFieldContentMask specifies the format of the field values in the Payload according to
the following rules:

o If the DataSetFieldContentMask results in a RawData representation, the field value is
a Variant encoded using the non-reversible OPC UA JSON Data Encoding defined in
OPC 10000-6.

o |f the DataSetFieldContentMask results in a DataValue representation, the field value is
a DataValue encoded using the non-reversible OPC UA JSON Data Encoding defined
in OPC 10000-6.

o |f the DataSetFieldContentMask results in a Variant representation, the field value is
encoded as a Variant encoded using the reversible OPC UA JSON Data Encoding
defined in OPC 10000-6.

7.2.3.4 Discovery Messages
7.2.3.4.1 General

The JSON message mapping defines only one optional discovery message for the exchange of
the DataSetMetaData. The main purpose is the exchange of additional information not
contained in the DataSetMessages like Properties for the DataSet fields.

7.2.3.4.2 DataSetMetaData

DataSetMetaData describe the content a DataSet published by a DataSetWriter. More
specifically, it specifies the names and data types of the values that shall appear in the Payload
of a DataSetMessage.

When the DataSetMetaData of a DataSet changes the, DataSetWriter may be configured to
publish the updated value through the mechanism defined by the transport protocol mapping.

The DataSetWriterld and Version fields in a DataSetMessage are used to correlate a
DataSetMessage with a DataSetMetaData.

A DataSetMetaData is a JSON object with the fields defined in Table 93.



OPC 10000-14: PubSub 79 Release 1.04

Table 93 — JSON DataSetMetaData Definition

Name Type Description
Messageld String A globally unique identifier for the message.
This value is mandatory.
MessageType String This value shall be “ua-metadata”.
This value is mandatory.
Publisherld String A unique identifier for the Publisher. It identifies the source of the message.
This value is mandatory.
DataSetWriterld Uintl6 An identifier for DataSetWriter which published the DataSetMetaData.
This value is mandatory.
It is unique within the scope of a Publisher.
MetaData DataSetMeta The metadata as defined in 6.2.2.1.2.
DataType This value is mandatory.

All fields with a concrete DataType are encoded using reversible OPC UA JSON Data Encoding
defined in OPC 10000-6.

7.3 Transport Protocol Mappings

7.31 General

This clause lists the standard protocols that have been selected for this specification and their
possible combinations with message mappings.

7.3.2 OPC UA UDP

OPC UA UDP is a simple UDP based protocol that is used to transport UADP
NetworkMessages.

The syntax of the UDP transporting protocol URL used in the Address parameter defined in
6.2.6.3 has the following form:

opc.udp://<host>[:<port>]

The host is either an IP address or a registered name like a hostname or domain name. IP
addresses can be unicast, multicast or broadcast addresses. It is the destination of the UDP
datagram.

The IANA registered OPC UA port for UDP communication is 4840. This is the default and
recommended port for broadcast, multicast and unicast communication. Alternative ports may
be used.

The transport of a UADP NetworkMessage in a UDP packet is defined in Table 94.

Table 94 — UADP message transported over UDP

Name Description
Frame Header The frame header.
IP Header The IP header for the frame contains information like source IP address

and destination IP address. The size of the IP header depends on the
used version.

UDP Header The UDP header for the frame contains the source port, destination port,
length and checksum. Each field is two byte long. The total size of the
UDP header is 8 byte.

UADP NetworkMessage The UADP NetworkMessage is sent as UDP data.
Frame Footer The frame footer.

For OPC UA UDP it is recommended to limit the MaxNetworkMessageSize plus additional
headers to a MTU size. The number of frames used for a UADP NetworkMessage influences
the probability that UADP NetworkMessages get lost.

For OPC UA UDP the MaxNetworkMessageSize plus additional headers shall be limited to
65535 Byte.

It is recommended to use switches with IGMP support to limit the distribution of multicast traffic
to the interested participants. OPC UA Applications shall issue an IGMP membership report.




Release 1.04 80 OPC 10000-14: PubSub

Note: The Internet Group Management Protocol (IGMP) is a standard protocol used by hosts to report their IP
multicast group memberships and must be implemented by any host that wishes to receive IP multicast datagrams.
IGMP messages are used by multicast routers to learn which multicast groups have members on their attac hed
networks. IGMP messages are also used by switches capable of supporting “/IGMP snooping” whereby the switch
listens to IGMP messages and only sends the multicast NetworkMessages to ports that have joined the multicast

group.
There are three versions of IGMP:

- IGMP V1 is defined in RFC1112.

- IGMP V2 is defined in RFC2236.

- IGMP V3 is defined in RFC3376.
RFC2236 and RFC3376 discuss host and router requirements for interoperation with older IGMP versions.
Since OPC UA devices make extensive use of IP multicast for UDP transport, consistent IGMP usage by OPC UA devices is
essential in order to create well-functioning OPC UA Application networks.

IGMP Membership Report Messages
OPC UA devices shall issue a Membership Report message (V1, V2 or V3 as appropriate) when opening a UDP connection on
which they will receive multicast NetworkMessages.

7.3.3 OPC UA Ethernet

OPC UA Ethernet is a simple Ethernet based protocol using EtherType B62C that is used to
transport UADP NetworkMessages as payload of the Ethernet Il frame without IP or UDP
headers.

The syntax of the Ethernet transporting protocol URL used in the Address parameter defined in
6.2.6.3 has the following form:

opc.eth://<host>[:<VID>[.PCP]]
The host is a MAC address, an IP address or a registered name like a hosthame. The format of
a MAC address is six groups of hexadecimal digits, separated by hyphens (e.g. 01-23-45-67-

89-ab). A system may also accept hostnames and/or IP addresses if it provides means to
resolve it to a MAC address (e.g. DNS and Reverse-ARP).

The VID is the VLAN ID as number.
The PCP is the Priority Code Point as one digit number.
The transport of a UADP NetworkMessage in an Ethernet Il frame is defined in Table 95.

Table 95 — UADP message transported over Ethernet

Name Description

Frame Header The frame header with an EtherType of 0xB62C.

UADP NetworkMessage The UADP NetworkMessage is sent as Ethernet payload.
Frame Footer The frame footer.

For OPC UA Ethernet the MaxNetworkMessageSize plus additional headers shall be limited to
an Ethernet frame size of 1522 Byte.

The IANA registered OPC UA EtherType for UADP communication is 0xB62C.

7.34 AMQP
7.3.4.1 General

The Advanced Message Queuing Protocol (AMQP) is an open standard application layer
protocol for Message Oriented Middleware. AMQP is often used with a Broker that relays
messages between applications that cannot communicate directly.

Publishers send AMQP messages to AMQP endpoints. Subscribers listen to AMQP endpoints
for incoming messages. If a Broker is involved it may persist messages so they can be
delivered even if the subscriber is not online. Brokers may also allow messages to be sent to
multiple Subscribers.

The AMQP protocol defines a binary encoding for all messages with a header and a body.
The header allows applications to insert additional information as name-value pairs that are



OPC 10000-14: PubSub 81 Release 1.04

serialized using the AMQP binary encoding. The body is an opaque binary blob that can
contain any data serialized using an encoding chosen by the application.

This specification defines two possible message mappings for the AMQP message body, the
UADP message mapping defined in 7.2.2 and a JSON message mapping defined in 7.2.3.
AMQP Brokers have an upper limit on message size. The mechanism for handling
NetworkMessage that exceed the Broker limits depend on the encoding.

Security with AMQP is primary provided by a TLS connection between the Publisher or
Subscriber and the AMQP Broker, however, this requires that the AMQP Broker be trusted. For
that reason, it may be necessary to provide end-to-end security. Applications that require end-
to-end security with AMQP need to use the UADP NetworkMessages and binary message
encoding defined in 7.2.2.2. JSON encoded message bodies rely on the security mechanisms
provided by AMQP and the AMQP Broker.
7.3.4.2 Address
The syntax of the AMQP transporting protocol URL used in the Address parameter defined in
6.2.6.3 has the following form:

amgps://<domain name>[:<port>][/<path>]
The default port is 5671.
The syntax for an AMQP URL over Web Sockets has the following form:

wss://<domain name>[:<port>][/<path>]
The default port is 443.

7.3.4.3 Authentication

Authentication shall be performed according to the configured AuthenticationProfileUri of the
PubSubConnection, DataSetWriterGroup, DataSetWriter or DataSetReader entities.

If no authentication information is provided in the form of ResourceUri and
AuthenticationProfileUri, SASL Anonymous is implied.

If the authentication profile specifies SASL PLAIN authentication, a separate connection for
each new Authentication setting is required.

7.3.4.4 Connection Properties

AMQP allows sending properties as part of opening the connection, session establishment and
link attach.

The connection properties apply to any connection, session or link created as part of the
PubSubConnection, or subordinate configuration entities, such as WriterGroup and
DataSetWriter.

The properties are defined through the KeyValuePair array in the ConnectionProperties
WriterGroupProperties and DataSetWriterProperties. The Namespacelndex of the
QualifiedName in the KeyValuePair shall be 0 for AMQP standard properties. The Name of the
QualifiedName is constructed from a prefix and the AMQP property name with the following
syntax.

Name = <target prefix>-<AMQP property name>
The target prefix can have the following values

e connection
e session
e link

The Value of the KeyValuePair is converted to an AMQP data type using the rules defined in
Table 98. If there is no rule defined for a data type, the property shall not be included.



Release 1.04 82 OPC 10000-14: PubSub

The connection properties are intended to be used sparingly to optimize interoperability with
existing broker endpoints.

7.3.45 RequestedDeliveryGuarantee

A writer negotiates the delivery guarantees for its link using the snd-settle-mode settlement
policy (settled, unsettled, mixed) it will use, and the desired rcv-settle-mode (first, second) of
the broker.

Vice versa, the reader negotiates delivery guarantees using its rcv-settle-mode (first, second)
and the desired snd-settle-mode (settled, unsettled) of the broker.

This matches to the BrokerTransportQualityOfService values as follows:

e AtMostOnce_1 — messages are pre-settled at the sender endpoint and not sent again.
Messages may be lost in transit. This is the default setting.

o AtlLeastOnce_2 — messages are received and settled at the receiver without waiting
for the sender to settle.

e ExactlyOnce_3 — messages are received, the sender settles and then the receiver
settles.

7.3.4.6 Transport Limits and Keep Alive

If the KeepAliveTime is set on a WriterGroup, a value slightly higher than the configured value
of the group should be used as idle timeout of the connection ensuring that the connection is
disconnected if the keep alive message was not sent by any writer. Otherwise, if no
KeepAliveTime is specified, the implementation should set a reasonable default value.

When setting the maximum message sizes for the Link, the MaxNetworkMessageSize of the
PubSubGroup shall be used. If this value is 0, the implementation chooses a reasonable
maximum.

Other limits are up to the implementation and depend on the capabilities of the OS or or the
capabilities of the device the Publisher or Subscriber is running on, and can be made
configurable through configuration model extensions or by other means.

7.3.4.7 Message Header

The AMQP message header has a number of standard fields. Table 96 describes how these
fields shall be populated when an AMQP message is constructed.

Table 96 — AMQP Standard Header Fields

Field Name Source
message-id A globally unique value created by the DataSetWriter.
subject Valid values are ua-data or ua-metadata.
content-type The MIME type for the message body.
The MIME types are specified in the message body subsections 7.3.4.8.1 and 7.3.4.8.2.

The subject defines the type of the message contained in the AMQP body. A value of “ua-data”
specifies the body contains a UADP or JSON NetworkMessage. A value of “ua-metadata”
specifies a body that contains a UA Binary or JSON encoded DataSetMetaData Message. The
content-type specifies the whether the message is binary or JSON data.

The AMQP message header shall include additional fields defined on the WriterGroup or
DataSetWriter through the KeyValuePair array in the WriterGroupProperties and
DataSetWriterProperties. The Namespacelndex of the QualifiedName in the KeyValuePair shall
be 0 for AMQP standard message properties. The Name of the QualifiedName is constructed
from a message prefix and the AMQP property name with the following syntax.

Name = message-<AMQP property name>

Table 97 defines the AMQP standard message properties.




OPC 10000-14: PubSub

83 Release 1.04

Table 97 - OPC UA AMQP Standard Header QualifiedName Name mappings

AMQP standard property name OPC UA DataType AMQP data type
to String *

user-id ByteString binary

reply-to String string
correlation-id ByteString *
absolute-expiry-time DateTime timestamp
group-id String string
reply-to-group-id String string
creation-time DateTime timestamp
content-encoding String symbol

Any name not in the table is assumed to be an application property. In this case the namespace
provided as part of the QualifiedName shall be the ApplicationUri.

The AMQP message header shall include additional promoted fields of the DataSet as list of
name-value pairs. DataSet fields with the PromotedField flag set in the FieldMetaData
fieldFlags are copied into the AMQP header. The FieldMetaData Structure is defined in
6.2.2.1.3. Promoted fields shall always be included in the header even if the DataSetMessage
body is a delta frame and the DataSet field is not included in the delta frame. In this case the
last known value is sent in the header.

When a field is added to the header it is converted to an AMQP data type using the rules defined
in Table 98. If there is no rule defined for the data type, the field shall not be included.



Release 1.04

84 OPC 10000-14: PubSub

Table 98 — OPC UA AMQP Header Field Conversion Rules

OPC UA DataType

Conversion Rules to AMQP data types.

Boolean

AMQP ‘boolean’ type.

SByte AMQP ‘byte’ type.

Byte AMQP ‘ubyte’ type.

Int16 AMQP ‘short’ type.

uintl6 AMQP ‘ushort’ type.

Int32 AMQP ‘int’ type.

UlInt32 AMQP ‘uint’ type.

Int64 AMQP ‘long’ type.

Uint64 AMQP ‘ulong’ type.

Float AMQP ‘float’ type.

Double AMQP ‘double’ type.

String AMQP ‘string’ type.

ByteString AMQP ‘binary’ type.

DateTime AMQP ‘timestamp’ type.
This conversion may result in loss of precision on some platforms.
The rules for dealing with the loss of precision are described in OPC 10000-6.

Guid AMQP ‘uuid’ type.

QualifiedName

The QualifiedName is encoded as an AMQP ‘string’ type with the format
<NamespaceUri>"#<Name>.

LocalizedText

Not supported and the related field is discarded.

Nodeld

If the Namespacelndex is = 0 the value is encoded as an AMQP ‘string’ type using the
format for a Nodeld defined in OPC 10000-6.

If the Namespacelndex > 0 the value is converted to an ExpandedNodeld with a
NamespaceUri and is encoded as an AMQP ‘string’ type using the format for an
ExpandedNodeld defined in OPC 10000-6.

ExpandedNodeld

If the NamespaceUri is not provided the rules for the Nodeld are used.
If the NamespaceUri is provided the value is encoded as an AMQP ‘string’ type using the
format for an ExpandedNodeld defined in OPC 10000-6.

StatusCode AMQP ‘uint’ type.

Variant If the value has a supported datatype it uses that conversion; otherwise it is not supported
and the related field is discarded.

Structure Not supported and the related field is discarded.

Structure with option fields

Not supported and the related field is discarded.

Array

Not supported and the related field is discarded.

Union

Not supported and the related field is discarded.

7.3.4.8 Message Body
7.3.4.8.1 JSON
A JSON body is encoded as defined for the JSON message mapping defined in 7.2.3.

The corresponding MIME type is application/json.

7.3.4.8.2 UADP
A UADP body is encoded as defined for the UADP message mapping defined in 7.2.2.

The corresponding MIME type is application/opcua+uadp.

If the encoded AMQP message size exceeds the Broker limits it shall be broken into multiple
chunks as described in 7.2.2.2.4.

It is recommended that the MetaDataQueueName as described in 6.4.2.3.6 is configured as a
sub-topic of the related QueueName with the name $Metadata.



OPC 10000-14: PubSub 85 Release 1.04

7.3.5 MQTT
7.3.5.1 General

The Message Queue Telemetry Transport (MQTT) is an open standard application layer
protocol for Message Oriented Middleware. MQTT is often used with a Broker that relays
messages between applications that cannot communicate directly.

Publishers send MQTT messages to MQTT brokers. Subscribers subscribe to MQTT brokers
for messages. A Broker may persist messages so they can be delivered even if the subscriber
is not online. Brokers may also allow messages to be sent to multiple Subscribers.

The MQTT protocol defines a binary protocol used to send and receive messages from and to
topics. The body is an opaque binary blob that can contain any data serialized using an
encoding chosen by the application.

This specification defines two possible encodings for the message body: the binary encoded
DataSetMessage defined in 7.2.2 and a JSON encoded DataSetMessage defined in 7.2.3.
MQTT does not provide a mechanism for specifying the encoding of the MQTT message
which means the Subscribers shall be configured in advance with knowledge of the expected
encoding. Publishers should only publish NetworkMessages using a single encoding to a
unique MQTT topic name.

Security with MQTT is primary provided by a TLS connection between the Publisher or
Subscriber and the MQTT server, however, this requires that the MQTT server be trusted. For
that reason, it may be necessary to provide end-to-end security. Applications that require end-
to-end security with MQTT need to use the UADP NetworkMessages and binary message
encoding defined in 7.2.2. JSON encoded message bodies must rely on the security
mechanisms provided by MQTT and the MQTT server.
7.3.5.2 Address
The syntax of the MQTT transporting protocol URL used in the Address parameter defined in
6.2.6.3 has the following form:

maqtts://<domain name>[:<port>][/<path>]
The default port is 8883.
The syntax for an MQTT URL over Web Sockets has the following form:

wss://<domain name>[:<port>][/<path>]
The default port is 443.

7.3.5.3 Authentication
The current MQTT transport mapping only supports simple Username/Password authentication.

7.3.5.4 ConnectionProperties
The current MQTT transport mapping does not support the concept of connection properties
and any configured setting in the connection properties shall be silently discarded.

Implementations should attempt to reconnect to existing sessions (CleanSession=0) and
attempt to resume message transfer at the specified QoS level.

7.3.5.5 RequestedDeliveryGuarantee
The BrokerTransportQualityOfService values map to MQTT publish and subscribe QoS settings

as follows:

e AtMostOnce_1 is mapped to MQTT QoS 0.
e AtlLeastOnce_ 2 is mapped to MQTT QoS 1.
e ExactlyOnce_3 is mapped to MQTT Qos 2.



Release 1.04 86 OPC 10000-14: PubSub

7.3.5.6 Transport Limits and Keep Alive

If the KeepAliveTime is set on a WriterGroup, a value slightly higher than the configured value
of the group in seconds should be set as MQTT Keep Alive ensuring that the connection is
disconnected if the keep alive message was not sent by any writer in the specified time.

The implmentation choses packet and message size limits depending on the capabilities of the
OS or or the capabilities of the device the application is running on. They can be made
configurable through configuration model extensions or by other means.

7.3.5.7 Message Header

The current MQTT transport mapping does not support message headers. Any promoted field
or additional fields defined on the WriterGroup or DataSetWriter shall be silently discarded.
Implementations shall not set the MQTT RETAIN flag, except for meta data messages published
to the MetaDataQueueName as described in 6.4.2.3.6.

7.3.5.8 Message Body

7.3.5.8.1 JSON

A JSON body is encoded as defined for the JSON message mapping defined in 7.2.3.

7.3.5.8.2 UADP
A UADP body is encoded as defined for the UADP message mapping defined in 7.2.2.

It is expected that the software used to receive UADP NetworkMessage can process the body
without needing to know how it was transported.

If the encoded MQTT message size exceeds the Broker limits it is broken into multiple chunks
as described in 7.2.2.2.4.

It is recommended that the MetaDataQueueName as described in 6.4.2.3.6 is configured as a
sub-topic of the related QueueName with the name $Metadata. The MQTT RETAIN flag shall
be set for metadata messages.



OPC 10000-14: PubSub 87 Release 1.04

8 PubSub Security Key Service Model

8.1 Overview

This chapter specifies the OPC UA Information Model for a Security Key Service (SKS). The
functionality and behaviour of an SKS is described in 5.4.3. It defines the distribution framework
for cryptographic keys used for message security.

The SKS can be a network service used to manage keys for all Publishers and Subscribers or
it can be part of a Publisher to manage the keys for the NetworkMessages sent by this Publisher.

Figure 34 depicts the ObjectTypes and their components used to represent the
PublishSubscribe Object.

Objects
PubSubKeyServiceType:
PublishSubscribe

PubSubKeyServiceType

GetSecurityKeys

SecurityGroupFolderType:
SecurityGroups

SecurityGroupFolderType SecurityGroupType

GetSecurityGroup

i

SecurityGroupFolderType:
<SecurityGroupFolderName>

SecurityGroupType:
<SecurityGroupName>

SecurityGroupld

PublishSubscribeType
AddSecurityGroup

RemoveSecurityGroup

Figure 34 — PublishSubscribe Object Types Overview

The PublishSubscribe Object is the root node for all PubSub related configuration Objects. It is
an instance of the PubSubKeyServiceType or the PublishSubscribeType and a component of
the Server Object.

The PubSubKeyServiceType defines the Method for access to security keys and the related
management of SecurityGroups. This ObjectType is used for the PublishSubscribe Object if
only the Security Key Service functionality is provided. If the PubSub configuration functionality
is provided, the PublishSubscribeType is used instead.

The SecurityGroups are organized by the SecurityGroupFolderType and represented by
instances of the SecurityGroupType.

The PublishSubscribeType contains the entry points for the PubSub configuration model
defined in clause 9.

8.2 PublishSubscribe Object

To provide interoperability between Publishers, Subscribers, Security Key Services and
configuration tools, all PubSub related Objects shall be exposed through an Object called



Release 1.04 88 OPC 10000-14: PubSub

“PublishSubscribe” that is of the type PubSubKeyServiceType or a subtype. This Object shall
be a component of the Server Object. It is formally defined in Table 99.

Table 99 — PublishSubscribe Object Definition

Attribute Value

BrowseName PublishSubscribe

References Node Class | BrowseName | DataType [ TypeDefinition | Modelling Rule
ComponentOf the Server Object defined in OPC 10000-5.

HasTypeDefinition | ObjectType | PubSubKeyServiceType | | |

8.3 PubSubKeyServiceType
The PubSubKeyServiceType is formally defined in Table 100.

Table 100 — PubSubKeyServiceType Definition

Attribute Value

BrowseName PubSubKeyServiceType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in OPC 10000-5.

HasComponent Method GetSecurityKeys Defined in 8.4. Optional
HasComponent Method GetSecurityGroup Defined in 8.7. Optional
HasComponent Object SecurityGroups | SecurityGroupFolderType Optional

The PubSubKeyServiceType ObjectType is a concrete type and can be used directly.
The SecurityGroups folder organizes the Objects representing the SecurityGroup configuration.

8.4 GetSecurityKeys Method
This Method is used to retrieve the security keys for a SecurityGroup.

This Method is required to access the security keys of a PubSubGroup where the SecurityGroup
manages the security keys for PubSubGroups. The MessageSecurity Object of the
PubSubGroup Object contains the SecurityGroupld that shall be passed to this Method in order
to access the keys for the PubSubGroup. Note that multiple PubSubGroups can share a
SecurityGroupld.

The Permission of the SecurityGroupType Object for the SecurityGroupld controls the access
to the security keys for the SecurityGroupld. If the user used to call this Method does not have
the Call Permission set for the related SecurityGroupType Object, the Server shall return
Bad_UserAccessDenied for this Method. The SecurityGroupType is defined in 8.6. Encryption
is required for this Method. The Method shall return Bad_SecurityModelnsufficient if the
communication is not encrypted.

The information necessary to access the Server that implements the GetSecurityKeys Method
for the SecurityGroup is also contained in the MessageSecurity Object of the PubSubGroup
Object.

The GetSecurityKeys Method can be implemented by a Publisher or by a central SKS. In both
cases, the well-known Nodelds for the PublishSubscribe Object and the related
GetSecurityKeys Method are used to call the GetSecurityKeys Method.

If the Publisher implements the GetSecurityKeys Method and the related SecurityGroup
management, the keys are made invalid immediately after a SecurityGroup is removed or keys
for a SecurityGroup are revoked.

If a central SKS implements the GetSecurityKeys Method and the related SecurityGroup
management, the keys are no longer valid after a SecurityGroup is removed or keys for a
SecurityGroup are revoked. However, Subscribers must be prepared for Publishers using
invalid keys until they have called the GetSecurityKeys Method. Publishers using a central SKS
shall call GetSecurityKeys at a period of half the KeyLifetime.




OPC 10000-14: PubSub 89 Release 1.04
Signature
GetSecurityKeys (

[in] String SecurityGroupId
[in] UInt32 StartingTokenId
[in] UInt32 RequestedKeyCount
[out] String SecurityPolicyUri
[out] IntegerId FirstTokenId
[out] ByteString[] Keys
[out] Duration TimeToNextKey
[out] Duration KeyLifetime
) ;
Argument Description

SecurityGroupld

The identifier for the SecurityGroup. It shall be unique within the Security Key Service.

StartingTokenld

The current token is requested by passing O.
It can be a SecurityTokenld from the past to get a key valid for previously sent messages.
If the StartingTokenld is unknown, the oldest available tokens are returned.

RequestedKeyCount

The number of requested keys which should be returned in the response. If 0 is requested, no
future keys are returned. If the caller requests a number larger than the Security Key Service
permits, then the SKS shall return the maximum it allows.

SecurityPolicyUri

The URI for the set of algorithms and key lengths used to secure the messages. The
SecurityPolicies are defined in OPC 10000-7.

FirstTokenld

The SecurityTokenld of the first key in the array of returned keys.

The SecurityTokenld appears in the header of messages secured with a Key. It starts
at 1 and is incremented by 1 each time the KeyLifetime elapses even if no keys are
requested. If the SecurityTokenld increments past the maximum value of UInt32 it restarts at
1.

If the caller has key material from previous GetSecurityKeys Method calls, the FirstTokenld is
used to match the existing list with the fetched list and to eliminate duplicates.

If the FirstTokenld is unknown, the existing list shall be discarded and replaced.

Keys

An ordered list of keys that are used when the KeyLifetime elapses.

If the current key was requested, the first key in the array is used to secure the messages.
This key is not used directly since the protocol associated with the PubSubGroup(s) specifies
an algorithm to generate distinct keys for different types of cryptography operations. Further
details are defined in 7.2.2.2.3.

The SecurityTokenld associated with the first key in the list is the FirstTokenld. All following
keys have a SecurityTokenld that is incremented by 1 for every key returned.

TimeToNextKey

The time, in milliseconds, before the CurrentKey is expected to expire.

If a Publisher uses this Method to get the keys from a SKS, the TimeToNextKey and
KeyLifetime are used to calculate the time the Publisher shall use the next key. The
TimeToNextKey defines the time when to switch from CurrentKey to FutureKeys and
the KeyLifetime defines when to switch from one future key to the next future key.
For a Subscriber the TimeToNextKey and KeyLifetime are used to calculate the time
the Subscriber must expect that the Publishers use the next key. Due to network
latency, out of order delivery and the use of keys for several Publishers, a
Subscriber must expect some overlap time where NetworkMessages are received
that are using the previous or the next key.

TimeToNextKey and KeyLifetime are also used to calculate the time until Publisher and
Subscriber must fetch new keys.

KeyLifetime

The lifetime of a key in milliseconds.

The returned keys may expire earlier if the keys are discarded for some reason. An
unplanned key rotation is indicated in the NetworkMessage header before the next
key is used to give the Subscriber some time to fetch new keys.

If the CurrentTokenld in the message is not recognized the receiver shall call this
Method again to get new keys.

Method Result Codes

ResultCode

Description

Bad_NotFound

The SecurityGroupld is unknown.

Bad_UserAccessDenied

The caller is not allowed to request the keys for the SecurityGroup.

Bad_SecurityModelnsufficient The communication channel is not using encryption.




Release 1.04 90 OPC 10000-14: PubSub

8.5 GetSecurityGroup Method

This Method provides a direct lookup of the Nodeld of a SecurityGroupType Object based on a
SecurityGroupld. It is used by a security administration tool to get the SecurityGroup Object for
configuration of access permissions for the keys.

The SecurityGroupld is the identifier for the SecurityGroup in Publishers, Subscribers and the
key Server. This Method returns the Nodeld of the corresponding SecurityGroup Object Node
providing the configuration and diagnostic options for a SecurityGroup.

Signature
GetSecurityGroup (

[in] String SecurityGroupId
[out] NodeId SecurityGroupNodeId
) ;
Argument Description
SecurityGroupld The SecurityGroupld of the SecurityGroup to lookup.
SecurityGroupNodeld The Nodeld of the SecurityGroupType Object.

Method Result Codes

ResultCode Description

Bad_NoMatch The SecurityGroupld cannot be found in the Server.

8.6  SecurityGroupType
The SecurityGroupType is formally defined in Table 101.

The Permission of the SecurityGroupType Objects controls the access to the security keys for
the SecurityGroup through the Method GetSecurityKeys. The GetSecurityKeys Method is
defined in 8.4.

Table 101 — SecurityGroupType Definition

Attribute Value

BrowseName SecurityGroupType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in OPC 10000-5.

HasProperty Variable SecurityGroupld String PropertyType Mandatory
HasProperty Variable KeyLifetime Duration PropertyType Mandatory
HasProperty Variable SecurityPolicyUri String PropertyType Mandatory
HasProperty Variable MaxFutureKeyCount UiInt32 PropertyType Mandatory
HasProperty Variable MaxPastKeyCount UiInt32 PropertyType Mandatory

The Property SecurityGroupld contains the identifier for the SecurityGroup used in the key
exchange Methods GetSecurityKeys and SetSecurityKeys in the PubSubGroupType.

The Property KeyLifetime defines the lifetime of a key in milliseconds.

The Property SecurityPolicyUri is the identifier for a SecurityPolicy. SecurityPolicies define the
set of algorithms and key lengths used to secure the messages exchanged in the context of the
SecurityGroup. The SecurityPolicies are defined in OPC 10000-7.

The Property MaxFutureKeyCount defines the maximum number of future keys returned by the
Method GetSecurityKeys.

The Property MaxPastKeyCount defines the maximum number of historical keys stored by the
SKS. The historical keys are necessary to allow Subscribers to request keys for older
NetworkMessages.




OPC 10000-14: PubSub 91 Release 1.04
8.7 SecurityGroupFolderType
The SecurityGroupFolderType is formally defined Table 102.

Table 102 — SecurityGroupFolderType Definition
Attribute Value
BrowseName SecurityGroupFolderType
IsAbstract False
References Node Class | BrowseName | | TypeDefinition | Modelling Rule
Subtype of FolderType defined in OPC 10000-5.
Organizes Object <SecurityGroupFolderName> SecurityGroup FolderType | OptionalPlaceholder
HasComponent Object <SecurityGroupName> SecurityGroupType OptionalPlaceholder
HasComponent Method AddSecurityGroup Defined in 8.8. Mandatory
HasComponent Method RemoveSecurityGroup Defined in 8.9. Mandatory

The SecurityGroupFolderType ObjectType is a concrete type and can be used directly.

Instances of the SecurityGroupFolderType can contain SecurityGroup Objects or other
instances of the SecurityGroupFolderType. This can be used to build a tree of folder Objects
used to organize the configured SecurityGroups.

The SecurityGroup Objects are added as components to the instance of the
SecurityGroupFolderType. A SecurityGroup Object is referenced only from one folder. If the
folder is deleted, all referenced SecurityGroup Objects are deleted with the folder.

8.8 AddSecurityGroup Method

This Method is used to add a SecurityGroupType Object to the SecurityGroupFolderType
Object.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddSecurityGroup (

[in] String SecurityGroupName

[in] Duration KeyLifetime

[in] String SecurityPolicyUri

[in] UInt32 MaxFutureKeyCount

[in] UInt32 MaxPastKeyCount

[out] String SecurityGroupId

[out] NodeId SecurityGroupNodeId

) ;

Argument Description

SecurityGroupName Name of the SecurityGroup to add.

KeyLifetime The lifetime of a key in milliseconds

SecurityPolicyUri The SecurityPolicy used for the SecurityGroup.
MaxFutureKeyCount The maximum number of future keys returned by the Method GetSecurityKeys.
MaxPastKeyCount The maximum number of historical keys stored by the SKS
SecurityGroupld The identifier for the SecurityGroup.

SecurityGroupNodeld The Nodeld of the added SecurityGroupType Object.

Method Result Codes

ResultCode

Description

Bad_NodeldExists

A SecurityGroup with the name already exists.

Bad_UserAccessDenied

The Session user is not allowed to configure the object.




Release 1.04 92 OPC 10000-14: PubSub

8.9 RemoveSecurityGroup Method

This Method is used to remove a SecurityGroupType Object from the SecurityGroupFolderType
Object.

The Client shall be authorized to modify the configuration for the PubSub functionality and for
the SecurityGroup to delete when invoking this Method on the Server.

See 8.4 for details on the lifetime of keys previously issued for this SecurityGroup.
Signature

RemoveSecurityGroup (

[in] Nodeld SecurityGroupNodeId

) ;

Argument Description

SecurityGroupNodeld Nodeld of the SecurityGroupType Object to remove from the Server

Method Result Codes

ResultCode Description

Bad_NodeldUnknown The SecurityGroupNodeld is unknown.

Bad_NodeldInvalid The SecurityGroupNodeld is not a Nodeld of a SecurityGroupType Object.
Bad_UserAccessDenied | The Session user is not allowed to delete the SecurityGroupType Object.




OPC 10000-14: PubSub 93 Release 1.04

9 PubSub Configuration Model

9.1 Common Configuration Model
9.1.1 General

Figure 35 depicts the ObjectTypes of the message and transport protocol mapping independent
part of the PubSub configuration model, their main components and their relations.

" . ‘ DataSetFolderType: 0..n PublishedDataSetType: "
PublishSubscribeType }—y—"{ PublishedDataSets }—"{<PublishedDalaSetName>}—”{ PublishedDataSetType }—

PublishedEventsType

PublishedDataltemsType

the Publisher

0..n PubSubConnectionType:
<ConnectionName>

\
\
‘ Configuration of information selection in
\
\

WriterGroupType:
<WriterGroupName>
& DataSetToWriter

5 0..n DataSetWriterType: 0..n
‘ WriterGroupType <DataSetWriterName> [~

‘ DataSetWriterType ‘

‘ 0..n

PubSubConnectionType

SecurityGroupFolderType:
SecurityGroups

ReaderGroupType:
<ReaderGroupName>

\

\

\

\

| .<

| &
|

\

\

\

0..n DataSetReaderType:
‘ ReaderGroupType <DataSetReaderName>

‘ DataSetReaderType ‘

Messaging configuration

PubSubStatusType Configuration of information dispatching in ] SubscribedDataSetType:
} the Subscriber SUeEEilEE PEEEEEe SubscribedDataSet
JAY

\
\
‘ ConnectedVariablesType
|

SubscribedDataSetMirrorType

PubSub Configuration Model

Figure 35 — PubSub Configuration Model Overview

An instance of the PublishSubscribeType with the name PublishSubscribe represents the root
Object for all PubSub related Objects. It manages a list of PubSubConnectionType Objects and
the PublishedDataSetType Objects through the PublishedDataSets folder.

On the Publisher side, a PublishedDataSet represents the information to publish and the
DataSetWriter represents the transport settings for creating DataSetMessages for delivery
through a Message Oriented Middleware.

On the Subscriber side, a DataSetReader represents the transport settings for receiving
DataSetMessages from a Message Oriented Middleware and the SubscribedDataSet
represents the information to dispatch the received DataSets in the Subscriber.

The configuration can be done through Methods or product specific configuration tools. The
DataSetFolderType can be used to organize the PublishedDataSetType Objects in a tree of
folders.

Figure 36 shows an example configuration with the root Object PublishSubscribe that is a
component of the Server Object.



Release 1.04 94 OPC 10000-14: PubSub

Objects

L Server

PublishedDataltemsType:

‘ DataSetl
PublishedSubscribeType: ) DataSetFolderType:
PublishSubscribe PublishedDataSets PublishedDataltemsType:
‘ DataSet2
Connectionl
| DataSetWriterType:
' Writer2
WriterGroupl
DataSetWriterType:
Writerl
DataSetReaderType: TargetVariablesType:
ReaderGroupl ‘ Readerl "| SubscribedDataSet1

Figure 36 — PubSub Example Objects

The example defines two PublishedDataSets published through one connection and one group
and one DataSetReader used to subscribe one DataSet.

Figure 37 depicts the information flow and the related ObjectTypes from the PubSub Information
Model. The boxes in the lower part of the figure are examples for blocks necessary to implement
the information flow in a Publisher.

PubSub Configuration Model
‘ PubSubConnectionType
‘ PubSubWriterGroupType
‘ PublishedDataSetType }—Da’a::;mer% DataSetWriterType ‘
7 T
R Nlljjt(aaDS;; Translpon Encoding Security Connection
Attribute Values Settings Settings Settings Settings

Or Events

Information Space

Network
Message
Writer

DataSet
Collector

DataSet
Writer

Message
Transport

)
L __ -
Filters are List of Values .
used to select Timestamp Plain Encrypted Me:AS_adgdel Oriented
samples or Quality DataSetMessage NetworkMessage LEILELS
events N Message
Version

Figure 37 — PubSub Information Flow

The PublishedDataSetType represents the selection and configuration of Variables or Events.
An Event notification or a snapshot of the Variables comprises a DataSet. A DataSet is the
content of a DataSetMessage created by a DataSetWriter. Examples of concrete
PublishedDataSetTypes are PublishedEventsType and PublishedDataltemsType. An instance
of PublishedDataSetType has a list of DataSetWriters used to produce DataSetMessages sent
via the Message Oriented Middleware. The DataSetMetaData describes the content of a
DataSet.

Instances of the PubSubConnectionType represent settings associated with Message Oriented
Middleware. A connection manages a list of WriterGroupType Objects and transport protocol
mapping specific parameters.

Instances of the WriterGroupType contain instances of DataSetWriter Objects that share
settings such as security configuration, encoding or timing of NetworkMessages. A group



OPC 10000-14: PubSub 95 Release 1.04

manages a list of DataSetWriterType Objects that define the payload of the NetworkMessages
created from the group settings.

DataSetWriters represent the configuration necessary to create DataSetMessages contained
as payload in NetworkMessages.

DataSetReaders represent the configuration necessary to receive and process
DataSetMessages on the Subscriber side.

NetworkMessages are sent through a transport like AMQP, MQTT or OPC UA UDP. Other
transport protocols can be added as subtypes without changing the base model.

The definition of the PubSub related ObjectTypes does not prescribe how the instances are
created or configured or how dynamic the configuration can be. A Publisher may have a
preconfigured number of PublishedDataSets and DataSetWriters where only protocol specific
settings can be configured. If a Publisher allows dynamic creation of Objects like DataSets and
DataSetWriters, this can be done through product specific configuration tools or through the
standardized configuration Methods defined in this specification.

9.1.2 Configuration behaviours

Publishers and Subscribers may be configurable through vendor-specific engineering tools or
with the configuration Methods and parameters described in this standard. This allows a
standard OPC UA Client based configuration tool to configure an OPC UA Server that is a
Publisher and/or Subscriber.

Configuration parameters are exposed as Variables of the configurable Objects. Methods for
creation of Objects have input arguments for mandatory Variables. Optional Variables are not
contained in the input arguments of Methods for Object creation. Optional Variables are created
with a default value if they are supported for the Object or required for the current configuration.
The default value can be changed by writing to the Variable after creation. Newly created
Objects shall have the Status Disabled_0 if they are created with the standard Methods.

Variables that can be configured shall have the CurrentWrite flag set in the AccesslLevel
Attribute. The UserAccessLevel may be limited based on the rights of the user of the OPC UA
Client.

Configuration changes shall be applied in a batch to avoid inconsistencies between different
configuration parameters. The mechanism to apply changes in a batch operation is to allow
changes only when the related Object has the Status Disabled 0 and to apply the new
configuration settings when the Status is changed to Operational_2. Therefore write operations
to configuration parameters shall be rejected with Bad_lInvalidState if the Status is not
Disabled_0. Changes to PublishedDataSet configurations shall be rejected with
Bad_InvalidState if not all related DataSetWriters have the Status Disabled_0.



Release 1.04 96 OPC 10000-14: PubSub

9.1.3 Types for the PublishSubscribe Object
9.1.3.1 Overview

Figure 38 depicts the PublishSubscribeType and the components used to represent the
PublishSubscribe Object.

Objects

Server

PubSubKeyServiceType:
PublishSubscribe

Y

PubSubKeyServiceType

?

PublishSubscribeType

] ) DataSetFolderType:
SetSecurityKeys ' PublishedDataSets

PubSubConnectionType:
<Connection Name>

AddConnection

PubSubStatusType:

RemoveConnection Status

"

Figure 38 — PublishSubscribe Object Types Overview

The PublishSubscribe Object is the root node for all PubSub related configuration Objects. It is
an instance of the PublishSubscribeType and a component of the Server Object.

The PublishSubscribeType contains the entry point for PublishedDataSet configuration, the
entry point for PubSub connections. In addition, it provides Methods for connection
management.

9.1.3.2 PublishSubscribeType

An instance of this ObjectType represents the root Object for all PubSub related configuration
and metadata Objects. The one instance of this ObjectType that represents the root Object is
defined in 8.4. The ObjectType is formally defined in Table 103.

Table 103 — PublishSubscribeType Definition

Attribute Value

BrowseName PublishSubscribeType

IsAbstract False

References Node BrowseName DataType | TypeDefinition Modelling
Class Rule

Subtype of PubSubKeyServiceType defined in 8.2.

HasPubSub Object <ConnectionName> PubSubConnectionType Optional

Connection Placeholder

HasComponent | Method SetSecurityKeys Defined in 9.1.3.3. Optional

HasComponent | Method AddConnection Defined in 9.1.3.4. Optional

HasComponent | Method RemoveConnection Defined in 9.1.3.5. Optional

HasComponent | Object PublishedDataSets DataSetFolderType Mandatory

HasComponent | Object Status PubSubStatusType Mandatory

HasComponent | Object Diagnostics PubSubDiagnosticsRootType Optional

HasProperty Variable | SupportedTransportProfiles String[] PropertyType Mandatory

The PublishSubscribeType ObjectType is a concrete type and can be used directly.




OPC 10000-14: PubSub 97 Release 1.04

The configured connection Objects are added as components to the instance of the
PublishSubscribeType. Connection Objects may be configured with product specific
configuration tools or added and removed through the Methods AddUadpConnection,
AddBrokerConnection and RemoveConnection. The PubSubConnectionType is defined in
9.1.5.2. The HasPubSubConnection ReferenceType is defined in 9.1.3.6.

The PublishedDataSets Object contains the configured PublishedDataSets. The
DataSetFolderType is defined in 9.1.4.5.1. The DataSetFolderType can be used to build a tree
of DataSetFolders.

The Status Object provides the current operational status of the PublishSubscribe functionality.
The PubSubStatusType is defined in 9.1.10. The state machine for the status and the relation
to other PubSub Objects like PubSubConnection, PubSubGroup, DataSetWriter and
DataSetReader are defined in 6.2.1.

The Diagnostics Object provides the current diagnostic information for the PublishSubscribe
Object. The PubSubDiagnosticsRootType is defined in 9.1.11.7.

The SupportedTransportProfiles Property provides a list of TransportProfileUris supported by
the Server. The TransportProfileUris are defined in OPC 10000-7.

9.1.3.3 SetSecurityKeys

This Method is used to push the security keys for a SecurityGroup into a Publisher or
Subscriber. It is used if Publisher or Subscriber have no OPC UA Client functionality.

Encryption is required for this Method. The Method shall return Bad_SecurityModelnsufficient
if the communication is not encrypted.

Signature
SetSecurityKeys (

[in] String SecurityGroupId
[in] String SecurityPolicyUri
[in] IntegerId CurrentTokenId
[in] ByteString CurrentKey
[in] ByteString|[] FutureKeys
[in] Duration TimeToNextKey
[in] Duration KeyLifetime

)



Release 1.04

98 OPC 10000-14: PubSub

Argument

Description

SecurityGroupld

The identifier for the SecurityGroup.

SecurityPolicyUri

The URI for the set of algorithms and key lengths used to secure the messages. The
SecurityPolicies are defined in OPC 10000-7.

CurrentTokenld

The SecurityTokenld that appears in the header of messages secured with the

CurrentKey. It starts at 1 and is incremented by 1 each time the KeyLifetime elapses even if
no keys are requested. If the CurrentTokenld increments past the maximum value of UInt32 it
restarts a 1.

If the PubSub Object has key material from previous SetSecurityKeys Method calls, the
CurrentTokenld is used to match the existing list with the fetched list and to eliminate
duplicates.

If the CurrentTokenld is unknown, the existing list shall be discarded and replaced.

CurrentKey The current key used to secure the messages. This key is not used directly since the protocol
associated with the PubSubGroup(s) specifies an algorithm to generate distinct keys for

different types of cryptography operations.

FutureKeys An ordered list of future keys that are used when the KeyLifetime elapses. The
SecurityTokenld associated with the first key in the list is 1 more than the CurrentTokenld. All
following keys have a SecurityTokenld that is incremented by 1 for every key

returned.

TimeToNextKey The time, in milliseconds, before the CurrentKey is expected to expire.

If a Publisher uses this Method to get the keys from a SKS, the TimeToNextKey and
KeyLifetime are used to calculate the time the Publisher shall use the next key. The
TimeToNextKey defines the time when to switch from CurrentKey to FutureKeys and
the KeyLifetime defines when to switch from one future key to the next future key.
For a Subscriber the TimeToNextKey and KeyLifetime are used to calculate the time
the Subscriber must expect that the Publishers use the next key. Due to network
latency, out of order delivery and the use of keys for several Publishers, a
Subscriber must expect some overlap time where NetworkMessages are received
that are using the previous or the next key.

TimeToNextKey and KeyLifetime are also used to calculate the time until Publisher and
Subscriber must fetch new keys.

KeyLifetime The lifetime of a key in milliseconds.

The returned keys may expire earlier if the keys are discarded for some reason. An
unplanned key rotation is indicated in the NetworkMessage header before the next
key is used to give the Subscriber some time to fetch new keys.

If the CurrentTokenld in the message is not recognized the receiver shall call this

Method again to get new keys.

Method Result Codes

ResultCode Description

Bad_NotFound The SecurityGroupld is unknown.

Bad_UserAccessDenied The caller is not allowed to set the keys for the SecurityGroup.

Bad_SecurityModelnsufficient The communication channel is not using encryption.

9.1.3.4 AddConnection Method
This Method is used to add a new PubSubConnection Object to the PublishSubscribe Object.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddConnection (
[in] PubSubConnectionDataType
[out] Nodeld

) 7

Configuration
ConnectionId

Argument Description

Configuration Configuration parameters for the PubSubConnection. The parameters and the

PubSubConnectionDataType are defined in 6.2.6.

Connectionld The Nodeld of the new connection.

Method Result Codes



OPC 10000-14: PubSub 99 Release 1.04

ResultCode Description

Bad_InvalidArgument The Server is not able to apply the name. The name may be too long or may
contain invalid character.

Bad_BrowseNameDuplicated An Object with the name already exists.

Bad_ResourceUnavailable The Server has not enough resources to add the PubSubConnection Object.

Bad_UserAccessDenied The Session user is not allowed to create a PubSubConnection Object.

9.1.3.5 RemoveConnection Method

This Method is used to remove a PubSubConnection Object from the PublishSubscribe Object.
A successful removal of the PubSubConnection Object removes all associated group,
DataSetWriter and DataSetReader Objects. Before the Objects are removed, their state is set
to Disabled_0O.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemoveConnection (

[in] NodeId ConnectionId

)i

Argument Description

Connectionld Nodeld of the PubSubConnection Object to remove from the Server

Method Result Codes

ResultCode Description

Bad_NodeldUnknown The Connectionld is unknown.

Bad_UserAccessDenied | The Session user is not allowed to delete the PubSubConnection Object.

9.1.3.6 HasPubSubConnection

The HasPubSubConnection ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the HasComponent ReferenceType.

The SourceNode of References of this type shall be the PublishSubscribe Object defined in 8.4.

The TargetNode of this ReferenceType shall be an Object of type PubSubConnectionType
defined in 9.1.5.2.

The representation of the HasPubSubConnection ReferenceType in the AddressSpace is
specified in Table 104.

Table 104 — HasPubSubConnection ReferenceType

Attributes Value

BrowseName HasPubSubConnection

InverseName PubSubConnectionOf

Symmetric False

IsAbstract False

References NodeClass | BrowseName | Comment
Subtype of HasComponent defined in OPC 10000-5.




Release 1.04 100 OPC 10000-14: PubSub

914 Published DataSet Model
9.14.1 Overview
Figure 39 depicts the ObjectTypes of the published DataSet model and their components.

DataSetFolderType <

Organi 0. DataSetFolderType:
[ oreanizes <DataSetFolderName>
0..n PublishedDataSetType: .
H <PublishedDataSetName> »» PublishedDataSetType

AddPublishedDataltems ConfigurationVersion j

DataSetMetaData j

AddPublishedEvents

DataSetClassld j

AddPublishedDataltemsTemplate

ExtensionFields ‘

AddPublishedEventsTemplate
AddExtensionField

RemovePublishedDataSet

RemoveExtensionField

il
i

PublishedEventsType PublishedDataltemsType

PublishedData

AddVariables
RemoveVariables

EventNotifier

EventFields

EventFilter

ModifyFieldSelection

Figure 39 — Published DataSet Overview

Instances of the DataSetFolderType are used to organize PublishedDataSetType Objects in a
tree of DataSetFolders. The configuration can be made through Methods or can be made by
product specific configuration tools.

The PublishedDataSetType defines the information necessary for a Subscriber to understand
and decode DataSetMessages received from the Publisher for a DataSet and to detect changes
of the DataSet semantic and metadata.

The types derived from the PublishedDataSetType define the source of information for a
DataSet in the OPC UA Server AddressSpace like Variables or Events.

9.1.4.2 Published DataSet

9.14.2.1 PublishedDataSetType

This ObjectType is the base type for PublishedDataSets. It defines the metadata and the
configuration version of the DataSets sent as DataSetMessages through DataSetWriters.

The PublishedDataSetType is the base type for configurable DataSets. Derived types like
PublishedDataltemsType and PublishedEventsType defines how to collect the DataSet to be
published. For PublishedDataltemsType this is a list of monitored Variables. For



OPC 10000-14: PubSub 101 Release 1.04

PublishedEventsType this is an Event selection. The list of monitored Variables or the list of
selected EventFields defines the content and metadata of the PublishedDataSetType Object.

If the content of the DataSet is defined by a product specific configuration and the source of
the DataSet is not known, the PublishedDataSetType can be used directly to expose the
PublishedDataSet in the AddressSpace of the Publisher.

The PublishedDataSetType is formally defined in Table 105.

Table 105 — PublishedDataSetType Definition

Attribute Value

BrowseName PublishedDataSetType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType defined in OPC 10000-5.

DataSetToWriter | Object <DataSetWriterName> DataSetWriterType Optional

Placeholder

HasProperty Variable ConfigurationVersion Configuration PropertyType Mandatory
VersionDataType

HasProperty Variable DataSetMetaData DataSetMeta PropertyType Mandatory
DataType

HasProperty Variable DataSetClassld Guid PropertyType Optional

HasComponent Object ExtensionFields ExtensionFieldsType Optional

The PublishedDataSetType ObjectType is a concrete type and can be used directly. It can be
used to expose a PublishedDataSet where the data collection is not visible in the
AddressSpace.

The Object has a list of DataSetWriters. A DataSetWriter sends DataSetMessages created from
DataSets through a Message Oriented Middleware. The link between the PublishedDataSet
Object and a DataSetWriter shall be created when an instance of the DataSetWriterType is
created. The DataSetWriterType is defined in 9.1.7.2. If a DataSetWriter is created for the
PublishedDataSet, it is added to the list using the ReferenceType DataSetToWriter. The
DataSetToWriter ReferenceType is defined in 9.1.4.2.5. If a DataSetWriter for the
PublishedDataSet is removed from a group, the Reference to this DataSetWriter shall also be
removed from this list. The group model is defined in 9.1.6.

The Property ConfigurationVersion is related to configuration of the DataSet produced by the
PublishedDataSet Object. The PublishedDataSet parameters affecting the version are defined
in the concrete types derived from this base type. The ConfigurationVersionDataType and the
rules for setting the version are defined in 6.2.2.1.5.

The Property DataSetMetaData provides the information necessary to decode
DataSetMessages on the Subscriber side if the DataSetMessages are not self-describing. The
information in this Property is automatically updated if the ConfigurationVersion is changed
based on DataSet configuration change. The DataSetMetaDataType is defined in 6.2.2.1.2. The
Name field in the DataSetMetaDataType shall match the name of the PublishedDataSetType
Object if the DataSetMetaData is not based on a DataSetClass.

The MajorVersion part of the ConfigurationVersion contained in the DataSetMessage must
match the ConfigurationVersion of the DataSetMetaData available on the Subscriber side.

The DataSetClassld is the globally unique identifier for a DataSetClass. The optional Property
shall be present if the DataSetClassld of the DataSetMetaData is not null. If the DataSetClassld
is set, the Publisher shall reject any configuration changes that change the DataSetMetaData.

The ExtensionFields Object allows the configuration of fields with values to be included in the
DataSet in case the existing AddressSpace of the Publisher does not provide the necessary
information. The extension fields are added as Properties to the ExtensionFields Object. For
PublishedDataltemsType base PublishedDataSets, an extension field is included as a Variable
in the published DataSet. For PublishedEventsType base PublishedDataSets, an extension field
is included into the SelectedFields for the DataSet.




Release 1.04 102 OPC 10000-14: PubSub

9.1.4.2.2 ExtensionFieldsType

The ExtensionFieldsType is formally defined in Table 106. It allows the configuration of fields
with values to be included in the DataSet in case the existing AddressSpace of the Publisher
does not provide the necessary information.

Table 106 — ExtensionFieldsType Definition

Attribute Value

BrowseName ExtensionFieldsType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule
Subtype of BaseObjectType defined in OPC 10000-5.

HasProperty Variable <ExtensionFieldName> BaseDataType | PropertyType OptionalPlaceholder
HasComponent | Method AddExtensionField Defined in 9.1.4.2.3. Mandatory
HasComponent | Method RemoveExtensionField Defined in 9.1.4.2.4. Mandatory

The ExtensionFieldsType ObjectType is a concrete type and can be used directly.

The configured list of extension fields is exposed through Properties and managed through the
Methods AddExtensionField and RemoveExtensionField. An ExtensionField is not automatically
included in the DataSet. The ExtensionField must be added to the DataSet after creation.

Metadata that normally appear in message headers can be included to the body by adding
extension fields with well-known QualifiedNames. These well-known QualifiedNames are shown
in Table 107. The qualifying namespace is the OPC UA namespace.

Table 107 — Well-Known Extension Field Names

Name Type Description

Publisherld BaseDataType The Publisherld from the Connection Object.

DataSetName String The Name from the DataSetMetaData.

DataSetClassld Guid The DataSetClassld from the DataSetMetaData.
MajorVersion UlInt32 The MajorVersion from the ConfigurationVersion
MinorVersion Uint32 The MinorVersion from the ConfigurationVersion
DataSetWriterld BaseDataType The DataSetWriterld from the DataSetWriterTransport Object.
MessageSequenceNumber Uint16 The sequence number from the DataSetMessage.

If a well-known name is used the value placed in the message body is dynamically generated
from the current settings. The value set in the AddExtensionField Method is ignored. Subtypes
of DataSetWriterTransportType may extend this list.

9.1.4.2.3 AddExtensionField Method
This Method is used to add a Property to the Object ExtensionFields.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddExtensionField (

[in] QualifiedName FieldName

[in] BaseDataType FieldvValue

[out] NodeId FieldId

) 7

Argument Description

FieldName Name of the field to add.

FieldValue The value of the field to add.

Fieldld The Nodeld of the added field Property.

Method Result Codes



OPC 10000-14: PubSub 103 Release 1.04

ResultCode Description
Bad_NodeldExists A field with the name already exists.
Bad_InvalidArgument The Server is not able to apply the Name. The Name may be too long or may contain

invalid characters.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.4.2.4 RemoveExtensionField Method
This Method is used to remove a Property from the Object ExtensionFields.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemoveExtensionField (

[in] NodeId FieldId

) ;

Argument Description

Fieldld The Nodeld field Property to remove.

Method Result Codes

ResultCode Description

Bad_NodeldUnknown A field with the Nodeld does not exist.

Bad_NodeldInvalid The Fieldld is not a Nodeld of a Property of the ExtensionFieldsType Object.
Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.4.2.5 DataSetToWriter

The DataSetToWriter ReferenceType is a concrete ReferenceType that can be used directly. It
is a subtype of the HierarchicalReferences ReferenceType.

The SourceNode of References of this type shall be an Object of ObjectType
PublishedDataSetType or an ObjectType that is a subtype of PublishedDataSetType defined in
9.1.4.2.1.

The TargetNode of this ReferenceType shall be an Object of the ObjectType DataSetWriterType
defined in 9.1.7.1.

Each DataSetWriter Object shall be the TargetNode of exactly one DataSetToWriter Reference.

Servers shall provide the inverse Reference that relates a DataSetWriter Object back to a
PublishedDataSetType Object.

The representation of the DataSetToWriter ReferenceType in the AddressSpace is specified in
Table 108.

Table 108 — DataSetToWriter ReferenceType

Attributes Value

BrowseName DataSetToWriter

InverseName WriterToDataSet

Symmetric False

IsAbstract False

References NodeClass | BrowseName Comment
Subtype of HierarchicalReferences defined in OPC 10000-5.




Release 1.04

9.1.4.3
9.1.4.3.1

Published Data Items

PublishedDataltemsType

OPC 10000-14: PubSub

The PublishedDataltemsType is used to select a list of OPC UA Variables as the source for the
creation of DataSets sent through one or more DataSetWriters.

The PublishedDataltemsType is formally defined Table 109.

Table 109 — PublishedDataltemsType Definition

Attribute Value

BrowseName PublishedDataltemsType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of PublishedDataSetType defined in 9.1.4.2.

HasProperty Variable PublishedData PublishedVariable | PropertyType Mandatory
DataType[]

HasComponent Method AddVariables Defined in 9.1.4.3.2. Optional

HasComponent Method RemoveVariables Defined in 9.1.4.3.3. Optional

The PublishedDataltemsType ObjectType is a concrete type and can be used directly.

The PublishedData is defined in 6.2.2.6.1. Existing entries in the array can be changed by
writing the new settings to the Variable Value. A new Value shall be rejected with
Bad_OutOfRange if the array size would be changed. Entries in the array can be added and
removed with the Methods AddVariables and RemoveVariables.

The index into the list of entries in the PublishedData has an important role for Subscribers and
for configuration tools. It is used as a handle to reference the entry in configuration actions like
RemoveVariable or the Value in DataSetMessages received by Subscribers. The index may
change after configuration changes. Changes are indicated by the ConfigurationVersion and
applications working with the index shall always check the ConfigurationVersion before using
the index.

9.1.4.3.2 AddVariables Method

This Method is used to add Variables to the PublishedData Property. The PublishedData
contains a list of published Variables of a PublishedDataltemsType Object. The information
provided in the input Arguments and information available for the added Variables is also used
to create the content of the DataSetMetaData Property. The mapping to the DataSetMetaData
is described for the input Arguments.

Variables shall be added at the end of the list in PublishedData. This ensures that Subscribers
are only affected by the change if they are interested in the added Variables.

If at least one Variable was added to the PublishedData, the MinorVersion of the
ConfigurationVersion shall be updated. The ConfigurationVersionDataType and the rules for
setting the version are defined in 6.2.2.1.5.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature
AddVariables (

[in] ConfigurationVersionDataType ConfigurationVersion
[in] Stringl] FieldNameAliases
[in] Boolean|[] PromotedFields
[in] PublishedVariableDataTypel] VariablesToAdd
[out] ConfigurationVersionDataType NewConfigurationVersion
[out] StatusCodel] AddResults



OPC 10000-14: PubSub

105 Release 1.04

Argument

Description

ConfigurationVersion

Configuration version of the DataSet. The configuration version must match the entire
current configuration version of the Object when the Method call is processed. If it does
not match, the result Bad_InvalidState shall be returned.

The ConfigurationVersionDataType is defined in 6.2.2.1.5.

FieldNameAliases

The names assigned to the selected Variables for the fields in the DataSetMetaData
and in the DataSetMessages for tagged message encoding. The size and the order of
the array shall match the VariablesToAdd.

The string shall be used to set the name field in the FieldMetaData that is part of the
DataSetMetaData.

PromotedFields

The flags indicating if the corresponding field is promoted to the DataSetMessage
header. The size and the order of the array shall match the VariablesToAdd.

The flag is used to set the PromotedField flag in the fieldFlags parameter in the
FieldMetaData.

VariablesToAdd

Array of Variables to add to PublishedData and the related configuration settings.
Successfully added variables are appended to the end of the list of published variables
configured in the PublishedData Property. Failed variables are not added to the list.
The PublishedVariableDataType is defined in 6.2.2.6.1.

The parameters builtinType, dataType, valueRank and arrayDimensions of the
FieldMetaData are filled from corresponding Variable Attributes.

NewConfigurationVersion

Returns the new configuration version of the PublishedDataSet.

AddResults

The result codes for the variables to add.
Variables exceeding the maximum number of items in the Object are rejected with
Bad_TooManyVariables.

Method Result Codes

ResultCode

Description

Bad_NothingToDo

An empty list of variables was passed in.

Bad_InvalidState

The configuration version did not match the current state of the object.

Bad_NotWritable

The DataSet is based on a DataSetClass and the size of the PublishedData array cannot
be changed.

Bad_UserAccessDenied

The Session user is not allowed to configure the object.

Operation Result Codes

ResultCode Description

Bad_NodeldInvalid See OPC 10000-4 for the description of this result code.

Bad_NodeldUnknown See OPC 10000-4 for the description of this result code.

Bad_IndexRangelnvalid See OPC 10000-4 for the description of this result code.

Bad_IndexRangeNoData See OPC 10000-4 for the description of this result code.

If the ArrayDimensions have a fixed length that cannot change and no data exists
within the range of indexes specified, Bad_IndexRangeNoData is returned in
AddVariables. Otherwise, if the length of the array is dynamic, the Publisher shall
insert this status in a DataSet if no data exists within the range.

The Publisher has reached its maximum number of items for the
PublishedDataltemsType object.

Bad_TooManyVariables

9.1.4.3.3

This Method is used to remove Variables from the PublishedData list. It contains the list of
published Variables of a PublishedDataltemsType Object.

RemoveVariables Method

A caller shall read the current Values of PublishedData and ConfigurationVersion prior to calling
this Method, to ensure the use of the correct index of the Variables that are being removed.

If at least one Variable was successfully removed from the PublishedData, the MajorVersion of
the ConfigurationVersion shall be updated. The ConfigurationVersionDataType and the rules
for setting the version are defined in 6.2.2.1.5.

The order of the remaining Variables in the PublishedData shall be preserved.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.



Release 1.04 106 OPC 10000-14: PubSub

Signature

RemoveVariables (
[in] ConfigurationVersionDataType
[in] UInt32[]
[out] ConfigurationVersionDataType
[out] StatusCode][]
) ;

ConfigurationVersion
VariablesToRemove
NewConfigurationVersion
RemoveResults

Argument Description

Configuration version of the DataSet. The configuration version and the indices passed
in through VariablesToRemove must match the entire current configuration version of
the Object when the Method call is processed. If it does not match, the result
Bad_InvalidState shall be returned. The ConfigurationVersionDataType is defined in
6.2.2.1.5.

ConfigurationVersion

VariablesToRemove Array of indices of Variables to remove from the list of Variables configured in
PublishedData of the PublishedDataltemsType. This matches the list of fields

configured in the DataSetMetaData of the PublishedDataSetType.

NewConfigurationVersion Returns the new configuration version of the DataSet.

RemoveResults The result codes for each of the variables to remove.

Method Result Codes

ResultCode Description

Bad_NothingToDo An empty list of variables was passed in.

Bad_InvalidState The configuration version did not match the current state of the Object.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

Operation Result Codes

ResultCode Description

Bad_InvalidArgument The passed index was invalid.

9.1.4.4 Published Events
9.1.4.4.1 PublishedEventsType
This PublishedDataSetType is used to configure the collection of OPC UA Events.

The PublishedEventsType is formally defined in Table 110.

Table 110 — PublishedEventsType Definition

Attribute Value

BrowseName PublishedEventsType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of PublishedDataSetType defined in 9.1.4.2.1.

HasProperty Variable EventNotifier Nodeld PropertyType Mandatory
HasProperty Variable SelectedFields SimpleAttributeOperand[] PropertyType Mandatory
HasProperty Variable Filter ContentFilter PropertyType Mandatory
HasComponent Method ModifyFieldSelection | Defined in 9.1.4.4.2. Optional

The PublishedEventsType ObjectType is a concrete type and can be used directly.
The EventNotifier is defined in 6.2.2.7.1.
The SelectedFields is defined in 6.2.2.7.2.

The index into the list of entries in the SelectedFields has an important role for Subscribers. It
is used as handle to reference the Event field in DataSetMessages received by Subscribers.
The index may change after configuration changes. Changes are indicated by the
ConfigurationVersion and applications working with the index shall always check the
ConfigurationVersion before using the index. If a change of the SelectedFields adds additional
fields, the MinorVersion of the ConfigurationVersion shall be updated. If a change of the




OPC 10000-14: PubSub 107 Release 1.04

SelectedFields removes fields, the MajorVersion of the ConfigurationVersion shall be updated.
The Property ConfigurationVersion is defined in the base ObjectType PublishedDataSetType.

The Filter is defined in 6.2.2.7.3. A change of the Filter does not affect the
ConfigurationVersion since the content of the DataSet does not change.

9.1.4.4.2 ModifyFieldSelection Method
This Method is used to modify the event field selection of a PublishedEventsType Object.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

ModifyFieldSelection (

[in] ConfigurationVersionDataType ConfigurationVersion
[in] Stringl] FieldNameAliases

[in] Boolean](] PromotedFields

[in] SimpleAttributeOperand][] SelectedFields

[out] ConfigurationVersionDataType NewConfigurationVersion
)i

Argument Description

ConfigurationVersion Configuration version of the DataSet. The configuration version must match the entire

current configuration version of the Object when the Method call is processed. If it does
not match, the result Bad_InvalidState shall be returned.
The ConfigurationVersionDataType is defined in 6.2.2.1.5.

FieldNameAliases The names assigned to the selected fields in the DataSetMetaData and in the
DataSetMessages for tagged message encoding. The size and the order of the array
must match the SelectedFields.

The string is used to set the name field in the FieldMetaData that is part of the
DataSetMetaData.

PromotedFields The flags indicating if the corresponding field is promoted to the DataSetMessage
header. The size and the order of the array shall match the SelectedFields.

The flag is used to set the corresponding field in the FieldMetaData that is part of the
DataSetMetaData.

SelectedFields The selection of Event fields contained in the DataSet generated for an Event and sent
through the DataSetWriter. The SimpleAttributeOperand DataType is defined in OPC
10000-4.

A change to the selected fields requires a change of the ConfigurationVersion.

NewConfigurationVersion Return the new configuration version of the DataSet.

Method Result Codes

ResultCode Description

Bad_InvalidState The configuration version did not match the current state of the Object.
Bad_EventFilterinvalid The event filter is not valid.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.4.5 DataSet Folder
9.145.1 DataSetFolderType
The DataSetFolderType is formally defined Table 111.



Release 1.04 108 OPC 10000-14: PubSub

Table 111 — DataSetFolderType Definition

Attribute Value

BrowseName DataSetFolderType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule
Subtype of FolderType defined in OPC 10000-5.

Organizes Object <DataSetFolderName> DataSetFolderType OptionalPlaceholder
HasComponent | Object <PublishedDataSetName> PublishedDataSetType | OptionalPlaceholder
HasComponent | Method AddPublishedDataltems Defined in 9.1.4.5.2. Optional
HasComponent | Method AddPublishedEvents Defined in 9.1.4.5.3. Optional
HasComponent | Method AddPublishedDataltemsTemplate | Defined in 9.1.4.5.4. Optional
HasComponent | Method AddPublishedEventsTemplate Defined in 9.1.4.5.5. Optional
HasComponent | Method RemovePublishedDataSet Defined in 9.1.4.5.6. Optional
HasComponent | Method AddDataSetFolder Defined in 9.1.4.5.7. Optional
HasComponent | Method RemoveDataSetFolder Defined in 9.1.4.5.8. Optional

The DataSetFolderType ObjectType is a concrete type and can be used directly.

Instances of the DataSetFolderType can contain PublishedDataSets or other instances of the
DataSetFolderType. This can be used to build a tree of Folder Objects used to group the
configured PublishedDataSets.

The PublishedDataSetType Objects are added as components to the instance of the
DataSetFolderType. An instance of a PublishedDataSetType is referenced only from one
DataSetFolder. If the DataSetFolder is deleted, all referenced PublishedDataSetType Objects
are deleted with the folder.

PublishedDataSetType Objects may be configured with product specific configuration tools or
added and removed through the Methods AddPublishedDataltems, AddPublishedEvents and
RemovePublishedDataSet. The PublishedDataSetType is defined in 9.1.4.2.1.

9.1.45.2 AddPublishedDataltems Method

This Method is used to create a PublishedDataSets Object of type PublishedDataltemsType
and to add it to the DataSetFolderType Object. The configuration parameters passed in with
this Method are further described in the PublishedDataltemsType defined in 9.1.4.3.1 and the
PublishedDataSetType defined in 9.1.4.2.

The settings in the VariablesToAdd are used to configure the data acquisition for the DataSet
and are used to initialize the PublishedData Property of the PublishedDataltemsType.

The DataSetMetaData of the PublishedDataSetType is created from meta-data of the Variables
referenced in VariablesToAdd and the settings in FieldNameAliases and FieldFlags.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddPublishedDatalItems (

[in] String Name

[in] Stringl] FieldNameAliases
[in] DataSetFieldFlags/[] FieldFlags

[in] PublishedVariableDataTypel] VariablesToAdd

[out] NodeId DataSetNodeId

[out] ConfigurationVersionDataType ConfigurationVersion
[

out] StatusCodel[] AddResults




OPC 10000-14: PubSub 109 Release 1.04
Argument Description
Name Name of the Object to create.

FieldNameAliases The names assigned to the selected Variables for the fields in the DataSetMetaData
and in the DataSetMessages for tagged message encoding. The size and the order of
the array shall match the VariablesToAdd.

The string shall be used to set the name field in the FieldMetaData that is part of the
DataSetMetaData.

The name shall be unique in the DataSet.

FieldFlags The field flags assigned to the selected Variables for the fields in the DataSetMetaData.
The size and the order of the array shall match the VariablesToAdd.
The flag is used to set the corresponding field in the FieldMetaData that is part of the
DataSetMetaData.

VariablesToAdd Array of Variables to add to PublishedData and the related configuration settings.

Successfully added variables are appended to the end of the list of published variables
configured in the PublishedData Property. Failed variables are not added to the list.
The PublishedVariableDataType is defined in 6.2.2.6.1.

DataSetNodeld Nodeld of the created PublishedDataSets Object.

ConfigurationVersion Returns the initial configuration version of the DataSet.

The result codes for the variables to add.
Variables exceeding the maximum number of items in the Object are rejected with
Bad_TooManyMonitoredltems.

AddResults

Method Result Codes

ResultCode Description

Bad_InvalidState The current state of the Object does not allow a configuration change.

Bad_BrowseNameDuplicated

A data set Object with the name already exists.

Bad_UserAccessDenied

The Session user is not allowed to configure the Object.

Bad_InvalidArgument

The Server is not able to apply the Name. The Name may be too long or may

contain invalid characters.

Operation Result Codes

ResultCode Description

Bad_NodeldInvalid See OPC 10000-4 for the description of this result code.

Bad_NodeldUnknown See OPC 10000-4 for the description of this result code.

Bad_IndexRangelnvalid See OPC 10000-4 for the description of this result code.

Bad_IndexRangeNoData See OPC 10000-4 for the description of this result code.

If the ArrayDimensions have a fixed length that cannot change and no data exists
within the range of indexes specified, Bad_IndexRangeNoData is returned in
AddVariables. Otherwise if the length of the array is dynamic, the Publisher shall

insert this status in a DataSet if no data exists within the range.

The Server has reached its maximum number of items for the
PublishedDataltemsType object.

Bad_TooManyMonitoredltems

Bad_DuplicateName The passed field name alias already exists.

9.1.4.5.3 AddPublishedEvents Method

This Method is used to add a PublishedEventsType Object to the DataSetFolderType Object.
The configuration parameters passed in with this Method are further described in the
PublishedEventsType defined in 9.1.4.4.1 and the PublishedDataSetType defined in 9.1.4.2.

The settings in the EventNotifier, SelectedFields and Filter are used to configure the data
acquisition for the DataSet and are used to initialize the corresponding Properties of the
PublishedEventsType.

The DataSetMetaData of the PublishedDataSetType is created from meta-data of the selected
Event fields and the settings in FieldNameAliases and FieldFlags.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature
AddPublishedEvents (
[in] String Name



Release 1.04 110 OPC 10000-14: PubSub

[in] NodeId EventNotifier

[in] Stringl] FieldNameAliases

[in] DataSetFieldFlags/[] FieldFlags

[in] SimpleAttributeOperand][] SelectedFields

[in] ContentFilter Filter

[out] ConfigurationVersionDataTypeConfigurationVersion
[out] NodeId DataSetNodeId

) ;

Argument Description

Name Name of the DataSet Object to create.

EventNotifier The Nodeld of the Object in the event notifier tree of the OPC UA Server that is used to

collect Events from.

FieldNameAliases The names assigned to the selected fields in the DataSetMetaData and in the
DataSetMessages for tagged message encoding. The size and the order of the array
shall match the SelectedFields.

The string is used to set the name field in the FieldMetaData that is part of the

DataSetMetaData.

FieldFlags The field flags assigned to the selected fields in the DataSetMetaData. The size and the
order of the array shall match the SelectedFields.
The flag is used to set the corresponding field in the FieldMetaData that is part of the

DataSetMetaData.

SelectedFields The selection of Event Fields contained in the DataSet generated for an Event and sent
through the DataSetWriter. The SimpleAttributeOperand DataType is defined in OPC

10000-4.

Filter The filter applied to the Events. It allows the reduction of the DataSets generated from
Events through a filter like filtering for a certain EventType. The ContentFilter DataType

is defined in OPC 10000-4.

ConfigurationVersion Returns the initial configuration version of the PublishedDataSets.

DataSetNodeld Nodeld of the created PublishedDataSets Object.

Method Result Codes

ResultCode Description

Bad_InvalidState The current state of the Object does not allow a configuration change.

Bad_NodeldExists A data set Object with the name already exists.

Bad_NodeldUnknown

The Event notifier node is not known in the Server.

Bad_EventFilterInvalid

The Event filter is not valid.

Bad_UserAccessDenied

The Session user is not allowed to configure the Object.

Bad_InvalidArgument

The Server is not able to apply the Name. The Name may be too long or may contain

invalid characters.

9.1.45.4 AddPublishedDataltemsTemplate Method

This Method is used to create a PublishedDataSets Object of type PublishedDataltemsType
and to add it to the DataSetFolderType Object. The configuration parameters passed in with
this Method are further described in the PublishedDataltemsType defined in 9.1.4.3.1 and the
PublishedDataSetType defined in 9.1.4.2.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddPublishedDatalItemsTemplate (

[in] String Name

[in] DataSetMetaDataType DataSetMetaData
[in] PublishedVariableDataTypel] VariablesToAdd
[out] NodeId DataSetNodeId
[out] StatusCodel] AddResults



OPC 10000-14: PubSub 111 Release 1.04

Argument Description

Name Name of the Object to create.

DataSetMetaData The DataSetMetaData predefined by the caller. The initial setting shall not be changed
by the Publisher. If the dataSetClassld of the DataSetMetaData is not null, the
DataSetClassld Property of the PublishedDataSetType shall be created and initialized
with the dataSetClassld value.
The name of the PublishedDataSet Object is defined by the name in the
DataSetMetaData.

VariablesToAdd Array of variable settings for the data acquisition for the fields in the DataSetMetaData.

The size of the array shall match the size of the fields array in the DataSetMetaData.
The substituteValue in the VariablesToAdd entries shall be configured.

For failed variables the publishedVariable field of entry in the resulting PublishedData
Property shall be set to a null Nodeld.

If there is no Variable available for a field in the DataSetMetaData the publishedVariable
field for the entry shall be set to a null Nodeld.

The PublishedVariableDataType is defined in 6.2.2.6.1.

DataSetNodeld

Nodeld of the created PublishedDataSets Object.

AddResults

The result codes for the variables to add.

Method Result Codes

ResultCode

Description

Bad_InvalidState

The current state of the Object does not allow a configuration change.

Bad_BrowseNameDuplicated

A data set Object with the name already exists.

Bad_UserAccessDenied

The Session user is not allowed to configure the Object.

Bad_InvalidArgument

The VariablesToAdd parameter does not match the array size of the fields in the
DataSetMetaData or the configuration of the VariablesToAdd contains invalid
settings.

Bad_TooManyMonitoredltems

The Object cannot be created since the number of items in the PublishedDataSet
exceeds the capabilities of the Publisher.

Operation Result Codes

ResultCode

Description

Bad_NodeldInvalid

See OPC 10000-4 for the description of this result code.

Bad_NodeldUnknown

See OPC 10000-4 for the description of this result code.

Bad_IndexRangelnvalid

See OPC 10000-4 for the description of this result code.

Bad_IndexRangeNoData

See OPC 10000-4 for the description of this result code.

If the ArrayDimensions have a fixed length that cannot change and no data exists
within the range of indexes specified, Bad_IndexRangeNoData is returned in
AddVariables. Otherwise if the length of the array is dynamic, the Publisher shall
insert this status in a DataSet if no data exists within the range.

Bad_TooManyMonitoredltems

The Server has reached its maximum number of items for the
PublishedDataltemsType Object.

Bad_DuplicateName

The passed field name alias already exists.

9.1.45.5

AddPublishedEventsTemplate Method

This Method is used to add a PublishedEventsType Object to the DataSetFolderType Object.
The configuration parameters passed in with this Method are further described in the
PublishedEventsType defined in 9.1.4.4.1 and the PublishedDataSetType defined in 9.1.4.2.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddPublishedEventsTemplate (

[in] String Name

[in] DataSetMetaDataType DataSetMetaData
[in] NodeId EventNotifier
[in] SimpleAttributeOperand][] SelectedFields
[in] ContentFilter Filter

[out] NodeId DataSetNodeId




Release 1.04 112 OPC 10000-14: PubSub

Argument Description
Name Name of the Object to create.
DataSetMetaData The DataSetMetaData predefined by the caller. The initial setting shall not be changed

by the Publisher. If the dataSetClassld of the DataSetMetaData is not null, the
DataSetClassld Property of the PublishedDataSetType shall be created and initialized
with the dataSetClassld value.

The name of the PublishedDataSet Object is defined by the name in the

DataSetMetaData.

EventNotifier The Nodeld of the Object in the event notifier tree of the OPC UA Server that is used to
collect Events from.

SelectedFields The selection of Event Fields contained in the DataSet generated for an Event and sent

through the DataSetWriter.

The size of the array shall match the size of the fields array in the DataSetMetaData.
If there is no Event field available for a field in the DataSetMetaData the browsePath
field for the SimpleAttributeOperand entry shall be set to null.

The SimpleAttributeOperand DataType is defined in OPC 10000-4.

Filter The filter applied to the Events. It allows the reduction of the DataSets generated from
Events through a filter like filtering for a certain EventType. The ContentFilter DataType
is defined in OPC 10000-4.

DataSetNodeld Nodeld of the created PublishedDataSets Object.

Method Result Codes

ResultCode Description

Bad_lInvalidState The current state of the Object does not allow a configuration change.

Bad_NodeldExists A DataSet Object with the name already exists.

Bad_NodeldUnknown The Event notifier node is not known in the Server.

Bad_EventFilterInvalid The Event filter is not valid.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

Bad_InvalidArgument The Server is not able to apply the Name. The Name may be too long or may contain
invalid characters.

9.1.4.5.6 RemovePublishedDataSet Method

This Method is used to remove a PublishedDataSetType Object from the DataSetFolderType
Object.

A successful removal of the PublishedDataSetType Object removes all associated
DataSetWriter Objects. Before the Objects are removed, their state is changed to Disabled_0

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemovePublishedDataSet (

[in] NodeId DataSetNodeId

) ;

Argument Description

DataSetNodeld Nodeld of the PublishedDataSets Object to remove from the Server. The DataSetld is

either returned by the AddPublishedDataltems or AddPublishedEvents Methods or can
be discovered by browsing the list of configured PublishedDataSets in the
PublishSubscribe Object.

Method Result Codes

ResultCode Description

Bad_NodeldUnknown The DataSetNodeld is unknown.

Bad_UserAccessDenied | The Session user is not allowed to delete a PublishedDataSetType.

9.1.4.5.7 AddDataSetFolder Method
This Method is used to add a DataSetFolderType Object to a DataSetFolderType Object.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.



OPC 10000-14: PubSub 113 Release 1.04

Signature

AddDataSetFolder (

[in] String Name

[out] NodelId DataSetFolderNodeId

) ;

Argument Description

Name Name of the Object to create.
DataSetFolderNodeld Nodeld of the created DataSetFolderType Object.

Method Result Codes

ResultCode Description

Bad_BrowseNameDuplicated A folder Object with the name already exists.

Bad_InvalidArgument The Server is not able to apply the Name. The Name may be too long or may
contain invalid characters.

Bad_UserAccessDenied The Session user is not allowed to add a folder.

9.1.4.5.8 RemoveDataSetFolder Method

This Method is used to remove a DataSetFolderType Object from the parent DataSetFolderType
Object.

A successful removal of the DataSetFolderType Object removes all associated
PublishedDataSetType Objects and their associated DataSetWriter Objects. Before the Objects
are removed, their state is changed to Disabled_0

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemoveDataSetFolder (

[in] NodelId DataSetFolderNodeId

) ;

Argument Description

DataSetFolderNodeld Nodeld of the DataSetFolderType Object to remove from the Server.

Method Result Codes

ResultCode Description

Bad_NodeldUnknown The DataSetFolderNodeld is unknown.

Bad_UserAccessDenied | The Session user is not allowed to delete a data set.

9.1.5 Connection Model
9.1.5.1 Overview

Figure 40 depicts the ObjectType for the PubSub connection model and its components and the
relations to other parts of the model.



Release 1.04 114 OPC 10000-14: PubSub

O..n‘ PubSubConnectionType:

<Connection Name>

AddConnection

PubllishSubscribe

y

PubSubConnectionType ” [ Publisherld ]

4{ TransportProfileUri ]

NetworkAddressType:
Address

AddWriterGroup

ConnectionTransportType:
TransportSettings

AddReaderGroup

PubSubWriterGroupType:
<Writer Group Name>

"

RemoveGroup

0.n PubSubReaderGroupType:
'l <Reader Group Name>

Figure 40 — PubSubConnectionType Overview

9.1.5.2 PubSubConnectionType

This ObjectType is a concrete type for Objects representing PubSubConnections. A
PubSubConnection is a combination of protocol selection, protocol settings and addressing
information. The PubSubConnectionType is formally defined in Table 112.

Table 112 — PubSubConnectionType Definition

Attribute Value

BrowseName PubSubConnectionType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling Rule
Class

Subtype of BaseObjectType defined in OPC 10000-5.

HasProperty Variable | Publisherld BaseDataType | PropertyType Mandatory

HasComponent Variable | TransportProfileUri String SelectionListType Mandatory

HasProperty Variable | ConnectionProperties | KeyValuePair[] | PropertyType Mandatory

HasComponent Object Address NetworkAddressType Mandatory

HasComponent Object TransportSettings ConnectionTransportType | Optional

HasComponent Object <WriterGroupName> WriterGroupType OptionalPlaceholder

HasComponent Object <ReaderGroupName> ReaderGroupType OptionalPlaceholder

HasComponent Object Status PubSubStatusType Mandatory

HasComponent Object Diagnostics PubSubDiagnostics Optional

ConnectionType

HasComponent Method AddWriterGroup Defined in 9.1.5.3. Optional

HasComponent Method AddReaderGroup Defined in 9.1.5.4. Optional

HasComponent Method RemoveGroup Defined in 9.1.5.5. Optional

The Publisherld is defined in 6.2.6.1.

The TransportProfileUri is defined in 6.2.6.2. The Property is initialized with the default transport
protocol for the Address during the creation of the connection. The SelectionValues Property of
the SelectionListType shall contain the list of supported TransportProfileUris. The
SelectionListType is defined in OPC 10000-5.

The ConnectionProperties is defined in 6.2.6.4.

The Address is defined in 6.2.6.3. The abstract NetworkAddressType is defined in A.3.1. The
default type used for concrete instances is the NetworkAddressUrlType defined in A.3.2. It
represents the Address in the form of a URL String.

The transport protocol mapping specific setting settings are provided in the optional Object
TransportSettings. The ConnectionTransportType is defined in 9.1.5.6. The Object shall be
present if the transport protocol mapping defines specific parameters.

The configured WriterGroup and ReaderGroup Objects are added as components to the
instance of the PubSubConnectionType. PubSubGroup Objects may be configured with product
specific configuration tools or added and removed through the OPC UA Methods
AddWriterGroup, AddReaderGroup and RemoveGroup.




OPC 10000-14: PubSub 115 Release 1.04

The Status Object provides the current operational status of the connection. The
PubSubStatusType is defined in 9.1.10. The state machine for the status and the relation to
other PubSub Objects like PublishSubscribe, PubSubGroup, DataSetWriter and DataSetReader
are defined in 6.2.1.

The Diagnostics Object provides the current diagnostic information for a
PubSubConnectionType Object. The PubSubDiagnosticsConnectionType is defined in 9.1.11.8.

9.1.5.3 AddWriterGroup Method
This Method is used to add a new WriterGroup Object to an instance of the PubSubConnection.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddWriterGroup (
[in] WriterGroupDataType
[out] NodeId
)i

Configuration
GroupId

Argument Description

Configuration Configuration parameters for the WriterGroup. The parameters and the
WriterGroupDataType are defined in 6.2.5.

Groupld The Nodeld of the new WriterGroup Object.

Method Result Codes

ResultCode Description

Bad_InvalidArgument The Server is not able to apply the GroupName. The name may be too long or may

contain invalid character.

Bad_BrowseNameDuplicated An Object with the name already exists in the connection.

Bad_ResourceUnavailable The Server does not have enough resources to add the group.

Bad_UserAccessDenied The Session user does not have rights to create the group.

9.1.5.4 AddReaderGroup Method

This Method is used to add
PubSubConnection.

a new ReaderGroup Object to an instance of the

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddReaderGroup (
[in] ReaderGroupDataType
[out] NodeId
) ;

Configuration
GroupId

Argument Description

Configuration Configuration parameters for the ReaderGroup. The parameters and the
ReaderGroupDataType are defined in 6.2.7.

Groupld The Nodeld of the new ReaderGroup Object.

Method Result Codes

ResultCode Description

Bad_InvalidArgument The Server is not able to apply the GroupName. The name may be too long or may

contain invalid character.

Bad_BrowseNameDuplicated

An Object with the name already exists in the connection.

Bad_ResourceUnavailable

The Server does not have enough resources to add the group.

Bad_UserAccessDenied

The Session user does not have rights to create the group.




Release 1.04 116 OPC 10000-14: PubSub

9.1.5.5 RemoveGroup Method
This Method is used to remove a PubSubGroup Object from the connection.

A successful removal of the PubSubGroup Object removes all associated DataSetWriter or
DataSetReader Objects. Before the Objects are removed, their state is set to Disabled_0.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature
RemoveGroup (
[in] Nodeld GroupId
) ;
Argument Description
Groupld Nodeld of the group to remove from the connection

Method Result Codes

ResultCode Description
Bad_NodeldUnknown The Groupld is unknown.
Bad_UserAccessDenied The Session user does not have rights to delete the group.

9.1.5.6 ConnectionTransportType

This ObjectType is the abstract base type for Objects representing transport protocol mapping
specific settings for PubSubConnections. The ConnectionTransportType is formally defined in
Table 113.

Table 113 — ConnectionTransportType Definition

Attribute Value

BrowseName ConnectionTransportType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType

9.1.6 Group Model
9.1.6.1 Overview

Figure 41 depicts the ObjectType for the PubSub group model and its components and the
relations to other parts of the model.




OPC 10000-14: PubSub 1

=

7 Release 1.04

‘ PubSubConnectionType

ReaderGroupType: ‘ ‘ 0.n ‘ WriterGroupType:
<ReaderGroupName> ‘ on ‘ <WriterGroupName>

‘ PubSubGroupType ‘

PubSubStatusType:
Status

SecurityMode

SecurityKeyServices

‘ WriterGroupType

.

MaxNetworkMessageSize

[ SecurityGroupld

e s

WriterGroupld

PublishingInterval

—»{ ReaderGroupType ‘

TransportSettings

TransportSettings

EncodingMimeType

MessageSettings

MessageSettings

- Priority
DataSetWriterType:
<DataSetWriterName> on

Localelds

KeepAliveTime

44

DataSetReaderType:
<DataSetReaderName>

Figure 41 — PubSubGroupType Overview

9.1.6.2 PubSubGroupType

This ObjectType is the abstract base type for Objects representing communication groupings
for PubSub connections. The PubSubGroupType is formally defined in Table 114.

Table 114 — PubSubGroupType Definition

Attribute Value

BrowseName PubSubGroupType

IsAbstract True

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of BaseObjectType defined in OPC 10000-5.

HasProperty Variable | SecurityMode MessageSecurityMode PropertyType Mandatory

HasProperty Variable | SecurityGroupld String PropertyType Optional

HasProperty Variable | SecurityKeyServices EndpointDescription[] PropertyType Optional

HasProperty Variable | MaxNetworkMessageSize Uint32 PropertyType Mandatory

HasProperty Variable | GroupProperties KeyValuePair[] PropertyType Mandatory

HasComponent Object Status PubSubStatusType Mandatory

The SecurityMode is defined in 6.2.4.2.

The SecurityGroupld is defined in 6.2.4.3. If the SecurityMode is not NONE_1, the Property
shall provide the SecurityGroupld. The value of the Property is null or the Property is not present
if the SecurityMode is NONE_1.

The SecurityKeyServices parameter is defined in 6.2.4.4. If the SecurityMode is not NONE_1,
the Property shall provide the list of Security Key Services for the SecurityGroupld.

The MaxNetworkMessageSize is defined in 6.2.4.5.

The GroupProperties is defined in 6.2.4.6.




Release 1.04 118 OPC 10000-14: PubSub

The Status Object provides the current operational status of the group. The PubSubStatusType
is defined in 9.1.10. The state machine for the status and the relation to other PubSub Objects
like PubSubConnection, DataSetWriter and DataSetReader are defined in 6.2.1.

9.1.6.3 WriterGroupType

Instances of WriterGroupType contain settings for a group of DataSetWriters. The
WriterGroupType is formally defined in Table 115.

Table 115 — WriterGroupType Definition

Attribute Value

BrowseName WriterGroupType

IsAbstract False

References Node BrowseName DataType | TypeDefinition Modelling Rule
Class

Subtype of PubSubGroupType defined in 9.1.6.2

HasProperty Variable | WriterGroupld UInt16 PropertyType Mandatory

HasProperty Variable | Publishinginterval Duration PropertyType Mandatory

HasProperty Variable | KeepAliveTime Duration PropertyType Mandatory

HasProperty Variable | Priority Byte PropertyType Mandatory

HasProperty Variable | Localelds Localeld[] PropertyType Mandatory

HasComponent Object TransportSettings WriterGroupTransportType Optional

HasComponent Object MessageSettings WriterGroupMessageType Optional

HasDataSetWriter Object <DataSetWriterName> DataSetWriterType OptionalPlaceholder

HasComponent Object Diagnostics PubSubDiagnostics Optional

WriterGroupType
HasComponent Method AddDataSetWriter Defined in 9.1.6.4. Optional
HasComponent Method RemoveDataSetWriter | Defined in 9.1.6.5. Optional

The WriterGroupld is defined in 6.2.5.1.

The Publishinginterval is defined in 6.2.5.2.
The KeepAliveTime is defined in 6.2.5.3.

The Priority is defined in 6.2.5.4.

The Localelds parameter is defined in 6.2.5.5.

The transport protocol mapping specific setting settings are provided in the optional Object
TransportSettings. The WriterGroupTransportType is defined in 9.1.6.7. The Object shall be
present if the transport protocol mapping requires specific settings.

The message mapping specific setting settings are provided in the optional Object
MessageSettings. The WriterGroupMessageType is defined in 9.1.6.8. The Object shall be
present if the message mapping defines specific parameters.

The configured DataSetWriterType Objects are added as components to the instance of the
group. DataSetWriterType Objects may be configured with product specific configuration tools
or through OPC UA Methods AddDataSetWriter and RemoveDataSetWriter. The
DataSetWriterType is defined in 9.1.7.1. The ReferenceType HasDataSetWriter is defined in
9.1.6.6.

The Diagnostics Object provides the current diagnostic information for a WriterGroupType
Object. The PubSubDiagnosticsWriterGroupType is defined in 9.1.11.9.

9.1.6.4 AddDataSetWriter Method

This Method is used to add a new DataSetWriterType Object to an instance of the WriterGroup.
A successful creation of the DataSetWriter shall also create a Reference from the related
PublishedDataSet Object to the created DataSetWriter.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.




OPC 10000-14: PubSub 119 Release 1.04

Signature

AddDataSetWriter (
[in] DataSetWriterDataType Configuration

[out] NodeId DataSetWriterNodeId

) ;

Argument Description

Configuration Configuration parameters for the DataSetWriter. The parameters and the
DataSetWriterDataType are defined in 6.2.3.

DataSetWriterNodeld The Nodeld of the new DataSetWriter Object.

Method Result Codes

ResultCode Description

Bad_InvalidArgument The Server is not able to apply the name. The name may be too long or may
contain invalid character.

Bad_DataSetldInvalid The DataSet specified for the DataSetWriter creation is invalid.

Bad_BrowseNameDuplicated An Object with the name already exists in the group.

Bad_ResourceUnavailable The Server has not enough resources to add the DataSetWriter.

Bad_UserAccessDenied The Session user does not have rights to create the DataSetWriter.

9.1.6.5 RemoveDataSetWriter Method

This Method is used to remove a DataSetWriter Object from the group. The state of the
DataSetWriter is set to Disabled_0 before removing the Object. A successful removal of the
DataSetWriter shall also delete the Reference from the related PublishedDataSetType Object
to the removed DataSetWriter.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemoveDataSetWriter (

[in] NodeId DataSetWriterNodeId

)i

Argument Description

DataSetWriterNodeld Nodeld of the DataSetWriter to remove from the group.

Method Result Codes

ResultCode Description

Bad_NodeldUnknown The DataSetWriterNodeld is unknown.

Bad_NodeldInvalid The DataSetWriterNodeld is not a Nodeld of a DataSetWriter.
Bad_UserAccessDenied | The Session user is not allowed to delete a DataSetWriter.

9.1.6.6 HasDataSetWriter

The HasDataSetWriter ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the HasComponent ReferenceType.

The SourceNode of References of this type shall be an instance of the WriterGroupType defined
in 9.1.6.3.

The TargetNode of this ReferenceType shall be an instance of the DataSetWriterType defined
in9.1.7.1.

The representation of the HasDataSetWriter ReferenceType in the AddressSpace is specified
in Table 116.



Release 1.04 120 OPC 10000-14: PubSub

Table 116 — HasDataSetWriter ReferenceType

Attributes Value

BrowseName HasDataSetWriter

InverseName IsWriterinGroup

Symmetric False

IsAbstract False

References NodeClass | BrowseName Comment
Subtype of HasComponent defined in OPC 10000-5.

9.1.6.7 WriterGroupTransportType

This ObjectType is the abstract base type for Objects representing transport protocol mapping
specific settings for WriterGroups. The WriterGroupTransportType is formally defined in Table
117.

Table 117 — WriterGroupTransportType Definition

Attribute Value

BrowseName WriterGroupTransportType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType

HasSubtype ObjectType DatagramWriterGroupTransportType | Defined in 9.3.1.2.

HasSubtype ObjectType BrokerWriterGroupTransportType Defined in 9.3.2.2.

9.1.6.8 WriterGroupMessageType

This ObjectType is the abstract base type for Objects representing message mapping specific
settings for WriterGroups. The WriterGroupMessageType is formally defined in Table 118.

Table 118 — WriterGroupMessageType Definition

Attribute Value

BrowseName WriterGroupMessageType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition I Modelling Rule

Subtype of BaseObjectType

HasSubtype ObjectType UadpWriterGroupMessageType Defined in 9.2.1.1.

HasSubtype ObjectType JsonWriterGroupMessageType Defined in 9.2.2.1.

9.1.6.9 ReaderGroupType

This ObjectType is a concrete type for Objects representing DataSetReader groupings for
PubSub connections. The ReaderGroupType is formally defined in Table 114.

Table 119 — ReaderGroupType Definition

Attribute Value

BrowseName ReaderGroupType

IsAbstract False

References Node BrowseName Data TypeDefinition Modelling Rule
Class Type

Subtype of PubSubGroupType defined in 9.1.6.2

HasDataSetReader Object <DataSetReaderName> DataSetReaderType OptionalPlaceholder

HasComponent Object Diagnostics PubSubDiagnostics Optional

ReaderGroupType

HasComponent Object TransportSettings ReaderGroupTransportType | Optional

HasComponent Object MessageSettings ReaderGroupMessageType Optional

HasComponent Method AddDataSetReader Defined in 9.1.6.10. Optional

HasComponent Method RemoveDataSetReader Defined in 9.1.6.11. Optional

The configured DataSetReaderType Objects are added as components to the instance of the
group. DataSetReaderType Objects may be configured with product specific configuration tools
or through OPC UA Methods AddDataSetReader and RemoveDataSetReader. The




OPC 10000-14: PubSub 121 Release 1.04

DataSetReaderType is defined in 9.1.8.1. The ReferenceType HasDataSetReader is defined in
9.1.6.12.

The Diagnostics Object provides the current diagnostic information for a ReaderGroupType
Object. The PubSubDiagnosticsReaderGroupType is defined in 9.1.11.10.

The transport protocol mapping specific setting settings are provided in the optional Object
TransportSettings. The ReaderGroupTransportType is defined in 9.1.6.13. The Object shall be
present if the transport protocol mapping defines specific parameters.

The message mapping specific setting settings are provided in the optional Object
MessageSettings. The ReaderGroupMessageType is defined in 9.1.6.14. The Object shall be
present if the message mapping defines specific parameters.

9.1.6.10 AddDataSetReader Method

This Method is used to add a new DataSetReaderType Object to an instance of the
ReaderGroup.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature
AddDataSetReader (
[in] DataSetReaderDataType Configuration
[out] NodeId DataSetReaderNodeId
) ;
Argument Description
Configuration Configuration parameters for the DataSetWriter. The parameters and the
DataSetReaderDataType are defined in 6.2.8.

DataSetReaderNodeld The Nodeld of the new DataSetReader Object.

Method Result Codes
ResultCode Description
Bad_InvalidArgument The Server is not able to apply the name. The name may be too long or may

contain invalid characters.

Bad_BrowseNameDuplicated An Object with the name already exists in the group.
Bad_ResourceUnavailable The Server does not have enough resources to add the DataSetReader.
Bad_UserAccessDenied The Session user does not have rights to create the DataSetReader.

9.1.6.11 RemoveDataSetReader Method

This Method is used to remove a DataSetReader Object from the group. The state of the
DataSetReader is set to Disabled_0 before the Object is removed.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemoveDataSetReader (

[in] NodeId DataSetReaderNodeId

)i

Argument Description

DataSetReaderNodeld Nodeld of the DataSetReader to remove from the group.

Method Result Codes



Release 1.04 122 OPC 10000-14: PubSub

ResultCode Description

Bad_NodeldUnknown The DataSetReaderNodeld is unknown.

Bad_NodeldInvalid The DataSetReaderNodeld is not a Nodeld of a DataSetReader.
Bad_UserAccessDenied | The Session user does not have rights to delete the DataSetReader.

9.1.6.12 HasDataSetReader

The HasDataSetReader ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the HasComponent ReferenceType.

The SourceNode of References of this type shall be an instance of the ReaderGroupType
defined in 9.1.6.6.

The TargetNode of this ReferenceType shall be an instance of the DataSetReaderType defined
in 9.1.8.1.

The representation of the HasDataSetReader ReferenceType in the AddressSpace is specified
in Table 120.

Table 120 — HasDataSetReader ReferenceType

Attributes Value

BrowseName HasDataSetReader

InverseName IsReaderInGroup

Symmetric False

IsAbstract False

References NodeClass | BrowseName Comment
Subtype of HasComponent defined in OPC 10000-5.

9.1.6.13 ReaderGroupTransportType

This ObjectType is the abstract base type for Objects representing transport protocol mapping
specific settings for ReaderGroups. The ReaderGroupTransportType is formally defined in
Table 121.

There is currently no transport protocol mapping specific setting defined.

Table 121 — ReaderGroupTransportType Definition

Attribute Value

BrowseName ReaderGroupTransportType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType

9.1.6.14 ReaderGroupMessageType

This ObjectType is the abstract base type for Objects representing message mapping specific
settings for ReaderGroups. The ReaderGroupMessageType is formally defined in Table 122.

There is currently no message mapping specific setting defined.

Table 122 — ReaderGroupMessageType Definition

Attribute Value

BrowseName ReaderGroupMessageType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType

91.7 DataSetWriter Model
9.1.7.1 Overview

Figure 42 depicts the ObjectType for the PubSub DataSetWriter model and its components and
the relations to other parts of the model.




OPC 10000-14: PubSub 123 Release 1.04

PublishedDataSetType

O..q WriterGroupType:

PubSubConnectionType <Writer Group Name>

DataSetToWriter

y
A

0.n DataSetWriterType:
' <DataSetWriterName>

WriterGroupType

Y
A

DataSetWriterType DataSetWriterld

DataSetFieldContentMask

)
)

KeyFrameCount ]

L 4 4 4

DataSetWriterTransportType:
TransportSettings

DataSetWriterMessageType:
MessageSettings

PubSubStatusType:
Status

Figure 42 — DataSet Writer Model Overview

9.1.7.2 DataSetWriterType

An instance of this ObjectType represents the configuration for a DataSetWriter. The
DataSetWriterType is formally defined Table 123.

Table 123 — DataSetWriterType Definition

Attribute Value
BrowseName DataSetWriterType
IsAbstract False
References Node Class | BrowseName DataType TypeDefinition Modelling
Rule
Subtype of BaseObjectType defined in Part 5
HasProperty Variable DataSetWriterld Uint16 PropertyType Mandatory
HasProperty Variable DataSetField DataSetField PropertyType Mandatory
ContentMask ContentMask
HasProperty Variable KeyFrameCount Uint32 PropertyType Optional
HasProperty Variable DataSetWriterProperties | KeyValuePair[] | PropertyType Mandatory
HasComponent Object TransportSettings DataSetWriterTransportType | Optional
HasComponent Object MessageSettings DataSetWriterMessageType | Optional
HasComponent Object Status PubSubStatusType Mandatory
HasComponent Object Diagnostics PubSubDiagnostics Optional
DataSetWriterType

The DataSetWriterld is defined in 6.2.3.1.
The DataSetFieldContentMask is defined in 6.2.3.2.

The KeyFrameCount is defined in 6.2.3.3. The Property shall be present for PublishedDataSets
that provide cyclic updates of the DataSet.

The DataSetWriterProperties is defined in 6.2.3.4.

The transport protocol mapping specific setting settings are provided in the optional Object
TransportSettings. The DataSetWriterTransportType is defined in 9.1.7.3. The Object shall be
present if the transport protocol mapping defines specific parameters.

The message mapping specific setting settings are provided in the optional Object
MessageSettings. The DataSetWriterMessageType is defined in 9.1.7.4. The Object shall be
present if the message mapping defines specific parameters.



Release 1.04 124 OPC 10000-14: PubSub

The Status Object provides the current operational status of the DataSetWriter. The
PubSubStatusType is defined in 9.1.10. The state machine for the status and the relation to
other PubSub Objects like PubSubConnection and PubSubGroup is defined in 6.2.1.

The Diagnostics Object provides the current diagnostic information for a DataSetWriterType
Object. The PubSubDiagnosticsDataSetWriterType is defined in 9.1.11.11.

9.1.7.3 DataSetWriterTransportType

This ObjectType is the abstract base type for Objects defining protocol specific transport
settings of DataSetMessages. The DataSetWriterTransportType is formally defined Table 124.

Table 124 — DataSetWriterTransportType Definition

Attribute Value

BrowseName DataSetWriterTransportType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in Part 5

HasSubtype | ObjectType | BrokerDataSetWriterTransportType | Defined in 9.3.2.3.

9.1.7.4 DataSetWriterMessageType

This ObjectType is the abstract base type for Objects representing message mapping specific
settings for DataSetWriters. The DataSetWriterMessageType is formally defined in Table 125.

Table 125 — DataSetWriterMessageType Definition

Attribute Value

BrowseName DataSetWriterMessageType

IsAbstract True

References Node Class | BrowseName DataType | TypeDefinition Modelling
Rule

Subtype of BaseObjectType

HasSubtype ObjectType UadpDataSetWriterMessageType Defined in 9.2.1.2.

HasSubtype ObjectType JsonDataSetWriterMessageType Defined in 9.2.2.2.

91.8 DataSetReader Model
9.1.8.1 Overview

Figure 43 depicts the ObjectType for the PubSub DataSetReader model and its components
and the relations to other parts of the model.

—N{ Publisherld ]
. 0.n ReaderGroupType:
PubSubConnectionType " <Reader Grou':) )ll\ll)ame> WriterGroupld
—N{ DataSetWriterld ]
v
0..n DataSetReaderType: DataSetMetaData
ReaderGroupType <DataSetReaderName>
—N—[ DataSetFieldContentMask ]
v
DataSetReaderType [ MessageReceiveTimeout ]
DataSetReaderTransportType:
TransportSettings
DataSetReaderMessageType:
SubscribedDataSetType e+ MessageSettings
PubSubStatusType:
Status
SubscribedDataSetType:
ConnectedVariablesType SubscribedDataSetMirrorType SubscribedDataSet




OPC 10000-14: PubSub 125 Release 1.04

Figure 43 — DataSet Reader Model Overview

9.1.8.2 DataSetReaderType

This ObjectType defines receiving behaviour of DataSetMessages and the decoding to
DataSets. The DataSetReaderType is formally defined in Table 105.

The SubscribedDataSetType defined in 9.1.9.1 describes the processing of the received
DataSet in a Subscriber.

Table 126 — DataSetReaderType Definition

Attribute Value

BrowseName DataSetReaderType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling

Class Rule

Subtype of BaseObjectType defined in Part 5

HasProperty Variable | Publisherld BaseDataType PropertyType Mandatory

HasProperty Variable | WriterGroupld Uint16 PropertyType Mandatory

HasProperty Variable |DataSetWriterld UInt16 PropertyType Mandatory

HasProperty Variable |DataSetMetaData DataSetMetaDataType PropertyType Mandatory

HasProperty Variable |DataSetFieldContentMask | DataSetFieldContentMask | PropertyType Mandatory

HasProperty Variable | MessageReceiveTimeout Duration PropertyType Mandatory

HasProperty Variable | SecurityMode MessageSecurityMode PropertyType Optional

HasProperty Variable | SecurityGroupld String PropertyType Optional

HasProperty Variable | SecurityKeyServices EndpointDescription[] PropertyType Optional

HasProperty Variable |DataSetReaderProperties KeyValuePair(] PropertyType Mandatory

HasComponent Object TransportSettings DataSetReader Optional
TransportType

HasComponent Object MessageSettings DataSetReader Optional
MessageType

HasComponent Object Status PubSubStatusType Mandatory

HasComponent Object Diagnostics PubSubDiagnostics Optional
DataSetReaderType

HasComponent Object SubscribedDataSet Subscribed Mandatory
DataSetType

HasComponent Method | CreateTargetVariables Defined in 9.1.8.5. Optional

HasComponent Method | CreateDataSetMirror Defined in 9.1.8.6. Optional

The Properties Publisherld, WriterGroupld, DataSetWriterld and DataSetClassld define filters
for received NetworkMessages. If the value of the Property is set, it is used as filter and all
messages that do not match the filter are dropped.

The Publisherld is defined in 6.2.8.1.
The WriterGroupld is defined in 6.2.8.2.
The DataSetWriterld is defined in 6.2.8.3.

The DataSetMetaData is defined in 6.2.8.4. If the DataSetReader receives an updated
DataSetMetaData, the DataSetReader shall update the Property DataSetMetaData.

The DataSetFieldContentMask is defined in 6.2.8.5.
The MessageReceiveTimeout is defined in 6.2.8.6.

The SecurityMode is defined in 6.2.8.7. If present or if the value is not INVALID_O, it overwrites
the settings on the group.

The SecurityGroupld is defined in 6.2.8.8.
The SecurityKeyServices is defined in 6.2.8.9.

The DataSetReaderProperties is defined in 6.2.8.10.




Release 1.04 126 OPC 10000-14: PubSub

The transport protocol mapping specific setting settings are provided in the optional Object
TransportSettings. The DataSetWriterTransportType is defined in 9.1.8.3. The Object shall be
present if the transport protocol mapping defines specific parameters.

The message mapping specific setting settings are provided in the optional Object
MessageSettings. The DataSetWriterMessageType is defined in 9.1.8.4. The Object shall be
present if the message mapping defines specific parameters.

The Status Object provides the current operational state of the DataSetReader. The
PubSubStatusType is defined in 9.1.10. The state machine for the status and the relation to
other PubSub Objects like PubSubConnection and PubSubGroup are defined in 6.2.1.

The Diagnostics Object provides the current diagnostic information for a DataSetReaderType
Object. The PubSubDiagnosticsDataSetReaderType is defined in 9.1.11.12.

The SubscribedDataSet Object contains the metadata for the subscribed DataSet and the
information for the processing of DataSetMessage. The SubscribedDataSetType is defined in
9.1.9.1.

9.1.8.3 DataSetReaderTransportType

This ObjectType is the abstract base type for Objects defining the transport protocol specific
parameters for DataSetReaders. The DataSetReaderTransportType is formally defined in Table
127.

Table 127 — DataSetReaderTransportType Definition

Attribute Value

BrowseName DataSetReaderTransportType

IsAbstract True

References Node Class | BrowseName | DataType [ TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in Part 5

HasSubtype | ObjectType | BrokerDataSetReaderTransportType | Defined in 9.3.2.4.

9.1.8.4 DataSetReaderMessageType

This ObjectType is the abstract base type for Objects representing message mapping specific
settings for DataSetReaders. The DataSetReaderMessageType is formally defined in Table
128.

Table 128 — DataSetReaderMessageType Definition

Attribute Value

BrowseName DataSetReaderMessageType

IsAbstract True

References Node Class | BrowseName | DataType [ TypeDefinition | Modelling Rule
Subtype of BaseObjectType

HasSubtype ObjectType UadpDataSetReaderMessageType Defined in 9.2.1.3.

HasSubtype ObjectType JsonDataSetReaderMessageType Defined in 9.2.2.3.

9.1.8.5 CreateTargetVariables Method

This Method is used to initially set the SubscribedDataSet to TargetVariablesType and to create
the list of target Variables of a SubscribedDataSetType.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

CreateTargetVariables (
[in] ConfigurationVersionDataType ConfigurationVersion
[in] FieldTargetDataTypel]l TargetVariablesToAdd
[out] StatusCodel]] AddResults
) ;




OPC 10000-14: PubSub

127 Release 1.04

Argument

Description

ConfigurationVersion

Configuration version of the DataSet. The configuration version passed in through
CreateTargetVariables must match the current configuration version in
DataSetMetaData Property. If it does not match, the result Bad_InvalidState shall be
returned. The ConfigurationVersionDataType is defined in 6.2.2.1.5.

TargetVariablesToAdd The list of target Variables to write received DataSet fields to. The FieldTargetDataType
is defined in 6.2.9.2.3. The succeeded targets are added to the TargetVariables
Property.

AddResults The result codes for the Variables to connect.

Method Result Codes

ResultCode Description
Bad_NothingToDo An empty list of Variables was passed in.
Bad_InvalidState The DataSetReader is not configured yet or the ConfigurationVersion does not match the

version in the Publisher.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

Operation Result Codes

ResultCode

Description

Bad_NodeldInvalid

See OPC 10000-4 for the description of this result code.

Bad_NodeldUnknown

See OPC 10000-4 for the description of this result code.

Bad_IndexRangelnvalid

See OPC 10000-4 for the description of this result code.
This status code indicates either an invalid ReceiverindexRange or an invalid
WriterIndexRange or if the two settings result in a different size.

Bad_IndexRangeNoData

See OPC 10000-4 for the description of this result code.

If the ArrayDimensions have a fixed length that cannot change and no data exists
within the range of indexes specified, Bad_IndexRangeNoData is returned in
AddDataConnections.

Bad_TooManyMonitoredltems

The Server has reached its maximum number of items for the DataSetReader
object.

Bad_InvalidState

The TargetNodeld is already used by another connection.

Bad_TypeMismatch

The Server shall return a Bad_TypeMismatch error if the data type of the DataSet
field is not the same type or subtype of the target Variable DataType. Based on the
DataType hierarchy, subtypes of the Variable DataType shall be accepted by the
Server. A ByteString is structurally the same as a one dimensional array of Byte. A
Server shall accept a ByteString if an array of Byte is expected.

9.1.8.6 CreateDataSetMirror Method

This Method is used to set th

e SubscribedDataSet to SubscribedDataSetMirrorType used to

represents the fields of the DataSet as Variables in the Subscriber Address Space. This Method
creates an Object below the SubscribedDataSet and below this Object it creates a Variable
Node for every field in the DataSetMetaData.

A Variable representing a field

of the DataSet shall be created with the following rules

o TypeDefinition is BaseDataVariableType or a subtype.

e The Reference from the parent Node to the Variable is of type HasComponent.

e The initial AccessLevel of the Variables is CurrentRead.

e The RolePermissions is derived from the parent Node.

e The other Attribute values are taken from the FieldMetaData.

e The properties in the F

ieldMetaData are created as Properties of the Variable.

e The DataTypes are created in the Subscriber from the DataSetMetaData if they do not
exist. The NamespaceUri of the created DataTypes shall match the namespace

contained in the DataS

etMetaData.




Release 1.04 128 OPC 10000-14: PubSub

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

CreateDataSetMirror (

[in] String ParentNodeName

[in] RolePermissionTypel] RolePermissions

[out] NodeId ParentNodeId

) ;

Argument Description

ParentNodeName This parameter defines the BrowseName and DisplayName of the parent Node
for the Variables representing the fields of the subscribed DataSet.

RolePermissions Value of the RolePermissions Attribute to be set on the parent Node. This
value is also used as RolePermissions for all Variables of the DataSet mirror.

ParentNodeld Nodeld of the created parent Node.

Method Result Codes

ResultCode Description

Bad_lInvalidState The DataSetReader is not configured yet or the ConfigurationVersion does not match the
version in the Publisher.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.9 Subscribed DataSet Model
9.1.9.1 SubscribedDataSetType
This ObjectType defines the metadata for the subscribed DataSet and the information for the
processing of DataSetMessages. The SubscribedDataSetType is formally defined in Table 129.

Table 129 — SubscribedDataSetType Definition

Attribute Value

BrowseName SubscribedDataSetType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType defined in Part 5

HasSubtype ObjectType TargetVariablesType

HasSubtype ObjectType SubscribedDataSetMirrorType

9.1.9.2 TargetVariablesType

This ObjectType defines the metadata for the subscribed DataSet and the information for the
processing of DataSetMessages. The TargetVariablesType is formally defined in Table 130.

Table 130 — TargetVariablesType Definition

Attribute Value

BrowseName TargetVariablesType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule

Subtype of SubscribedDataSetType defined in 9.1.9.1.

HasProperty Variable TargetVariables FieldTarget PropertyType Mandatory
DataType([]

HasComponent Method AddTargetVariables Defined in 9.1.9.3. Optional

HasComponent Method RemoveTargetVariables Defined in 9.1.9.4. Optional

The TargetVariables is defined in 6.2.9.2.

9.1.9.3 AddTargetVariables Method

This Method is used to add target Variables to an existing list of target Variables of a
TargetVariablesType Object.




OPC 10000-14: PubSub 129 Release 1.04

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

AddTargetVariables (

[in] ConfigurationVersionDataType ConfigurationVersion
[in] FieldTargetDataTypel[] TargetVariablesToAdd
[out] StatusCode][] AddResults

)i

Argument Description

ConfigurationVersion Configuration version of the DataSet. The configuration version passed in through

AddDataConnections must match the current configuration version in DataSetMetaData
Property. If it does not match, the result Bad_InvalidState shall be returned. The
ConfigurationVersionDataType is defined in 6.2.2.1.5.

TargetVariablesToAdd The list of target Variables to write received DataSet fields to. The FieldTargetDataType
is defined in 6.2.9.2.3. The succeeded connections are added to the TargetVariables
Property.

AddResults The result codes for the Variables to connect.

Method Result Codes

ResultCode Description
Bad_NothingToDo An empty list of Variables was passed in.
Bad_InvalidState The DataSetReader is not configured yet or the ConfigurationVersion does not match the

version in the Publisher.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

Operation Result Codes

ResultCode Description

Bad_NodeldInvalid See OPC 10000-4 for the description of this result code.
Bad_NodeldUnknown See OPC 10000-4 for the description of this result code.
Bad_IndexRangelnvalid See OPC 10000-4 for the description of this result code.

This status code indicates either an invalid ReceiverindexRange or an invalid
WriterindexRange or if the two settings result in a different size.

Bad_IndexRangeNoData See OPC 10000-4 for the description of this result code.
If the ArrayDimensions have a fixed length that cannot change and no data exists
within the range of indexes specified, Bad_IndexRangeNoData is returned in

AddDataConnections.
Bad_TooManyMonitoredltems | The Server has reached its maximum number of items for the DataSetReader
object.
Bad_InvalidState The TargetNodeld is already used by another target Variable.
Bad_TypeMismatch The Server shall return a Bad_TypeMismatch error if the data type of the DataSet

field is not the same type or subtype of the target Variable DataType. Based on the
DataType hierarchy, subtypes of the Variable DataType shall be accepted by the
Server. A ByteString is structurally the same as a one dimensional array of Byte. A
Server shall accept a ByteString if an array of Byte is expected.

9.1.94 RemoveTargetVariables Method

This Method is used to remove entries from the list of target Variables of a TargetVariablesType
Object.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

RemoveTargetVariables (
[in] ConfigurationVersionDataType ConfigurationVersion
[in] UInt32[] TargetsToRemove
[out] StatusCodel]] RemoveResults

) ;



Release 1.04 130 OPC 10000-14: PubSub

Argument Description

ConfigurationVersion Configuration version of the DataSet. The configuration version passed in through
RemoveDataConnections must match the current configuration version in
DataSetMetaData Property. If it does not match, the result Bad_InvalidState shall be
returned. The ConfigurationVersionDataType is defined in 6.2.2.1.5.

TargetsToRemove Array of indices of connections to remove from the list of target Variables.

RemoveResults The result codes for the connections to remove.

Method Result Codes

ResultCode Description
Bad_NothingToDo An empty list of Variables was passed in.
Bad_InvalidState The DataSetReader is not configured yet or the ConfigurationVersion does not match the

version in the DataSetMetaData.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

Operation Result Codes

ResultCode Description

Bad_InvalidArgument The provided index is invalid.

9.1.9.5 SubscribedDataSetMirrorType

This ObjectType defines the information for the processing of DataSetMessages as mirror
Variables. For each field of the DataSet a mirror Variable is created in the Subscriber
AddressSpace. The SubscribedDataSetMirrorType is formally defined in Table 131.

Table 131 — SubscribedDataSetMirrorType Definition

Attribute Value

BrowseName SubscribedDataSetMirrorType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of SubscribedDataSetType defined in 9.1.9.1.

An Object of this type shall contain an Object with the ParentNodeName passed to the Method
CreateDataSetMirror used to set the SubscribedDataSet into the mirror mode.

9.1.10 PubSub Status Object

9.1.10.1 PubSubStatusType

This ObjectType is used to indicate and change the status of a PubSub Object like
PubSubConnection, DataSetWriter or DataSetReader. The PubSubStatusType is formally
defined in Table 132.

Table 132 — PubSubStatusType Definition

Attribute Value

BrowseName PubSubStatusType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in OPC 10000-5.

HasComponent Variable State PubSubState | BaseDataVariableType Mandatory
HasComponent Method Enable Defined in 9.1.10.2. Optional
HasComponent Method Disable Defined in 9.1.10.3. Optional

The State Variable provides the current operational state of the PubSub Object. The default
value is Disabled 0. The PubSubState Enumeration and the related state machine is defined
in6.2.1.

The State may be changed with product specific configuration tools or with the Methods Enable
and Disable.




OPC 10000-14: PubSub 131 Release 1.04

9.1.10.2 Enable Method

This Method is used to enable a configured PubSub Object. The related state machine and the
transitions triggered by a successful call to this Method are defined in 6.2.1.

The Server shall reject Enable Method calls if the current State is not Disabled_0.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

Enable ()

Method Result Codes

ResultCode Description

Bad_InvalidState The state of the Object is not disabled.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.10.3 Disable Method

This Method is used to disable a PubSub Object. The related state machine and the transitions
triggered by a successful call to this Method are defined in 6.2.1.

The Server shall reject Disable Method calls if the current State is Disabled_0.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

Disable ();

Method Result Codes

ResultCode Description

Bad_lInvalidState The state of the Object is not operational.

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.10.4 Status Object

PubSub ObjectTypes that require a status Object add a component with the BrowseName
Status. It is formally defined in Table 133.

Table 133 — Status Object Definition

Attribute Value

BrowseName Status

References Node Class | BrowseName DataType TypeDefinition Modelling Rule
TypeDefinition ObjectType PubSubStatusType

9.1.11 PubSub Diagnostics Objects
9.1.11.1 General

The following types are used to expose diagnostics information in the PubSub information
model. Each level of the PubSub hierarchy shall contain its own diagnostics element in a
standardized format. An overview over the proposed diagnostics architecture is given in Figure
44.




Release 1.04 132 OPC 10000-14: PubSub

PublishSubscribe ~ PubSubConnection - PubSubReaderGroup . DataSetReader
L PubSubDiagnostics L PubSubDiagnostics L PubSubDiagnostics L PubSubDiagnostics
RootType: ConnectionType: GroupType: DataSetReaderType:
Diagnostics Diagnostics Diagnostics Diagnostics
TotalGood Ly Ly .
TotalError
PubSubWriterGroup : DataSetWriter
DiagnosticsLevel
PubSubDiagnostics PubSubDiagnostics
SubError GroupType: DataSetWriterType:
Diagnostics Diagnostics
BaseObjectType: T T
Counters
r r
<Counterldentifier> )
BaseObjectType:
] LiveValues
<Valueldentifier> )

Figure 44 — PubSub Diagnostics Overview

Figure 45 shows the structure of a Variable which holds a diagnostics counter with defined
Properties. The PubSubDiagnosticsCounterType is formally defined in 9.1.11.5.

PubSubDiagnostics
CounterType

- Active ) True = Counter is active

+( Classification ) Indicates the semantic of this counter

+C DiagnosticsLevel ) Diagnostics level from which the counter will be active

+C TimeFirstChange ) Timestamp when the counter changed from O to 1

Figure 45 — PubSubDiagnosticsCounterType

9.1.11.2 PubSubDiagnosticsType

The PubSubDiagnosticsType is the base type for the diagnostics objects and is formally defined
in Table 134.

Table 134 — PubSubDiagnosticsType

Attribute Value

BrowseName PubSubDiagnosticsType

IsAbstract True

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of BaseObjectType defined in OPC 10000-5.

HasComponent Variable | DiagnosticsLevel DiagnosticsLevel BaseDataVariableType Mandatory

HasComponent Variable | Totallnformation Uint32 PubSubDiagnosticsCounterType Mandatory

HasComponent Variable | TotalError Uint32 PubSubDiagnosticsCounterType Mandatory

HasComponent Method Reset Defined in 9.1.11.3. Mandatory

HasComponent Variable | SubError Boolean BaseDataVariableType Mandatory

HasComponent Object Counters BaseObjectType Mandatory

HasComponent Object LiveValues BaseObjectType Mandatory

The DiagnosticsLevel Variable configures the current diagnostics level used for the Object. The
DiagnosticsLevel DataType is defined in 9.1.11.4.




OPC 10000-14: PubSub 133 Release 1.04

The Totallnformation Variable provides the sum of all counters in this in the Object diagnostics
counters with classification Information_0.

The TotalError Variable provides the sum of all counters in this in the Object diagnostics
counters with classification Error_1.

The SubError Variable indicates if any statistics Object of the next PubSub layer Objects shows
a value > 0 in TotalError.

The Object Counters contains all diagnostics counters for the diagnostics Object. The counters
use the VariableType PubSubDiagnosticsCounterType defined in 9.1.11.5. The counter
Variables of the PubSubDiagnosticsType are defined in Table 135.

Table 135 — Counters for PubSubDiagnosticsType

BrowseName Modelling Diagnostics Class Description
Rule Level

StateError Mandatory Basic_0 Error_1 PubSubState state machine defined in 6.2.1
changed to Error_3 state

StateOperationalByMethod | Mandatory Basic_0 Information_0| State changed to Operational_2 state triggered by
Enable Method call.

StateOperationalByParent | Mandatory Basic_0 Information_0| State changed to Operational_2 state triggered by
an operational parent

StateOperationalFromError | Mandatory Basic_0 Information_0| State changed from Error_3 to Operational_2.

StatePausedByParent Mandatory Basic_0 Information_0| State changed to Paused_1 state triggered by a
paused or disabled parent.

StateDisabledByMethod Mandatory Basic_0 Information_0| State changed to Disabled_0 state triggered by
Disable Method call.

The Object LiveValues contains all live values of the diagnhostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType.

The nodes in the Objects Counters and LiveValues may be activated/deactivated by the
parameter DiagnosticsLevel in the PubSubDiangosticsType.

The value of a node in the Object Counters shall be set to 0 whenever the counter changes
from inactive to active.

The Server should dynamically remove inactive nodes from the Address Space in order to avoid
confusion of the user by long lists of counters where only a few of them might be active. In case
inactive nodes cannot be removed from the Address Space the Server shall set the StatusCode
of the Variable Value to Bad_OutOfService.

9.1.11.3 Reset Method

This Method is used to set all counters in the Object diagnostics counters to the initial value.

The Client shall be authorized to modify the configuration for the PubSub functionality when
invoking this Method on the Server.

Signature

Reset ();

Method Result Codes

ResultCode Description

Bad_UserAccessDenied | The Session user is not allowed to configure the Object.

9.1.11.4 DiagnosticsLevel

PubSub diagnostics are intended to assure users about the correct operation of a PubSub
system and to help in the discovery of potential faults. Depending on the situation, not all
diagnostic Objects might be needed, and on the other hand providing them requires resources.
As a result, diagnostic objects are assigned to different diagnostic levels. Only diagnostic
Objects belonging to the currently set diagnostic level or a more severe level have to be



Release 1.04 134 OPC 10000-14: PubSub

provided. This mechanism provides the user the ability to select a suitable diagnostic
configuration depending on the application.

The DiagnosticsLevel is an enumeration that specifies the possible diagnostics levels. The
possible enumeration values are described in Table 136.

Table 136 — DiagnosticsLevel Values

Value Description

Basic_0 Diagnostic objects from this level cannot be disabled, and thus objects from this level
are the minimum diagnostic feature set that can be expected on any device that
supports PubSub diagnostics at all.

Advanced_1 Diagnostic objects related to exceptional behaviour are contained in the Advanced_1
diagnostic level.
Info_2 The Info_2 diagnostic level contains high-level diagnostic objects related to the normal

operation of a PubSub system.

Log_3 Diagnostic objects for the detailed logging of the operation of a PubSub system are
contained in the Log_3 diagnostic level.

Debug_4 Diagnostic objects with debug information specific to a given implementation of
PubSub are contained in the Debug_4 diagnostic level. As this level is intended for
implementation specific diagnostics, no such objects are specified by the standard.

9.1.11.5 PubSubDiagnosticsCounterType
The PubSubDiagnosticsCounterType is formally defined in Table 137.

Table 137 — PubSubDiagnosticsCounterType

Attribute Value

BrowseName PubSubDiagnosticsCounterType

IsAbstract False

ValueRank -1 (-1 = ‘Scalar’)

DataType Uint32

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of BaseDataVariableType defined in OPC 10000-5.

HasProperty Variable Active Boolean PropertyType Mandatory

HasProperty Variable Classification PubSubDiagnostics PropertyType Mandatory
CounterClassification

HasProperty Variable DiagnosticsLevel DiagnosticsLevel PropertyType Mandatory

HasProperty Variable TimeFirstChange DateTime PropertyType Optional

The Value shall be reset to 0 when the Method Clear of the parent PubSubDiagnosticsType
Object is called.

The Value shall be incremented by 1 for each corresponding event.

The Value shall not be incremented anymore when the maximum is reached (OXFFFFFFFF).

If the maximum is reached and a new event occurs, the SourceTimestamp of the Value shall be
updated, even if the Value does not change. The Property Active indicates if the counter is

active.

The Property Classification indicates whether this counter counts errors or other events
according to PubSubDiagnosticsCounterClassification defined in 9.1.11.6.

The Property DiagnosticsLevel indicates the diagnostics level the counter belongs to. The
DiagnosticsLevel is defined in 9.1.11.4.

The Property TimeFirstChange contains the Server time when the counter value changed from
0 to 1. If the counter value is O the Value is null.




OPC 10000-14: PubSub 135 Release 1.04

9.1.11.6 PubSubDiagnosticsCounterClassification

The PubSubDiagnosticsCounterClassification is an enumeration that specifies the possible
diagnostics counter classifications. The possible enumeration values are described in Table
138.

Table 138 — PubSubDiagnosticsCounterClassification Values

Value Description

Information_0 The semantic of this diagnostics counter indicates expected events, which are not
considered as errors.

Error_1 The semantic of this diagnostics counter indicates errors.

9.1.11.7 PubSubDiagnosticsRootType

The PubSubDiagnosticsRootType defines the diagnostic information for the PublishSubscribe
Object and is formally defined in Table 139.

Table 139 — PubSubDiagnosticsRootType

Attribute Value

BrowseName PubSubDiagnosticsRootType

IsAbstract False

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of PubSubDiagnosticsType defined in 9.1.11.2.

HasComponent | Object | LiveValues | | BaseObjectType | Mandatory

The Object LiveValues contains all live values of the diagnostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType. The live values
Variables of the PubSubDiagnosticsRootType are defined in Table 140.

Table 140 - LiveValues for PubSubDiagnosticsRootType

BrowseName Modelling Diagnostics | DataType | Description
Rule Level

ConfiguredDataSetWriters Mandatory Basic_0 Ulnt16 Number of configured DataSetWriters on this
Server

ConfiguredDataSetReaders Mandatory Basic_0 Uint16 Number of configured DataSetReaders on this
Server

OperationalDataSetWriters Mandatory Basic_0 Uint16 Number of DataSetWriters with state
Operational

OperationalDataSetReaders | Mandatory Basic_0 Uint16 Number of DataSetReaders with state
Operational

9.1.11.8 PubSubDiagnosticsConnectionType

The PubSubDiagnosticsConnectionType defines the diagnostic information for a
PubSubConnectionType Object and is formally defined in Table 141.

Table 141 — PubSubDiagnosticsConnectionType

Attribute Value

BrowseName PubSubDiagnosticsConnectionType

IsAbstract False

References NodeClass | BrowseName [ DataType | TypeDefinition | ModellingRule
Subtype of PubSubDiagnosticsType defined in 9.1.11.2.

HasComponent | Object [ Livevalues | | BaseObjectType | Mandatory

The Object LiveValues contains all live values of the diagnostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType. The live values
Variables of the PubSubDiagnosticsConnectionType are defined in Table 142.




Release 1.04

136

Table 142 — LiveValues for PubSubDiagnosticsConnectionType

OPC 10000-14: PubSub

BrowseName Modelling Diagnostics | DataType | Description
Rule Level
ResolvedAddress Mandatory Basic_0 String Resolved address of the connection (e.g. IP
Address)
9.1.11.9 PubSubDiagnosticsWriterGroupType
The PubSubDiagnosticsWriterGroupType defines the diagnostic information for a
WriterGroupType Object and is formally defined in Table 143.
Table 143 — PubSubDiagnosticsWriterGroupType

Attribute Value

BrowseName PubSubDiagnosticsWriterGroupType

IsAbstract False

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of PubSubDiagnosticsType defined in 9.1.11.2.

HasComponent Object Counters BaseObjectType Mandatory
HasComponent Object LiveValues BaseObjectType Mandatory

The Object Counters contains all diagnostics counters for the diagnostics Object. The counters

use the VariableType PubSubDiagnosticsCounterType defined

Variables of the PubSubDiagnosticsWriterGroupType are defined in Table 144.

Table 144 — Counters for PubSubDiagnosticsWriterGroupType

in 9.1.11.5. The counter

BrowseName Modelling Diagnostics Class. Description
Rule Level
Inherited counters from PubSubDiagnosticsType
SentNetworkMessages Mandatory Basic_0 Information_0 | Sent NetworkMessages
FailedTransmissions Mandatory Basic_0 Error_1 Error on NetworkMessage transmission
EncryptionErrors Optional Advanced_1 Error_1 Error on signing or encrypting
NetworkMessage

The Object LiveValues contains all live values of the diagnostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType. The live values
Variables of the PubSubDiagnosticsWriterGroupType are defined in Table 145.

Table 145 - LiveValues for PubSubDiagnosticsWriterGroupType

BrowseName Modelling Diagnostics | DataType | Description
Rule Level

ConfiguredDataSetWriters Mandatory Basic_0 Uint16 Number of configured DataSetWriters in this
group

OperationalDataSetWriters Mandatory Basic_0 Uint16 Number of DataSetWriters with state
Operational

SecurityTokenlD Optional Info_2 UiInt32 Currently used SecurityTokenID

TimeToNextTokenID Optional Info_2 Duration Time until the next key change is expected

9.1.11.10 PubSubDiagnosticsReaderGroupType

The PubSubDiagnosticsReaderGroupType defines the diagnostic information for a
ReaderGroupType Object and is formally defined in Table 146.

Table 146 — PubSubDiagnosticsReaderGroupType
Attribute Value
BrowseName PubSubDiagnosticsReaderGroupType
IsAbstract False
References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of PubSubDiagnosticsType defined in 9.1.11.2.
HasComponent Object Counters BaseObjectType Mandatory
HasComponent Object LiveValues BaseObjectType Mandatory




OPC 10000-14: PubSub 137 Release 1.04

The Object Counters contains all diagnostics counters for the diagnostics Object. The counters
use the VariableType PubSubDiagnosticsCounterType defined in 9.1.11.5. The counter
Variables of the PubSubDiagnosticsReaderGroupType are defined in Table 147.

Table 147 — Counters for PubSubDiagnosticsReaderGroupType

BrowseName Modelling | Diagnostics Class Description

Rule Level
Inherited counters from PubSubDiagnosticsType
ReceivedNetworkMessages Mandatory Basic_0 Information_0 | Received and processed NetworkMessages
ReceivedInvalidNetwork Optional Advanced_1 Error_1 Invalid format of NetworkMessage Header
Messages
DecryptionErrors Optional Advanced_1 Error_1 Decryption or signature check errors

The Object LiveValues contains all live values of the diagnostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType. The live values
Variables of the PubSubDiagnosticsReaderGroupType are defined in Table 148.

Table 148 — LiveValues for PubSubDiagnosticsReaderGroupType

BrowseName Modelling Diagnostics | DataType | Description
Rule Level
ConfiguredDataSetReaders Mandatory Basic_0 Uint16 Number of configured DataSetReaders in this
group
OperationalDataSetReaders | Mandatory Basic_0 Uint16 Number of DataSetReaders with state
Operational

9.1.11.11 PubSubDiagnosticsDataSetWriterType

The PubSubDiagnosticsDataSetWriterType defines the diagnostic information for a
PubSubDataSetWriterType Object and is formally defined in Table 149.

Table 149 — PubSubDiagnosticsDataSetWriterType

Attribute Value

BrowseName PubSubDiagnosticsDataSetWriterType

IsAbstract False

References NodeClass | BrowseName [ DataType | TypeDefinition | ModellingRule
Subtype of PubSubDiagnosticsType defined in 9.1.11.2.

HasComponent Object Counters BaseObjectType Mandatory
HasComponent Object LiveValues BaseObjectType Mandatory

The Object Counters contains all diagnostics counters for the diagnostics Object. The counters
use the VariableType PubSubDiagnosticsCounterType defined in 9.1.11.5. The counter
Variables of the PubSubDiagnosticsDataSetWriterType are defined in Table 150.

Table 150 — Counters for PubSubDiagnosticsDataSetWriterType

BrowseName Modelling Diagnostics Class. Description
Rule Level
Inherited counters from PubSubDiagnosticsType
FailedDataSetMessages [ Mandatory [ Basic 0 | Error 1 | Number of failed DataSetMessages

The Object LiveValues contains all live values of the diagnostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType. The live values
Variables of the PubSubDiagnosticsDataSetWriterType are defined in Table 151.

Table 151 — LiveValues for PubSubDiagnosticsDataSetWriterType

BrowseName Modelling Diagnostics | DataType Description

Rule Level
MessageSequenceNumber Optional Info_2 UInt16 Sequence number of last DataSetMessage
StatusCode Optional Info_2 StatusCode | Status of last DataSetMessage
MajorVersion Optional Info_2 Uint32 MajorVersion used for DataSet
MinorVersion Optional Info_2 UInt32 MinorVersion used for DataSet




Release 1.04 138 OPC 10000-14: PubSub

9.1.11.12 PubSubDiagnosticsDataSetReaderType

The PubSubDiagnosticsDataSetReaderType defines the diagnostic information for a
PubSubDataSetReaderType Object and is formally defined in Table 152.

Table 152 — PubSubDiagnosticsDataSetReaderType

Attribute Value

BrowseName PubSubDiagnosticsDataSetReaderType

IsAbstract False

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of PubSubDiagnosticsType defined in 9.1.11.2.

HasComponent Object Counters BaseObjectType Mandatory
HasComponent Object LiveValues BaseObjectType Mandatory

The Object Counters contains all diagnostics counters for the diagnostics Object. The counters
use the VariableType PubSubDiagnosticsCounterType defined in 9.1.11.5. The counter
Variables of the PubSubDiagnosticsDataSetReaderType are defined in Table 153.

Table 153 — Counters for PubSubDiagnosticsDataSetReaderType

BrowseName Modelling Diagnostics Class. Description
Rule Level
Inherited counters from PubSubDiagnosticsType
FailedDataSetMessages Mandatory Basic_0 Error_1 e.g. because of unknown MajorVersion
DecryptionErrors Optional Advanced_1 Error_1

The Object LiveValues contains all live values of the diagnostics Object. If not further specified,
the live values Variables use the VariableType BaseDataVariableType. The live values
Variables of the PubSubDiagnosticsDataSetReaderType are defined in Table 154.

Table 154 — LiveValues for PubSubDiagnosticsDataSetReaderType

BrowseName Modelling Diagnostics | DataType Description

Rule Level
MessageSequenceNumber Optional Info_2 Uint16 SequenceNumber of last DataSetMessage
StatusCode Optional Info_2 StatusCode | Status of last DataSetMessage
MajorVersion Optional Info_2 UInt32 MajorVersion of available DataSetMetaData
MinorVersion Optional Info_2 Uint32 MinorVersion of available DataSetMetaData
SecurityTokenID Optional Info_2 Uint32 Currently used SecurityTokenlID
TimeToNextTokenID Optional Info_2 Duration Time until the next key change is expected

9.1.12 PubSub Status Events
9.1.12.1 PubSubStatusEventType

This EventType is a base type for events which indicate an error or status change associated
with a PubSubConnectionType, PubSubGroupType, DataSetWriterType or DataSetReaderType
Object. The PubSubStatusEventType is formally defined in Table 155.

Table 155 — PubSubStatusEventType Definition

Attribute Value

BrowseName PubSubStatusEventType

IsAbstract True

References Node Class | BrowseName | DataType I TypeDefinition I Modelling Rule
Subtype of SystemEventType defined in OPC 10000-5.

HasProperty Variable Connectionld Nodeld PropertyType Mandatory
HasProperty Variable Groupld Nodeld PropertyType Mandatory
HasProperty Variable State PubSubState PropertyType Mandatory

This EventType inherits all Properties of the SystemEventType. Their semantic is defined in
OPC 10000-5.

The SourceNode is the Nodeld of the PubSubConnectionType, PubSubGroupType,
DataSetWriterType or DataSetReaderType Object associated with the Event.




OPC 10000-14: PubSub 139 Release 1.04

The SourceName is the BrowseName of the SourceNode.

The Connectionld Property is the Nodeld of the PubSubConnectionType Object associated with
the source of the status Event.

The Groupld Property is the Nodeld of the PubSubGroupType Object associated with the source
of the status Event. The Groupld is Null if a PubSubConnection is the source of the Event.

The State Property is the current state of the PubSubStatus Object associated with the source
of the status Event.
9.1.12.2 PubSubTransportLimitsExceedEventType

This EventType indicates that a NetworkMessage could not be published because it exceeds
the limits of transport. The PubSubTransportLimitsExceedEventType is formally defined in
Table 156.

Table 156 — PubSubTransportLimitsExceedEventType Definition

Attribute Value

BrowseName PubSubTransportLimitsExceedEventType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of PubSubStatusEventType defined in 9.1.12.2.

HasProperty Variable Actual Uint32 PropertyType Mandatory
HasProperty Variable Maximum UlInt32 PropertyType Mandatory

This EventType inherits all Properties of the PubSubStatusEventType.
The Actual Property has the size in bytes of the actual NetworkMessage.

The Maximum Property has the maximum size of NetworkMessages in bytes allowed by the
transport.
9.1.12.3 PubSubCommunicationFailureEventType

This EventType indicates that a NetworkMessage could not be published because of a
communication failure. The PubSubCommunicationFailureEventType is formally defined in
Table 157.

Table 157 — PubSubCommunicationFailureEventType Definition

Attribute Value

BrowseName PubSubCommunicationFailureEventType

IsAbstract True

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule
Subtype of PubSubStatusEventType defined in 9.1.12.2.

HasProperty | Variable | Error | StatusCode I PropertyType I Mandatory

This EventType inherits all Properties of the PubSubStatusEventType.
The Message Event field inherited from BaseEventType has a localized description of the error.
The Error Property has the StatusCode associated with the error.

9.2 Message Mapping Configuration Model
9.21 UADP Message Mapping
9.2.1.1 UadpWriterGroupMessageType

This ObjectType represents UADP message mapping specific parameters for a WriterGroup.
The UadpWriterGroupMessageType is formally defined in Table 158.




Release 1.04 140 OPC 10000-14: PubSub
Table 158 — UadpWriterGroupMessageType Definition

Attribute Value

BrowseName UadpWriterGroupMessageType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule

Subtype of WriterGroupMessageType defined in 9.1.6.8.

HasProperty Variable GroupVersion VersionTime PropertyType Mandatory

HasProperty Variable DataSetOrdering DataSetOrderingType PropertyType Mandatory

HasProperty Variable NetworkMessage UadpNetworkMessage | PropertyType Mandatory

ContentMask ContentMask
HasProperty Variable SamplingOffset Duration PropertyType Optional
HasProperty Variable PublishingOffset Duration PropertyType Mandatory

The GroupVersion is defined in 6.3.1.1.2.

The DataSetOrdering is defined in 6.3.1.1.3.

The NetworkMessageContentMask is defined in 6.3.1.1.4.
The SamplingOffset is defined in 6.3.1.1.5.

The PublishingOffset is defined in 6.3.1.1.6. The ValueRank of the PublishingOffset shall be -3
if the Publisher supports scheduling of multiple NetworkMessages per Publishinginterval. If only
a single offset can be configured, the ValueRank shall be -1. Therefore, the Value of the
PublishingOffset can be a scalar value or a one-dimensional array value. The default Value is
scalar value.

9.2.1.2

This ObjectType represents UADP message mapping specific parameters for a DataSetWriter.
The UadpDataSetWriterMessageType is formally defined in Table 159.

UadpDataSetWriterMessageType

Table 159 — UadpDataSetWriterMessageType Definition

Attribute Value

BrowseName | UadpDataSetWriterMessageType

IsAbstract False

References | Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of DataSetWriterMessageType defined in 9.1.7.4.

HasProperty | Variable DataSetMessageContentMask | UadpDataSetMessage | PropertyType Mandatory
ContentMask

HasProperty | Variable ConfiguredSize Uint16 PropertyType Mandatory

HasProperty | Variable NetworkMessageNumber Uint16 PropertyType Mandatory

HasProperty | Variable DataSetOffset Uint16 PropertyType Mandatory

The DataSetMessageContentMask is defined in 6.3.1.2.2.
The ConfiguredSize is defined in 6.3.1.2.2.

The NetworkMessage is defined in 6.3.1.2.4.

The DataSetOffset is defined in 6.3.1.2.5.

9.2.1.3

This ObjectType represents UADP message mapping specific parameters for a DataSetReader.
The UadpDataSetWriterMessageType is formally defined in Table 160.

UadpDataSetReaderMessageType




OPC 10000-14: PubSub 141 Release 1.04
Table 160 — UadpDataSetReaderMessageType Definition

Attribute Value

BrowseName UadpDataSetReaderMessageType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling

Class Rule

Subtype of DataSetReaderMessageType defined in 9.1.8.4.

HasProperty Variable | GroupVersion VersionTime PropertyType Mandatory

HasProperty Variable | NetworkMessageNumber Uint16 PropertyType Mandatory

HasProperty Variable | DataSetOffset Uint16 PropertyType Mandatory

HasProperty Variable | DataSetClassld Guid PropertyType Mandatory

HasProperty Variable | NetworkMessageContentMask UadpNetworkMessage | PropertyType Mandatory
ContentMask

HasProperty Variable | DataSetMessageContentMask UapdDataSetMessage | PropertyType Mandatory
ContentMask

HasProperty Variable | Publishinginterval Duration PropertyType Mandatory

HasProperty Variable | ReceiveOffset Duration PropertyType Mandatory

HasProperty Variable | ProcessingOffset Duration PropertyType Mandatory

The GroupVersion is defined in 6.3.1.3.1.

The NetworkMessageNumber is defined in 6.3.1.3.2.

The DataSetOffset is defined in 6.3.1.3.3.

The DataSetClassld is defined in 6.3.1.3.4. The initial value is null.

The NetworkMessageContentMask is defined in 6.3.1.3.5.

The DataSetMessageContentMask is defined in 6.3.1.3.6.

The Publishinglnterval is defined in 6.3.1.3.7.

The ReceiveOffset is defined in 6.3.1.3.8.

The ProcessingOffset

9.2.2
9.2.2.1

is defined in 6.3.1.3.9.

JSON Message Mapping
JsonWriterGroupMessageType

This ObjectType represents JSON message mapping specific parameters for a WriterGroup.
The JsonWriterGroupMessageType is formally defined in Table 161.

Table 161 — JsonWriterGroupMessageType Definition

Attribute Value

BrowseName JsonWriterGroupMessageType

IsAbstract False

References Node Class | BrowseName I DataType | TypeDefinition I Modelling Rule

Subtype of WriterGroupMessageType defined in 9.1.6.8.

HasProperty Variable NetworkMessage JsonNetworkMessage | PropertyType Mandatory
ContentMask ContentMask

The NetworkMessageContentMask is defined in 6.3.2.3.1.

9.2.2.2

JsonDataSetWriterMessageType

This ObjectType represents UADP message mapping specific parameters for a DataSetWriter.
The JsonDataSetWriterMessageType is formally defined in Table 162.




Release 1.04 142

Table 162 — JsonDataSetWriterMessageType Definition

OPC 10000-14: PubSub

Attribute Value

BrowseName | JsonDataSetWriterMessageType

IsAbstract False

References | Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of DataSetWriterMessageType defined in 9.1.7.4.

HasProperty | Variable DataSetMessageContentMask | JsonDataSetMessage | PropertyType Mandatory
ContentMask

The DataSetMessageContentMask is defined in 6.3.2.2.1.

9.2.2.3 JsonDataSetReaderMessageType

This ObjectType represents UADP message mapping specific parameters for a DataSetReader.

The JsonDataSetReaderMessageType is formally defined in Table 163.

Table 163 — JsonDataSetReaderMessageType Definition

Attribute Value

BrowseName JsonDataSetReaderMessageType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling

Class Rule

Subtype of DataSetReaderMessageType defined in 9.1.8.4.

HasProperty Variable | NetworkMessageContentMask JsonNetworkMessage | PropertyType Mandatory
ContentMask

HasProperty Variable | DataSetMessageContentMask JsonDataSetMessage | PropertyType Mandatory
ContentMask

The NetworkMessageContentMask is defined in 6.3.2.3.1.
The DataSetMessageContentMask is defined in 6.3.2.3.2.

9.3
9.3.1
9.3.1.1

Transport Protocol Mapping Configuration Model
Datagram Transport Protocol Mapping
DatagramConnectionTransportType

This ObjectType represents datagram transport protocol mapping specific parameters for a
PubSubConnection. The DatagramConnectionTransportType is formally defined in Table 164.

Table 164 — DatagramConnectionTransportType Definition

Attribute Value

BrowseName DatagramConnectionTransportType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of ConnectionTransportType defined in 9.1.5.6.

HasComponent | Object | DiscoveryAddress | | NetworkAddressType

| Mandatory

The DiscoveryAddress is defined in 6.4.1.1.1.

9.3.1.2 DatagramWriterGroupTransportType

This ObjectType represents datagram transport protocol mapping specific parameters for a
WriterGroup. The DatagramWriterGroupTransportType is formally defined in Table 167.




OPC 10000-14: PubSub

Table 165 — DatagramWriterGroupTransportType Definition

143

Release 1.04

Attribute Value

BrowseName DatagramWriterGroupTransportType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule
Subtype of WriterGroupTransportType defined in 9.1.6.7.

HasProperty Variable MessageRepeatCount Byte PropertyType Optional
HasProperty Variable MessageRepeatDelay Duration PropertyType Optional

The MessageRepeatCount is defined in 6.4.1.2.1.
The MessageRepeatDelay is defined in 6.4.1.2.2.

9.3.1.3

There is no datagram specific transport protocol
DataSetWriter.

DatagramDataSetWriterTransportType
mapping parameter defined for the

9.3.1.4

There is no datagram specific transport protocol
DataSetReader.

DatagramDataSetReaderTransportType
mapping parameter defined for the

9.3.2
9.3.2.1

This ObjectType represents broker transport protocol mapping specific parameters for a
PubSubConnection. The BrokerConnectionTransportType is formally defined in Table 166.

Broker Transport Protocol Mapping
BrokerConnectionTransportType

Table 166 — BrokerConnectionTransportType Definition

Attribute Value

BrowseName BrokerConnectionTransportType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of ConnectionTransportType defined in 9.1.5.6.

HasProperty Variable ResourceUri String PropertyType Mandatory
HasProperty Variable AuthenticationProfileUri String PropertyType Mandatory

The ResourceUri is defined in 6.4.2.1.1.
The AuthenticationProfileUri is defined in 6.4.2.1.2.

9.3.2.2

This ObjectType represents broker transport protocol mapping specific parameters for a
WriterGroup. The BrokerWriterGroupTransportType is formally defined in Table 167.

BrokerWriterGroupTransportType

Table 167 — BrokerWriterGroupTransportType Definition

Attribute Value

BrowseName BrokerWriterGroupTransportType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of WriterGroupTransportType defined in 9.1.6.7.

HasProperty Variable QueueName String PropertyType Mandatory

HasProperty Variable ResourceUri String PropertyType Mandatory

HasProperty Variable AuthenticationProfileUri String PropertyType Mandatory

HasProperty Variable RequestedDeliveryGuarantee BrokerTransportQuality PropertyType Mandatory

OfService

The QueueName is defined in 6.4.2.2.1.

The ResourceUri is defined in 6.4.2.2.2.



Release 1.04

144

The AuthenticationProfileUri is defined in 6.4.2.2.3.

The RequestedDeliveryGuarantee is defined in 6.4.2.2.4.

9.3.2.3 BrokerDataS

etWriterTransportType

OPC 10000-14: PubSub

This ObjectType represents broker transport protocol mapping specific parameters for a

DataSetWriter. The BrokerDataSetWriterTransportType is formally defined in Table 168.

Table 168 — BrokerDataSetWriterTransportType Definition

Attribute Value

BrowseName BrokerDataSetWriterTransportType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of DataSetWriterTransportType defined in 9.1.7.3.

HasProperty Variable | QueueName String PropertyType Mandatory

HasProperty Variable | MetaDataQueueName String PropertyType Mandatory

HasProperty Variable | ResourceUri String PropertyType Mandatory

HasProperty Variable | AuthenticationProfileUri String PropertyType Mandatory

HasProperty Variable | RequestedDeliveryGuarantee BrokerTransportQuality PropertyType Mandatory

OfService
HasProperty Variable | MetaDataUpdateTime Duration PropertyType Mandatory

The QueueName is defined in 6.4.2.3.1.

The ResourceUri is defin

The AuthenticationProfileUri is defined in 6.4.2.3.3.

edin 6.4.2.3.2.

The RequestedDeliveryGuarantee is defined in 6.4.2.3.4.

The MetaDataQueueName is defined in 6.4.2.3.5.

The MetaDataUpdateTime is defined in 6.4.2.3.6.

This type extends the list of well-known extension field names defined in Table 107 with the
names defined in Table 169.

Table 169 — Broker Writer Well-Known Extension Field Names

Name Type Description

QueueName String The Broker queue destination for Data messages.

MetaDataQueueName String The Broker queue destination for metadata messages.
9.3.2.4 BrokerDataSetReaderTransportType

This ObjectType represents datagram transport protocol mapping specific parameters for a
DataSetReader. The BrokerDataSetReaderTransportType is formally defined in Table 170.

Table 170 — BrokerDataSetReaderTransportType Definition

Attribute Value

BrowseName BrokerDataSetReaderTransportType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition [ Modelling Rule

Subtype of DataSetReaderTransportType defined in 9.1.8.3.

HasProperty Variable QueueName String PropertyType Mandatory

HasProperty Variable ResourceUri String PropertyType Mandatory

HasProperty Variable AuthenticationProfileUri String PropertyType Mandatory

HasProperty Variable RequestedDeliveryGuarantee BrokerTransport | PropertyType Mandatory
QualityOfService

HasProperty Variable MetaDataQueueName String PropertyType Mandatory




OPC 10000-14: PubSub 145 Release 1.04

The QueueName is defined in 6.4.2.4.1.

The ResourceUri is defined in 6.4.2.4.2.

The AuthenticationProfileUri is defined in 6.4.2.4.3.

The RequestedDeliveryGuarantee is defined in 6.4.2.4.4.

The MetaDataQueueName is defined in 6.4.2.4.5.



Release 1.04 146 OPC 10000-14: PubSub

Annex A
(normative)

Common Types

A.1 DataType Schema Header Structures

A.l1 DataTypeSchemaHeader

This Structure DataType is the abstract base type used to provide OPC UA DataType definitions
for an OPC UA Binary encoded byte blob used outside an OPC UA Server AddressSpace.

The DataTypeSchemaHeader is formally defined in Table A.1.

Table A.1 — DataTypeSchemaHeader Structure

Name Type Description
DataTypeSchemaHeader Structure
namespaces String[] Defines an array of namespace URIs. The index into the array is

referred to as Namespacelndex. The Namespacelndex is used
in Nodelds and QualifiedNames, rather than the longer
namespace URI. Namespacelndex O is reserved for the OPC UA
namespace and it is not included in this array.

The array contains the namespaces used in the data that follows
the DataTypeSchemaHeader. The index used in Nodeld and
QualifiedNames identify an element in this list. The first entry in
this array maps to Namespacelndex 1.

structureDataTypes StructureDescription[] Description of Structure and Union DataTypes used in the data
that follows the DataTypeSchemaHeader. This includes nested
Structures.

DataType Nodelds for Structure DataTypes used in the data
refer to entries in this array.

The StructureDescription DataType is defined in A.1.3.

enumDataTypes EnumDescription[] Description of Enumeration or OptionSet DataTypes used in in
the data that follows the DataTypeSchemaHeader.

DataType Nodelds for Enumeration or OptionSet DataTypes
used in the data refer to entries in this array.

The EnumDescription DataType is defined in A.1.4.

simpleDataTypes SimpleTypeDescription[] Description of DataTypes derived from built-in DataTypes. This
excludes OptionSet DataTypes.

The DataTypeSchemaHeader Structure representation in the AddressSpace is defined in Table
A.2.

Table A.2 — DataTypeSchemaHeader Definition

Attributes Value

BrowseName DataTypeSchemaHeader

IsAbstract True

References NodeClass | BrowseName | IsAbstract
Subtype of Structure defined in OPC 10000-5.

HasSubtype | DataType | UABinaryFileDataType I False

A.l.2 DataTypeDescription

This Structure DataType is the abstract base type for all DataType descriptions containing the
DataType Nodeld and the definition for custom DataTypes like Structures and Enumerations.
The DataTypeDescription is formally defined in Table A.3.

Table A.3 — DataTypeDescription Structure

Name Type Description
DataTypeDescription Structure
dataTypeld Nodeld The Nodeld of the DataType.
name QualifiedName A unique name for the data type.




OPC 10000-14: PubSub 1

The DataTypeDescription Structure representation in the AddressSpace is defined in Table A.4.

47

Table A.4 — DataTypeDescription Definition

Attributes Value

BrowseName DataTypeDescription

IsAbstract True

References NodeClass | BrowseName | IsAbstract
Subtype of Structure defined in OPC 10000-5.

HasSubtype DataType StructureDescription FALSE
HasSubtype DataType EnumDescription FALSE

A.1.3

StructureDescription

Release 1.04

This Structure DataType provides the concrete DataTypeDescription for Structure DataTypes.

It is a subtype of the DataTypeDescription DataType. The StructureDescription is formally
defined in Table A.5.

Table A.5 — StructureDescription Structure

Name
StructureDescription
structureDefinition

Type
Structure
StructureDefinition

Description

The definition of the structure DataType.
The StructureDefinition DataType is defined in OPC 10000-3.

Its representation in the AddressSpace is defined in Table A.6.

Table A.6 — StructureDescription Definition

Attributes Value
BrowseName StructureDescription
IsAbstract False

Subtype of DataTypeDescription defined in 6.2.2.1.5.

A.l1.4 EnumDescription

This Structure DataType provides the concrete DataTypeDescription for Enumeration

DataTypes. It is a subtype of the DataTypeDescription DataType. The EnumDescription is
formally defined in Table A.7.

Table A.7 — EnumDescription Structure

Name Type Description
EnumDescription Structure
enumDefinition EnumDefinition The definition of the enumeration DataType.
The EnumDefinition DataType is defined in OPC 10000-3.
builtinType Byte The builtinType indicates if the DataType is an Enumeration or an
OptionSet. If the builtinType is Int32, the DataType is an Enumeration. If
the builtinType is one of the Ulnteger DataTypes or ExtensionObject, the
DataType is an OptionSet.

Its representation in the AddressSpace is defined in Table A.8.

Table A.8 — EnumDescription Definition

Attributes Value
BrowseName EnumDescription
IsAbstract False

Subtype of DataTypeDescription defined in 6.2.2.1.5.

A.1.5 SimpleTypeDescription

This Structure DataType provides the information for DataTypes derived from built-in

DataTypes. It is a subtype of Structure. The SimpleTypeDescription is formally defined in Table
A.9.



Release 1.04 148 OPC 10000-14: PubSub

Table A.9 — SimpleTypeDescription Structure

Name Type Description
SimpleTypeDescription Structure
baseDataType Nodeld The base DataType of the simple DataType.
builtinType Byte The builtinType used for the encoding of the simple DataType.

A.2 UABinaryFileDataType

This Structure DataType defines the base layout of an OPC UA Binary encoded file. The
contend of the file is the UABinaryFileDataType encoded as ExtensionObject.

The file specific meta data is provided by the DataTypeSchemaHeader which is the base type
for the UABIinaryFileDataType Structure.

If the file is provided through a FileType Object, the MimeType Property of the Object shall have
the value application/opcua+uabinary.

If the file is stored on disc, the file extension shall be uabinary.
The UABinaryFileDataType is formally defined in Table A.10.

Table A.10 - UABinaryFileDataType Structure

Name Type Description
UABinaryFileDataType Structure
schemalocation String Reference to a file that contains the DataTypeSchemaHeader for the

content of the file represented by an instance of this structure.

The schemalocation is either a fully qualified URL or a URN which is a
relative path to the file location.

If the schemalocation is provided, the DataType descriptions can be
skipped but the namespaces used shall match the namespaces in the

schema file.
fileHeader KeyValuePair[] The file specific header.
body BaseDataType The body of the file.

The DataTypes used in the body are described through the
structureDataTypes, enumDataTypes and simpleDataTypes fields of the
DataTypeSchemaHeader Structure which is the base type for the
UABIinaryFileDataType.

DataTypes defined by OPC UA can be omitted.

Its representation in the UABinaryFileDataType is defined in Table A.11.

Table A.11 — UABinaryFileDataType Definition

Attributes Value

BrowseName UABinaryFileDataType
IsAbstract False

Subtype of DataTypeSchemaHeader defined in A.1.1.

A.3 NetworkAddress Model

A.3.1 NetworkAddressType

An instance of a subtype of this abstract ObjectType represents network address information.
The NetworkAddressType is formally defined in Table A.12.



OPC 10000-14: PubSub 149 Release 1.04

Table A.12 — NetworkAddressType Definition

Attribute Value

BrowseName NetworkAddressType

IsAbstract True

References Node Class | BrowseName | DataType [ TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in OPC 10000-5.

HasComponent | Variable NetworkInterface String | SelectionListType | Mandatory
HasSubtype ObjectType NetworkAddressUrI Type Defined in A.3.2.

The Networkinterface Variable allows the selection of the network interface used for the
communication relation. The network interface can be listed by name, by IP address or a
combination of name and IP address. The SelectionValues Property of the SelectionListType
shall contain the list of available network interfaces as application specific strings. The Value
of the Variable contains the selected network interface as String. The SelectionListType is
defined in OPC 10000-5. The Object may allow providing additional Strings not defined in the
SelectionValues. In this case the NotRestrictToList Property of the SelectionListType is set to
true.

A.3.2 NetworkAddressUrlIType

An instance of this ObjectType represents network address information in the form of an URL
String. The NetworkAddressUrIType is formally defined in Table A.13.

Table A.13 — NetworkAddressUrIType Definition

Attribute Value

BrowseName NetworkAddressUrI Type

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of NetworkAddressType defined in A.3.1.

HasComponent | Variable [ url | string | BaseDataVariableType | Mandatory

The URL Variable contains the address string for the communication middleware or the
communication relation. The syntax of the URL is defined by the transport protocol.




Release 1.04 150 OPC 10000-14: PubSub

Annex B
(informative)
Client Server vs. Publish Subscribe

B.1 Overview

OPC UA Applications represent software or devices that provide information to other OPC UA
Applications or consume information from other OPC UA Applications.

This Annex contrasts the Subscription functionality available in the Client Server communication
model with the data distribution mechanism of PubSub. See The following documents, in whole
or in part, are normatively referenced in this document and are indispensable for its application.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments and errata) applies.

OPC 10000-1 for an overview of the complete functionality available with the Client Server model.
B.2 Client Server Subscriptions

In the Client Server communication model the application exposing information consisting of
physical and software objects is the OPC UA Server and the application operating upon this
information is the OPC UA Client.

The information provided by an OPC UA Server is organized in the Server Address Space.
Services like Read, Write and Browse are available with a request/response pattern used by
OPC UA Clients to access information provided by an OPC UA Server.

Every Client creates individual Sessions, Subscriptions and Monitoreditems which are not
shared with other Clients. l.e., the data that is published only goes to the Client that created
the Subscription.

Sessions are used to manage the communication relationship between Client and Server.
Monitoreditems represent the settings used to subscribe for Events and Variable Value data
changes from the OPC UA Server Address Space. Monitoreditems are grouped in
Subscriptions.

The entities used by OPC UA Clients to subscribe to information from an OPC UA Server are
illustrated in Figure B.46.



OPC 10000-14: PubSub 151 Release 1.04

OPC UA OPC UA OPCUA
Client A Client B Client C
Publish Publish Publish
OPC UA Server
Client A Session Client B Session Client C Session
S I ——— S ——
| Subscription * | Subscription r* | Subscription -

Address Space

Figure B.46 — Subscriptions in OPC UA Client Server Model

In this model the Client is the active entity. It chooses what Nodes of the Server AddressSpace
and what Services to use. Subscriptions are created or deleted on the fly. The published data
only goes to the Client that created a Subscription.

The Client Server Subscription model provides reliable delivery using buffering,
acknowledgements, and retransmissions. This requires resources in the Server for each
connected Client.

Resource-constrained Servers limit the number of parallel Client connections, Subscriptions,
and Monitoredltems. Similar limitations can also occur in the Client. Clients that continuously
need data from a larger number of Servers also consume significant resources.

B.3 Publish-Subscribe

With PubSub, OPC UA Applications do not directly exchange requests and responses. Instead,
Publishers send messages to a Message Oriented Middleware, without knowledge of what, if
any, Subscribers there may be. Similarly, Subscribers express interest in specific types of data,
and process messages that contain this data, without knowledge of what Publishers there are.

Figure B.47 illustrates that Publishers and Subscribers only interact with the Message Oriented
Middleware which provides the means to forward the data to one or more receivers.



Release 1.04 152 OPC 10000-14: PubSub

Publisher her
O - |:I DataSet Type A |:I
Pataset Type A pataset Type 8 BEESRIRERE ) DataSet Type C
MIDDLEWARE
O DataSet Type A O TS <l DataSetType B

|:I DataSet Type C
|:| DataSet Type C

Subscriber l ll

Figure B.47 — Publish Subscribe Model Overview

PubSub is used to communicate messages between different system components without these
components having to know each other’s identity.

A Publisher is pre-configured with what data to send. There is no connection establishment
between Publisher and Subscriber.

The identity of the Subscribers and the forwarding of published data to the Subscribers is the
responsibility of the Message Oriented Middleware. The Publisher does not know or even care if
there is one or many Subscribers. Effort and resource requirements for the Publisher are
predictable and do not depend on the number of Subscribers.

B.4 Synergy of models

PubSub and Client Server are both based on the OPC UA Information Model. PubSub therefore
can easily be integrated into OPC UA Servers and OPC UA Clients. Quite typically, a Publisher
will be an OPC UA Server (the owner of information) and a Subscriber is often an OPC UA
Client. Above all, the PubSub Information Model for configuration (see 6.2.2) promotes the
configuration of Publishers and Subscribers using the OPC UA Client Server model.

Nevertheless, the PubSub communication does not require such a role dependency. l.e., OPC
UA Clients can be Publishers and OPC UA Servers can be Subscribers. In fact, there is no
necessity for Publishers or Subscribers to be either an OPC UA Server or an OPC UA Client
to participate in PubSub communications.



	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions and conventions
	3.1  Terms and definitions
	3.2 Abbreviations and symbols

	4 Overview
	4.1 Fields of application
	4.2 Abstraction layers
	4.3 Decoupling by use of middleware
	4.4 Synergy of models

	5 PubSub Concepts
	5.1 Introduction
	5.2 DataSet
	5.2.1 General
	5.2.2 DataSetClass
	5.2.3 DataSetMetaData

	5.3 Messages
	5.3.1 General
	5.3.2 DataSetMessage field
	5.3.3 DataSetMessage
	5.3.4 NetworkMessage
	5.3.5 Message Security
	5.3.6 Transport Security
	5.3.7 SecurityGroup

	5.4 Entities
	5.4.1 Publisher
	5.4.1.1 General
	5.4.1.2 Message sending

	5.4.2 Subscriber
	5.4.2.1 General
	5.4.2.2 Message reception

	5.4.3 Security Key Service
	5.4.3.1 General
	5.4.3.2 SecurityGroup Management
	5.4.3.3 Key Acquisition Handshakes
	5.4.3.4 Authorization Services and Security Key Service

	5.4.4 Message Oriented Middleware
	5.4.4.1 General
	5.4.4.2 Broker-less Middleware
	5.4.4.2.1 General
	5.4.4.2.2 Broker-less model with OPC UA UDP

	5.4.4.3 Broker-based Middleware
	5.4.4.3.1 General
	5.4.4.3.2 Broker-based model




	6 PubSub Communication Parameters
	6.1 Overview
	6.2 Common Configuration Parameters
	6.2.1 PubSubState State Machine
	6.2.2 PublishedDataSet Parameters
	6.2.2.1 DataSetMetaData
	6.2.2.1.1 General
	6.2.2.1.2 DataSetMetaDataType
	6.2.2.1.3 FieldMetaData
	6.2.2.1.4 DataSetFieldFlags
	6.2.2.1.5 ConfigurationVersionDataType

	6.2.2.2 DataSetClassId
	6.2.2.3 ExtensionFields
	6.2.2.4 PublishedDataSetDataType
	6.2.2.5 PublishedDataSetSourceDataType
	6.2.2.6 Published Data Items
	6.2.2.6.1 PublishedData
	6.2.2.6.2 PublishedDataItemsDataType

	6.2.2.7 Published Events
	6.2.2.7.1 EventNotifier
	6.2.2.7.2 SelectedFields
	6.2.2.7.3 Filter
	6.2.2.7.4 PublishedEventsDataType


	6.2.3 DataSetWriter Parameters
	6.2.3.1 DataSetWriterId
	6.2.3.2 DataSetFieldContentMask
	6.2.3.3 KeyFrameCount
	6.2.3.4 DataSetWriterProperties
	6.2.3.5 DataSetWriter Structure
	6.2.3.5.1 DataSetWriterDataType
	6.2.3.5.2 DataSetWriterTransportDataType
	6.2.3.5.3 DataSetWriterMessageDataType


	6.2.4 Shared PubSubGroup Parameters
	6.2.4.1 General
	6.2.4.2 SecurityMode
	6.2.4.3 SecurityGroupId
	6.2.4.4 SecurityKeyServices
	6.2.4.5 MaxNetworkMessageSize
	6.2.4.6 GroupProperties
	6.2.4.7 PubSubGroup Structure

	6.2.5 WriterGroup Parameters
	6.2.5.1 WriterGroupId
	6.2.5.2 PublishingInterval
	6.2.5.3 KeepAliveTime
	6.2.5.4 Priority
	6.2.5.5 LocaleIds
	6.2.5.6 WriterGroup Structures
	6.2.5.6.1 WriterGroupDataType
	6.2.5.6.2 WriterGroupTransportDataType
	6.2.5.6.3 WriterGroupMessageDataType


	6.2.6 PubSubConnection Parameters
	6.2.6.1 PublisherId
	6.2.6.2 TransportProfileUri
	6.2.6.3 Address
	6.2.6.4 ConnectionProperties
	6.2.6.5 PubSubConnection Structure
	6.2.6.5.1 PubSubConnectionDataType
	6.2.6.5.2 ConnectionTransportDataType
	6.2.6.5.3 NetworkAddressDataType
	6.2.6.5.4 NetworkAddressUrlDataType


	6.2.7 ReaderGroup Parameters
	6.2.7.1 General
	6.2.7.2 ReaderGroup Structures
	6.2.7.2.1 ReaderGroupDataType
	6.2.7.2.2 ReaderGroupTransportDataType
	6.2.7.2.3 ReaderGroupMessageDataType


	6.2.8 DataSetReader Parameters
	6.2.8.1 PublisherId
	6.2.8.2 WriterGroupId
	6.2.8.3 DataSetWriterId
	6.2.8.4 DataSetMetaData
	6.2.8.5 DataSetFieldContentMask
	6.2.8.6 MessageReceiveTimeout
	6.2.8.7 SecurityMode
	6.2.8.8 SecurityGroupId
	6.2.8.9 SecurityKeyServices
	6.2.8.10 DataSetReaderProperties
	6.2.8.11 DataSetReader Structure
	6.2.8.11.1 DataSetReaderDataType
	6.2.8.11.2 DataSetReaderTransportDataType
	6.2.8.11.3 DataSetReaderMessageDataType


	6.2.9 SubscribedDataSet Parameters
	6.2.9.1 SubscribedDataSetDataType
	6.2.9.2 TargetVariables
	6.2.9.2.1 General
	6.2.9.2.2 TargetVariablesDataType
	6.2.9.2.3 FieldTargetDataType
	6.2.9.2.4 OverrideValueHandling

	6.2.9.3 SubscribedDataSetMirror
	6.2.9.3.1 ParentNodeName
	6.2.9.3.2 RolePermissions
	6.2.9.3.3 SubscribedDataSetMirrorDataType


	6.2.10 Information flow and status handling
	6.2.11 PubSubConfigurationDataType

	6.3 Message Mapping Configuration Parameters
	6.3.1 UADP Message Mapping
	6.3.1.1 UADP NetworkMessage Writer
	6.3.1.1.1 Relationship of Timing Parameters
	6.3.1.1.2 GroupVersion
	6.3.1.1.3 DataSetOrdering
	6.3.1.1.4 NetworkMessageContentMask
	6.3.1.1.5 SamplingOffset
	6.3.1.1.6 PublishingOffset
	6.3.1.1.7 UadpWriterGroupMessageDataType Structure

	6.3.1.2 UADP DataSetMessage Writer
	6.3.1.2.1 General
	6.3.1.2.2 DataSetMessageContentMask
	6.3.1.2.3 ConfiguredSize
	6.3.1.2.4 NetworkMessageNumber
	6.3.1.2.5 DataSetOffset
	6.3.1.2.6 UadpDataSetWriterMessageDataType Structure

	6.3.1.3 UADP DataSetMessage Reader
	6.3.1.3.1 GroupVersion
	6.3.1.3.2 NetworkMessageNumber
	6.3.1.3.3 DataSetOffset
	6.3.1.3.4 DataSetClassId
	6.3.1.3.5 NetworkMessageContentMask
	6.3.1.3.6 DataSetMessageContentMask
	6.3.1.3.7 PublishingInterval
	6.3.1.3.8 ReceiveOffset
	6.3.1.3.9 ProcessingOffset
	6.3.1.3.10 UadpDataSetReaderMessageDataType


	6.3.2 JSON Message Mapping
	6.3.2.1 JSON NetworkMessage Writer
	6.3.2.1.1 NetworkMessageContentMask
	6.3.2.1.2 JsonWriterGroupMessageDataType Structure

	6.3.2.2 JSON DataSetMessage Writer
	6.3.2.2.1 DataSetMessageContentMask
	6.3.2.2.2 JsonDataSetWriterMessageDataType Structure

	6.3.2.3 JSON DataSetMessage Reader
	6.3.2.3.1 NetworkMessageContentMask
	6.3.2.3.2 DataSetMessageContentMask
	6.3.2.3.3 JsonDataSetReaderMessageDataType Structure



	6.4 Transport Protocol Mapping Configuration Parameters
	6.4.1 Datagram Transport Protocol
	6.4.1.1 Datagram PubSubConnection
	6.4.1.1.1 DiscoveryAddress
	6.4.1.1.2 DatagramConnectionTransportDataType Structure

	6.4.1.2 Datagram WriterGroup
	6.4.1.2.1 MessageRepeatCount
	6.4.1.2.2 MessageRepeatDelay
	6.4.1.2.3 DatagramWriterGroupTransportDataType Structure

	6.4.1.3 Datagram DataSetWriter Parameters
	6.4.1.4 Datagram DataSetReader

	6.4.2 Broker Transport Protocol
	6.4.2.1 Broker PubSubConnection
	6.4.2.1.1 ResourceUri
	6.4.2.1.2 AuthenticationProfileUri
	6.4.2.1.3 BrokerConnectionTransportDataType Structure

	6.4.2.2 Broker WriterGroup
	6.4.2.2.1 QueueName
	6.4.2.2.2 ResourceUri
	6.4.2.2.3 AuthenticationProfileUri
	6.4.2.2.4 RequestedDeliveryGuarantee
	6.4.2.2.5 BrokerTransportQualityOfService Enumeration
	6.4.2.2.6 BrokerWriterGroupTransportDataType Structure

	6.4.2.3 Broker DataSetWriter
	6.4.2.3.1 QueueName
	6.4.2.3.2 ResourceUri
	6.4.2.3.3 AuthenticationProfileUri
	6.4.2.3.4 RequestedDeliveryGuarantee
	6.4.2.3.5 MetaDataQueueName
	6.4.2.3.6 MetaDataUpdateTime
	6.4.2.3.7 BrokerDataSetWriterTransportDataType Structure

	6.4.2.4 Broker DataSetReader
	6.4.2.4.1 QueueName
	6.4.2.4.2 ResourceUri
	6.4.2.4.3 AuthenticationProfileUri
	6.4.2.4.4 RequestedDeliveryGuarantee
	6.4.2.4.5 MetaDataQueueName
	6.4.2.4.6 BrokerDataSetReaderTransportDataType Structure




	7 PubSub Mappings
	7.1 General
	7.2 Message Mappings
	7.2.1 General
	7.2.2 UADP Message Mapping
	7.2.2.1 General
	7.2.2.2 NetworkMessage
	7.2.2.2.1 General
	7.2.2.2.2 NetworkMessage Layout
	7.2.2.2.3 UADP Message Security
	7.2.2.2.3.1 General
	7.2.2.2.3.2 AES-CTR

	7.2.2.2.4 UADP Chunk NetworkMessage

	7.2.2.3 DataSetMessage
	7.2.2.3.1 General
	7.2.2.3.2 DataSet Payload Header
	7.2.2.3.3 DataSet Payload
	7.2.2.3.4 DataSetMessage Header
	7.2.2.3.5 Data Key Frame DataSetMessage
	7.2.2.3.6 Data Delta Frame DataSetMessage
	7.2.2.3.7 Event DataSetMessage
	7.2.2.3.8 KeepAlive Message

	7.2.2.4 Discovery Messages
	7.2.2.4.1 UADP Discovery Request NetworkMessage
	7.2.2.4.1.1 General
	7.2.2.4.1.2 Traffic Reduction
	7.2.2.4.1.3 Discovery Request Header
	7.2.2.4.1.4 Publisher Information Request Message

	7.2.2.4.2 UADP Discovery Response NetworkMessage
	7.2.2.4.2.1 General
	7.2.2.4.2.2 Discovery Response Header
	7.2.2.4.2.3 Publisher Endpoints Message
	7.2.2.4.2.4 DataSetMetaData Message
	7.2.2.4.2.5 DataSetWriter Configuration Message



	7.2.3 JSON Message Mapping
	7.2.3.1 General
	7.2.3.2 NetworkMessage
	7.2.3.3 DataSetMessage
	7.2.3.4 Discovery Messages
	7.2.3.4.1 General
	7.2.3.4.2 DataSetMetaData



	7.3 Transport Protocol Mappings
	7.3.1 General
	7.3.2 OPC UA UDP
	7.3.3 OPC UA Ethernet
	7.3.4 AMQP
	7.3.4.1 General
	7.3.4.2 Address
	7.3.4.3 Authentication
	7.3.4.4 Connection Properties
	7.3.4.5 RequestedDeliveryGuarantee
	7.3.4.6 Transport Limits and Keep Alive
	7.3.4.7 Message Header
	7.3.4.8 Message Body
	7.3.4.8.1 JSON
	7.3.4.8.2 UADP


	7.3.5 MQTT
	7.3.5.1 General
	7.3.5.2 Address
	7.3.5.3 Authentication
	7.3.5.4 ConnectionProperties
	7.3.5.5 RequestedDeliveryGuarantee
	7.3.5.6 Transport Limits and Keep Alive
	7.3.5.7 Message Header
	7.3.5.8 Message Body
	7.3.5.8.1 JSON
	7.3.5.8.2 UADP




	8 PubSub Security Key Service Model
	8.1 Overview
	8.2 PublishSubscribe Object
	8.3 PubSubKeyServiceType
	8.4 GetSecurityKeys Method
	8.5 GetSecurityGroup Method
	8.6 SecurityGroupType
	8.7 SecurityGroupFolderType
	8.8 AddSecurityGroup Method
	8.9 RemoveSecurityGroup Method

	9 PubSub Configuration Model
	9.1 Common Configuration Model
	9.1.1 General
	9.1.2 Configuration behaviours
	9.1.3 Types for the PublishSubscribe Object
	9.1.3.1 Overview
	9.1.3.2 PublishSubscribeType
	9.1.3.3 SetSecurityKeys
	9.1.3.4 AddConnection Method
	9.1.3.5 RemoveConnection Method
	9.1.3.6 HasPubSubConnection

	9.1.4 Published DataSet Model
	9.1.4.1 Overview
	9.1.4.2 Published DataSet
	9.1.4.2.1 PublishedDataSetType
	9.1.4.2.2 ExtensionFieldsType
	9.1.4.2.3 AddExtensionField Method
	9.1.4.2.4 RemoveExtensionField Method
	9.1.4.2.5 DataSetToWriter

	9.1.4.3 Published Data Items
	9.1.4.3.1 PublishedDataItemsType
	9.1.4.3.2 AddVariables Method
	9.1.4.3.3 RemoveVariables Method

	9.1.4.4 Published Events
	9.1.4.4.1 PublishedEventsType
	9.1.4.4.2 ModifyFieldSelection Method

	9.1.4.5 DataSet Folder
	9.1.4.5.1 DataSetFolderType
	9.1.4.5.2 AddPublishedDataItems Method
	9.1.4.5.3 AddPublishedEvents Method
	9.1.4.5.4 AddPublishedDataItemsTemplate Method
	9.1.4.5.5 AddPublishedEventsTemplate Method
	9.1.4.5.6 RemovePublishedDataSet Method
	9.1.4.5.7 AddDataSetFolder Method
	9.1.4.5.8 RemoveDataSetFolder Method


	9.1.5 Connection Model
	9.1.5.1 Overview
	9.1.5.2 PubSubConnectionType
	9.1.5.3 AddWriterGroup Method
	9.1.5.4 AddReaderGroup Method
	9.1.5.5 RemoveGroup Method
	9.1.5.6 ConnectionTransportType

	9.1.6 Group Model
	9.1.6.1 Overview
	9.1.6.2 PubSubGroupType
	9.1.6.3 WriterGroupType
	9.1.6.4 AddDataSetWriter Method
	9.1.6.5 RemoveDataSetWriter Method
	9.1.6.6 HasDataSetWriter
	9.1.6.7 WriterGroupTransportType
	9.1.6.8 WriterGroupMessageType
	9.1.6.9 ReaderGroupType
	9.1.6.10 AddDataSetReader Method
	9.1.6.11 RemoveDataSetReader Method
	9.1.6.12 HasDataSetReader
	9.1.6.13 ReaderGroupTransportType
	9.1.6.14 ReaderGroupMessageType

	9.1.7 DataSetWriter Model
	9.1.7.1 Overview
	9.1.7.2 DataSetWriterType
	9.1.7.3 DataSetWriterTransportType
	9.1.7.4 DataSetWriterMessageType

	9.1.8 DataSetReader Model
	9.1.8.1 Overview
	9.1.8.2 DataSetReaderType
	9.1.8.3 DataSetReaderTransportType
	9.1.8.4 DataSetReaderMessageType
	9.1.8.5 CreateTargetVariables Method
	9.1.8.6 CreateDataSetMirror Method

	9.1.9 Subscribed DataSet Model
	9.1.9.1 SubscribedDataSetType
	9.1.9.2 TargetVariablesType
	9.1.9.3 AddTargetVariables Method
	9.1.9.4 RemoveTargetVariables Method
	9.1.9.5 SubscribedDataSetMirrorType

	9.1.10 PubSub Status Object
	9.1.10.1 PubSubStatusType
	9.1.10.2 Enable Method
	9.1.10.3 Disable Method
	9.1.10.4 Status Object

	9.1.11 PubSub Diagnostics Objects
	9.1.11.1 General
	9.1.11.2 PubSubDiagnosticsType
	9.1.11.3 Reset Method
	9.1.11.4 DiagnosticsLevel
	9.1.11.5 PubSubDiagnosticsCounterType
	9.1.11.6 PubSubDiagnosticsCounterClassification
	9.1.11.7 PubSubDiagnosticsRootType
	9.1.11.8 PubSubDiagnosticsConnectionType
	9.1.11.9 PubSubDiagnosticsWriterGroupType
	9.1.11.10 PubSubDiagnosticsReaderGroupType
	9.1.11.11 PubSubDiagnosticsDataSetWriterType
	9.1.11.12 PubSubDiagnosticsDataSetReaderType

	9.1.12 PubSub Status Events
	9.1.12.1 PubSubStatusEventType
	9.1.12.2 PubSubTransportLimitsExceedEventType
	9.1.12.3 PubSubCommunicationFailureEventType


	9.2 Message Mapping Configuration Model
	9.2.1 UADP Message Mapping
	9.2.1.1 UadpWriterGroupMessageType
	9.2.1.2 UadpDataSetWriterMessageType
	9.2.1.3 UadpDataSetReaderMessageType

	9.2.2 JSON Message Mapping
	9.2.2.1 JsonWriterGroupMessageType
	9.2.2.2 JsonDataSetWriterMessageType
	9.2.2.3 JsonDataSetReaderMessageType


	9.3 Transport Protocol Mapping Configuration Model
	9.3.1 Datagram Transport Protocol Mapping
	9.3.1.1 DatagramConnectionTransportType
	9.3.1.2 DatagramWriterGroupTransportType
	9.3.1.3 DatagramDataSetWriterTransportType
	9.3.1.4 DatagramDataSetReaderTransportType

	9.3.2 Broker Transport Protocol Mapping
	9.3.2.1 BrokerConnectionTransportType
	9.3.2.2 BrokerWriterGroupTransportType
	9.3.2.3 BrokerDataSetWriterTransportType
	9.3.2.4 BrokerDataSetReaderTransportType



	Annex A  (normative)  Common Types
	A.1 DataType Schema Header Structures
	A.1.1 DataTypeSchemaHeader
	A.1.2 DataTypeDescription
	A.1.3 StructureDescription
	A.1.4 EnumDescription
	A.1.5 SimpleTypeDescription

	A.2 UABinaryFileDataType
	A.3 NetworkAddress Model
	A.3.1 NetworkAddressType
	A.3.2 NetworkAddressUrlType


	Annex B  (informative) Client Server vs. Publish Subscribe
	B.1 Overview
	B.2 Client Server Subscriptions
	B.3 Publish-Subscribe
	B.4 Synergy of models


