

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-15

OPC Unified Architecture

Part 15: Safety

Release 1.04

2019-10-31

Standard
Type:

Industry Standard
Specification

Comments:

Document
Number

OPC 10000-15

Title: OPC Unified
Architecture

Part 15 :Safety

Date: 2019-10-31

Version: Release 1.04 Software: MS-Word

 Source: OPC 10000-15 - UA Specification
Part 15 - Safety 1.04.docx

Author: OPC Foundation and

PROFIBUS
Nutzerorganisation e.V.

Status: Published

OPC 10000-15: Safety i Release 1.04

CONTENTS

Page

1 Scope .. 1

2 General .. 1

2.1 Reference Documents .. 1

2.2 Relation to safety-, security- and OPC UA-standards ... 2

3 Terms, definitions and conventions .. 3

3.1 Overview .. 3

3.2 Terms .. 3

3.3 Abbreviations and symbols .. 6

3.4 Conventions ... 7

3.4.1 Conventions in this part .. 7

3.4.2 Conventions on CRC calculation ... 7

3.4.3 Conventions in state machines .. 7

4 Introduction to OPC UA Safety ... 8

4.1 What is OPC UA Safety? ... 8

4.2 Safety functional requirements ... 8

4.3 Communication structure ... 8

4.4 Implementation aspects ... 10

4.5 Features of OPC UA Safety ... 10

4.6 Security policy ... 10

4.7 Safety measures .. 11

5 Use cases (informative) ... 11

5.1 Use cases for different types of communication links ... 11

5.1.1 Unidirectional communication .. 11

5.1.2 Bidirectional communication .. 12

5.1.3 Safety Multicast .. 12

5.2 Cyclic and acyclic safety communication .. 13

5.3 Principle for “Application variables with qualifier” ... 13

6 Information Model .. 13

6.1 ObjectType Definition ... 13

6.1.1 Method ReadSafetyData ... 17

6.1.2 Method ReadSafetyDiagnostics... 18

6.2 Datatype Definition .. 19

6.3 SafetyProvider Version .. 20

6.4 DataTypes and length of user data ... 20

6.5 Connection establishment .. 20

7 Safety communication layer services and management .. 20

7.1 Overview .. 20

7.2 OPC UA Platform interface (OPC UA PI) .. 21

7.3 SafetyProvider interfaces ... 21

7.3.1 SAPI of SafetyProvider ... 22

7.3.2 SPI of SafetyProvider .. 23

7.3.3 Characteristics of SafetyProvider .. 23

7.4 SafetyConsumer interfaces .. 25

7.4.1 SAPI of SafetyConsumer ... 25

OPC 10000-15: Safety ii Release 1.04

7.4.2 Motivation for SAPI Operator Acknowledge (OperatorAckConsumer) 26

7.4.3 SPI of the SafetyConsumer ... 27

7.4.4 Motivation for SPI SafetyOperatorAckNecessary 28

8 Safety communication layer protocol .. 28

8.1 SafetyProvider and SafetyConsumer .. 28

8.1.1 SPDU formats ... 28

8.1.1.1 RequestSPDU: SafetyConsumerID ... 29

8.1.1.2 RequestSPDU: MonitoringNumber .. 29

8.1.1.3 RequestSPDU: Flags.. 29

8.1.1.4 ResponseSPDU: SafetyData .. 30

8.1.1.5 ResponseSPDU: Flags ... 30

8.1.1.6 ResponseSPDU: SPDU_ID ... 30

8.1.1.7 ResponseSPDU: SafetyConsumerID .. 30

8.1.1.8 ResponseSPDU: MonitoringNumber ... 31

8.1.1.9 ResponseSPDU: CRC .. 31

8.1.1.10 ResponseSPDU: NonSafetyData .. 31

8.1.2 OPC UA Safety behavior ... 31

8.1.2.1 General .. 31

8.1.2.2 SafetyProvider/-Consumer Sequence diagram 31

8.1.2.3 SafetyProvider state diagram ... 32

8.1.2.4 SafetyConsumer state diagram... 34

8.1.2.5 SafetyConsumer sequence diagram for OA (informative) 42

8.1.3 Subroutines... 42

8.1.3.1 Build ResponseSPDU ... 42

8.1.3.2 Calculation of the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3 43

8.1.3.3 Coding of the SafetyProviderLevel_ID .. 44

8.1.3.4 Signature over the Safety Data (SafetyStructureSignature) 45

8.1.3.5 Calculation of a CRC checksum ... 45

9 Diagnostics .. 47

9.1 Diagnostics messages ... 47

9.2 Method ReadSafetyDiagnostics ... 48

10 Safety communication layer management .. 50

10.1 SPDU parameter assignment ... 50

10.2 Safety function response time part of communication ... 50

11 System requirements ... 51

11.1 Constraints on the SPDU-Parameters .. 51

11.1.1 SafetyBaseID and SafetyProviderID .. 51

11.1.2 SafetyConsumerID .. 52

11.2 Initialization of the MNR ... 52

11.3 Constraints on the calculation of system characteristics 53

11.3.1 Probabilistic considerations (informative) .. 53

11.3.2 Safety related assumptions (informative) ... 54

11.4 PFH/PFD-values of a logical OPC UA Safety communication link 54

11.5 Safety manual .. 55

11.6 Indicators and displays .. 56

12 Assessment ... 56

12.1 Safety policy .. 56

12.2 Obligations .. 57

OPC 10000-15: Safety iii Release 1.04

12.3 Automated layer test for OPC UA Safety (informative) ... 57

12.3.1 Testing principle.. 57

12.3.2 Test configuration ... 58

13 Profiles and Namespaces .. 59

13.1 Namespace Metadata .. 59

13.2 Handling of OPC UA Namespaces ... 60

Annex A : Safety Namespace and mappings (normative) .. 61

A.1 Namespace and identifiers for Safety Information Model 61

Annex B : Additional information (informative) .. 62

B.1 CRC-calculation using tables, for the polynomial 0xF4ACFB13 62

B.2 Use cases for Operator Acknowledgment ... 63

B.2.1 Explanation ... 63

B.2.2 Use case 1: unidirectional comm. and OA on the SafetyConsumer side 63

B.2.3 Use case 2: bidirectional comm. and dual OA ... 64

B.2.4 Use case 3: bidirectional comm. and single, one-sided OA........................ 64

B.2.5 Use case 4: bidirectional comm. and single, two-sided OA 65

Annex C : Bibliography ... 66

OPC 10000-15: Safety iv Release 1.04

FIGURES

Figure 1 – Relationships of OPC UA Safety with other standards ... 2

Figure 2 – Safety layer architecture .. 9

Figure 3 – Unidirectional Communication ... 12

Figure 4 – Bidirectional Communication ... 12

Figure 5 – Safety Multicast ... 12

Figure 9 – Safety communication layer overview .. 21

Figure 10 – SafetyProvider interfaces ... 22

Figure 11 – Example combinations of SIL capabilities .. 24

Figure 12 – SafetyConsumer interfaces .. 25

Figure 13 – RequestSPDU ... 29

Figure 14 – ResponseSPDU ... 29

Figure 15 – Sequence diagram for OPC UA Safety ... 32

Figure 16 – Simplified representation of the state diagram for the SafetyProvider 32

Figure 17 – Principle state diagram for SafetyConsumer .. 35

Figure 18 – Sequence diagram for OA .. 42

Figure 19 – Overview of task for SafetyProvider ... 43

Figure 20 – Calculation of the SPDU_ID ... 43

Figure 21 – Calculation of the CRCr ... 46

Figure 22 – Overview on the delay times and watchdogs .. 50

Figure 23 – Conditional residual error probability of the CRC-check. 53

Figure 24 – Counter example: data lengths not supported by OPC Safety. 54

Figure 25 – Automated SafetyProvider / SafetyConsumer test .. 57

Figure 26 –"Upper Tester" within the SafetyProvider .. 58

Figure 27 –"Upper Tester" within the SafetyConsumer ... 59

Figure 28 – OA in unidirectional safety communication ... 63

Figure 29 – Two-sided OA in bidirectional safety communication .. 64

Figure 30 – One sided OA in bidirectional safety communication .. 64

Figure 31 – One sided OA on each side is possible .. 65

OPC 10000-15: Safety v Release 1.04

TABLES

Table 1 – Implementation of OPC UA Safety .. 2

Table 2 – Conventions used in state machines ... 7

Table 3 – Deployed measures to detect communication errors ... 11

Table 4 – Example “Application Variables with qualifier” ... 13

Table 5 – SafetyDeviceSet definition .. 14

Table 6 – Type Definition of OPC UA Safety Parameters .. 17

Table 7 – Type Definition of OPC UA Safety SafetyProvider ... 17

Table 8 – SafetyObjectsType definition .. 17

Table 9 –ReadSafetyData Method Arguments .. 18

Table 10 – ReadSafetyData Method AddressSpace definition... 18

Table 11 – ReadSafetyDiagnostics Method Arguments ... 19

Table 12 – ReadSafetyDiagnostics Method AddressSpace definition 19

Table 13 – SAPI of the SafetyProvider ... 22

Table 14 – SPI of the SafetyProvider .. 23

Table 15 – Properties of SafetyProvider ... 23

Table 16 – SAPI of the SafetyConsumer ... 25

Table 17 – SPI of the SafetyConsumer ... 27

Table 18 – Structure of RequestSPDU.Flags .. 30

Table 19 – Structure of ResponseSPDU.Flags ... 30

Table 20 – Symbols used for state machines. ... 33

Table 21 – SafetyProvider instance internal items .. 33

Table 22 – States of SafetyProvider instance ... 33

Table 23 – SafetyProvider driver transitions ... 34

Table 24 – SafetyConsumer driver internal items.. 35

Table 25 – SafetyConsumer driver states ... 37

Table 26 – SafetyConsumer driver transitions .. 38

Table 27 – Presentation of the SPDU_ID .. 44

Table 28 – Coding for the SafetyProviderLevel_ID ... 44

Table 29 – Safety layer diagnostic messages ... 47

Table 30 – Examples for cryptographically strong random number generators. 52

Table 31 – The total residual error rate for the safety communication channel 55

Table 32 – Information to be included in the safety manual .. 55

Table 33 – NamespaceMetadata object for this part ... 59

Table 34 – Namespaces used in a Safety Server .. 60

Table 35 – The CRC32 lookup table for 32-bit CRC signature calculations 62

OPC 10000-15: Safety vi Release 1.04

OPC 10000-15: Safety vii Release 1.04

OPC FOUNDATION

UNIFIED ARCHITECTURE

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2019, OPC Foundation, Inc.

ACKNOWLEDGEMENT

This specification has its origin in a joint working group between the OPC Foundation and the Profibus
Nutzerorganisation e.V. (PNO) which was established in November 2017. The experts of this joint working group initially
elaborated a safety concept for controller-to-controller communication using the black channel approach according to IEC
61784-3 "Functional safety fieldbuses" based on the OPC UA Client/Server communication model. The launch of the Field
Level Communication Initiative in November 2018 has resulted in an extension of the safety concept to also support
controller-to-device communication and the Pub/Sub communication including transport via Ethernet and Ethernet TSN.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and re trieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, directly from the OPC Foundation Web s ite
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents tha t
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this spe cification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

http://www.opcfoundation.org/

OPC 10000-15: Safety viii Release 1.04

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications; hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

OPC 10000-15: Safety 1 Release 1.04

1 Scope

The specification “OPC UA Safety” describes services and protocols for the exchange of data using
OPC UA mechanisms. It extends OPC UA to fulfill the requirements of functional safety as defined in
the IEC 61508 and IEC 61784-3 series of standards.

Implementing this part allows for detecting all types of communication errors encountered in the lower
network layers. In case an error is detected, this information is shared with the application layer which
can then act in an appropriate way, e.g. by switching to a safe state.

The specification describes the behavior of the individual endpoints for safe communication, as well
as the OPC UA information model which is used to access these endpoints.

OPC UA Safety is application-independent and does not pose requirements on the structure and length
of the application data. Application-specific requirements are expected to be described in appropriate
companion specifications.

In this first version, communication is based on OPC UA client server, and the main target is controller-
controller-communication. However, easy expandability to other OPC UA services (such as pub/sub)
and other use-cases (e.g. OPC UA field level communication) has already been considered in the
design of OPC UA Safety.

2 General

2.1 Reference Documents

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments and errata)
applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

OPC 10000-4, OPC Unified Architecture - Part 4: Services

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

IEC 61784-3:2017, Industrial communication networks – Profiles – Part 3: Functional safety fieldbuses
– General rules and profile definitions

IEC 61000-6-7, Electromagnetic compatibility (EMC) – Part 6-7: Generic standards – Immunity
requirements for equipment intended to perform functions in a safety related system (functional safety)
in industrial locations

IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety -related
systems

IEC 61511 (all parts), Functional safety – Safety instrumented systems for the process industry sector

IEC 62061, Safety of machinery – Functional safety of safety-related electrical, electronic and
programmable electronic control systems

ISO 13849-1:2015, Safety of machinery – Safety-related parts of control systems – Part 1: General
principles for design

ISO 13849 2:2012, Safety of machinery – Safety-related parts of control systems – Part 2: Validation

OPC 10000-15: Safety 2 Release 1.04

2.2 Relation to safety-, security- and OPC UA-standards

This part explains the relevant principles of functional safety for communication with reference to the
IEC 61508 series as well as IEC 61784-3 and others (see Figure 1), and specifies a safety
communication layer based on the OPC Unified Architecture.

Figure 1 shows the relationship between this part and the relevant safety and OPC UA standards in
an industrial environment. An arrow from Document A to Document B means “Document A is
referenced in Document B”.

Figure 1 – Relationships of OPC UA Safety with other standards

OPC UA Safety does this in such a way that OPC UA can be used for applications requiring functional
safety up to the Safety Integrity Level (SIL) 4.

The resulting SIL claim of a system depends on the way OPC UA Safety is implemented within this
system. That means that if a certain SIL is desired, this part must be implemented on a device which
fulfils the requirements for this SIL as described in IEC 61508. In particular, measures against random
hardware failures and systematic errors (e.g. software defects) must be taken.

Table 1 – Implementation of OPC UA Safety

OPC UA Safety is intended for implementation in safety devices exclusively.

Simply implementing this specification in a standard device (i.e. a device not fulfilling the
requirements of IEC 61508) is insufficient to qualify it as a safety device.

Design of safety-related electrical, electronic and program-
mable electronic control systems (SRECS) for machinery

SIL based PL based

Design objective

Applicable standards

IEC 62061

Functional safety
for machinery

(SRECS)

ISO 13849
Safety-related parts

of machinery
(SRPCS)

Non-electrical

Electrical

IEC 61508
Functional safety (FS)

(basic standard)

OPC UA
Specification

IEC 61784-3
Functional safety
communication

IEC 62443
Security

(common part)

IEC 61000-6-7
Generic EMC & FS

OPC UA Safety
Functional safety
communication

IEC 61511
Functional safety –
Safety instrumented

systems for the
process industry sector

IEC 62280
Railway applications –

Communication

Key safety-related standards safe communication

OPC 10000-15: Safety 3 Release 1.04

[RQ2.1] A safety device with OPC UA Safety shall fulfil the requirements of IEC 61508 (according
the SIL-level as described) when used in live operation.

This part does not cover electrical safety and intrinsic safety aspects. Electrical safety relates to
hazards such as electrical shock. Intrinsic safety relates to hazards associated with potentially
explosive atmospheres.

This part defines mechanisms for the transmission of safety-relevant messages among participants
within a network using OPC UA technology in accordance with the requirements of IEC 61508 series
and IEC 61784-3 for functional safety. These mechanisms may be used in various industrial
applications such as process control, manufacturing, automation, and machinery.

This part provides guidelines for both developers and assessors of compliant devices and systems.

3 Terms, definitions and conventions

3.1 Overview

This part will use concepts of OPC UA information modeling to describe OPC UA Safety. For the
purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-3, OPC
10000-6, IEC 61784-3, as well as the following apply.

3.2 Terms

3.2.1
Cyclic Redundancy Check
<value> redundant data derived from, and stored or transmitted together with, a block of data in order
to detect data corruption

<method> procedure used to calculate the redundant data

NOTE 1 to entry: Terms “CRC code” and "CRC signature", and labels such as CRC1, CRC2, may also be used in this part
to refer to the redundant data.

[SOURCE: IEC 61784-3:2017, 3.1]

3.2.2
error
discrepancy between a computed, observed or measured value or condition and the true, specified or
theoretically correct value or condition

NOTE 1 to entry: Errors may be due to design mistakes within hardware/software and/or corrupted information due to
electromagnetic interference and/or other effects.

NOTE 2 to entry: Errors do not necessarily result in a failure or a fault.

[SOURCE: IEC 61508-4:2010, 3.6.11]

3.2.3
failure
termination of the ability of a functional unit to perform a required function or operation of a functional
unit in any way other than as required

NOTE 1 to entry: Failure may be due to an error (for example, problem with hardware/software design or message
disruption).

[SOURCE: IEC 61508-4:2010, 3.6.4, modified – notes and figures deleted]

3.2.4
fail-safe
ability of a system that, by adequate technical or organizational measures, prevents from hazards
either deterministically or by reducing the risk to a tolerable measure

NOTE 1 to entry: Equivalent to functional safety

OPC 10000-15: Safety 4 Release 1.04

3.2.5
fail-safe substitute values
values which are issued or delivered instead of process values when the safety function is set to a
fail-safe state

NOTE 1 to entry: In this part, the fail-safe substitute values (FSV) are always set to binary "0".

3.2.6
fault
abnormal condition that may cause a reduction in, or loss of, the capability of a functional unit to
perform a required function

NOTE 1 to entry: IEV 191-05-01 defines “fault” as a state characterized by the inability to perform a required function,
excluding the inability during preventive maintenance or other planned actions, or due to lack of external resources.

[SOURCE: IEC 61508-4:2010, 3.6.1, modified – figure reference deleted]

3.2.7
flag
A one-bit value used to indicate a certain status or control information.

3.2.8
Globally Unique Identifier

A globally unique identifier (GUID) is a 128-bit number used to identify information in computer
systems. The term universally unique identifier (UUID) is also used. In this part, UUID version 4 is
used.

[SOURCE: https://tools.ietf.org/html/rfc4122]

3.2.9
MonitoringNumber
a means used to ensure the correct order among transmitted safety PDUs and to monitor the
communication delay. The MNR starts at a random value and counts up with each request. It rolls over
to a minimum threshold value that is not zero.

NOTE 1 to entry: Instance of sequence number as described in IEC 61784-3.

NOTE 2 to entry: The transmitted MNR is protected by the transmitted CRC signature of the ResponseSPDU

3.2.10
Non-safety-
a predicate meaning that the respective object is a “standard” object and has not been designed and
implemented to fulfill any requirements w. r. t. to functional safety.

3.2.11
OPC UA Mapper
part of the OPC UA Safety implementation which maps the SPDU to the actual OPC UA services.
Depending on which services are used (e.g. client/server or pub/sub), different mappers can be
specified

3.2.12
performance level
discrete level used to specify the ability of safety-related parts of control systems to perform a safety
function under foreseeable conditions

[SOURCE: ISO 13849-1:2015, 3.1.23]

3.2.13
process values
input and output data (in a safety PDU) that are required to control an automated process

3.2.14
qualifier
Qualifier is an attribute (bit or Boolean), indicating whether the corresponding value is valid or not (e.g.
being a fail-safe substitute value)

OPC 10000-15: Safety 5 Release 1.04

3.2.15
residual error probability
probability of an error undetected by the SCL safety measures

[SOURCE: IEC 61784-3:2017, 3.1]

3.2.16
residual error rate
statistical rate at which the SCL safety measures fail to detect errors

[SOURCE: IEC 61784-3:2017, 3.1]

3.2.17
safety communication layer
communication layer above the OPC UA Communication Stack (OPC UA Server API or OPC UA Client
API) that includes all necessary additional measures to ensure safe transmission of data in accordance
with the requirements of IEC 61508.

The SCL provides several services, the most important ones being the SafetyProvider and the
SafetyConsumer.

 [SOURCE: IEC 61784-3:2017, 3.1 modified]

3.2.18
SafetyConsumer
Entity (usually software) that implements the data sink of a unidirectional safety link.

3.2.19
safety data
SafetyData
application data transmitted across a safety network using a safety protocol

NOTE 1 to entry: The Safety Communication Layer does not ensure the safety of the data itself, but only that the data is
transmitted safely.

3.2.20
safety function response time
worst-case elapsed time of a safety function, following an actuation of a safety sensor connected to a
fieldbus, until the corresponding safe state of the safety function’s actuator(s) is achieved, in the
presence of errors or failures.

NOTE 1 to entry: This concept is introduced in IEC 61784-3:—, 5.2.4 and is addressed by the functional safety
communication profiles defined in that specification.

[SOURCE: IEC 61784-3:2017, 3.1 modified]

3.2.21
safety integrity level
discrete level (one out of a possible four), corresponding to a range of safety integrity values, where
safety integrity level 4 has the highest level of safety integrity and safety integrity level 1 has the lowest
level of safety integrity

NOTE 1 to entry: The target failure measures (see IEC 61508-4:2010, 3.5.17) for the four safety integrity levels are specified
in Tables 2 and 3 of IEC 61508-1:2010.

NOTE 2 to entry: Safety integrity levels are used for specifying the safety integrity requirements of the safety functions to
be allocated to the E/E/PE safety-related systems.

NOTE 3 to entry: A safety integrity level (SIL) is not a property of a system, subsystem, element or component. The correct
interpretation of the phrase “SILn safety-related system” (where n is 1, 2, 3 or 4) is that the system is potentially capable of
supporting safety functions with a safety integrity level up to n.

[SOURCE: IEC 61508-4:2010, 3.5.8]

3.2.22
safety measure
measure to control possible communication errors that is designed and implemented in compliance
with the requirements of IEC 61508

OPC 10000-15: Safety 6 Release 1.04

NOTE 1 to entry: In practice, several safety measures are combined to achieve the required safety integrity level.

NOTE 2 to entry: Communication errors and related safety measures are detailed in IEC 61784-3:2017, 5.3 and 5.4.

[SOURCE: IEC 61784-3:2017, 3.1]

3.2.23
safety PDU
PDU transferred through the safety communication channel

NOTE 1 to entry: The SPDU may include more than one copy of the safety data using differing coding structures and hash
functions together with explicit parts of additional protections such as a key, a sequence count, or a time stamp mechanism.

NOTE 2 to entry: Redundant SCLs may provide two different versions of the SPDU for insertion into separate fields of the
OPC UA frame.

[SOURCE: IEC 61784-3:2017, 3.1]

3.2.24
SafetyProvider
Entity (usually software) that implements the data source of a unidirectional safety link.

3.2.25
SafetyBaseID
Randomly generated authenticity ID which is used to safely authenticate SafetyProviders having the
same SafetyProviderID.

NOTE 1 to entry: Together with the SafetyProviderID, it is the instance of connection authentication as described in
IEC 61784-3.

3.2.26
SafetyProviderID
User-assigned, locally unique ID which is used to safely authenticate SafetyProviders within a certain
area. All SafetyProviders within this area may share the identical SafetyBaseID.

NOTE 1 to entry: Together with the SafetyBaseID, it is the instance of connection authentication as described in
IEC 61784-3.

3.3 Abbreviations and symbols

BSC Binary Symmetric Channel

CRC Cyclic Redundancy Check

FSV Fail-safe substitute Values

HMI Human-machine interface

ID Identifier

LSB Least significant bit

MNR MonitoringNumber

MSB Most significant bit

OA Operator Acknowledgment

OPC UA PI OPC UA Platform Interface

PDU Protocol Data Unit [ISO/IEC 7498-1]

p Bit error probability

PI Platform Interface

PL Performance Level [ISO 13849-1]

PLC Programmable Logic Controller

Pre,cond Conditional residual error probability

PV Process Values

SAPI Safety Application Program Interface

SCL Safety Communication Layer

SFRT Safety Function Response Time

OPC 10000-15: Safety 7 Release 1.04

SIL Safety Integrity Level [IEC 61508-4:2010]

SPDU Safety PDU, Safety Protocol Data Unit

SPI Safety Parameter Interface

STrailer Safety Trailer

3.4 Conventions

3.4.1 Conventions in this part

In this part, the following conventions are used:

- The abbreviation "F" is an indication for safety related items, technologies, systems, and units
(fail-safe, functional safe).

- The default data that are used in case of unit failures or errors, are called fail-safe substitute
Values (FSV) and are set to binary "0".

- Reserved bit ("res") are set to "0" and ignored by the receiver for avoiding problems with future
versions of OPC UA Safety.

- Terms and names are often written in PascalCase (the practice of writing compound words or
phrases in which the elements are joined without spaces, with each element's initial letter
capitalized within the compound). Terms or names where two capital letters of abbreviations
are in sequence or for separation to a suffix are written with underscores in between.

- The notation 0x… represents a hexadecimal value.

3.4.2 Conventions on CRC calculation

- [RQ3.1] Any CRC signature calculation shall start with a preset value of "1".

- [RQ3.2] Any CRC signature calculation resulting in a "0" value, shall use the value "1" instead.

- [RQ3.3] SPDUs with all values (incl. CRC signature) being zero shall be ignored by the receiver
(SafetyConsumer and SafetyProvider).

3.4.3 Conventions in state machines

Table 2 – Conventions used in state machines

Convention Meaning

:= Assignment: value of an item on the left is replaced by value of the item on the right.

< Less than: a logical condition yielding TRUE if and only if an item on the left is less than the item on
the right.

<= Less or equal than: a logical condition yielding TRUE if and only if an item on the left is less or equal
than the item on the right.

> Greater than: a logical condition yielding TRUE if and only if the item on the left is greater than the
item on the right.

>= Greater or equal than: a logical condition yielding TRUE if and only if the item on the left is greater or
equal than the item on the right.

== Equality: a logical condition yielding TRUE if and only if the item on the left is equal to an item on the
right.

<> Inequality: a logical condition yielding TRUE if and only if the item on the left is not equal to an item
on the right.

&& Logical “AND” (Operation on binary values or results)

|| Logical “OR” (Operation on binary values or results)

⊕ Logical “XOR” (Operation on binary values or digital values)

[..] UML Guard condition, if and only if the guard is TRUE the respective transition is enabled

OPC 10000-15: Safety 8 Release 1.04

4 Introduction to OPC UA Safety

4.1 What is OPC UA Safety?

OPC UA Safety specifies a safety communication layer (SCL) allowing safety-related devices to use
the services of OPC Unified Architecture for the exchange of safety-related data. A device which
implements OPC UA Safety correctly will be able to exchange safety -related data and hereby fulfill the
requirements of the international specifications IEC61508 and IEC61784-3. OPC UA Safety uses a
monitoring number, a timeout, a set of IDs and a cyclic redundancy code for the detection of all
possible communication errors which may happen in the underlying OPC UA communication channel.
These measures have been quantitatively evaluated and offer a probability of failure per hour (PFH)
and a probability of failure on demand (PFD) sufficing to build safety related applications with a safety
integrity level of up to SIL4.

OPC UA Safety itself is an application-independent, general solution. The length and structure of the
data sent is defined by the safety application. However, application-dependent companion
specifications (addressing for example electro-sensitive protective equipment, electric drives with
safety functions, forming presses, robot safety, and automated guided vehicles) are expected to be
defined by application-experts in appropriate OPC UA companion specifications.

4.2 Safety functional requirements

The following requirements apply for the development of the OPC UA Safety technology:

a) Safety communication suitable for Safety Integrity Level up to SIL4 (see IEC 61508) and PL e (see
ISO 13849-1).

b) Combination of SIL 1 – 4 OPC UA Safety devices as well as non-safety devices on one
communication network.

c) Implementation of the safety transmission protocol is restricted to the safety layer.

d) The transmission times are monitored by timers implemented in the safety layer.

e) Safety communication meet the requirements of IEC 61784-3:2017.

f) [RQ4.1] The OPC UA Safety stack is intended for implementation in safety devices exclusively.
Exceptions (e.g. for debugging, simulation, testing, and commissioning) shall be discussed with a
notified body.

4.3 Communication structure

OPC UA Safety is based on:

• the standard transmission system OPC UA

• an additional safety transmission protocol on top of this standard transmission system

Safety applications and standard applications are sharing the same standard OPC UA
communication systems at the same time. The safe transmission function incorporates measures to
detect faults or hazards that originate in standard or black channel elements which have a potential to
compromise the safety subsystems. This includes faults such as:

• Random errors, for example due to electromagnetic interference on the transmission channel;

• Failures / faults of the standard hardware;

• Systematic malfunctions of components within the standard hardware and software.

This principle delimits the assessment effort to the "safe transmission functions". The "standard
transmission system" (“Black Channel”) does not need any additional functional safety assessment.

The basic communication layers of OPC UA Safety are shown in Figure 2.

OPC 10000-15: Safety 9 Release 1.04

Figure 2 – Safety layer architecture

Summary of the Safety layer architecture:

Part: Application layer

The Safety application is either directly connected to the SafetyProvider / SafetyConsumer, or it is
connected via a Machine-Specific-Interface, which is specified in companion specifications (e.g.
sectoral).

The Safety application layer is expected to be designed and implemented according IEC 61508.

The Safety application layer is not in the scope of this part.

Part: OPC UA Safety

This layer is within the scope of this part. It defines the two services SafetyProvider and
SafetyConsumer as basic building blocks. Together, they form the Safe Communication Layer (SCL),
implemented in a safety-related way according to IEC 61508.

Safety data is transmitted by point-to-point communication (unidirectional). Each unidirectional
connection internally communicates in both directions, using a request/response pattern. This allows
for checking the timeliness of messages using a single clock in the SafetyConsumer, thus
eliminating the need for synchronized clocks.

When SafetyConsumers connect to SafetyProviders, they have an a priori expectation regarding the
pair of SafetyProviderID and SafetyBaseID. If this expectation is not fulfilled by the SafetyProvider,
fail-safe substitute values are delivered to the safety application instead of the received process values.
In contrast, a SafetyProvider does not need to know the ID of the SafetyConsumer and will provide its
process value to any SafetyConsumer requesting it .

SafetyProviders are not capable of detecting communication errors. All required error detection is
performed by the SafetyConsumer.

If a pair of safety applications needs to exchange safety data in both directions, two pairs of
SafetyProvider and SafetyConsumer must be established, one pair for each direction.

The OPC UA Mapper implements the parts of the safety layer which are specific for the OPC UA
communication service in use, i.e. “pub/sub” or “client/server”. Therefore, the remaining parts of the
safety layer can be implemented independent on which OPC UA service is used.

OPC UA

Pub/Sub

or

Client/Server

SafetyConsumer

ResponseSPDU

RequestSPDU

“Black Channel”:

Modification

will not require

re-certification

To be certified

according to:

IEC 61784-3

IEC 61508

…

OPC UA - Mapper

OPC UA

Safety

e.g. OPC Call

Call-Service of the Method
Service Set

Protocol Data Unit

OPC UA

Pub/Sub

or

Client/Server

SafetyProvider

OPC UA - Mapper

Safety-Application

Machine-Specific-

Interface

(Companion

Specification)

Safety-Application

PDU

Safety-Application

Machine-Specific-

Interface

(Companion

Specification)

Application

layer

OPC UA

layer

OPC 10000-15: Safety 10 Release 1.04

Part: OPC UA layer

Client/Server:

• The SafetyProvider is implemented using an OPC UA server providing a method.

• The SafetyConsumer is implemented using an OPC UA client calling the method provided by
the SafetyProvider.

4.4 Implementation aspects

[RQ4.2] All technical measures for error detection of OPC UA Safety shall be implemented within the
SCL in devices designed in accordance with IEC 61508 and shall meet the target SIL.

4.5 Features of OPC UA Safety

1) Runs on top of:

a) OPC UA Client/Server (TCP/IP) with the Method Service Set.

b) From an architectural point of view: easy extensibility for other ways of communication (e.g.
OPC UA pub/sub).

c) goal: no modification of existing OPC UA framework.

2) Modest requirements on safety network nodes:

a) No clock synchronization is needed (no requirements regarding the accuracy between clocks
at different nodes).

b) Within the SafetyConsumer, a safety-related, local timer is required for implementing the
SafetyConsumerTimeout. The accuracy of this timer depends on the timing requirements of
the safety application.

3) “Black Channel” principle: No functional safety requirements for neither non-safety network nodes,
the OPC UA stack, nor underlying networks such as Ethernet.

4) “Dynamic” systems:

a) Safety communication partners may change during runtime,

b) and/or increase/decrease in number.

5) Well-defined text-strings are used for diagnostic purposes.

6) Cyber-security is part of OPC UA and is not covered by this part, see Clause 4.6.

7) Safety communication and standard communication are independent. However, standard devices
and safety devices may use the same communication channel at the same time.

8) Functional safety can be achieved without using structurally redundant communication channels
(single channel approach). Redundancy may be used optionally for increased availability .

9) For diagnostic purposes, the last SPDU sent and received is accessible in the information model
of the SafetyProvider.

10) The state machines of OPC UA Safety are independent from the OPC UA Mapper, allowing for a
simplified exchange of the mapper.

11) Length of user data: 1-1500 bytes, structures of basic data types, see Clause 6.4.

12) Ready for wireless transmission channels.

4.6 Security policy

In the final application, an appropriate security environment needs to be in place for protecting both
the operational environment and the safety-related systems.

For this purpose, a threat and risk analysis (TRA) according to IEC 62443 needs to be carried out on
a final application system level.

An adequate reduction of risk against malevolent attacks is necessary for a meaningful application of
this part. OPC UA Safety does not describe any measures which will lower the risk of malevolent
attacks, but addresses the topic “functional safety”, only.

OPC 10000-15: Safety 11 Release 1.04

During compliance tests to OPC UA Safety, security aspects are not part of the scope, as it is assumed
that the underlying base mechanisms (i.e. methods) already provide adequate security .

4.7 Safety measures

[RQ4.3] For the realization of OPC UA Safety, the following measures shall be implemented:

– MonitoringNumber

– Timeout with receipt in the SafetyConsumer

– Set of IDs for the SafetyProvider

– Data Integrity check

Together, these safety measures address all possible transmission errors as listed in
IEC 61784-3:2017, Clause 5.5, see Table 3.

[RQ4.4] The safety measures shall be processed and monitored within the SCL.

Table 3 – Deployed measures to detect communication errors

Communication error

Safety measures

MonitoringNumber a Timeout with

receipt b

Set of IDs for

SafetyProvider c

Data integrity

check d

Corruption – – – X

Unintended repetition X X – –

Incorrect sequence X – – –

Loss X X – –

Unacceptable delay – X – –

Insertion X – – –

Masquerade X – X X

Addressing – – X –

a Instance of "sequence number" of IEC 61784-3.

b Instance of "time expectation" (Timeout) and "feedback message" (Receipt) of IEC 61784-3.

c Instance of "connection authentication" of IEC 61784-3.

d Instance of "data integrity assurance" of IEC 61784-3, based on CRC signature.

The SafetyConsumer is specified in such a way, that for any communication error according to Table 3,
a defined fault reaction will occur.

In all cases, the faulty SPDU will be discarded, and not forwarded to the safety application.

Moreover, if the error rate is too high, the SafetyConsumer is defined in such a way that it will cease
to deliver actual process values to the safety application but will deliver fail-safe substitute values
instead. In addition, an indication at the Safety Application Program Interface is set which can be
queried by the safety application.

In case the error rate is still considered acceptable , the state machine repeats the request, see
Clause 11.4.

5 Use cases (informative)

5.1 Use cases for different types of communication links

5.1.1 Unidirectional communication

The most basic type of communication is unidirectional communication, where a safety application on
one device (Controller A) sends data to a safety application on another device (Controller B).

OPC 10000-15: Safety 12 Release 1.04

 Figure 3 – Unidirectional Communication

This is accomplished by placing a SafetyProvider on Controller A, and a SafetyConsumer on
Controller B. The connection between SafetyProvider and SafetyConsumer can be established and
terminated during runtime, allowing different consumers to connect to the same SafetyProvider at
different times. Furthermore, the protocol is designed in such a way, that the consumer needs to know
the parametrized set of IDs of the SafetyProvider for being able to safely check whether the received
data is coming from the expected source. On the other hand, as safety data flows in one direction only,
there is no need for the SafetyProvider to check the ID of the consumers. Hence, controller A can –
one after another- serve an arbitrarily large number of consumers, and new consumers can be
introduced into the system without having to update controller A.

5.1.2 Bidirectional communication

Bidirectional communication means exchange of data in both directions, which i s accomplished by
placing a SafetyProvider and a SafetyConsumer on each controller. Hence, bidirectional
communication is realized using two OPC UA Safety connections.

Figure 4 – Bidirectional Communication

Note: Connections can be established and terminated during runtime.

5.1.3 Safety Multicast

Multicast is defined as sending the same set of data from one device (Controller A) to several other
devices (Controller B1, B2,…,BN) simultaneously.

Figure 5 – Safety Multicast

Controller A Controller B

Safety-
App

Safety-
Provider

Safety-
App

Safety-
Consumer

ResponseSPDU

RequestSPDU

Controller A Controller B

Safety-
App

Safety-
Provider1 Safety-

App

Safety-
Consumer1

Safety-
Consumer2

Safety-
Provider2

ResponseSPDU

ResponseSPDU

RequestSPDU

RequestSPDU

Controller A

Safety-
App

Safety-
Provider

Safety-
Provider

Safety-
Provider

Controller
B1

Safety-AppSafety-
Consumer1

Controller
B2

Safety-AppSafety-
Consumer2

Controller
BN

Safety-AppSafety-
ConsumerN

…

…

ResponseSPDU
RequestSPDU

OPC 10000-15: Safety 13 Release 1.04

Safety multicast is accomplished by placing multiple SafetyProviders on Controller A, and by
connecting each of them to a SafetyConsumer on one of the Controllers B1, B2, … BN, each.

The protocol OPC UA Safety is designed in such a way that:

• the state machine of the SafetyProvider has a low number of states, and thus very low memory
demands,

• all safety-related telegram-checks are executed on the consumer and, thus, the computational
demand on the SafetyProvider is low.

Therefore, even if many SafetyProviders are instantiated on a device, the performance requirements
will still be moderate.

The properties of simple unicast are also valid for safety multicast: different sets of consumers can
connect to SafetyProviders at different times, and new consumers can be introduced into the system
without having to reconfigure the SafetyProvider instances. As all SafetyProvider instances send the
same safety application data (same data source), it is irrelevant from a safety point of view to which
SafetyProvider instance a given SafetyConsumer is connected. Thus, all SafetyProvider instances can
be parametrized with the same set of IDs for the SafetyProvider.

5.2 Cyclic and acyclic safety communication

OPC UA Safety supports cyclic and acyclic safety communication.

Most safety functions must react timely on external events, such as an emergency stop button being
pressed or a light curtain being interrupted. In these applications, a cyclic safety communication is
established. That means the SafetyConsumer is executed cyclically, and the time between two
consecutive executions is safely bounded. The maximum time between two executions of the
SafetyConsumer will contribute to the safety function response time (SFRT).

Some safety functions, such as the transfer of safe configuration data at startup, do not have to react
on external events. In this case, it is not required to execute the SafetyConsumer cyclically.

5.3 Principle for “Application variables with qualifier”

“Qualifier bits” allow the SafetyProvider to indicate the correctness of values on a fine -grained level.
It is good practice to attach a qualifier bit to each individual value sent within an SPDU. The qualifier
bits are part of the SafetyData and hence not within the scope of this part.

[RQ5.1] However, whenever qualifier bits are used, the values shown in Table 5 shall be used, i.e.
0x1 for a valid value (“good”), and 0x0 for an invalid value (“bad”).

Table 4 – Example “Application Variables with qualifier”

Value Qualifier

valid 0x1 (= good)

not valid 0x0 (= bad)

Checking the qualifier is done in the safety application.

6 Information Model

6.1 ObjectType Definition

The NamespaceUri of OPC UA Safety is http://opcfoundation.org/UA/Safety.

Under this URI the node set plus the list of nodes including the NodeIds can be found.

[RQ6.1] Each server shall have a singleton folder called SafetyDeviceSet with a fixed NodeId in the
namespace of OPC UA Safety. Because all SafetyProviders on this server contain a nonhierarchical
reference to this variable, it can be used to directly access all SafetyProviders by following the
references in backward direction.

http://opcfoundation.org/UA/Safety

OPC 10000-15: Safety 14 Release 1.04

Table 5 – SafetyDeviceSet definition

Attribute Value

BrowseName SafetyDeviceSet

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5.

HasTypeDefinition ObjectType FolderType

[RQ6.2] In addition, a server shall comprise one OPC UA object derived from type SafetyProviderType
for each SafetyProvider they implement. The corresponding information model shown in Figure 8 shall
be used.

A description of the graphical notation for the different types of nodes and references (shown in
Figure 6, Figure 7, and Figure 8) can be found in OPC 10000-3.

Figure 6 shows the Safety Parameters for SafetyProvider.

Figure 6 – OPC UA Safety Parameters for SafetyProvider

Figure 7 describes the SafetyProviderType.

Note: OPC UA Safety assumes (atomic) consistent data exchange.

[RQ6.3] For OPC UA Safety V1.0, the Call-Service of the Method Service Set (see OPC 10000-4) shall
be used. The Call-Service supports consistent data exchange. The Method "ReadSafetyData" uses
the OPC UA-Server with a set of input arguments that make up the RequestSPDU and a set of output
arguments that make up the ResponseSPDU. The SafetyConsumer uses the OPC UA-Client with the
OPC UA Service Call.

[RQ6.4] For diagnostic purposes, the SPDUs received and sent shall be accessible by calling the
method ReadDiagnosticsData.

BaseObjectType

PropertyType:

SafetyProviderLevel

OPC UA Safety

OPC UA

SafetyParametersType

PropertyType:

StructureSignatureIdentifier

PropertyType:

SafetyProviderDelay

PropertyType:

StructureSignatureVersion

PropertyType:

SafetyProviderID

PropertyType:

SafetyBaseID

OPC 10000-15: Safety 15 Release 1.04

BaseObjectType

SafetyObjectsType

SafetyProviderType
SafetyConsumer

Type

ReadSafetyData

PropertyType:

OutputArguments

OPC UA Safety

OPC UA

ReadSafetyDiagnostics

SafetyParametersType

Parameter

PropertyType:

OutputArguments

PropertyType:

InputArguments

InSafetyConsumerID: UInt32

InMonitoringNumber: UInt32

InFlags: Byte

OutSafetyData: Structure

OutFlags: Byte

OutSPDU_ID_1: UInt32

OutSPDU_ID_2: UInt32

OutSPDU_ID_3: UInt32

OutSafetyConsumerID: UInt32

OutMonitoringNumber: UInt32

OutCRC: UInt32

OutNonSafetyData: Structure

InSafetyConsumerID: UInt32

InMonitoringNumber: UInt32

InFlags: Byte

OutSafetyData: Structure

OutFlags: Byte

OutSPDU_ID_1: UInt32

OutSPDU_ID_2: UInt32

OutSPDU_ID_3: UInt32

OutSafetyConsumerID: UInt32

OutMonitoringNumber: UInt32

OutCRC: UInt32

OutNonSafetyData: Structure

Figure 7 – Server Objects for OPC UA Safety

NOTE: At this stage of the specification, an information model of the SafetyConsumer is not required.

The method argument SafetyData has an application-specific type derived from Structure. This type
(including the type identifier) are expected to be the same in both the SafetyProvider and the
SafetyConsumer. Otherwise, the SafetyConsumer will not accept the transferred data and switch to
fail-safe values instead (see state S16 in Table 25 – SafetyConsumer driver states as well as
Clauses 8.1.3.2 and 8.1.3.4).
Figure 8 shows the Instances of server objects for OPC UA Safety. There are two things worth
mentioning:

- The ObjectType for the SafetyProvider contains the methods with the abstract DataType
BaseDataType. Each instance of a SafetyProvider needs its own copy of the methods which
contains the concrete DataType of the SafetyData.

- The Property SafetyBaseID is shared for all SafetyProviders with the same SafetyBaseID value.

OPC 10000-15: Safety 16 Release 1.04

FolderType:

Objects

AnyObjectType:

AnyObject

SafetyProviderType:

MySafeObject

ReadSafetyData

PropertyType:

InputArguments

PropertyType:

OutputArguments

PropertyType:

StructureSignatureIdentifier

PropertyType:

SafetyProviderLevel

PropertyType:

SafetyProviderDelay

PropertyType:

StructureSignatureVersion

Vendor

OPC UA

OPC UA Safety

Singleton with
fixed NodeId

ReadSafetyDiagnostics

SafetyParametersType:

Parameters

PropertyType:

OutputArguments

FolderType:

SafetyDeviceSet

Organizes

Organizes

Organizes

OrganizesOther Providers

InSafetyConsumerID: UInt32

InMonitoringNumber: UInt32

InFlags: Byte

InSafetyConsumerID: UInt32

InMonitoringNumber: UInt32

InFlags: Byte

OutSafetyData: Structure

OutFlags: Byte

OutSPDU_ID_1: UInt32

OutSPDU_ID_2: UInt32

OutSPDU_ID_3: UInt32

OutSafetyConsumerID: UInt32

OutMonitoringNumber: UInt32

OutCRC: UInt32

OutNonSafetyData: Structure

OutSafetyData: Structure

OutFlags: Byte

OutSPDU_ID_1: UInt32

OutSPDU_ID_2: UInt32

OutSPDU_ID_3: UInt32

OutSafetyConsumerID: UInt32

OutMonitoringNumber: UInt32

OutCRC: UInt32

OutNonSafetyData: Structure

PropertyType:

SafetyProviderID

PropertyType:

SafetyBaseID

Figure 8 – Instances of server objects for OPC UA Safety

OPC 10000-15: Safety 17 Release 1.04

Note: if multiple instances of SafetyProviderType are running on the same node, it is a viable
optimization that a parameter object is referenced by multiple providers. Likewise, a property may be
referenced by multiple providers.

[RQ6.5] To reduce the number of variations and to alleviate validation testing, the following restrictions
apply to instances of SafetyProviderType (or instances of types derived from SafetyProviderType) :

1) The references shown in Figure 8 originating at SafetyProviderType and below shall be of type

HasComponent (and shall not be derived from HasComponent) for object references or
HasProperty (and shall not be derived from HasProperty) for property references.

2) As BrowseNames (i.e. name and namespace) are used to find methods, the names of objects and
properties shall be locally unique.

3) The DataType of both Properties and MethodArguments shall be used as specified, and no derived
DataTypes shall be used (exception: OutSafetyData and OutNonSafetyData).

4) In OPC UA, the sequence of MethodArguments is relevant.

Table 6 – Type Definition of OPC UA Safety Parameters

Attribute Value

BrowseName SafetyParametersType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of BaseObjectType

HasProperty Variable SafetyProviderLevel Byte PropertyType Mandatory

HasProperty Variable SafetyProviderDelay UInt32 PropertyType Mandatory

HasProperty Variable StructureSignatureVersion UInt16 PropertyType Mandatory

HasProperty Variable StructureIdentifier String PropertyType Mandatory

HasProperty Variable SafetyBaseID Guid PropertyType Mandatory

HasProperty Variable SafetyProviderID UInt32 PropertyType Mandatory

[RQ6.6] For this V1.0 version of the specification, the value for the StructureSignatureVersion shall be
0x0001.

Table 7 – Type Definition of OPC UA Safety SafetyProvider

Attribute Value

BrowseName SafetyProviderType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of SafetyObjectsType

HasComponent Method ReadSafetyData Mandatory

HasComponent Method ReadSafetyDiagnostics Mandatory

HasComponent Object Parameters SafetyParametersType Mandatory

Table 8 – SafetyObjectsType definition

Attribute Value

BrowseName SafetyObjectsType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

6.1.1 Method ReadSafetyData

This method reads safe data from the SafetyProvider. It is in the responsibility of the safety application,
that this method is not concurrently called by multiple SafetyConsumers. Otherwise, the
SafetyConsumer may receive invalid responses resulting in a safe reaction which may lead to spurious
trips and/or system unavailability.

OPC 10000-15: Safety 18 Release 1.04

Signature

ReadSafetyData (

 [in] UInt32 InSafetyConsumerID

 [in] UInt32 InMonitoringNumber

 [in] Byte InFlags

 [out] Structure OutSafetyData

 [out] Byte OutFlags

 [out] UInt32 OutSPDU_ID_1

 [out] UInt32 OutSPDU_ID_2

 [out] UInt32 OutSPDU_ID_3

 [out] UInt32 OutSafetyConsumerID

 [out] UInt32 OutMonitoringNumber

 [out] UInt32 OutCRC

 [out] Structure OutNonSafetyData)

;

Table 9 –ReadSafetyData Method Arguments

Argument Description

InSafetyConsumerID “Safety Consumer Identifier”, see SafetyConsumerID in Table 13.

InMonitoringNumber “Monitoring Number of the RequestSPDU”, see Clause 8.1.1.2 and MonitoringNumber
in Table 13.

InFlags “Byte with Non safety Flags from SafetyConsumer“, see Flags in Table 18.

OutSafetyData “Safety Data”, see Clause 8.1.1.4.

OutFlags “Byte with Safety Flags from SafetyProviderSafetyProvider“, see Flags in Table 19.

OutSPDU_ID_1 “Safety PDU Identifier Part1”, see Clause 8.1.3.2.

OutSPDU_ID_2 “Safety PDU Identifier Part2”, see Clause 8.1.3.2.

OutSPDU_ID_3 “Safety PDU Identifier Part3”, see Clause 8.1.3.2.

OutSafetyConsumerID “Safety Consumer Identifier”, see SafetyConsumerID in Table 13 and Table 17Table 13.

OutMonitoringNumber Monitoring Number of the ResponseSPDU, see Clause 8.1.1.8, Clause 8.1.3.1, and
Figure 13.

OutCRC CRC-checksum over the ResponseSPDU, see Clause 8.1.3.5.

OutNonSafetyData “Non-safe data” see Clause 8.1.1.10.

Table 10 – ReadSafetyData Method AddressSpace definition

Attribute Value

BrowseName ReadSafetyData

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

6.1.2 Method ReadSafetyDiagnostics

This method (as part of the OPC UA Mapper) is provided for each SafetyProvider serving as a
diagnostic interface, see Clause 9.2.

OPC 10000-15: Safety 19 Release 1.04

Signature

ReadSafetyDiagnostics (

 [out] UInt32 InSafetyConsumerID

 [out] UInt32 InMonitoringNumber

 [out] Byte InFlags

 [out] Structure OutSafetyData

 [out] Byte OutFlags

 [out] UInt32 OutSPDU_ID_1

 [out] UInt32 OutSPDU_ID_2

 [out] UInt32 OutSPDU_ID_3

 [out] UInt32 OutSafetyConsumerID

 [out] UInt32 OutMonitoringNumber

 [out] UInt32 OutCRC

 [out] Structure OutNonSafetyData)

 ;

Table 11 – ReadSafetyDiagnostics Method Arguments

Argument Description

InSafetyConsumerID see Table 9

InMonitoringNumber see Table 9

InFlags see Table 9

OutSafetyData see Table 9

OutFlags see Table 9

OutSPDU_ID_1 see Table 9

OutSPDU_ID_2 see Table 9

OutSPDU_ID_3 see Table 9

OutSafetyConsumerID see Table 9

OutMonitoringNumber see Table 9

OutCRC see Table 9

OutNonSafetyData see Table 9

Table 12 – ReadSafetyDiagnostics Method AddressSpace definition

Attribute Value

BrowseName ReadSafetyDiagnostics

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

 [RQ6.7] Instances of SafetyProviderType shall use non-abstract DataTypes for the arguments
OutSafetyData and OutNonSafetyData.

6.2 Datatype Definition

[RQ6.8] To avoid possible problems with empty structures, the dummy structure
NonSafetyDataPlaceholder shall be used when no non-safety data is used. This datatype-node
defining this structure has a fixed node-ID and contains a single Boolean.

NonSafetyDataPlaceholderDataType Structure

Name Type Description

NonSafetyDataPlaceholderDataType structure

 dummy Boolean Dummy variable to avoid empty structures.

OPC 10000-15: Safety 20 Release 1.04

6.3 SafetyProvider Version

Future versions may use different identifiers (such as ReadSafetyDataV2), allowing a SafetyProvider
to implement multiple versions of OPC UA Safety at the same time. Hence, the same SafetyProvider
can be accessed by SafetyConsumers of different versions.

6.4 DataTypes and length of user data

OPC UA Safety supports sending the basic data types listed in OPC UA within SafetyData (see OPC
10000-3 and OPC 10000-6). The supported data types are vendor specific.

[RQ6.9] Only scalar data types shall be used. Arrays are not supported.

The supported maximum length of the user data is vendor specific. Typical values for the maximum
length include 1,16,64,256,1024, and 1500 octets.

[RQ6.10] For controller-like devices, the supported data types and the maximum length of the user
data shall be listed in the user manual.

[RQ6.11] For the data type Boolean, the value 0x01 shall be used for ‘true’ and the value 0x00 shall
be used for ‘false’.

6.5 Connection establishment

OPC UA Safety uses the OPC UA services for connection establishment, it poses no additional
requirement to these services.

Note: This version of the specification describes configuration at engineering time, only. This means
that the parameters defined in the SPI (see Clauses 7.3.2 and 7.4.1) cannot be configured at
runtime.

7 Safety communication layer services and management

7.1 Overview

Figure 9 gives an overview of the safety communication layer and its interfaces. It thereby also shows
the scope of this part. The main function of the OPC UA Safety layer services is the state machine
which handles the protocol. The state machines interact with the following interfaces:

- The Safety Application Program Interface (SAPI) is accessed by the safety application for exchanging
safety data during runtime.

- The Safety Parameter Interface (SPI) is accessed during commissioning for setting safety parameters
such as IDs or the timeout value in the SafetyConsumer.

- The non-safety related Diagnostics Interface (DI) can be accessed at runtime for troubleshooting the
safety communication.

- the OPC UA platform interface (OPC UA PI) connects the SCL to the non-safe OPC UA stack and is
used during runtime.

The interfaces (SAPI, SPI, DI and OPC UA PI) described in this clause are abstract and informative.
They represent logical data inputs and outputs to this layer that are necessary for the proper operation
of the state machine. No normative, concrete mappings are specified. The concrete implementations
are vendor specific and may not exactly match the abstract interfaces described.

OPC 10000-15: Safety 21 Release 1.04

Figure 9 – Safety communication layer overview

7.2 OPC UA Platform interface (OPC UA PI)

The state machines of OPC UA Safety are independent from the actual OPC UA services used for
data transmission. This is accomplished by introducing a so-called OPC UA Mapper, serving as an
interface between the safety communication layer and the OPC UA stack.

This first version of the specification describes only a single mapper, which makes use of OPC UA
client/server and remote method invocation

7.3 SafetyProvider interfaces

Figure 10 shows an overview of the SafetyProvider interfaces. The SAPI is specified in Clause 7.3.1,
the SPI is specified in Clause 7.3.2.

OPC UA Safety

SPDU

SPDU

Parameters

Diagnostic Messages

Safety Protocol Data Unit

State machine

Safety App

Program

Interface (SAPI)

Safety Parameter

Interface (SPI)

Diagnostic Interface

(DI)

(Non-safe)

OPC UA platform interface (OPC UA PI)

vendor specific

scope of this

specification

Mapping to OPC UA services

OPC UA – Mapper

(Client Server)

OPC UA – Mapper

(Pub / Sub)

OPC 10000-15: Safety 22 Release 1.04

Figure 10 – SafetyProvider interfaces

7.3.1 SAPI of SafetyProvider

[RQ7.1] The SAPI of the SafetyProvider represents the Safety communication layer services of the
SafetyProvider. Table 13 lists all inputs and outputs of the SAPI of the SafetyProvider. Each
SafetyProvider shall implement the SAPI as shown in Table 13, however, the details are vendor
specific.

Table 13 – SAPI of the SafetyProvider

SAPI Term Type Definition

SafetyData Structure This input is used to accept the user data which is then transmitted as
SafetyData in the SPDU.

NOTE: Whenever a new MNR is received from a SafetyConsumer, the state
machine of the SafetyProvider will read a new value of the SafetyData from its
corresponding Safety Application and use it until the next MNR is received.

NOTE: If no valid user data is available at the Safety Application, ActivateFSV
is expected to be set to "1" by the Safety Application.

NonSafetyData Structure Used to consistently transmit non-safety data values (e.g. diagnostic
information) together with safe data, see Clause 8.1.1.10

EnableTestMode

Boolean By setting this input to "1" the remote SafetyConsumer is informed (by Bit 2 in
ResponseSPDU.Flags, see Table 19) that the SafetyData are test data, and is
not to be used for safety related decisions.
NOTE: The OPC UA Safety stack is intended for implementation in safety
devices exclusively, see Clause 4.2.

OperatorAckProvider

Boolean This input to is used to implement an operator acknowledgment on the

provider side. The value will be forwarded to the consumer, where it can be
used to trigger a return from fail-safe substitute values (FSV) to actual
process values (PV), see Annex B.2.4.

SafetyProvider instance

SafetyData

A
c
ti
va

te
F

S
V

OPC UA – Mapper

ResponseSPDU

S
a
fe

ty
C

o
n
s
u
m

e
rI
D

O
p
e
ra

to
rA

c
k
P

ro
vi

d
e
r

Safety Application Program Interface (SAPI)

Safety
Parameter
Interface (SPI)

SafetyProviderID

SafetyStructureSignature

SafetyBaseID

T
e
s
tM

o
d
e

M
o
n
it
o
ri
n
g
N

u
m

b
e
r

SafetyData Safety Trailer incl. CRCRequestSPDU

S
a
fe

ty
B

a
s
e
ID

NonSafetyData

S
a
fe

ty
P

ro
vi

d
e
rI
D

OPC 10000-15: Safety 23 Release 1.04

SAPI Term Type Definition

ActivateFSV
(Fail-safe
Substitute
Values)

Boolean By setting this input to "1" the SafetyConsumer is instructed (via Bit 1 in
ResponseSPDU.Flags, see Table 19) to deliver FSV instead of PV to the
safety application program.

NOTE: If the replacement of process values by FSV should be controllable in
a more fine-grained way, this can be realized by using qualifiers within the
SafetyData, see Clause 5.3.

SafetyConsumerID UInt32 This output yields the ConsumerID used in the last access to this
SafetyProvider by a SafetyConsumer see Clause 176.1.1.

NOTE: all safety-related checks are executed by OPC UA Safety. The safety
application is not required to check this SafetyConsumerID.

MonitoringNumber

UInt32 This output yields the monitoring number (MNR). It is updated whenever a
new request comes in from the SafetyConsumer.

NOTE: all safety-related checks are executed by OPC UA Safety. The safety
application is not required to check this Monitoring number.

SafetyProviderID UInt32 By changing this input to a non-zero-value, the SafetyProvider uses this
variable instead of the SPI-Parameter SafetyProviderID. If it is changed to “0”,
the parameter SafetyProviderID will become activated.

See Figure 10, Clause 3.2.26, and Clause 11.1.1.

SafetyBaseID GUID By changing this input to a non-zero-value, the SafetyProvider uses this
variable instead of the SPI-Parameter SafetyBaseID. If it is changed to “0”,
the parameter SafetyBaseID will become activated.

See Figure 10, Clause 3.2.25, and Clause 11.1.1.

7.3.2 SPI of SafetyProvider

[RQ7.2] Each SafetyProvider shall implement the parameters as shown in Table 11 which can be set
via the SPI. The mechanisms for setting these parameters are vendor specific.

Table 14 – SPI of the SafetyProvider

Identifier Type Range Note

SafetyBaseID GUID See GUID Base-ID of the SafetyProvider, which is normally
used, see Clause 3.2.25. and Clause 11.1.1.

For dynamic systems, the safety application
program can overwrite this ID by providing a non-
zero value at the input SafetyBaseID of the
SafetyProvider’ s SAPI.

SafetyProviderID UInt32 1 - 0xFFFFFFFF Provider-ID of the SafetyProvider, see
Clause 3.2.26 and Clause 11.1.1.

SafetyStructureSignature UInt32 1 – 0xFFFFFFFF Signature of the SafetyData structure, for
calculation see Clause 8.1.3.4

7.3.3 Characteristics of SafetyProvider

[RQ7.3] Each SafetyProvider shall implement constants as shown in Table 12 whose values depend
on the way the SafetyProvider is implemented. They never change and are therefore not writable via
any of the interfaces. The constant SafetyProviderDelay has no influence on the functional behavior
of the SafetyProvider. However, it will be provided in the OPC UA information model of a
SafetyProvider to inform about its worst-case delay time. The value can be used during commissioning
to check whether the timing behavior of the SafetyProvider is suitable to fulfill the watchdog delay of
the corresponding SafetyConsumer.

Table 15 – Properties of SafetyProvider

Identifier Type Range Note

SafetyProviderDelay UInt32 0x1 – 0xFFFFFFFF In microseconds (µs). It can be set in the engineering
phase of the SafetyProvider or set during online
configuration as well.

OPC 10000-15: Safety 24 Release 1.04

SafetyProviderDelay is the maximum time at the
SafetyProvider from receiving the RequestSPDU to start
the transmission of ResponseSPDU, see Clause 10.2.

SafetyProviderLevel Byte 0x01 - 0x04 The maximal SIL the SafetyProvider implementation
(hardware & software) is capable of, see Figure 11.

It is used to inform the SafetyConsumer to parametrize the
appropriate SafetyProviderLevel and then to generate the
appropriate SafetyProviderLevel_ID.
NOTE: It is independent from the generation of the
SafetyData at SAPI.

Figure 11 – Example combinations of SIL capabilities

The constant SafetyProviderLevel determines the value which is used for SafetyProviderLevel_ID
when calculating the SPDU_ID, see Clause 8.1.3.3.

Note: SafetyProviderLevel is defined as the maximal SIL the SafetyProvider implementation
(hardware & software) is capable of. It should not be confused with the SIL-level of the implemented
safety function. For instance, Figure 11 shows a safety function which is implemented using a SIL2-
capable sensor, a SIL3-capable PLC, and a SIL1-capable actuator. The overall SIL of the safety
function is considered to be SIL1. Nevertheless, the SafetyProvider implemented on the sensor will
use the constant value “2” as SafetyProviderLevel, whereas the SafetyProvider implemented on the
PLC will use the constant value “3” as SafetyProviderLevel.

The respective SafetyConsumers (on the PLC and the actuator) need to know the
SafetyProviderLevel of their providers for being able to check the SPDU_ID (see Clause 8.1.3.2).

M

Sensor SIL2 Actuator SIL1

Safety control
program

F-PLC SIL3

SafetyProvider

instance

SIL2

SafetyConsumer

SafetyProvider

instance

SIL3

SafetyConsumer

SafetyProviderLevel: 2
SafetyProviderLevel_ID: 0x647C4654

Data transmitted can not be used in safety functions
with a SIL larger than 2.

SafetyProviderLevel: 3
SafetyProviderLevel_ID: 0xDEAA9DEE

Data transmitted can not be used in safety functions
with a SIL larger than 2.

Due to the SIL1 actuator,
the overall safety function cannot
have a SIL larger than 1.

OPC 10000-15: Safety 25 Release 1.04

7.4 SafetyConsumer interfaces

The Figure 12 shows an overview of the SafetyConsumer interfaces. The SAPI is specified in
Clause 7.4.1, the SPI is specified in Clause 7.4.3.

Figure 12 – SafetyConsumer interfaces

7.4.1 SAPI of SafetyConsumer

The SAPI of the SafetyConsumer represents the Safety communication layer services of the
SafetyConsumer. Table 16 lists all inputs and outputs of the SAPI of the SafetyConsumer. [RQ7.4]
Each SafetyConsumer shall implement the SAPI as shown in Table 16, however, the details are vendor
specific.

Table 16 – SAPI of the SafetyConsumer

SAPI Term Type Definition

SafetyData Structure This output either delivers the process values received from the
SafetyProvider in the SPDU field SafetyData, or FSV.

NonSafetyData Structure Used to consistently transmit non-safety data values (e.g. diagnostic
information) together with safe data, see Clause 8.1.1.10

Enable Boolean By changing this input to "0" the SafetyConsumer will change each and every
variable of the SafetyData to "0" and stop sending requests to the
SafetyProvider. When changing Enable to "1" the SafetyConsumer will restart
safe communication. The variable can be used to delay the start of the OPC
UA Safety communication, after power on until "OPC UA connection ready" is
set. The delay time is not monitored while enable is set to “0”.

FSV_Activated Boolean This output indicates via "1", that on the output SafetyData FSV (all binary
"0") are provided.

SafetyData
(PV or FSV)

F
S

V
_
A

c
ti
va

te
d

O
p
e
ra

to
rA

c
k
C

o
n
s
u
m

e
r

O
p
e
ra

to
rA

c
k
R

e
q
u
e
s
te

d

SafetyData Safety Trailer incl. CRC

OPC UA – Mapper

ResponseSPDU

E
n
a
b
le

S
a
fe

ty
P

ro
vi

d
e
rI
D

O
p
e
ra

to
rA

c
k
P

ro
vi

d
e
r

Safety Application Program Interface (SAPI)

Safety
Parameter
Interface (SPI) S

a
fe

ty
B

a
s
e
ID

T
e
s
tM

o
d
e
A

c
ti
va

te
d

RequestSPDU

SafetyConsumer instance

SafetyProviderID

SafetyStructureSignature

SafetyConsumerID

SafetyConsumerTimeOut

OperatorAckNecessary

SafetyErrorIntervalLimit

SafetyBaseID

SafetyProviderLevel

NonSafetyData

S
a
fe

ty
C

o
n
s
u
m

e
rI
D

OPC 10000-15: Safety 26 Release 1.04

SAPI Term Type Definition

NOTE: If an application needs different FSV than “all binary 0”, it is expected
to use appropriate constants and ignore the output of SafetyData whenever
FSV_Activated is set.

NOTE: If the ResponseSPDU is checked with error: ActivateFSV is set.

OperatorAckConsumer

Boolean For motivation, see Clause 7.4.2.

After an indication of OperatorAckRequested this input can be used to signal
an operator acknowledgment. By changing this input from “0” to "1" (rising
edge) the SafetyConsumer is instructed to switch SafetyData from FSV to PV.
OperatorAckConsumer is processed only if this rising edge arrives after
OperatorAckRequested was set to “1”, see Figure 18.

If a rising edge of OperatorAckConsumer arrives before
OperatorAckRequested becomes 1, this rising edge is ignored.

OperatorAckRequested

Boolean This output indicates the request for operator acknowledgment. The bit is set
to “1” by the SafetyConsumer, when three conditions are met:

1. Too many communication errors were detected in the past, so the
SafetyConsumer decided to switch to fail -safe substitute values.

2. Currently, no communication errors occur, and hence operator
acknowledgment is possible.

3. Operator acknowledgment (rising edge at input
OperatorAckConsumer) has not yet occurred.

The bit is reset to “0” when a rising edge at OperatorAckConsumer is
detected.

OperatorAckProvider

Boolean This output indicates that an operator acknowledgment has taken place on the
SafetyProvider. If operator acknowledgment at the SafetyProvider should be
allowed, this output is connected to OperatorAckConsumer, see Annex B.2.4
and B.2.5.

NOTE: If the ResponseSPDU is checked with error, this output remains last
value.

TestModeActivated Boolean The safety application program is expected to evaluate this output for
determining whether the communication partner is in test mode or not. A
value of “1” indicates that the communication partner (source of data) is in
test mode, e.g. during commissioning. Data coming from a device in test
mode may be used for testing but is not intended to be used to control safety-
critical processes. A value of “0” represents the “normal” sa fety-related mode.

Motivation: Test mode enables the programmer and commissioner to validate
the safety application using test data.

NOTE: If the ResponseSPDU is checked with error: TestModeActivated is
reset.

SafetyProviderID UInt32 By changing this input to a non-zero value, the SafetyConsumer uses this
variable instead of the SPI-Parameter SafetyProviderID. This input is only
read in the first cycle, or when a rising edge occurs at the input Enable. See
also Table 17. If it is changed to “0”, the parameter SafetyProviderID will
become activated.

SafetyBaseID GUID By changing this input to a non-zero-value the SafetyConsumer uses this
variable instead of the SPI-Parameter SafetyBaseID. This input is only read in
the first cycle, or when a rising edge occurs at the input Enable. See also
Table 17. If it is changed to “0”, the SPI-parameter SafetyBaseID will become
activated.

SafetyConsumerID UInt32 By changing this input to a non-zero-value the SafetyConsumer uses this
variable instead of the SPI-Parameter SafetyConsumerID. This input is only
read in the first cycle, or when a rising edge occurs at the input Enable. See
also Table 17. If it is changed to “0”, the SPI-parameter SafetyConsumerID
will become activated.

7.4.2 Motivation for SAPI Operator Acknowledge (OperatorAckConsumer)

The safety argumentation assumes that random errors in the underlying OPC UA stack including its
communication links are not too frequent, i.e. that its failure rate is lower than a given threshold,
depending on the desired SIL.

OPC 10000-15: Safety 27 Release 1.04

Whenever the SafetyConsumer detects a faulty telegram, it checks whether the assumption is still
valid, and switches to fail-safe substitute values otherwise. Returning to process values then requires
an operator acknowledgment.

Operator Acknowledge is expected to be initiated by a human operator who is responsible to check
the installation, see “Table 32, row Operator Acknowledge”. For this reason, the OperatorAckConsumer
is delivered to the safety application program to deal with.

Timeout errors do only require an operator acknowledgment if operator acknowledgment is required
by the safety function itself. In this case, SafetyOperatorAckNecessary is set to indicate that operator
acknowledgments required.

7.4.3 SPI of the SafetyConsumer

[RQ7.5] Each SafetyConsumer shall implement the parameters shown in Table 17 which can be set
via the SPI. The mechanisms for setting these parameters are vendor specific. The SPI of the
SafetyConsumer represents the parameters of the Safety communication layer management of the
SafetyConsumer.

Table 17 – SPI of the SafetyConsumer

Identifier Type Valid range Initial Value

(before
parametrization)

Note

SafetyBaseID

GUID See Clause 11.1.1 0x0 The default SafetyBaseID
of the SafetyProvider this
SafetyConsumer uses to
make a connection, see
Clause 3.2.25.

For dynamic systems, the
safety application program
can overwrite this ID by
providing a non-zero value
at the input SafetyBaseID
of the SafetyConsumer’ s
SAPI.

SafetyProviderID

UInt32 0x1 - 0xFFFFFFFF 0x0 The SafetyProviderID of
the SafetyProvider this
SafetyConsumer normally
connects to, see Figure 10
and Clause 3.2.26.

For dynamic systems, the
safety application program
can overwrite this ID by
providing a non-zero value
at the input
SafetyProviderID of the
safety Consumer’s SAPI.

SafetyConsumerID

UInt32 0x1 - 0xFFFFFFFF 0x0 ID of the SafetyConsumer,
see Clause 11.1.2.

SafetyStructureSignature

UInt32 0x1 – 0xFFFFFFFF 0x0 Signature over the
SafetyData structure, see
Clause 8.1.3.4

SafetyConsumerTimeOut

UInt32 0x1 – 0xFFFFFFFF 0x1 Watchdog-time in
microseconds (µs).

Whenever the
SafetyConsumer sends a
request to a
SafetyProvider, its
watchdog timer is set to
this value. The expiration
of this timer prior to
receiving an error-free
reply by the SafetyProvider
indicates an unacceptable
delay.

See Clause 10.2

OPC 10000-15: Safety 28 Release 1.04

SafetyOperatorAckNecessary

Boolean 0x0 / 0x1
Default 1

0x1 This parameter controls
whether an operator
acknowledgment (OA) is
necessary in case of errors
of type “unacceptable
delay” or “loss”, or when
the SafetyProvider has
activated FSV
(ActivateFSV).
1: FSV are provided at the
output SafetyData of the
SAPI until OA.
0: PV are provided at
SafetyData of the SAPI as
soon as the communication
is free of errors. In case of
ActivateFSV the values
change from FSV to PV as
soon as ActivateFSV
returns to “0”.

Note: This parameter does
not have an influence on
the behavior of the
SafetyConsumer following
the detection of other types
of communication errors,
such as data corruption.
For these types of errors,
OA is mandatory, see
Clause 7.4.2.

SafetyErrorIntervalLimit

UInt16 6, 60, 600 600 Value in minutes.

The parameter
SafetyErrorIntervalLimit
determines the minimum
distance two consecutive
communication errors must
have for not triggering a
switch to FSV in the
SafetyConsumer. It affects
the availability and the
PFH of this OPC UA Safety
link, see Clause 7.4.2 and
Clause 11.4.

SafetyProviderLevel

Byte 0x01 - 0x04 0x1 SafetyConsumer’s
expectation on the maximal
SIL the SafetyProvider
implementation (hardware
& software) is capable of.
See Clause 7.3.3,
Clause 8.1.3.3, and Figure
11.

NOTE: the engineering system can use the initial value to set a parameter to a safe value.

7.4.4 Motivation for SPI SafetyOperatorAckNecessary

This parameter determines whether automatic restart is possible for the safety function or not. It is
expected to be set to 1 for safety functions where automatic restart is not allowed and restart always
requires human interaction.

If automatic restart of the safety function is safe, the parameter can be set to 0.

8 Safety communication layer protocol

8.1 SafetyProvider and SafetyConsumer

8.1.1 SPDU formats

Figure 13 shows the structure of a RequestSPDU which originates at the SafetyConsumer and
contains a SafetyConsumerID, a MonitoringNumber (MNR), and one byte of (non-safety-related) flags
(Flags).

OPC 10000-15: Safety 29 Release 1.04

Figure 13 – RequestSPDU

NOTE: The RequestSPDU does not contain a CRC-checksum.

Figure 14 shows the structure of a ResponseSPDU which originates at the SafetyProvider and contains
the safety data (1 – 1500 Byte) and additional 25 Byte safety code (STrailer) as described in the
subsequent sections, and the non-safety related data.

Figure 14 – ResponseSPDU

NOTE: In order to avoid spurious trips, the ResponseSPDU is transmitted in an atomic (consistent)
way from the OPC UA platform interface of the SafetyProvider to the OPC UA platform interface of the
SafetyConsumer. This is the task of the respective OPC UA mapper, see Figure 2.

8.1.1.1 RequestSPDU: SafetyConsumerID

Identifier of the SafetyConsumer instance, for diagnostic purposes , see Clause 11.1.2.

8.1.1.2 RequestSPDU: MonitoringNumber

The SafetyConsumer uses the MNR to detect mis-timed SPDUs, e.g. such SPDUs which are
continuously repeated by an erroneous network storing element. A different MNR is used in every
RequestSPDU of a given SafetyConsumer, and a ResponseSPDU will only be accepted, if its MNR is
identical to its matching RequestSPDU.

The checking for correctness of the MNR is performed by the SafetyConsumer, only.

8.1.1.3 RequestSPDU: Flags

[RQ8.1] The flags of the Safety Consumer (RequestSPDU.Flags) shall be used as shown in Table 18.

MonitoringNumber

(UInt32)

SafetyConsumerID

(UInt32)

RequestSPDU

Flags

(Byte)

ResponseSPDU

STrailer

MonitoringNumber

(UInt32)

Flags

(Byte)

SafetyData

(Structure)

SafetyConsumerID

(UInt32)

SPDU_ID

(3x UInt32)

CRC

(UInt32)

NonSafetyData

(Structure)

OPC 10000-15: Safety 30 Release 1.04

Table 18 – Structure of RequestSPDU.Flags

Bit nr. Identifier Description

LSB =

Bit 0

CommunicationError 0: No error

1: An error was detected in the previous ResponseSPDU.

Bit 1 OperatorAckRequested Used to inform the SafetyProvider that operator acknowledgment is
requested.

Bit 2 FSV_Activated Is used for conformance test of SafetyConsumer.SAPI.FSV_Activated

Bit 3......7 Reserved for future use Always set to zero, not evaluated.

NOTE: CommunicationError can be used as a trigger, e.g. for a communication analysis tool.

Flags reserved for future use shall be set to zero by the SafetyConsumer and shall not be evaluated
by the SafetyProvider.

8.1.1.4 ResponseSPDU: SafetyData

[RQ8.2] SafetyData shall contain the safety-related application data transmitted from the
SafetyProvider to the SafetyConsumer. It may comprise multiple basic OPC UA variables (see Clause
6.4). For the sake of reducing distinctions of cases, SafetyData shall always be a structure, even if it
contains a single basic OPC UA variable, only.

For the calculation of the CRC Signature, the order in which this data is processed by the calculation
is important. SafetyProvider and SafetyConsumer must agree upon the number, type and order of
application data transmitted in SafetyData. The sequence of SafetyData is fixed.

NOTE SafetyData may contain qualifier bits for a fine-grained activation of fail-safe substitute values. For a valid process
value, the respective qualifier is set to 1 (good), whereas the value 0 (bad) is used for invalid values. Invalid process values
are replaced by a fail-safe substitute value in the consumer’s safety application. See Clause 5.3.

8.1.1.5 ResponseSPDU: Flags

[RQ8.3] The flags of the SafetyProvider (ResponseSPDU.Flags) shall be used as shown in Table 19.

Table 19 – Structure of ResponseSPDU.Flags

Bit nr. Name Description

LSB =

Bit 0

OperatorAckProvider Operator acknowledgment at the provider, hereby forwarded to the
SafetyConsumer, see OperatorAckProvider in the SAPI of the
SafetyProvider, Clause 7.3.1.

Bit 1 ActivateFSV Activation of fail-safe values by the safety application at the
SafetyProvider, hereby forwarded to the SafetyConsumer, see ActivateFSV
in the SAPI of the SafetyProvider, Clause 7.3.1.

Bit 2 TestModeActivated Enabling and disabling of test mode in the SafetyProvider, hereby
forwarded to the SafetyConsumer, see EnableTestMode in the SAPI of the
SafetyProvider, Clause 7.3.1.

Bit 3 7 Reserved for future use Always set to zero, not evaluated.

[RQ8.4] Flags reserved for future use shall be set to zero by the SafetyProvider and shall not be
evaluated by the SafetyConsumer.

8.1.1.6 ResponseSPDU: SPDU_ID

This field is used by the SafetyConsumer to check whether the ResponseSPDU is coming from the
correct SafetyProvider. For details, see Clause 8.1.3.1.

8.1.1.7 ResponseSPDU: SafetyConsumerID

[RQ8.5] The SafetyConsumerID in the ResponseSPDU shall be a copy of the SafetyConsumerID
received in the corresponding RequestSPDU. See Clause 8.1.3.1.

OPC 10000-15: Safety 31 Release 1.04

8.1.1.8 ResponseSPDU: MonitoringNumber

[RQ8.6] The MonitoringNumber in the ResponseSPDU shall be a copy of the MonitoringNumber
received in the corresponding RequestSPDU. See Clause 8.1.3.1.

The SafetyConsumer uses the ResponseSPDU.MonitoringNumber to detect mis-timed SPDUs, e.g.
such SPDUs which are continuously repeated by an erroneous network storing element. A different
MonitoringNumber is used in every RequestSPDU of a given SafetyConsumer, and a ResponseSPDU
will only be accepted, if its MonitoringNumber is identical to its matching RequestSPDU.

8.1.1.9 ResponseSPDU: CRC

[RQ8.7] This CRC-checksum shall be used to detect data corruption. See Clause 8.1.3.5 on how it is
calculated in the SafetyProvider and how it is checked in the SafetyConsumer.

8.1.1.10 ResponseSPDU: NonSafetyData

[RQ8.8] This structure shall be used to transmit non-safety data values (e.g. diagnostic information)
together with safe data consistently. Non-safety data is not CRC-protected and may stem from an
unsafe source. [RQ8.9] When presented to the safety application (e.g. at an output of the
SafetyConsumer), non-safety values shall clearly be indicated as “non-safety”, by an appropriate
vendor-specific mechanism (e.g. by using a different color) .

To avoid possible problems with empty structures, the dummy structure NonSafetyDataPlaceholder
shall be used when no non-safety data is used.

8.1.2 OPC UA Safety behavior

8.1.2.1 General

The two SCL-services “SafetyProvider” and “SafetyConsumer” are specified using state diagrams.

8.1.2.2 SafetyProvider/-Consumer Sequence diagram

Figure 15 shows the sequence of request and response with SafetyData and the timeouts for OPC UA
Safety.

SafetyProvider SafetyConsumer

SafetyData

SafetyData

Response

SafetyData

C
o
n
s
u
m

e
rC

y
c
le

T
im

e

Response

Response

SafetyData

SafetyData

SafetyData

OPC 10000-15: Safety 32 Release 1.04

NOTE: Transmission errors are handled within the OPC UA stack (e.g. when using client/server over
TCP) and do not have to be corrected or re-transmitted by OPC UA Safety.

Figure 15 – Sequence diagram for OPC UA Safety

The SafetyConsumerTimeout is the watchdog time checked in the SafetyConsumer. The watchdog is
restarted whenever a new RequestSPDU is generated (transitions T14 and T26 of the
SafetyConsumer). If an appropriate ResponseSPDU is received in time, and the checks for data
integrity, authenticity, and timeliness are all valid, the timer will not expire before it is restarted.

Otherwise, the watchdog timer expires, and the SafetyConsumer triggers a safe reaction. To duly
check its timer, the SafetyConsumer is executed cyclically, with period ConsumerCycleTime.
ConsumerCycleTime is expected to be smaller than SafetyConsumerTimeout.

The ConsumerCycleTime is the maximum time for the cyclic update of the SafetyConsumer. It is the
timeframe from one call of the SafetyConsumer to the next call of the SafetyConsumer. The
implementation and error reaction of ConsumerCycleTime is not part of OPC UA Safety; it is vendor
specific.

8.1.2.3 SafetyProvider state diagram

[RQ8.10] Figure 16 shows a simplified representation of the state diagram of the SafetyProvider. The
exact behavior is described in Table 21, Table 22, and Table 23. The SafetyProvider shall implement
that behavior. It is not required to literally follow the entries given in the tables , if the behavior does
not change.

Figure 16 – Simplified representation of the state diagram for the SafetyProvider

S2_PrepareSPDU

S1_WaitForRequest

[new RequestSPDU
received]/
T2

/T3

/T1

[new RequestSPDU
received]/
T2

/T3

Initialization

Graphical representation Type Description

Activity State Within these interruptible "activity"

states the SafetyProvider waits for

new inputs.

state_x

OPC 10000-15: Safety 33 Release 1.04

The transitions are fired in case of an event, for example receiving a SPDU. In case of several possible
transitions, so-called guard conditions (refer to […] in UML diagrams) define which transition to fire

The diagram consists of activity and action states. Activity states are surrounded by bold lines, action
states are surrounded by thin lines. While activity states may be interruptible by new events, action
states are not. External events occurring while the state machine is in an action state, are deferred
until the next activity state is reached.

Table 20 – Symbols used for state machines.

Table 21 – SafetyProvider instance internal items

INTERNAL ITEMS TYPE DEFINITION

RequestSPDU_i Variable Local Memory for RequestSPDU (required to react on changes).

<Get RequestSPDU> Macro Instruction to take the whole RequestSPDU from the OPC UA Mapper.

<Set
ResponseSPDU>

Macro Instruction to transfer the whole ResponseSPDU to the OPC UA Mapper

<build

ResponseSPDU>

Macro Take the MNR and the SafetyConsumerID of the received RequestSPDU. Add

the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3, Flags, and SafetyData, as well as

the calculated CRC.

See Clause 8.1.3.1

Table 22 – States of SafetyProvider instance

STATE NAME STATE DESCRIPTION

Initialization // Initial state

SAPI.SafetyData:= 0

SAPI.MonitoringNumber:= 0

SAPI.SafetyConsumerID:= 0

RequestSPDU_i:= 0

S1_WaitForRequest // waiting on next RequestSPDU from SafetyConsumer

<Get RequestSPDU>

S2_PrepareSPDU ResponseSPDU.Flags.ActivateFSV := SAPI.ActivateFSV

ResponseSPDU.Flags.OperatorAckProvider := SAPI.OperatorAckProvider

Response.Flags.TestModeActivated := SAPI.EnableTestMode

<build ResponseSPDU> // see Clause 8.1.3.1

Action State Within these non-interruptible "action"

states events like new request is

deferred until the next "activity" state

is reached, see [1].

state_y

OPC 10000-15: Safety 34 Release 1.04

Table 23 – SafetyProvider driver transitions

TRAN-
SITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T1 Init 1 -

T2

1

2 // RequestSPDU received

<Get RequestSPDU>

When: [RequestSPDU_i<>

RequestSPDU]

// Process Request

RequestSPDU_i:= RequestSPDU

SAPI.MonitoringNumber:=

RequestSPDU.MonitoringNumber

SAPI.SafetyConsumerID :=

RequestSPDU.SafetyConsumerID

T3 2 1 // SPDU is prepared

-

<Set ResponseSPDU>

8.1.2.4 SafetyConsumer state diagram

[RQ8.11] Figure 17 shows a simplified representation of the state diagram of the SafetyConsumer.
The exact behavior is described in Table 24, Table 25, and Table 26. The SafetyConsumer shall
implement that behavior. It is not required to literally follow the entries given in the tables , if the
behavior does not change.

OPC 10000-15: Safety 35 Release 1.04

Figure 17 – Principle state diagram for SafetyConsumer

Table 24 – SafetyConsumer driver internal items

INTERNAL ITEMS TYPE DEFINITION

Constants

MNR_min := 0x100 UInt32 // 0x100 is the start value for MNR, also used after wrap-around.

// The values 0…0xFF are reserved for future use.

Variables

FaultReqOA_i Boolean Local memory for errors which request operator acknowledgment.

MNR_i UInt32 Local Monitoring Number (MNR).

prevMNR_i UInt32 Local memory for previous MNR

SafetyProviderID_i UInt32 Local memory for SafetyProviderID in use.

/T12

S11_WaitForReStart

[SAPI.Enable==0]/

T15
S12_Initialize_MNR

[SAPI.Enable==1]/

T13

[SAPI.Enable==1]/

T13

Initialization

/T14

S13_PrepareRequest

/T14

/T16

S14_WaitForChangedSPDU

/T16

S16_CheckResponseSPDU

[SPDU NOK and

SafetyErrorIntervalTimer

expired]/

T23

[SPDU NOK and

SafetyErrorIntervalTimer

expired]/

T23

S17_Error

WDTimeout/

T18

[SPDU NOK and

SafetyErrorIntervalTimer

not expired]/

T24

WDTimeout/

T18

[SPDU NOK and

SafetyErrorIntervalTimer

not expired]/

T24

[CRC err and

SafetyErrorIntervalTimer not

expired]/

T20

S15_CRCCheckSPDU

[CRCCheckOK]/

T21

[New

ResponseSPDU

received]/

T17

[CRC err and

SafetyErrorIntervalTimer

expired]/

T19

[CRC err and

SafetyErrorIntervalTimer not

expired]/

T20

[CRCCheckOK]/

T21

[New

ResponseSPDU

received]/

T17

[CRC err and

SafetyErrorIntervalTimer

expired]/

T19

/T25

S18_ProvideSafetyData

[SPDU OK]/

T22

[SAPI.Enable==1]/

T26

/T25

[SAPI.Enable==0]/

T15

[SPDU OK]/

T22

[SAPI.Enable==1]/

T26

Request / Response part

OPC 10000-15: Safety 36 Release 1.04

INTERNAL ITEMS TYPE DEFINITION

CRCCheck_i Boolean Local variable used to store the result of the CRC-check.

SPDUCheck_i Boolean Local variable used to store the result of the additional SPDU-checks.

SPDU_ID_1_i UInt32 Local variable to store the expected SPDU_ID_1

SPDU_ID_2_i UInt32 Local variable to store the expected SPDU_ID_2

SPDU_ID_3_i UInt32 Local variable to store the expected SPDU_ID_3

Timers

ConsumerTimer Timer This timer is used to check whether the next valid ResponseSPDU has
arrived on time. It is initialized using the parameter
SPI.SafetyConsumerTimeOut.

ErrorIntervalTimer Timer This timer is initialized using the parameter SPI.SafetyErrorIntervalLimit.

See Table 17, Clause 7.4.2, and Clause 11.4 for more information.

Macros <...><...>

<risingEdge x> Macro // detection of a rising edge:

If x==true && tmp==false

Then

 result:= true

Else

 result := false

Endif

tmp := x

<Get ResponseSPDU> Macro Instruction to take the whole ResponseSPDU from the OPC UA Mapper.

<Use FSV> Macro SafetyData is set to binary 0

SAPI.FSV_Activated := 1

RequestSPDU.Flags.FSV_Activated := 1

NOTE: If a safety application prefers different fail-safe values than binary 0,
this can be implemented in the safety application by querying
SAPI.FSV_Activated.

<Use SafetyData> Macro SAPI.SafetyData is set to ResponseSPDU.SafetyData

SAPI.FSV_Activated := 0

RequestSPDU.Flags.FSV_Activated := 0

RequestSPDU.Flags.CommunicationError:=0

<Set RequestSPDU> Macro Instruction to transfer the whole RequestSPDU to the OPC UA Mapper

<(Re)Start
ConsumerTimer>

Macro Restarts the consumer timer.

<(Re)Start
ErrorIntervalTimer>

Macro Restarts the error interval timer.

<ConsumerTimer
expired?>

Macro Yields “true” if the timer is running longer than SPI.SafetyConsumerTimeOut

since last restart, “false” otherwise.

<ErrorIntervalTimer
expired?>

Macro Yields “true” if the timer is running longer than SPI.SafetyErrorIntervalLimit

since last restart, “false” otherwise.

<Build RequestSPDU> Macro RequestSPDU.SafetyConsumerID := SPI.SafetyConsumerID

RequestSPDU.MonitoringNumber := MNR_i

OPC 10000-15: Safety 37 Release 1.04

INTERNAL ITEMS TYPE DEFINITION

<Calc SPDU_ID_i> Macro uint128 BaseID

uint32 ProviderID

const uint32 SafetyProviderLevel_ID := … // see Clause 8.1.3.3

If(SAPI.SafetyBaseID == 0) then
 BaseID := SPI.SafetyBaseID
Else
 BaseID := SAPI.SafetyBaseID

Endif
If(SAPI.SafetyProviderID == 0) then
 ProviderID := SPI.SafetyProviderID
Else
 ProviderID := SAPI.SafetyProviderID

Endif

SPDU_ID_1_i := BaseID (bytes 0…3)
 XOR SafetyProviderLevel_ID

SPDU_ID_2_i := BaseID (bytes 4…7)
 XOR SPI.SafetyStructureSignature

SPDU_ID_3_i := BaseID (bytes 8…11)
 XOR BaseID (bytes 12…15)
 XOR ProviderID

// see Clause 8.1.3.2 for clarification

<Set Diag(ID, Boolean
permanent)>

Macro // ID is the identifier for the type of diagnostic output, see Table 29
// permanent is used to indicate a permanent error.
// Only one diagnostic message is created for multiple permanent
// errors in sequence

If(RequestSPDU.Flags.CommunicationError == 0)
Then
 <do vendor-specific function for diagnostic output using ID>
Else
 //do nothing
Endif

RequestSPDU.Flags.CommunicationError:= permanent

// Note: See for possible values for “ID” and their codes.

External Event

Restart Cycle Event The external call of SafetyConsumer can be interpreted as event “Restart

Cycle”

Note: A macro is a shorthand representation for operations described in the according definition.

Table 25 – SafetyConsumer driver states

STATE NAME STATE DESCRIPTION

Initialization // Initial state of the SafetyConsumer driver instance.

<Use FSV>

SAPI.OperatorAckRequested := 0
RequestSPDU.Flags.OperatorAckRequested :=0
SAPI.OperatorAckProvider := 0

FaultReqOA_i :=0
SAPI.TestModeActivated := 0

RequestSPDU.Flags.CommunicationError:= 0

S11_Wait for (Re)Start // Safety Layer is waiting (Re)Start

S12_initialize MNR // Use previous MNR if known
// or random MNR within the allowed range (e.g. after cold start), see Clause 11.2.

MNR_i := (previous MNR_i if known) or (random MNR)

OPC 10000-15: Safety 38 Release 1.04

STATE NAME STATE DESCRIPTION

MNR_i := max(MNR_i, MNR_min)1

S13_PrepareRequest // Build RequestSPDU and send (done in T16)

S14_WaitForChangedSPDU // Safety Layer is waiting on next ResponseSPDU from SafetyProvider

S15_CRCCheckSPDU // Check CRC

uint32 CRC_calc
CRCCheck_i := (CRC_calc == ResponseSPDU.CRC)

// see Clause 8.1.3.5 on how to calculate CRC_calc

S16_CheckResponseSPDU // Check SafetyConsumerID and SPDU_ID and MNR (see T22, T23, T24)

SPDUCheck_i :=
 ResponseSPDU.SPDU_ID_1== SPDU_ID_1_i &&
 ResponseSPDU.SPDU_ID_2== SPDU_ID_2_i &&
 ResponseSPDU.SPDU_ID_3== SPDU_ID_3_i &&
 ResponseSPDU.SafetyConsumerID== SPI.SafetyConsumerID &&
 ResponseSPDU.MNR==MNR_i

S17_Error SAPI.TestModeActivated := 0

S18_ProvideSafetyData // Provide SafetyData to the application program

Table 26 – SafetyConsumer driver transitions

TRANSITION SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T12 Init S11 -

T13 S11 S12

//Start

[SAPI.Enable==1]

<(Re)Start ErrorIntervalTimer>

<calc SPDU_ID>

// see Clause 8.1.3.2 for clarification

T14 S12 S13 // MNR initialized <(Re)Start ConsumerTimer>

T15 S18 S11 // Termination

[SAPI.Enable==0]

<Use FSV>

T16 S13 S14 // Build Request

SPDU and send

prevMNR_i := MNR_i,

If MNR_i== 0xFFFFFFFFF

Then

 MNR_i := MNR_min,

Else

 MNR_i := MNR_i + 1

Endif

<Build RequestSPDU>

<Set RequestSPDU>

T17 S14 S15 // New

ResponseSPDU

received

<Get ResponseSPDU>

[ResponseSPDU.MNR

<>prevMNR_i] 2

-

T18 S14 S17 // WDTimeout

[<ConsumerTimer

expired?>]

<Set Diag(CommErrTO,1)>

<use FSV>

If SPI.SafetyOperatorAckNecessary == 1

Then

 FaultReqOA_i := 1

1 This ensures that the MNR is greater or equal to MNR_min, in cases the random number generator yield ed a smaller value.

2 Another event like “Method completion successful” can be used as guard condition of “New ResponseSPDU received” as
well.

OPC 10000-15: Safety 39 Release 1.04

TRANSITION SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

Else

 // do nothing

Endif

T19 S15 S13 // When CRC err and

SafetyErrorIntervalTi

mer expired

[(crcCheck_i == 0

) &&

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>

<Set Diag(CRCerrIgn,0)>

T20 S15 S17 // When CRC err and

SafetyErrorIntervalTi

mer not expired

[(crcCheck_i == 0

) && not

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>

<Set Diag(CRCerrOA,1)>

<use FSV>

FaultReqOA_i:= 1

T21 S15 S16 // When CRCCheckOK

[crcCheck_i == 1

]

-

OPC 10000-15: Safety 40 Release 1.04

TRANSITION SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T22 S16 S18 // SPDU OK

[SPDUCheck_i==1]

// For clarification, refer to Figure 18

// indicate OA from provider

SAPI.OperatorAckProvider :=

ResponseSPDU.Flags.OperatorAckProvider

// OA requested due to edge at ActivateFSV?

If (<risingEdge ResponseSPDU.Flags.ActivateFSV>&&

SPI.SafetyOperatorAckNecessary == 1)

Then

 FaultReqOA_i:=1;

 <Set Diag(FSV_Requested,1)>

Else

 // do nothing

Endif

// Set Flags if OA requested:

If FaultReqOA_i==1

Then

 SAPI.OperatorAckRequested:= 1,

 RequestSPDU.Flags.OperatorAckRequested:=1,

 FaultReqOA_i:= 0

Else

 //do nothing

Endif

// Reset flags after OA:

If (<risingEdge SAPI.OperatorAckConsumer >) 3

Then SAPI.OperatorAckRequested:=0,

RequestSPDU.Flags.OperatorAckRequested:=0

Else

 // do nothing

Endif

If SAPI.OperatorAckRequested==1 ||

ResponseSPDU.ActivateFSV==1

Then <use FSV>

Else <use SafetyData>

Endif

// Notify safety application that SafetyProvider is in test

mode:

SAPI.TestModeActivated:=

ResponseSPDU.Flags.TestModeActivated

3 This condition is used to accept a rising edge of OperatorAckConsumer only if it occurs after OperatorAckRequested was
set to 1.

OPC 10000-15: Safety 41 Release 1.04

TRANSITION SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T23 S16 S13 // SPDU NOK and

SafetyErrorIntervalTi

mer expired

[SPDUCheck_i == 0

&& <ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>,

// Send diagnostic message according the

// detected error:

If ResponseSPDU.SafetyConsumerID<>

SPI.SafetyConsumerID

Then <Set Diag(CoIDerrIgn,0)>

Else

 If ResponseSPDU.MNR<>MNR_i

 Then <Set Diag(MNRerrIgn,0)>

 Else

 //do nothing

 EndIf

 If

 ResponseSPDU.SPDU_ID_1<>

 SPDU_ID_1_i ||

 ResponseSPDU.SPDU_ID_2<>

 SPDU_ID_2_i ||

 ResponseSPDU.SPDU_ID_3<>

 SPDU_ID_3_i

 Then

 <Set Diag(SD_IDerrIgn,0)>4

 Else

 // do nothing

 Endif

Endif

T24 S16 S17 // SPDU NOK and

SafetyErrorIntervalTi

mer not expired

[SPDUCheck_i == 0

&& not

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>

// Send diagnostic message according the

// detected error:

If ResponseSPDU.SafetyConsumerID<>

SPI.SafetyConsumerID

Then <Set Diag(CoIDerrIgn,1)>

Else

 If ResponseSPDU.MNR<>MNR_i

 Then

 <Set Diag(MNRerrIgn,1)>

 Else

 //do nothing

 Endif

 If ResponseSPDU.SPDU_ID_1<>

 SPDU_ID_1_i ||

 ResponseSPDU.SPDU_ID_2<>

 SPDU_ID_2_i ||

 ResponseSPDU.SPDU_ID_3<>

 SPDU_ID_3_i

 Then

 <Set Diag(SD_IDerrIgn,1)>

 <use FSV>

 Else

 //do nothing

 Endif

Endif

FaultReqOA_i:= 1

T25 S17 S18 // SPDU NOK

-

T26 S18 S13 // Restart Cycle

[SAPI.Enable==1]

<(Re)Start ConsumerTimer>

4 see Table 29.

OPC 10000-15: Safety 42 Release 1.04

8.1.2.5 SafetyConsumer sequence diagram for OA (informative)

Figure 18 shows the sequence after a second ResponseSPDU error was detected before the timer
SafetyErrorIntervalTimer stops.

Figure 18 – Sequence diagram for OA

After the error is gone the sequence follows the logic of T22 in Table 26.

8.1.3 Subroutines

8.1.3.1 Build ResponseSPDU

[RQ8.12] ResponseSPDU shall be built by the SafetyProvider by copying
RequestSPDU.MonitoringNumber and the RequestSPDU.SafetyConsumerID into the ResponseSPDU.
After this, SPDU_ID, Flags, and the SafetyData shall be updated. Finally, ResponseSPDU.CRC shall
be calculated and appended.

Error while
not <ErrorIntervalTimer

expired?>]

OperatorAckRequested

FaultReqOA_i

OperatorAckConsumer

//no error:
CRCCheck == 1 &&
SPDUCheck ==1

TimeT20 or T24 T22
// Set Flags
// if OA requested

T22
//reset flags after OA

T22
// waiting
// for rising edge
// at SAPI.OperatorAckConsumer

Transition

ActivateFSV==0

OR

<use FSV>
<use SafetyData>

Example LED On
OperatorAckRequested Off

OPC 10000-15: Safety 43 Release 1.04

Figure 19 – Overview of task for SafetyProvider

For the ResponseSPDU.Flags, see Clause 8.1.1.5. For the calculation of the SPDU_ID, see
Clause 8.1.3.2. For the calculation of CRC, see Clause 8.1.3.5.

8.1.3.2 Calculation of the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3

[RQ8.13] The SPDU_ID_1-3 shall be calculated according to Figure 20 and Table 27.

Figure 20 – Calculation of the SPDU_ID

ResponseSPDU

STrailer

MonitoringNumber

(UInt32)

SafetyConsumerID

(UInt32)

RequestSPDU

SafetyConsumer

sends the

RequestSPDU

SafetyProvider

replies with a

ResponseSPDU

Flags

(Byte)

MonitoringNumber

(UInt32)

Flags

(Byte)

SafetyData

(Structure)

SafetyConsumerID

(UInt32)

SPDU_ID

(3x UInt32)

CRC

(UInt32)

byte 3

SafetyProviderID SafetyStructureSignature SafetyProviderLevel_ID

byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0

byte 3 byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0

SPDU_ID_3 SPDU_ID_2 SPDU_ID_1

byte 11 byte 10 byte 9 byte 8 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

SafetyBaseID

byte 15 byte 14 byte 13 byte 12

SafetyBaseID

OPC 10000-15: Safety 44 Release 1.04

Table 27 – Presentation of the SPDU_ID

SPDU_ID_1 := SafetyBaseID (bytes 0…3) XOR SafetyProviderLevel_ID

SPDU_ID_2 := SafetyBaseID (bytes 4…7) XOR SafetyStructureSignature

SPDU_ID_3 := SafetyBaseID (bytes 8…11) XOR SafetyBaseID (bytes 12…15) XOR SafetyProviderID

NOTE: In case of a mismatch between expected SPDU_ID and actual SPDU_ID, the following rules can be used for
diagnostic purposes:

• If all of SPDU_ID1, SPDU_ID2, and SPDU_ID3 differ, there is a mismatching SafetyBaseID.

• If SPDU_ID3 differs, but SPDU_ID1 and SPDU_ID2 do not, there is a mismatching SafetyProviderID.

• If SPDU_ID2 differs, but SPDU_ID1 and SPDU_ID3 do not, the structure or identifier of the safety data do not
match.

• If SPDU_ID3 differs, but SPDU_ID1 and SPDU_ID2 do not, the SafetyProviderLevel does not match.

By using these rules, there is a very low probability (<10 -9) that a mismatching SafetyBaseID will be misinterpreted. From a
practical view, this probability can be ignored.

8.1.3.3 Coding of the SafetyProviderLevel_ID

Table 28 – Coding for the SafetyProviderLevel_ID

SafetyProviderLevel Value of SafetyProviderLevel_ID

Up to SIL1
Up to SIL2
Up to SIL3
Up to SIL4

0x11912881
0x647C4654
0xDEAA9DEE
0xAB47F33B

[RQ8.14] Exactly one of the values provided in Table 28 shall be used as constant code value for
SafetyProviderLevel_ID. They were chosen in such a way that the hamming distance becomes
maximal (hamming distance of 21).

[RQ8.15] Measures shall be taken to avoid that a SafetyProvider is erroneously using a code-value
belonging to a SIL that is higher than the SIL it is capable of. For instance, a SafetyProvider capable
of SIL1-3 should not be able to accidently use the value 0xAB47F33B used for SIL4. One way to
achieve this is to avoid that this constant appears in the source code of the SafetyProvider at all.

The SafetyProviderLevel is independent to the SIL capability of the provided SafetyData, see
Clause 7.3.3.

OPC 10000-15: Safety 45 Release 1.04

8.1.3.4 Signature over the Safety Data (SafetyStructureSignature)

SafetyStructureSignature is used to check the number, data types and order of application data
transmitted in SafetyData. If the SafetyConsumer is expecting anything different than what the
SafetyProvider actually provides, SafetyStructureSignature will differ, allowing the SafetyConsumer to
enable fail-safe substitute values.

In addition, also the identifier of the structure type (StructureIdentifier) is taken into account when
calculating SafetyStructureSignature. This ensures that the SafetyProvider and SafetyConsumer are
using the same identifier for the structure type, effectively avoiding any confusion.

For instance, if a SafetyProvider defines a structure with identifier “vec3D_m” comprising three floats
containing a three-dimensional vector in the metric system, this structure could not be used by a
SafetyConsumer expecting a structure of type “vec3D_in” where the vector components are given in
inch, or even at a SafetyConsumer expecting a structure of type “orientation”, containing three floats
to define an orientation using Euler angles.

[RQ8.16] StructureSignature shall be calculated as CRC32-signature (polynomial: 0xF4ACFB13, see
Annex B.1) over StructureIdentifier (encoding: UTF-8), StructureSignatureVersion and the sequence
of the DataType IDs. After each datatype ID, a 16-bit zero-value (0x0000) shall be inserted.

The terminating zero of StructureIdentifier shall not be considered when calculating the CRC.

[RQ8.17] StructureIdentifier shall be visible in the OPC UA information model for diagnostic purposes,
but shall not be evaluated by the SafetyConsumer during runtime.

[RQ8.18] For version V1.0 of the specification, the value for StructureSignatureVersion shall be
0x0001.

Example:

StructureIdentifier, e.g. “foo” = 0x66,0x6f,0x6f
StructureSignatureVersion:= 0x0001
1. DataType Int16: (Id = 0x0004), // see Clause 6.4
2. DataType Boolean: (Id = 0x0001),
3. DataType Float32: (Id =0x000A)

StructureSignature := CRC32(0x66,0x6f,0x6f, 0x00,0x01,0x00,0x00, 0x00,0x04, 0x00,0x00,
0x00,0x01, 0x00,0x00, 0x00,0x0A)

NOTE: The insertion of 0x0000 values before the DataType ID, allows for introducing arrays in later version of OPC UA
Safety.

The DataType ID can be found at the DataType or at the derived DataType.

The OPC UA Information model supports not only built -in DataTypes, but also allows for DataTypes
derived from built-in DataTypes. In case of derived DataTypes, the Data Structure CRC uses the ID of
a built-in DataType (which is found at the end of the tree).

Example: the base type "enumeration" is derived from the DataType Int32 (ID=6); therefore, an ID of
6 is used whenever the DataType “enumeration” is used in SafetyData.

In this version of the specification, arrays are not supported. Instead, multiple variables of the same
type are used.

8.1.3.5 Calculation of a CRC checksum

The SafetyProvider calculates the CRC signature (ResponseSPDU.CRC) and sends it to the
SafetyConsumer as part of SPDU. This enables the SafetyConsumer to check the correctness of the
SPDU including the SafetyData, Flags, MNR, SafetyConsumerID and SPDU_ID by recalculating the
CRC signature (CRC_calc).

OPC 10000-15: Safety 46 Release 1.04

[RQ8.19] The generator polynomial 0xF4ACFB13 shall be used for the 32-Bit CRC signature.

[RQ8.20] If SafetyData is longer than one byte (e.g. UInt16, Int16, Float32), it shall be decoded and
encoded using big-endian order in which the least significant byte appears last in the incremental
memory address stream.

[RQ8.21] The calculation sequence shall begin with the highest memory address (n) of the
SafetyData counting back to the lowest memory address (0) and then include also the STrailer
beginning with the highest memory address.

Figure 21 shows the calculation sequence of the CRC_SPDU using an example SafetyData with the
following fields:

Boolean var1
UInt16 var2
Int16 var3
UInt32 var4
Int32 var5

The STrailer and SafetyData have a total length of 34 bytes. The calculation of ResponseSPDU.CRC
(SafetyProvider) or CRC_calc (SafetyConsumer) is done in reverse order, i.e. starts at byte 33 and
ends at byte 0.

Figure 21 – Calculation of the CRCr

For devices where the SafetyData remains at the same value for a longer period of time, i t is a viable
optimization to store the calculated CRC over the SafetyData and take – in case the SafetyData hasn’t
changed, this stored CRC as start value for the CRC calculation of the STrailer.

0 SafetyConsumerID MSB

1

2

3 LSB

4 MonitoringNumber MSB

5

6

7 LSB

8 SPDU_ID_3 MSB

9 STrailer

10

11 LSB

12 SPDU_ID_2 MSB

13

14

15 LSB

16 SPDU_ID_1 MSB

17

18

19 LSB

20 Flags

21 var1

22 var2 MSB

23 LSB

24 var3 MSB

25 LSB

26 var4 MSB

27 SData

28

29 LSB

30 var5 MSB

31

32

33 LSB

OPC 10000-15: Safety 47 Release 1.04

Note: On the SafetyConsumer, CRC_calc is calculated using data received in the ResponseSPDU,
and not from expected values.

9 Diagnostics

OPC UA Safety diagnostics may be implemented in a non-safety-related way. It allows for
categorization and localization of safety communication errors.

OPC UA Safety provides two types of diagnostics:

- OPC UA Safety diagnostics messages generated by the SafetyConsumer and provided in a
vendor-specific way.

- The method “ReadSafetyDiagnostics”, defined in the OPC UA Information Model (see
Clause 6.1.2 and Clause 9.2).

9.1 Diagnostics messages

[RQ9.1] Every time the macro <Set Diag(SD_IDerrOA, permanent)> is executed within the
SafetyConsumer, the textual representation shown in Table 29 shall be presented. The details and
location of this representation (display, logfile, etc.) are vendor specific.

Table 29 – Safety layer diagnostic messages

Internal
identifier

(as used in the
state-machines)

General Error type
(String)

Extended error type
(String)

Error
code

(offset)5

Classification *)
(optional)

Mandatory

SD_IDerrIgn The SafetyConsumer has
discarded a message due
to an incorrect ID.

 0x01 A Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to an
incorrect ID. Operator
acknowledgment is
required.

Mismatch of

SafetyBaseID 6

0x11 B, E Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to an
incorrect ID. Operator
acknowledgment is
required.

Mismatch of
SafetyProviderID

0x12 B, E Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to an
incorrect ID. Operator
acknowledgment is
required.

Mismatch of safety
data structure or

identifier.7

0x13 B, E Yes

CRCerrIgn The SafetyConsumer has
discarded a message due
to a CRC error (data
corruption).

 0x04 A Yes

CRCerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to a
CRC error (data
corruption). Operator
acknowledgment is
required.

 0x14 B, C Yes

5 An offset of 0x10 or larger indicates an error requiring operator acknowledgment.

6 This text may be shown when the error in the SPDU_ID is due to an incorrect SafetyBaseID.

7 This text may be shown when the error in the SPDU_ID is due to an incorrect SafetyStructureID.

OPC 10000-15: Safety 48 Release 1.04

CoIDerrIgn The SafetyConsumer has
discarded a message due
to an incorrect
ConsumerID.

 0x05 A Yes

CoIDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to an
incorrect consumer ID.
Operator acknowledgment
is required.

 0x15 B Yes

MNRerrIgn The SafetyConsumer has
discarded a message due
to an incorrect monitoring
number.

 0x06 A Yes

MNRerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to an
incorrect monitoring
number. Operator
acknowledgment is
required.

 0x16 B, C Yes

CommErrTO The SafetyConsumer has
switched to fail-safe
substitute values due to
timeout.

 0x07 B Yes

ApplErrTO The SafetyConsumer has
switched to fail-safe
substitute values at the
request of the safety
application.

 0x08 D No

FSV_Requested The SafetyConsumer has
switched to fail-safe
substitute values at the
request of the
SafetyProvider. Operator
acknowledgment is

required.8

 0x20 F Yes.

*) The following classification is specified:
A) Transient communication error
B) Permanent communication error
C) Transmission quality seems not to be sufficient
D) Application error
E) Parameter error
F) Error does not affect communication itself.

In order to avoid a flood of diagnostic messages in case of transmission errors, only up to two
messages are shown even if multiple communication errors occur in sequence. This is ensured by the
design of the SafetyConsumer’s state machine.

Optional Feature:
Extended diagnostic data by expected value and received value, e.g.
Mismatch of safety data ProviderID:
Expected ProviderID: 0x00000005
Received ProviderID: 0x00000007

9.2 Method ReadSafetyDiagnostics

This method (as part of the OPC UA Mapper) is provided for each SafetyProvider serving as a
diagnostic interface. For time series observation, this interface can be polled, e.g. by the diagnostic
device. For details, refer to the OPC UA information model described , see Clause 6.1.2.

8 A diagnostic message is only generated if the parameter SPI.SafetyOperatorAckNecessary is true.

OPC 10000-15: Safety 49 Release 1.04

The diagnostic interface method does not take any input parameters and returns both the input- and
output parameters of the last call of the method ReadSafetyData.

Additionally, a 2-byte sequence number is added to the diagnostic interface, allow ing for a detection
of missed calls due to polling. The sequence number counts the number of accesses to
ReadSafetyData.

A best practice recommendation is to store all input- and output parameters if SComErr_diag is <> 0.

OPC 10000-15: Safety 50 Release 1.04

10 Safety communication layer management

10.1 SPDU parameter assignment

Export and import of SPDU parameters can be done by exporting and importing the OPC UA
information model, e.g. using XML.

10.2 Safety function response time part of communication

The part of safety function response time, which is attributable to an OPC UA Safety communication,

SFRTOPCSafety, is specified in Equation 1.

Equation 1 Calculation of safety function response time part of OPC UA Safety

SFRTOPCSafety <= SafetyConsumerTimeOut +
ConsumerCycleTime

SFRTOPCSafety Part of the Safety function response time attributable to the OPC UA Safety

communication.

SafetyConsumerTimeOut Watchdog timer running in the SafetyConsumer. It is started whenever
a new RequestSPDU is sent (T14 or T26). If the timer runs out while the
SafetyConsumer is waiting for the ResponseSPDU (S17), a timeout-error is
triggered (T18).

ConsumerCycleTime the maximum time for the cyclic update of the SafetyConsumer , see
Clause 8.1.2.2.

Figure 22 – Overview on the delay times and watchdogs

SafetyConsumerTimeOut is a parameter of the SafetyConsumer. ConsumerCycleTime depends on the
maximum sample time of the SafetyConsumer application. At commissioning , the integrator should be
advised to design it shorter than half of the target SFRT OPCSafety. If the watchdog time
SafetyConsumerTimeOut is too small, spurious trips may occur. For avoiding th is,
SafetyConsumerTimeOut should be chosen as shown in Equation 2.

Scan period

at Safety-

Provider

Safety-

Consumer

SafetyProvider

delay

Tripping Information

at SafetyProvider
Safe reaction

at SafetyConsumer

application

Example SafetyConsumer

delay in case of cyclic

communication.

S
a
fe

ty
C

o
n
su

m
e
rT

im
e
O

u
t

S
a
fe

ty
P

ro
vD

e
la

y

C
o
n
su

m
e
rC

y
c
le

T
im

e

C
o
n
su

m
e
rC

y
c
le

T
im

e

Safety-

Consumer

OPC 10000-15: Safety 51 Release 1.04

Equation 2 Selection of the watchdog parameter SafetyConsumerTimeOut

SafetyConsumerTimeOut >=
T_CD_RequestSPDU +
SafetyProviderDelay +
T_CD_ResponseSPDU +
SafetyConsumerDelay

where
T_CD_RequestSPDU: The worst-case communication delay for the RequestSPDU.
T_CD_ResponseSPDU: The worst-case communication delay for the ResponseSPDU.
SafetyProviderDelay: The worst-case SafetyProvider delay in error free operation. Typically,

one scan time period of the SafetyProvider.
SafetyConsumerDelay: The worst-case SafetyConsumer delay in error free operation. Typically,

one scan time period of the SafetyConsumer.

NOTE to Equation 2: the reason why SafetyConsumerDelay is part of the summation is, because in a cyclic call of
SafetyConsumer State S18, it may take one cycle after the asynchronous reception of ResponseSPDU to execute the checks.

[RQ10.1] To support the calculation of SafetyConsumerTimeOut the SafetyProvider shall provide the
SafetyProviderDelay as an attribute in the OPC UA information model, see Figure 6.

System manufacturers may provide their individual adapted calculation method if necessary.

11 System requirements

11.1 Constraints on the SPDU-Parameters

11.1.1 SafetyBaseID and SafetyProviderID

The pair of SafetyProviderID and SafetyBaseID is used to check the authenticity of the ResponseSPDU
by the SafetyConsumer. SafetyProviderID and SafetyBaseID are usually assigned during engineering
or during commissioning. It is in the responsibility of the end user or OEM to assign unique
SafetyProviderID to individual SafetyProviders whenever this is reasonable possible. For instance, a
machine builder should assign unique SafetyProviderIDs within a single machine.

As the effort for the administration of unique IDs will reach its limits when the system becomes large,
OPC UA Safety uses the SafetyBaseID for cases where guaranteeing unique IDs is not possible.

An SafetyBaseID is a universal unique identifier version4 (UUIDv4, also called globally unique
identifier (GUID)), as described in https://tools.ietf.org/html/rfc4122. Basically, it is a 128-bit number
where more than 96 bits were chosen randomly. The probability that two randomly generated UUIDs
are identical, is extremely low (2-96 < 10-28), and can therefore be neglected, even when considering
applications with a safety integrity level of 4.

It is not necessary to generate an individual UUID for all SafetyProviders. If two SafetyProviders can
be discriminated by their SafetyProviderIDs, they may share the same SafetyBaseID. For instance, a
machine builder might generate a SafetyBaseID for each instance of a machine, which is re-used for
all SafetyProviders within a machine.

When implementing or using a generator for the UUIDs, it has to be ensured that each possible value
is generated with equal probability (discrete uniform distribution) , and pair wisely independent from
each other. When a pseudo random number generator (PNRG) is used, it is ‘seeded’ with a random
source having enough collision entropy (e.g. seeds of at least 128 bits that are uniformly distributed,
too; and all seeds being pair wisely independent from each other).

Most commercial systems offer random number generators for applications within a cryptographic
context. These applications pose even harder requirements on the quality of random numbers than
the ones mentioned above. Hence, cryptographically strong random number generators are
considered to be applicable to OPC UA Safety as well. See References [2]-[5] for detailed information.

Table 30shows implementations of cryptographically strong random number -generators that can be
used to calculate the random part of the UUIDv4:

https://tools.ietf.org/html/rfc4122

OPC 10000-15: Safety 52 Release 1.04

Table 30 – Examples for cryptographically strong random number generators.

Environment Function

Microsoft® Windows®
Operating Systems

BCryptGenRandom

found in Bcrypt.dll

Unix®-like OS
(e.g. Linux® / FreeBSD® /
Solaris®)

Read from the file:
/dev/urandom/

.NET® RandomNumberGenerator
from System.Security.Cryptography

JavaScript® Crypto.getRandomValues()

Java® java.security.SecureRandom

Python® os.urandom(size)

While being evaluated from a security point of view, probably none of these implementations has been
validated with safety kept in mind. Therefore, there is a remaining risk that these implementations are
subject to systematic implementation errors which might decrease the effectiveness of these random
numbers. To overcome this problem, the output of the random number generator is not used directly,
but a SHA256-hash is calculated over (1) the generators output, (2) a timestamp (wall -clock-time or
persistent logical clock) and (3) a unique domain name. Any bits of the SHA256 -hash can then be
used to construct the random parts of the UUIDv4.

[RQ11.1] The parameters SafetyBaseID and SafetyProviderID shall be stored in a nonvolatile way (i.e.
persistent).

11.1.2 SafetyConsumerID

The SafetyConsumerID allows for discrimination between RequestSPDUs and ResponseSPDUs
belonging to different SafetyConsumers. It is mainly used for diagnostic purposes, such as detecting
unintentional concurrent access of multiple SafetyConsumers on a single SafetyProvider . Safety-
related communication errors which are detected by checking the SafetyConsumerID would also be
detected by other mechanisms, including the MNR, the SafetyProviderID, and the
SafetyConsumerTimeOut.

From a safety point of view, there are no qualitative requirements regarding the generat ion or
administration the SafetyConsumerID. It can be assigned during engineering, commissioning, at
startup, and may even change during runtime. It is not required to check for uniqueness of
SafetyConsumerID.

However, assigning identical SafetyConsumerIDs to multiple consumers is not recommended because
fault localization may become more difficult.

11.2 Initialization of the MNR

The MNR is used to discriminate telegrams stemming from the same SafetyProvider and is therefore
used to detect timeliness errors such as outdated telegrams, telegrams received out -of-order, or
streams of telegrams erroneously repeated by a network storing element (e.g. a router).

[RQ11.2] To be effective, the set of actually used MNR-values shall not be restricted to a small set.
This could happen for connections which are restarted frequently, and which start counting from the
same MNR value each time.

There are at least two ways to address this potential problem:

OPC 10000-15: Safety 53 Release 1.04

Option 1: Whenever the connection is terminated, the current value of the MNR shall be safely
stored within non-volatile memory of the SafetyConsumer. After restart, the previously stored MNR
is used for initialization of the MNR (i.e. in state S12 of the SafetyConsumer state machine).

Option 2: Whenever the SafetyConsumer is restarted (i.e . in state S12 of the SafetyConsumer
state machine), the MNR is initialized with a 32-bit random number.

11.3 Constraints on the calculation of system characteristics

11.3.1 Probabilistic considerations (informative)

Following IEC61784-3, OPC UA Safety uses a black-channel-approach to detect all communication
errors which can possibly occur in the underlying OPC UA stack. If an error is detected, the erroneous
data is discarded. Moreover, OPC UA Safety is designed in such a way that a safety function becomes
practically unusable if the failure rate in the Black Channel is higher than one error per safety error
interval limit (6,60, or 600 minutes), depending on the desired SIL of the safety function, see Table 17
and Table 31).

Thus, for operational safety functions a failure rate of 0,1h -1, 1h-1, or 10h-1 can be assumed for
communication errors occurring in the black channel. In order to obtain the communication’ s
contribution to the PFH-value of the safety function, this value has to be multiplied by the so-called
conditional residual error probability P re,cond. For the CRC-mechanism used in OPC UA Safety, it holds:

Pre,cond ≤ 4.0 x 10-10

This leads to the PFH and PFD values shown in Table 31.

The value 4.0 x 10-10 was justified by extensive numerical evaluation of the 32-bit CRC generator
polynomial in use (0xF4ACFB13). The results of this evaluation - executed for all relevant data lengths
and all relevant values for the bit error probability p - is shown in Figure 23. As can be seen, Pre,cond
never exceeds the value 4.0 x 10 -10.

Figure 23 – Conditional residual error probability of the CRC-check.

OPC 10000-15: Safety 54 Release 1.04

An explanation that it is indeed necessary to calculate P re,cond for all user data lengths and all relevant
values of p can be found in Figure 24. For the data lengths shown in this figure, P re,cond exceeds the
desired value by several orders of magnitudes. Note that the maximum value of P re,cond is not obtained
when p becomes maximal.

Figure 24 – Counter example: data lengths not supported by OPC Safety.

11.3.2 Safety related assumptions (informative)

The boundary conditions and assumptions for safety assessments and calculations of residual error
rates are listed here.

Generally:

• Number of retries in the black channel:
No restrictions

• Black Channel CRC polynomials:
No restrictions

• Message storing elements:
No restrictions; any number of message storing elements is permitted

• Size of SafetyData within one SPDU:
≤ 1500 bytes

Note: Even for safety functions which do not require manual operator acknowledgment for restart,
manual operator acknowledgment is mandatory whenever the SafetyConsumer has detected certain
types of errors and indicates this using OperatorAckRequested. Hence, operator acknowledgment is
expected to be implemented by the safety application whenever OPC UA Safety is used. For details,
see Clause 7.4.2 and Annex B.2.

11.4 PFH/PFD-values of a logical OPC UA Safety communication link

The PFH-value of a logical OPC UA Safety communication link depends on the parameter of
SafetyErrorIntervalLimit (see Table 17) of the link’s SafetyConsumer. Whenever the SafetyConsumer
detects a mismatch of the SafetyConsumerID, SPDU_ID, MNR or CRC-checksum, it will only continue
operating if the last occurrence of such an error happened more than SafetyErrorIntervalLimit time
units ago. Otherwise, it will make a transition to fail -safe values, which can only be left by manual
operator acknowledgment, see Clause 7.4.2.

OPC 10000-15: Safety 55 Release 1.04

This directly limits the rate of detected errors, and indirectly limits the rate of undetected (residual)
errors.

See Table 31 for numeric PFH- and PFD-values.

Table 31 – The total residual error rate for the safety communication channel

SafetyErrorIntervalLimit Allowed for SIL range Total Residual error rate
for one logical connection

of the safety function

(PFH)

Total Residual error
probability for one logical
connection of the safety
function, for a mission

time of 20 years

(PFDavg)

6 Minutes Up to SIL 2 < 4,0*10–9 / h < 3,504 * 10 -4

60 Minutes Up to SIL 3 < 4,0*10–10 / h < 3,504 * 10 -5

600 Minutes Up to SIL 4 < 4,0*10–11 / h < 3,504 * 10 -6

Note: the estimates for PFDAVG are conservative. More accurate values will be provided in the future.

Note: the parameter SafetyErrorIntervalLimit affects the PFH/PFD of the safety communication
channel, only. There is no effect on the PFH/PFD-values of the network nodes the SafetyProviders
and SafetyConsumers are running on. The requirements for the implementation of these nodes are
specified in the IEC 61508.

11.5 Safety manual

[RQ11.3] According to IEC 61508-2, the suppliers of equipment implementing OPC UA Safety shall
provide a safety manual. The instructions, information and parameters of Table 32 shall be included
in this manual unless they are not relevant for a specific device.

Table 32 – Information to be included in the safety manual

 Item Instruction and/or parameter Remark

1 Safety handling Instructions on how to configure,
parameterize, commission and test the device
safely in accordance with IEC 61508 and IEC
61784-3

2 PFH, respectively PFDavg The PFH, respectively PFDavg per logical
connection of the safety function.

See Clause 11.3.2

and Clause 11.4

3 SFRTOPCSafety Information, on how this value can be
calculated by the end user / OEM.

See Clause 10.2

The implementation and
error reaction of
ConsumerCycleTime is
in the responsibility of
the vendor/integrator.

4 SafetyBaseID / SafetyProviderID Information on how the SafetyBaseID and
SafetyProviderID are generated and
assigned.

See Clause 11.1.1

5 Commissioning The end user / OEM is responsible for
verification and validation of correct cabling
and assignment of network addresses.

The safety manual shall address how this can
be accomplished.

6 Operator Acknowledgment If the SafetyConsumers makes a transition to
fail-safe substitute values requiring operator
acknowledgement “frequently”, this is an
indication that a check of the installation (for
example electromagnetic interference),
network traffic load, or transmission quality is
required.

It shall be mentioned in the manual that it is
potentially unsafe to simply omit these

OPC 10000-15: Safety 56 Release 1.04

 Item Instruction and/or parameter Remark

checks.
‘Frequently’ in this context is defined as

- more than once per day in SIL2 and
SIL3 applications

- more than once per week in SIL4
applications

7 Duration of demand In safety applications where the duration of a
demand signal is short (e.g. shorter than the
process safety time), and it is crucial that the
consumer application never misses a
demand, then a bidirectional communication
must be arranged and the confirmation of
receiving the demand at consumer side must
be implemented in the application program,
by sending appropriate information within the
SafetyData.

8 High demand and low demand
applications

The SafetyConsumer must be executed
cyclically within a shorter time frame than the
SafetyConsumerTimeOut.

9 Maintenance Specific requirements for device repair and
device replacement.

11.6 Indicators and displays

[RQ11.4] The device a SafetyConsumer is running on shall be able to indicate if
SAPI.OperatorAckRequested is enabled. This can be done for example by an indicator LED or using
an HMI.

[RQ11.5] If an LED is used for indication, it shall blink in green color with frequency of 0.5 Hz whenever
the output SAPI.OperatorAckRequested is true of at least one of the SafetyConsumers running on the
device.

The message shown on an HMI is application specific. For instance, the text “Machine has stopped
for safety reasons. For restart, please check for obstacles and press the green button.”

12 Assessment

12.1 Safety policy

In order to prevent and protect the manufacturers and vendors of OPC UA Safety products from
possibly misleading understandings or wrong expectations and gross negligence actions regarding
safety-related developments and applications the following items must be observed and explained in
each training, seminar, workshop and consultancy.

• Any device will not be automatically applicable for safety-related applications just by
implementing OPC UA Safety.

• In contrast, appropriate development processes according to safety standards must be
observed for safety-related products (see IEC 61508, IEC 61511, IEC 60204-1, IEC 62061,
and ISO 13849-2) and/or an assessment from a notified assessment body is required.

• The manufacturer of a safety product is responsible for the correct implementation of the safety
communication layer technology, as well as the correctness and completeness of the product
documentation and information.

• Additional important information including corrigenda and errata published by the OPC
Foundation and/or PI must be considered for implementation and assessment.

• The OPC Foundation will publish an automated test tool which must be used for verification.
The test implements the OPC UA Safety test specification described in a separate document.
For an overview, see Clause 12.3. The test must be successfully run at a test laboratory
accredited by the OPC UA or PI.

OPC 10000-15: Safety 57 Release 1.04

12.2 Obligations

As a rule, the international safety standards are accepted (ratified) globally. However, since safety
technology in automation is relevant to occupational safety and the concomitant insurance risks in a
country, recognition of the rules pointed out here is still a sovereign right. The national "Authorities"
(notified bodies) decide on the recognition of assessment reports.

NOTE Examples of such “Authorities” are the IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung
/ Institute for Occupational Safety and Health of the German Social Accident Insurance) in Germany, HSE (Health and Safety
Executive) in UK, FM (Factory Mutual / Property Insurance and Risk Management Organization), UL (Underwriters
Laboratories Inc. / Product Safety Testing and Certification Organization), or the INRS (Institut National de Recherche et de
Sécurité) in France.

12.3 Automated layer test for OPC UA Safety (informative)

For details, see the OPC UA Safety test specification.

12.3.1 Testing principle

An exemplary test principle for OPC UA Safety is presented. The OPC UA Safety test is a fully
automated verification based on test patterns covering all paths of the OPC UA Safety finite state
machines. All kinds of possible correct and incorrect SPDUs, parameters, and interactions with the
upper interface of the SafetyProvider / SafetyConsumer driver are taken into account. These test
patterns together with the expected responses/stimulations are stored as an XML document and
imported into the test tool software. The test tool executes the complete test patterns while connected
to the OPC UA Safety layer under test, compares the nominal with the actual reactions and is recording
the results that can be printed out for the test report.

The automated OPC UA Safety layer tester will be approved by a Notified Body.

Figure 25 shows the structure of the layer tester for the SafetyProvider and SafetyConsumer.

Figure 25 – Automated SafetyProvider / SafetyConsumer test

Test Sequence #1

1. rcv[pv][0][0][nok]
2. resume
3. send[1][0][1][0]
4. rcv[pv][0][1][ok]
5. resume
6. send[1][0][1][1]
7. rcv[pv][0][2][ok]
8. resume
9. ...

Test tool Safety logic
controller

OPC UA Stack

OPC UA Safety
layer tester
(Software)

"Upper Tester"
(IEC 61131-3 /ST)

Ethernet

Test patterns
from validation
(XML data)

Test report
to print (Verdict)

OPC UA Safety

OPC UA Stack

OPC 10000-15: Safety 58 Release 1.04

12.3.2 Test configuration

The SafetyProvider / SafetyConsumer tester "simulates" the behavior of an opposite SafetyProvider /
SafetyConsumer Layer. Thus, it must be configured according to the deployed OPC UA communication
system. This can be done with the help of an XML file associated with the tester.

A so-called “upper tester” runs on top of the SafetyProvider or SafetyConsumer within the device under
test (DUT). It transfers data from the SafetyProvider or SafetyConsumer via its SAPI and makes them
visible to the test tool via an OPC UA interface that is specified in the OPC UA Safety test specification
(“Set Data” in Figure 26 and Figure 27). In a similar way, the upper tester enables the test-tool to set
inputs of the SAPI (“Get Data” in Figure 26 and Figure 27).

The upper tester is implemented by the vendor of the DUT using standard program languages such
as C/C++, IEC 61131-3 or Structured Text and does not need to be executed in a safety-related way.

Detailed requirements for the upper tester are described in the OPC UA Safety test specification.

Figure 26 –"Upper Tester" within the SafetyProvider

SafetyProvider instance

SafetyData (PV)
or

fail-safe (FSV)

A
c
ti
va

te
F

S
V

…… … …

OPC UA

Upper tester SafetyProvider

SafetyData Control Sync Status Sync

"Copy"
application program

Test control channel

"Get data""Set data"

SafetyData Safety Trailer incl. CRC

SPDU

Request

To / from “Lower tester” SafetyProvider

OPC 10000-15: Safety 59 Release 1.04

Figure 27 –"Upper Tester" within the SafetyConsumer

13 Profiles and Namespaces

13.1 Namespace Metadata

Table 33 defines the namespace metadata for this part. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all
Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component
of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType
and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file.
The UANodeSet XML schema is defined in OPC 10000-6.

Table 33 – NamespaceMetadata object for this part

Attribute Value

BrowseName http://opcfoundation.org/UA/Safety

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/Safety

HasProperty NamespaceVersion String 1.04

HasProperty NamespacePublicationDate DateTime 2020-03-16

HasProperty IsNamespaceSubset Boolean False

HasProperty StaticNodeIdTypes IdType[] {Numeric}

HasProperty StaticNumericNodeIdRange NumericRange[] Null

HasProperty StaticStringNodeIdPattern String Null

SafetyConsumer instance

SafetyData (PV)
or

fail-safe (FSV)

A
c
tiv

a
te

F
S

V
_
C

…… …… …

OPC UA

Upper tester SafetyConsumer

Sync SafetyData Status. Sync

"Copy"
application program

…..
.

Test control channel

" G e t d a t a ""Set data"

Control

SPDU

Request SafetyData Safety Trailer incl. CRC

From / to “Lower tester” SafetyConsumer

OPC 10000-15: Safety 60 Release 1.04

13.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously
identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify
a Node. Different Nodes may have the same BrowseName. They are used to build a browse path
between two Nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However,
if they want to provide a standard Property, its BrowseName must have the namespace of the
standards body although the namespace of the NodeId reflects something else, for example the
EngineeringUnits Property. All NodeIds of Nodes not defined in this part must not use the standard
namespaces.

[RQ13.1] Table 34 provides a list of mandatory and optional namespaces used in a Safety OPC UA
Server.

Table 34 – Namespaces used in a Safety Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the
OPC UA specification. This namespace shall have namespace
index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may
include types and instances used in an AutoID Device
represented by the Server. This namespace shall have
namespace index 1.

Mandatory

http://opcfoundation.org/UA/Safety Namespace for NodeIds and BrowseNames defined in this
part. The namespace index is Server specific.

Mandatory

Vendor specific types A Server may provide vendor-specific types like types derived
from ObjectTypes defined in this part in a vendor-specific
namespace.

Optional

Vendor specific instances A Server provides vendor-specific instances of the standard
types or vendor-specific instances of vendor-specific types in
a vendor-specific namespace.

It is recommended to separate vendor specific types and
vendor specific instances into two or more namespaces.

Mandatory

OPC 10000-15: Safety 61 Release 1.04

Annex A: Safety Namespace and mappings (normative)

A.1 Namespace and identifiers for Safety Information Model

This appendix defines the numeric identifiers for the numeric NodeIds defined in this part. The
identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance
Node that appears in the specification and the Identifier is the numeric value for the NodeId.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/Safety

The CSV released with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Safety.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeIds.csv

A computer processible version of the complete Information Model defined in this part is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.
The Information Model Schema released with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Safety.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the specification
can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeSet2.xml

http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Safety.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Safety.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Safety.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/1.04/Opc.Ua.Safety.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeSet2.xml

OPC 10000-15: Safety 62 Release 1.04

Annex B: Additional information (informative)

B.1 CRC-calculation using tables, for the polynomial 0xF4ACFB13

The calculation of a 32-bit CRC signature over an array of N bytes with the help of lookup tables, using
“C” as programming language, is shown below:

char array[N]; // array of N bytes

uint32_t crctab[256]; // lookup table

uint32_t result = 0; // result: the calculated CRC-signature

uint32_t i; // index

for(i=0;i<N;i++)

result = crctab32 [((result >> 24) ^ array[i]) & 0xff] ^ (result << 8) ;

where the lookup-table crctab has to be initialized as shown inTable 35.

Table 35 – The CRC32 lookup table for 32-bit CRC signature calculations

CRC32 lookup table (0 to 255)

00000000 F4ACFB13 1DF50D35 E959F626 3BEA1A6A CF46E179 261F175F D2B3EC4C

77D434D4 8378CFC7 6A2139E1 9E8DC2F2 4C3E2EBE B892D5AD 51CB238B A567D898

EFA869A8 1B0492BB F25D649D 06F19F8E D44273C2 20EE88D1 C9B77EF7 3D1B85E4

987C5D7C 6CD0A66F 85895049 7125AB5A A3964716 573ABC05 BE634A23 4ACFB130

2BFC2843 DF50D350 36092576 C2A5DE65 10163229 E4BAC93A 0DE33F1C F94FC40F

5C281C97 A884E784 41DD11A2 B571EAB1 67C206FD 936EFDEE 7A370BC8 8E9BF0DB

C45441EB 30F8BAF8 D9A14CDE 2D0DB7CD FFBE5B81 0B12A092 E24B56B4 16E7ADA7

B380753F 472C8E2C AE75780A 5AD98319 886A6F55 7CC69446 959F6260 61339973

57F85086 A354AB95 4A0D5DB3 BEA1A6A0 6C124AEC 98BEB1FF 71E747D9 854BBCCA

202C6452 D4809F41 3DD96967 C9759274 1BC67E38 EF6A852B 0633730D F29F881E

B850392E 4CFCC23D A5A5341B 5109CF08 83BA2344 7716D857 9E4F2E71 6AE3D562

CF840DFA 3B28F6E9 D27100CF 26DDFBDC F46E1790 00C2EC83 E99B1AA5 1D37E1B6

7C0478C5 88A883D6 61F175F0 955D8EE3 47EE62AF B34299BC 5A1B6F9A AEB79489

0BD04C11 FF7CB702 16254124 E289BA37 303A567B C496AD68 2DCF5B4E D963A05D

93AC116D 6700EA7E 8E591C58 7AF5E74B A8460B07 5CEAF014 B5B30632 411FFD21

E47825B9 10D4DEAA F98D288C 0D21D39F DF923FD3 2B3EC4C0 C26732E6 36CBC9F5

AFF0A10C 5B5C5A1F B205AC39 46A9572A 941ABB66 60B64075 89EFB653 7D434D40

D82495D8 2C886ECB C5D198ED 317D63FE E3CE8FB2 176274A1 FE3B8287 0A977994

4058C8A4 B4F433B7 5DADC591 A9013E82 7BB2D2CE 8F1E29DD 6647DFFB 92EB24E8

378CFC70 C3200763 2A79F145 DED50A56 0C66E61A F8CA1D09 1193EB2F E53F103C

840C894F 70A0725C 99F9847A 6D557F69 BFE69325 4B4A6836 A2139E10 56BF6503

F3D8BD9B 07744688 EE2DB0AE 1A814BBD C832A7F1 3C9E5CE2 D5C7AAC4 216B51D7

6BA4E0E7 9F081BF4 7651EDD2 82FD16C1 504EFA8D A4E2019E 4DBBF7B8 B9170CAB

1C70D433 E8DC2F20 0185D906 F5292215 279ACE59 D336354A 3A6FC36C CEC3387F

F808F18A 0CA40A99 E5FDFCBF 115107AC C3E2EBE0 374E10F3 DE17E6D5 2ABB1DC6

8FDCC55E 7B703E4D 9229C86B 66853378 B436DF34 409A2427 A9C3D201 5D6F2912

17A09822 E30C6331 0A559517 FEF96E04 2C4A8248 D8E6795B 31BF8F7D C513746E

6074ACF6 94D857E5 7D81A1C3 892D5AD0 5B9EB69C AF324D8F 466BBBA9 B2C740BA

D3F4D9C9 275822DA CE01D4FC 3AAD2FEF E81EC3A3 1CB238B0 F5EBCE96 01473585

OPC 10000-15: Safety 63 Release 1.04

CRC32 lookup table (0 to 255)

A420ED1D 508C160E B9D5E028 4D791B3B 9FCAF777 6B660C64 823FFA42 76930151

3C5CB061 C8F04B72 21A9BD54 D5054647 07B6AA0B F31A5118 1A43A73E EEEF5C2D

4B8884B5 BF247FA6 567D8980 A2D17293 70629EDF 84CE65CC 6D9793EA 993B68F9

This table contains 32-bit values in hexadecimal representation for each value (0 to 255) of the argument a in the
function crctab32 [a]. The table should be used line-by-line in ascending order from top left (0) to bottom right

(255). For instance, crctab[10] is highlighted using a darker background and red color.

B.2 Use cases for Operator Acknowledgment

B.2.1 Explanation

OPC UA Safety supports Operator Acknowledgment both on the SafetyProvider side and on the
SafetyConsumer side. For this purpose, both the interface of the SafetyProvide r and the
SafetyConsumer comprise a Boolean input called OperatorAckProvider and OperatorAckConsumer,
respectively. The safety application can read the status of these inputs on the consumer side via the
Boolean outputs OperatorAckRequested and OperatorAckProvider, respectively.

The following sections show some examples on how to use these inputs and outputs. Dashed lines
indicate that the corresponding input or output are not used in this use case. For details, see
Clause 7.3 and Clause 7.4.

B.2.2 Use case 1: unidirectional comm. and OA on the SafetyConsumer side

Figure 28 – OA in unidirectional safety communication

In this scenario, operator acknowledgment has to be done on the SafetyConsumer side, operator
acknowledgment on the SafetyProvider side is not possible.

Controller B

Safety App

Controller A

SafetyProvider1 SafetyConsumer1

OperatorAckProvider

OperatorAckConsumer

ResponseSPDU OperatorAckRequested

OARequest
SPDU

Safety App

OperatorAckProvider

OPC 10000-15: Safety 64 Release 1.04

B.2.3 Use case 2: bidirectional comm. and dual OA

Figure 29 – Two-sided OA in bidirectional safety communication

In this scenario, operator acknowledgment is done independently for both directions.

B.2.4 Use case 3: bidirectional comm. and single, one-sided OA

Figure 30 – One sided OA in bidirectional safety communication

In this scenario (see Figure 30), an operator acknowledgment activated at controller A suffices for re -
establishing the bidirectional connection. Both sides will cease delivering fail-safe values and continue
sending process values. This is accomplished by connecting OperatorAckProvider with

Controller A
Safety App

Controller B
Safety App

SafetyProvider1

SafetyProvider2

SafetyConsumer1

SafetyConsumer2

OperatorAckProvider

OperatorAckProvider

OperatorAckProvider

OperatorAckConsumer

OperatorAckConsumer

OperatorAckProvider

ResponseSPDU

OperatorAckRequested

OperatorAckRequested

OA

OA

ResponseSPDU

Request
SPDU

Request
SPDU

Controller B Controller A
Safety App Safety App

SafetyProvider1

SafetyProvider2

SafetyConsumer1

SafetyConsumer2

OperatorAckProvider

OperatorAckProvider

OperatorAckProvider

OperatorAckConsumer

OperatorAckConsumer

OperatorAckProvider

ResponseSPDU

OperatorAckRequested

OperatorAckRequested

OA

OA

ResponseSPDU

Request
SPDU

Request
SPDU

OPC 10000-15: Safety 65 Release 1.04

OperatorAckConsumer at the SafetyConsumer of controller B. Activating operator acknowledgment at
controller B is not possible in this scenario.

B.2.5 Use case 4: bidirectional comm. and single, two-sided OA

Figure 31 – One sided OA on each side is possible

In this scenario (see Figure 31), an operator acknowledgment activated at controller A or controller B
suffices for re-establishing the bidirectional connection. Both sides will cease delivering fail -safe
values and continue sending process values. This is accomplished by the logic circuit shown in
Figure 31.

Controller B

Safety App

Controller A

Safety App Safety-
Provider1

Safety-
Provider2

Safety-
Consumer1

Safety-
Consumer2

OperatorAckProvider

OperatorAckProvider

OperatorAckProvider

OperatorAckConsumer

OperatorAckConsumer

OperatorAckProviderOperatorAckRequested

OperatorAckRequested

OA

OA

>=1

>=1

ResponseSPDU

ResponseSPDU

Request
SPDU

Request
SPDU

OPC 10000-15: Safety 66 Release 1.04

Annex C: Bibliography

[1] Object Management Group, Unified Modeling Language (UML), V2.5.1, 2017,
https://www.omg.org/spec/UML/2.5.1/

[2] National Institute of Standards and Technology (NIST), Computer Security Resource Center,
Recommendation for Random Number Generation Using Deterministic Random Bit Generators,
SP 800-90A Rev. 1, June 2015

[3] Anwendungshinweise und Interpretationen (AIS) 20, Functionality classes and evaluation
methodology for physical random number generators. Bundesamt für Sicherheit in der
Informationstechnik (BSI). 2001.

[4] Anwendungshinweise und Interpretationen (AIS) 31, Functionality classes for random number
generators Version 2.0, Bundesamt für Sicherheit in der Informationstechnik (BSI) , 2011.

[5] ISO/IEC 18031 Information technology, Security techniques. Random Bit Generation, 2011

https://www.omg.org/spec/UML/2.5.1/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=1

	1 Scope
	2 General
	2.1 Reference Documents
	2.2 Relation to safety-, security- and OPC UA-standards

	3 Terms, definitions and conventions
	3.1 Overview
	3.2 Terms
	3.3 Abbreviations and symbols
	3.4 Conventions
	3.4.1 Conventions in this part
	3.4.2 Conventions on CRC calculation
	3.4.3 Conventions in state machines

	4 Introduction to OPC UA Safety
	4.1 What is OPC UA Safety?
	4.2 Safety functional requirements
	4.3 Communication structure
	4.4 Implementation aspects
	4.5 Features of OPC UA Safety
	4.6 Security policy
	4.7 Safety measures

	5 Use cases (informative)
	5.1 Use cases for different types of communication links
	5.1.1 Unidirectional communication
	5.1.2 Bidirectional communication
	5.1.3 Safety Multicast

	5.2 Cyclic and acyclic safety communication
	5.3 Principle for “Application variables with qualifier”

	6 Information Model
	6.1 ObjectType Definition
	6.1.1 Method ReadSafetyData
	6.1.2 Method ReadSafetyDiagnostics

	6.2 Datatype Definition
	6.3 SafetyProvider Version
	6.4 DataTypes and length of user data
	6.5 Connection establishment

	7 Safety communication layer services and management
	7.1 Overview
	7.2 OPC UA Platform interface (OPC UA PI)
	7.3 SafetyProvider interfaces
	7.3.1 SAPI of SafetyProvider
	7.3.2 SPI of SafetyProvider
	7.3.3 Characteristics of SafetyProvider

	7.4 SafetyConsumer interfaces
	7.4.1 SAPI of SafetyConsumer
	7.4.2 Motivation for SAPI Operator Acknowledge (OperatorAckConsumer)
	7.4.3 SPI of the SafetyConsumer
	7.4.4 Motivation for SPI SafetyOperatorAckNecessary

	8 Safety communication layer protocol
	8.1 SafetyProvider and SafetyConsumer
	8.1.1 SPDU formats
	8.1.1.1 RequestSPDU: SafetyConsumerID
	8.1.1.2 RequestSPDU: MonitoringNumber
	8.1.1.3 RequestSPDU: Flags
	8.1.1.4 ResponseSPDU: SafetyData
	8.1.1.5 ResponseSPDU: Flags
	8.1.1.6 ResponseSPDU: SPDU_ID
	8.1.1.7 ResponseSPDU: SafetyConsumerID
	8.1.1.8 ResponseSPDU: MonitoringNumber
	8.1.1.9 ResponseSPDU: CRC
	8.1.1.10 ResponseSPDU: NonSafetyData

	8.1.2 OPC UA Safety behavior
	8.1.2.1 General
	8.1.2.2 SafetyProvider/-Consumer Sequence diagram
	8.1.2.3 SafetyProvider state diagram
	8.1.2.4 SafetyConsumer state diagram
	8.1.2.5 SafetyConsumer sequence diagram for OA (informative)

	8.1.3 Subroutines
	8.1.3.1 Build ResponseSPDU
	8.1.3.2 Calculation of the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3
	8.1.3.3 Coding of the SafetyProviderLevel_ID
	8.1.3.4 Signature over the Safety Data (SafetyStructureSignature)
	8.1.3.5 Calculation of a CRC checksum

	9 Diagnostics
	9.1 Diagnostics messages
	9.2 Method ReadSafetyDiagnostics

	10 Safety communication layer management
	10.1 SPDU parameter assignment
	10.2 Safety function response time part of communication

	11 System requirements
	11.1 Constraints on the SPDU-Parameters
	11.1.1 SafetyBaseID and SafetyProviderID
	11.1.2 SafetyConsumerID

	11.2 Initialization of the MNR
	11.3 Constraints on the calculation of system characteristics
	11.3.1 Probabilistic considerations (informative)
	11.3.2 Safety related assumptions (informative)

	11.4 PFH/PFD-values of a logical OPC UA Safety communication link
	11.5 Safety manual
	11.6 Indicators and displays

	12 Assessment
	12.1 Safety policy
	12.2 Obligations
	12.3 Automated layer test for OPC UA Safety (informative)
	12.3.1 Testing principle
	12.3.2 Test configuration

	13 Profiles and Namespaces
	13.1 Namespace Metadata
	13.2 Handling of OPC UA Namespaces

	Annex A : Safety Namespace and mappings (normative)
	A.1 Namespace and identifiers for Safety Information Model

	Annex B : Additional information (informative)
	B.1 CRC-calculation using tables, for the polynomial 0xF4ACFB13
	B.2 Use cases for Operator Acknowledgment
	B.2.1 Explanation
	B.2.2 Use case 1: unidirectional comm. and OA on the SafetyConsumer side
	B.2.3 Use case 2: bidirectional comm. and dual OA
	B.2.4 Use case 3: bidirectional comm. and single, one-sided OA
	B.2.5 Use case 4: bidirectional comm. and single, two-sided OA

	Annex C : Bibliography

