

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-15

OPC Unified Architecture

Part 15: Safety

Release 1.05.00

2021-11-10

Standard
Type:

Industry Standard
Specification

Comments:

Document
Number

OPC 10000-15

Title: OPC Unified
Architecture

Part 15 :Safety

Date: 2021-11-10

Version: Release 1.05.00 Software: MS-Word

Editors: Source: OPC 10000-15 - UA Specification
Part 15 Safety 1.05.00.docx

Owner: OPC Foundation and

PROFIBUS
Nutzerorganisation e.V.

Status:

CONTENTS

Page

Revision 1.05.0 Highlights ...ix

1 Scope .. 10

2 General .. 10

2.1 Reference Documents .. 10

2.2 Relation to safety-, security- and OPC UA-standards ... 11

2.3 Intellectual properties... 12

3 Terms, definitions and conventions .. 12

3.1 Overview .. 12

3.2 Terms .. 12

3.3 Abbreviations and symbols .. 16

3.4 Conventions ... 16

3.4.1 Conventions in this part .. 16

3.4.2 Conventions on CRC calculation ... 16

3.4.3 Conventions in state machines .. 17

4 Introduction to OPC UA Safety ... 17

4.1 What is OPC UA Safety? ... 17

4.2 Safety functional requirements ... 17

4.3 Communication structure ... 18

4.4 Implementation aspects ... 19

4.5 Features of OPC UA Safety ... 19

4.6 Security policy ... 20

4.7 Safety measures .. 20

5 Use cases (informative) ... 21

5.1 Use cases for different types of communication links ... 21

5.1.1 Unidirectional communication .. 21

5.1.2 Bidirectional communication .. 22

5.1.3 Safety Multicast .. 22

5.2 Cyclic and acyclic safety communication .. 22

5.3 Principle for “Application variables with qualifier” ... 23

6 Information Models .. 23

6.1 Object and ObjectType Definitions ... 23

6.1.1 SafetyACSet Object .. 23

6.1.2 Safety ObjectType definitions .. 26

6.1.3 Method ReadSafetyData ... 27

6.1.4 Method ReadSafetyDiagnostics... 28

6.1.5 Object SafetyPDUs ... 29

6.1.6 Objects SafetyProviderParameters and SafetyConsumerParameters 30

6.2 Datatype Definition .. 33

6.2.1 InFlagsType .. 33

6.2.2 OutFlagsType ... 34

6.2.3 RequestSPDUDataType .. 35

6.2.4 ResponseSPDUDataType ... 35

6.2.5 NonSafetyDataPlaceholderDataType .. 36

6.3 SafetyProvider Version .. 36

OPC 10000-15: Safety ii 1.05.00

6.4 DataTypes and length of SafetyData .. 36

6.5 Connection establishment .. 36

7 Safety communication layer services and management .. 37

7.1 Overview .. 37

7.2 OPC UA Platform interface (OPC UA PI) .. 37

7.3 SafetyProvider interfaces ... 38

7.3.1 SAPI of SafetyProvider ... 38

7.3.2 SPI of SafetyProvider .. 39

7.4 SafetyConsumer interfaces .. 42

7.4.1 SAPI of SafetyConsumer ... 43

7.4.2 Motivation for SAPI Operator Acknowledge (OperatorAckConsumer) 45

7.4.3 SPI of the SafetyConsumer ... 45

7.4.4 Motivation for SPI SafetyOperatorAckNecessary 47

8 Safety communication layer protocol .. 47

8.1 SafetyProvider and SafetyConsumer .. 47

8.1.1 SPDU formats ... 47

8.1.1.1 RequestSPDU: SafetyConsumerID ... 48

8.1.1.2 RequestSPDU: MonitoringNumber .. 48

8.1.1.3 RequestSPDU: Flags.. 48

8.1.1.4 ResponseSPDU: SafetyData .. 48

8.1.1.5 ResponseSPDU: Flags ... 49

8.1.1.6 ResponseSPDU: SPDU_ID ... 49

8.1.1.7 ResponseSPDU: SafetyConsumerID .. 49

8.1.1.8 ResponseSPDU: MonitoringNumber ... 49

8.1.1.9 ResponseSPDU: CRC .. 49

8.1.1.10 ResponseSPDU: NonSafetyData .. 49

8.1.2 OPC UA Safety behavior ... 49

8.1.2.1 General .. 49

8.1.2.2 SafetyProvider/-Consumer Sequence diagram 49

8.1.2.3 SafetyProvider state diagram ... 51

8.1.2.4 SafetyConsumer state diagram... 54

8.1.2.5 SafetyConsumer sequence diagram for operator acknowledgement
(informative) ... 65

8.1.3 Subroutines... 65

8.1.3.1 Build ResponseSPDU ... 65

8.1.3.2 Calculation of the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3 66

8.1.3.3 Coding of the SafetyProviderLevel_ID .. 67

8.1.3.4 Signature over the Safety Data Structure
(SafetyStructureSignature) ... 68

8.1.3.5 Calculation of a CRC checksum ... 69

9 Diagnostics .. 71

9.1 Diagnostics messages of the SafetyConsumer ... 72

9.2 Method ReadSafetyDiagnostics of the SafetyProvider .. 74

10 Safety communication layer management .. 75

10.1 Safety function response time part of communication ... 75

11 System requirements (SafetyProvider & SafetyConsumer) ... 77

11.1 Constraints on the SPDU-Parameters .. 77

11.1.1 SafetyBaseID and SafetyProviderID .. 77

OPC 10000-15: Safety iii 1.05.00

11.1.2 SafetyConsumerID .. 78

11.2 Initialization of the MNR in the SafetyConsumer ... 78

11.3 Constraints on the calculation of system characteristics 79

11.3.1 Probabilistic considerations (informative) .. 79

11.3.2 Safety related assumptions (informative) ... 80

11.4 PFH/PFD-values of a logical OPC UA Safety communication link 80

11.5 Safety manual .. 81

11.6 Indicators and displays .. 82

12 Assessment ... 82

12.1 Safety policy .. 82

12.2 Obligations .. 83

12.3 Automated layer test for OPC UA Safety (informative) ... 83

12.3.1 Testing principle.. 83

12.3.2 Test configuration ... 84

13 Profiles and Conformance Units ... 85

13.1 Conformance units ... 85

13.2 Profiles .. 86

13.2.1 Profile list .. 86

13.2.2 Facets and Profiles ... 86

13.2.2.1 Safety Provider Facets ... 86

13.2.2.2 Safety Consumer Facets .. 86

14 Namespaces .. 87

14.1 Namespace Metadata .. 87

14.2 Handling of OPC UA Namespaces ... 87

Annex A : Safety Namespace and mappings (normative) .. 89

A.1 Namespace and identifiers for Safety Information Model 89

Annex B : Additional information (informative) .. 90

B.1 CRC-calculation using tables, for the polynomial 0xF4ACFB13 90

B.2 Use cases for Operator Acknowledgment ... 92

B.2.1 Explanation ... 92

B.2.2 Use case 1: unidirectional comm. and OA on the SafetyConsumer side 92

B.2.3 Use case 2: bidirectional comm. and dual OA ... 92

B.2.4 Use case 3: bidirectional comm. and single, one-sided OA........................ 93

B.2.5 Use case 4: bidirectional comm. and single, two-sided OA 93

Annex C : Bibliography ... 94

OPC 10000-15: Safety iv 1.05.00

FIGURES

Figure 1 – Relationships of OPC UA Safety with other standards (informative information) ... 11

Figure 2 – Safety layer architecture .. 18

Figure 3 – Unidirectional Communication ... 21

Figure 4 – Bidirectional Communication ... 22

Figure 5 – Safety Multicast ... 22

Figure 6 – Server Objects for OPC UA Safety .. 25

Figure 7 – Instances of server objects for OPC UA Safety .. 26

Figure 8 – Safety Multicast with three recipients using OPC UA PubSub. For each recipient,
there is an individual pair of SafetyPDUs. ... 30

Figure 9 – OPC UA Safety Parameters for the SafetyProvider and the SafetyConsumer. 31

Figure 10 – Safety communication layer overview .. 37

Figure 11 – SafetyProvider interfaces ... 38

Figure 12 – Example combinations of SIL capabilities .. 42

Figure 13 – SafetyConsumer interfaces .. 43

Figure 14 – RequestSPDU ... 48

Figure 15 – ResponseSPDU ... 48

Figure 16 – Sequence diagram for OPC UA Safety (Client/Server) 50

Figure 17 – Sequence diagram for OPC UA Safety (PubSub) ... 51

Figure 18 – Simplified representation of the state diagram for the SafetyProvider 52

Figure 19 – Principle state diagram for SafetyConsumer .. 55

Figure 20 – Sequence diagram for OA .. 65

Figure 21 – Overview of task for SafetyProvider ... 66

Figure 22 – Calculation of the SPDU_ID ... 66

Figure 23 – Calculation of the CRC (on little-endian machines, CRC32_Backward) 70

Figure 24 – Calculation of the CRC (on big-endian machines, CRC32_Forward) 71

Figure 25 – Overview of delay times and watchdogs .. 76

Figure 26 – Conditional residual error probability of the CRC-check. 79

Figure 27 – Counter example: data lengths not supported by OPC Safety. 80

Figure 28 – Automated SafetyProvider / SafetyConsumer test .. 83

Figure 29 – “Upper Tester” within the SafetyProvider ... 84

Figure 30 – “Upper Tester” within the SafetyConsumer .. 85

Figure 31 – OA in unidirectional safety communication ... 92

Figure 32 – Two-sided OA in bidirectional safety communication .. 92

Figure 33 – One sided OA in bidirectional safety communication .. 93

Figure 34 – One sided OA on each side is possible .. 93

OPC 10000-15: Safety v 1.05.00

TABLES

Table 1 – Conventions used in state machines ... 17

Table 2 – Deployed measures to detect communication errors ... 21

Table 3 – Example “Application Variables with qualifier” ... 23

Table 4 – SafetyACSet definition .. 24

Table 5 – SafetyObjectsType Definition .. 27

Table 6 – SafetyProviderType Definition ... 27

Table 7 – SafetyConsumerType Definition .. 27

Table 8 – ReadSafetyData Method Arguments ... 28

Table 9 – ReadSafetyData Method AddressSpace definition .. 28

Table 10 – ReadSafetyDiagnostics Method Arguments ... 29

Table 11 – ReadSafetyDiagnostics Method AddressSpace definition 29

Table 12 – SafetyPDUsType Definition ... 30

Table 13 – SafetyProviderParametersType Definition ... 32

Table 14 – SafetyConsumerParametersType Definition .. 33

Table 15 – InFlagsType Values .. 34

Table 16 – InFlagsType Definition .. 34

Table 17 – OutFlagsType Values .. 34

Table 18 – OutFlagsType Definition.. 35

Table 19 – RequestSPDUDataType Structure .. 35

Table 20 – RequestSPDUDataType definition... 35

Table 21 – ResponseSPDUDataType Structure .. 35

Table 22 – ResponseSPDUDataType definition .. 36

Table 23 – NonSafetyDataPlaceholderDataType Structure ... 36

Table 24 – SAPI of the SafetyProvider ... 38

Table 25 – SPI of the SafetyProvider .. 39

Table 26 – SAPI of the SafetyConsumer ... 43

Table 27 – SPI of the SafetyConsumer ... 45

Table 28 – Symbols used for state machines. ... 52

Table 29 – SafetyProvider instance internal items .. 52

Table 30 – States of SafetyProvider instance ... 53

Table 31 – SafetyProvider transitions ... 54

Table 32 – SafetyConsumer internal items ... 55

Table 33 – SafetyConsumer states ... 59

Table 34 – SafetyConsumer transitions .. 60

Table 35 – Presentation of the SPDU_ID .. 67

Table 36 – Coding for the SafetyProviderLevel_ID ... 67

Table 37 – Safety layer diagnostic messages ... 72

Table 38 – Examples for cryptographically strong random number generators. 77

Table 39 – The total residual error rate for the safety communication channel 81

Table 40 – Information to be included in the safety manual .. 81

OPC 10000-15: Safety vi 1.05.00

Table 41 – Conformance Units for Safety ... 85

Table 42 – Profile URIs for Safety .. 86

Table 43 – SafetyProviderServerMapper Facet .. 86

Table 44 – SafetyProviderPubSubMapper Facet... 86

Table 45 – SafetyProvider Facet .. 86

Table 46 – SafetyConsumerPubSubMapper Facet .. 87

Table 47 – SafetyConsumer Facet.. 87

Table 48 – SafetyAutomationComponent Facet .. 87

Table 49 – NamespaceMetadata Object for this part .. 87

Table 50 – Namespaces used in a Safety Server .. 88

Table 51 – The CRC32 lookup table for 32-bit CRC signature calculations 91

OPC 10000-15: Safety vii 1.05.00

OPC FOUNDATION

UNIFIED ARCHITECTURE

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2021, OPC Foundation, Inc.

ACKNOWLEDGEMENT

This specification has its origin in a joint working group between the OPC Foundation and the PROFIBUS
Nutzerorganisation e.V. (PNO) which was established in November 2017. The experts of this joint working group initially

elaborated a safety concept for controller-to-controller communication using an approach according to IEC 61784-3

“Functional safety fieldbuses” based on the OPC UA Client/Server communication model. The launch of the Field Level
Communication Initiative in November 2018 has resulted in an extension of the safety concept to also supp ort controller-to-
device communication and the Pub/Sub communication including transport via Ethernet and Ethernet TSN.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and comm unications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems --without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, directly from the OPC Foundation Web site http://www.opcfoundation.org ..

PATENTS

The attention of adopters is directed to the possibility that compliance with or adopt ion of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specifica tion is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

http://www.opcfoundation.org/

OPC 10000-15: Safety viii 1.05.00

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials .
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications; hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata.

http://www.opcfoundation.org/errata

OPC 10000-15: Safety ix 1.05.00

Revision 1.05.0 Highlights

The following table includes the issues resolved with this revision.

Mantis ID Summary Resolution

 Missing support for OPC UA PubSub. In addition to services based on OPC UA Client/Server, this
release now also describes how SafetyProviders and
SafetyConsumer are implemented using OPC UA PubSub.

7380 Missing properties were added to the
SafetyProvider, needed for online
browsing.

The property SafetyProviderID was replaced by the two
properties SafetyProviderIDConfigured and
SafetyProviderIDActive, making it possible to distinguish
between the configured value, and the currently active
value. The same holds for the parameter SafetyBaseID.

The two Boolean properties SafetyServerImplemented and
SafetyPubSubImplemented were added, allowing for
determining at runtime which of the OPC UA Mappers is
implemented.

See Figure 9 and Table 13.

7380 Missing properties were added to the
SafetyConsumer, needed for online
browsing.

The property SafetyProviderID was replaced by the two
properties SafetyProviderIDConfigured and
SafetyProviderIDActive, making it possible to distinguish
between the configured value, and the currently active
value. The same holds for the parameter SafetyBaseID and
SafetyConsumerID.

The two Boolean properties SafetyClientImplemented and
SafetyPubSubImplemented were added, allowing for
determining at runtime which of the OPC UA Mappers is
implemented.

See Figure 9 and Table 14.

 Mistakes in the SAPI, SPI, and the
internal items of the SafetyProvider

Some mistakes in the safe application interface (SAPI) , the
safe parameter interface (SPI) and the internal items (state
machine) of the SafetyProvider were removed.

See Clauses 7.3 and 8.1.2.3.

 Mistakes in the SAPI, SPI, and the
internal items of the SafetyConsumer

Some mistakes in the safe application interface (SAPI), the
safe parameter interface (SPI) and the internal items (state
machine) of the SafetyConsumer were removed.

See Clauses 7.4 and 8.1.2.4.

 Uncomplete definition of the calculation of
the SafetyStructureSignature

Missing information (e. g., byte ordering) was added to
Clause 8.1.3.4.

 Uncomplete list of diagnostic messages Missing diagnostic messages were added to Table 37.

7359 Formula for calculation of SFRT value
was too optimistic

The formula for the calculation of the SFRT value was
corrected to include twice the SafetyConsumerTimeout. A
detailed explanation was added (see Clause 10.1).

 Numerical PFD-values too conservative. The numerical values for the probability of dangerous failure
on demand (PFD) were re-calculated and updated. See
Table 39.

 Update of clause on profiles &
conformance units required.

Clause 13 was updated.

 Annex B was tailored towards big-endian
machines, only.

Annex B now contains an example for both big-endian and
little-endian machines.

OPC 10000-15: Safety 10 1.05.00

1 Scope

The specification “OPC UA Safety” describes services and protocols for the exchange of data using
OPC UA mechanisms. It extends OPC UA to fulfill the requirements of functional safety as defined in
the IEC 61508 and IEC 61784-3 series of standards.

Implementing this part allows for detecting all types of communication errors encountered in the lower
network layers. In case an error is detected, this information is shared with the application layer which
can then act in an appropriate way, e.g. by switching to a safe state .

The specification describes the behavior of the individual endpoints for safe communication, as well
as the OPC UA information model which is used to access these endpoints.

OPC UA Safety is application-independent and does not pose requirements on the structure and length
of the application data. Application-specific requirements are expected to be described in appropriate
companion specifications.

In this version, the target is controller-controller-communication. However, easy expandability to other
use-cases (e.g. OPC UA field level communication) has already been considered in the design of OPC
UA Safety.

2 General

2.1 Reference Documents

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments and errata)
applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

OPC 10000-4, OPC Unified Architecture - Part 4: Services

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

OPC 10000-14, OPC Unified Architecture - Part 14: PubSub

IEC 61784-3:2021, Industrial communication networks – Profiles – Part 3: Functional safety fieldbuses
– General rules and profile definitions.

IEC 61000-6-7, Electromagnetic compatibility (EMC) – Part 6-7: Generic standards – Immunity
requirements for equipment intended to perform functions in a safety related system (functional safety)
in industrial locations

IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety -related
systems

IEC 61511 (all parts), Functional safety – Safety instrumented systems for the process industry sector

IEC 62061, Safety of machinery – Functional safety of safety-related electrical, electronic and
programmable electronic control systems

OPC 10000-15: Safety 11 1.05.00

ISO 13849-1, Safety of machinery – Safety-related parts of control systems – Part 1: General
principles for design

ISO 13849-2, Safety of machinery – Safety-related parts of control systems – Part 2: Validation

ISO/IEC 9834-8, Information technology — Procedures for the operation of object identifier registration
authorities — Part 8: Generation of universally unique identifiers (UUIDs) and their use in object
identifiers

2.2 Relation to safety-, security- and OPC UA-standards

This part explains the relevant principles of functional safety for communication with reference to the
IEC 61508 series as well as IEC 61784-3 and others (see Figure 1), and specifies a safety
communication layer based on the OPC Unified Architecture.

Figure 1 shows the relationship between this part and the relevant safety and OPC UA standards in
an industrial environment. An arrow from Document A to Document B means “Document A is
referenced in Document B”. This reference can be either normative or informative. Not all of these
standards are applicable/required for a given product.

Figure 1 – Relationships of OPC UA Safety with other standards (informative information)

OPC UA Safety can be used for applications requiring functional safety up to the Safety Integrity Level
(SIL) 4.

The resulting SIL claim of a system depends on the way OPC UA Safety is implemented within this
system. That means that if a certain SIL is desired, this OPC UA Safety must be implemented on a
device which fulfills the requirements for this SIL as described in IEC 61508. In particular, measures
against random hardware failures and systematic errors (e. g. software defects) must be taken.

Design of safety-related electrical, electronic and program-
mable electronic control systems (SRECS) for machinery

SIL based PL based

Design objective

Applicable standards

IEC 62061

Functional safety
for machinery

(SRECS)

ISO 13849
Safety-related parts

of machinery
(SRPCS)

Non-electrical

Electrical

IEC 61508
Functional safety (FS)

(basic standard)

OPC UA
Specification

IEC 61784-3
Functional safety
communication

IEC 62443
Security

(common part)

IEC 61000-6-7
Generic EMC & FS

OPC UA Safety
Functional safety
communication

IEC 61511
Functional safety –
Safety instrumented

systems for the
process industry sector

IEC 62280
Railway applications –

Communication

Key safety-related standards safe communication non-safety-related standards

OPC 10000-15: Safety 12 1.05.00

OPC UA Safety is intended for implementation in safety devices exclusively.

Simply implementing this specification in a standard device (i.e. a device not fulfilling the
requirements of IEC 61508) is insufficient to qualify it as a safety device.

[RQ2.1] A safety device with OPC UA Safety shall fulfill the requirements of the relevant safety
standards, such as IEC 61508 (according the SIL-level as described) when used in live operation.

OPC UA Safety does not cover electrical safety and intrinsic safety aspects. Electrical safety relates
to hazards such as electrical shock. Intrinsic safety relates to hazards associated with potentially
explosive atmospheres.

OPC UA Safety defines mechanisms for the transmission of safety-relevant messages among
participants within a network using OPC UA technology in accordance with the requirements of
IEC 61508 series and IEC 61784-3 for functional safety. These mechanisms may be used in various
industrial applications such as process control, manufacturing, automation, and machinery.

It provides guidelines for both developers and assessors of compliant devices and systems.

2.3 Intellectual properties

The OPC Foundation and PROFIBUS Nutzerorganisation e.V. will ensure with their intellectual
property policies and an agreement between the two organizations that all their members are granted
a royalty free right to use their intellectual property which is essential to implement OPC UA Safety.

3 Terms, definitions and conventions

3.1 Overview

This part will use concepts of OPC UA information modeling to describe OPC UA Safety. For the
purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-3, OPC
10000-6, IEC 61784-3, as well as the following apply.

3.2 Terms

cyclic redundancy check (CRC)
<value> redundant data derived from, and stored or transmitted together with, a block of data in order
to detect data corruption

<method> procedure used to calculate the redundant data

NOTE 1 to entry: Terms “CRC code” and “CRC signature”, and labels such as CRC1, CRC2, may also be used in this part
to refer to the redundant data.

[SOURCE: IEC 61784-3:2021, 3.1]

error
discrepancy between a computed, observed or measured value or condition and the true, specified or
theoretically correct value or condition

NOTE 1 to entry: Errors may be due to design mistakes within hardware/software and/or corrupted information due to
electromagnetic interference and/or other effects.

NOTE 2 to entry: Errors do not necessarily result in a failure or a fault.

[SOURCE: IEC 61508-4:2010, 3.6.11]

failure
termination of the ability of a functional unit to perform a required function or operation of a functional
unit in any way other than as required

OPC 10000-15: Safety 13 1.05.00

NOTE 1 to entry: Failure may be due to an error (for example, problem with hardware/software design or message
disruption).

[SOURCE: IEC 61508-4:2010, 3.6.4, modified – notes and figures deleted]

fail-safe
ability of a system that, by adequate technical or organizational measures, prevents from hazards
either deterministically or by reducing the risk to a tolerable measure

NOTE 1 to entry: Equivalent to functional safety

fail-safe substitute values (FSV)
values which are issued or delivered instead of process values when the safety function is set to a
fail-safe state

NOTE 1 to entry: In this part, the fail-safe substitute values (FSV) are always set to binary “0”.

fault
abnormal condition that may cause a reduction in, or loss of, the capability of a functional unit to
perform a required function

NOTE 1 to entry: IEV 191-05-01 defines “fault” as a state characterized by the inability to perform a required function,
excluding the inability during preventive maintenance or other planned actions, or due to lack of external resources.

[SOURCE: IEC 61508-4:2010, 3.6.1, modified – figure reference deleted]

flag
a one-bit value used to indicate a certain status or control information.

Globally Unique Identifier

a globally unique identifier (GUID) is a 128-bit number used to identify information in computer
systems. The term universally unique identifier (UUID) is also used. In this part, UUID version 4 is
used.

MonitoringNumber (MNR)
a means used to ensure the correct order among transmitted safety PDUs and to monitor the
communication delay. The MNR starts at a random value and is incremented with each request. It rolls
over to a minimum threshold value that is not zero.

NOTE 1 to entry: Instance of sequence number as described in IEC 61784-3.

NOTE 2 to entry: The transmitted MNR is protected by the transmitted CRC signature of the ResponseSPDU

Non-safety-
a predicate meaning that the respective object is a “standard” object and has not been designed and
implemented to fulfill any requirements with respect to functional safety.

OPC UA Mapper
non-safety-related part of the OPC UA Safety implementation which maps the SPDU to the actual OPC
UA services. Depending on which services are used (e.g. Client/Server or PubSub), different mappers
can be specified.

performance level (PL)
discrete level used to specify the ability of safety-related parts of control systems to perform a safety
function under foreseeable conditions

[SOURCE: ISO 13849-1:2015, 3.1.23]

OPC 10000-15: Safety 14 1.05.00

process values
input and output data (in a safety PDU) that are required to control an automated process

qualifier
Qualifier is an attribute (bit or Boolean), indicating whether the corresponding value is valid or not (e.g.
being a fail-safe substitute value)

residual error probability
probability of an error undetected by the SCL safety measures

[SOURCE: IEC 61784-3:2021 3.1]

residual error rate
statistical rate at which the SCL safety measures fail to detect errors

[SOURCE: IEC 61784-3:2021, 3.1]

safety communication layer (SCL)
communication layer above the OPC UA communication stack that includes all necessary additional
measures to ensure safe transmission of data in accordance with the requirements of IEC 61508.

The SCL provides several services, the most important ones being the SafetyProvider and the
SafetyConsumer.

 [SOURCE: IEC 61784-3:2021, 3.1 modified]

SafetyConsumer
Entity (usually software) that implements the data sink of a unidirectional safety link.

SafetyData
application data transmitted across a safety network using a safety protocol

NOTE 1 to entry: The safety communication layer does not ensure the safety of the data itself, but only that the data is
transmitted safely.

safety function response time
worst-case elapsed time of a safety function, following an actuation of a safety sensor connected to a
fieldbus, until the corresponding safe state of the safety function’s actuator(s) is achieved, in the
presence of errors or failures.

NOTE 1 to entry: This concept is introduced in IEC 61784-3, Clause 5.2.4 and is addressed by the functional safety
communication profiles defined in that specification.

[SOURCE: IEC 61784-3:2021, 3.1 modified]

OPC 10000-15: Safety 15 1.05.00

safety integrity level
discrete level (one out of a possible four), corresponding to a range of safety integrity values, where
safety integrity level 4 has the highest level of safety integri ty and safety integrity level 1 has the lowest
level of safety integrity

NOTE 1 to entry: The target failure measures (see IEC 61508-4:2010, 3.5.17) for the four safety integrity levels are specified
in Tables 2 and 3 of IEC 61508-1:2010.

NOTE 2 to entry: Safety integrity levels are used for specifying the safety integrity requirements of the safety functions to
be allocated to the E/E/PE safety-related systems.

NOTE 3 to entry: A safety integrity level (SIL) is not a property of a system, subsystem, element or component. The correct
interpretation of the phrase “SILn safety-related system” (where n is 1, 2, 3 or 4) is that the system is potentially capable of
supporting safety functions with a safety integrity level up to n.

[SOURCE: IEC 61508-4:2010, 3.5.8]

safety measure
measure to control possible communication errors that is designed and implemented in compliance
with the requirements of IEC 61508

NOTE 1 to entry: In practice, several safety measures are combined to achieve the required safety integrity level.

NOTE 2 to entry: Communication errors and related safety measures are detailed in IEC 61784-3, 5.3 and 5.4.

[SOURCE: IEC 61784-3:2021, 3.1]

safety PDU (SPDU)
PDU transferred through the safety communication channel

NOTE 1 to entry: The SPDU may include more than one copy of the safety data using differing coding structures and hash
functions together with explicit parts of additional protections such as a key, a sequence count, or a time stamp mechanism.

NOTE 2 to entry: Redundant SCLs may provide two different versions of the SPDU for insertion into separate fields of the
OPC UA frame.

[SOURCE: IEC 61784-3:2021, 3.1]

SafetyProvider
Entity (usually software) that implements the data source of a unidirectional safety link.

SafetyBaseID
Randomly generated authenticity ID which is used to safely authenticate SafetyProviders having the
same SafetyProviderID.

NOTE 1 to entry: Together with the SafetyProviderID, it is the instance of connection authentication as described in
IEC 61784-3.

SafetyProviderID
User-assigned, locally unique ID which is used to safely authenticate SafetyProviders within a certain
area. All SafetyProviders within this area may share the identical SafetyBaseID.

NOTE 1 to entry: Together with the SafetyBaseID, it is the instance of connection authentication as described in
IEC 61784-3.

standard transmission system
the part of the transmission system (implemented in hardware and software) that is not implemented
according to any safety standards. OPC UA Safety is using the services of this part to transmit prebuilt
safety packets.

OPC 10000-15: Safety 16 1.05.00

3.3 Abbreviations and symbols

BSC Binary Symmetric Channel

CRC Cyclic Redundancy Check

FSV Fail-safe substitute Values

HMI Human-machine interface

ID Identifier

LSB Least significant bit

MNR MonitoringNumber

MSB Most significant bit

OA Operator Acknowledgment

OPC UA PI OPC UA Platform Interface

PDU Protocol Data Unit [ISO/IEC 7498-1]

p Bit error probability

PI Platform Interface

PL Performance Level [ISO 13849-1]

PLC Programmable Logic Controller

Pre,cond Conditional residual error probability

PV Process Values

SAPI Safety Application Program Interface

SCL Safety Communication Layer

SFRT Safety Function Response Time

SIL Safety Integrity Level [IEC 61508-4]

SPDU Safety PDU, Safety Protocol Data Unit

SPI Safety Parameter Interface

STrailer Safety Trailer

3.4 Conventions

3.4.1 Conventions in this part

In this part, the following conventions are used:

- The abbreviation “F” is an indication for safety related items, technologies, systems, and units
(fail-safe, functional safe).

- The default data that are used in case of unit failures or errors, are called fail-safe substitute
Values (FSV) and are set to binary “0”.

- Reserved bit (“res”) are set to “0” and ignored by the receiver for avoiding problems with future
versions of OPC UA Safety.

- Terms and names are often written in PascalCase (the practice of writing compound words or
phrases in which the elements are joined without spaces, with each element's initial letter
capitalized within the compound). Terms or names where two capital letters of abbreviations
are in sequence or for separation to a suffix are written with underscores in between.

- The notation 0x… represents a hexadecimal value.

3.4.2 Conventions on CRC calculation

- [RQ3.1] Any CRC signature calculation shall start with a preset value of “1”.

- [RQ3.2] Any CRC signature calculation resulting in a “0” value, shall use the value “1” instead.

OPC 10000-15: Safety 17 1.05.00

- [RQ3.3] SPDUs with all values (incl. CRC signature) being zero shall be ignored by the receiver
(SafetyConsumer and SafetyProvider).

3.4.3 Conventions in state machines

Table 1 – Conventions used in state machines

Convention Meaning

:= Assignment: value of an item on the left is replaced by value of the item on the right.

< Less than: a logical condition yielding TRUE if and only if an item on the left is less than the item on
the right.

<= Less or equal than: a logical condition yielding TRUE if and only if an item on the left is less or equal
than the item on the right.

> Greater than: a logical condition yielding TRUE if and only if the item on the left is greater than the
item on the right.

>= Greater or equal than: a logical condition yielding TRUE if and only if the item on the left is greater or
equal than the item on the right.

== Equality: a logical condition yielding TRUE if and only if the item on the left is equal to an item on the
right.

<> Inequality: a logical condition yielding TRUE if and only if the item on the left is not equal to an item
on the right.

&& Logical “AND” (Operation on binary values or results)

|| Logical “OR” (Operation on binary values or results)


Logical “XOR” (Operation on binary values or digital values)

[..] UML Guard condition, if and only if the guard is TRUE the respective transition is enabled

4 Introduction to OPC UA Safety

4.1 What is OPC UA Safety?

OPC UA Safety specifies a safety communication layer (SCL) allowing safety-related devices to use
the services of OPC Unified Architecture (OPC UA) for the safe exchange of safety-related data. A
safety device that implements OPC UA Safety correctly will be able to exchange safety-related data
and hereby fulfill the requirements of the international specifications IEC 61508 and IEC 61784-3. OPC
UA Safety uses a monitoring number, a timeout, a set of IDs and a cyclic redundancy code for the
detection of all possible communication errors which may happen in the underlying OPC UA
communication channel. These measures have been quantitatively evaluated and offer a probability
of dangerous failure per hour (PFH) and a probability of dangerous failure on demand (PFD) sufficing
to build safety related applications with a safety integrity level of up to SIL4.

OPC UA Safety itself is an application-independent, general solution. The length and structure of the
data sent is defined by the safety application. However, application-dependent companion
specifications (addressing for example electro-sensitive protective equipment, electric drives with
safety functions, forming presses, robot safety, and automated guided vehicles) are expected to be
defined by application-experts in appropriate OPC UA companion specifications.

4.2 Safety functional requirements

The following requirements apply for the development of the OPC UA Safety technology:

a) Safety communication suitable for Safety Integrity Level up to SIL4 (see IEC 61508) and PL e (see
ISO 13849-1).

b) Combination of SIL 1 – 4 OPC UA Safety devices as well as non-safety devices on one
communication network.

c) Implementation of the safety transmission protocol is restricted to the safety layer.

d) The safety-relevant time-out monitoring is implemented in the safety layer.

e) Safety communication meet the requirements of IEC 61784-3.

OPC 10000-15: Safety 18 1.05.00

f) [RQ4.1] The OPC UA Safety stack is intended for implementation in safety devices exclusively.
Exceptions (e.g. for debugging, simulation, testing, and commissioning) shall be discussed with a
notified body.

4.3 Communication structure

OPC UA Safety is based on:

• the standard transmission system OPC UA

• an additional safety transmission protocol on top of this standard transmission system

Safety applications and standard applications are sharing the same standard OPC UA
communication systems at the same time. The safe transmission function incorporates measures to
detect faults or hazards that originate in the standard transmission system which have a potential to
compromise the safety subsystems. This includes faults such as:

• Random errors, for example due to electromagnetic interference on the transmission channel;

• Failures / faults of the standard hardware;

• Systematic malfunctions of components within the standard hardware and software.

This principle delimits the assessment effort to the “safe transmission functions”. The “standard
transmission system” does not need any additional functional safety assessment.

The basic communication layers of OPC UA Safety are shown in Figure 2.

Figure 2 – Safety layer architecture

Summary of the Safety layer architecture:

Part: Application layer

The safety application is either directly connected to the SafetyProvider / SafetyConsumer, or it is
connected via a machine-specific or process-specific interface, which is described in companion
specifications (e.g. sectoral).

The Safety application layer is expected to be designed and implemented according IEC 61508.

OPC UA

PubSub

or

Client/Server

SafetyConsumer

ResponseSPDU

RequestSPDU

Modification

will not require

re-certification

To be certified

according to:

IEC 61784-3

IEC 61508

…

OPC UA - Mapper

OPC UA

Safety

e.g. OPC Call

Call-Service of the Method
Service Set

Protocol Data Unit

OPC UA

PubSub

or

Client/Server

SafetyProvider

OPC UA - Mapper

Safety-Application

Companion

Specification:

Machine/Process-

specific interface

Safety-Application

PDU

Safety-Application

Companion

Specification:

Machine/Process-

specific interface

Application

layer

OPC UA

layer

safety-related implementation safety-related implementation not required

OPC 10000-15: Safety 19 1.05.00

The Safety application layer is not within the scope of this document.

Part: OPC UA Safety

This layer is within the scope of this part. It defines the two services SafetyProvider and
SafetyConsumer as basic building blocks. Together, they form the safety communication layer (SCL),
implemented in a safety-related way according to IEC 61508.

Safety data is transmitted using point-to-point communication (unidirectional). Each unidirectional data
flow internally communicates in both directions, using a request /response pattern. This allows for
checking the timeliness of messages using a single clock in the SafetyConsumer, thus eliminating the
need for synchronized clocks.

When SafetyConsumers connect to SafetyProviders, they have prior expectation regarding the pair of
SafetyProviderID and SafetyBaseID (e.g. by configuration). If this expectation is not fulfilled by the
SafetyProvider, fail-safe substitute values are delivered to the safety application instead of the
received process values. In contrast, a SafetyProvider does not need to know the ID of the
SafetyConsumer and will provide its process value to any SafetyConsumer requesting it .

SafetyProviders are not capable of detecting communication errors. All required error detection is
performed by the SafetyConsumer.

If a pair of safety applications needs to exchange safety data in both directions, two pairs of
SafetyProvider and SafetyConsumer must be established, one pair for each direction.

The OPC UA Mapper implements the parts of the safety layer which are specific for the OPC UA
communication service in use, i.e. “PubSub” or “Client/Server”. Therefore, the remaining parts of the
safety layer can be implemented independent of the OPC UA service being used.

Part: OPC UA layer

Client/Server:

• The SafetyProvider is implemented using an OPC UA server providing a method.

• The SafetyConsumer is implemented using an OPC UA client calling the method provided by
the SafetyProvider.

PubSub:

• The SafetyProvider publishes the ResponseSPDU and subscribes to the RequestSPDU.

• The SafetyConsumer publishes the RequestSPDU and subscribes to the ResponseSPDU.

4.4 Implementation aspects

[RQ4.2] All technical measures for error detection of OPC UA Safety shall be implemented within the
SCL in devices designed in accordance with IEC 61508 and shall meet the target SIL.

4.5 Features of OPC UA Safety

• Runs on top of:

o OPC UA Client/Server with the Method Service Set.

o OPC UA PubSub.

• From an architectural point of view: easy extensibility for other ways of communication.

• goal: no modification of existing OPC UA framework.

• The state machines of OPC UA Safety are independent from the OPC UA Mapper, allowing for
a simplified exchange of the mapper.

• Ready for wireless transmission channels.

• Modest requirements on safety network nodes:

o No clock synchronization is needed (no requirements regarding the accuracy between
clocks at different nodes).

OPC 10000-15: Safety 20 1.05.00

o Within the SafetyConsumer, a safety-related, local timer is required for implementing
the SafetyConsumerTimeout. The accuracy of this timer depends on the timing
requirements of the safety application.

• End-to-End Safety: Functional safety data is transported between two safety endpoint devices
across a standard network that is not functionally safety compliant. This includes the lower
transport layers such as the OPC UA stack, underlying physical media, and non-safety network
elements (e.g. routers and switches).

• “Dynamic” systems:

o Safety communication partners may change during runtime,

o and/or increase/decrease in number.

• Well-defined text-strings are used for diagnostic purposes.

• Safety communication and standard communication are independent. However, standard
devices and safety devices may use the same communication channel at the same time.

• Functional safety can be achieved without using structurally redundant communication
channels i.e. a single channel approach can be used. Redundancy may be used optionally for
increased availability.

• For diagnostic purposes, the last SPDU sent and received is accessible in the information
model of the SafetyProvider.

• Length of user data: 1-1500 bytes, structures of basic data types, see Clause 6.4.

4.6 Security policy

In the final application, an appropriate security environment needs to be in place for protecting both
the operational environment and the safety-related systems.

For this purpose, a threat and risk analysis (TRA) according to IEC 62443 needs to be carried out on
a final application system level.

An adequate reduction of risk against malevolent attacks is necessary for a meaningful application of
this part. OPC UA Safety does not describe any measures which will lower the risk of malevolent
attacks, but addresses the topic “functional safety”, only.

During compliance tests to OPC UA Safety, security aspects are not part of the scope, as it is assumed
that the underlying base mechanisms (i.e. methods) already provide adequate security .

4.7 Safety measures

[RQ4.3] For the realization of OPC UA Safety, the following measures shall be implemented:

– MonitoringNumber

– Timeout with receipt in the SafetyConsumer

– Set of IDs for the SafetyProvider

– Data Integrity check

Together, these safety measures address all possible transmission errors as listed in IEC 61784-3,
Clause 5.5, see Table 2.

[RQ4.4] The safety measures shall be processed and monitored within the SCL.

OPC 10000-15: Safety 21 1.05.00

Table 2 – Deployed measures to detect communication errors

Communication error

Safety measures

MonitoringNumber a Timeout with

receipt b

Set of IDs for

SafetyProvider c

Data integrity

check d

Corruption – – – X

Unintended repetition X X – –

Incorrect sequence X – – –

Loss X X – –

Unacceptable delay – X – –

Insertion X – – –

Masquerade X – X X

Addressing – – X –

a Instance of “sequence number” of IEC 61784-3.

b Instance of “time expectation” (Timeout) and “feedback message” (Receipt) of IEC 61784-3.

c Instance of “connection authentication” of IEC 61784-3.

d Instance of “data integrity assurance” of IEC 61784-3, based on CRC signature.

The SafetyConsumer is specified in such a way that for any communication error according to Table 2,
a defined fault reaction will occur.

In all cases, the faulty SPDU will be discarded, and not forwarded to the safety application.

Moreover, if the error rate is too high, the SafetyConsumer is defined in such a way that it will cease
to deliver actual process values to the safety application but will deliver fail-safe substitute values
instead. In addition, an indication at the Safety Application Program Interface is set which can be
queried by the safety application.

In case the error rate is still considered acceptable , the state machine repeats the request, see
Clause 11.4.

5 Use cases (informative)

5.1 Use cases for different types of communication links

5.1.1 Unidirectional communication

The most basic type of communication is unidirectional communication, where a safety application on
one device (Figure 3: Controller A) sends data to a safety application on another device (Figure 3:
Controller B).

Figure 3 – Unidirectional Communication

This is accomplished by placing a SafetyProvider on Controller A and a SafetyConsumer on
Controller B. The connection between SafetyProvider and SafetyConsumer can be established and
terminated during runtime, allowing different consumers to connect to the same SafetyProvider at
different times. Furthermore, the protocol is designed in such a way, that the SafetyConsumer needs
to know the parametrized set of IDs of the SafetyProvider such that it is able to safely check whether
the received data is coming from the expected source. On the other hand, as safety data flows in one
direction only, there is no need for the SafetyProvider to check the ID of the SafetyConsumers. Hence,
Controller A can – one after another – serve an arbitrarily large number of SafetyConsumers, and new
SafetyConsumers can be introduced into the system without having to update controller A.

Controller A Controller B

Safety-
Application

SafetyProvider
Safety-

Application
ResponseSPDU

RequestSPDU

SafetyConsumer

OPC 10000-15: Safety 22 1.05.00

5.1.2 Bidirectional communication

Bidirectional communication means the exchange of data in both directions, which is accomplished by
placing a SafetyProvider and a SafetyConsumer on each controller. Hence, bidirectional
communication is realized using two OPC UA Safety connections.

Figure 4 – Bidirectional Communication

NOTE: Connections can be established and terminated during runtime.

5.1.3 Safety Multicast

Multicast is defined as sending the same set of data from one device (Controller A) to several other
devices (Controller B1, B2,…,BN) simultaneously.

Figure 5 – Safety Multicast

Safety multicast is accomplished by placing multiple SafetyProviders on Controller A, and one
SafetyConsumer on each of the Controllers B1, B2, … BN. Each of the SafetyProviders running on
Controller A is connecting to one of the SafetyConsumers running on one of the Controllers B1, B2,
… BN.

The protocol OPC UA Safety is designed in such a way that:

• the state machine of the SafetyProvider has a low number of states, and thus very low memory
demands,

• all safety-related telegram-checks are executed on the consumer and thus the computational
demand on the SafetyProvider is low.

Therefore, even if many SafetyProviders are instantiated on a device, the performance requirements
will still be moderate.

The properties of simple unicast are also valid for safety multicast; different sets of consumers can
connect to SafetyProviders at different times, and new SafetyConsumers can be introduced into the
system without having to reconfigure the SafetyProvider instances. As all SafetyProvider instances
send the same safety application data (the same data source), it is irrelevant from a safety point of
view to which SafetyProvider instance a given SafetyConsumer is connected. Thus, all SafetyProvider
instances can be parametrized with the same set of IDs for the SafetyProvider.

5.2 Cyclic and acyclic safety communication

OPC UA Safety supports cyclic and acyclic safety communication.

Most safety functions must react timely on external events, such as an emergency stop button being
pressed or a light curtain being interrupted. In these applications, cyclic safety communication is

Bidirectional communication
Controller A Controller B

Safety-
Application

SafetyProvider1
Safety-

Application

SafetyConsumer1

SafetyConsumer2 SafetyProvider2

ResponseSPDU

RequestSPDU

ResponseSPDU

RequestSPDU

Controller A

Safety-
Application

SafetyProvider1

SafetyProvider2

SafetyProviderN

Controller
B1

Safety-
Application

SafetyConsumer1

Controller
B2

Safety-
Application

SafetyConsumer2

Controller
BN

Safety-
Application

SafetyConsumerN

…
…

ResponseSPDU
RequestSPDU

OPC 10000-15: Safety 23 1.05.00

established. That means the SafetyConsumer is executed cyclically, and the time between two
consecutive executions is safely bounded. The maximum time between two executions of the
SafetyConsumer will contribute to the safety function response time (SFRT).

Some safety functions, such as the transfer of safe configuration data at startup, do not have to react
on external events. In this case, it is not required to execute the SafetyConsumer cyclically.

5.3 Principle for “Application variables with qualifier”

“Qualifier bits” allow the SafetyProvider to indicate the correctness of values on a fine -grained level.
It is good practice to attach a qualifier bit to each individual value sent within an SPDU. The qualifier
bits are part of the SafetyData and hence not within the scope of this part.

[RQ5.1] However, whenever qualifier bits are used, the values shown in Table 5 shall be used, i.e. ,
0x1 for a valid value (“good”), and 0x0 for an invalid value (“bad”).

Table 3 – Example “Application Variables with qualifier”

Value Qualifier

valid 0x1 (= good)

invalid 0x0 (= bad)

Checking the qualifier is done in the safety application.

6 Information Models

This chapter describes the identifiers, types and structure of the objects and methods that are used to
implement the OPC UA mappers defined in this part. This implementation serves three purposes:

• support of the safe exchange of SPDUs at runtime

• online browsing, to identify SafetyConsumers and SafetyProviders, and to check their
parameters for diagnostic purposes

• offline engineering: the information model of one controller can be exported in a standardized
file on its engineering system, be imported in another engineering system, and finally deployed
on another controller. This allows for a vendor-independent exchange of the communication
interfaces of safety applications, e.g., for establishing connections between devices.

IMPORTANT NOTE:

Neither online browsing nor offline engineering currently supports any features to detect errors. Hence,
no guarantees with respect to functional safety are made. This means that online browsing can only
be used for diagnostic purposes, and not for exchanging safety-relevant data. In the context of offline
engineering, the programmer of the safety application is responsible for the verification and validation
of the safety application. It must be assumed that errors may occur during the transfer of the
information model from one engineering system to another.

As a consequence, all type values described in this clause are defined as read -only, i.e., they can not
be written by general OPC UA write commands.

6.1 Object and ObjectType Definitions

6.1.1 SafetyACSet Object

[RQ6.1] Each server shall have a singleton folder called SafetyACSet with a fixed NodeId in the
namespace of OPC UA Safety. Because all SafetyProviders and SafetyConsumers on this server
contain a hierarchical reference from this object to themselves, it can be used to directly access all
SafetyProviders and/or SafetyConsumers. SafetyACSet is intended for safety-related purposes only.
It should not reference to non-safety-related items.

OPC 10000-15: Safety 24 1.05.00

Table 4 – SafetyACSet definition

Attribute Value

BrowseName SafetyACSet

References NodeClass BrowseName Comment

OrganizedBy by the Objects Folder defined in OPC 10000-5.

HasTypeDefinition ObjectType FolderType Entry point for all
SafetyProviders and
SafetyConsumers

Conformance Units

SafetyACSet

[RQ6.2] In addition, a server shall comprise one OPC UA object derived from type SafetyProviderType
for each SafetyProvider it implements, and one OPC UA object derived from type
SafetyConsumerType for each SafetyConsumer it implements. The corresponding information model
shown in Figure 6 and Figure 7 shall be used.

A description of the graphical notation for the different types of nodes and references (shown in
Figure 6, Figure 7, and Figure 9) can be found in OPC 10000-3.

Figure 6 describes the SafetyProvider and the SafetyConsumer.

NOTE: OPC UA Safety assumes (atomic) consistent data exchange between OPC mappers of the two
endpoints.

[RQ6.3] For implementations supporting OPC UA Client/Server, the Call-Service of the Method Service
Set (see OPC 10000-4) shall be used. The Method “ReadSafetyData”" has a set of input arguments
that make up the RequestSPDU and a set of output arguments that make up the ResponseSPDU. The
SafetyConsumer uses the OPC UA-Client with the OPC UA Service Call.

[RQ6.3a] For implementations supporting OPC UA PubSub, the OPC UA object SafetyPDUs with its
properties RequestSPDU and ResponseSPDU shall be used. RequestSPDU is published by the
SafetyConsumer and subscribed by the SafetyProvider. ResponseSPDU is published by the
SafetyProvider and subscribed by the SafetyConsumer.

NOTE: The terms “request” and “response” refer to the behavior on the layer of OPC UA Safety. Within
the PubSub context, both requests and responses are realized by repeatedly publishing and
subscribing datagrams, see Figure 17.

[RQ6.4] For diagnostic purposes, the SPDUs received and sent shall be accessible by calling the
method ReadSafetyDiagnostics.

OPC 10000-15: Safety 25 1.05.00

BaseObjectType

SafetyObjectsType

SafetyProv iderType SafetyConsumerType

ReadSafetyData

PropertyType

OutputArguments

OPC UA Safety

OPC UA

ReadSafetyDiagnostics

SafetyProviderParametersType

Parameters

PropertyType

OutputArguments

PropertyType

InputArguments

SafetyPDUsType

SafetyPDUs
SafetyPDUsType

SafetyPDUs

SafetyConsumerParametersType

Parameters

RequestSPDUDataType

<RequestSPDUName>

ResponseSPDUDataType

<ResponseSPDUName>

RequestSPDUDataType

<RequestSPDUName>

ResponseSPDUDataType

<ResponseSPDUName>

Figure 6 – Server Objects for OPC UA Safety

NOTE: for the input/output arguments of the methods ReadSafetyData and ReadSafetyDiagnostics, see Clause 6.1.3 and
6.1.4. For the parameters of the SafetyProvider and SafetyConsumer, see Figure 9, Table 13, and Table 14. For
RequestSPDU and ResponseSPDU, see Table 8, Table 19, Table 21, and Clause 8.1.1.

Figure 7 shows the instances of server objects for OPC UA Safety. The ObjectType for the
SafetyProviderType contains methods having outputs of the abstract data type ”Structure”. Each
instance of a SafetyProvider needs its own copy of the methods which contain the concrete DataType
for “OutSafetyData” and “OutNonSafetyData”.

OPC 10000-15: Safety 26 1.05.00

-

Figure 7 – Instances of server objects for OPC UA Safety

6.1.2 Safety ObjectType definitions

[RQ6.5] To reduce the number of variations and to alleviate validation testing, the following restrictions
apply to instances of SafetyProviderType and SafetyConsumerType (or instances of types derived
from SafetyProviderType or SafetyConsumerType):

1) The references shown in Figure 7 originating at SafetyProviderType or SafetyConsumerType and

below shall be of type HasComponent (and shall not be derived from HasComponent) for object
references or HasProperty (and shall not be derived from HasProperty) for property references.

2) As BrowseNames (i.e. name and namespace) are used to find methods, the names of objects and
properties shall be locally unique.

3) The DataType of both Properties and MethodArguments shall be used as specified, and no derived
DataTypes shall be used (exception: OutSafetyData and OutNonSafetyData).

4) In OPC UA, the sequence of MethodArguments is relevant.

FolderType

Objects

AnyObjectType

AnyObject

SafetyProviderType

MySafetyProvider

ReadSafetyData

Vendor

OPC UA

OPC UA Safety

Singleton with
fixed NodeId

ReadSafetyDiagnostics

SafetyProviderParametersType

Parameters

FolderType

SafetyACSet

Organizes

Organizes

Organizes

OrganizesOther Providers

SafetyPDUsType

SafetyPDUs

SafetyConsumerType

MySafetyConsumer

SafetyPDUsType

SafetyPDUs

Organizes

OrganizesOther Consumers

SafetyConsumerParametersType

Parameters

OPC 10000-15: Safety 27 1.05.00

Table 5 – SafetyObjectsType Definition

Attribute Value

BrowseName SafetyObjectsType

IsAbstract True

References Node
Class

BrowseName DataType TypeDefinition Modelling Rule

Subtype of BaseObjectType

Conformance Units

SafetySupport

Table 6 – SafetyProviderType Definition

Attribute Value

BrowseName SafetyProviderType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling Rule

Subtype of SafetyObjectsType

HasComponent Method ReadSafetyData Optional

HasComponent Method ReadSafetyDiagnostics Optional

HasComponent Object SafetyPDUs SafetyPDUsType Optional

HasComponent Object Parameters SafetyProviderParametersType Mandatory

Conformance Units

SafetyProviderParameters

Table 7 – SafetyConsumerType Definition

Attribute Value

BrowseName SafetyConsumerType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling Rule

Subtype of SafetyObjectsType

HasComponent Object SafetyPDUs SafetyPDUsType Optional

HasComponent Object Parameters SafetyConsumerParametersT
ype

Mandatory

Conformance Units

SafetyConsumerParameters

6.1.3 Method ReadSafetyData

This method is mandatory for the profile SafetyProviderServerMapper and optional for the profile
SafetyProviderPubSubMapper (see 13.2.2.1). It is used to read SafetyData from the SafetyProvider.
It is in the responsibility of the safety application, that this method is not concurrently called by multiple
SafetyConsumers. Otherwise, the SafetyConsumer may receive invalid responses resulting in a safe
reaction which may lead to spurious trips and/or system unavailability .

The method argument OutSafetyData has an application-specific type derived from Structure. This
type (including the type identifier) is expected to be the same in both the SafetyProvider and the
SafetyConsumer. Otherwise, the SafetyConsumer will not accept the transferred data and switch to
fail-safe values instead (see state S16 in Table 33 – SafetyConsumer states as well as Clauses 8.1.3.2
and 8.1.3.4).

OPC 10000-15: Safety 28 1.05.00

Signature

ReadSafetyData (

 [in] UInt32 InSafetyConsumerID

 [in] UInt32 InMonitoringNumber

 [in] InFlagsType InFlags

 [out] Structure OutSafetyData

 [out] OutFlagsType OutFlags

 [out] UInt32 OutSPDU_ID_1

 [out] UInt32 OutSPDU_ID_2

 [out] UInt32 OutSPDU_ID_3

 [out] UInt32 OutSafetyConsumerID

 [out] UInt32 OutMonitoringNumber

 [out] UInt32 OutCRC

 [out] Structure OutNonSafetyData)

;

Table 8 – ReadSafetyData Method Arguments

Argument Description

InSafetyConsumerID “Safety Consumer Identifier”, see SafetyConsumerID in Table 24.

InMonitoringNumber “Monitoring Number of the RequestSPDU”, see Clause 8.1.1.2 and MonitoringNumber
in Table 24.

InFlags “Byte with non-safety-related flags from SafetyConsumer”, see Clause 6.2.1.

OutSafetyData “Safety Data”, see Clause 8.1.1.4.

OutFlags “Byte with safety-related flags from SafetyProvider”, see Clause 6.2.2.

OutSPDU_ID_1 “Safety PDU Identifier Part1”, see Clause 8.1.3.2.

OutSPDU_ID_2 “Safety PDU Identifier Part2”, see Clause 8.1.3.2.

OutSPDU_ID_3 “Safety PDU Identifier Part3”, see Clause 8.1.3.2.

OutSafetyConsumerID “Safety Consumer Identifier”, see SafetyConsumerID in Table 24 and Table 27.

OutMonitoringNumber Monitoring Number of the ResponseSPDU, see Clause 8.1.1.8, Clause 8.1.3.1, and

Figure 14.

OutCRC CRC-checksum over the ResponseSPDU, see Clause 8.1.3.5.

OutNonSafetyData “Non-safe data” see Clause 8.1.1.10.

Table 9 – ReadSafetyData Method AddressSpace definition

Attribute Value

BrowseName ReadSafetyData

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

Conformance Units

ReadSafetyData

6.1.4 Method ReadSafetyDiagnostics

This method is mandatory for the profile SafetyProviderServerMapper and optional for the profile
SafetyProviderPubSubMapper (see 13.2.2.1). It is provided for each SafetyProvider serving as a
diagnostic interface, see Clause 9.2.

OPC 10000-15: Safety 29 1.05.00

Signature

ReadSafetyDiagnostics (

 [out] UInt32 InSafetyConsumerID

 [out] UInt32 InMonitoringNumber

 [out] InFlagsType InFlags

 [out] Structure OutSafetyData

 [out] OutFlagsType OutFlags

 [out] UInt32 OutSPDU_ID_1

 [out] UInt32 OutSPDU_ID_2

 [out] UInt32 OutSPDU_ID_3

 [out] UInt32 OutSafetyConsumerID

 [out] UInt32 OutMonitoringNumber

 [out] UInt32 OutCRC

 [out] Structure OutNonSafetyData)

 ;

Table 10 – ReadSafetyDiagnostics Method Arguments

Argument Description

InSafetyConsumerID see Table 8

InMonitoringNumber see Table 8

InFlags see Table 8

OutSafetyData see Table 8

OutFlags see Table 8

OutSPDU_ID_1 see Table 8

OutSPDU_ID_2 see Table 8

OutSPDU_ID_3 see Table 8

OutSafetyConsumerID see Table 8

OutMonitoringNumber see Table 8

OutCRC see Table 8

OutNonSafetyData see Table 8

Table 11 – ReadSafetyDiagnostics Method AddressSpace definition

Attribute Value

BrowseName ReadSafetyDiagnostics

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

Conformance Units

ReadSafetyDiagnostics

[RQ6.7] Instances of SafetyProviderType shall use non-abstract DataTypes for the arguments
OutSafetyData and OutNonSafetyData.

6.1.5 Object SafetyPDUs

This object is mandatory for the profile SafetyProviderPubSubMapper (see 13.2.2.1) and the profile
SafetyConsumerPubSubMapper (see 13.2.2.2). It is used by the SafetyProvider to subscribe to the
RequestSPDU and to publish the ResponseSPDU. The data type of RequestSPDU is structured in the
same way as the input arguments of ReadSafetyData. The data type of ResponseSPDU is structured
in the same way as the output arguments of ReadSafetyData.

Both variables have a counterpart within the information model of the SafetyConsumer. The
SafetyConsumer publishes the RequestSPDU and subscribes to the ResponseSPDU.

OPC 10000-15: Safety 30 1.05.00

Table 12 – SafetyPDUsType Definition

Attribute Value

BrowseName SafetyPDUsType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of BaseObjectType

HasComponent Variable <RequestSPDU> RequestSPDUDataType BaseDataVariableType Mandatory
Placeholder

HasComponent Variable <ResponseSPDU> ResponseSPDUDataType BaseDataVariableType Mandatory
Placeholder

Conformance Units

SafetyPDUs

The object SafetyPDUS shall contain exactly one reference to a variable of a type
RequestSPDUDataType and exactly one reference to a variable of a subtype of type
ResponseSPDUDataType.

For example, Figure 8 shows a distributed safety application with four automation components. It is
assumed that Automation Component 1 sends a value to the other three components using three
SafetyProviders, each comprising a pair of SafetyPDUs.

Figure 8 – Safety Multicast with three recipients using OPC UA PubSub. For each recipient,
there is an individual pair of SafetyPDUs.

6.1.6 Objects SafetyProviderParameters and SafetyConsumerParameters

Figure 9 shows the safety parameters for the SafetyProvider and the SafetyConsumer.

Automation Component 1

Safety Application Program

SafetyProvider SafetyProviderSafetyProvider

OPC UA

SubPub SubPub SubPub

Automation Component 2

Safety Application Program

SafetyConsumer

OPC UA

SubPub

Automation Component 3

Safety Application Program

SafetyConsumer

OPC UA

SubPub

Automation Component 4

Safety Application Program

SafetyConsumer

OPC UA

SubPub

RequestSPDU
ResponseSPDU

RequestSPDU
ResponseSPDU

RequestSPDU

ResponseSPDU

OPC 10000-15: Safety 31 1.05.00

BaseObjectType

PropertyType

SafetyProviderIDConfigured

OPC UA Safety

OPC UA

SafetyProviderParametersType

PropertyType

SafetyProviderLevel

PropertyType

SafetyBaseIDConfigured

PropertyType

SafetyProviderDelay

PropertyType

SafetyStructureIdentifier

PropertyType

SafetyStructureSignatureVersion

PropertyType

SafetyStructureSignature

SafetyConsumerParametersType

PropertyType

SafetyStructureSignature

PropertyType

SafetyConsumerIDConfigured

PropertyType

SafetyConsumerTimeout

PropertyType

SafetyOperatorAckNecessary

PropertyType

SafetyErrorIntervalLimit

PropertyType

SafetyProviderLevel

PropertyType

SafetyStructureIdentifier

PropertyType

SafetyStructureSignatureVersion

PropertyType

SafetyProviderIDActive

PropertyType

SafetyBaseIDActive

PropertyType

SafetyServerImplemented

PropertyType

SafetyPubSubImplemented

PropertyType

SafetyProviderIDConfigured

PropertyType

SafetyBaseIDConfigured

PropertyType

SafetyProviderIDActive

PropertyType

SafetyBaseIDActive

PropertyType

SafetyConsumerIDActive

PropertyType

SafetyClientImplemented

PropertyType

SafetyPubSubImplemented

Figure 9 – OPC UA Safety Parameters for the SafetyProvider and the SafetyConsumer.

OPC 10000-15: Safety 32 1.05.00

Table 13 – SafetyProviderParametersType Definition

Attribute Value

BrowseName SafetyProviderParametersType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of BaseObjectType

HasProperty Variable SafetyProviderIDConfigured UInt32 PropertyType Mandatory

HasProperty Variable SafetyProviderIDActive UInt32 PropertyType Mandatory

HasProperty Variable SafetyBaseIDConfigured Guid PropertyType Mandatory

HasProperty Variable SafetyBaseIDActive Guid PropertyType Mandatory

HasProperty Variable SafetyProviderLevel Byte PropertyType Mandatory

HasProperty Variable SafetyStructureSignature UInt32 PropertyType Mandatory

HasProperty Variable SafetyStructureSignatureVersion UInt16 PropertyType Mandatory

HasProperty Variable SafetyStructureIdentifier String PropertyType Mandatory

HasProperty Variable SafetyProviderDelay UInt32 PropertyType Mandatory

HasProperty Variable SafetyServerImplemented Boolean PropertyType Mandatory

HasProperty Variable SafetyPubSubImplemented Boolean PropertyType Mandatory

Conformance Units

SafetyProviderParameters

NOTE: Refer to Clause 7.3.2. for more details on the Safety Parameter Interface (SPI) of the
SafetyProvider.

NOTE: The parameters for SafetyProviderID and SafetyBaseID exist in pairs for “Configured” and
“Active” states:

• SafetyProviderIDConfigured and SafetyProviderIDActive,

• SafetyBaseIDConfigured and SafetyBaseIDActive.

The “[...]Configured” parameters shall always deliver the values as configured via the SPI. The
“[...]Active” parameters shall deliver

• the corresponding “[...]Configured” values if the system is still offline;

• the values which have been set during runtime via the SAPI parameters (SafetyProviderID,
SafetyBaseID);

• the corresponding “[...]Configured” values if the active values have been set to zero via the
SAPI parameters (SafetyProviderID, SafetyBaseID).

The Property SafetyBaseIDConfigured is shared for all SafetyProviders with the same
SafetyBaseIDConfigured value. If multiple instances of SafetyObjectsType are running on the same
node, it is a viable optimization that a property “SafetyBaseIDConfigured” is referenced by multiple
SafetyProviders and/or SafetyConsumers.

For releases up to Release 2.0 of the specification, the value for the SafetyStructureSignatureVersion
shall be 0x0001 (see RQ8.18 in 8.1.3.4).

OPC 10000-15: Safety 33 1.05.00

Table 14 – SafetyConsumerParametersType Definition

Attribute Value

BrowseName SafetyConsumerParametersType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of BaseObjectType

HasProperty Variable SafetyProviderIDConfigured UInt32 PropertyType Mandatory

HasProperty Variable SafetyProviderIDActive UInt32 PropertyType Mandatory

HasProperty Variable SafetyBaseIDConfigured Guid PropertyType Mandatory

HasProperty Variable SafetyBaseIDActive Guid PropertyType Mandatory

HasProperty Variable SafetyConsumerIDConfigured UInt32 PropertyType Mandatory

HasProperty Variable SafetyConsumerIDActive UInt32 PropertyType Mandatory

HasProperty Variable SafetyProviderLevel Byte PropertyType Mandatory

HasProperty Variable SafetyStructureSignature UInt32 PropertyType Mandatory

HasProperty Variable SafetyStructureSignatureVersion UInt16 PropertyType Optional

HasProperty Variable SafetyStructureIdentifier String PropertyType Optional

HasProperty Variable SafetyConsumerTimeout UInt32 PropertyType Mandatory

HasProperty Variable SafetyOperatorAckNecessary Boolean PropertyType Mandatory

HasProperty Variable SafetyErrorIntervalLimit UInt16 PropertyType Mandatory

HasProperty Variable SafetyClientImplemented Boolean PropertyType Mandatory

HasProperty Variable SafetyPubSubImplemented Boolean PropertyType Mandatory

Conformance Units

SafetyConsumerParameters

NOTE: Refer to Clause 7.4.3. for more details on the Safety Parameter Interface (SPI) of the
SafetyConsumer.

NOTE: The parameters for SafetyProviderID, SafetyBaseID and SafetyConsumerID exist in pairs for
“Configured” and “Active” states:

• SafetyProviderIDConfigured and SafetyProviderIDActive,

• SafetyBaseIDConfigured and SafetyBaseIDActive,

• SafetyConsumerIDConfigured and SafetyConsumerIDActive .

The “[...]Configured” parameters shall always deliver the values as configured via the SPI. The
“[...]Active” parameters shall deliver

• the corresponding “[...]Configured” values if the system is still offline;

• the values which have been set during runtime via the SAPI parameters (SafetyProviderID,
SafetyBaseID, SafetyConsumerID);

• the corresponding “[...]Configured” values if the active values have been set to zero via the
SAPI parameters (SafetyProviderID, SafetyBaseID, SafetyConsumerID).

NOTE: The nodes SafetyStructureIdentifier and SafetyStructureSignatureVersion are optional,
because SafetyStructureSignature is typically calculated in an offline engineering tool. For small
devices, it might be beneficial to only upload the SafetyStructureSignature to the device, but not
SafetyStructureIdentifier and SafetyStructureSignatureVersion in order to save bandwidth and/or
memory.

6.2 Datatype Definition

6.2.1 InFlagsType

This is a subtype of the Byte DataType with the OptionSetValues Property defined. The InFlagsType
is formally defined in Table 15.

OPC 10000-15: Safety 34 1.05.00

Table 15 – InFlagsType Values

Value Bit No. Description

CommunicationError 0 0: No error

1: An error was detected in the previous ResponseSPDU.

OperatorAckRequested 1 Used to inform the SafetyProvider that operator acknowledgment is
requested.

FSV_Activated 2 Is used for conformance test of SafetyConsumer.SAPI.FSV_Activated

Bits 3..7 are reserved for future use shall be set to zero by the SafetyConsumer and shall not be
evaluated by the SafetyProvider.

The InFlagsType representation in the AddressSpace is defined in Table 16.

Table 16 – InFlagsType Definition

Attribute Value

BrowseName InFlagsType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Byte DataType defined in OPC 10000-5

0:HasProperty Variable 0:OptionSetValues 0:LocalizedText [] 0:PropertyType

Conformance Units

SafetySupport

NOTE: CommunicationError can be used as a trigger, e.g., for a communication analysis tool. It is not
forwarded to the safety application by the SafetyProvider. If CommunicationError is needed in the
safety application, bidirectional communication can be implemented and the value of
CommunicationError can be put into the user data.

6.2.2 OutFlagsType

This is a subtype of the Byte DataType with the OptionSetValues Property defined. The OutFlagsType
is formally defined in Table 17.

Table 17 – OutFlagsType Values

Value Bit No. Description

OperatorAckProvider 0 Operator acknowledgment at the provider, hereby forwarded to the
SafetyConsumer, see OperatorAckProvider in the SAPI of the SafetyProvider,
Clause 7.3.1.

ActivateFSV 1 Activation of fail-safe values by the safety application at the SafetyProvider,
hereby forwarded to the SafetyConsumer, see ActivateFSV in the SAPI of the
SafetyProvider, Clause 7.3.1

TestModeActivated 2 Enabling and disabling of test mode in the SafetyProvider, hereby forwarded to
the SafetyConsumer, see EnableTestMode in the SAPI of the SafetyProvider,
Clause 7.3.1

Bits 3..7 are reserved for future use shall be set to zero by the SafetyConsumer and shall not be
evaluated by the SafetyProvider.

The OutFlagsType representation in the AddressSpace is defined in Table 18.

OPC 10000-15: Safety 35 1.05.00

Table 18 – OutFlagsType Definition

Attribute Value

BrowseName OutFlagsType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Byte DataType defined in OPC 10000-5

0:HasProperty Variable 0:OptionSetValues 0:LocalizedText [] 0:PropertyType

Conformance Units

SafetySupport

6.2.3 RequestSPDUDataType

Table 19 – RequestSPDUDataType Structure

Name Type Description

RequestSPDUDataType structure

 InSafetyConsumerID UInt32 See corresponding method argument in Table 8.

 InMonitoringNumber UInt32 See corresponding method argument in Table 8.

 InFlags InFlagsType See corresponding method argument in Table 8.

NOTE: The Prefix “In” should be interpreted from the SafetyProvider’s point of view and is used in a
consistent manner to the parameters of the method ReadSafetyData (see 6.1.3).

The representation in the AddressSpace of the RequestSPDUDataType DataType is defined in Table
20.

Table 20 – RequestSPDUDataType definition

Attributes Value

BrowseName RequestSPDUDataType

IsAbstract FALSE

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of Structure defined in OPC 10000-5.

Conformance Units

SafetyPDUs

6.2.4 ResponseSPDUDataType

Table 21 – ResponseSPDUDataType Structure

Name Type Description

ResponseSPDUDataType structure

 OutSafetyData Structure See corresponding method argument in Table 8.

 OutFlags OutFlagsType See corresponding method argument in Table 8.

 OutSPDU_ID_1 UInt32 See corresponding method argument in Table 8.

 OutSPDU_ID_2 UInt32 See corresponding method argument in Table 8.

 OutSPDU_ID_3 UInt32 See corresponding method argument in Table 8.

 OutSafetyConsumerID UInt32 See corresponding method argument in Table 8.

 OutMonitoringNumber UInt32 See corresponding method argument in Table 8.

 OutCRC UInt32 See corresponding method argument in Table 8.

 OutNonSafetyData Structure See corresponding method argument in Table 8.

NOTE: The Prefix “Out” should be interpreted from the SafetyProvider’s point of view and is used in
a consistent manner to the parameters of the method ReadSafetyData (see 6.1.3).

[RQ6.8] To avoid possible problems with empty structures, the dummy structure
NonSafetyDataPlaceholder shall be used as DataType for OutNonSafetyData when no non-safety data
is used. The datatype-node defining this structure has a fixed node-ID and contains a single Boolean.

OPC 10000-15: Safety 36 1.05.00

The representation in the AddressSpace of the ResponseSPDUDataType DataType is defined in Table
22.

Table 22 – ResponseSPDUDataType definition

Attributes Value

BrowseName ResponseSPDUDataType

IsAbstract FALSE

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of Structure defined in OPC 10000-5

Conformance Units

SafetyPDUs

6.2.5 NonSafetyDataPlaceholderDataType

Table 23 – NonSafetyDataPlaceholderDataType Structure

Name Type Description

NonSafetyDataPlaceholderDataType structure

 Dummy Boolean Dummy variable to avoid empty structures.

NOTE: The receiver should not evaluate the value of ‘Dummy’.

6.3 SafetyProvider Version

Future versions may use different identifiers (such as ReadSafetyDataV2), allowing a SafetyProvider
to implement multiple versions of OPC UA Safety at the same time. Hence, the same SafetyProvider
can be accessed by SafetyConsumers of different versions.

6.4 DataTypes and length of SafetyData

OPC UA Safety supports sending of the basic data types listed in OPC UA within SafetyData (see
OPC 10000-3 and OPC 10000-6). The supported data types are vendor-specific.

[RQ6.9] Only scalar data types shall be used. Arrays are currently not supported by this part.

The supported maximum length of the SafetyData is vendor-specific but still limited to 1500 bytes.
Typical values for the maximum length include 1,16, 64, 256, 1024, and 1500 bytes.

[RQ6.10] For controller-like devices, the supported data types and the maximum length of the
SafetyData shall be listed in the user manual.

[RQ6.11] For the data type Boolean, the value 0x01 shall be used for ‘true’ and the value 0x00 shall
be used for ‘false’.

NOTE: It is recommended to send multiple Booleans in separate variables. However, in small devices,
it may be necessary to combine a set of 8 Booleans in one variable for performance reasons. In this
case, the datatype ‘unsigned Byte’ can be used.

6.5 Connection establishment

OPC UA Safety uses the OPC UA services for connection establishment, it poses no additional
requirement to these services.

NOTE: This version of the specification describes configuration only at engineering time. This means
that the parameters defined in the SPI (see Clauses 7.3.2 and 7.4.1) are read-only via the interface
described in this specification. Changing of parameters are expected to be done in a safety -related
way, using the respective tools and interfaces provided by the vendor. Future versions of this part
may specify a vendor-independent interface for configuration.

OPC 10000-15: Safety 37 1.05.00

7 Safety communication layer services and management

7.1 Overview

Figure 10 gives an overview of the safety communication layer and its interfaces. It thereby also shows
the scope of the specification of OPC UA Safety in part 15. The main function of the OPC UA Safety
layer services is the state machine which handles the protocol . The state machines interact with the
following interfaces:

- The Safety Application Program Interface (SAPI) is accessed by the safety application for exchanging
safety data during runtime.

- The Safety Parameter Interface (SPI) is accessed during commissioning for setting safety parameters
such as IDs or the timeout value in the SafetyConsumer.

- The non-safety related Diagnostics Interface (DI) can be accessed at runtime for troubleshooting the
safety communication.

- the OPC UA platform interface (OPC UA PI) connects the SCL to the non-safe OPC UA stack and is
used during runtime.

The interfaces (SAPI, SPI, DI and OPC UA PI) described in this clause are abstract and informative.
They represent logical data inputs and outputs to this layer that are necessary for the proper operation
of the state machine. No normative, concrete mappings are specified. The concrete implementations
are vendor-specific and may not exactly match the abstract interfaces described.

Figure 10 – Safety communication layer overview

7.2 OPC UA Platform interface (OPC UA PI)

The state machines of OPC UA Safety are independent from the actual OPC UA services used for
data transmission. This is accomplished by introducing a so-called OPC UA Mapper, serving as an
interface between the safety communication layer and the OPC UA stack.

The mapper can either make use of OPC UA Client/Server and remote method invocation or the
publishing of and subscribing to remote variables as defined in OPC 10000-14. The requirements on
the implementation of the mapper are implicitly given in Clause 6 (OPC UA Information Model).

OPC UA Safety

SPDU

SPDU

Parameters

Diagnostic Messages

Safety Protocol Data Unit

State machine

Safety Application

Program

Interface (SAPI)

Safety Parameter

Interface (SPI)

Diagnostic Interface

(DI)

(Non-safe)

OPC UA platform interface (OPC UA PI)

vendor-specific

scope of this

specification

Mapping to OPC UA services

OPC UA – Mapper

(Client Server and/or Pub/Sub)

OPC 10000-15: Safety 38 1.05.00

7.3 SafetyProvider interfaces

Figure 11 shows an overview of the SafetyProvider interfaces. The SAPI is specified in Clause 7.3.1,
the SPI is specified in Clause 7.3.2.

Figure 11 – SafetyProvider interfaces

7.3.1 SAPI of SafetyProvider

[RQ7.1] The SAPI of the SafetyProvider represents the safety communication layer services of the
SafetyProvider. Table 24 lists all inputs and outputs of the SAPI of the SafetyProvider. Each
SafetyProvider shall implement the SAPI as shown in Table 24, however, the details are vendor-
specific.

Table 24 – SAPI of the SafetyProvider

SAPI Term Type I/O Definition

SafetyData Structure I This input is used to accept the user data which is then transmitted as
SafetyData in the SPDU.

NOTE: Whenever a new MNR is received from a SafetyConsumer, the
state machine of the SafetyProvider will read a new value of the
SafetyData from its corresponding Safety Application and use it until the
next MNR is received.

NOTE: If no valid user data is available at the Safety Application,
ActivateFSV is expected to be set to “1” by the Safety Application.

NonSafetyData Structure I Used to consistently transmit non-safety data values (e.g. diagnostic
information) together with safe data, see Clause 8.1.1.10

SafetyProvider instance

SafetyData

A
c
ti
v
a
te

F
S

V

OPC UA – Mapper

ResponseSPDU

S
a
fe

ty
C

o
n
s
u
m

e
rI

D

O
p
e
ra

to
rA

c
k
P

ro
v
id

e
r

Safety Application Program Interface (SAPI)

Safety
Parameter
Interface (SPI)

SafetyProviderIDConfigured

SafetyBaseIDConfigured

SafetyProviderLevel

SafetyStructureSignature

SafetyStructureSignatureVersion

SafetyStructureIdentifier

SafetyProviderDelay

SafetyServerImplemented

SafetyPubSubImplemented

E
n
a
b
le

T
e
s
tM

o
d
e

M
o
n
it
o
ri
n

g
N

u
m

b
e
r

SafetyData
Safety Trailer

incl. CRCRequestSPDU

S
a
fe

ty
B

a
s
e
ID

NonSafetyData

S
a
fe

ty
P

ro
v
id

e
rI

D

O
p
e
ra

to
rA

c
k
R

e
q
u
e
s
te

d

NonSafetyData

OPC 10000-15: Safety 39 1.05.00

SAPI Term Type I/O Definition

EnableTestMode

Boolean I By setting this input to “1” the remote SafetyConsumer is informed (by
Bit 2 in ResponseSPDU.Flags, see Clause 6.2.2) that the SafetyData are
test data, and are not to be used for safety-related decisions.
NOTE: The OPC UA Safety stack is intended for implementation in safety
devices exclusively, see Clause 4.2.

OperatorAckProvider

Boolean I This input is used to implement an operator acknowledgment on the

SafetyProvider side. The value will be forwarded to the SafetyConsumer,
where it can be used to trigger a return from fail -safe substitute values
(FSV) to actual process values (PV), see Annex B.2.4.

OperatorAckRequested Boolean O Indicates that an operator acknowledge is requested by the
SafetyConsumer. This flag is received within the RequestSPDU.

ActivateFSV
(Fail-safe
Substitute
Values)

Boolean I By setting this input to “1” the SafetyConsumer is instructed (via Bit 1 in
ResponseSPDU.Flags, see Clause 6.2.2) to deliver FSV instead of PV to
the safety application program.

NOTE: If the replacement of process values by FSV should be
controllable in a more fine-grained way, this can be realized by using
qualifiers within the SafetyData, see Clause 5.3.

SafetyConsumerID UInt32 O This output yields the ConsumerID used in the last access to this
SafetyProvider by a SafetyConsumer (see Clause 6.1.3).

NOTE: all safety-related checks are executed by OPC UA Safety. The
safety application is not required to check this SafetyConsumerID.

MonitoringNumber

UInt32 O This output yields the monitoring number (MNR). It is updated whenever
a new request comes in from the SafetyConsumer.

NOTE: all safety-related checks are executed by OPC UA Safety. The
safety application is not required to check this Monitoring number.

SafetyProviderID UInt32 I For dynamic systems, this input can be set to a non-zero value. In this
case, the SafetyProvider uses this value instead of the value from the
SPI parameter SafetyProviderIDConfigured. If the value is changed to
“0”, the value of parameter SafetyProviderIDConfigured from the SPI will
be used (again).

See Figure 11, Clause 3.2, and Clause 11.1.1.

For static systems, this input is usually always kept at value “0”.

SafetyBaseID GUID I For dynamic systems, this input can be set to a non-zero value. In this
case, the SafetyProvider uses this value instead of the value of the SPI
parameter SafetyBaseIDConfigured. If the value is changed to “0”, the
value of parameter SafetyBaseIDConfigured from the SPI will be used
(again).

See Figure 11, Clause 3.2, and Clause 11.1.1.

For static systems, this input is usually always kept at value “0”.

7.3.2 SPI of SafetyProvider

[RQ7.2] Each SafetyProvider shall implement the parameters and constants [RQ7.3] as shown in
Table 25. The parameters (R/W in column “Access”) can be set via the SPI, whereas the constants (R
in column “Access”) are read-only. The mechanisms for setting the parameters are vendor-specific.
The attempt of setting a parameter to a value outside its range shall not become effective, and a
diagnostic message should be shown when appropriate. The values of the constants depend on the
way the SafetyProvider is implemented. They never change and are therefore not writable via any of
the interfaces.

Table 25 – SPI of the SafetyProvider

Identifier Type Range Initial
Value

(before
configu
ration)

Access Note

OPC 10000-15: Safety 40 1.05.00

SafetyProviderIDConfigured UInt32 0 -
0xFFFFFFF
F

0x0 R/W Provider-ID of the
SafetyProvider that is
normally used, see Clause 3.2
and Clause 11.1.1.

For dynamic systems, the
safety application program
can overwrite this ID by
providing a non-zero value at
the input SafetyProviderID of
the Safety Provider’s SAPI.
This runtime value can be
queried using the
SafetyProviderIDActive
parameter. See note on
configured and active values
at Table 13.

Note: if both the values
provided at the SPI and the
SAPI are 0x0, this means that
the SafetyProvider is not
properly configured.
SafetyConsumers will never
try to communicate with
SafetyProviders having a
SafetyProviderID of 0x0, see
Transitions T13/T27 in Table
30 and the macro
<ParametersOK?> in Table
28.

SafetyBaseIDConfigured GUID any value
which can
be
represented
with sixteen
bytes

all
sixteen
bytes
are
0x00

R/W Base-ID of the SafetyProvider
that is normally used, see
Clause 3.2. and
Clause 11.1.1.

For dynamic systems, the
safety application program
can overwrite this ID by
providing a non-zero value at
the input SafetyBaseID of the
SafetyProvider’s SAPI. This
runtime value can be queried
using the SafetyBaseIDActive
parameter. See note on
configured and active values
at Table 13.

Note: if both the values
provided at the SPI and the
SAPI are 0x0, this means that
the SafetyProvider is not
properly configured.
SafetyConsumers will never
try to communicate with
SafetyProviders having a
SafetyBaseID of 0x0, see
Transitions T13/T27 in Table
30 and the macro
<ParametersOK?> in Table
28.

See Clause 11.1.1 for more
information on GUID.

SafetyProviderLevel Byte

0x01 - 0x04 n.a. R The SIL the SafetyProvider
implementation (hardware &
software) is capable of, see
Figure 12.

NOTE: It is independent from
the generation of the
SafetyData at SAPI.

NOTE: the
SafetyProviderLevel is used to

OPC 10000-15: Safety 41 1.05.00

distinguish devices of a
different SIL. As a result,
SPDUs coming from a device
with a low SIL will never be
accepted when a
SafetyConsumer is
parameterized to implement a
safety function with a high
SIL.

SafetyStructureSignature UInt32 0 –
0xFFFFFFF
F

0x0 R/W Signature of the SafetyData
structure, for calculation see
Clause 8.1.3.4

Note: “0” would not be a valid
signature and thus indicates a
SafetyProvider which is not
properly configured.
SafetyConsumers will never
try to communicate with
SafetyProviders having a
SafetyStructureSignature of
0x0, see Transitions T13/T27
in Table 30 and the macro
<ParametersOK?> in Table
28.

SafetyStructureSignatureVersion UInt16 0x1 0x1 R/W Version used to calculate
SafetyStructureSignature, see
Clause 8.1.3.4

SafetyStructureIdentifier String all strings “” (the
empty
string)

R/W Identifier describing the data
type of the safety data, see
Clause 8.1.3.4.

SafetyProviderDelay UInt32 0x0 –
0xFFFFFFF
F

0x0 R/W In microseconds (µs). It can
be set during the engineering
phase of the SafetyProvider or
set during online configuration
as well.

SafetyProviderDelay is the
maximum time at the
SafetyProvider from receiving
the RequestSPDU to start the
transmission of
ResponseSPDU, see
Clause 10.1.

The parameter
SafetyProviderDelay has no
influence on the functional
behavior of the
SafetyProvider. However, it
will be provided in the OPC
UA information model of a
SafetyProvider to inform about
its worst-case delay time. The
value can be used during
commissioning to check
whether the timing behavior of
the SafetyProvider is suitable
to fulfill the watchdog delay of
the corresponding
SafetyConsumer.

NOTE: This value does not
need to be generated in a
safety-related way.

SafetyServerImplemented Boolean 0x0 / 0x1 n.a. R This read-only parameter
indicates whether the
SafetyProvider has
implemented the server part of
OPC UA Client/Server
communication (see Clause
4.3):

OPC 10000-15: Safety 42 1.05.00

1: Server for OPC UA
Client/Server communication
is implemented.

0: Server for OPC UA
Client/Server communication
is not implemented.

SafetyPubSubImplemented Boolean 0x0 / 0x1 n.a. R This read-only parameter
indicates whether the
SafetyProvider has
implemented the necessary
publishers and subscribers for
OPC UA PubSub
communication (see Clause
4.3):

1: OPC UA PubSub
communication is
implemented.

0: OPC UA PubSub
communication is not
implemented.

Figure 12 – Example combinations of SIL capabilities

The constant SafetyProviderLevel determines the value that is used for SafetyProviderLevel_ID when
calculating the SPDU_ID, see Clause 8.1.3.3.

NOTE: SafetyProviderLevel is defined as the SIL the SafetyProvider implementation (hardware &
software) is capable of. It should not be confused with the SIL-level of the implemented safety
function. For instance, Figure 12 shows a safety function which is implemented using a SIL2-capable
sensor, a SIL3-capable PLC, and a SIL1-capable actuator. The overall SIL of the safety function is
considered to be SIL1. Nevertheless, the SafetyProvider implemented on the sensor will use the
constant value “2” as SafetyProviderLevel, whereas the SafetyProvider implemented on the PLC will
use the constant value “3” as SafetyProviderLevel.

The respective SafetyConsumers (on the PLC and the actuator) need to know the
SafetyProviderLevel of their providers for being able to check the SPDU_ID (see Clause 8.1.3.2).

7.4 SafetyConsumer interfaces

Figure 13 shows an overview of the SafetyConsumer interfaces. The Safety Application Program
Interface (SAPI) is specified in Clause 7.4.1, the Safety Parameter Interface (SPI) is specified in
Clause 7.4.3.

M

Sensor SIL2 Actuator SIL1

Safety-
Application

F-PLC SIL3

SafetyProvider

instance

SIL2

SafetyConsumer

SafetyProvider

instance

SIL3

SafetyConsumer

SafetyProviderLevel: 2
SafetyProviderLevel_ID: 0x647C4654

SafetyProviderLevel: 3
SafetyProviderLevel_ID: 0xDEAA9DEE

Due to the SIL1 actuator,
the overall safety function cannot
have a SIL larger than 1.

OPC 10000-15: Safety 43 1.05.00

Figure 13 – SafetyConsumer interfaces

7.4.1 SAPI of SafetyConsumer

The SAPI of the SafetyConsumer represents the safety communication layer services of the
SafetyConsumer. Table 26 lists all inputs and outputs of the SAPI of the SafetyConsumer. [RQ7.4]
Each SafetyConsumer shall implement the SAPI as shown in Table 26, however, the details are
vendor-specific.

Table 26 – SAPI of the SafetyConsumer

SAPI Term Type I/O Definition

SafetyData Structure O This output either delivers the process values received from the
SafetyProvider in the SPDU field SafetyData, or FSV.

NonSafetyData Structure O This output delivers the non-safety process values (e.g. diagnostic
information) which were sent together with safe data, see Clause 8.1.1.10

Enable Boolean I By changing this input to “0” the SafetyConsumer will change each and
every variable of the SafetyData to “0”1 and stop sending requests to the
SafetyProvider. When changing Enable to “1” the SafetyConsumer will
restart safe communication. The variable can be used to delay the start of
the OPC UA Safety communication, after power on until “OPC UA
connection ready” is set. The delay time is not monitored while enable is
set to “0”.

FSV_Activated Boolean O This output indicates via “1”, that on the output SafetyData FSV (all

binary “0”) are provided1.

NOTE: If the ResponseSPDU is checked with error: ActivateFSV is set.

1 NOTE: If an application needs different FSV than “all binary 0”, it is expected to use appropriate constants and ignore the

output of SafetyData whenever FSV_Activated is set.

SafetyData
(PV or FSV)

F
S

V
_
A

c
ti
v
a
te

d

O
p

e
ra

to
rA

c
k
C

o
n

s
u

m
e

r

O
p

e
ra

to
rA

c
k
R

e
q

u
e

s
te

d
OPC UA – Mapper

ResponseSPDU
E

n
a
b

le

S
a

fe
ty

P
ro

v
id

e
rI

D

O
p

e
ra

to
rA

c
k
P

ro
v
id

e
r

Safety Application Program Interface (SAPI)

Safety
Parameter
Interface (SPI) S

a
fe

ty
B

a
s
e

ID

T
e

s
tM

o
d

e
A

c
ti
v
a

te
d

RequestSPDU

SafetyConsumer instance

NonSafetyData

S
a

fe
ty

C
o

n
s
u

m
e

rI
D

SafetyProviderIDConfigured

SafetyBaseIDConfigured

SafetyConsumerIDConfigured

SafetyProviderLevel

SafetyStructureSignature

SafetyStructureSignatureVersion

SafetyStructureIdentifier

SafetyConsumerTimeOut

SafetyOperatorAckNecessary

SafetyErrorIntervalLimit

SafetyClientImplemented

SafetyPubSubImplemented

SafetyData
Safety Trailer

incl. CRC
NonSafetyData

OPC 10000-15: Safety 44 1.05.00

SAPI Term Type I/O Definition

OperatorAckConsumer

Boolean I For motivation, see Clause 7.4.2.

After an indication of OperatorAckRequested this input can be used to
signal an operator acknowledgment. By changing this input from “0” to “1”
(rising edge) the SafetyConsumer is instructed to switch SafetyData from
FSV to PV. OperatorAckConsumer is processed only if this rising edge
arrives after OperatorAckRequested was set to “1”, see Figure 20.

If a rising edge of OperatorAckConsumer arrives before
OperatorAckRequested becomes 1, this rising edge is ignored.

OperatorAckRequested

Boolean O This output indicates the request for operator acknowledgment. The bit is
set to “1” by the SafetyConsumer, when three conditions are met:

1. Too many communication errors were detected in the past, so
the SafetyConsumer decided to switch to fail -safe substitute
values.

2. Currently, no communication errors occur, and hence operator
acknowledgment is possible.

3. Operator acknowledgment (rising edge at input
OperatorAckConsumer) has not yet occurred.

The bit is reset to “0” when a rising edge at OperatorAckConsumer is
detected.

OperatorAckProvider

Boolean O This output indicates that an operator acknowledgment has taken place
on the SafetyProvider. If operator acknowledgment at the SafetyProvider
should be allowed, this output is connected to OperatorAckConsumer,
see Annex B.2.4 and B.2.5.

NOTE: If the ResponseSPDU is checked with error, this output remains at
its last good value.

TestModeActivated Boolean O The safety application program is expected to evaluate this output for
determining whether the communication partner is in test mode or not. A
value of “1” indicates that the communication partner (source of data) is
in test mode, e.g., during commissioning. Data coming from a device in
test mode may be used for testing but is not intended to be used to
control safety-critical processes. A value of “0” represents the “normal”
safety-related mode.

Motivation: Test mode enables the programmer and commissioner to
validate the safety application using test data.

NOTE: If the ResponseSPDU check results in an error and the
SafetyErrorIntervalTimer (see Clause 7.4.3) is also not expired,
TestModeActivated is reset.

SafetyProviderID UInt32 I For dynamic systems, this input can be set to a non-zero value. In this
case, the SafetyConsumer uses this variable instead of the SPI -
Parameter SafetyProviderIDConfigured. This input is only read in the first
cycle, or when a rising edge occurs at the input Enable. See also
Table 27. If it is changed to “0”, the value of SPI parameter
SafetyProviderIDConfigured will be used (again).

For static systems, this input is usually always kept at value “0” .

SafetyBaseID GUID I For dynamic systems, this input can be set to a non-zero value. In this
case, the SafetyConsumer uses this variable instead of the SPI -
Parameter SafetyBaseIDConfigured. This input is only read in the first
cycle, or when a rising edge occurs at the input Enable. See also
Table 27. If it is changed to “0”, the SPI-parameter
SafetyBaseIDConfigured will become activated.

For static systems, this input is usually always kept at value “0”.

SafetyConsumerID UInt32 I For dynamic systems, this input can be set to a non-zero value. In this
case, the SafetyConsumer uses this variable instead of the SPI -
Parameter SafetyConsumerID. This input is only read in the first cycle, or
when a rising edge occurs at the input Enable. See also Table 27. If it is
changed to “0”, the SPI-parameter SafetyConsumerID will become
activated.

For static systems, this input is usually always kept at value “0”.

OPC 10000-15: Safety 45 1.05.00

7.4.2 Motivation for SAPI Operator Acknowledge (OperatorAckConsumer)

The safety argumentation assumes that random errors in the underlying OPC UA stack including its
communication links are not too frequent, i.e., that its failure rate is lower than a given threshold,
depending on the desired SIL (see Clause 11.3.1).

Whenever the SafetyConsumer detects a faulty telegram, it checks whether the assumption is still
valid, and switches to fail-safe substitute values otherwise. Returning to process values then requires
an operator acknowledgment.

Operator Acknowledge is expected to be initiated by a human operator who is responsible to check
the installation, see Table 40, row “Operator Acknowledge”. For this reason, the parameter
OperatorAckRequested is delivered by the SafetyConsumer to the safety application. See Clause B.2
for details on operator acknowledgment scenarios.

Timeout errors do only require an operator acknowledgment if operator acknowledgment is required
by the safety function itself. In this case, SafetyOperatorAckNecessary is set to indicate that operator
acknowledgments are required.

7.4.3 SPI of the SafetyConsumer

[RQ7.5] Each SafetyConsumer shall implement the parameters shown in Table 27 which can be set
via the SPI. The mechanisms for setting these parameters are vendor -specific. The attempt of setting
a parameter to a value outside its range shall not become effective, an d a diagnostic message should
be shown when appropriate. The SPI of the SafetyConsumer represents the parameters of the safety
communication layer management of the SafetyConsumer.

Table 27 – SPI of the SafetyConsumer

Identifier Type Valid range Initial
Value

(before
configu
ration)

Access Note

SafetyProviderIDConfigured UInt32 0x0 -
0xFFFFFFFF

0x0 R/W The SafetyProviderID of the
SafetyProvider this
SafetyConsumer normally
connects to, see Figure 11 and
Clause 3.2.

For dynamic systems, the
safety application program can
overwrite this ID by providing a
non-zero value at the input
SafetyProviderID of the safety
Consumer’s SAPI. This runtime
value can be queried using the
SafetyProviderIDActive
parameter. See note on
configured and active values at
Table 14.

SafetyBaseIDConfigured GUID any value
which can be
represented
with sixteen
bytes.

All
sixteen
bytes
are
0x00

R/W The default SafetyBaseID of
the SafetyProvider this
SafetyConsumer uses to make
a connection, see Clause 3.2.

For dynamic systems, the
safety application program can
overwrite this ID by providing a
non-zero value at the input
SafetyBaseID of the
SafetyConsumer’ s SAPI. This
runtime value can be queried
using the SafetyBaseIDActive
parameter. See note on
configured and active values at
Table 14.

See Clause 11.1.1 for more
information on GUID.

SafetyConsumerIDConfigured UInt32 0x0 -
0xFFFFFFFF

0x0 R/W ID of the SafetyConsumer, see
Clause 11.1.2.

OPC 10000-15: Safety 46 1.05.00

For dynamic systems, the
safety application program can
overwrite this ID by providing a
non-zero value at the input
SafetyConsumerID of the
SafetyConsumer’s SAPI. This
runtime value can be queried
using the
SafetyConsumerIDActive
parameter. See note on
configured and active values at
Table 14.

SafetyProviderLevel

Byte 0x01 - 0x04 0x04 R/W SafetyConsumer’s expectation
on the SIL the SafetyProvider
implementation (hardware &
software) is capable of. See
Clause 3.2, Clause 8.1.3.3,
and Figure 12.

SafetyStructureSignature UInt32 0x0 –
0xFFFFFFFF

0x0 R/W Signature over the SafetyData
structure, see Clause 8.1.3.4

SafetyStructureSignatureVersion UInt16 0x1 0x1 R/W Version used to calculate
SafetyStructureSignature, see
Clause 8.1.3.4

For the SafetyConsumer, this
parameter is optional.

SafetyStructureIdentifier String “” R/W Identifier describing the data
type of the safety data, see
Clause 8.1.3.4.

For the SafetyConsumer, this
parameter is optional.

SafetyConsumerTimeOut UInt32 0x0 –
0xFFFFFFFF

0x0 R/W Watchdog-time in
microseconds (µs).

Whenever the SafetyConsumer
sends a request to a
SafetyProvider, its watchdog
timer is set to this value. The
expiration of this timer prior to
receiving an error-free reply by
the SafetyProvider indicates an
unacceptable delay.

See Clause 10.1

SafetyOperatorAckNecessary Boolean 0x0 / 0x1 0x1 R/W This parameter controls
whether an operator
acknowledgment (OA) is
necessary in case of errors of
type “unacceptable delay” or
“loss”, or when the
SafetyProvider has activated
FSV (ActivateFSV).
1: FSV are provided at the
output SafetyData of the SAPI
until OA.
0: PV are provided at
SafetyData of the SAPI as
soon as the communication is
free of errors. In case of
ActivateFSV the values change
from FSV to PV as soon as
ActivateFSV returns to “0”.

NOTE: This parameter does
not have an influence on the
behavior of the
SafetyConsumer following the
detection of other types of
communication errors, such as
data corruption or an error

OPC 10000-15: Safety 47 1.05.00

detected by the SPDU_ID. For
these types of errors, OA is
mandatory, see Clause 7.4.2.

SafetyErrorIntervalLimit

UInt16 6, 60, 600 600 R/W Value in minutes.

The parameter
SafetyErrorIntervalLimit
determines the minimal time
interval between two
consecutive communication
errors so that they do not
trigger a switch to FSV in the
SafetyConsumer, see Clause
7.4.2.

It affects the availability and
the PFH/PFDavg of this OPC
UA Safety communication link,
see Clause 11.4.

SafetyClientImplemented Boolean 0x0 / 0x1 n.a. R This read-only parameter
indicates whether the
SafetyConsumer has
implemented the client part of
OPC UA Client/Server
communication (see Clause
4.3):

1: Client for OPC UA
Client/Server communication is
implemented.

0: Client for OPC UA
Client/Server communication is
not implemented.

SafetyPubSubImplemented Boolean 0x0 / 0x1 n.a. R This read-only parameter
indicates whether the
SafetyConsumer has
implemented the necessary
publishers and subscribers for
OPC UA PubSub
communication (see Clause
4.3):

1: OPC UA PubSub
communication is implemented.

0: OPC UA PubSub
communication is not
implemented.

7.4.4 Motivation for SPI SafetyOperatorAckNecessary

This parameter determines whether automatic restart (i.e., automatically switching back from fail-safe
values to process values) is possible for the safety function or not. It is expected to be set to 1 for
safety functions where automatic restart is not allowed and restart always requires human interaction.

If automatic restart of the safety function is safe, the parameter can be set to 0.

8 Safety communication layer protocol

8.1 SafetyProvider and SafetyConsumer

8.1.1 SPDU formats

Figure 14 shows the structure of a RequestSPDU which originates at the SafetyConsumer and
contains a SafetyConsumerID, a MonitoringNumber (MNR), and one byte of (non-safety-related) flags.

NOTE: The RequestSPDU does not contain a CRC-checksum.

OPC 10000-15: Safety 48 1.05.00

Figure 14 – RequestSPDU

Figure 15 shows the structure of a ResponseSPDU which originates at the SafetyProvider and contains
the safety data (1 – 1500 Bytes), an additional 25 Byte safety code (STrailer) as described in the
subsequent clauses, and the non-safety related data (see also Clause 6.2.4 for details).

Figure 15 – ResponseSPDU

NOTE: to avoid spurious trips, the ResponseSPDU is transmitted in an atomic (consistent) way from
the OPC UA platform interface of the SafetyProvider to the OPC UA platform interface of the
SafetyConsumer. This is the task of the respective OPC UA mapper, see Figure 2.

8.1.1.1 RequestSPDU: SafetyConsumerID

Identifier of the SafetyConsumer instance, for diagnostic purposes , see Clause 11.1.2.

8.1.1.2 RequestSPDU: MonitoringNumber

The SafetyConsumer uses the MNR to detect mis-timed SPDUs, e.g., such SPDUs which are
continuously repeated by an erroneous network element which stores data. A different MNR is used
in every RequestSPDU of a given SafetyConsumer, and a ResponseSPDU will only be accepted if its
MNR is matching the MNR of the corresponding RequestSPDU.

The checking for correctness of the MNR is only performed by the SafetyConsumer.

8.1.1.3 RequestSPDU: Flags

[RQ8.1] The flags of the Safety Consumer (RequestSPDU.Flags) shall be used as shown in Clause
6.2.1.

8.1.1.4 ResponseSPDU: SafetyData

[RQ8.2] SafetyData shall contain the safety-related application data transmitted from the
SafetyProvider to the SafetyConsumer. It may comprise multiple basic OPC UA variables (see Clause
6.4). For the sake of reducing distinctions of cases, SafetyData shall always be a structure, even if it
contains a single basic OPC UA variable, only.

For the calculation of the CRC Signature, the order in which this data is processed by the calculation
is important. SafetyProvider and SafetyConsumer must agree upon the number, type and order of
application data transmitted in SafetyData. The sequence of SafetyData is fixed.

NOTE: SafetyData may contain qualifier bits for a fine-grained activation of fail-safe substitute values.
For a valid process value, the respective qualifier is set to 1 (good), whereas the value 0 (bad) is used
for invalid values. Invalid process values are replaced by a fail-safe substitute value in the consumer’s
safety application. See Clause 5.3.

MonitoringNumber

(UInt32)

SafetyConsumerID

(UInt32)

RequestSPDU

Flags

(Byte)

ResponseSPDU

STrailer

MonitoringNumber

(UInt32)

Flags

(Byte)

SafetyData

(Structure)

SafetyConsumerID

(UInt32)

SPDU_ID

(3x UInt32)

CRC

(UInt32)

NonSafetyData

(Structure)

OPC 10000-15: Safety 49 1.05.00

8.1.1.5 ResponseSPDU: Flags

[RQ8.3] The flags of the SafetyProvider (ResponseSPDU.Flags) shall be used as shown in Clause
6.2.2.

[RQ8.4] Flags in the ResponseSPDU.Flags which are reserved for future use shall be set to zero by
the SafetyProvider and shall not be evaluated by the SafetyConsumer.

8.1.1.6 ResponseSPDU: SPDU_ID

This field is used by the SafetyConsumer to check whether the ResponseSPDU is coming from the
correct SafetyProvider. For details, see Clause 8.1.3.1.

8.1.1.7 ResponseSPDU: SafetyConsumerID

[RQ8.5] The SafetyConsumerID in the ResponseSPDU shall be a copy of the SafetyConsumerID
received in the corresponding RequestSPDU. See Clause 8.1.3.1.

8.1.1.8 ResponseSPDU: MonitoringNumber

[RQ8.6] The MonitoringNumber in the ResponseSPDU shall be a copy of the MonitoringNumber
received in the corresponding RequestSPDU. See Clause 8.1.3.1.

NOTE: The SafetyConsumer uses the ResponseSPDU.MonitoringNumber to detect mis-timed SPDUs,
e.g., such SPDUs which are continuously repeated by an erroneous network element which stores
data. A different MonitoringNumber is used in every RequestSPDU of a given SafetyConsumer, and a
ResponseSPDU will only be accepted if its MonitoringNumber matches the MonitoringNumber in the
corresponding RequestSPDU.

8.1.1.9 ResponseSPDU: CRC

[RQ8.7] This CRC-checksum shall be used to detect data corruption. See Clause 8.1.3.5 on how it is
calculated in the SafetyProvider and how it is checked in the SafetyConsumer.

8.1.1.10 ResponseSPDU: NonSafetyData

[RQ8.8] This structure shall be used to transmit non-safety data values (e.g., diagnostic information)
together with safe data consistently. Non-safety data is not CRC-protected and may stem from an
unsafe source. [RQ8.9] When presented to the safety application (e.g. , at an output of the
SafetyConsumer), non-safety values shall clearly be indicated as “non-safety”, by an appropriate
vendor-specific mechanism (e.g. by using a different color) .

To avoid possible problems with empty structures, the dummy structure NonSafetyDataPlaceholder
shall be used when no non-safety data is used.

8.1.2 OPC UA Safety behavior

8.1.2.1 General

The two SCL-services “SafetyProvider” and “SafetyConsumer” are specified using state diagrams.

8.1.2.2 SafetyProvider/-Consumer Sequence diagram

Figure 16 shows the sequence of request and response with SafetyData for OPC UA Safety.

OPC 10000-15: Safety 50 1.05.00

Figure 16 – Sequence diagram for OPC UA Safety (Client/Server)

SafetyProvider SafetyConsumer

Response

SafetyData 1

Response

SafetyData 1

SafetyData 2

Response

SafetyData 2SafetyData 4

Substitute

Values

SafetyData 4

SafetyData 3

OPC 10000-15: Safety 51 1.05.00

NOTE: The bold arrows represent communication with new data values, whereas dashed arrows contain repeated data
values.

Figure 17 – Sequence diagram for OPC UA Safety (PubSub)

NOTE: the OPC UA state machines do not contain any retry -mechanisms to increase fault tolerance.
In contrast, it is assumed that retry is already handled within the OPC UA stack (e.g. , when using
Client/Server, or by choosing a higher update rate for OPC UA PubSub). The dashed lines therefore
are not part of this document, but rather symbolize the repeated sending of data implemented in the
OPC UA stack.

The SafetyConsumerTimeout is the watchdog time checked in the SafetyConsumer. The watchdog is
restarted whenever a new RequestSPDU is generated (transitions T14 and T26 of the SafetyConsumer
in Table 34). If an appropriate ResponseSPDU is received in time, and the checks for data integrity,
authenticity, and timeliness are all valid, the timer will not expire before it is restarted.

Otherwise, the watchdog timer expires, and the SafetyConsumer triggers a safe reaction. To duly
check its timer, the SafetyConsumer is executed cyclically, with period ConsumerCycleTime.
ConsumerCycleTime is expected to be smaller than SafetyConsumerTimeout.

The ConsumerCycleTime is the maximum time for the cyclic update of the SafetyConsumer. It is the
timeframe from one execution of the SafetyConsumer to the next execution of the SafetyConsumer.
The implementation and error reaction of ConsumerCycleTime is not part of this document; it is vendor-
specific.

8.1.2.3 SafetyProvider state diagram

[RQ8.10] Figure 18 shows a simplified representation of the state diagram of the SafetyProvider. The
exact behavior is described in Table 29, Table 30, and Table 31. The SafetyProvider shall implement

SafetyProvider SafetyConsumer

SafetyData 1

SafetyData 2

SafetyData 4

SafetyData 3 SafetyData 2

SafetyData 4

SafetyData 1

OPC 10000-15: Safety 52 1.05.00

that behavior. It is not required to literally follow the entries given in the tables , if the externally
observable behavior does not change.

Figure 18 – Simplified representation of the state diagram for the SafetyProvider

Table 28 – Symbols used for state machines.

Graphical representation Type Description

Activity State Within these interruptible activity

states the SafetyProvider waits for

new input.

Action State Within these non-interruptible action

states events like new requests are

deferred until the next activity state is

reached, see [1].

The transitions are fired in case of an event, for example receiving an SPDU. In case of several
possible transitions, so-called guard conditions (refer to […] in UML diagrams) define which transition
to fire.

The diagram consists of activity and action states. Activity states are surrounded by bold l ines, action
states are surrounded by thin lines. While activity states may be interruptible by new events, action
states are not. External events occurring while the state machine is in an action state, are deferred
until the next activity state is reached.

NOTE: The details on how to implement activity states and action states are vendor -specific. Typically,
in a real-time system the task performing the SafetyProvider or SafetyConsumer state machine is
executed cyclically (see 5.2). Whenever the task is woken up by the scheduler of the operating system
while it is in an action state, it executes action states until its time slice is used up, or an activity state
is reached. Whenever a task being in an activity state is woken up, it checks for input. If no new input
is available, it immediately returns to the sleep state without changing state.

If input is available, it starts executing action states until its time-slice is up or until the next activity
state is reached.

Table 29 – SafetyProvider instance internal items

INTERNAL ITEMS TYPE DEFINITION

RequestSPDU_i Variable Local Memory for RequestSPDU (required to react on changes).

SPDU_ID_1_i UInt32 Local variable to store SPDU_ID_1

SPDU_ID_2_i UInt32 Local variable to store SPDU_ID_2

S2_PrepareSPDU

S1_WaitForRequest

[new RequestSPDU
received]/
T2

/T3

/T1

[new RequestSPDU
received]/
T2

/T3

Initialization

state_x

state_y

OPC 10000-15: Safety 53 1.05.00

INTERNAL ITEMS TYPE DEFINITION

SPDU_ID_3_i UInt32 Local variable to store SPDU_ID_3

BaseID_i GUID Local variable containing the BaseID (taken either from the SPI or SAPI).

ProviderID_i UInt32 Local variable containing the ProviderID (taken either from the SPI or SAPI).

<Get RequestSPDU> Macro Instruction to take the whole RequestSPDU from the OPC UA Mapper.

<Set
ResponseSPDU>

Macro Instruction to transfer the whole ResponseSPDU to the OPC UA Mapper

<Calc SPDU_ID_i> Macro const uint32 SafetyProviderLevel_ID := … // see Clause 8.1.3.3

If(SAPI.SafetyBaseID == 0) then
 BaseID_i := SPI.SafetyBaseIDConfigured
Else
 BaseID_i := SAPI.SafetyBaseID

Endif
If(SAPI.SafetyProviderID == 0) then
 ProviderID_i := SPI.SafetyProviderIDConfigured
Else
 ProviderID_i := SAPI.SafetyProviderID

Endif

SPDU_ID_1_i := BaseID_i (bytes 0…3)
 XOR SafetyProviderLevel_ID

SPDU_ID_2_i := BaseID_i (bytes 4…7)
 XOR SPI.SafetyStructureSignature

SPDU_ID_3_i := BaseID_i (bytes 8…11)
 XOR BaseID_i (bytes 12…15)
 XOR ProviderID_i

// see Clause 8.1.3.2 for clarification

<build

ResponseSPDU>

Macro Take the MNR and the SafetyConsumerID of the received RequestSPDU. Add

the SPDU_ID_1_i, SPDU_ID_2_i, SPDU_ID_3_i, Flags, the SafetyData and the

NonSafetyData, as well as the calculated CRC.

See Clause 8.1.3.1

Table 30 – States of SafetyProvider instance

STATE NAME STATE DESCRIPTION

Initialization // Initial state

SAPI.SafetyData := 0

SAPI.NonSafetyData := 0

SAPI.MonitoringNumber := 0

SAPI.SafetyConsumerID := 0

SAPI.OperatorAckRequested := 0

RequestSPDU_i := 0

S1_WaitForRequest // waiting on next RequestSPDU from SafetyConsumer

<Get RequestSPDU>

S2_PrepareSPDU ResponseSPDU.Flags.ActivateFSV := SAPI.ActivateFSV

ResponseSPDU.Flags.OperatorAckProvider := SAPI.OperatorAckProvider

ResponseSPDU.Flags.TestModeActivated := SAPI.EnableTestMode

<Calc SPDU_ID_i>

<build ResponseSPDU> // see Clause 8.1.3.1

OPC 10000-15: Safety 54 1.05.00

Table 31 – SafetyProvider transitions

TRAN-
SITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T1 Init S1

T2

S1

S2 // RequestSPDU received

When: [RequestSPDU_i<>

RequestSPDU]

// Process Request

RequestSPDU_i := RequestSPDU

SAPI.MonitoringNumber :=

RequestSPDU.MonitoringNumber

SAPI.SafetyConsumerID :=

RequestSPDU.SafetyConsumerID

SAPI.OperatorAckRequested :=

RequestSPDU.Flags.OperatorAckRequest

ed

T3 S2 S1 // SPDU is prepared

-

<Set ResponseSPDU>

Note: the SafetyProvider does not check for correct configuration. It will reply to requests even if it is
incorrectly configured (e.g. its SafetyProviderID is zero). However, SafetyConsumers will never try to
communicate with SafetyProviders having incorrect parameters, see Transitions T13/T27 in Table 34
and the macro <ParametersOK?> in Table 32.

8.1.2.4 SafetyConsumer state diagram

[RQ8.11] Figure 19 shows a simplified representation of the state diagram of the SafetyConsumer.
The exact behavior is described in Table 32, Table 33, and Table 34. The SafetyConsumer shall
implement this behavior. It is not required to literally follow the entries given in the tables , if the
externally observable behavior does not change.

NOTE: in order to avoid unnecessary spurious trips requiring operator acknowledge ment, the
SafetyConsumers should only be started after an OPC UA connection to a running SafetyProvider has
been established, or setting the input SAPI.Enable should be delayed until the SafetyProvider is
running.

OPC 10000-15: Safety 55 1.05.00

Figure 19 – Principle state diagram for SafetyConsumer

Table 32 – SafetyConsumer internal items

INTERNAL ITEMS TYPE DEFINITION

Constants

MNR_min := 0x100 UInt32 // 0x100 is the start value for MNR, also used after wrap-around.

// The values 0…0xFF are reserved for future use.

Variables

FaultReqOA_i Boolean Local memory for errors which request operator acknowledgment.

OperatorAckConsumerAllowed_i Boolean Auxiliary flag indicating that operator acknowledgment is allowed. It
is true, if the input SAPI.OperatorAckConsumer has been ‘false’
since FaultReqOA_i was set.

MNR_i UInt32 Local Monitoring Number (MNR).

prevMNR_i UInt32 Local memory for previous MNR

ConsumerID_i UInt32 Local memory for SafetyConsumerID in use.

CRCCheck_i Boolean Local variable used to store the result of the CRC-check.

S11_WaitForReStart

[SAPI.Enable==1 && not

<ParametersOK?>]/

T27

/T12

[SAPI.Enable==1 && not

<ParametersOK?>]/

T27

[SAPI.Enable==1 && <ParametersOK?>]/

T13

S12_Initialize_MNR

[SAPI.Enable==1 && <ParametersOK?>]/

T13

Initialization

/T14

S13_PrepareRequest

/T14

S14_WaitForChangedSPDU

/T16/T16

S16_CheckResponseSPDU

[SPDU NOK and

SafetyErrorIntervalTim

er expired]/

T23

[SPDU NOK and

SafetyErrorIntervalTim

er expired]/

T23

S17_Error

WDTimeout/

T18

[SPDU NOK and

SafetyErrorIntervalTim

er not expired]/

T24

WDTimeout/

T18

[SPDU NOK and

SafetyErrorIntervalTim

er not expired]/

T24

S15_CRCCheckSPDU

[CRC err and

SafetyErrorIntervalTimer

not expired]/

T20

[CRC err and

SafetyErrorIntervalTim

er expired]/

T19

[CRCCheckOK]/

T21

[New

ResponseSPDU

received]/

T17

[CRC err and

SafetyErrorIntervalTimer

not expired]/

T20

[CRC err and

SafetyErrorIntervalTim

er expired]/

T19

[CRCCheckOK]/

T21

[New

ResponseSPDU

received]/

T17

/T25

S18_ProvideSafetyData

/T25

[SAPI.Enable==0]/

T15

[SPDU OK]/

T22

[SAPI.Enable==1]/

T26

[SAPI.Enable==0]/

T15

[SPDU OK]/

T22

[SAPI.Enable==1]/

T26

Request / Response part

OPC 10000-15: Safety 56 1.05.00

INTERNAL ITEMS TYPE DEFINITION

SPDUCheck_i Boolean Local variable used to store the result of the additional SPDU-
checks.

SPDU_ID_1_i UInt32 Local variable to store the expected SPDU_ID_1

SPDU_ID_2_i UInt32 Local variable to store the expected SPDU_ID_2

SPDU_ID_3_i UInt32 Local variable to store the expected SPDU_ID_3

SPI_SafetyConsumerID_i

UInt32 Local variable to store the parameter SafetyConsumerID.

SPI_SafetyProviderID_i

UInt32 Local variable to store the parameter SafetyProviderID.

SPI_SafetyBaseID_i

UInt128 Local variable to store the parameter SafetyBaseID

SPI_SafetyStructureSignature_i

UInt32 Local variable to store the parameter SafetyStructureSignature.

SPI_SafetyOperatorAckNecessary
_i

Boolean Local variable to store the parameter SafetyOperatorAckNecessary.

SPI_SafetyErrorIntervalLimit_i UInt16 Local variable to store the parameter SafetyErrorIntervalLimit.

Timers

ConsumerTimer Timer This timer is used to check whether the next valid ResponseSPDU
has arrived on time. It is initialized using the parameter
SPI.SafetyConsumerTimeOut.

NOTE: as opposed to other parameters, a modification of the
parameter value SafetyConsumerTimeout takes effect immediately,
i.e., not only when state S11 is visited.

ErrorIntervalTimer Timer This timer is used to check the elapsed time between errors. If the
elapsed time between two consecutive errors is smaller than the
value SafetyErrorIntervalLimit, FSV will be activated. Otherwise, the
ResponseSPDU is discarded and the SafetyConsumer waits for the
next ResponseSPDU.

This timer is initialized using the local variable
SPI_SafetyErrorIntervalLimit_i.

See Table 27, Clause 7.4.2, and Clause 11.4 for more information.

NOTE: the local variable SPI_SafetyErrorIntervalLimit_i should not
be confused with the parameter SPI.SafetyErrorIntervalLimit. The
local variable is copied from the parameter in state S11 (restart).
Hence, if the parameter value changes during runtime, the new value
will only be used after the connection has been restarted.

Macros <...><...>

<risingEdge x> Macro // detection of a rising edge:

If x==true && tmp==false

Then

 result := true

Else

 result := false

Endif

tmp := x

<Get ResponseSPDU> Macro Instruction to take the whole ResponseSPDU from the OPC UA

Mapper.

OPC 10000-15: Safety 57 1.05.00

INTERNAL ITEMS TYPE DEFINITION

<Use FSV> Macro SAPI.SafetyData is set to binary 0

If [<ConsumerTimer expired || SAPI.Enable==0 ?>]

Then

 SAPI.NonSafetyData is set to binary 0

Else

 SAPI.NonSafetyData is set to ResponseSPDU.NonSafetyData

Endif

SAPI.FSV_Activated := 1

RequestSPDU.Flags.FSV_Activated := 1

NOTE: If a safety application prefers fail -safe values other than binary
0, this can be implemented in the safety application by querying
SAPI.FSV_Activated.

NOTE: the non-safety data is always updated if data is available. In
case of a timeout, no data is available, which is indicated using binary
zero. If an application needs to distinguish between “no data available”
and “binary zero received”, it can add a Boolean variable to the
NonSafetyData. This value is set to ‘one’ during normal operation, and
to ‘zero’ for indicating that no data is available.

<Use PV> Macro SAPI.SafetyData is set to ResponseSPDU.SafetyData

SAPI.NonSafetyData is set to ResponseSPDU.NonSafetyData

SAPI.FSV_Activated := 0

RequestSPDU.Flags.FSV_Activated := 0

RequestSPDU.Flags.CommunicationError := 0

<Set RequestSPDU> Macro Instruction to transfer the whole RequestSPDU to the OPC UA

Mapper

<(Re)Start ConsumerTimer> Macro Restarts the consumer timer.

<(Re)Start ErrorIntervalTimer> Macro Restarts the error interval timer.

<ConsumerTimer expired?> Macro Yields “true” if the timer is running longer than

SPI.SafetyConsumerTimeOut since last restart, “false” otherwise.

<ErrorIntervalTimer expired?> Macro Yields “true” if the timer is running longer than

SPI.SafetyErrorIntervalLimit since last restart, “false” otherwise.

<Build RequestSPDU> Macro If SAPI.SafetyConsumerID != 0

Then

 ConsumerID_i := SAPI.SafetyConsumerID

Else

 ConsumerID_i := SPI_SafetyConsumerID_i

Endif

RequestSPDU.SafetyConsumerID := ConsumerID_i

RequestSPDU.MonitoringNumber := MNR_i

OPC 10000-15: Safety 58 1.05.00

INTERNAL ITEMS TYPE DEFINITION

<Calc SPDU_ID_i> Macro uint128 BaseID

uint32 ProviderID

const uint32 SafetyProviderLevel_ID := … // see Clause 8.1.3.3

If(SAPI.SafetyBaseID == 0)

Then
 BaseID := SPI_SafetyBaseID_i
Else
 BaseID := SAPI.SafetyBaseID

Endif
If(SAPI.SafetyProviderID == 0)

Then
 ProviderID := SPI_SafetyProviderID_i
Else
 ProviderID := SAPI.SafetyProviderID

Endif

SPDU_ID_1_i := BaseID (bytes 0…3)
 XOR SafetyProviderLevel_ID

SPDU_ID_2_i := BaseID (bytes 4…7)
 XOR SPI_SafetyStructureSignature_i

SPDU_ID_3_i := BaseID (bytes 8…11)
 XOR BaseID (bytes 12…15)
 XOR ProviderID

// see Clause 8.1.3.2 for clarification

<ParametersOK?> Macro Boolean result = true
If(SAPI.SafetyBaseID == 0 && SPI_SafetyBaseID_i==0)
Then
 result := false
Else
Endif

If(SAPI.SafetyProviderID == 0 && SPI_SafetyProviderID_i==0)
Then
 result := false
Else
Endif

If(SAPI.SafetyConsumerID == 0 && SPI_SafetyConsumerID_i==0)
Then
 result := false
Else
Endif

If(SPI_SafetyStructureSignature_i==0)
Then
 result := false
Else
Endif

yield result

<Set Diag(ID,

 Boolean isPermanent)>

Macro // ID is the identifier for the type of diagnostic output, see Table 37
// permanent is used to indicate a permanent error.
// Only one diagnostic message is created for multiple permanent
// errors in sequence

If(RequestSPDU.Flags.CommunicationError == 0)
Then
 <do vendor-specific function for diagnostic output using ID>
Else
 //do nothing
Endif

RequestSPDU.Flags.CommunicationError := isPermanent

// NOTE: See Table 37 for possible values for “ID” and their codes.

External Event

OPC 10000-15: Safety 59 1.05.00

INTERNAL ITEMS TYPE DEFINITION

Restart Cycle Event The external call of SafetyConsumer can be interpreted as event

“Restart Cycle”

NOTE: A macro is a shorthand representation for operations described in the according definition.

Table 33 – SafetyConsumer states

STATE NAME STATE DESCRIPTION

Initialization // Initial state of the SafetyConsumer instance.

<Use FSV>

SAPI.OperatorAckRequested := 0
RequestSPDU.Flags.OperatorAckRequested := 0
SAPI.OperatorAckProvider := 0

FaultReqOA_i := 0
OperatorAckConsumerAllowed_i := 0
SAPI.TestModeActivated := 0

RequestSPDU.Flags.CommunicationError := 0

S11_Wait for (Re)Start // Safety Layer is waiting (Re)Start

// Changes to these parameters are only considered in this state

// Exception: a change of SafetyConsumerTimeout is possible during operation

// Read parameters from the SPI and store them in local variables:

SPI_SafetyConsumerID_i := SPI.SafetyConsumerID

SPI_SafetyProviderID_i := SPI.SafetyProviderIDConfigured

SPI_SafetyBaseID_i := SPI.SafetyBaseIDConfigured

SPI_SafetyStructureSignature_i := SPI.SafetyStructureSignature

SPI_SafetyOperatorAckNecessary_i := SPI.SafetyOperatorAckNecessary

SPI_SafetyErrorIntervalLimit_i := SPI_SafetyErrorIntervalLimit

S12_initialize MNR // Use previous MNR if known
// or random MNR within the allowed range (e.g., after cold start), see Clause 11.2.

MNR_i := (previous MNR_i if known) or (random MNR)

MNR_i := max(MNR_i, MNR_min)2

S13_PrepareRequest // Build RequestSPDU and send (done in T16)

S14_WaitForChangedSPDU // Safety Layer is waiting for next ResponseSPDU from SafetyProvider.

// A new ResponseSPDU is characterized by a change in the MNR.

S15_CRCCheckSPDU // Check CRC

uint32 CRC_calc
CRCCheck_i := (CRC_calc == ResponseSPDU.CRC)

// see Clause 8.1.3.5 on how to calculate CRC_calc

S16_CheckResponseSPDU // Check SafetyConsumerID and SPDU_ID and MNR (see T22, T23, T24)

SPDUCheck_i :=
 ResponseSPDU.SPDU_ID_1 == SPDU_ID_1_i &&
 ResponseSPDU.SPDU_ID_2 == SPDU_ID_2_i &&
 ResponseSPDU.SPDU_ID_3 == SPDU_ID_3_i &&
 ResponseSPDU.SafetyConsumerID == ConsumerID_i &&
 ResponseSPDU.MNR == MNR_i

S17_Error SAPI.TestModeActivated := 0

S18_ProvideSafetyData // Provide SafetyData to the application program

2 This ensures that the MNR is greater or equal to MNR_min, in cases the random number generator yielded a smaller value.

OPC 10000-15: Safety 60 1.05.00

NOTES:

• The consumer parameters are accessed only in state S11. In this state, a copy is made, and
in all other states and transitions, the copied values are used. This ensures that a change of
one of these parameters takes effect only when a new safety connection is established.

• The only exception from this rule is the parameter SafetyConsumerTimeout. A change of this
parameter may become effective immediately.

• If this is not the desired behavior, i.e. , if parameters should be changeable during runtime,
this can be accomplished by establishing a second OPC UA Safety connection with the new
parameters, and then switch between these connections at runtime.

Table 34 – SafetyConsumer transitions

TRANS
ITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T12 Init S11 -

T13 S11 S12

//Start

[SAPI.Enable==1 &&

<ParametersOK?>]

<(Re)Start ErrorIntervalTimer>

<calc SPDU_ID_i>

// see Clause 8.1.3.2 for clarification

T14 S12 S13 // MNR initialized <(Re)Start ConsumerTimer>

T15 S18 S11 // Termination

[SAPI.Enable==0]

<Use FSV>

RequestSPDU.Flags.CommunicationError := 0

// necessary to make sure that no diagnostic

// message is lost, see macro <Set Diag ...>

// NOTE: depending on its implementation, it might

// be necessary to stop the ConsumerTimer here.

T16 S13 S14 // Build Request SPDU

// and send it

prevMNR_i := MNR_i

If MNR_i == 0xFFFFFFFFF

Then

 MNR_i := MNR_min

Else

 MNR_i := MNR_i + 1

Endif

<Build RequestSPDU>

<Set RequestSPDU>

T17 S14 S15 // Changed ResponseSPDU

// is received

<Get ResponseSPDU>3

[ResponseSPDU.MNR <>

prevMNR_i]4

// A changed ResponseSPDU is characterized by a

change in the MNR.

T18 S14 S17 // WDTimeout

[<ConsumerTimer expired?>]

<Set Diag(CommErrTO,isPermanent=true)>

<Use FSV>

If SPI_SafetyOperatorAckNecessary_i == 1

Then

 FaultReqOA_i := 1

 SAPI.OperatorAckRequested := 0

 RequestSPDU.Flags.OperatorAckRequested :=

0

Else

 // do nothing

Endif

3 Note: SPDUs with all values (incl. CRC signature) being zero shall be ignored, see [RQ3.3].

4 Another event like “Method completion successful” can be used as guard condition of “Changed ResponseSPDU received”
as well.

OPC 10000-15: Safety 61 1.05.00

TRANS
ITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T19 S15 S13 // When CRC err and

SafetyErrorIntervalTimer

expired

[(crcCheck_i == 0) &&

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>

<Set Diag(CRCerrIgn, isPermanent=false)>

T20 S15 S17 // When CRC err and

SafetyErrorIntervalTimer

not expired

[(crcCheck_i == 0) && not

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>

<Set Diag(CRCerrOA, isPermanent=true)>

<Use FSV>

FaultReqOA_i := 1

SAPI.OperatorAckRequested := 0

RequestSPDU.Flags.OperatorAckRequested := 0

T21 S15 S16 // When CRCCheckOK

[crcCheck_i == 1]

-

OPC 10000-15: Safety 62 1.05.00

T22 S16 S18 // SPDU OK

[SPDUCheck_i==true]

// For clarification, refer to Figure 20;

// indicate OA from provider

SAPI.OperatorAckProvider :=

ResponseSPDU.Flags.OperatorAckProvider

// OA requested due to rising edge at ActivateFSV?

If (<risingEdge ResponseSPDU.Flags.ActivateFSV>&&

SPI_SafetyOperatorAckNecessary_i == true)

Then

 FaultReqOA_i := 1;

 <Set Diag(FSV_Requested,isPermanent=true)>

Else

 // do nothing

Endif

// Set Flags if OA requested:

If FaultReqOA_i==1

Then

 SAPI.OperatorAckRequested := 1,

 RequestSPDU.Flags.OperatorAckRequested :=

1,

 OperatorAckConsumerAllowed_i := 0,

 FaultReqOA_i := 0

Else

 //do nothing

Endif

// Wait until OperatorAckConsumer is not active

If SAPI.OperatorAckConsumer==0

Then

 OperatorAckConsumerAllowed_i := 1

Else

 //do nothing

Endif

// Reset flags after OA:

If SAPI.OperatorAckConsumer ==1 &&

OperatorAckConsumerAllowed_i == 1

Then

 SAPI.OperatorAckRequested := 0,

 RequestSPDU.Flags.OperatorAckRequested :=

0

Else

 // do nothing

Endif

If SAPI.OperatorAckRequested==1 ||

ResponseSPDU.Flags.ActivateFSV==1

Then <Use FSV>

Else <Use PV>

Endif

// Notify safety application that SafetyProvider is in test

mode:

OPC 10000-15: Safety 63 1.05.00

TRANS
ITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

SAPI.TestModeActivated :=

ResponseSPDU.Flags.TestModeActivated

OPC 10000-15: Safety 64 1.05.00

TRANS
ITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T23 S16 S13 // SPDU NOK and

SafetyErrorIntervalTimer

expired

[SPDUCheck_i == false &&

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>,

// Send diagnostic message according the

// detected error:

If ResponseSPDU.SafetyConsumerID <> ConsumerID_i

Then <Set Diag(CoIDerrIgn, isPermanent=false)>

Else

 If ResponseSPDU.MNR<>MNR_i

 Then <Set Diag(MNRerrIgn,

 isPermanent=false)>

 Else

 //do nothing

 EndIf

 If

 ResponseSPDU.SPDU_ID_1<>

 SPDU_ID_1_i ||

 ResponseSPDU.SPDU_ID_2<>

 SPDU_ID_2_i ||

 ResponseSPDU.SPDU_ID_3<>

 SPDU_ID_3_i

 Then

 <Set Diag(SD_IDerrIgn,

 isPermanent=false)>5

 Else

 // do nothing

 Endif

Endif

T24 S16 S17 // SPDU NOK and

SafetyErrorIntervalTimer

not expired

[SPDUCheck_i == 0 && not

<ErrorIntervalTimer

expired?>]

<(Re)Start ErrorIntervalTimer>

// Send diagnostic message according the

// detected error:

If ResponseSPDU.SafetyConsumerID<> ConsumerID_i

Then <Set Diag(CoIDerrOA, isPermanent=true)>

Else

 If ResponseSPDU.MNR<>MNR_i

 Then

 <Set Diag(MNRerrOA,

 isPermanent=true)>

 Else

 //do nothing

 Endif

 If ResponseSPDU.SPDU_ID_1<>

 SPDU_ID_1_i ||

 ResponseSPDU.SPDU_ID_2<>

 SPDU_ID_2_i ||

 ResponseSPDU.SPDU_ID_3<>

 SPDU_ID_3_i

 Then

 <Set Diag(SD_IDerrOA,

 isPermanent=true)>

 Else

 //do nothing

 Endif

Endif

FaultReqOA_i := 1

SAPI.OperatorAckRequested := 0

RequestSPDU.Flags.OperatorAckRequested := 0

<Use FSV>

T25 S17 S18 // SPDU NOK

-

5 see Table 37.

OPC 10000-15: Safety 65 1.05.00

TRANS
ITION

SOURCE
STATE

TARGET
STATE

GUARD CONDITION ACTIVITY

T26 S18 S13 // Restart Cycle

[SAPI.Enable==1]

<(Re)Start ConsumerTimer>

T27 S11 S11 // Invalid parameters

[SAPI.Enable==1 && not

<ParametersOK?>]

<Set Diag(ParametersInvalid, isPermanent=true)>

8.1.2.5 SafetyConsumer sequence diagram for operator acknowledgement (informative)

Figure 20 shows the sequence after the detection of an error requiring operator acknowledge until
communication returns to delivering process values again.

Figure 20 – Sequence diagram for OA

After the error is gone the sequence follows the logic of T22 in Table 34.

8.1.3 Subroutines

8.1.3.1 Build ResponseSPDU

[RQ8.12] The ResponseSPDU shall be built by the SafetyProvider by copying
RequestSPDU.MonitoringNumber and RequestSPDU.SafetyConsumerID into the ResponseSPDU.
After this, SPDU_ID, Flags, the SafetyData and the NonSafetyData shall be updated. Finally,
ResponseSPDU.CRC shall be calculated and appended.

Error while
not <ErrorIntervalTimer

expired?>]

OperatorAckRequested

FaultReqOA_i

OperatorAckConsumer

//no error:
CRCCheck == 1 &&
SPDUCheck ==1

TimeT20 or T24 T22
// Set Flags
// if OA requested

T22
//reset flags after OA

T22
// waiting
// for rising edge
// at SAPI.OperatorAckConsumer

Transition

ActivateFSV==0

logic operation, see T22

<use FSV>
<use PV>

Example LED On
OperatorAckRequested Off

OPC 10000-15: Safety 66 1.05.00

Figure 21 – Overview of task for SafetyProvider

For the ResponseSPDU.Flags, see Clause 8.1.1.5. For the calculation of the SPDU_ID, see
Clause 8.1.3.2. For the calculation of CRC, see Clause 8.1.3.5.

8.1.3.2 Calculation of the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3

[RQ8.13] SPDU_ID_1, SPDU_ID_2 and SPDU_ID_3 shall be calculated according to
Figure 22 and Table 35.

Figure 22 – Calculation of the SPDU_ID

ResponseSPDU

STrailer

MonitoringNumber

(UInt32)

SafetyConsumerID

(UInt32)

RequestSPDU

SafetyConsumer

sends the

RequestSPDU

SafetyProvider

replies with a

ResponseSPDU

Flags

(Byte)

MonitoringNumber

(UInt32)

Flags

(Byte)

SafetyData

(Structure)

SafetyConsumerID

(UInt32)

SPDU_ID

(3x UInt32)

CRC

(UInt32)

NonSafetyData

(Structure)

byte 3

SafetyProviderID SafetyStructureSignature SafetyProviderLevel_ID







byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0

byte 3 byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0 byte 3 byte 2 byte 1 byte 0

SPDU_ID_3 SPDU_ID_2 SPDU_ID_1

byte 11 byte 10 byte 9 byte 8 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

SafetyBaseID

byte 15 byte 14 byte 13 byte 12

SafetyBaseID

OPC 10000-15: Safety 67 1.05.00

Table 35 – Presentation of the SPDU_ID

SPDU_ID_1 := SafetyBaseID (bytes 0…3) XOR SafetyProviderLevel_ID (bytes 0…3)

SPDU_ID_2 := SafetyBaseID (bytes 4…7) XOR SafetyStructureSignature (bytes 0…3)

SPDU_ID_3 := SafetyBaseID (bytes 8…11) XOR SafetyBaseID (bytes 12…15) XOR SafetyProviderID (bytes 0…3)

NOTE: In case of a mismatch between expected SPDU_ID and actual SPDU_ID, the following rules
can be used for diagnostic purposes:

• If all of SPDU_ID1, SPDU_ID2, and SPDU_ID3 differ, there probably is a mismatching
SafetyBaseID.

• If SPDU_ID3 differs, but SPDU_ID1 and SPDU_ID2 do not, there is a mismatching
SafetyProviderID.

• If SPDU_ID2 differs, but SPDU_ID1 and SPDU_ID3 do not, the structure or identifier of the
safety data do not match.

• If SPDU_ID1 differs, but SPDU_ID2 and SPDU_ID3 do not, the SafetyProviderLevel does not
match.

By these rules, there is a very low probability (<10 -9) that a mismatching SafetyBaseID will be
misinterpreted. From a practical view, this probability can be ignored.

8.1.3.3 Coding of the SafetyProviderLevel_ID

The SafetyProviderLevel is the SIL the SafetyProvider implementation (hardware & software) is
capable of.

Table 36 – Coding for the SafetyProviderLevel_ID

SafetyProviderLevel Value of SafetyProviderLevel_ID

SIL1
SIL2
SIL3
SIL4

0x11912881
0x647C4654
0xDEAA9DEE
0xAB47F33B

[RQ8.14] Exactly one of the values provided in Table 36 shall be used as constant code value for
SafetyProviderLevel_ID. They were chosen in such a way that the hamming distance becomes
maximal (hamming distance of 21).

[RQ8.15] Measures shall be taken to avoid that a SafetyProvider is erroneously using a code-value
belonging to a SIL that is higher than the SIL it is capable of . For instance, a SafetyProvider capable
of SIL1-3 should not be able to accidently use the value 0xAB47F33B used for SIL4. One way to
achieve this is to avoid that this constant appears in the source code of the SafetyProvider at all.

The SafetyProviderLevel is independent to the SIL capability of the provided SafetyData, see
Clause 3.2.

OPC 10000-15: Safety 68 1.05.00

8.1.3.4 Signature over the Safety Data Structure (SafetyStructureSignature)

SafetyStructureSignature is used to check the number, data types, and order of application data
transmitted in SafetyData. If the SafetyConsumer is expecting anything different than what the
SafetyProvider actually provides, SafetyStructureSignature will differ, allowing the SafetyConsumer to
enable fail-safe substitute values.

In addition, the identifier of the structure type (SafetyStructureIdentifier) is also taken into account
when calculating SafetyStructureSignature. This ensures that the SafetyProvider and the
SafetyConsumer are using the same identifier for the structure type, effectively avoiding any confusion.

For instance, if a SafetyProvider defines a structure with identifier “vec3D_m” comprising three floats
containing a three-dimensional vector in the metric system, this structure could not be used by a
SafetyConsumer expecting a structure of type “vec3D_in” where the vector components are given in
inch, or even at a SafetyConsumer expecting a structure of type “orientation”, containing three floats
to define an orientation using Euler angles.

[RQ8.16] SafetyStructureSignature shall be calculated as CRC32-signature (polynomial: 0xF4ACFB13,
see Annex B.1) over SafetyStructureIdentifier (encoding: UTF-8), SafetyStructureSignatureVersion
and the sequence of the DataType IDs. After each datatype ID, a 16-bit zero-value (0x0000) shall be
inserted. All integers shall be encoded using little endian byte ordering. Data shall be processed in
reverse order, see Annex B.1. The value “0” shall not be used as signature. Instead, the value “1” shall
be used in this case.

The terminating zero of SafetyStructureIdentifier shall not be considered when calculating the CRC.

[RQ8.17] SafetyStructureIdentifier may be visible in the OPC UA information model for diagnostic
purposes but shall not be evaluated by the SafetyConsumer during runtime.

[RQ8.18] For all releases up to Release 2.0 of the specification, the value for
SafetyStructureSignatureVersion shall be 0x0001.

Example:

SafetyStructureIdentifier,
e.g. “Motörhead” = 0x4d 0x6f 0x74 0xc3 0xb6 0x72 0x68 0x65 0x61 0x64
SafetyStructureSignatureVersion := 0x0001
1. DataType Int16: (Id = 0x0004), // see Clause 6.4
2. DataType Boolean: (Id = 0x0001),
3. DataType Float32: (Id =0x000A)

SafetyStructureSignature =

= CRC32_Backward(0x4d, 0x6f, 0x74, 0xc3, 0xb6, 0x72, 0x68, 0x65, 0x61, 0x64,
0x01,0x00,
0x04,0x00, 0x00,0x00,
0x01,0x00, 0x00,0x00,
0x0A, 0x00, 0x00, 0x00) =

= CRC32_Forward(
 0x00, 0x00, 0x00, 0x0A,
 0x00, 0x00, 0x00, 0x01,
 0x00, 0x00, 0x00, 0x04,

0x00,0x01,
 0x64,0x61,0x65,0x68,0x72,0xb6,0xc3,0x74,0x6f,0x4d)

= 0xe2e86173

NOTE: The insertion of 0x0000 values after the DataType ID, allows for introducing arrays in later version of OPC UA Safety.

OPC 10000-15: Safety 69 1.05.00

NOTE: SafetyStructureSignatureVersion is the version of the procedure used to calculate the signature, as defined in
[RQ8.16]. If future releases of this specification define an alternative procedure, they will indicate this by using a differ ent
version number.

OPC 10000-3, clause 5.8.2 defines different categories of DataTypes. Regarding the DataType ID
which is to be used within the StructureSignature, the following holds:

• For Built-in DataTypes, the ID from Table 1 of OPC 10000-6 is used as DataType ID.

• For Simple DataTypes, the ID of the Built-in DataType from which they are derived is used.

• As of now, Structured DataTypes (including OptionSets) shall not be used within Safety Data.
Arrays are not supported. Instead, multiple variables of the same type are used.

• Enumeration DataTypes are encoded on the wire as Int32 and therefore shall use the ID of the
Int32 Built-in DataType.

8.1.3.5 Calculation of a CRC checksum

The SafetyProvider calculates the CRC signature (ResponseSPDU.CRC) and sends it to the
SafetyConsumer as part of SPDU. This enables the SafetyConsumer to check the correctness of the
SPDU including the SafetyData, Flags, MNR, SafetyConsumerID and SPDU_ID by recalculating the
CRC signature (CRC_calc).

[RQ8.19] The generator polynomial 0xF4ACFB13 shall be used for the 32-Bit CRC signature.

[RQ8.20] If SafetyData is longer than one byte (e.g., if it is of data type UInt16, Int16 or Float32), it
shall be decoded and encoded using little endian order in which the least significant byte appears first
in the incremental memory address stream.

[RQ8.21] The calculation sequence shall begin with the highest memory address (n) of the STrailer
counting back to the lowest memory address (0) and then include also the S afetyData beginning with
the highest memory address.

Figure 23 and shows the calculation sequence of a CRC_SPDU on a little-endian machine, using an
example SafetyData with the following fields:

Int32 var1
UInt32 var2
UInt16 var3
Int16 var4
Boolean var5

The STrailer and SafetyData have a total length of 34 bytes. The calculation of ResponseSPDU.CRC
(SafetyProvider) or CRC_calc (SafetyConsumer) is done in reverse order, from bottom to top. In the
example shown in Figure 23, CRC calculation starts at byte index 33 (most significant byte of the MNR)
and ends at byte index 0.

NOTE: the reverse order ensures that the effectiveness of the CRC mechanism remains independent
of any CRCs used within the underlying OPC UA channel, even if it would coincidentally use the same
CRC polynomial.

OPC 10000-15: Safety 70 1.05.00

Figure 23 – Calculation of the CRC (on little-endian machines, CRC32_Backward)

An alternative way to calculate the CRC (particularly useful on big-endian machines) is shown in Figure
24. Here, the individual elements of the ResponseSPDU are already arranged in memory in reversed
order, and CRC calculation is executed from byte 0 to byte 33.

0 var1 LSB

1

2

3 MSB

4 var2 LSB

5

6

7 MSB

8 var3 LSB

9 MSB

10 var4 LSB

11 MSB

12 var5

13 Flags

14 SPDU_ID_1 LSB

15

16

17 MSB

18 SPDU_ID_2 LSB

19

20

21 MSB

22 SPDU_ID_3 LSB

23

24

25 MSB

26 SafetyConsumerID LSB

27

28

29 MSB

30 MonitoringNumber LSB

31

32

33 MSB

(without CRC)

SafetyData

STrailer

D
ir

ec
ti

o
n

 o
f

C
R

C
 c

al
cu

la
ti

o
n

OPC 10000-15: Safety 71 1.05.00

Figure 24 – Calculation of the CRC (on big-endian machines, CRC32_Forward)

[RQ8.22] On the SafetyConsumer, CRC_calc shall be calculated using data received in the
ResponseSPDU, and not from expected values.

9 Diagnostics

OPC UA Safety diagnostics may be implemented in a non-safety-related way. It allows for
categorization and localization of safety communication errors.

OPC UA Safety provides two types of diagnostics:

- OPC UA Safety diagnostics messages generated by the SafetyConsumer and provided in a
vendor-specific way.

0 MonitoringNumber MSB

1

2

3 LSB

4 SafetyConsumerID MSB

5

6

7 LSB

8 SPDU_ID_3 MSB

9

10

11 LSB

12 SPDU_ID_2 MSB

13

14

15 LSB

16 SPDU_ID_1 MSB

17

18

19 LSB

20 Flags

21 var5

22 var4 MSB

23 LSB

24 var3 MSB

25 LSB

26 var2 MSB

27

28

29 LSB

30 var1 MSB

31

32

33 LSB

SafetyData

Strailer

(without CRC)

D
ir

ec
ti

o
n

 o
f

C
R

C
 c

al
cu

la
ti

o
n

OPC 10000-15: Safety 72 1.05.00

- The method “ReadSafetyDiagnostics”, defined in the OPC UA Information Model (see
Clause 6.1.4 and Clause 9.2).

9.1 Diagnostics messages of the SafetyConsumer

[RQ9.1] Every time the macro <Set Diag(SD_IDerrOA, isPermanent)> is executed within the
SafetyConsumer, the textual representation shown in Table 37 shall be presented. The details and
location of this representation (display, logfile, etc.) are vendor-specific.

Table 37 – Safety layer diagnostic messages

Internal identifier

(as used in the
state-machines)

General Error type
(String)

Extended error type
(String)

Error
code

(offset)6

Classification *)
(optional)

Mandatory

SD_IDerrIgn The SafetyConsumer has
discarded a message due
to an incorrect ID.

 0x01 A Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to
an incorrect ID. Operator
acknowledgment is
required.

Mismatch of

SafetyBaseID. 7

0x11 B, E Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to
an incorrect ID. Operator
acknowledgment is
required.

Mismatch of
SafetyProviderID.

0x12 B, E Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to
an incorrect ID. Operator
acknowledgment is
required.

Mismatch of safety
data structure or

identifier.8

0x13 B, E Yes

SD_IDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to
an incorrect ID. Operator
acknowledgment is
required.

Mismatch of

SafetyProviderLevel9.

0x14 B, E Yes

CRCerrIgn The SafetyConsumer has
discarded a message due
to a CRC error (data
corruption).

 0x05 A Yes

CRCerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to a
CRC error (data
corruption). Operator
acknowledgment is
required.

 0x15 B, C Yes

CoIDerrIgn The SafetyConsumer has
discarded a message due
to an incorrect
ConsumerID.

 0x06 A Yes

CoIDerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to
an incorrect consumer ID.

 0x16 B Yes

6 An offset of 0x10 or larger indicates an error requiring operator acknowledgment.

7 This text may be shown when the error in the SPDU_ID is due to an incorrect SafetyBaseID.

8 This text may be shown when the error in the SPDU_ID is due to an incorrect SafetyStructureID.

9 This text may be shown when the error in the SPDU_ID is due to an incorrect SafetyProviderLevel.

OPC 10000-15: Safety 73 1.05.00

Operator
acknowledgment is
required.

MNRerrIgn The SafetyConsumer has
discarded a message due
to an incorrect monitoring
number.

 0x07 A Yes

MNRerrOA The SafetyConsumer has
switched to fail-safe
substitute values due to
an incorrect monitoring
number. Operator
acknowledgment is
required.

 0x17 B, C Yes

CommErrTO The SafetyConsumer has
switched to fail-safe
substitute values due to
timeout.

 0x08 B Yes

ApplErrTO The SafetyConsumer has
switched to fail-safe
substitute values at the
request of the safety
application.

 0x09 D No

ParametersInvalid The SafetyConsumer has
been configured with
invalid parameters.

 0x0A B, E Yes

FSV_Requested The SafetyConsumer has
switched to fail-safe
substitute values at the
request of the
SafetyProvider. Operator
acknowledgment is

required.10

 0x20 F Yes

*) The following classification is specified:
A) Transient communication error
B) Permanent communication error
C) Transmission quality seems not to be sufficient
D) Application error
E) Parameter error
F) Error does not affect communication itself.

For avoiding a flood of diagnostic messages in case of transmission errors, only up to two messages
are shown even if multiple communication errors occur in sequence. This is ensured by the behavior
defined in the SafetyConsumer’s state machine.

Optional features (vendor-specific):

• Extend diagnostic data by expected value and received value, e.g. :
Mismatch of SafetyProviderID:
Expected ID: 0x00000005
Received ID: 0x00000007

• Extend diagnostic data if a parameter of the SafetyConsumer is invalid .

Example 1:
The SafetyConsumer has been configured with invalid parameters.
The value 0x00000000 is an invalid SafetyProviderID.

10 A diagnostic message is generated only if the parameter SPI.SafetyOperatorAckNecessary is true, see trans ition T22 in

Table 34.

OPC 10000-15: Safety 74 1.05.00

9.2 Method ReadSafetyDiagnostics of the SafetyProvider

This method (as part of the OPC UA Mapper) serves as a diagnostic interface and exists for each
SafetyProvider. For time series observation, this interface can be polled, e.g., by a diagnostic device.
For details, refer to the OPC UA information model described, see Clause 6.1.4.

The diagnostic interface method does not take any input parameters and returns both the input- and
output-parameters of the last call of the method ReadSafetyData.

Additionally, a 2-byte sequence number is added to the diagnost ic interface, allowing for a detection
of missed calls due to polling. The sequence number counts the number of accesses to
ReadSafetyData.

A best practice recommendation is to store all input- and output-parameters if SComErr_diag is <> 0.

OPC 10000-15: Safety 75 1.05.00

10 Safety communication layer management

10.1 Safety function response time part of communication

For cyclic communication, the part of the safety function response time attributable to an OPC UA
Safety communication (SFRTOPCSafety) is specified in Equation 1.

Equation 1 Calculation of safety function response time part of OPC UA Safety

SFRTOPCSafety <= 2 x SafetyConsumerTimeOut
 + ConsumerCycleTime

where

SFRTOPCSafety: Part of the Safety function response time attributable to the OPC UA

Safety communication.

SafetyConsumerTimeOut: Watchdog timer running in the SafetyConsumer. It is started whenever
a new RequestSPDU is sent (T14 or T26). If the timer runs out while
the SafetyConsumer is waiting for the ResponseSPDU (S17), a
timeout-error is triggered (T18).

ConsumerCycleTime: the maximum time for the cyclic execution of the SafetyConsumer, see
Clause 8.1.2.2.

NOTES:

• Equation 1 assumes that a RequestSPDU is sent in the same consumer cycle as new input
data is received via a ResponseSPDU. If this is not the case, and sending the RequestSPDU
is delayed, an upper bound for this delay has to be added.

• Equation 1 only addresses the part of the SFRT attributable to OPC UA Safety. The overall
SFRT also depends on the implementation of the devices the SafetyProvider and
SafetyConsumer are running on. Details on how these fractions of the SFRT are calculated are
vendor-specific.

• If multiple OPC UA Safety connections are used within a safety function in series, their
respective attributions to the SFRT must be summed up.

OPC 10000-15: Safety 76 1.05.00

Figure 25 – Overview of delay times and watchdogs

Equation 1 is justified by Figure 25 and the following explanation:

1) The SafetyConsumer sends a RequestSPDU. At about the same time, a dangerous event
occurs at the SafetyProvider, demanding the safety function to trigger.

2) However, in the worst case, the RequestSPDU is processed at the SafetyProvider just before
the dangerous event becomes known.

3) Hence, the ResponseSPDU does not yet contain any information about the dangerous event.

4) In the worst case, the ResponseSPDU is processed in the SafetyConsumer just before the
SafetyConsumerTimeout expires.

5) Another error (which may have the same root cause as the dangerous event) leads to a loss
or unacceptable delay of either the RequestSPDU or the ResponseSPDU.

6) Hence, the SafetyConsumerTimeout expires.

7) In the worst case, the timer expires immediately after it was checked. Hence, it takes another
cycle of the SafetyConsumer to detect the error.

SafetyConsumerTimeOut is a parameter of the SafetyConsumer. ConsumerCycleTime depends on the
maximum sample time of the SafetyConsumer application. At commissioning , the integrator should be
advised to design it shorter than a quarter of the target SFRTOPCSafety. If the watchdog time
SafetyConsumerTimeOut is too small, spurious trips may occur. To avoid this,
SafetyConsumerTimeOut should be chosen as shown in Equation 2.

Equation 2 Selection of the watchdog parameter SafetyConsumerTimeOut

SafetyConsumerTimeOut >=
T_CD_RequestSPDU +
SafetyProviderDelay +
T_CD_ResponseSPDU +
SafetyConsumerDelay

where
T_CD_RequestSPDU: The worst-case communication delay for the RequestSPDU.
T_CD_ResponseSPDU: The worst-case communication delay for the ResponseSPDU.

lost

demand
just missed

expiration just missed

SafetyConsumerSafetyProvider

SafetyConsumerCycletime

SafetyConsumerTimeout

SafetyConsumerTimeout

1

2

3

45

6

7

OPC 10000-15: Safety 77 1.05.00

SafetyProviderDelay: The worst-case SafetyProvider delay in error free operation.
Typically, one scan time period of the SafetyProvider.

SafetyConsumerDelay: The worst-case SafetyConsumer delay in error free operation.
Typically, one scan time period of the SafetyConsumer.

NOTE to Equation 2: the reason why SafetyConsumerDelay is part of the summation is, that it may take one cycle after the
asynchronous reception of the ResponseSPDU to execute the checks.

[RQ10.1] To support the calculation of SafetyConsumerTimeOut the SafetyProvider shall provide the
SafetyProviderDelay as an attribute in the OPC UA information model, see Table 13.

Vendors may provide their individual adapted calculation method if necessary.

11 System requirements (SafetyProvider & SafetyConsumer)

11.1 Constraints on the SPDU-Parameters

11.1.1 SafetyBaseID and SafetyProviderID

The pair of SafetyProviderID and SafetyBaseID is used by the SafetyConsumer to check the
authenticity of the ResponseSPDU. SafetyProviderID and SafetyBaseID are usually assigned during
engineering or during commissioning. It is in the responsibility of the end user or OEM to assign unique
SafetyProviderID to individual SafetyProviders whenever this is reasonable possible. For instance, a
machine builder should assign unique SafetyProviderIDs within a single machine containing multiple
OPC UA Safety devices.

As the effort for the administration of unique SafetyProviderIDs will reach its limits when the system
becomes large, OPC UA Safety uses the SafetyBaseID for cases where guaranteeing unique
SafetyProviderIDs is not possible.

A SafetyBaseID is a universal unique identifier version4 (UUIDv4, also called g lobally unique identifier
(GUID)), as described in ISO/IEC 9834-8, Clause 15. Basically, it is a 128-bit number where more than
96 bits were chosen randomly. The probability that two randomly generated UUIDs are identical is
extremely low (2-96 < 10-28), and can therefore be neglected, even when considering applications with
a safety integrity level of 4.

It is not necessary to generate an individual SafetyBaseIDs for all SafetyProviders. If two
SafetyProviders can be discriminated by their SafetyProviderIDs, they may share the same
SafetyBaseID. For instance, a machine builder might generate a unique SafetyBaseID for each
instance of a machine, which is reused for all SafetyProviders within a machine.

When implementing or using a generator for the UUIDs, it must be ensured that each possible value
is generated with equal probability (discrete uniform distribution) , and that any two values are
independent from each other. When a pseudo random number generator (PNRG) is used, it is ‘seeded’
with a random source having enough collision entropy (e.g., seeds of at least 128 bits that are uniformly
distributed, too; and all seeds being pairwise independent from each other).

Most commercial systems offer random number generators for applications within a cryptographic
context. These applications pose even harder requirements on the quality of random numbers than
the ones mentioned above. Hence, cryptographically strong random number generators are applicable
to OPC UA Safety as well. See References [2]-[5], as well as OPC 10000-2, for detailed information.

Table 38 shows implementations of cryptographically strong random number -generators that can be
used to calculate the random part of the UUIDv4:

Table 38 – Examples for cryptographically strong random number generators.

Environment Function

Microsoft® Windows®
Operating Systems

BCryptGenRandom

found in Bcrypt.dll

OPC 10000-15: Safety 78 1.05.00

Unix®-like OS
(e.g. Linux® / FreeBSD® /
Solaris®)

Read from the file:
/dev/urandom/

.NET® RandomNumberGenerator
from System.Security.Cryptography

JavaScript® Crypto.getRandomValues()

Java® java.security.SecureRandom

Python® os.urandom(size)

While being evaluated from a security point of view, probably none of these implementations has been
validated with safety in mind. Therefore, there is a remaining risk that these implementations are
subject to systematic implementation errors which might decrease the effectiveness of these random
numbers. To overcome this problem, the output of the random number generator is not used directly,
but a SHA256-hash is calculated over (1) the generator ’s output, (2) a timestamp (wall-clock-time or
persistent logical clock) and (3) a unique domain name. Any bits of the SHA256 -hash can then be
used to construct the random parts of the UUIDv4.

[RQ11.1] The parameters SafetyBaseID and SafetyProviderID shall be stored in a non-volatile, i.e.,
persistent, way.

11.1.2 SafetyConsumerID

The SafetyConsumerID allows for discrimination between RequestSPDUs and ResponseSPDUs
belonging to different SafetyConsumers. It is mainly used for diagnostic purposes, such as detecting
unintentional concurrent access of a single SafetyProvider by multiple SafetyConsumers. Safety-
related communication errors which are detected by checking the SafetyConsumerID would also be
detected by other mechanisms, including the MNR, the SafetyProviderID, and the
SafetyConsumerTimeOut.

From a safety point of view, there are no qualitative requirements regarding the generat ion or
administration of the SafetyConsumerID. It can be assigned during engineering, commissioning, at
startup, and may even change during runtime. It is not required to check for uniqueness of
SafetyConsumerIDs.

However, assigning identical SafetyConsumerIDs to multiple consumers is not recommended because
fault localization may become more difficult.

11.2 Initialization of the MNR in the SafetyConsumer

The MNR is used to discriminate telegrams stemming from the same SafetyProvider and is therefor e
used to detect timeliness errors such as outdated telegrams, telegrams received out -of-order, or
streams of telegrams erroneously repeated by a network storing element (e.g., a router).

To be effective, the set of used MNR values shall not be restricted to a small set. This could happen
for connections which are restarted frequently, and which start counting from the same MNR value
each time.

There are at least two ways to address this potential problem:

Option 1: [RQ11.2a] Whenever the connection is terminated, the current value of the MNR shall
be safely stored within non-volatile memory of the SafetyConsumer. After restart, the previously
stored MNR is used for initialization of the MNR (i.e. , in state S12 of the SafetyConsumer state
machine).

Option 2: [RQ11.2b] Whenever the SafetyConsumer is restarted (i.e., in state S12 of the
SafetyConsumer state machine), the MNR is initialized with a 32-bit random number.

Either [RQ11.2a] or [RQ11.2b], or an equivalent solution shall be fulfilled.

OPC 10000-15: Safety 79 1.05.00

11.3 Constraints on the calculation of system characteristics

11.3.1 Probabilistic considerations (informative)

Following IEC 61784-3, OPC UA Safety detects all communication errors which can possibly occur in
the underlying standard communication channel including the OPC UA stack. If an error is detected,
the erroneous data is discarded. Moreover, OPC UA Safety is designed in such a way that a safety
function becomes practically unusable if the failure rate in the underlying, standard communication
channel is higher than one error per safety error interval limit (6, 60, or 600 minutes), depending on
the desired SIL of the safety function (see Table 27 and Table 39).

Thus, for operational safety functions a failure rate of 0,1h -1, 1h-1, or 10h-1 can be assumed for
communication errors occurring in the OPC UA stack. In order to obtain the communication’s
contribution to the PFH-value of the safety function, this value has to be multiplied by the so-called
conditional residual error probability Pre,cond. For the CRC-mechanism used in OPC UA Safety, it holds:

Pre,cond ≤ 4.0 x 10-10

This leads to the PFH and PFD values shown in Table 39.

The value 4.0 x 10-10 was justified by extensive numerical evaluation of the 32-bit CRC generator
polynomial in use (0xF4ACFB13). The results of this evaluation - executed for all relevant data lengths
and all relevant values for the bit error probability p - is shown in Figure 26. As can be seen, Pre,cond
never exceeds the value 4.0 x 10 -10.

Figure 26 – Conditional residual error probability of the CRC-check.

An explanation that it is indeed necessary to calculate P re,cond for all data lengths and all relevant
values of p can be found in Figure 27. For the data lengths shown in this figure, P re,cond exceeds the
desired value by several orders of magnitudes. Note that the maximum value of P re,cond is not obtained
when p becomes maximal.

c
o

n
d
it
io

n
a

l
re

s
id

u
a

l
e

rr
o

r
p
ro

b
a

b
ili

ty

OPC 10000-15: Safety 80 1.05.00

Figure 27 – Counter example: data lengths not supported by OPC Safety.

11.3.2 Safety related assumptions (informative)

The boundary conditions and assumptions for safety assessments and calculations of residual error
rates are listed here.

Generally:

• Number of retries in the underlying standard communication channel:
No restrictions

• CRC polynomials used inside the underlying standard communication channel (e.g. Ethernet,
TCP, …):
No restrictions

• Message storing elements:
No restrictions; any number of message storing elements is permitted

• Size of SafetyData within one SPDU:
≤ 1500 bytes

NOTE: Even for safety functions that do not require manual operator acknowledgment for restart,
manual operator acknowledgment is mandatory whenever the SafetyConsumer has detected certain
types of errors and indicates this using OperatorAckRequested. Hence, operator acknowledgment is
expected to be implemented by the safety application whenever OPC UA Safety is used. For details,
see Clause 7.4.2 and Annex B.2.

11.4 PFH/PFD-values of a logical OPC UA Safety communication link

The PFH-value of a logical OPC UA Safety communication link depends on the parameter of
SafetyErrorIntervalLimit (see Table 27) of the link’s SafetyConsumer. Whenever the SafetyConsumer
detects a mismatch of the SafetyConsumerID, SPDU_ID, MNR or CRC-checksum, it will only continue
operating if the last occurrence of such an error happened more than SafetyErrorIntervalLimit time
units ago. Otherwise, it will make a transition to fail -safe values, which can only be left by manual
operator acknowledgment, see Clause 7.4.2.

This directly limits the rate of detected errors, and indirectly limits the rate of undetected (residual)
errors.

c
o

n
d
it
io

n
a

l
re

s
id

u
a

l
e

rr
o

r
p
ro

b
a

b
ili

ty

OPC 10000-15: Safety 81 1.05.00

See Table 39 for numeric PFH- and PFD-values.

Table 39 – The total residual error rate for the safety communication channel

SafetyErrorIntervalLimit Allowed for SIL range Total Residual error rate
for one logical connection

of the safety function

(PFH)

Total Residual error
probability for one logical
connection of the safety
function, for a mission

time of 20 years

(PFDavg)

6 Minutes Up to SIL 2 < 4,0 * 10–9 / h < 1,0 * 10-6

60 Minutes Up to SIL 3 < 4,0 * 10–10 / h < 2,5 * 10-7

600 Minutes Up to SIL 4 < 4,0 * 10–11 / h < 8.0 * 10-8

NOTE: the parameter SafetyErrorIntervalLimit affects the PFH/PFD of only the safety communication
channel. There is no effect on the PFH/PFD-values of the devices the SafetyProviders and
SafetyConsumers are running on. The requirements for the implementation of these nodes are
specified in the IEC 61508.

11.5 Safety manual

[RQ11.3] According to IEC 61508-2, the suppliers of equipment implementing OPC UA Safety shall
provide a safety manual. The instructions, information and parameters of Table 40 shall be included
in that safety manual unless they are not relevant for a specific device.

Table 40 – Information to be included in the safety manual

 Item Instruction and/or parameter Remark

1 Safety handling Instructions on how to configure,
parameterize, commission and test the device
safely in accordance with IEC 61508 and IEC
61784-3.

2 PFH, respectively PFDavg The PFH, respectively PFDavg, per logical
connection of the safety function.

See Clause 11.3.2

and Clause 11.4

3 SFRTOPCSafety Information on how this value can be
calculated by the end user / OEM.

See Clause 10.1

The implementation and
error reaction of
ConsumerCycleTime is
in the responsibility of
the vendor/integrator.

4 SafetyBaseID / SafetyProviderID Information on how the SafetyBaseID and
SafetyProviderID are generated and
assigned.

See Clause 11.1.1

5 Commissioning The end user / OEM is responsible for
verification and validation of correct cabling
and assignment of network addresses.

The safety manual shall address how this can
be accomplished.

6 Operator Acknowledgment If the SafetyConsumers makes a transition to
fail-safe substitute values requiring operator
acknowledgement “frequently”, this is an
indication that a check of the installation (for
example electromagnetic interference),
network traffic load, or transmission quality is
required.

It shall be mentioned in the manual that it is
potentially unsafe to simply omit these
checks.
“Frequently” in this context is defined as

- more than once per day in SIL2 and
SIL3 applications

OPC 10000-15: Safety 82 1.05.00

 Item Instruction and/or parameter Remark

- more than once per week in SIL4
applications

7 Duration of demand In safety applications where the duration of a
demand signal is short (e.g., shorter than the
process safety time), and it is crucial that the
consumer application never misses a
demand, then a bidirectional communication
must be arranged and the confirmation of
receiving the demand at consumer side must
be implemented in the application program,
by sending appropriate information within the
SafetyData.

8 High demand and low demand
applications

The SafetyConsumer must be executed
cyclically within a shorter time frame than the
SafetyConsumerTimeOut.

9 Maintenance Specific requirements for device repair and
device replacement.

11.6 Indicators and displays

[RQ11.4] The device a SafetyConsumer is running on shall be able to indicate if
SAPI.OperatorAckRequested is enabled. This can be done for example by an indicator LED or by
using an HMI.

[RQ11.5] If an LED is used for indication, it shall blink in green color with frequency of 0.5 Hz whenever
the output SAPI.OperatorAckRequested is true of at least one of the SafetyConsumers running on the
device.

Note: this LED can also be used for other purposes. For instance, a normal operation could be
indicated by a non-flashing LED, or erroneous behavior could be indicated by an LED blinking with a
frequency higher than 0.5 Hz. Thus, this specif ication does not contain any requirements for the
behavior of the LED if SAPI.OperatorAckRequested is false.

The message shown on an HMI is application-specific. For instance, the text “Machine has stopped
for safety reasons. For restart, please check for obstacles and press the green button.” could be shown.

Note: How to realize operator acknowledgment (physical button, element in HMI etc.) is vendor -
specific.

12 Assessment

12.1 Safety policy

In order to prevent and protect the manufacturers and vendors of OPC UA Safety products from
possibly misleading understandings or wrong expectations and gross negligence actions regarding
safety-related developments and applications, the following items must be observed and explained in
each training, seminar, workshop and consultancy.

• A device will not be automatically applicable for safety-related applications just by
implementing OPC UA Safety.

• In contrast, appropriate development processes according to safety standards must be
observed for safety-related products (see IEC 61508, IEC 61511, IEC 60204-1, IEC 62061,
and ISO 13849) and/or an assessment from a notified assessment body is required.

• The manufacturer of a safety product is responsible for the correct implementation of this
specification, as well as the correctness and completeness of the product documentation and
information.

• Additional important information including corrigenda and errata published by the OPC
Foundation and/or PI must be considered for implementation and assessment.

• The OPC Foundation will publish an automated test tool which must be used for verification.
The test implements the OPC UA Safety test specification described in a separate document.

OPC 10000-15: Safety 83 1.05.00

For an overview, see Clause 12.3. The test must be successfully run at a test laboratory
accredited by the OPC Foundation or PI. Note that this verification does not substitute the
assessments mentioned before.

12.2 Obligations

As a rule, the international safety standards are accepted (ratified) globally. However, since safety
technology in automation is relevant to occupational safety and the concomitant insurance risks in a
country, recognition of the rules pointed out here is still a sovereign right. The national “Authorities”
(notified bodies) decide on the recognition of assessment reports.

NOTE Examples of such “Authorities” are the IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung
/ Institute for Occupational Safety and Health of the German Social Accident Insurance) in Germany, HSE (Health and Safety
Executive) in UK, FM (Factory Mutual / Property Insurance and Risk Management Organization), UL (Underwriters
Laboratories Inc. / Product Safety Testing and Certification Organization), or the INRS (Institut National de Recherche et de
Sécurité) in France.

12.3 Automated layer test for OPC UA Safety (informative)

For details, see the OPC UA Safety test specification.

12.3.1 Testing principle

An exemplary test principle for OPC UA Safety is presented. The OPC UA Safety test is a fully
automated verification based on test patterns covering all paths of the OPC UA Safety state machines.
Different types of possible correct and incorrect SPDUs, parameters, and interactions with the upper
interface of the SafetyProvider / SafetyConsumer are taken into account. These test patterns together
with the expected responses/stimulations are stored as an XML document and imported into the test
tool software. The test tool executes the complete test patterns while connected to the OPC UA Safety
layer under test, compares the nominal with the actual reactions and is recording the results that can
be printed out for the test report.

The automated OPC UA Safety layer tester will be approved by a Notified Body.

Figure 28 shows the structure of the layer tester for the SafetyProvider and SafetyConsumer.

Figure 28 – Automated SafetyProvider / SafetyConsumer test

Test Sequence #1

1. rcv[pv][0][0][nok]
2. resume
3. send[1][0][1][0]
4. rcv[pv][0][1][ok]
5. resume
6. send[1][0][1][1]
7. rcv[pv][0][2][ok]
8. resume
9. ...

Test tool Device under
test, e.g.
Safety logic
controller

OPC UA Stack

OPC UA Safety
layer tester
(Software)

"Upper Tester"
(IEC 61131-3 /ST)

Ethernet

Test patterns
from validation
(XML data)

Test report
to print (Verdict)

OPC UA Safety

OPC UA Stack

OPC 10000-15: Safety 84 1.05.00

12.3.2 Test configuration

The SafetyProvider / SafetyConsumer tester “simulates” the behavior of an opposite SafetyProvider /
SafetyConsumer Layer. Thus, it must be configured according to the deployed OPC UA communication
system. This can be done with the help of an XML file associated with the tester.

A so-called “upper tester” runs on top of the SafetyProvider or SafetyConsumer within the device under
test (DUT). It transfers data from the SafetyProvider or SafetyConsumer via its SAPI and makes them
visible to the test tool via an OPC UA interface that is specified in the OPC UA Safety test specification
(“Set Data” in Figure 29 and Figure 30). In a similar way, the upper tester enables the test-tool to set
inputs of the SAPI (“Get Data” in Figure 29 and Figure 30).

The upper tester is implemented by the vendor of the DUT using standard program languages such
as C/C++, IEC 61131-3 or Structured Text and does not need to be executed in a safety-related way.

Detailed requirements for the upper tester are described in the OPC UA Safety test specification.

Figure 29 – “Upper Tester” within the SafetyProvider

SafetyProvider instance

SafetyData (PV)
or

fail-safe (FSV)

A
c
ti
v
a
te

F
S

V

…… … …

OPC UA

Upper tester SafetyProvider

SafetyData
NonSafetyData

Control Sync Status Sync

"Copy"
application program

Test control channel

"Get data""Set data"

SafetyData Safety Trailer

SPDU

Request

To / from “Lower tester” SafetyProvider

NonSafetyData

NonSafetyData

OPC 10000-15: Safety 85 1.05.00

Figure 30 – “Upper Tester” within the SafetyConsumer

13 Profiles and Conformance Units

13.1 Conformance units

This clause defines the corresponding ConformanceUnits for the OPC UA Information Model for Safety.

Table 41 – Conformance Units for Safety

Category Title Description

Safety SafetyACSet An entry point for browsing a component
implementing OPC UA Safety and finding its
SafetyProviders and/or SafetyConsumers.

Safety ReadSafetyData Exchange of safety protocol data units using a
method.

Safety ReadSafetyDiagnostics A diagnostic interface to a SafetyProvider and its
communication with a SafetyConsumer.

Safety SafetyPDUs Exchange of safety protocol data units using
OPC UA variables.

Safety SafetyProviderParameters An interface to query the parameters of a
SafetyProvider.

Safety SafetyConsumerParameters An interface to query the parameters of a
SafetyConsumer.

SafetyConsumer instance

SafetyData (PV)
or

fail-safe (FSV)

A
c
ti
v
a

te
F

S
V

_
C

…… …… …

OPC UA

Upper tester SafetyConsumer

Sync
SafetyData

NonSafetyData
Status Sync

"Copy"
application program

…..
.

Test control channel

" G e t d a t a ""Set data"

Ctrl

SPDU

Request

From / to “Lower tester” SafetyConsumer

SafetyData Safety Trailer NonSafetyData

NonSafetyData

OPC 10000-15: Safety 86 1.05.00

Safety SafetyProviderMapper An abstract conformance unit representing a
mapper for the SafetyProvider.

Support at least one of
SafetyProviderServerMapper or
SafetyProviderPubSubMapper.

Safety SafetySupport Support at least one of SafetyProvider Facet or
SafetyConsumer Facet.

13.2 Profiles

13.2.1 Profile list

Table 42 lists all Profiles defined in this document and defines their URIs.

Table 42 – Profile URIs for Safety

Profile URI
SafetyProviderServer Mapper Facet http://opcfoundation.org/UA-Profile/SafetyProviderServerMapper

SafetyProviderPubSub Mapper Facet http://opcfoundation.org/UA-Profile/SafetyProviderPubSubMapper

SafetyProvider Facet http://opcfoundation.org/UA-Profile/SafetyProvider

SafetyConsumerPubSub Mapper Facet http://opcfoundation.org/UA-Profile/SafetyConsumerPubSubMapper

SafetyConsumer Facet http://opcfoundation.org/UA-Profile/SafetyConsumer

SafetyAutomationComponent Facet http://opcfoundation.org/UA-Profile/SafetyAutomationComponent

13.2.2 Facets and Profiles

13.2.2.1 Safety Provider Facets

Table 43 – SafetyProviderServerMapper Facet

Group Conformance Unit / Profile Title Optional/

Mandatory

Safety ReadSafetyData M

Safety ReadSafetyDiagnostics M

Table 44 – SafetyProviderPubSubMapper Facet

Group Conformance Unit / Profile Title Optional/

Mandatory

Safety SafetyPDUs M

Safety ReadSafetyDiagnostics O

Table 45 – SafetyProvider Facet

Group Conformance Unit / Profile Title Optional/

Mandatory

Safety SafetyProviderMapper M

Safety SafetyProviderParameters M

13.2.2.2 Safety Consumer Facets

http://opcfoundation.org/UA-Profile/SafetyProviderServerMapper
http://opcfoundation.org/UA-Profile/SafetyProviderPubSubMapperb
http://opcfoundation.org/UA-Profile/SafetyProviderServerMapper
http://opcfoundation.org/UA-Profile/SafetyConsumerPubSubMapper
http://opcfoundation.org/UA-Profile/SafetyConsumer
http://opcfoundation.org/UA-Profile/SafetyAutomationComponent

OPC 10000-15: Safety 87 1.05.00

Table 46 – SafetyConsumerPubSubMapper Facet

Group Conformance Unit / Profile Title Optional/

Mandatory

Safety SafetyPDUs M

Table 47 – SafetyConsumer Facet

Group Conformance Unit / Profile Title Optional/

Mandatory

Safety SafetyConsumerPubSubMapper O

Safety SafetyConsumerParameters M

Table 48 – SafetyAutomationComponent Facet

Group Conformance Unit / Profile Title Optional/

Mandatory

Safety SafetySupport M

Safety SafetyACSet M

14 Namespaces

14.1 Namespace Metadata

Table 49 defines the namespace metadata for this part. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all
Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component
of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType
and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file.
The UANodeSet XML schema is defined in OPC 10000-6.

Table 49 – NamespaceMetadata Object for this part

Attribute Value

BrowseName http://opcfoundation.org/UA/Safety

Property DataType Value

NamespaceUri String http://opcfoundation.org/UA/Safety

NamespaceVersion String 1.05

NamespacePublicationDate DateTime 2021-07-14

IsNamespaceSubset Boolean False

StaticNodeIdTypes IdType [] 0

StaticNumericNodeIdRange NumericRange []

StaticStringNodeIdPattern String

14.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously
identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify
a Node. Different Nodes may have the same BrowseName. They are used to build a browse path
between two Nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However,
if they want to provide a standard Property, its BrowseName must have the namespace of the
standards body although the namespace of the NodeId reflects something else, for example the

http://opcfoundation.org/UA/Safety
http://opcfoundation.org/UA/Safety

OPC 10000-15: Safety 88 1.05.00

EngineeringUnits Property. All NodeIds of Nodes not defined in this part must not use the standard
namespaces.

[RQ13.1] Table 50 provides a list of mandatory and optional namespaces used in a Safety OPC UA
Server.

Table 50 – Namespaces used in a Safety Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the
OPC UA specification. This namespace shall have namespace
index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may
include types and instances used in an AutoID Device
represented by the Server. This namespace shall have
namespace index 1.

Mandatory

http://opcfoundation.org/UA/Safety Namespace for NodeIds and BrowseNames defined in this
part. The namespace index is Server specific.

Mandatory

Vendor-specific types A Server may provide vendor-specific types like types derived
from ObjectTypes defined in this part in a vendor-specific
namespace.

Optional

Vendor-specific instances A Server provides vendor-specific instances of the standard
types or vendor-specific instances of vendor-specific types in
a vendor-specific namespace.

It is recommended to separate vendor-specific types and
vendor-specific instances into two or more namespaces.

Mandatory

OPC 10000-15: Safety 89 1.05.00

Annex A: Safety Namespace and mappings (normative)

A.1 Namespace and identifiers for Safety Information Model

This appendix defines the numeric identifiers for the numeric NodeIds defined in this part. The
identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance
Node that appears in the specification and the Identifier is the numeric value for the NodeId.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/Safety

The CSV released with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Safety.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeIds.csv

A computer processible version of the complete Information Model defined in this part is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.
The Information Model Schema released with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Safety.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the specification
can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeSet2.xml

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Safety.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Safety.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Safety.NodeSet2.xml

OPC 10000-15: Safety 90 1.05.00

Annex B: Additional information (informative)

B.1 CRC-calculation using tables, for the polynomial 0xF4ACFB13

The calculation of a 32-bit CRC signature over an array of N bytes with the help of lookup tables, using
“C” as programming language, is shown below:

// VARIANT A: presumably easier to implement on little endian machines

uint32_t crctab32[256]; // lookup table

uint32_t CRC32_Backward(char *array, int16_t N){ // input is array of N bytes

 // containing the data, see Figure 23

 uint32_t result = 1; // seed value for the calculated CRC-signature

 int16_t i; // index

 for(i=N-1;i>=0;i--) // process array in reversed order

 result = crctab32 [((result >> 24) ^ array[i]) & 0xff] ^ (result << 8);

 if (result==0)
 return 1;
else
 return result;

}

where the lookup-table crctab32 has to be initialized as shown in Table 51.

// VARIANT B: presumably easier to implement on big endian machines

uint32_t crctab32[256]; // lookup table

uint32_t CRC32_Forward(char *array, int16_t N){ // input is array of N bytes

 // containing the data in reversed

 // order, see e. g. Figure 24

 uint32_t result = 1; // seed value for the calculated CRC-signature

 int16_t i; // index

 for(i=0;i<N;i++) // process array

 result = crctab32 [((result >> 24) ^ array[i]) & 0xff] ^ (result << 8);

 if (result==0)
 return 1;
else
 return result;

}

where the lookup-table crctab32 has to be initialized as shown in Table 51.

OPC 10000-15: Safety 91 1.05.00

Table 51 – The CRC32 lookup table for 32-bit CRC signature calculations

CRC32 lookup table (0 to 255)

00000000 F4ACFB13 1DF50D35 E959F626 3BEA1A6A CF46E179 261F175F D2B3EC4C

77D434D4 8378CFC7 6A2139E1 9E8DC2F2 4C3E2EBE B892D5AD 51CB238B A567D898

EFA869A8 1B0492BB F25D649D 06F19F8E D44273C2 20EE88D1 C9B77EF7 3D1B85E4

987C5D7C 6CD0A66F 85895049 7125AB5A A3964716 573ABC05 BE634A23 4ACFB130

2BFC2843 DF50D350 36092576 C2A5DE65 10163229 E4BAC93A 0DE33F1C F94FC40F

5C281C97 A884E784 41DD11A2 B571EAB1 67C206FD 936EFDEE 7A370BC8 8E9BF0DB

C45441EB 30F8BAF8 D9A14CDE 2D0DB7CD FFBE5B81 0B12A092 E24B56B4 16E7ADA7

B380753F 472C8E2C AE75780A 5AD98319 886A6F55 7CC69446 959F6260 61339973

57F85086 A354AB95 4A0D5DB3 BEA1A6A0 6C124AEC 98BEB1FF 71E747D9 854BBCCA

202C6452 D4809F41 3DD96967 C9759274 1BC67E38 EF6A852B 0633730D F29F881E

B850392E 4CFCC23D A5A5341B 5109CF08 83BA2344 7716D857 9E4F2E71 6AE3D562

CF840DFA 3B28F6E9 D27100CF 26DDFBDC F46E1790 00C2EC83 E99B1AA5 1D37E1B6

7C0478C5 88A883D6 61F175F0 955D8EE3 47EE62AF B34299BC 5A1B6F9A AEB79489

0BD04C11 FF7CB702 16254124 E289BA37 303A567B C496AD68 2DCF5B4E D963A05D

93AC116D 6700EA7E 8E591C58 7AF5E74B A8460B07 5CEAF014 B5B30632 411FFD21

E47825B9 10D4DEAA F98D288C 0D21D39F DF923FD3 2B3EC4C0 C26732E6 36CBC9F5

AFF0A10C 5B5C5A1F B205AC39 46A9572A 941ABB66 60B64075 89EFB653 7D434D40

D82495D8 2C886ECB C5D198ED 317D63FE E3CE8FB2 176274A1 FE3B8287 0A977994

4058C8A4 B4F433B7 5DADC591 A9013E82 7BB2D2CE 8F1E29DD 6647DFFB 92EB24E8

378CFC70 C3200763 2A79F145 DED50A56 0C66E61A F8CA1D09 1193EB2F E53F103C

840C894F 70A0725C 99F9847A 6D557F69 BFE69325 4B4A6836 A2139E10 56BF6503

F3D8BD9B 07744688 EE2DB0AE 1A814BBD C832A7F1 3C9E5CE2 D5C7AAC4 216B51D7

6BA4E0E7 9F081BF4 7651EDD2 82FD16C1 504EFA8D A4E2019E 4DBBF7B8 B9170CAB

1C70D433 E8DC2F20 0185D906 F5292215 279ACE59 D336354A 3A6FC36C CEC3387F

F808F18A 0CA40A99 E5FDFCBF 115107AC C3E2EBE0 374E10F3 DE17E6D5 2ABB1DC6

8FDCC55E 7B703E4D 9229C86B 66853378 B436DF34 409A2427 A9C3D201 5D6F2912

17A09822 E30C6331 0A559517 FEF96E04 2C4A8248 D8E6795B 31BF8F7D C513746E

6074ACF6 94D857E5 7D81A1C3 892D5AD0 5B9EB69C AF324D8F 466BBBA9 B2C740BA

D3F4D9C9 275822DA CE01D4FC 3AAD2FEF E81EC3A3 1CB238B0 F5EBCE96 01473585

A420ED1D 508C160E B9D5E028 4D791B3B 9FCAF777 6B660C64 823FFA42 76930151

3C5CB061 C8F04B72 21A9BD54 D5054647 07B6AA0B F31A5118 1A43A73E EEEF5C2D

4B8884B5 BF247FA6 567D8980 A2D17293 70629EDF 84CE65CC 6D9793EA 993B68F9

This table contains 32-bit values in hexadecimal representation for each value (0 to 255) of the argument a in the
function crctab32 [a]. The table should be used line-by-line in ascending order from top left (0) to bottom right

(255). For instance, crctab32[10] is highlighted using a darker background and red color.

OPC 10000-15: Safety 92 1.05.00

B.2 Use cases for Operator Acknowledgment

B.2.1 Explanation

OPC UA Safety supports Operator Acknowledgment both on the SafetyProvider side and on the
SafetyConsumer side. For this purpose, both the interface of the SafetyProvider and the
SafetyConsumer comprise a Boolean input called OperatorAckProvider and Operato rAckConsumer,
respectively. The safety application can get the values of these parameters on the consumer side via
the Boolean outputs OperatorAckRequested and OperatorAckProvider on the SafetyConsumers SAPI
(see Clause 7.4.1).

The following clauses show some examples on how to use these inputs and outputs. Dashed lines
indicate that the corresponding input or output is not used in the use case. For details, see Clause 7.3
and Clause 7.4.

B.2.2 Use case 1: unidirectional comm. and OA on the SafetyConsumer side

Figure 31 – OA in unidirectional safety communication

In the scenario shown in Figure 31, operator acknowledgment must be done on the SafetyConsumer
side, operator acknowledgment on the SafetyProvider side is not possible.

B.2.3 Use case 2: bidirectional comm. and dual OA

Figure 32 – Two-sided OA in bidirectional safety communication

In the scenario shown in Figure 32, operator acknowledgment is done independently for both directions.

Controller B

Safety App

Controller A

SafetyProvider1 SafetyConsumer1

OperatorAckProvider

OperatorAckConsumer

ResponseSPDU OperatorAckRequested

OARequest
SPDU

Safety App

OperatorAckProvider

OperatorAckRequested

Controller A
Safety App

Controller B
Safety App

SafetyProvider1

SafetyProvider2

SafetyConsumer1

SafetyConsumer2

OperatorAckProvider

OperatorAckProvider

OperatorAckConsumer

OperatorAckConsumer

OperatorAckProvider

ResponseSPDU

OperatorAckRequested

OperatorAckRequested

OA

OA

ResponseSPDU

Request
SPDU

Request
SPDU

OperatorAckProvider

OperatorAckRequested

OperatorAckRequested

OPC 10000-15: Safety 93 1.05.00

B.2.4 Use case 3: bidirectional comm. and single, one-sided OA

Figure 33 – One sided OA in bidirectional safety communication

In the scenario of Figure 33, an operator acknowledgment activated at controller A suffices for re-
establishing the bidirectional connection. Both sides will cease delivering fail -safe values and continue
sending process values. This is accomplished by connecting OperatorAckProvider with
OperatorAckConsumer at the SafetyConsumer of controller B. Activating operator acknowledgment at
controller B is not possible in this scenario.

B.2.5 Use case 4: bidirectional comm. and single, two-sided OA

Figure 34 – One sided OA on each side is possible

Figure 34 shows a scenario where an operator acknowledgment activated at controller A or controller
B suffices for re-establishing the bidirectional connection. Both sides will cease delivering fail-safe
values and continue sending process values. This is accomplished by the logic circuit s shown in the
safety applications.

Controller B Controller A
Safety App Safety App

SafetyProvider1

SafetyProvider2

SafetyConsumer1

SafetyConsumer2

OperatorAckProvider

OperatorAckProvider

OperatorAckProvider

OperatorAckConsumer

OperatorAckConsumer

ResponseSPDU

OperatorAckRequested

OperatorAckRequested

OA

ResponseSPDU

Request
SPDU

Request
SPDU

OperatorAckRequested

OperatorAckProvider

OperatorAckRequested

Controller B

Safety App

Controller A

Safety App Safety-
Provider1

Safety-
Provider2

Safety-
Consumer1

Safety-
Consumer2

OperatorAckProvider

OperatorAckProvider

OperatorAckProvider

OperatorAckConsumer

OperatorAckConsumer

OperatorAckProviderOperatorAckRequested

OperatorAckRequested

OA

OA

>=1

>=1

ResponseSPDU

ResponseSPDU

Request
SPDU

Request
SPDU

OperatorAckRequested

OperatorAckRequested

OPC 10000-15: Safety 94 1.05.00

Annex C: Bibliography

[1] Object Management Group, Unified Modeling Language (UML), V2.5.1, 2017,
https://www.omg.org/spec/UML/2.5.1/

[2] National Institute of Standards and Technology (NIST), Computer Security Resource Center,
Recommendation for Random Number Generation Using Deterministic Random Bit Generators,
SP 800-90A Rev. 1, June 2015

[3] Anwendungshinweise und Interpretationen (AIS) 20, Functionality classes and evaluation
methodology for physical random number generators. Bundesamt für Sicherheit in der
Informationstechnik (BSI), 1999.

[4] Anwendungshinweise und Interpretationen (AIS) 31, Functionality Classes and Evaluation
Methodology for Physical Random Number Generators, Bundesamt für Sicherheit in der
Informationstechnik (BSI), 2001.

[5] ISO/IEC 18031 Information technology, Security techniques. Random Bit Generation, 2011

https://www.omg.org/spec/UML/2.5.1/

	Revision 1.05.0 Highlights
	1 Scope
	2 General
	2.1 Reference Documents
	2.2 Relation to safety-, security- and OPC UA-standards
	2.3 Intellectual properties

	3 Terms, definitions and conventions
	3.1 Overview
	3.2 Terms
	3.3 Abbreviations and symbols
	3.4 Conventions
	3.4.1 Conventions in this part
	3.4.2 Conventions on CRC calculation
	3.4.3 Conventions in state machines

	4 Introduction to OPC UA Safety
	4.1 What is OPC UA Safety?
	4.2 Safety functional requirements
	4.3 Communication structure
	4.4 Implementation aspects
	4.5 Features of OPC UA Safety
	4.6 Security policy
	4.7 Safety measures

	5 Use cases (informative)
	5.1 Use cases for different types of communication links
	5.1.1 Unidirectional communication
	5.1.2 Bidirectional communication
	5.1.3 Safety Multicast

	5.2 Cyclic and acyclic safety communication
	5.3 Principle for “Application variables with qualifier”

	6 Information Models
	6.1 Object and ObjectType Definitions
	6.1.1 SafetyACSet Object
	6.1.2 Safety ObjectType definitions
	6.1.3 Method ReadSafetyData
	6.1.4 Method ReadSafetyDiagnostics
	6.1.5 Object SafetyPDUs
	6.1.6 Objects SafetyProviderParameters and SafetyConsumerParameters

	6.2 Datatype Definition
	6.2.1 InFlagsType
	6.2.2 OutFlagsType
	6.2.3 RequestSPDUDataType
	6.2.4 ResponseSPDUDataType
	6.2.5 NonSafetyDataPlaceholderDataType

	6.3 SafetyProvider Version
	6.4 DataTypes and length of SafetyData
	6.5 Connection establishment

	7 Safety communication layer services and management
	7.1 Overview
	7.2 OPC UA Platform interface (OPC UA PI)
	7.3 SafetyProvider interfaces
	7.3.1 SAPI of SafetyProvider
	7.3.2 SPI of SafetyProvider

	7.4 SafetyConsumer interfaces
	7.4.1 SAPI of SafetyConsumer
	7.4.2 Motivation for SAPI Operator Acknowledge (OperatorAckConsumer)
	7.4.3 SPI of the SafetyConsumer
	7.4.4 Motivation for SPI SafetyOperatorAckNecessary

	8 Safety communication layer protocol
	8.1 SafetyProvider and SafetyConsumer
	8.1.1 SPDU formats
	8.1.1.1 RequestSPDU: SafetyConsumerID
	8.1.1.2 RequestSPDU: MonitoringNumber
	8.1.1.3 RequestSPDU: Flags
	8.1.1.4 ResponseSPDU: SafetyData
	8.1.1.5 ResponseSPDU: Flags
	8.1.1.6 ResponseSPDU: SPDU_ID
	8.1.1.7 ResponseSPDU: SafetyConsumerID
	8.1.1.8 ResponseSPDU: MonitoringNumber
	8.1.1.9 ResponseSPDU: CRC
	8.1.1.10 ResponseSPDU: NonSafetyData

	8.1.2 OPC UA Safety behavior
	8.1.2.1 General
	8.1.2.2 SafetyProvider/-Consumer Sequence diagram
	8.1.2.3 SafetyProvider state diagram
	8.1.2.4 SafetyConsumer state diagram
	8.1.2.5 SafetyConsumer sequence diagram for operator acknowledgement (informative)

	8.1.3 Subroutines
	8.1.3.1 Build ResponseSPDU
	8.1.3.2 Calculation of the SPDU_ID_1, SPDU_ID_2, SPDU_ID_3
	8.1.3.3 Coding of the SafetyProviderLevel_ID
	8.1.3.4 Signature over the Safety Data Structure (SafetyStructureSignature)
	8.1.3.5 Calculation of a CRC checksum

	9 Diagnostics
	9.1 Diagnostics messages of the SafetyConsumer
	9.2 Method ReadSafetyDiagnostics of the SafetyProvider

	10 Safety communication layer management
	10.1 Safety function response time part of communication

	11 System requirements (SafetyProvider & SafetyConsumer)
	11.1 Constraints on the SPDU-Parameters
	11.1.1 SafetyBaseID and SafetyProviderID
	11.1.2 SafetyConsumerID

	11.2 Initialization of the MNR in the SafetyConsumer
	11.3 Constraints on the calculation of system characteristics
	11.3.1 Probabilistic considerations (informative)
	11.3.2 Safety related assumptions (informative)

	11.4 PFH/PFD-values of a logical OPC UA Safety communication link
	11.5 Safety manual
	11.6 Indicators and displays

	12 Assessment
	12.1 Safety policy
	12.2 Obligations
	12.3 Automated layer test for OPC UA Safety (informative)
	12.3.1 Testing principle
	12.3.2 Test configuration

	13 Profiles and Conformance Units
	13.1 Conformance units
	13.2 Profiles
	13.2.1 Profile list
	13.2.2 Facets and Profiles
	13.2.2.1 Safety Provider Facets
	13.2.2.2 Safety Consumer Facets

	14 Namespaces
	14.1 Namespace Metadata
	14.2 Handling of OPC UA Namespaces

	Annex A : Safety Namespace and mappings (normative)
	A.1 Namespace and identifiers for Safety Information Model

	Annex B : Additional information (informative)
	B.1 CRC-calculation using tables, for the polynomial 0xF4ACFB13
	B.2 Use cases for Operator Acknowledgment
	B.2.1 Explanation
	B.2.2 Use case 1: unidirectional comm. and OA on the SafetyConsumer side
	B.2.3 Use case 2: bidirectional comm. and dual OA
	B.2.4 Use case 3: bidirectional comm. and single, one-sided OA
	B.2.5 Use case 4: bidirectional comm. and single, two-sided OA

	Annex C : Bibliography

