

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-16

OPC Unified Architecture

Part 16: State Machines

Release 1.05.00

2021-10-12

Specification
Type:

Industry Standard
Specification

Comments: Report or view errata:
http://www.opcfoundation.org/errata

Document
Number OPC 10000-16

Title: OPC Unified
Architecture

Part 16: State Machines

Date: 2021-10-12

Version: Release 1.05.00 Software: MS-Word

 Source: OPC 10000-16 - UA Specification
Part 16 - State Machines
1.05.00.docx

Author: OPC Foundation Status: Release

OPC 10000-16: State Machines ii 1.05.00

CONTENTS

FIGURES ... iii

TABLES ... iii

1 Scope ... 1

2 Normative references .. 1

3 Terms, definitions, abbreviated terms and conventions ... 1

3.1 Terms and definitions ... 1

4 State Machine Model .. 1

4.1 General .. 1

4.2 Examples of finite state machines .. 2

4.2.1 Simple state machine .. 2

4.2.2 State machine containing substates .. 3

4.3 Definition of state machine ... 3

4.4 Representation of state machines in the AddressSpace ... 4

4.4.1 Overview ... 4

4.4.2 StateMachineType .. 5

4.4.3 StateVariableType .. 6

4.4.4 TransitionVariableType ... 7

4.4.5 FiniteStateMachineType .. 7

4.4.6 FiniteStateVariableType .. 9

4.4.7 FiniteTransitionVariableType ... 10

4.4.8 StateType ... 10

4.4.9 InitialStateType ... 11

4.4.10 TransitionType .. 12

4.4.11 FromState ... 12

4.4.12 ToState ... 13

4.4.13 HasCause ... 13

4.4.14 HasEffect .. 14

4.4.15 HasSubStateMachine .. 14

4.4.16 TransitionEventType ... 15

4.4.17 AuditUpdateStateEventType ... 15

4.4.18 Special Restrictions on subtyping StateMachines .. 16

4.4.19 Specific StatusCodes for StateMachines ... 16

4.5 Examples of StateMachines in the AddressSpace .. 17

4.5.1 StateMachineType using inheritance ... 17

4.5.2 StateMachineType with a SubStateMachine using inheritance 18

4.5.3 StateMachineType using containment ... 19

4.5.4 Example of a StateMachine having Transition to SubStateMachine 20

4.5.5 Example of a StateMachine adding a SubStateMachine on a Subtype 21

4.6 StateMachine Extensions for ChoiceStates and Guards 23

4.6.1 Overview ... 23

4.6.2 ChoiceStateType... 24

4.6.3 HasGuard ... 24

4.6.4 GuardVariableType ... 25

4.6.5 ExpressionGuardVariableType .. 25

4.6.6 ElseGuardVariableType .. 26

1.05.00 iii OPC 10000-16: State Machines

4.7 Example of a StateMachine using a ChoiceState and Guards 26

FIGURES

Figure 1 – Example of a simple state machine .. 2

Figure 2 – Example of a state machine having a sub-machine .. 3

Figure 3 – The StateMachine Information Model ... 5

Figure 4 – Example of a FiniteStateMachine type ... 9

Figure 5 – Example of a FiniteStateMachine instance .. 9

Figure 6 – Example of an initial State in a sub-machine ... 11

Figure 7 – Example of a StateMachineType using inheritance .. 17

Figure 8 – Example of a StateMachineType with a SubStateMachine using inheritance 18

Figure 9 – Example of a StateMachineType using containment .. 19

Figure 10 – Example of a StateMachine with Transitions from sub-states 20

Figure 11 – Example of a StateMachineType having Transition to SubStateMachine 21

Figure 12 – Example of a StateMachine with two States ... 22

Figure 13 – Example of a StateMachine extended with two Substates 22

Figure 14 – Example of a StateMachine extended with another two Substates 22

Figure 15 – Example of a StateMachineType adding SubStateMachines in Subtypes 23

Figure 16 – Example of a ChoiceState ... 24

Figure 17 – Example of a StateMachine using ChoiceState and Guards 27

TABLES

Table 1 – StateMachineType definition ... 6

Table 2 – StateVariableType definition ... 6

Table 3 – TransitionVariableType definition .. 7

Table 4 – FiniteStateMachineType definition .. 8

Table 5 – FiniteStateVariableType definition .. 10

Table 6 – FiniteTransitionVariableType definition ... 10

Table 7 – StateType definition .. 11

Table 8 – InitialStateType definition ... 12

Table 9 – TransitionType definition ... 12

Table 10 – FromState ReferenceType .. 13

Table 11 – ToState ReferenceType .. 13

Table 12 – HasCause ReferenceType .. 14

Table 13 – HasEffect ReferenceType ... 14

Table 14 – HasSubStateMachine ReferenceType ... 15

Table 15 – TransitionEventType ... 15

Table 16 – AuditUpdateStateEventType ... 15

Table 17 – Specific StatusCodes for StateMachines ... 16

Table 18 – ChoiceStateType .. 24

Table 19 – HasGuard ReferenceType... 25

OPC 10000-16: State Machines iv 1.05.00

Table 20 – GuardVariableType definition .. 25

Table 21 – ExpressionGuardVariableType definition... 26

Table 22 – ElseGuardVariableType definition ... 26

1.05.00 v OPC 10000-16: State Machines

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2021, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that a re
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LO SS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials .
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

OPC 10000-16: State Machines vi 1.05.00

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

1.05.00 vii OPC 10000-16: State Machines

Revision 1.05.00 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

5521 Make Part 5 Annex B a separate
Part

Content of Part 5 Annex B moved to the initial
version of this part.

Merged content of Amendment 2.

4276 Extend StateMachine model

with choice states and guards
Choice states and guards are added as
possible extensions to state machines (see
4.6).

4695 Clarification on HasEffect for
Events

Stated that if an EventType is referenced,
Events shall be generated when Transition is
triggered (see 4.4.14)

5683 Clarification on Subtyping
StateMachines

Changed wording on subtyping (see 4.4.18)
requiring that States and Transitions are
repeated on subtypes. Clarified usage of
NodeIds for current State (see 4.4.6).

Changed wording of HasSubStateMachine
ReferenceType (see 4.4.15) and added
example of how to subtype StateMachines with
SubStateMachines (see 4.5.5).

5682 Clarification on ModellingRules for
States in StateMachines

Added clarifying text to StateType (see 4.4.8)
and TransitionType (see 4.4.10).

5814 Missing relation of types to
conformance units and profiles

Added new rows to all tables referencing
conformance units.

https://www.opcfoundation.org/mantis/view.php?id=5521
https://www.opcfoundation.org/mantis/view.php?id=4276
https://www.opcfoundation.org/mantis/view.php?id=4695
https://www.opcfoundation.org/mantis/view.php?id=5683
https://www.opcfoundation.org/mantis/view.php?id=5682
https://www.opcfoundation.org/mantis/view.php?id=5814

OPC 10000-16: State Machines 1 1.05.00

OPC Unified Architecture Specification

Part 16: State Machines

1 Scope

This part of the OPC Unified Architecture defines an Information Model. The Information Model
describes the basic infrastructure to model state machines.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model
http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-10, OPC Unified Architecture - Part 10: Programs

http://www.opcfoundation.org/UA/Part10/

3 Terms, definitions, abbreviated terms and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC
10000-3, and OPC 10000-5 apply.

4 State Machine Model

4.1 General

This document describes the basic infrastructure to model state machines. It defines
ObjectTypes, VariableTypes and ReferenceTypes and explains how they should be used.

This document is an integral part of this standard, that is, the types defined in this document
shall be used as defined. However, it is not required but strongly recommended that a Server

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part10/

1.05.00 2 OPC 10000-16: State Machines

uses these types to expose its state machines. The defined types may be subtyped to refine
their behaviour.

When a Server exposes its state machine using the types defined in this document, it might
only provide a simplified view on its internal state machine, hiding for example substates or
putting several internal states into one exposed state.

The scope of the state machines described in this document is to provide an appropriate
foundation for state machines needed for OPC 10000-9 and OPC 10000-10. It does not provide
more complex functionality of a state machine like parallel states, forks and joins, history states,
choices and junctions, etc. However, the base state machine defined in this document can be
extended to support such concepts.

The following clauses describe examples of state machines, define state machines in the
context of this document and define the representation of state machines in OPC UA. Finally,
some examples of state machines, represented in OPC UA, are given.

4.2 Examples of finite state machines

4.2.1 Simple state machine

The following example provides an overview of the base features that the state machines
defined in this annex will support. In the following, a more complex example is given, that also
supports sub-state machines.

Figure 1 gives an overview over a simple state machine. It contains the three states "State1",
"State2" and "State3". There are transitions from "State1" to "State2", "State2" to "State2", etc.
Some of the transitions provide additional information with regard to what causes (or triggers)
the transition, for example the call of "Method1" for the transition from "State1" to "State2". The
effect (or action) of the transition can also be specified, for example the generation of an Event
of the "EventType1" in the same transition. The notation used to identify the cause is simply
listing it on the transition, the effect is prefixed with a "/". More than one cause or effect are
separated by a ",". Not every transition has to have a cause or effect, for example the transi tion
between "State2" and "State3".

Figure 1 – Example of a simple state machine

For simplicity, the state machines described in this annex will only support causes in form of
specifying Methods that have to be called and effects in form of EventTypes of Events that are
generated. However, the defined infrastructure allows extending this to support additional
different causes and effects.

State1 State2

State3

Method1 /EventType1

/EventType2

Method2

OPC 10000-16: State Machines 3 1.05.00

4.2.2 State machine containing substates

Figure 2 shows an example of a state machine where "State6" is a sub-state-machine. This
means, that when the overall state machine is in State6, this state can be distinguished to be
in the sub-states "State7" or "State8". Sub-state-machines can be nested, that is, "State7" could
be another sub-state-machine.

Figure 2 – Example of a state machine having a sub-machine

4.3 Definition of state machine

The infrastructure of state machines defined in this annex only deals with the basics of state
machines needed to support OPC 10000-9 and OPC 10000-10. The intention is to keep the
basic simple but extensible.

For the state machines defined in this annex we assume that state machines are typed and
instances of a type have their states and semantics specified by the type. For some types, this
means that the states and transitions are fixed. For other types the states and transitions may
be dynamic or unknown. A state machine where all the states are specified explicitly by the type
is called a finite state machine.

Therefore, we distinguish between StateMachineType and StateMachine and their subtypes like
FiniteStateMachineType. The StateMachineType specifies a description of the state machine,
that is, its states, transitions, etc., whereas the StateMachine is an instance of the
StateMachineType and only contains the current state.

Each StateMachine contains information about the current state. If the StateMachineType has
SubStateMachines, the StateMachine also contains information about the current state of the
SubStateMachines. StateMachines which have their states completely defined by the type are
instances of a FiniteStateMachineType.

Each FiniteStateMachineType has one or more States. For simplicity, we do not distinguish
between different States like the start or the end states.

Each State can have one or more SubStateMachines.

Each FiniteStateMachineType may have one or more Transitions. A Transition is directed and
points from one State to another State.

State4 State5

State6

State7 State8

Method3

1.05.00 4 OPC 10000-16: State Machines

Each Transition can have one or more Causes. A Cause leads a FiniteStateMachine to change
its current State from the source of the Transition to its target. In this annex we only specify
Method calls to be Causes of Transitions. Transitions do not have to have a Cause. A Transition
can always be caused by some server-internal logic that is not exposed in the AddressSpace.

Each Transition can have one or more Effects. An Effect occurs if the Transition is used to
change the State of a StateMachine. In this annex we only specify the generation of Events to
be Effects of a Transition. A Transition is not required to expose any Effects in the
AddressSpace.

Although this annex only specifies simple concepts for state machines, the provided
infrastructure is extensible. If needed, special States can be defined as well as additional
Causes or Effects.

4.4 Representation of state machines in the AddressSpace

4.4.1 Overview

The types defined in this annex are illustrated in Figure 3. The MyFiniteStateMachineType is a
minimal example which illustrates how these Types can be used to describe a StateMachine.
See OPC 10000-9 and OPC 10000-10 for additional examples of StateMachines.

OPC 10000-16: State Machines 5 1.05.00

CurrentState Id

StateNumber

StateVariableType

Name

Number

Name

TransitionVariableType

Id

Number

TransitionTime

LastTransition

StateMachineType

StateType

TransitionType

TransitionNumber

FiniteStateMachineType

Effective

DisplayName

MyFiniteStateMachineType

MyState

MyTransition

MyMethod

FromStateToState

HasCause

MyEventType

GeneratesEvent

HasEffect

InitialStateType

Figure 3 – The StateMachine Information Model

4.4.2 StateMachineType

The StateMachineType is the base ObjectType for all StateMachineTypes. It defines a single
Variable which represents the current state of the machine. An instance of this ObjectType shall
generate an Event whenever a significant state change occurs. The Server decides which state
changes are significant. Servers shall use the GeneratesEvent ReferenceType to indicate which
Event(s) could be produced by the StateMachine.

Subtypes may add Methods which affect the state of the machine. The Executable Attribute is
used to indicate whether the Method is valid given the current state of the machine. The
generation of AuditEvents for Methods is defined in OPC 10000-4. A StateMachine may not be
active. In this case, the CurrentState and LastTransition Variables shall have a status equal to
Bad_StateNotActive (see Table 17).

Subtypes may add components which are instances of StateMachineTypes. These components
are considered to be sub-states of the StateMachine. SubStateMachines are only active when
the parent machine is in an appropriate state.

Events produced by SubStateMachines may be suppressed by the parent machine. In some
cases, the parent machine will produce a single Event that reflects changes in multiple
SubStateMachines.

1.05.00 6 OPC 10000-16: State Machines

FiniteStateMachineType is subtype of StateMachineType that provides a mechanism to
explicitly define the states and transitions. A Server should use this mechanism if it knows what
the possible states are and the state machine is not trivial. The FiniteStateMachineType is
defined in clause 4.4.5.

The StateMachineType is formally defined in Table 1

Table 1 – StateMachineType definition

Attribute Value

BrowseName StateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5

Note that a Reference to this subtype is not shown in the definition of the BaseObjectType.

HasSubtype ObjectType FiniteStateMachineType Defined in 4.4.5

HasComponent Variable CurrentState LocalizedText StateVariableType Mandatory

HasComponent Variable LastTransition LocalizedText TransitionVariableType Optional

Conformance Units

Base Info State Machine Instance

CurrentState stores the current state of an instance of the StateMachineType. CurrentState
provides a human readable name for the current state which may not be suitable for use in
application control logic. Applications should use the Id Property of CurrentState if they need a
unique identifier for the state.

LastTransition stores the last transition which occurred in an instance of the StateMachineType.
LastTransition provides a human readable name for the last transition which may not be suitable
for use in application control logic. Applications should use the Id Property of LastTransition if
they need a unique identifier for the transition.

4.4.3 StateVariableType

The StateVariableType is the base VariableType for Variables that store the current state of a
StateMachine as a human readable name.

The StateVariableType is formally defined in Table 2.

Table 2 – StateVariableType definition

Attribute Value

BrowseName StateVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseDataVariableType defined in OPC 10000-5

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasSubtype VariableType FiniteStateVariableType Defined in 4.4.6

HasProperty Variable Id BaseDataType PropertyType Mandatory

HasProperty Variable Name QualifiedName PropertyType Optional

HasProperty Variable Number UInt32 PropertyType Optional

HasProperty Variable EffectiveDisplayName LocalizedText PropertyType Optional

Conformance Units

Base Info State Machine Instance

Id is a name which uniquely identifies the current state within the StateMachineType. A subtype
may restrict the DataType.

Name is a QualifiedName which uniquely identifies the current state within the
StateMachineType.

OPC 10000-16: State Machines 7 1.05.00

Number is an integer which uniquely identifies the current state within the StateMachineType.

EffectiveDisplayName contains a human readable name for the current state of the state
machine after taking the state of any SubStateMachines in account. There is no rule specified
for which state or sub-state should be used. It is up to the Server and will depend on the
semantics of the StateMachineType.

StateMachines produce Events which may include the current state of a StateMachine. In that
case Servers shall provide all the optional Properties of the StateVariableType in the Event,
even if they are not provided on the instances in the AddressSpace.

4.4.4 TransitionVariableType

The TransitionVariableType is the base VariableType for Variables that store a Transition that
occurred within a StateMachine as a human readable name.

The SourceTimestamp for the value specifies when the Transition occurred. This value may
also be exposed with the TransitionTime Property.

The TransitionVariableType is formally defined in Table 3.

Table 3 – TransitionVariableType definition

Attribute Value

BrowseName TransitionVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseDataVariableType defined in OPC 10000-5

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasSubtype VariableType FiniteTransitionVariableType Defined in 4.4.7

HasProperty Variable Id BaseDataType PropertyType Mandatory

HasProperty Variable Name QualifiedName PropertyType Optional

HasProperty Variable Number UInt32 PropertyType Optional

HasProperty Variable TransitionTime UtcTime PropertyType Optional

HasProperty Variable EffectiveTransitionTime UtcTime PropertyType Optional

Conformance Units

Base Info State Machine Instance

Id is a name which uniquely identifies a Transition within the StateMachineType. A subtype may
restrict the DataType.

Name is a QualifiedName which uniquely identifies a transition within the StateMachineType.

Number is an integer which uniquely identifies a transition within the StateMachineType.

TransitionTime specifies when the transition occurred .

EffectiveTransitionTime specifies the time when the current state or one of its substates was
entered. If, for example, a StateA is active and – while active – switches several times between
its substates SubA and SubB, then the TransitionTime stays at the point in time where StateA
became active whereas the EffectiveTransitionTime changes with each change of a substate.

4.4.5 FiniteStateMachineType

The FiniteStateMachineType is the base ObjectType for StateMachines that explicitly define
the possible States and Transitions. Once the States and Transitions are defined subtypes shall
not add new States and Transitions (see 4.4.18). Subtypes may add causes or effects.

The States of the machine are represented with instances of the StateType ObjectType. Each
State shall have a BrowseName which is unique within the StateMachine and shall have a
StateNumber which shall also be unique across all States defined in the StateMachine. Be
aware that States in a SubStateMachine may have the same StateNumber or BrowseName as

1.05.00 8 OPC 10000-16: State Machines

States in the parent machine. A concrete subtype of FiniteStateMachineType shall define at
least one State.

A StateMachine may define one State which is an instance of the InitialStateType. This State
is the State that the machine goes into when it is activated.

The Transitions that may occur are represented with instances of the TransitionType. Each
Transition shall have a BrowseName which is unique within the StateMachine and may have a
TransitionNumber which shall also be unique across all Transitions defined in the StateMachine.

The initial State for a Transition is a StateType Object which is the target of a FromState
Reference. The final State for a Transition is a StateType Object which is the target of a ToState
Reference. The FromState and ToState References shall always be specified.

A Transition may produce an Event. The Event is indicated by a HasEffect Reference to a
subtype of BaseEventType. The StateMachineType shall have GeneratesEvent References to
the targets of a HasEffect Reference for each of its Transitions.

A FiniteStateMachineType may define Methods that cause a transition to occur. These Methods
are targets of HasCause References for each of the Transitions that may be triggered by the
Method. The Executable Attribute for a Method is used to indicate whether the current State of
the machine allows the Method to be called.

A FiniteStateMachineType may have sub-state-machines which are represented as instances
of StateMachineType ObjectTypes. Each State shall have a HasSubStateMachine Reference
to the StateMachineType Object which represents the child States. The SubStateMachine is
not active if the parent State is not active. In this case the CurrentState and LastTransition
Variables of the SubStateMachine shall have a status equal to Bad_StateNotActive (see Table
17).

The FiniteStateMachineType is formally defined in Table 4.

Table 4 – FiniteStateMachineType definition

Attribute Value

BrowseName FiniteStateMachineType

IsAbstract True

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the StateMachineType defined in 4.4.2

HasComponent Variable CurrentState LocalizedText FiniteStateVariableType Mandatory

HasComponent Variable LastTransition LocalizedText FiniteTransitionVariableType Optional

HasComponent Variable AvailableStates NodeId[] BaseDataVariableType Optional

HasComponent Variable AvailableTransitions NodeId[] BaseDataVariableType Optional

Conformance Units

Base Info Finite State Machine Instance

Base Info Available States and Transitions

In some Servers an instance of a StateMachine may restrict the States and / or Transitions that
are available. These restrictions may result from the internal design of the instance. For
example, the StateMachine for an instrument’s limit alarm which only supports Hi and HiHi and
can not produce a Low or LowLow. An instance of a StateMachine may also dynamically change
the available States and/or Transitions based on its operating mode. For example, when a piece
of equipment is in a maintenance mode the available States may be limited to some subset of
the States available during normal operation.

The AvailableStates Variable provides a NodeId list of the States that are present in the
StateMachine instance. The list may change during operation of the Server.

The AvailableTransitions Variable provides a NodeId list of the Transitions that are present in
the StateMachine instance. The list may change during operation of the Server.

OPC 10000-16: State Machines 9 1.05.00

An example of a FiniteStateMachine type is shown in Figure 4.

Held (11) L

Unholding (12) Holding (10)

M

Execute (6)

N K

Complete (13)

Suspending (7)

Suspending (8)

Unsuspended (9)

Starting (5)Idle (4)

ResettingState

(3)

Stopped (2) Stopping (1)

G

FED

B

C

A

O

J

HI

N

{P,Q,R,S,T,U,V,W,Y}
Transactions to

Stopped (2) from
States (5 to 13)

Figure 4 – Example of a FiniteStateMachine type

An example instance of the type is shown in Figure 5. In this example the States {7,8,9} and
the Transitions {G,H,I,J} are not available in this instance.

Held (11) L

Unholding (12) Holding (10)

M

Execute (6)

N K

Complete (13)Starting (5)Idle (4)

ResettingState

(3)

Stopped (2) Stopping (1)

FED

B

C

A

O

N

{S,T,U,V,W,Y}

Transactions to Stopped (2)
from

States (5,6,10,11,12 and 13)

Figure 5 – Example of a FiniteStateMachine instance

4.4.6 FiniteStateVariableType

The FiniteStateVariableType is a subtype of StateVariableType and is used to store the current
state of a FiniteStateMachine as a human readable name.

The FiniteStateVariableType is formally defined in Table 5.

1.05.00 10 OPC 10000-16: State Machines

Table 5 – FiniteStateVariableType definition

Attribute Value

BrowseName FiniteStateVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the StateVariableType defined 4.4.3

HasProperty Variable Id NodeId PropertyType Mandatory

Conformance Units

Base Info Finite State Machine Instance

Id is inherited from the StateVariableType and overridden to reflect the required DataType. This
value shall be the NodeId of one of the State Objects of the FiniteStateMachineType. If the
FiniteStateMachine is subtyped, it shall be the NodeId of the State defined on the supertype,
i.e., where the State is defined the first time in the type hierarchy.

The Name Property is inherited from StateVariableType. Its Value shall be the BrowseName of
one of the State Objects of the FiniteStateMachineType.

The Number Property is inherited from StateVariableType. Its Value shall be the StateNumber
for one of the State Objects of the FiniteStateMachineType.

4.4.7 FiniteTransitionVariableType

The FiniteTransitionVariableType is a subtype of TransitionVariableType and is used to store a
Transition that occurred within a FiniteStateMachine as a human readable name.

The FiniteTransitionVariableType is formally defined in Table 6.

Table 6 – FiniteTransitionVariableType definition

Attribute Value

BrowseName FiniteTransitionVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the TransitionVariableType defined in 4.4.4

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasProperty Variable Id NodeId PropertyType Mandatory

Conformance Units

Base Info Finite State Machine Instance

Id is inherited from the TransitionVariableType and overridden to reflect the required DataType.
This value shall be the NodeId of one of the Transition Objects of the FiniteStateMachineType.
If the FiniteStateMachine is subtyped, it shall be the NodeId of the Transition defined on the
supertype, i.e., where the Transition is defined the first time in the type hierarchy.

The Name Property is inherited from the TransitionVariableType. Its Value shall be the
BrowseName of one of the Transition Objects of the FiniteStateMachineType.

The Number Property is inherited from the TransitionVariableType. Its Value shall be the
TransitionNumber for one of the Transition Objects of the FiniteStateMachineType.

4.4.8 StateType

States of a FiniteStateMachine are represented as Objects of the StateType. Each Object of
the StateType or one of its subtypes shall be referenced from the ObjectType
FiniteStateMachineType or one of its subtypes using a HasComponent Reference or a subtype
of HasComponent and shall not have a ModellingRule as they are not applied on the instances.

OPC 10000-16: State Machines 11 1.05.00

The StateType is formally defined in Table 7.

Table 7 – StateType definition

Attribute Value

BrowseName StateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

Note that a Reference to this subtype is not shown in the definition of the BaseObjectType.

HasProperty Variable StateNumber UInt32 PropertyType Mandatory

HasSubtype ObjectType InitialStateType Defined in 4.4.9

HasSubtype ObjectType ChoiceStateType Defined in 4.6.2

Conformance Units

Base Info Finite State Machine Instance

4.4.9 InitialStateType

The InitialStateType is a subtype of the StateType and is formally defined in Table 8. An Object
of the InitialStateType represents the State that a FiniteStateMachine enters when it is
activated. Each FiniteStateMachine can have at most one State of type InitialStateType, but a
FiniteStateMachine does not have to have a State of this type.

A SubStateMachine goes into its initial state whenever the parent state is entered. However, a
state machine may define a transition that goes directly to a state of the SubStateMachine. In
this case the SubStateMachine goes into that State instead of the initial State. The two
scenarios are illustrated in Figure 6. The transition from State5 to State6 causes the
SubStateMachine to go into the initial State (State7), however, the transition from State4 to
State8 causes the parent machine to go to State6 and the SubStateMachine will go to State8.

Figure 6 – Example of an initial State in a sub-machine

If no initial state for a SubStateMachine exists and the State having the SubStateMachine is
entered directly, then the State of the SubStateMachine is server-specific.

State4 State5

State6

State8

State7

Method3

1.05.00 12 OPC 10000-16: State Machines

Table 8 – InitialStateType definition

Attribute Value

BrowseName InitialStateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the StateType defined in 4.4.8

Conformance Units

Base Info Finite State Machine Instance

4.4.10 TransitionType

Transitions of a FiniteStateMachine are represented as Objects of the ObjectType
TransitionType formally defined in 4.4.10. Each Object of the TransitionType or one of its
subtypes shall be referenced from the ObjectType FiniteStateMachineType or one of its
subtypes using a HasComponent Reference or a subtype of HasComponent and shall not have
a ModellingRule as they are not applied on the instances.

Each valid Transition shall have exactly one FromState Reference and exactly one ToState
Reference, each pointing to an Object of the ObjectType StateType.

Each Transition can have one or more HasCause References pointing to the cause that triggers
the Transition.

Each Transition can have one or more HasEffect References pointing to the effects that occur
when the Transition was triggered.

Table 9 – TransitionType definition

Attribute Value

BrowseName TransitionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

Note that a Reference to this subtype is not shown in the definition of the BaseObjectType.

HasProperty Variable TransitionNumber UInt32 PropertyType Mandatory

Conformance Units

Base Info Finite State Machine Instance

4.4.11 FromState

The FromState ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences .

The semantic of this ReferenceType is to point form a Transition to the starting State the
Transition connects.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode of this ReferenceType shall be an Object of the ObjectType
StateType or one of its subtypes.

The representation of the FromState ReferenceType in the AddressSpace is specified in Table
10.

OPC 10000-16: State Machines 13 1.05.00

Table 10 – FromState ReferenceType

Attributes Value

BrowseName FromState

InverseName ToTransition

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Conformance Units

Base Info Finite State Machine Instance

4.4.12 ToState

The ToState ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences .

The semantic of this ReferenceType is to point form a Transition to the ending State the
Transition connects.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode of this ReferenceType shall be an Object of the ObjectType
StateType or one of its subtypes.

References of this ReferenceType may be only exposed uni-directional. Sometimes this is
required, for example, if a Transition points to a State of a sub-machine.

The representation of the ToState ReferenceType in the AddressSpace is specified in Table
11.

Table 11 – ToState ReferenceType

Attributes Value

BrowseName ToState

InverseName FromTransition

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Conformance Units

Base Info Finite State Machine Instance

4.4.13 HasCause

The HasCause ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences .

The semantic of this ReferenceType is to point from a Transition to something that causes the
Transition. In this annex we only define Methods as Causes. However, the ReferenceType is
not restricted to point to Methods. The referenced Methods can, but do not have to point to a
Method of the StateMachineType. For example, it is allowed to point to a server -wide restart
Method leading the state machine to go into its initial state.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasCause ReferenceType in the AddressSpace is specified in Table
12.

1.05.00 14 OPC 10000-16: State Machines

Table 12 – HasCause ReferenceType

Attributes Value

BrowseName HasCause

InverseName MayBeCausedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Conformance Units

Base Info Finite State Machine Instance

4.4.14 HasEffect

The HasEffect ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences .

The semantic of this ReferenceType is to point from a Transition to something that will be
effected when the Transition is triggered. In this annex we only define EventTypes as Effects.
However, the ReferenceType is not restricted to point to EventTypes.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

If the TargetNode is an EventType, each time the Transition is triggered (either by a Client or
internally in the Server) an Event of that EventType or a subtype shall be generated.

The representation of the HasEffect ReferenceType in the AddressSpace is specified in Table
13.

Table 13 – HasEffect ReferenceType

Attributes Value

BrowseName HasEffect

InverseName MayBeEffectedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Conformance Units

Base Info Finite State Machine Instance

4.4.15 HasSubStateMachine

The HasSubStateMachine ReferenceType is a concrete ReferenceType and can be used
directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point from a State to an instance of a
StateMachineType which represents the sub-states for the State.

The SourceNode of this ReferenceType shall be an Object of the ObjectType StateType. The
TargetNode shall be an Object of the ObjectType StateMachineType or one of its subtypes.
Each Object can be the TargetNode of at most one HasSubStateMachine Reference.

The SourceNode (the state) and the TargetNode (the SubStateMachine) shall belong to the
same StateMachine. Therefore, the SourceNode shall be referenced from the ObjectType
FiniteStateMachineType or one of its subtypes and the TargetNode shall be referenced from
the same ObjectType, both using a HasComponent Reference or a subtype of HasComponent.

The representation of the HasSubStateMachine ReferenceType in the AddressSpace is
specified in Table 14.

OPC 10000-16: State Machines 15 1.05.00

Table 14 – HasSubStateMachine ReferenceType

Attributes Value

BrowseName HasSubStateMachine

InverseName SubStateMachineOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Conformance Units

Base Info Finite State Machine Instance

4.4.16 TransitionEventType

The TransitionEventType is a subtype of the BaseEventType. It can be used to generate an
Event identifying that a Transition of a StateMachine was triggered. It is formally defined in
Table 15.

Table 15 – TransitionEventType

Attribute Value

BrowseNam
e

TransitionEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the base BaseEventType defined in OPC 10000-5

HasComponent Variable Transition LocalizedText TransitionVariableType Mandatory

HasComponent Variable FromState LocalizedText StateVariableType Mandatory

HasComponent Variable ToState LocalizedText StateVariableType Mandatory

Conformance Units

Base Info Finite State Machine Instance

The TransitionEventType inherits the Properties of the BaseEventType.

The inherited Property SourceNode shall be filled with the NodeId of the StateMachine instance
where the Transition occurs. If the Transition occurs in a SubStateMachine, then the NodeId of
the SubStateMachine has to be used. If the Transition occurs between a StateMachine and a
SubStateMachine, then the NodeId of the StateMachine has to be used, independent of the
direction of the Transition.

Transition identifies the Transition that triggered the Event.

FromState identifies the State before the Transition.

ToState identifies the State after the Transition.

4.4.17 AuditUpdateStateEventType

The AuditUpdateStateEventType is a subtype of the AuditUpdateMethodEventType. It can be
used to generate an Event identifying that a Transition of a StateMachine was triggered. It is
formally defined in Table 16.

Table 16 – AuditUpdateStateEventType

Attribute Value

BrowseName AuditUpdateStateEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateMethodEventType defined in OPC 10000-5

HasProperty Variable OldStateId BaseDataType PropertyType Mandatory

HasProperty Variable NewStateId BaseDataType PropertyType Mandatory

Conformance Units

Auditing Base

1.05.00 16 OPC 10000-16: State Machines

The AuditUpdateStateEventType inherits the Properties of the AuditUpdateMethodEventType.

The inherited Property SourceNode shall be filled with the NodeId of the StateMachine instance
where the State changed. If the State changed in a SubStateMachine, then the NodeId of the
SubStateMachine has to be used.

The SourceName for Events of this type should be the effect that generated the event (e.g. the
name of a Method). If the effect was generated by a Method call, the SourceName should be
the name of the Method prefixed with "Method/".

OldStateId reflects the Id of the state prior the change.

NewStateId reflects the new Id of the state after the change.

4.4.18 Special Restrictions on subtyping StateMachines

In general, all rules on subtyping apply for StateMachine types as well. Some additional rules
apply for StateMachine types.

States and Transitions are not instantiated, this information is only provided on the ObjectType.
They have no ModellingRule, and thus, also the inheritance of States and Transitions is not
defined. Therefore, the following rules apply for subtyping StateMachines. Each State and
Transition defined on the supertype shall be available on the subtype as well. That is, for each
State defined on the supertype another Node of the same ObjectType having the same
BrowseName and the same StateNumber shall be defined on the subtype. For each Transition
defined on the supertype another Node of the same ObjectType having the same BrowseName
and the same TransitionNumber shall be defined on the subtype. All references defining the
StateMachine (HasCause, HasEffect, FromState, ToState, HasSubStateMachine) shall be
replicated in the subtype as well. If InstanceDeclarations are referenced (e.g., Methods used to
trigger Transitions) either the InstanceDeclaration of the supertype is referenced or the
InstanceDeclaration is overridden, and in the latter case the overridden InstanceDeclaration of
the subtype shall be referenced.

If a StateMachine type is not abstract, subtypes of it shall not change the behaviour of it. That
means, that in this case a subtype shall not add States and it shall not add Transitions between
its States. However, a subtype may add SubStateMachines, it may add Transitions from the
States to the States of the SubStateMachine, and it may add Causes and Effects to a Transition.
In addition, a subtype of a StateMachine type shall not remove States or Transitions.

4.4.19 Specific StatusCodes for StateMachines

In Table 17 specific StatusCodes used for StateMachines are defined.

Table 17 – Specific StatusCodes for StateMachines

Symbolic Id Description

Bad_StateNotActive The accessed state is not active.

OPC 10000-16: State Machines 17 1.05.00

4.5 Examples of StateMachines in the AddressSpace

4.5.1 StateMachineType using inheritance

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

StateType

TransitionType

ToState

FromState

MyMethod

HasCause

EventType1
HasEffect

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

GeneratesEvent

MyMethod

Figure 7 – Example of a StateMachineType using inheritance

In Figure 7 an example of a StateMachine is given using the Notation defined in OPC 10000-3.
First, a new StateMachineType is defined, called "MyStateMachineType", inheriting from the
base FiniteStateMachineType. It contains two States, "State1" and "State2" and a Transition
"Transition1" between them. The Transition points to a Method "MyMethod" as the Cause of the
Transition and an EventType "EventType1" as the Effect of the Transition.

Instances of "MyStateMachineType" can be created, for example "MyStateMachine". It has a
Variable "CurrentState" representing the current State. The "MyStateMachine" Object only
includes the Nodes which expose information specific to the instance.

1.05.00 18 OPC 10000-16: State Machines

4.5.2 StateMachineType with a SubStateMachine using inheritance

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

ToState

FromState

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

MySubMachine

AnotherStateMachineType

StateX

CurrentState

No value assigned

MySubMachine

CurrentState

Contains the current state of MySubMachine if

MyStateMachine is in State1, otherwise a BAD

status code is assigned to it.

HasSubStateMachine

StateY

Figure 8 – Example of a StateMachineType with a SubStateMachine using inheritance

Figure 8 gives an example of a StateMachineType having a SubStateMachine for its "State1".
For simplicity no effects and causes are shown, as well as type information fo r the States or
ModellingRules.

OPC 10000-16: State Machines 19 1.05.00

The "MyStateMachineType" contains an Object "MySubMachine" of type
"AnotherStateMachineType" representing a SubStateMachine. The "State1" references this
Object with a HasSubStateMachine Reference, thus it is a SubStateMachine of "State1". Since
"MySubMachine" is an Object of type "AnotherStateMachineType" it has a Variable representing
the current State. Since it is used as an InstanceDeclaration, no value is assigned to this
Variable.

An Object of "MyStateMachineType", called "MyStateMachine" has Variables for the current
State, but also has an Object "MySubMachine" and a Variable representing the current state of
the SubStateMachine. Since the SubStateMachine is only used when "MyStateMachine" is in
"State1", a client would receive a Bad_StateNotActive StatusCode when reading the
SubStateMachine CurrentState Variable if "MyStateMachine" is in a different State.

4.5.3 StateMachineType using containment

BaseObjectType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

ToState

FromState

MyMethod

HasCause

EventType1
HasEffect

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

MyObjectType

MyComponent

MyStateMachine

CurrentState

MyObject

MyComponent

MyMethod

GeneratesEvent

MyMethod

Figure 9 – Example of a StateMachineType using containment

Figure 9 gives an example of an ObjectType not only representing a StateMachine but also
having some other functionality. The ObjectType "MyObjectType" has an Object
"MyComponent" representing this other functionality. But it also contains a StateMachine

1.05.00 20 OPC 10000-16: State Machines

"MyStateMachine" of the type "MyStateMachineType". Objects of "MyObjectType" also contain
such an Object representing the StateMachine and a Variable containing the current state of
the StateMachine, as shown in the Figure.

4.5.4 Example of a StateMachine having Transition to SubStateMachine

The StateMachines shown so far only had Transitions between States on the same level, that
is, on the same StateMachine. Of cause, it is possible and often required to have Transitions
between States of the StateMachine and States of its SubStateMachine.

Because a SubStateMachine can be defined by another StateMachineType and this type can
be used in several places, it is not possible to add a bi -directional Reference from one of the
shared States of the SubStateMachine to another StateMachine. In this case it is suitable to
expose the FromState or ToState References uni-directional, that is, only pointing from the
Transition to the State and not being able to browse to the other direction. If a Transition points
from a State of a SubStateMachine to a State of another sub-machine, both, the FromState and
the ToState Reference, are handled uni-directional.

A Client shall be able to handle the information of a StateMachine if the ToState and FromState
References are only exposed as forward References and the inverse References are omitted.

Figure 10 gives an example of a state machine having a transition from a sub-state to a state.

Figure 10 – Example of a StateMachine with Transitions from sub-states

In Figure 11 the representation of this example as StateMachineType in the AddressSpace is
given. The "Transition1", part of the definition of "MyStateMachineType", points to the "StateX"
of the StateMachineType "AnotherStateMachineType". The Reference is only exposed as
forward Reference and the inverse Reference is omitted. Thus, there is no Reference from the
"StateX" of "AnotherStateMachineType" to any part of "MyStateMachineType" and
"AnotherStateMachineType" can be used in other places as well.

State1

State2StateX

OPC 10000-16: State Machines 21 1.05.00

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

ToState

FromState

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

MySubMachine

AnotherStateMachineType

StateX

CurrentState

No value assigned

MySubMachine

CurrentState

Contains the current state of MySubMachine if

MyStateMachine is in State1, otherwise a BAD

status code is assigned to it.

HasSubStateMachine

Reference is

only exposed

uni-directional

Figure 11 – Example of a StateMachineType having Transition to SubStateMachine

4.5.5 Example of a StateMachine adding a SubStateMachine on a Subtype

When a subtype of FiniteStateMachineType having States extends the StateMachine, it is not
allowed to add additional States, but instead SubStateMachines can be added to existing
States.

The example in Figure 12 shows a very simple StateMachine with two States.

1.05.00 22 OPC 10000-16: State Machines

State1 State2

Method1

Figure 12 – Example of a StateMachine with two States

In Figure 13 the StateMachine of Figure 12 is extended by adding two sSubstates to "State1".

State1 State2

StateX StateY Method1

Figure 13 – Example of a StateMachine extended with two Substates

In Figure 14 the StateMachine of Figure 13 is extended by adding two sSubstates to "State2",
and an effect on the Transition between "State1" and "State2".

State1 State2

StateX StateY
Method1

/TransitionEventType StateA StateB

Figure 14 – Example of a StateMachine extended with another two Substates

In Figure 15 the representation of this example as StateMachineType in the AddressSpace is
given. The “MyStateMachineType” defines the StateMachine of Figure 12, and the
“MySubStateMachineType” is a subtype and extends the StateMachine with a SubStateMachine
as defined in Figure 13. The “MySubSubStateMachineType” is another subtype as defined in
Figure 14.

The States and Transitions of "MyStateMachineType” are replicated to
"MySubStateMachineType" and "MySubSubStateMachineType". Since "Method1” is not
overridden, the "Transition1" of all three types is referencing the Method of
"MyStateMachineType”. In "MySubStateMachineType”, a SubStateMachine for "State1" was
added, and in "MySubSubStateMachineType" a SubStateMachine for "State2". In addition,
"MySubSubStateMachineType" adds an effect to "Transition1" .

OPC 10000-16: State Machines 23 1.05.00

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

State1

State2

Transition1

ToState

FromState

MyStateMachine

CurrentState

SubMachine1

SubStateMachine1Type

StateX

CurrentState

SubMachine1

CurrentState

HasSubStateMachine

MySubStateMachineType

StateY

TransitionZ

ToState

FromState

Method1

HasCause

State1

State2

Transition1

ToState

FromState

HasCause

SubMachine2

CurrentState

HasSubStateMachine

MySubSubStateMachineType

State1

State2

Transition1

ToState

FromState

HasCause

HasSubStateMachine

SubStateMachine2Type

StateA

StateB

TransitionC

ToState

FromState

TransitionEventTypeHasEffect

SubMachine2

CurrentState

Method1

Figure 15 – Example of a StateMachineType adding SubStateMachines in Subtypes

4.6 StateMachine Extensions for ChoiceStates and Guards

4.6.1 Overview

This section describes extensions to the StateMachine model allowing choices and guards on
StateMachines.

1.05.00 24 OPC 10000-16: State Machines

4.6.2 ChoiceStateType

The ChoiceStateType is a subtype of the StateType and is formally defined in Table 18. An
Object of the ChoiceStateType represents a pseudo state that is directly exited when it is
entered. The Guards defined on the Transitions from the ChoiceState determine which
Transition is used. The Guards shall be defined in a way that at least one Guard is true and a
Transition can be determined. If this is not the case, the StateMachine is non-well formed. To
avoid this, the specific ElseGuardVariableType can be used, which is only "true" if all other
Guards on a ChoiceState are "false". If several Guards are "true", only one of those Transitions
is used. The algorithm to determine the Transition is server-specific.

A sample StateMachine using a ChoiceState is given in Figure 16. It provides a simplified
representation of a robot. When the StateMachine is in the S1_Initial state, calling the Load()
Method loads a program to the robot and triggers the Transition into the ChoiceState (CS). In
the ChoiceState the Guards are validated and in case the robot is on the correct position for
the loaded program (validated by the guard OnPath = True) the State S3_Ready is entered. In
case the robot is not in the correct position (Else) the S2_Loaded State is entered. In tha t State,
the Prepare() Method puts the robot in the correct position, and triggers the Transition to
S3_Ready. If the robot is ready, it can be started. While it is running, it can be stopped. If the
program is finished, the robot goes back to either the loaded or ready state, depending on its
position, using the ChoiceState, again.

S1_Init

S2_Loaded

Prepare ()

S3_Ready

[Else]

Load()

[OnPath = True]

Complete

Stop()

Unload()

S4_Running
Start()

CS

Unload()

Figure 16 – Example of a ChoiceState

As the ChoiceState is directly exited after it is entered there shall be no trigger (using the
HasCause ReferenceType or a subtype) defined on any leaving Transition (Transitions
referencing the ChoiceState with the FromState Reference or a subtype).

Table 18 – ChoiceStateType

Attribute Value

BrowseName ChoiceStateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the StateType defined in Clause 4.4.8

Conformance Units

Base Info Choice States

4.6.3 HasGuard

The HasGuard ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of HasComponent.

The semantic of this ReferenceType is to point from a Transition to a Guard. The Guard
indicates if the Transition can be used or not (see GuardVariableType). A Transition can only
be used, if the Guard is "True". A Transition can point to several Guards. In that case, all Guards
need to be "True" before the Transition can be used. If there is no Guard, the Transition can
always be used (considered as if all Guards are "True").

OPC 10000-16: State Machines 25 1.05.00

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode shall be a Variable of the VariableType GuardVariableType
or one of its subtypes.

The representation of the HasGuard ReferenceType in the AddressSpace is specified in Table
19.

Table 19 – HasGuard ReferenceType

Attribute Value

BrowseName HasGuard

InverseName GuardOf

Symmetric False

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the HasComponent ReferenceType defined in OPC 10000-5. Note that a Reference to this subtype is not

shown in the definition of HasComponent.

Conformance Units

Base Info Choice States

4.6.4 GuardVariableType

The GuardVariableType provides the information of a Guard of a Transition in a StateMachine.
A Guard indicates, if the Transition can be used or not. The Guard defines a semantic that can
be evaluated to "True" or "False". Only if the semantic is "True", the Transition connected via a
HasGuard Reference can be used. The value of the GuardVariableType provides the semantic
of the Guard in a human-readable way, that can be used to display the StateMachine.

This base GuardVariableType does not define a machine-readable semantic of the Guard. The
calculation, if the Guard is "True" or "False" is server-specific. Subtypes of this VariableType
do define concrete machine-readable semantics.

The GuardVariableType is formally defined in Table 20.

Table 20 – GuardVariableType definition

Attribute Value

BrowseName GuardVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseDataVariableType defined in Clause OPC 10000-5.

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasSubtype VariableType ElseGuardVariableType Defined in Clause 4.6.6

HasSubtype VariableType ExpressionGuardVariableType Defined in Clause 4.6.5

Conformance Units

Base Info Choice States

4.6.5 ExpressionGuardVariableType

The ExpressionGuardVariableType provides, in addition to the human-readable semantic from
its GuardVariableType, a machine interpretable representation on the semantic.

The ExpressionGuardVariableType is formally defined in Table 21.

1.05.00 26 OPC 10000-16: State Machines

Table 21 – ExpressionGuardVariableType definition

Attribute Value

BrowseName ExpressionGuardVariableTypeGuardVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the GuardVariableType defined in Clause 4.6.4

HasProperty Variable Expression ContentFilter PropertyType Mandatory

Conformance Units

Base Info Choice States

The mandatory Property Expression provides a ContentFilter, that shall be evaluated on the
Object the StateMachine belongs to. This is a machine-readable semantic of the Guard. If the
ContentFilter evaluates to "True", the Guard is "True", otherwise the Guard is "False".

The ContentFilter for ExpressionGuardVariableType is restricted to basic operators (see OPC
10000-4 for details).

The ContentFilter can reference any Variables defined on the StateMachineType and are
validated on the instance of the StateMachine. If the definition of the Variable is not owned
directly by the StateMachine but for example some other type, the StateMachine instance shall
reference that Variable.

4.6.6 ElseGuardVariableType

The ElseGuardVariableType is a specialization of the GuardVariableType defining a concrete
semantic for the Guard. The value of the Guard should always be {"en", "Else"} or a translation
of this. The ElseGuardVariableType shall only be used on pseudo states like the
ChoiceStateType. That means, that it shall only be referenced from Transitions having such a
StateType as SourceNode. The ElseGuardVariableType shall only be used once for each State.
That means, that each State shall at most have one Transition (referenced as SourceNode)
referencing an ElseGuardVariableType. The ElseGuardVariableType shall be the only Guard of
a Transition. That means, if a Transition references an instance of an ElseGuardVariableType,
it shall not reference any other Guards.

The semantic of the ElseGuardVariableType is, that if a pseudo state is reached and no other
Transition exists on the State where all its Guards are validated to "True", this Guards validates
to "True" and thus its Transition is used.

The ElseGuardVariableType is formally defined in Table 22.

Table 22 – ElseGuardVariableType definition

Attribute Value

BrowseName ElseGuardVariableTypeGuardVariableType

DataType LocalizedText

ValueRank −1 (−1 = Scalar)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the GuardVariableType defined in Clause 4.6.4

Conformance Units

Base Info Choice States

4.7 Example of a StateMachine using a ChoiceState and Guards

Taking the sample StateMachine of Figure 16 its representation in the OPC UA AddressSpace
is shown in Figure 17 as RobotStateMachineType. The Transition T2 between the ChoiceState
and S2_Loaded has the Guard "Else" of ElseGuardVariableType and the Transition T3 between
the ChoiceState and S3_Ready has the Guard "OnPathTrue" having an "Expression" Property
(not shown in the figure). The ContentFilter of the Expression references to the ProgramLoaded
Variable of the RobotStateMachineType. When the ChoiceState is entered on an instance of

OPC 10000-16: State Machines 27 1.05.00

the RobotStateMachineType like MyStateMachine in Figure 17, the concrete Variable of the
instance is used to evaluate the ContentFilter. The value of the Expression is in the sample an
array with one entry, using the FilterOperator Equal_0 and the filterOperands are the
SimpleOperand OnPath and the Literal value "True".

StateMachineType

FiniteStateMachineType

RobotStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

InitialStateType

S1_Init

StateType

S2_Loaded

TransitionType

T1

ToState

FromState

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

StateType

S3_Ready

OnPath

OnPath

This Variable is used to evaluate the OnPathTrue

ExpressionGuardVariable

StateType

S3_Running

ChoiceStateType

CS

TransitionType

T2
TransitionType

T3

TransitionType

T4

TransitionType

T5

TransitionType

T6

TransitionType

T7

TransitionType

T8

TransitionType

T9

FromState

ToState

ToState

FromState

ToState

FromState

ToState

FromState

ToState

FromState

ToState

FromState

ToState

FromState

ToState

FromState

Load

Start

Stop

Unload

Prepare

HasCause

HasCause

HasCause

HasCause

HasCause

HasCause

ElseGuardVariableType

Else

HasGuard

ExpressionGuardVariableType

OnPathTrue

HasGuard

Figure 17 – Example of a StateMachine using ChoiceState and Guards

	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviated terms and conventions
	3.1 Terms and definitions

	4 State Machine Model
	4.1 General
	4.2 Examples of finite state machines
	4.2.1 Simple state machine
	4.2.2 State machine containing substates

	4.3 Definition of state machine
	4.4 Representation of state machines in the AddressSpace
	4.4.1 Overview
	4.4.2 StateMachineType
	4.4.3 StateVariableType
	4.4.4 TransitionVariableType
	4.4.5 FiniteStateMachineType
	4.4.6 FiniteStateVariableType
	4.4.7 FiniteTransitionVariableType
	4.4.8 StateType
	4.4.9 InitialStateType
	4.4.10 TransitionType
	4.4.11 FromState
	4.4.12 ToState
	4.4.13 HasCause
	4.4.14 HasEffect
	4.4.15 HasSubStateMachine
	4.4.16 TransitionEventType
	4.4.17 AuditUpdateStateEventType
	4.4.18 Special Restrictions on subtyping StateMachines
	4.4.19 Specific StatusCodes for StateMachines

	4.5 Examples of StateMachines in the AddressSpace
	4.5.1 StateMachineType using inheritance
	4.5.2 StateMachineType with a SubStateMachine using inheritance
	4.5.3 StateMachineType using containment
	4.5.4 Example of a StateMachine having Transition to SubStateMachine
	4.5.5 Example of a StateMachine adding a SubStateMachine on a Subtype

	4.6 StateMachine Extensions for ChoiceStates and Guards
	4.6.1 Overview
	4.6.2 ChoiceStateType
	4.6.3 HasGuard
	4.6.4 GuardVariableType
	4.6.5 ExpressionGuardVariableType
	4.6.6 ElseGuardVariableType

	4.7 Example of a StateMachine using a ChoiceState and Guards

