FOUNDATION

OPC 10000-5

OPC Unified Architecture

Part 5: Information Model

Release 1.04
2017-11-22

uopesyloads vN 0dO

Specification
Type:

Document
Number

Title:

Version:

Author:

Industry Standard
Specification

OPC 10000-5

OPC Unified
Architecture

Part 5 :Information
Model

Release 1.04

OPC Foundation

Comments:

Date:

Software:
Source:

Status:

Report or view errata:
http://www.opcfoundation.org/errat
a

2017-11-22

MS-Word

OPC 10000-5 - UA Specification
Part 5 - Information Model
1.04.docx

Release

OPC 10000-5: Information Model i Release 1.04

CONTENTS

FIGURES .o e et Vii
B I = S TSP viii
1 ST o] o TP 1
2 NOIMALIVE FEIEIEINCES . e ittt e e e e e e e ees 1
3 Terms, definitions and CONVENTIONS .. .c.uiiiiiiiii e 2
3.1 Terms and definitioNS ... 2
3.2 Abbreviations and SYMbOIS ..o 2
3.3 Conventions for Node deSCriPLIONSceuiitiiiiii e 2

4 Nodelds and BroWSENGMEScuuiitiitiii et 4
4.1 LN Lo T 1 o £ 4
4.2 BroWSENGIMES ..ot 4

I o 1 422 To o AN £ 1 41 10 | =1 4
5.1 LCT=T o 1T =Y TP 4
5.2 L0 o =T o1 £ T PP 4
5.3 VA A L 5
5.4 VAN D O T Y PO et e 5
5.5 =3 1 o o 1= 5

6 StaNdard OB e C T Y PES ottt 5
6.1 GBI AL L.t 5
6.2 2 Fe T =T @] o [T ot Y/ o L= PPN 6
6.3 ObjectTypes for the Server ODJecCt.o, 6
6.3.1 ST =T A7 N/ o L= PP 6
6.3.2 ServerCapabilitiESTYPE .o 9
6.3.3 S eIVl DI AagNOS I CS T Y PO ittt e 11
6.3.4 SessionNsDIagnNOStiCSSUMMAIYTYPE ..uuiiuiiiieii e e 11
6.3.5 SesSioNDiagnoStiCSO D ECITYPE . .iuitii et 12
6.3.6 NV EeNdOrSEerVerIN O T Y PE i e 12
6.3.7 ServerRedUNAANCYTYPE . ouiie it e 13
6.3.8 TransparentRedundanCyTYPe ...t 13
6.3.9 NonTransparentRedundanCyTYPE ... 13
6.3.10 NonTransparentNetworkRedundanCyTyPec.ovuiiiiiiiiiiiiiiiiicee e 14
6.3.11 OPErAtI 0N LIMIES T Y PO et 15
6.3.12 AddresSSPaACEFIETYPE ... 16
6.3.13 NamespaCeMetadataT YPe e 16
6.3.14 NAM B S P ACE S T Y PO ittt et 18

6.4 ODbjectTypes USed @S EVENtT Y POS .. it it 18
6.4.1 (T 1= - L 18
6.4.2 BaSE EV N T YO et 18
6.4.3 AU BV N T Y P e et 21
6.4.4 AUAItSECUNTYEVENTTYPE oottt 21
6.4.5 AUdItCNANNEIEVENTTY PO et e 22
6.4.6 AuditOpenSecureChannelEVENtTYPE ..o 22
6.4.7 AUdItSESSIONEVENTTYPE et 23
6.4.8 AuditCreate SESSIONEVENTTYPE ... e 23

6.4.9 AUditUrIMiSmMatChEVENtTYPE ot e eaas 24

Release 1.04 iii OPC 10000-5: Information Model
6.4.10 AuditActivateSeSSIONEVENTTYPE . .u e 24
6.4.11 F U o [(@Y Tod =T A=Y oYl 1Y o 25
6.4.12 AUditCertifiCAtEEVEN T Y PO oot 25
6.4.13 AuditCertificateDataMismatChEVeNtTYPeoovviiiiiie e, 25
6.4.14 AuditCertificate EXPIr€dEVENTTYPE ovuiiiii i e 26
6.4.15 AuditCertificatelNValidEVENTTYPE ...ceu e 26
6.4.16 AuditCertificateUntrustedEVENTTYPE .couiriii i e 26
6.4.17 AuditCertificateReVOKEAEVENTTYPE ..cuiiiiiiiiiiiie e 27
6.4.18 AuditCertificateMismatChEVENITYPE ...uoiriiii e 27
6.4.19 AuditNodeManagementEVENTTYPE ..o e e 27
6.4.20 AUditAdANOAESEVENITY P et 28
6.4.21 AuditDeleteNOdESEVENITY P ... e 28
6.4.22 AUditAddREfEreNCESEVENTTYPE . i e 29
6.4.23 AuditDeleteReferenCesSEVENITYPE .ot 29
6.4.24 F N U T 0 oY F= N =Y A=Y o 15/ o L= 29
6.4.25 AUditWriteUpdateEVeNtTYPE oo e ees 30
6.4.26 AuditHistoryUpdateEVentTYPe . ..o 30
6.4.27 AuditUpdateMethOdEVENtTYPE ... e 31
6.4.28 Sy S M EEV N T Y P it 31
6.4.29 DTNV Tod=] o Y [N =T A=Y o) Y o = 2 PP 31
6.4.30 SystemStatusChangeEVEeNtTYPE ..o e e e 31
6.4.31 BaseModelChangeEVeNtTYPE .o 32
6.4.32 GeneralModelChangeEVEeNtTYPE ..ot 32
6.4.33 SemanticChangeEVeNt TYPE .o e 32
6.4.34 EventQueUueOVerfloOWEVENTTYPE ... i ee e 33
6.4.35 PrOgreS S E VN T Y P i 33
6.5 MOl NG RUIE T Y P e e e e 34
6.6 [0 [0 L= 18/ o 1= 34
6.7 DataT YPEENCOAING T Y PO ot 34
6.8 P o =To F= U =T U oLl A0 o N Y o 1= 34

7 Standard Variable T Y DS .o i 35
7.1 GBI Al L it 35
7.2 BasSeVariab T Y Pe .o 35
7.3 g o] o T=T AV I8 = PP 35
7.4 BaseDataVariable Ty Pe ... 36
7.5 ServerVendorCapability Ty Pe ..o 36
7.6 ST VT 8o ro LU Y PP 36
7.7 BUIA N O T Y8 e et e 37
7.8 ServerDiagnOStiCS SUMMAIY TYPE couuit ittt ettt e e e 37
7.9 SamplingIntervalDiagnoStiCSAITAYTYPE ...ueniie i 38
7.10 SamplingIntervalDiagnoStiCSTYPE . .vuu it 38
7.11 SubscriptionDiagnOStICSAITAY TYPE .ouuiiiiiiii et 39
7.12 SUDSCIPtIONDIAgNOSTICS T Y PO . et ittt e ea s 39
7.13 SesSioNDiagnOStiCSAITAY TYPE vt 40
7.14 SessionDiagnosticsVariableType 41
7.15 SessionSecurityDiagnoStCSAITAYTYPE 1.ttt 42
7.16 SessSioNSeCUrityDIagnOStICSTY PO . .uuie i 42
% A O o1 o] ¢ 1T =1 4 1Y/ o = PP 43

A < T Y= 1= Yo oY = o 1 1 44

OPC 10000-5: Information Model iv Release 1.04

7.19 AUAIOV A A T Y P i 44
8 Standard Objects and their Variables ..o 45
8.1 (CT=T =] = L 45
8.2 Objects used to organise the AddressSpace StruCturecoccevvvviviiviiniineeeeneennnn, 45
8.2.1 (@ 7= VT PP 45
8.2.2 R OO .t 45
8.2.3 VB S ettt e eaas 46
8.2.4 (O] o] 1= T o £ S PP UPT PP UPTUPPTRIN 46
8.2.5 L/ ST PRI 47
8.2.6 (O] o] 1= Toa il Y o L= PP UPT PP PPTUPPPRIN 47
8.2.7 VA A O T Y PO S 1o it 48
8.2.8 R I BN T Y PO S ettt 49
8.2.9 DA AT Y PS ot 50
8.2.10 L o A Y/ 0 == PP 51
8.3 Server Object and its containing ODJECTScoviiiiiiiiii 51
8.3.1 GBNEBIAL .. e 51
8.3.2 SEIVEI ODJECT .. et 52
8.4 MOdelliNGRUIE ObJECTS ... et e 53
8.4.1 E X PO S I S A T Y ittt 53
8.4.2 MANAALEOTY ..t 53
8.4.3 (@ o) 110 1 = | 53
8.4.4 OPLIONAIPIACENOIAET .. .cv e 53
8.4.5 MandatoryPlaceholder ... 54
O StaNdard MethOUS 54
9.1 GetMONI OB EIMS L e 54
9.2 RESENUD LA ... i e 54
9.3 SetSubSsCriptionNDUIrable ... 55
9.4 RequestServerStateChange 55
0 TS =Y o = Yo B T T 56
11 Standard RefErENCE T Y P S ot it it 56
100 RO EIEMCES ittt 56
11.2 HierarchiCalREefEIrENCES . ..o 57
11.3 NonHierarchiCalREefEreNCES e 57
I S o - 1] @ o V1o 57
ST o [o [€T =N (=T S PPN 57
i I @ 1 {o - 1o T4 =T PP 58
117 HASCOMPONENT ettt ettt ettt et e e e e e 58
11.8 HasOrderedCOmMPONENTttt ettt et e e en e enas 58
S I o P] fo T o 1= o PP UP PP 58
11,00 HaS S U Y PO e e 59
11.11 HasMOodelliNGRUIE e 59
11.12 HaSTYPeDEfiNItION ..ot 59
11.13 HASENCOAING . ettt eaas 59
11,04 HaASEVENTSOUICE .ttt e e e et e et e e e e e e reaeens 60
L1115 HASN O IO e ettt et 60
11,06 GeNErAtESEVENT oot e 60
11.17 AlWaySGENEIratESEVENT ...t 60

12 StANAArd DataT Y PS ettt e eaa 61

Release 1.04 Y, OPC 10000-5: Information Model

L2.1 OV VIBW oottt ittt ettt et ettt et et ettt a e aaas 61
12.2 DataTypes defined in OPC 10000-3 ..ot e e e eneeas 61
12.3 DataTypes defined in OPC 10000-4iiuiiiiiiiiiiee e 66
124 BUIAINTO e e 67
7 T ==Y 1¥ [T F= U g T VST U o Lo 67
12,68 SOIVEI S AT e et e 68
12.7 RedundantServerDataT VP .o iiiiii et e e e e e e e 68
12.8 SamplingIntervalDiagnostiCSDataTYPEc.uieuieiiiiiie ettt 68
12.9 ServerDiagnosticSSUMMaAryDataT Y P € . cuucie i e e e eeas 69
12.10 ServerStatUSD alaT Y P e oottt 70
12.11 SessSionNDiagnoStCSDAtATYPE . ouuuieeiiiiiie it 70
12.12 SessionSecurityDiagnostiCSDataTYPE .ovucveiiriiiiiii i eaeeas 72
12.13 ServiCeCOUNIEIDAIATYPE .uiiiiiit ittt ettt 72
12,14 StAtUSRESUIL. ..ot e 73
12.15 SubscriptionDiagnoStiCSDataTYPE ...ucuuiii i e 73
12.16 ModelChangeStruCtUreD ataT Y P ..uvu ittt e e ens 74
12.17 SemanticChangeStructureDataTyPe ... oo 75
12.18 BitFieldMasSkDataT YPE .ueuiiniitiiiiitii it et e e e e e et e e e e e e eneeas 75
12.19 NetWOrkGroUpDatATYPE ...ttt ettt et e e eaas 76
12.20 ENdpPointUrILiStData T yPe .. ceie ittt e e e e 76
0 R =AY 4= YU T= = -V 76
12,22 BN PO N T Y P8 ittt 77
Annex A (informative) Design decisions when modelling the server information 78
A.l L@ 1T T 78
A.2 ServerType and Server ODJECT ... 78
A.3 Typed complex Objects beneath the Server Objectcccooiiiiiiiiiiii, 78
A4 Properties versus DataVariables 78
A.5 Complex Variables using compleXx DataTYPesccuvvviiiiiiiiiiiiiciiiecieeee e e 78
A.6 Complex Variables having an @rrayoocovoioiiiin e 79
A.7 Redundant infOrmMation e 79
A.8 Usage of the BaseDataVariableTypeoooiiiiiii s 79
A.9 SUD Y PING et 79
A.10 EXxtensibility MecChaniSm 80
Annex B (normative) StateMacChinesSoiiiiiiiii e 81
B.1 LT 1=T - | PP 81
B.2 Examples of finite state Machinescoooiiiiii i 81
B.2.1 Simple state MaChiNe ... 81
B.2.2 State machine containing SUbStatescoooiiiiiiii 82
B.3 Definition of state MacChine ... 83
B.4 Representation of state machines in the AddressSpaceccoocoviiviiiiiiiieiinnennns 83
B.4.1 (@ 17T T 83
B.4.2 StAtEMACINE T Y PO e e 84
B.4.3 StateVariableT Y Pe oo 85
B.4.4 TransitioNVariableTyPe ..o 86
B.4.5 FiniteStateMachineT Y e . .ccu e 86
B.4.6 FiniteStateVariableTyPe ... 88
B.4.7 FiniteTransitionVariableType 89
B.4.8 Y 1= = 7 1 89

B.4.9 T] = UL Y o 1= PP 90

OPC 10000-5: Information Model Vi Release 1.04

B.4.10 LI LT 10T] 1 I8/ ¢ L= PP 91
B.4.11 FrOM S At ..o 91
B.4.12 0 1] -1 (= T 91
B.4.13 HaaS AU S o it 92
B.4.14 HaaS E T Ot et 92
B.4.15 HasSUbStateMaChineo e 93
B.4.16 LI g T 10T T V7= o) 1Y o = 93
B.4.17 AuditUpdateStateEVENTTYPE ... 94
B.4.18 Special Restrictions on subtyping StateMachines...............cocoviviiiiiencneenns 94
B.4.19 Specific StatusCodes for StateMachinesccocovvii i 94
B.5 Examples of StateMachines in the AddressSSPpacecooveveeiiiiiiiiiiiiiiiiiieeeeea 95
B.5.1 StateMachineType using iNheritanCecoooiviiiiiiii 95
B.5.2 StateMachineType with a sub-machine using inheritance.............c.cccceeeienis 96
B.5.3 StateMachineType using CoONtaiNMENToooiiiiiii e 97
B.5.4 Example of a StateMachine having Transition to SubStateMachine 98
Annex C (normative) File Transfer ... e 100
C.1 L@ N =Y YT PP 100
C.2 1= 1877 1= 100
c.2.1 L o 7= o PP 101
c.2.2 ClOSE caii 102
C.2.3 T L P 102
cC.24 LAY 41 (PSP 103
C.2.5 GREPOSITION ..t 103
C.2.6 S B P OS I ON ot 104
C.3 Il Sy S IM et 104
C.3.1 1 E=Y B X1 =T ot (o] A I8/ o = 104
C.3.2 FIlEeSYSIEM ODJECT ...t 105
C.3.3 (T =T N (=Y 11 =T o (0] Y/ 105
C.3.4 GBI 106
C.3.5 D B e 107
C.3.6 Y o)V =T @ o] o VP 107
C.4 Temporary File TransSfer ..o 108
C.4.1 TemporaryFileTransferTYPe ..o 108
C.4.2 File Transfer SEQUENCESccu i 109
C.4.3 GenerateFileFOrREaAd.o 110
C.4.4 GenerateFileFOrWIItE ... 110
C.45 (@4 Lo 7= AN o o L@ 1412 011 S 111
C.4.6 FileTransferStateMachineTYPe 112
c.4.7 R B S T e e 114
Annex D (normative) DataTypeDiCliONAIYc.iiuiiuii e 115
D.1 OV BV W ettt e et e e ettt e 115
D.2 Data TYPE MOGE ... e 115
D.3 DataTypeDictionary, DataTypeDescription, DataTypeEncoding and
DAt T Y PO S Y S M L.ttt 116
D.4 AddressSpace OrganiZation ... 118
D.5 NOAE DefiNItIONS ... e 119
D.5.1 L = T LT o] T 0] € o 119
D.5.2 DataT Y PE DI C I ONAIY T Y PO ittt ea e 120

D.5.3 DataTyPED S CIIPlIONT Y PO tuuitiiiei et eaeees 120

Release 1.04 Vii OPC 10000-5: Information Model

D.5.4 DataT Y PE S Y S M T Y PO et 120
D.5.5 OPC BINAIY ittt et ettt et et e 121
D.5.6 XML SCREMA Lo 121
Annex E (normative) OPC Binary Type Description SYStemcccoviiiiiiiiiiiiiiiniieceeeeene, 122
E.1 L070] 0 (o] =T o) K= PP 122
E.2 SChEMA DESCIIPLION Lttt e 123
E.2.1 TYPEDICTIONAIY ..ttt e e e ettt et et et e 123
E.2.2 TYPEDESCIIPLION L.ttt e e et et et 123
E.2.3 L@ o T=To [N <3 1Y oL PP 123
E.2.4 ENUM A O T Y P et 124
E.2.5 S 013 0 =T I 10/ o T 124
E.2.6 Il T YD e 125
E.2.7 ENUMEratedValUeoooiiniiiiii e e 126
E.2.8 2 2 (=T 0 [126
E.2.9 IMPOIEDIIECTIVE .. et 126

E.3 Standard TYPe DeSCrIPLIONSiviii i e 127
E.4 Type Description EXAMPIES ... 127
E.5 OPC Binary XML SChema.......couiiiiiiii e 129
E.6 OPC Binary Standard TypeDIiCtionaryc.ccviuiiiiiiiie e 130
Annex F (normative) User AULNOFIZAtioNooiuiiiii e 133
F.1 OVEIVIBW ..ttt 133
F.2 ROIESEITYPE ..o 133
F.2.1 RoleSetType Definition ... e 133
F.2.2 AdAROIE METNOM ...eeeiie e 133
F.2.3 RemoveROole Method..........ooouii 134

F.3 RO T Y P e e 134
F.3.1 ROIETYPE DefinitioN. ... 134
F.3.2 IdentityMappingRUIETYPE ... 136
F.3.3 Addldentity Method ... 136
F.3.4 Removeldentity Method ... 137
F.3.5 AddApplication Method ... 137
F.3.6 RemoveApplication Method ..., 137
F.3.7 AddENdPOINt Methodo 138
F.3.8 RemoveENdpoint Methodooouiiii i 138

F.4 RoleMappingRuleChangedAUditEVENtTYPEooiiiiiiiii e 138

FIGURES

Figure 1 — Standard AddresSSPace SIIUCTUIEiuu i 45
Figure 2 — VIEWS OrganiZation e et eaas 46
Figure 3 — ODjJeCtS OrganiZationc..iiuiiiii e 47
Figure 4 — ObjectTypes OrganiZationcoceuiiiiiii e 48
Figure 5 — VariableTypes OrganiZationo 49
Figure 6 — ReferenceType DefinitioNS. e 50
Figure 7 — EVENtTYPES OrganiZationcc.iiuiiuiiiiee e e e e e e e e e e et n e e e e e eneens 51
Figure 8 — Excerpt of Diagnostic Information of the Servercocooviii i 52

Figure B.1 — Example of a simple state machine ... 82

OPC 10000-5: Information Model Viii Release 1.04

Figure B.2 — Example of a state machine having a sub-machineoco 82
Figure B.3 — The StateMachine Information Modelcoooiiiiiiiiiiii e 84
Figure B.6 — Example of an initial State in a sub-machineccocoiii 90
Figure B.7 — Example of a StateMachineType using inheritance...............coooeiiiiiin e, 95

Figure B.8 — Example of a StateMachineType with a SubStateMachine using inheritance 96

Figure B.9 — Example of a StateMachineType using containmentcocovviiviiiieeneeeennns 97
Figure B.10 — Example of a state machine with transitions from sub-states......................... 98
Figure B.11 — Example of a StateMachineType having Transition to SubStateMachine 99
Figure C.1 — FileSystem EXamMPIe ... 105
Figure C.2 — Read File Transfer Example SEQUENCEcciiiiiiiiiii i 109
Figure C.3 — Write File Transfer Example SEQUENCEccoiiiiiiiiiii i 109
Figure C.4 — File Transfer STAtES ... 112
Figure C.5 — FileTransferStateMachineTyPecouiiiiiiiii e 113
Figure D.1 — DataType MOGe] ..o e e e e 115
Figure D.2 — Example of DataType Modellingcccoviiiiiiiiii e 118
Figure D.3 — DataTypes OrganiZation c..oiiuiiiiiiiiiie et 119
Figure E.1 — OPC Binary DiCtionary STrUCTUIEc.oiiuiiiiiieiiei et 122
TABLES
Table 1 — EXamples Of Dat@TYPeS ...ttt ees 3
Table 2 — Type Definition Table. ... e 3
Table 3 — Common NOAE ALIIHDULES ... 4
Table 4 — Common ObJeCt AtIHDULES . ..uni i 5
Table 5 — Common Variable AtHDULES ... 5
Table 6 — Common VariableType AttribULES ... e 5
Table 7 — Common Method AHDULES 5
Table 8 — BaseObjectType Definition.o e 6
Table 9 — ServerType Definition ... 7
Table 10 — ServerCapabilitiesType Definition ... 9
Table 11 — ServerDiagnosticsType Definition ..., 11
Table 12 — SessionsDiagnosticsSummaryType Definitioncooocoviiiiiiii e, 12
Table 13 — SessionDiagnosticsObjectType Definitioncoooiiiiiiiii e, 12
Table 14 — VendorServerIinfoType Definitiono 13
Table 15 — ServerRedundancyType Definition ... 13
Table 16 — TransparentRedundancyType Definition ..o, 13
Table 17 — NonTransparentRedundancyType Definitioncoooiiiiiiiniiniini e, 14
Table 18 — NonTransparentNetworkRedundancyType Definition............c..coooviiininnn, 14
Table 19 — OperationLimitsType Definition ... 15
Table 20 — AddressSpaceFileType Definitioncoiiiiiiiii e 16
Table 21 — NamespaceMetadataType Definitionccoveiiiiiiiiiii e 17
Table 22 — NamespacesType Definition ... e 18

Table 23 — BaseEventType Definition 19

Release 1.04 iX OPC 10000-5: Information Model

Table 24 — AuditEventType Definition e 21
Table 25 — AuditSecurityEventType Definitionccooiiiii i 21
Table 26 — AuditChannelEventType Definitioncccoviiiiii e 22
Table 27 — AuditOpenSecureChannelEventType Definition..........ccoocoviiiiiiiiiieeen 22
Table 28 — AuditSessionEventType Definition ..o 23
Table 29 — AuditCreateSessionEventType Definitioncoocoiiiiiiiii e 23
Table 30 — AuditUrIMismatchEventType Definitioncooiiiiiiiiiii e 24
Table 31 — AuditActivateSessionEventType Definitioncc.cooiiiiiiiini 24
Table 32 — AuditCancelEventType Definitionoooiiiiiiii e 25
Table 33 — AuditCertificateEventType Definition ..o 25
Table 34 — AuditCertificateDataMismatchEventType Definitionccocoiiiiiiininn e, 26
Table 35 — AuditCertificateExpiredEventType Definitionccoooiiiiiinii e 26
Table 36 — AuditCertificatelnvalidEventType Definitionccoviiiiinini e 26
Table 37 — AuditCertificateUntrustedEventType Definition...........ccooiiiiiiee, 27
Table 38 — AuditCertificateRevokedEventType Definitioncooceeiiiiiiiiii e, 27
Table 39 — AuditCertificateMismatchEventType Definitionccoooiiiiiiiinieen, 27
Table 40 — AuditNodeManagementEventType Definition..........ccoccoviiiiiiiiiici e, 28
Table 41 — AuditAddNodesEventType Definition..........cccoiiiiiiiic e, 28
Table 42 — AuditDeleteNodesEventType Definitioncoooiiiiiiiici e, 28
Table 43 — AuditAddReferencesEventType Definitioncoviiiiiiiiiini e 29
Table 44 — AuditDeleteReferencesEventType Definitionccooviiiiiiniii e 29
Table 45 — AuditUpdateEventType Definition. ..., 29
Table 46 — AuditWriteUpdateEventType Definition ..o, 30
Table 47 — AuditHistoryUpdateEventType Definitioncoooviiiiiiiiin e 30
Table 48 — AuditUpdateMethodEventType Definitioncoviiiiiiiiiini e, 31
Table 49 — SystemEventType Definition ... 31
Table 50 — DeviceFailureEventType Definition ..., 31
Table 51 — SystemStatusChangeEventType Definitionccoooiiiiiiii 32
Table 52 — BaseModelChangeEventType Definition ... 32
Table 53 — GeneralModelChangeEventType Definitionc.cooviiiiiii e, 32
Table 54 — SemanticChangeEventType Definition ..., 33
Table 55 — EventQueueOverflowEventType Definitioncooooiiiiiiiiini e, 33
Table 56 — ProgressEventType Definitionco.viiiiiiii e 33
Table 57 — ModellingRuleType Definition ... 34
Table 58 — FolderType Definition. 34
Table 59 — DataTypeEncodingType Definition ..o 34
Table 60 — AggregateFunctionType Definition ..o 35
Table 61 — BaseVariableType Definition ... e 35
Table 62 — PropertyType Definition ... e 35
Table 63 — BaseDataVariableType Definition.o 36
Table 64 — ServerVendorCapabilityType Definition ..o, 36
Table 65 — ServerStatusType Definition ... 37

Table 66 — BuildInfoType Definition e 37

OPC 10000-5: Information Model X Release 1.04

Table 67 — ServerDiagnosticsSummaryType Definition ..o 38
Table 68 — SamplingintervalDiagnosticsArrayType Definitioncccooeiiiiiiiiiiin e, 38
Table 69 — SamplingintervalDiagnosticsType Definition............coocoviiiii i 38
Table 70 — SubscriptionDiagnosticsArrayType Definition ..o, 39
Table 71 — SubscriptionDiagnosticsType Definition ..o 40
Table 72 — SessionDiagnosticsArrayType Definitioncoocoviiiiiici e 40
Table 73 — SessionDiagnosticsVariableType Definitioncoocoviiiiiiiceee 41
Table 74 — SessionSecurityDiagnosticsArrayType Definitionccooviiiiiiiiiniieen, 42
Table 75 — SessionSecurityDiagnosticsType Definition...........ccovviiiiiii e, 43
Table 76 — OptionSetType Definition ... e 43
Table 77 — SelectionListType Definition........cooiiiiiiiiiii e 44
Table 78 — AudioVariableType Definitiono 45
Table 79 — ROOt DefiNitionN ..o e 46
Table 80 — VIeWS DefinitiOn 46
Table 81 — ObjJeCts DefiNitiOniuiii i e 47
Table 82 — Types DefiNitioN e 47
Table 83 — ObjectTypes DefiNitioN 48
Table 84 — VariableTypes Definition e 49
Table 85 — ReferenceTypes Definitiono e 50
Table 86 — DataTypes DefiNition ... 50
Table 87 — EventTypes Definition ... 51
Table 88 — Server DefiNition 53
Table 89 — ExposesltsArray Definitiono 53
Table 90 — Mandatory Definition 53
Table 91 — Optional DefiNitioN 53
Table 92 — OptionalPlaceholder Definitioncccooi i, 53
Table 93 — MandatoryPlaceholder Definition ..o, 54
Table 94 — GetMonitoredltems Method AddressSpace Definition..........c.ccooeiiiiiiiniininnn, 54
Table 95 — ResendData Method AddressSpace Definitionccovviiiiiiiniinci e 55
Table 96 — SetSubscriptionDurable Method AddressSpace Definition................cooceeiiiinn, 55
Table 97 — RequestServerStateChange Method AddressSpace Definitionooenee. 56
Table 98 — References ReferenCeTYPE .o 57
Table 99 — HierarchicalReferences ReferenCeType ..o 57
Table 100 — NonHierarchicalReferences ReferenceTypeocviiiiiiiiiiiiii i 57
Table 101 — HasChild ReferenCeTYPe ... e 57
Table 102 — Aggregates RefereNCET Y P ..ou i 58
Table 103 — Organizes ReferENCeTYPE ..ot 58
Table 104 — HasComponent ReferenCeTYPE .. it 58
Table 105 — HasOrderedComponent ReferenCeTYPe ..o 58
Table 106 — HasProperty ReferenCeTYPE ..o i 59
Table 107 — HasSUbtype ReferenNCeT Y PO .. e 59
Table 108 — HasModellingRule ReferenCeTYPE ... 59

Table 109 — HasTypeDefinition ReferenCeTYPe ... 59

Release 1.04 Xi OPC 10000-5: Information Model

Table 110 — HasEncoding ReferenCeTYPe ... i 60
Table 111 — HasEventSource ReferenCeTYPE .vivviiiiiiii e 60
Table 112 — HasNOtifier RefEIrENCETYPE .uin i e ees 60
Table 113 — GeneratesEvent ReferenCeTYPE oo i 60
Table 114 — AlwaysGeneratesSEvent ReferenCeTYPe .o 61
Table 115 — OPC 10000-3 DataType DefinitionS......ccoeeiiiiiiii e 62
Table 116 — BaseDataType Definitionc.coiiiiiiiii e 63
Table 117 — Structure Definition ... e 63
Table 118 — Enumeration Definition ... 64
Table 119 — ByteString Definition 64
Table 120 — NUMDbBer Definition ... co.uiii e e 64
Table 121 — Double DefiNition ... e 64
Table 122 — Integer Definition ... 64
Table 123 — DateTime DefinitioNnociiiii e 65
Table 124 — String DefiNitioN ... 65
Table 125 — Ulnteger Definition 65
Table 126 — Image DefinitioN 65
Table 127 — UINt64 DefiNitiONcerii et 65
Table 128 — DataTypeDefinition Definition.........cooiiiii e 66
Table 129 — EnumValueType Definition ... 66
Table 130 — OPC 10000-4 DataType DefinitioNS......c.oiiuiiiiiii e 66
Table 131 — UserldentityToken Definition ..o 67
Table 132 — BUIldINTO STrUCTUIE ..ot 67
Table 133 — BUuildINfo DefiNitioN e 67
Table 134 — RedundanCySUPPOrt VAlUESc.iiiiiiiiii e 67
Table 135 — RedundancySupport Definition ... 67
Table 136 — ServerState ValUES ... 68
Table 137 — ServerState Definition ... 68
Table 138 — RedundantServerDataType SrUCTUIEccuiiii it 68
Table 139 — RedundantServerDataType Definition ..., 68
Table 140 — SamplingintervalDiagnosticsDataType Structurecoooviiiiiiiiiiiici e, 69
Table 141 — SamplingintervalDiagnosticsDataType Definitionccooocoviiiiininiincineen, 69
Table 142 — ServerDiagnosticsSummaryDataType StruCturecoooveiiiiiiiiiineineeeeeeeenen 69
Table 143 — ServerDiagnosticsSummaryDataType Definitioncooooiiiiiiiiiiii, 69
Table 144 — ServerStatusDataType StrUCTUIE ... c.iuiiii e 70
Table 145 — ServerStatusDataType Definition ..o 70
Table 146 — SessionDiagnosticsDataType StrUCIUIEcoviiiiiiiiiiiieie e 70
Table 147 — SessionDiagnosticsDataType Definition ..o 71
Table 148 — SessionSecurityDiagnosticsDataType StruCtUrecocevveeiiiiiiiiiiiiiiieeeeea 72
Table 149 — SessionSecurityDiagnosticsDataType Definitionco.covviiiiiiiiicinn, 72
Table 150 — ServiceCounterDataType SIIUCIUIEovuniiei e 72
Table 151 — ServiceCounterDataType Definition ... 72

Table 152 — StatUSRESUIT StIUCTUIE ... vttt e et e e e aeaanas 73

OPC 10000-5: Information Model Xii Release 1.04

Table 153 — StatusResult Definition ... e 73
Table 154 — SubscriptionDiagnosticsDataType StruCtUre........covvvviiiiiei e 74
Table 155 — SubscriptionDiagnosticsDataType Definitionc.covviviiicieeee 74
Table 156 — ModelChangeStructureDataType StrUCIUIEviviiiiiiiieiieii e 75
Table 157 — ModelChangeStructureDataType Definition ..o, 75
Table 158 — SemanticChangeStructureDataType StruCturecoovoveeieiiiiiiiiiiiiiieeeeeeea 75
Table 159 — SemanticChangeStructureDataType Definition..........ccooeiiiiiiiiciiine e, 75
Table 160 — BitFieldMaskDataType Definition ..o 76
Table 161 — NetworkGroupDataTyPe StrUCTUIE.......ciuuiie ittt 76
Table 162 — NetworkGroupDataType Definitionccooeiiiiiii e 76
Table 163 — EndpointUrIListDataType StrUCIUIEoiuiie i e e 76
Table 164 — EndpointUriListDataType Definitionc.coiiiiiiiii e 76
Table 165 — KeyValUePair SIIUCTUIEt 76
Table 166 — ENAPOINITYPE STIUCTUIieiiie e e e e e e e ee e 77
Table B.1 — StateMachineType Definitionccooiiiiii e 85
Table B.2 — StateVariableType Definitioncoviiiiiii e 85
Table B.3 — TransitionVariableType Definition ..o 86
Table B.4 — FiniteStateMachineType Definition ..o, 87
Table B.5 — FiniteStateVariableType Definition..........coooiiiiiii e, 89
Table B.6 — FiniteTransitionVariableType Definitioncc.coiiiiiiiiii e 89
Table B.7 — StateType Definition ..o 90
Table B.8 — InitialStateType Definition........ccoiiii e 91
Table B.9 — TransitionType Definition ... 91
Table B.10 — FromState ReferenNCe T Y PO . o i 91
Table B.11 — ToState RefEIENCET Y PO oot 92
Table B.12 — HasCause RefereNCe T Y Pe .o 92
Table B.13 — HasEffeCt ReferenNCeTYPe ..viniiii e 93
Table B.14 — HasSubStateMachine ReferenCeTYPe. ... 93
Table B.15 — TranSitioONEVEN T Y Pe . ettt 93
Table B.16 — AuditUpdate StateEVeNt TY P ..o e 94
Table B.17 — Specific StatusCodes for StateMachinescccoiiiiiiiiiic e, 94
QL= o L= O R = IR o 1= PP 100
Table C.2 — Open Method AddressSpace Definitionccovviiiiiiii 102
Table C.3 — Close Method AddressSpace Definition ..o 102
Table C.4 — Read Method AddressSpace Definition ..o 103
Table C.5 — Write Method AddressSpace Definition..........cocooviiiiiii 103
Table C.6 — GetPosition Method AddressSpace Definition..........ccoocoviiiiiiiiii e, 104
Table C.7 — SetPosition Method AddressSpace Definitioncoooooiiiiiiii 104
Table C.8 — File DIl O 0Ny Ty PO ittt ettt e e et et e e e e e aennas 105
Table C.9 — CreateDirectory Method AddressSpace Definitionccoocoviiiiiiiin e, 106
Table C.10 — CreateFile Method AddressSpace Definition..........ccooviiiiiiiiii e, 107
Table C.11 — Delete Method AddressSpace Definition ..o 107

Table C.12 — MoveOrCopy Method AddressSpace Definition.............coooiiiiiiinnns 108

Release 1.04 Xiii OPC 10000-5: Information Model

Table C.13 — TemporaryFileTransSferTYPe ... 108
Table C.14 — GenerateFileForRead Method AddressSpace Definitionccocooeeeiiinnnns 110
Table C.15 — GenerateFileForWrite Method AddressSpace Definitionc.ccoceieiiiniis 111
Table C.16 — CloseAndCommit Method AddressSpace Definitioncccocoviiiiiiiiinnn, 112
Table C.17 — FileTransferStateMachineTypeo 113
Table C.18 — FileTransferStateMachineType transitionScccoveeiiiiiiiiiiireee e 114
Table D.1 — HasDeSCription RefereNCeTYPE cuuiinii i e eas 120
Table D.2 — DataTypeDictionaryType Definitionccooiviiiiiiii 120
Table D.3 — DataTypeDescriptionType Definition.........ccoooiiiiiiii 120
Table D.4 — DataTypeSystemType Definition.......cccooiiiiiiiiiii e 121
Table D.5 — OPC Binary Definitioniiuiiiiiii e e en e 121
Table D.6 — XML Schema Definition ..o e 121
Table E.1 — TypeDictionary COMPONENTSuiiuiitiiiiit et eens 123
Table E.2 — TypeDesCription COMPONENTSttt e e e eaeanas 123
Table E.3 — OpaqueType COMPONENTS ..iuiuiii et e e e et e e e eae e eaeanas 124
Table E.4 — EnumeratedType COMPONENTSiiuiitiiit ittt 124
Table E.5 — StructuredType COMPONENTS ...ocuuiitiitiiit e ans 125
Table E.6 — FieldType COmMPONENTS ...t e e e e e aeenas 125
Table E.7 — EnumeratedValue COMPONENTS ...ttt e e e 126
Table E.8 — ImportDirective COMPONENTSuiitiitiiiiii e 127
Table E.9 — Standard Type DeSCHPIIONSt ittt 127
Table F.1 — RoleSetType Definition ... e 133
Table F.2 — RoleTYpe Definition ... e 135
Table F.3 — 1dentityMappingRUIETYPE ... 136

Table F.4 — RoleMappingRuleChangedAuditEventType Definitioncooovviiiiiiinnnnnns 139

OPC 10000-5: Information Model Xiv Release 1.04

OPC FOUNDATION

UNIFIED ARCHITECTURE -

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis and
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2018, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
http://www.opcfoundation.org..

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

Release 1.04 XV OPC 10000-5: Information Model

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING
The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo

constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata

http://www.opcfoundation.org/errata

OPC 10000-5: Information Model

XVi

Revision 1.04 Highlights

The following table includes the Mantis issues resolved with this revision.

return actual occurring error

Mallgns Summary Resolution

3120 Handling of DataType Encoding Added new DataTypes defined in Part 3 to
Information handle new attribute on DataType NodeClass.

Added Annex D describing the old approach of
providing encoding information previously
defined in Part 3. Moved definitions from this
part to the annex.

Moved information in 8.2.9 about
DataTypeDictionaries to Annex D.

Moved annex on OPC Binary from Part 3 to
Annex E.

3219 Clarify what diagnostics nodes Changed description is 6.3.3 explaining what
have to exist if diagnostics is nodes have to exist and what nodes not.
turned off.

3307 Remove reference to DataType Table 115 had reference to DataType Time
Time which does not exist, only DateTime and

UtcTime. Removed entry.

3192 Missing description for Method In 6.3.1 the description for Method
ResendData was missing. Added description
to paragraph.

2928 Temporary File Transfer Added concept allowing to temporary create

3146 file to write to or read from server in C.4.

3170 Clarification of ‘serverHandles’ In 9.1 corrected the Description of Argument
parameter ‘serverHandles’ to improve readability.

3349 Clarification of ResendData method | In 9.2 added additional description of

functionality.

3469 Server’s current Time Zone In 6.3.1 added optional property
CurrentTimeZone to ServerType

3162 SetTriggering Service maximum In 6.3.11 added definition for SetTriggering
items Service.

3636 new property on In D.5.2 added “Deprecated” property.
DataTypeDictionaryType

3642 New Variable type for Selection List | In 7.18 added SelectionListType Variable type

3623 Inconsistency in Removed currentPublishTimerExpiration
SessionDiagnosticsDataType from Table 146 —
and SessionDiagnosticsDataType Structure
SessionDiagnosticsVariableType

3189 OptionSetType DataType In 7.17 OptionSetType added example
should be "OptionSet" explaining why OptionSet DataType can be

used

3474 SourceNode term clarification Added the term “Property” when SourceNode
is used to reference the Property of the
BaseEventType in various sections.

3670 AuditSecurityEventType doesn’t Added new property StatusCodeld to 6.4.4

AuditsecurityEventType.

User Authentication

Added Annex F on UserAuthentication

Release 1.04

https://www.opcfoundation.org/mantis/view.php?id=3120
https://www.opcfoundation.org/mantis/view.php?id=3219
https://www.opcfoundation.org/mantis/view.php?id=3307
https://www.opcfoundation.org/mantis/view.php?id=3192
https://www.opcfoundation.org/mantis/view.php?id=2928
https://www.opcfoundation.org/mantis/view.php?id=3146
https://www.opcfoundation.org/mantis/view.php?id=3170
https://www.opcfoundation.org/mantis/view.php?id=3349
https://www.opcfoundation.org/mantis/view.php?id=3469
https://www.opcfoundation.org/mantis/view.php?id=3162
https://www.opcfoundation.org/mantis/view.php?id=3636
https://www.opcfoundation.org/mantis/view.php?id=3642
https://www.opcfoundation.org/mantis/view.php?id=3623
https://www.opcfoundation.org/mantis/view.php?id=3189
https://www.opcfoundation.org/mantis/view.php?id=3474
https://www.opcfoundation.org/mantis/view.php?id=3670
https://www.opcfoundation.org/mantis/view.php?id=3717

Release 1.04

XVii

OPC 10000-5: Information Model

Ma}BUS Summary Resolution

3710 Allow Statemachine to expose Added optional properties to
currently available states and FiniteStateMachineType and an example use
transitions of optional states B.4.5

3714 Add KeyValuePair DataType Added KeyValuePair DataType as 12.21

3734 Decimal DataType Added Decimal as a Part 3 DataType in Table

115 and Table 120

3703 FileTransferStateMachineType Changed states and transitions to have a no
modelling rule modelling rule in C.4.6.

3781 Add AudioVariableType Added VariableType AudioVariableType in

7.19.

3755 OperationLimits interpretation of Clarification added to 6.3.11.
value=0

3750 Standard Type Definitions do not Removed WideChar, CharArray, and
match model compiler WideCharArray. Updated String and

WideString in E.3.

3790 SessionDiagnosticsVariableType Changed names in Table 73 to match what is
names contradict generated code used by generated code.

2323 Clarification of ServerShutdown Clarification added to Table 136 and Table
definition and behavior 144.

3826 Add UrisVersion Property to Server | Added UrisVersion Property to ServerType in
Object 6.3.1

3851 MaxStringLength Clarify Added clarification of MaxStringLength and

MaxByteStringLength Properties in 6.3.2

https://www.opcfoundation.org/mantis/view.php?id=3710
https://www.opcfoundation.org/mantis/view.php?id=3714
https://www.opcfoundation.org/mantis/view.php?id=3734
https://www.opcfoundation.org/mantis/view.php?id=3703
https://www.opcfoundation.org/mantis/view.php?id=3781
https://www.opcfoundation.org/mantis/view.php?id=3755
https://www.opcfoundation.org/mantis/view.php?id=3750
https://www.opcfoundation.org/mantis/view.php?id=3790
https://www.opcfoundation.org/mantis/view.php?id=2323
https://www.opcfoundation.org/mantis/view.php?id=3826
https://www.opcfoundation.org/mantis/view.php?id=3851

OPC 10000-5: Information Model 1 Release 1.04

OPC Unified Architecture Specification

Part 5: Information Model

1 Scope

This specification defines the Information Model of the OPC Unified Architecture. The
Information Model describes standardised Nodes of a Server’'s AddressSpace. These Nodes
are standardised types as well as standardised instances used for diagnostics or as entry points
to server-specific Nodes. Thus, the Information Model defines the AddressSpace of an empty
OPC UA Server. However, it is not expected that all Servers will provide all of these Nodes.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Concepts and Overview
http://www.opcfoundation.org/UA/Partl/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model
http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services
http://www.opcfoundation.org/UA/Part4/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings
http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles
http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and conditions
http://www.opcfoundation.org/UA/Part9/

OPC 10000-10, OPC Unified Architecture - Part 10: Programs
http://www.opcfoundation.org/UA/Part10/

OPC 10000-11, OPC Unified Architecture - Part 11: Historical Access
http://www.opcfoundation.org/UA/Partl11/

RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One:
http://www.ietf.org/rfc/rfc2045.txt

RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two:
https://www.ietf.org/rfc/rfc2046.txt

RFC 2047: Multipurpose Internet Mail Extensions (MIME) Part Three:
http://www.ietf.org/rfc/rfc2047.txt

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part10/
http://www.opcfoundation.org/UA/Part11/
http://www.ietf.org/rfc/rfc2045.txt
https://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2047.txt

Release 1.04 2 OPC 10000-5: Information Model

ISO/IEC/IEEE 60559:2011 : Information technology — Microprocessor Systems — Floating-Point
arithmetic

https://www.iso.org/standard/57469.html
XML Schema Part 1: Structures

http://www.w3.0org/TR/xmlschema-1/
XML Schema Part 2: Datatypes

http://www.w3.org/TR/xmlschema-2/

XPATH: XML Path Language
http://www.w3.org/TR/xpath/

UTF-8: UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

3 Terms, definitions and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in OPC 10000-1 and OPC
10000-3, as well as the following apply.

3.1.1
ClientUserld
String that identifies the user of the client requesting an action

Note 1 to entry: The ClientUserld is obtained directly or indirectly from the UserldentityToken passed by the Client
in the ActivateSession Service call. See 6.4.3 for details.

3.2 Abbreviations and symbols

UA Unified Architecture

XML Extensible Markup Language

3.3 Conventions for Node descriptions

Node definitions are specified using tables (see Table 2).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the
TargetNode and its NodeClass.

e |If the TargetNode is a component of the Node being defined in the table the Attributes
of the composed Node are defined in the same row of the table.

e The DataType is only specified for Variables; “[<number>]" indicates a single-
dimensional array, for multi-dimensional arrays the expression is repeated for each
dimension (e.g. [2][3] for a two-dimensional array). For all arrays the ArrayDimensions
is set as identified by <number> values. If no <number> is set, the corresponding
dimension is set to 0, indicating an unknown size. If no number is provided at all the
ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar
DataType and the ValueRank is set to the corresponding value (see OPC 10000-3). In
addition, ArrayDimensions is set to null or is omitted. If it can be Any or
ScalarOrOneDimension, the value is put into “{<value>}’, so either “{Any}’ or
“{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see
OPC 10000-3) and the ArrayDimensions is set to null or is omitted. Examples are given
in Table 1.

https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath/
http://www.ietf.org/rfc/rfc3629.txt

OPC 10000-5: Information Model

Release 1.04

Table 1 — Examples of DataTypes

Notation Data- Value- | Array- Description
Type Rank Dimensions

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an
unknown size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown
sizes for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for
the first dimension and an unknown size for the
second dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for
the first dimension and a size of 3 for the second
dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array
with any number of dimensions.

Int32{ScalarOrOneDimension} | Int32 -3 omitted or null An Int32 where it is either a single-dimensional
array or a scalar.

e The TypeDefinition is specified for Objects and Variables.

e The TypeDefinition column specifies a symbolic name for a Nodeld, i.e. the specified
Node points with a HasTypeDefinition Reference to the corresponding Node.

e The ModellingRule of the referenced component is provided by specifying the symbolic
name of the rule in the ModellingRule column. In the AddressSpace, the Node shall use
a HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the Nodeld of a DataType is provided, the symbolic name of the Node representing the
DataType shall be used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used
ReferenceType, their NodeClass and their BrowseName are specified. A reference to another
part of this document points to their definition.

Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and
ModellingRule columns may be omitted and only a Comment column is introduced to point to
the Node definition.

Table 2 — Type Definition Table

Attribute

Value

Attribute name

Attribute value.

If it is an optional Attribute that is not set “--“ will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule
ReferenceType | NodeClass BrowseName of the DataType TypeDefinition of the referenced | Referenced
name of the target Node. If the of the Node, only applicable for ModellingRule of
TargetNode. | Reference is to be referenced | Variables and Objects. the referenced

instantiated by the Node, only Object.

server, then the applicable

value of the target for

Node’s Variables.

BrowseName is “--“.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The
TypeDefinition, NodeClass, DataType and ModellingRule can be derived from the type
definitions, and the symbolic name can be created as defined in 4.1. Therefore those containing
components are not explicitly specified; they are implicitly specified by the type definitions.

Release 1.04 4 OPC 10000-5: Information Model

4 Nodelds and BrowseNames

4.1 Nodelds

The Nodelds of all Nodes described in this standard are only symbolic names. OPC 10000-6
defines the actual Nodelds.

The symbolic name of each Node defined in this standard is its BrowseName, or, when it is part
of another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In
this case “part of” means that the whole has a HasProperty or HasComponent Reference to its
part. Since all Nodes not being part of another Node have a unique name in this standard, the
symbolic name is unique. For example, the ServerType defined in 6.3.1 has the symbolic name
“ServerType”. One of its InstanceDeclarations would be identified as
“ServerType.ServerCapabilities”. Since this Object is complex, another InstanceDeclaration of
the ServerType is “ServerType.ServerCapabilities.MinSupportedSampleRate”. The Server
Object defined in 8.3.2 is based on the ServerType and has the symbolic name “Server”.
Therefore, the instance based on the InstanceDeclaration described above has the symbolic
name “Server.ServerCapabilities.MinSupportedSampleRate”.

The Namespacelndex for all Nodelds defined in this standard is 0. The namespace for this
Namespacelndex is specified in OPC 10000-3.

Note that this standard not only defines concrete Nodes, but also requires that some Nodes
have to be generated, for example one for each Session running on the Server. The Nodelds
of those Nodes are server-specific, including the Namespace. However the Namespacelndex
of those Nodes cannot be the Namespacelndex 0, because they are not defined by the OPC
Foundation but generated by the Server.

4.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this standard is specified in the
tables defining the Nodes. The Namespacelndex for all BrowseNames defined in this standard
is 0.

5 Common Attributes

5.1 General

For all Nodes specified in this standard, the Attributes named in Table 3 shall be set as specified
in Table 3.

Table 3 — Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to
the BrowseName of the Node for the Localeld “en”. Whether the server provides translated
names for other Localelds is server-specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

Nodeld The Nodeld is described by BrowseNames as defined in 4.1 and defined in OPC 10000-6.
WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it

shall set all non-server-specific Attributes to not writable. For example, the Description Attribute
may be set to writable since a Server may provide a server-specific description for the Node.
The Nodeld shall not be writable, because it is defined for each Node in this standard.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask
Attribute apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is server-
specifc and depend on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

5.2 Objects

For all Objects specified in this standard, the Attributes named in Table 4 shall be set as
specified in Table 4.

OPC 10000-5: Information Model 5 Release 1.04

Table 4 — Common Object Attributes

Attribute Value
EventNotifier Whether the Node can be used to subscribe to Events or not is server-specific.

5.3 Variables

For all Variables specified in this standard, the Attributes named in Table 5 shall be set as
specified in Table 5.

Table 5 — Common Variable Attributes

Attribute Value
MinimumSamplinginterval Optionally, a server-specific minimum sampling interval is provided.
AccessLevel The access level for Variables used for type definitions is server-specific, for all other

Variables defined in this standard, the access level shall allow reading; other settings are
server-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is server-specific. It is assumed that all
Variables can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the

ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is
server-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is server-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0,
meaning that read and write operations on an individual Variable are atomic, and arrays can
be partly written.

5.4 VariableTypes

For all VariableTypes specified in this standard, the Attributes named in Table 6 shall be set as
specified in Table 6.

Table 6 — Common VariableType Attributes

Attributes Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

5.5 Methods

For all Methods specified in this standard, the Attributes named in Table 7 shall be set as
specified in Table 7.

Table 7 — Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to “True”),
unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is server-specific. It is assumed that all Methods can
be executed by at least one user.

6 Standard ObjectTypes

6.1 General

Typically, the components of an ObjectType are fixed and can be extended by subtyping.
However, since each Object of an ObjectType can be extended with additional components,
this standard allows extending the standard ObjectTypes defined in this document with
additional components. Thereby, it is possible to express the additional information in the type
definition that would already be contained in each Object. Some ObjectTypes already provide

Release 1.04 6 OPC 10000-5: Information Model

entry points for server-specific extensions. However, it is not allowed to restrict the components
of the standard ObjectTypes defined in this standard. An example of extending the ObjectTypes
is putting the standard Property NodeVersion defined in OPC 10000-3 into the BaseObjectType,
stating that each Object of the Server will provide a NodeVersion.

6.2 BaseObjectType

The BaseObjectType is used as type definition whenever there is an Object having no more
concrete type definitions available. Servers should avoid using this ObjectType and use a more
specific type, if possible. This ObjectType is the base ObjectType and all other ObjectTypes
shall either directly or indirectly inherit from it. However, it might not be possible for Servers to
provide all HasSubtype References from this ObjectType to its subtypes, and therefore it is not
required to provide this information.

There are no References except for HasSubtype References specified for this ObjectType. Itis
formally defined in Table 8.

Table 8 — BaseObjectType Definition

Attribute Value

BrowseName BaseObjectType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

HasSubtype ObjectType ServerType Defined in 6.3.1

HasSubtype ObjectType ServerCapabilitiesType Defined in 6.3.2

HasSubtype ObjectType ServerDiagnosticsType Defined in 6.3.3

HasSubtype ObjectType SessionsDiagnosticsSummaryType Defined in 6.3.4

HasSubtype ObjectType SessionDiagnosticsObjectType Defined in 6.3.5

HasSubtype ObjectType VendorServerinfoType Defined in 6.3.6

HasSubtype ObjectType ServerRedundancyType Defined in 6.3.7

HasSubtype ObjectType BaseEventType Defined in 6.4.2

HasSubtype ObjectType ModellingRuleType Defined in 6.5

HasSubtype ObjectType FolderType Defined in 6.6

HasSubtype ObjectType DataTypeEncodingType Defined in 6.7

6.3 ObjectTypes for the Server Object
6.3.1

This ObjectType defines the capabilities supported by the OPC UA Server. It is formally defined
in Table 9.

ServerType

OPC 10000-5: Information Model 7 Release 1.04
Table 9 — ServerType Definition

Attribute Value

BrowseName ServerType

IsAbstract False

References NodeClass BrowseName DataType / TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in 6.2

HasProperty Variable ServerArray String[] Mandatory
PropertyType

HasProperty Variable NamespaceArray String[] Mandatory
PropertyType

HasProperty Variable UrisVersion VersionTime Optional
PropertyType

HasComponent Variable ServerStatus?! ServerStatusDataType Mandatory
ServerStatusType

HasProperty Variable ServicelLevel Byte Mandatory
PropertyType

HasProperty Variable Auditing Boolean Mandatory
PropertyType

HasProperty Variable EstimatedReturnTime DateTime Optional
PropertyType

HasProperty Variable LocalTime TimeZoneDataType Optional
PropertyType

HasComponent Object ServerCapabilities! - Mandatory
ServerCapabilitiesType

HasComponent Object ServerDiagnostics! - Mandatory
ServerDiagnosticsType

HasComponent Object VendorServerinfo - Mandatory
VendorServerinfoType

HasComponent Object ServerRedundancy* - Mandatory
ServerRedundancyType

HasComponent Object Namespaces - Optional
NamespacesType

HasComponent Method GetMonitoredltems Defined in 9.1 Optional

HasComponent Method ResendData Defined in 9.2 Optional

HasComponent Method SetSubscriptionDurable Defined in 9.3 Optional

HasComponent Method RequestServerStateChange Defined in 9.4 Optional

NOTE Containing Objects and Variables of these Objects and Variables are defined by their BrowseName defined in the
corresponding TypeDefinitionNode. The Nodeld is defined by the composed symbolic name described in 4.1.

ServerArray defines an array of Server URIs. This Variable is also referred to as the server
table. Each URI in this array represents a globally-unique logical name for a Server within the
scope of the network in which it is installed. Each OPC UA Server instance has a single URI
that is used in the server table of other OPC UA Servers. Index 0 is reserved for the URI of the
local Server. Values above 0 are used to identify remote Servers and are specific to a Server.
OPC 10000-4 describes discovery mechanism that can be used to resolve URIs into URLs. The
Server URI is case sensitive.

The URI of the ServerArray with Index O shall be identical to the URI of the NamespaceArray
with Index 1, since both represent the local Server.

The indexes into the server table are referred to as server indexes or server names. They are
used in OPC UA Services to identify TargetNodes of References that reside in remote Servers.
Clients may read the entire table or they may read individual entries in the table. The Server
shall not modify or delete entries of this table while any client has an open session to the Server,
because clients may cache the server table. A Server may add entries to the server table even
if clients are connected to the Server.

NamespaceArray defines an array of namespace URIs. This Variable is also referred as
namespace table. The indexes into the namespace table are referred to as Namespacelndexes.
Namespacelndexes are used in Nodelds in OPC UA Services, rather than the longer
namespace URI. Index O is reserved for the OPC UA namespace, and index 1 is reserved for
the local Server. Clients may read the entire namespace table or they may read individual
entries in the namespace table. The Server shall not modify or delete entries of the namespace
table while any client has an open session to the Server, because clients may cache the

Release 1.04 8 OPC 10000-5: Information Model

namespace table. A Server may add entries to the namespace table even if clients are
connected to the Server. It is recommended that Servers not change the indexes of the
namespace table but only add entries, because the client may cache Nodelds using the indexes.
Nevertheless, it might not always be possible for Servers to avoid changing indexes in the
namespace table. Clients that cache Namespacelndexes of Nodelds should always check when
starting a session to verify that the cached Namespacelndexes have not changed.

UrisVersion defines the version of the ServerArray and the NamespaceArray. Everytime the
ServerArray or the NamespaceArray is changed, the value of the UrisVersion shall be updated
to a value greater than the previous value. The UrisVersion Property is used in combination
with the Sessionlessinvoke Service defined in OPC 10000-4. If a Server supports this Service,
the Server shall support this Property. It is the responsibility of the Server to provide a
consistent set of values for the ServerArray, NamespaceArray and the UrisVersion Properties.
The VersionTime DataType is defined in OPC 10000-4.

ServerStatus contains elements that describe the status of the Server. See 12.10 for a
description of its elements.

ServicelLevel describes the ability of the Server to provide its data to the client. The value range
is from 0 to 255, where 0 indicates the worst and 255 indicates the best. OPC 10000-4 defines
required sub-ranges for different scenarios. The intent is to provide the clients an indication of
availability among redundant Servers.

Auditing is a Boolean specifying if the Server is currently generating audit events. It is set to
TRUE if the Server generates audit events, otherwise to false. The Profiles defined in OPC
10000-7 specify what kind of audit events are generated by the Server.

EstimatedReturnTime indicates the time at which the Server is expected to have a
ServerStatus.State of RUNNING_0. A Client that observes a shutdown or a ServicelLevel of 0
should either wait until after this time to attempt to reconnect to this Server or enter into slow
retry logic. For example, most Clients will attempt to reconnect after a failure immediately and
then progressively increase the delay between attempts until some maximum delay. This time
can be used to trigger the Client to start its reconnect logic with some delay.

LocalTime is a structure containing the Offset and the DaylightSavinglnOffset flag. The Offset
specifies the time difference (in minutes) between the Server time in UTC and the local time at
the Server location. If DaylightSavingInOffset is TRUE, then Standard/Daylight savings time
(DST) at the Server location is in effect and Offset includes the DST correction. If FALSE then
the Offset does not include DST correction and DST may or may not be in effect.

ServerCapabilities defines the capabilities supported by the OPC UA Server. See 6.3.2 for its
description.

ServerDiagnostics defines diagnostic information about the OPC UA Server. See 6.3.3 for its
description.

VendorServerlnfo represents the browse entry point for vendor-defined Server information. This
Object is required to be present even if there are no vendor-defined Objects beneath it. See
6.3.6 for its description.

ServerRedundancy describes the redundancy capabilities provided by the Server. This Object
is required even if the Server does not provide any redundancy support. If the Server supports
redundancy, then a subtype of ServerRedundancyType is used to describe its capabilities.
Otherwise, it provides an Object of type ServerRedundancyType with the Property
RedundancySupport set to none. See 6.3.7 for the description of ServerRedundancyType.

Namespaces provides a list of NamespaceMetadataType Objects with additional information
about the namespaces used in the Server. See 6.3.14 for the description of
NamespaceMetadataType.

The GetMonitoreditems Method is used to identify the Monitoredltems of a Subscription. It is
defined in 9.1; the intended usage is defined in OPC 10000-4.

OPC 10000-5: Information Model 9 Release 1.04

The ResendData Method is used to get the latest values of the data monitored items of a
Subscription. It is defined in 9.2; the intended usage is defined in OPC 10000-4.

The SetSubscriptionDurable Method is used to set a Subscription into a mode where
Monitoredltem data and event queues are stored and delivered even if an OPC UA Client was
disconnected for a longer time or the OPC UA Server was restarted. It is defined in 9.3; the
intended usage is defined in OPC 10000-4.

The RequestServerStateChange Method allows a Client to request a state change in the
Server. It is defined in 9.4; the intended usage is defined in OPC 10000-4.

6.3.2 ServerCapabilitiesType

This ObjectType defines the capabilities supported by the OPC UA Server. It is formally defined
in Table 10.

Table 10 — ServerCapabilitiesType Definition

Attribute Value

BrowseName ServerCapabilitiesType

IsAbstract False

References NodeClass | BrowseName | DataType / TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2

HasProperty Variable ServerProfileArray String[] Mandatory
PropertyType

HasProperty Variable LocaleldArray Localeld]] Mandatory
PropertyType

HasProperty Variable MinSupportedSampleRate Duration Mandatory
PropertyType

HasProperty Variable MaxBrowseContinuationPoints Uint16 Mandatory
PropertyType

HasProperty Variable MaxQueryContinuationPoints Uint16 Mandatory
PropertyType

HasProperty Variable MaxHistoryContinuationPoints Uint16 Mandatory
PropertyType

HasProperty Variable SoftwareCertificates SignedSoftwareCertificate[] Mandatory
PropertyType

HasProperty Variable MaxArrayLength UInt32 Optional
PropertyType

HasProperty Variable MaxStringLength UInt32 Optional
PropertyType

HasProperty Variable MaxByteStringLength UInt32 Optional
PropertyType

HasComponent | Object OperationLimits -- Optional
OperationLimitsType

HasComponent | Object ModellingRules -- Mandatory
FolderType

HasComponent | Object AggregateFunctions -- Mandatory
FolderType

HasComponent | Object RoleSet RoleSetType Optional

ServerProfileArray lists the Profiles that the Server supports. See OPC 10000-7 for the
definitions of Server Profiles. This list should be limited to the Profiles the Server supports in
its current configuration.

LocaleldArray is an array of Localelds that are known to be supported by the Server. The Server
might not be aware of all Localelds that it supports because it may provide access to underlying
servers, systems or devices that do not report the Localelds that they support.

MinSupportedSampleRate defines the minimum supported sample rate, including 0, which is
supported by the Server.

MaxBrowseContinuationPoints is an integer specifying the maximum number of parallel
continuation points of the Browse Service that the Server can support per session. The value
specifies the maximum the Server can support under normal circumstances, so there is no

Release 1.04 10 OPC 10000-5: Information Model

guarantee the Server can always support the maximum. The client should not open more
Browse calls with open continuation points than exposed in this Variable. The value 0 indicates
that the Server does not restrict the number of parallel continuation points the client should use.

MaxQueryContinuationPoints is an integer specifying the maximum number of parallel
continuation points of the QueryFirst Services that the Server can support per session. The
value specifies the maximum the Server can support under normal circumstances, so there is
no guarantee the Server can always support the maximum. The client should not open more
QueryFirst calls with open continuation points than exposed in this Variable. The value 0
indicates that the Server does not restrict the number of parallel continuation points the client
should use.

MaxHistoryContinuationPoints is an integer specifying the maximum number of parallel
continuation points of the HistoryRead Services that the Server can support per session. The
value specifies the maximum the Server can support under normal circumstances, so there is
no guarantee the Server can always support the maximum. The client should not open more
HistoryRead calls with open continuation points than exposed in this Variable. The value 0
indicates that the Server does not restrict the number of parallel continuation points the client
should use.

SoftwareCertificates is an array of SignedSoftwareCertificates containing all
SoftwareCertificates supported by the Server. A SoftwareCertificate identifies capabilities of the
Server. It contains the list of Profiles supported by the Server. Profiles are described in OPC
10000-7.

The MaxArrayLength Property indicates the maximum length of a one or multidimensional array
supported by Variables of the Server. In a multidimensional array it indicates the overall length.
For example, a three-dimensional array of 2x3x10 has the array length of 60. The Server might
further restrict the length for individual Variables without notice to the client. Servers may use
the Property MaxArrayLength defined in OPC 10000-3 on individual DataVariables to specify
the size on individual values. The individual Property may have a larger or smaller value than
MaxArrayLength.

The MaxStringLength Property indicates the maximum number of bytes in Strings supported by
Variables of the Server. Servers may override this setting by adding the MaxStringLength
Property defined in OPC 10000-3 to an individual DataVariable. If a Server does not impose a
maximum number of bytes or is not able to determine the maximum number of bytes this
Property shall not be provided.

The MaxByteStringLength Property indicates the maximum number of bytes in a ByteString
supported by Variables of the Server. It also specifies the default maximum size of a FileType
Object’'s read and write buffers. Servers may override this setting by adding the
MaxByteStringLength Property defined in OPC 10000-3 to an individual DataVariable or
FileType Object. If a Server does not impose a maximum number of bytes or is not able to
determine the maximum number of bytes this Property shall not be provided.

OperationLimits is an entry point to access information on operation limits of the Server, for
example the maximum length of an array in a read Service call.

ModellingRules is an entry point to browse to all ModellingRules supported by the Server. All
ModellingRules supported by the Server should be able to be browsed starting from this Object.

AggregateFunctions is an entry point to browse to all AggregateFunctions supported by the
Server. All AggregateFunctions supported by the Server should be able to be browsed starting
from this Object. AggregateFunctions are Objects of AggregateFunctionType.

The RoleSet Object is used to publish all Roles supported by the Server. The RoleSetType is
specified in F.2

When vendors expose their own capabilities they should add additional Nodes to the standard
ServerCapabilities Object instance.

OPC 10000-5: Information Model 11 Release 1.04

6.3.3 ServerDiagnosticsType

This ObjectType defines diagnostic information about the OPC UA Server. This ObjectType is
formally defined in Table 11.

Table 11 — ServerDiagnosticsType Definition

Attribute Value

BrowseName ServerDiagnosticsType

IsAbstract False

References Node BrowseName DataType / TypeDefinition Modelling

Class Rule

Subtype of the BaseObjectType defined in 6.2

HasComponent | Variable ServerDiagnosticsSummary ServerDiagnosticsSummaryDataType Mandatory
ServerDiagnosticsSummaryType

HasComponent | Variable SamplingIntervalDiagnosticsArray | SamplingintervalDiagnosticsDataType[] Optional
SamplinglntervalDiagnosticsArray Type

HasComponent | Variable SubscriptionDiagnosticsArray SubscriptionDiagnosticsDataType[] Mandatory
SubscriptionDiagnosticsArrayType

HasComponent | Object SessionsDiagnosticsSummary - Mandatory
SessionsDiagnosticsSummaryType

HasProperty Variable EnabledFlag Boolean Mandatory
PropertyType

ServerDiagnosticsSummary contains diagnostic summary information for the Server, as defined
in 12.9.

SamplingintervalDiagnosticsArray is an array of diagnostic information per sampling rate as
defined in 12.8. There is one entry for each sampling rate currently used by the Server. Its
TypeDefinitionNode is the VariableType SamplinglintervalDiagnosticsArrayType, providing a
Variable for each entry in the array, as defined in 7.9.

The sampling interval diagnostics are only collected by Servers which use a fixed set of
sampling intervals. In these cases, length of the array and the set of contained Variables will
be determined by the Server configuration and the Nodeld assigned to a given sampling interval
diagnostics variable shall not change as long as the Server configuration does not change. A
Server may not expose the SamplinglntervalDiagnosticsArray if it does not use fixed sampling
rates.

SubscriptionDiagnosticsArray is an array of Subscription diagnostic information per
subscription, as defined in 12.15. There is one entry for each Notification channel actually
established in the Server. Its TypeDefinitionNode is the VariableType
SubscriptionDiagnosticsArrayType, providing a Variable for each entry in the array as defined
in 7.11. Those Variables are also used as Variables referenced by other Variables.

SessionsDiagnosticsSummary contains diagnostic information per session, as defined in 6.3.4.

EnabledFlag identifies whether or not diagnostic information is collected by the Server. It can
also be used by a client to enable or disable the collection of diagnostic information of the
Server. The following settings of the Boolean value apply: TRUE indicates that the Server
collects diagnostic information, and setting the value to TRUE leads to resetting and enabling
the collection. FALSE indicates that no diagnostic information is collected, and setting the value
to FALSE disables the collection without resetting the diagnostic values.

When diagnostics are turned off, the Server can return Bad_NodeldUnknown for all static
diagnostic Nodes except the EnabledFlag Property. Dynamic diagnostic Nodes (such as the
Session Nodes) will not appear in the AddressSpace.

If collection of diagnostic information is not supported at all, the EnabledFlag Property will be
read only.
6.3.4 SessionsDiagnosticsSummaryType

This ObjectType defines diagnostic information about the sessions of the OPC UA Server. This
ObjectType is formally defined in Table 12.

Release 1.04 12 OPC 10000-5: Information Model

Table 12 — SessionsDiagnosticsSummaryType Definition

Attribute Value

BrowseName SessionsDiagnosticsSummaryType

IsAbstract False

References NodeClass BrowseName DataType / TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in 6.2

HasComponent | Variable SessionDiagnosticsArray SessionDiagnosticsDataType[] Mandatory
SessionDiagnosticsArray Type

HasComponent | Variable SessionSecurityDiagnosticsArray SessionSecurityDiagnosticsDataType[] | Mandatory
SessionSecurityDiagnosticsArray Type

HasComponent | Object <ClientName> - Optional
SessionDiagnosticsObjectType Placeholder

NOTE This row represents no Node in the AddressSpace. It is a placeholder pointing out that instances of the ObjectType will
have those Objects.

SessionDiagnosticsArray provides an array with an entry for each session in the Server having
general diagnostic information about a session.

SessionSecurityDiagnhosticsArray provides an array with an entry for each active session in the
Server having security-related diagnostic information about a session. Since this information is
security-related, it should not be made accessible to all users, but only to authorised users.

For each session of the Server, this Object also provides an Object representing the session,
indicated by <ClientName>. The BrowseName could be derived from the sessionName defined
in the CreateSession Service (OPC 10000-4) or some other server-specific mechanisms. It is
of the ObjectType SessionDiagnosticsObjectType, as defined in 6.3.5.

6.3.5 SessionDiagnosticsObjectType

This ObjectType defines diagnostic information about a session of the OPC UA Server. This
ObjectType is formally defined in Table 13.

Table 13 — SessionDiagnosticsObjectType Definition

Attribute Value

BrowseName SessionDiagnosticsObjectType

IsAbstract False

References NodeClass BrowseName DataType / TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in 6.2

HasComponent Variable SessionDiagnostics SessionDiagnosticsDataType Mandatory
SessionDiagnosticsVariableType

HasComponent Variable SessionSecurityDiagnostics SessionSecurityDiagnosticsDataType Mandatory
SessionSecurityDiagnosticsType

HasComponent Variable SubscriptionDiagnosticsArray SubscriptionDiagnosticsDataType[] Mandatory
SubscriptionDiagnosticsArrayType

SessionDiagnostics contains general diagnostic information about the session; the
SessionSecurityDiagnostics Variable contains security-related diagnostic information. Because
the information of the second Variable is security-related, it should not be made accessible to
all users, but only to authorised users.

SubscriptionDiagnosticsArray is an array of Subscription diagnostic information per opened
subscription, as defined in 12.15. Its TypeDefinitionNode is the VariableType
SubscriptionDiagnosticsArrayType providing a Variable for each entry in the array, as defined
in7.11.

6.3.6 VendorServerinfoType

This ObjectType defines a placeholder Object for vendor-specific information about the OPC
UA Server. This ObjectType defines an empty ObjectType that has no components. It shall be
subtyped by vendors to define their vendor-specific information. This ObjectType is formally
defined in Table 14.

OPC 10000-5: Information Model 13 Release 1.04

Table 14 — VendorServerinfoType Definition

Attribute Value

BrowseName VendorServerInfoType

IsAbstract False

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2

6.3.7 ServerRedundancyType

This ObjectType defines the redundancy capabilities supported by the OPC UA Server. It is
formally defined in Table 15.

Table 15 — ServerRedundancyType Definition

Attribute Value

BrowseName ServerRedundancyType

IsAbstract False

References NodeClass BrowseName DataType Type Modelling
Definition Rule

Subtype of the BaseObjectType defined in 6.2

HasProperty Variable RedundancySupport RedundancySupport | PropertyType I Mandatory

HasSubtype ObjectType TransparentRedundancyType Defined in 6.3.8

HasSubtype ObjectType NonTransparentRedundancyType Defined in 6.3.9

RedundancySupport indicates what redundancy is supported by the Server. Its values are
defined in 12.5. It shall be set to NONE_O for all instances of the ServerRedundancyType using
the ObjectType directly (no subtype).

6.3.8 TransparentRedundancyType

This ObjectType is a subtype of ServerRedundancyType and is used to identify the capabilities
of the OPC UA Server for server-controlled redundancy with a transparent switchover for the
client. It is formally defined in Table 16.

Table 16 — TransparentRedundancyType Definition

Attribute Value

BrowseName TransparentRedundancyType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the ServerRedundancyType defined in 6.3.7, i.e. inheriting the InstanceDeclarations of that Node.

HasProperty | Variable | CurrentServerld String PropertyType Mandatory

HasProperty | Variable | RedundantServerArray RedundantServerDataType[] | PropertyType Mandatory

RedundancySupport is inherited from the ServerRedundancyType. It shall be set to
TRANSPARENT_4 for all instances of the TransparentRedundancyType.

Although, in a transparent switchover scenario, all redundant Servers serve under the same
URI to the Client, it may be required to track the exact data source on the Client. Therefore,
CurrentServerld contains an identifier of the currently-used Server in the Redundant Set. This
Server is valid only inside a Session; if a Client opens several Sessions, different Servers of
the redundant set of Servers may serve it in different Sessions. The value of the
CurrentServerld may change due to Failover or load balancing, so a Client that needs to track
its data source shall subscribe to this Variable.

As diagnostic information, the RedundantServerArray contains an array of available Servers in
the Redundant Set; including their service levels (see 12.7). This array may change during a
Session.

6.3.9 NonTransparentRedundancyType

This ObjectType is a subtype of ServerRedundancyType and is used to identify the capabilities
of the OPC UA Server for non-transparent redundancy. It is formally defined in Table 17.

Release 1.04 14 OPC 10000-5: Information Model

Table 17 — NonTransparentRedundancyType Definition

Attribute Value

BrowseName NonTransparentRedundancyType

IsAbstract False

References NodeClass BrowseName DataType | TypeDefinition Modelling
Rule

Subtype of the ServerRedundancyType defined in 6.3.7, which means it inherits the InstanceDeclarations of that Node.

HasProperty Variable ServerUriArray String[] | PropertyType | Mandatory

HasSubtype ObjectType NonTransparentNetworkRedundancyType Defined in 6.3.10

ServerUriArray is an array with the URI of all redundant Servers of the OPC UA Server. See
OPC 10000-4 for the definition of redundancy in this standard. In a non-transparent redundancy
environment, the Client is responsible to subscribe to the redundant Servers. Therefore the
Client might open a session to one or more redundant Servers of this array. The ServerUriArray
shall contain the local Server.

RedundancySupport is inherited from the ServerRedundancyType. It shall be set to COLD_1,
WARM_2, HOT_3 or HOT_AND_MIRRORED_5 for all instances of the
NonTransparentRedundancyType. It defines the redundancy support provided by the Server.
Its intended use is defined in OPC 10000-4.

6.3.10 NonTransparentNetworkRedundancyType

This ObjectType is a subtype of NonTransparentRedundancyType and is used to identify the
capabilities of the OPC UA Server for non-transparent network redundancy. It is formally
defined in Table 18.

Table 18 — NonTransparentNetworkRedundancyType Definition

Attribute Value

BrowseName NonTransparentNetworkRedundancyType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the NonTransparentRedundancyType defined in 6.3.9, which means it inherits the InstanceDeclarations of that
Node.

HasProperty | Variable | ServerNetworkGroups | NetworkGroupDataType[] | PropertyType I Mandatory

Clients switching between network paths to the same Server behave the same as
HotAndMirrored redundancy. Server and network redundancy can be combined. In the
combined approach it is important for the Client to know which ServerUris belong to the same
Server representing different network paths and which ServerUris represent different Servers.
Therefore, a Server implementing non-transparent network redundancy shall use the
NonTransparentNetworkRedundancyType to identify its redundancy support.

RedundancySupport is inherited from the ServerRedundancyType. It shall be set to COLD_1,
WARM_2, HOT_3 or HOT_AND_MIRRORED_5 for all instances of the
NonTransparentNetworkRedundancyType. If no Server redundancy is supported (the
ServerUriArray only contains one entry), the RedundancySupport shall be set to
HOT_AND_MIRRORED 5.

The ServerNetworkGroups contains an array of NetworkGroupDataType. The URIs of the
Servers in that array (in the serverUri of the structure) shall be exactly the same as the ones
provided in the ServerUriArray. However, the order might be different. Thus the array represents
a list of HotAndMirrored redundant Servers. If a Server only supports network redundancy, it
has only one entry in the ServerNetworkGroups. The networkPaths in the structure represents
the redundant network paths for each of the Servers. The networkPaths describes the different
paths (one entry for each path) ordered by priority. Each network path contains an
endpointUrlList having an array of Strings each containing a URL of an Endpoint. This allows
using different protocol options for the same network path.

The Endpoints provided shall match with the Endpoints provided by the GetEndpoints Service
of the corresponding Server.

OPC 10000-5: Information Model 15 Release 1.04

6.3.11 OperationLimitsType

This ObjectType is a subtype of FolderType and is used to identify the operation limits of the
OPC UA Server. It is formally defined in Table 19.

Table 19 — OperationLimitsType Definition

Attribute Value

BrowseName OperationLimitsType

IsAbstract False

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the FolderType defined in 6.6, which means it inherits the InstanceDeclarations of that Node.

HasProperty Variable MaxNodesPerRead UInt32 PropertyType Optional

HasProperty Variable MaxNodesPerHistoryReadData Uint32 PropertyType Optional

HasProperty Variable MaxNodesPerHistoryReadEvents UlInt32 PropertyType Optional

HasProperty Variable MaxNodesPerWrite Ulnt32 PropertyType Optional

HasProperty Variable MaxNodesPerHistoryUpdateData Ulnt32 PropertyType Optional

HasProperty Variable MaxNodesPerHistoryUpdateEvents Uint32 PropertyType Optional

HasProperty Variable MaxNodesPerMethodCall Ulnt32 PropertyType Optional

HasProperty Variable MaxNodesPerBrowse Uint32 PropertyType Optional

HasProperty Variable MaxNodesPerRegisterNodes Ulnt32 PropertyType Optional

HasProperty Variable MaxNodesPerTranslateBrowsePaths | UInt32 PropertyType Optional
ToNodelds

HasProperty Variable MaxNodesPerNodeManagement Uint32 PropertyType Optional

HasProperty Variable MaxMonitoredltemsPerCall Ulnt32 PropertyType Optional

Any operational limits Property that is provided shall have a non zero value.

The MaxNodesPerRead Property indicates the maximum size of the nodesToRead array when
a Client calls the Read Service.

The MaxNodesPerHistoryReadData Property indicates the maximum size of the nodesToRead
array when a Client calls the HistoryRead Service using the historyReadDetails RAW,
PROCESSED, MODIFIED or ATTIME.

The MaxNodesPerHistoryReadEvents Property indicates the maximum size of the
nodesToRead array when a Client calls the HistoryRead Service using the historyReadDetails
EVENTS.

The MaxNodesPerWrite Property indicates the maximum size of the nodesToWrite array when
a Client calls the Write Service.

The MaxNodesPerHistoryUpdateData Property indicates the maximum size of the
historyUpdateDetails array supported by the Server when a Client calls the HistoryUpdate
Service.

The MaxNodesPerHistoryUpdateEvents Property indicates the maximum size of the
historyUpdateDetails array when a Client calls the HistoryUpdate Service.

The MaxNodesPerMethodCall Property indicates the maximum size of the methodsToCall array
when a Client calls the Call Service.

The MaxNodesPerBrowse Property indicates the maximum size of the nodesToBrowse array
when calling the Browse Service or the continuationPoints array when a Client calls the
BrowseNext Service.

The MaxNodesPerRegisterNodes Property indicates the maximum size of the nodesToRegister
array when a Client calls the RegisterNodes Service and the maximum size of the
nodesToUnregister when calling the UnregisterNodes Service.

The MaxNodesPerTranslateBrowsePathsToNodelds Property indicates the maximum size of
the browsePaths array when a Client calls the TranslateBrowsePathsToNodelds Service.

The MaxNodesPerNodeManagement Property indicates the maximum size of the nodesToAdd
array when a Client calls the AddNodes Service, the maximum size of the referencesToAdd

Release 1.04 16 OPC 10000-5: Information Model

array when a Client calls the AddReferences Service, the maximum size of the nodesToDelete
array when a Client calls the DeleteNodes Service, and the maximum size of the
referencesToDelete array when a Client calls the DeleteReferences Service.

The MaxMonitoreditemsPerCall Property indicates

e the maximum size of the itemsToCreate array when a Client calls the
CreateMonitoredltems Service,

e the maximum size of the itemsToModify array when a Client calls the
ModifyMonitoreditems Service,

e the maximum size of the monitoreditemlds array when a Client calls the
SetMonitoringMode Service or the DeleteMonitoredltems Service,

e the maximum size of the sum of the linksToAdd and linksToRemove arrays when a
Client calls the SetTriggering Service.

6.3.12 AddressSpaceFileType

This ObjectType defines the file for a namespace provided by the OPC UA Server. It is formally
defined in Table 20. It represents an XML address space file using the XML schema defined in
OPC 10000-6.

Table 20 — AddressSpaceFileType Definition

Attribute Value

BrowseName AddressSpaceFileType

IsAbstract False

References NodeClass | BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FileType defined in C.2

HasComponent | Method | ExportNamespace | The method has no parameters. | Optional

The ExportNamespace Method provides a way to export the namespace from the Server
AddressSpace to the XML file represented by the AddressSpaceFileType. Value Attributes are
only exported if they represent static configuration information. The client is expected to call
the ExportNamespace Method first to update the XML file and then access the file with the
Methods defined in the FileType.

Servers might provide some vendor-specific mechanisms importing parts of an address space
as subtype of this ObjectType, for example by defining appropriate Methods.

6.3.13 NamespaceMetadataType
This ObjectType defines the metadata for a namespace provided by the Server. It is formally
defined in Table 21.

Instances of this Object allow Servers to provide more information like version information in
addition to the namespace URI. Important information for aggregating Servers is provided by
the StaticNodeldTypes, StaticNumericNodeldRange and StaticStringNodeldPattern Properties.

OPC 10000-5: Information Model 17 Release 1.04
Table 21 — NamespaceMetadataType Definition
Attribute Value
BrowseName NamespaceMetadataType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling
Rule
Subtype of the BaseObjectType defined in 6.2
HasProperty Variable NamespaceUri String PropertyType Mandatory
HasProperty Variable NamespaceVersion String PropertyType Mandatory
HasProperty Variable NamespacePublicationDate DateTime PropertyType Mandatory
HasProperty Variable IsNamespaceSubset Boolean PropertyType Mandatory
HasProperty Variable StaticNodeldTypes IdType[] PropertyType Mandatory
HasProperty Variable StaticNumericNodeldRange NumericRange[] | PropertyType Mandatory
HasProperty Variable StaticStringNodeldPattern String PropertyType Mandatory
HasComponent | Object NamespaceFile - AddressSpaceFileType Optional
HasProperty Variable DefaultRolePermissions RolePermission PropertyType Optional
Type[]
HasProperty Variable DefaultUserRolePermissions | RolePermission PropretyType Optional
Type(]
HasProperty Variable DefaultAccessRestrictions Uintl6 PropertyType Optional

The BrowseName of instances of this type shall be derived from the represented namespace.
This can, for example, be done by using the index of the namespace in the NamespaceArray
as namespacelndex of the QualifiedName and the namespace URI as name of the
QualifiedName.

The NamespaceUri Property contains the namespace represented by an instance of the
MetaDataType.

The NamespaceVersion Property provides version information for the namespace. It is intended
for display purposes and shall not be used to programmatically identify the latest version. If
there is no formal version defined for the namespace this Property shall be set to a null String.

The NamespacePublicationDate Property provides the publication date of the namespace
version. This Property value can be used by Clients to determine the latest version if different
versions are provided by different Servers. If there is no formal publication date defined for the
namespace this Property shall be set to a null DateTime.

The IsNamespaceSubset Property defines whether all Nodes of the namespace are accessible
in the Server or only a subset. It is set to FALSE if the full namespace is provided and TRUE if
not. If the completeness is unknown then this Property shall be set to TRUE.

Static Nodes are identical for all Attributes in all Servers, including the Value Attribute. For
TypeDefinitionNodes, also the InstanceDeclarations shall be identical. That means that for
static Nodes the semantic is always the same. Namespaces with static Nodes are for example
namespaces defined by standard bodies like the OPC Foundation. This is important information
for aggregating Servers. If the namespace is dynamic and used in several Servers the
aggregating Server needs to distinguish the namespace for each aggregated Server. The static
Nodes of a namespace only need to be handled once, even if they are used by several
aggregated Servers.

The StaticNodeldTypes Property provides a list of IdTypes used for static Nodes. All Nodes in
the AddressSpace of the namespace using one of the IdTypes in the array shall be static Nodes.

The StaticNumericNodeldRange Property provides a list of NumericRanges used for numeric
Nodelds of static Nodes. If the StaticNodeldTypes Property contains an entry for numeric
Nodelds then this Property is ignored.

The StaticStringNodeldPattern Property provides a regular expression as defined for the Like
Operator defined in OPC 10000-4 to filter for string Nodelds of static Nodes. If the
StaticNodeldTypes Property contains an entry for string Nodelds then this Property is ignored.

Release 1.04 18 OPC 10000-5: Information Model

The Object NamespaceFile contains all Nodes and References of the namespace in an XML
file where the Information Model XML Schema is defined in OPC 10000-6. The XML file is
provided through an AddressSpaceFileType Object.

The DefaultRolePermissions Property provides the default permissions if a Server supports
RolePermissions for the Namespace. A Node in the Namespace overrides this default by adding
a RolePermissions Attribute to the Node. If a Server implements a vendor-specific
RolePermissions model for a Namespace, it does not add the DefaultRolePermissions Property
to the NamespaceMetadata Object.

The DefaultUserRolePermissions Property provides the default user permissions if a Server
supports UserRolePermissions for the Namespace. A Node in the Namespace overrides this
default by adding a UserRolePermissions Attribute to the Node. If a Server implements a
vendor-specific UserRolePermissions model for a Namespace, it does not add the
DefaultUserRolePermissions Property to the NamespaceMetadata Object.

The DefaultAccessRestrictions Property is present if a Server supports AccessRestrictions for
the Namespace and provides the defaults. A Node in the Namespace overrides this default by
adding a AccessRestrictions Attribute to the Node. If a Server implements a vendor-specific
AccessRestriction model for a Namespace, it does not add the DefaultAccessRestrictions
Property to the NamespaceMetadata Object.

6.3.14 NamespacesType

This ObjectType defines a list of NamespaceMetadataType Objects provided by the Server. It
is formally defined in Table 22.

Table 22 — NamespacesType Definition

Attribute Value
BrowseName NamespacesType
IsAbstract False
References NodeClass BrowseName Data TypeDefinition Modelling
Type Rule
Subtype of the BaseObjectType defined in 6.2
HasComponent | Object | <Namespaceldentifier> | - | NamespaceMetadataType I OptionalPlaceholder

The ObjectType contains a list of NamespaceMetadataType Objects representing the
namespaces in the Server. The BrowseName of an Object shall be derived from the namespace
represented by the Object. This can, for example, be done by using the index of the namespace
in the NamespaceArray as namespacelndex of the QualifiedName and the namespace URI as
name of the QualifiedName. Clients should not assume that all namespaces provided by a
Server are present in this list as a namespace may not provide the information necessary to fill
all mandatory Properties of the NamespaceMetadataType.

6.4 ObjectTypes used as EventTypes
6.4.1 General

This International Standard defines standard EventTypes. They are represented in the
AddressSpace as ObjectTypes. The EventTypes are already defined in OPC 10000-3. The
following subclauses specify their representation in the AddressSpace.

6.4.2 BaseEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 23.

OPC 10000-5: Informatio

n Model 19

Table 23 — BaseEventType Definition

Release 1.04

Attribute Value

BrowseName BaseEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in 6.2

HasSubtype ObjectType AuditEventType Defined in 6.4.3

HasSubtype ObjectType SystemEventType Defined in 6.4.28

HasSubtype ObjectType BaseModelChangeEventType Defined in 6.4.31

HasSubtype ObjectType SemanticChangeEventType Defined in 6.4.33

HasSubtype ObjectType EventQueueOverflowEventType | Defined in 6.4.34

HasSubtype ObjectType ProgressEventType Defined in 6.4.35

HasProperty Variable Eventld ByteString PropertyType Mandatory

HasProperty Variable EventType Nodeld PropertyType Mandatory

HasProperty Variable SourceNode Nodeld PropertyType Mandatory

HasProperty Variable SourceName String PropertyType Mandatory

HasProperty Variable Time UtcTime PropertyType Mandatory

HasProperty Variable ReceiveTime UtcTime PropertyType Mandatory

HasProperty Variable LocalTime TimeZoneDataType PropertyType Optional

HasProperty Variable Message LocalizedText PropertyType Mandatory

HasProperty Variable Severity Uint16 PropertyType Mandatory

Eventld is generated by the Server to uniquely identify a particular Event Notification. The
Server is responsible to ensure that each Event has its unique Eventld. It may do this, for
example, by putting GUIDs into the ByteString. Clients can use the Eventld to assist in
minimizing or eliminating gaps and overlaps that may occur during a redundancy failover. The
Eventld shall always be returned as value and the Server is not allowed to return a StatusCode
for the Eventld indicating an error.

EventType describes the specific type of Event. The EventType shall always be returned as
value and the Server is not allowed to return a StatusCode for the EventType indicating an
error.

The SourceNode Property identifies the Node that the Event originated from. If the Event is not
specific to a Node the Nodeld is set to null. Some subtypes of this BaseEventType may define
additional rules for the SourceNode Property.

SourceName provides a description of the source of the Event. This could be the string-part of
the DisplayName of the Event source using the default locale of the server, if the Event is
specific to a Node, or some server-specific notation.

Time provides the time the Event occurred. This value is set as close to the event generator as
possible. It often comes from the underlying system or device. Once set, intermediate OPC UA
Servers shall not alter the value.

ReceiveTime provides the time the OPC UA Server received the Event from the underlying
device of another Server. ReceiveTime is analogous to ServerTimestamp defined in OPC
10000-4, i.e. in the case where the OPC UA Server gets an Event from another OPC UA Server,
each Server applies its own ReceiveTime. That implies that a Client may get the same Event,
having the same Eventld, from different Servers having different values of the ReceiveTime.
The ReceiveTime shall always be returned as value and the Server is not allowed to return a
StatusCode for the ReceiveTime indicating an error.

LocalTime is a structure containing the Offset and the DaylightSavinglnOffset flag. The Offset
specifies the time difference (in minutes) between the Time Property and the time at the location
in which the event was issued. If DaylightSavinglnOffset is TRUE, then Standard/Daylight
savings time (DST) at the originating location is in effect and Offset includes the DST correction.
If FALSE then the Offset does not include DST correction and DST may or may not have been
in effect.

Message provides a human-readable and localizable text description of the Event. The Server
may return any appropriate text to describe the Event. A null string is not a valid value; if the

Release 1.04 20 OPC 10000-5: Information Model

Server does not have a description, it shall return the string part of the BrowseName of the
Node associated with the Event.

Severity is an indication of the urgency of the Event. This is also commonly called “priority”.
Values will range from 1 to 1 000, with 1 being the lowest severity and 1 000 being the highest.
Typically, a severity of 1 would indicate an Event which is informational in nature, while a value
of 1 000 would indicate an Event of catastrophic nature, which could potentially result in severe
financial loss or loss of life.

It is expected that very few Server implementations will support 1 000 distinct severity levels.
Therefore, Server developers are responsible for distributing their severity levels across the
1 to 1 000 range in such a manner that clients can assume a linear distribution. For example, a
client wishing to present five severity levels to a user should be able to do the following

mapping:

Client Severity OPC Severity
HIGH 801 — 1 000
MEDIUM HIGH 601 — 800
MEDIUM 401 — 600
MEDIUM LOW 201 — 400
LOW 1-200

In many cases a strict linear mapping of underlying source severities to the OPC Severity range
is not appropriate. The Server developer will instead intelligently map the underlying source
severities to the 1 to 1 000 OPC Severity range in some other fashion. In particular, it is
recommended that Server developers map Events of high urgency into the OPC severity range
of 667 to 1 000, Events of medium urgency into the OPC severity range of 334 to 666 and
Events of low urgency into OPC severities of 1 to 333.

For example, if a source supports 16 severity levels that are clustered such that severities 0 to
2 are considered to be LOW, 3 to 7 are MEDIUM and 8 to 15 are HIGH, then an appropriate
mapping might be as follows:

OPC Range Source Severity OPC Severity
HIGH (667 — 1 000) 15 1000
14 955
13 910
12 865
11 820
10 775
9 730
8 685
MEDIUM (334 — 666) 7 650
6 575
5 500
4 425
3 350
LOW (1 - 333) 2 300
1 150
0 1

Some Servers might not support any Events which are catastrophic in nature, so they may
choose to map all of their severities into a subset of the 1 to 1 000 range (for example, 1 to
666). Other Servers might not support any Events which are merely informational, so they may
choose to map all of their severities into a different subset of the 1 to 1 000 range (for example,
334 to 1 000).

The purpose of this approach is to allow clients to use severity values from multiple Servers
from different vendors in a consistent manner. Additional discussions of severity can be found
in OPC 10000-9.

OPC 10000-5: Information Model 21 Release 1.04

6.4.3 AuditEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 24.

Table 24 — AuditEventType Definition

Attribute Value

BrowseName AuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseEventType defined in 6.4.2, which means it inherits the InstanceDeclarations of that Node.

HasSubtype ObjectType AuditSecurityEventType Defined in 6.4.4

HasSubtype ObjectType AuditNodeManagementEventType Defined in 6.4.19

HasSubtype ObjectType AuditUpdateEventType Defined in 6.4.24

HasSubtype ObjectType AuditUpdateMethodEventType Defined in 6.4.27

HasProperty Variable ActionTimeStamp UtcTime PropertyType Mandatory

HasProperty Variable Status Boolean PropertyType Mandatory

HasProperty Variable Serverld String PropertyType Mandatory

HasProperty Variable ClientAuditEntryld String PropertyType Mandatory

HasProperty Variable ClientUserld String PropertyType Mandatory

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.

ActionTimeStamp identifies the time the user initiated the action that resulted in the AuditEvent
being generated. It differs from the Time Property because this is the time the server generated
the AuditEvent documenting the action.

Status identifies whether the requested action could be performed (set Status to TRUE) or not
(set Status to FALSE).

Serverld uniquely identifies the Server generating the Event. It identifies the Server uniquely
even in a server-controlled transparent redundancy scenario where several Servers may use
the same URI.

ClientAuditEntryld contains the human-readable AuditEntryld defined in OPC 10000-3.

The ClientUserld identifies the user of the client requesting an action. The ClientUserld can be
obtained from the UserldentityToken passed in the ActivateSession call. If the
UserldentityToken is a UserNameldentityToken then the ClientUserld is the UserName. If the
UserldentityToken is an X509ldentityToken then the ClientUserld is the X509 Subject Name of
the Certificate. If the UserldentityToken is an IssuedldentityToken then the ClientUserld shall
be a string that represents the owner of the token. The best choice for the string depends on
the type of IssuedldentityToken. If an AnonymousldentityToken was used, the value is null.

6.4.4 AuditSecurityEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 25.

Table 25 — AuditSecurityEventType Definition

Attribute Value

BrowseName AuditSecurityEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditEventType defined in 6.4.3, which means it inherits the InstanceDeclarations of that Node.

HasSubtype ObjectType AuditChannelEventType Defined in 6.4.5

HasSubtype ObjectType AuditSessionEventType Defined in 6.4.7

HasSubtype ObjectType AuditCertificateEventType Defined in 6.4.12

HasProperty Variable StatusCodeld StatusCode | PropertyType | Optional

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3.
There are no additional Properties defined for this EventType.

Release 1.04 22 OPC 10000-5: Information Model

The optional StatusCodeld Property provides the exact security error responsible for producing
the Event.

6.4.5 AuditChannelEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 26.

Table 26 — AuditChannelEventType Definition

Attribute Value

BrowseName AuditChannelEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AuditSecurityEventType defined in 6.4.4, which means it inherits the InstanceDeclarations of that Node.

HasSubtype ObjectType AuditOpenSecureChannelEventType Defined in 6.4.6

HasProperty Variable SecureChannelld String | PropertyType | Mandatory

This EventType inherits all Properties of the AuditSecurityEventType. Their semantic is defined
in 6.4.4. The SourceNode Property for Events of this type shall be assigned to the Server
Object. The SourceName for Events of this type shall be “SecureChannel/” and the Service that
generates the Event (e.q. SecureChannel/OpenSecureChannel or
SecureChannel/CloseSecureChannel). If the ClientUserld is not available for a
CloseSecureChannel call, then this parameter shall be set to "System/CloseSecureChannel”.

The SecureChannelld shall uniquely identify the SecureChannel. The application shall use the
same identifier in all AuditEvents related to the Session Service Set
(AuditCreateSessionEventType, AuditActivateSessionEventType and their subtypes) and the
SecureChannel Service Set (AuditChannelEventType and its subtypes).

6.4.6 AuditOpenSecureChannelEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 27.

Table 27 — AuditOpenSecureChannelEventType Definition

Attribute Value

BrowseName AuditOpenSecureChannelEventType

IsAbstract True

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the AuditChannelEventType defined in 6.4.5, which means it inherits the InstanceDeclarations of that Node.

HasProperty Variable | ClientCertificate ByteString PropertyType Mandatory

HasProperty Variable | ClientCertificateThumbprint String PropertyType Mandatory

HasProperty Variable RequestType SecurityTokenRequestType PropertyType Mandatory

HasProperty Variable | SecurityPolicyUri String PropertyType Mandatory

HasProperty Variable | SecurityMode MessageSecurityMode PropertyType Mandatory

HasProperty Variable | RequestedLifetime Duration PropertyType Mandatory

This EventType inherits all Properties of the AuditChannelEventType. Their semantic is defined
in 6.4.5. The SourceName for Events of this type shall be
“SecureChannel/OpenSecureChannel”. The ClientUserld is not available for this call, thus this
parameter shall be set to "System/OpenSecureChannel”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

ClientCertificate is the clientCertificate parameter of the OpenSecureChannel Service call.

ClientCertificateThumbprint is a thumbprint of the ClientCertificate. See OPC 10000-6 for
details on thumbprints.

RequestType is the requestType parameter of the OpenSecureChannel Service call.

OPC 10000-5: Information Model 23 Release 1.04

SecurityPolicyUri is the securityPolicyUri parameter of the OpenSecureChannel Service call.
SecurityMode is the securityMode parameter of the OpenSecureChannel Service call.
RequestedLifetime is the requestedLifetime parameter of the OpenSecureChannel Service call.

6.4.7 AuditSessionEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 28.

Table 28 — AuditSessionEventType Definition

Attribute Value

BrowseName AuditSessionEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditSecurityEventType defined in 6.4.4, which means it inherits the InstanceDeclarations of that Node.
HasSubtype ObjectType AuditCreateSessionEventType Defined in 6.4.8

HasSubtype ObjectType AuditActivateSessionEventType Defined in 6.4.10

HasSubtype ObjectType AuditCancelEventType Defined in 6.4.11

HasProperty Variable Sessionld Nodeld | PropertyType | Mandatory

This EventType inherits all Properties of the AuditSecurityEventType. Their semantic is defined
in 6.4.4.

If the Event is generated by a TransferSubscriptions Service call, the SourceNode Property
shall be assigned to the SessionDiagnostics Object that represents the session. The
SourceName for Events of this type shall be “Session/TransferSubscriptions”.

Otherwise, the SourceNode Property for Events of this type shall be assigned to the Server
Object. The SourceName for Events of this type shall be “Session/” and the Service or cause
that generates the Event (e.g. CreateSession, ActivateSession or CloseSession).

The Sessionld shall contain the Sessionld of the session that the Service call was issued on In
the CreateSession Service this shall be set to the newly created Sessionld. If no session context
exists (e.g. for a failed CreateSession Service call) the Sessionld shall be null.

6.4.8 AuditCreateSessionEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 29.

Table 29 — AuditCreateSessionEventType Definition

Attribute Value

BrowseName AuditCreateSessionEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditSessionEventType defined in 6.4.7, which means it inherits the InstanceDeclarations of that Node.
HasSubtype ObjectType AuditUrIMismatchEventType | Defined in 6.4.9

HasProperty Variable SecureChannelld String PropertyType Mandatory
HasProperty Variable ClientCertificate ByteString PropertyType Mandatory
HasProperty Variable ClientCertificateThumbprint String PropertyType Mandatory
HasProperty Variable RevisedSessionTimeout Duration PropertyType Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined
in 6.4.7. The SourceName for Events of this type shall be “Session/CreateSession”. The
ClientUserld is not available for this call thus this parameter shall be set to the
"System/CreateSession”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

Release 1.04 24 OPC 10000-5: Information Model

SecureChannelld shall uniquely identify the SecureChannel. The application shall use the same
identifier in all AuditEvents related to the Session Service Set (AuditCreateSessionEventType,
AuditActivateSessionEventType and their subtypes) and the SecureChannel Service Set
(AuditChannelEventType and its subtypes).

ClientCertificate is the clientCertificate parameter of the CreateSession Service call.

ClientCertificateThumbprint is a thumbprint of the ClientCertificate. See OPC 10000-6 for
details on thumbprints.

RevisedSessionTimeout is the returned revisedSessionTimeout parameter of the
CreateSession Service call.

6.4.9 AuditUrIMismatchEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 30.

Table 30 — AuditUrIMismatchEventType Definition

Attribute Value

BrowseName AuditUrIMismatchEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditCreateSessionEventType defined in 6.4.8 which means it inherits the InstanceDeclarations of that Node.
HasProperty | Variable | EndpointUrl | String | PropertyType | Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined
in 6.4.8.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

EndpointUrl is the endpointUrl parameter of the CreateSession Service call.

6.4.10 AuditActivateSessionEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 31.

Table 31 — AuditActivateSessionEventType Definition

Attribute Value

BrowseName AuditActivateSessionEventType

IsAbstract True

References | NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AuditSessionEventType defined in 6.4.7, which means it inherits the InstanceDeclarations of that Node.

HasProperty | Variable ClientSoftwareCertificates | SignedSoftwareCertificate[] PropertyType Mandatory

HasProperty | Variable UserldentityToken UserldentityToken PropertyType Mandatory

HasProperty | Variable SecureChannelld String PropertyType Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined
in 6.4.7. The SourceName for Events of this type shall be “Session/ActivateSession”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

ClientSoftwareCertificates is the clientSoftwareCertificates parameter of the ActivateSession
Service call.

UserldentityToken reflects the userldentityToken parameter of the ActivateSession Service call.
For Username/Password tokens the password shall not be included.

OPC 10000-5: Information Model 25 Release 1.04

SecureChannelld shall uniquely identify the SecureChannel. The application shall use the same
identifier in all AuditEvents related to the Session Service Set (AuditCreateSessionEventType,
AuditActivateSessionEventType and their subtypes) and the SecureChannel Service Set
(AuditChannelEventType and its subtypes).

6.4.11 AuditCancelEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 32.

Table 32 — AuditCancelEventType Definition

Attribute Value

BrowseName AuditCancelEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditSessionEventType defined in 6.4.7, i.e. inheriting the InstanceDeclarations of that Node.
HasProperty | Variable | RequestHandle [uint32 | PropertyType | Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined
in 6.4.7. The SourceName for Events of this type shall be “Session/Cancel”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

RequestHandle is the requestHandle parameter of the Cancel Service call.

6.4.12 AuditCertificateEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 33.

Table 33 — AuditCertificateEventType Definition

Attribute Value

BrowseName AuditCertificateEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the AuditSecurityEventType defined in 6.4.7, which means it inherits the InstanceDeclarations of that Node.

HasSubtype ObjectType AuditCertificateDataMismatchEventType | Defined in 6.4.13

HasSubtype ObjectType AuditCertificateExpiredEventType Defined in 6.4.14
HasSubtype ObjectType AuditCertificatelnvalidEventType Defined in 6.4.15
HasSubtype ObjectType AuditCertificateUntrustedEventType Defined in 6.4.16
HasSubtype ObjectType AuditCertificateRevokedEventType Defined in 6.4.17
HasSubtype ObjectType AuditCertificateMismatchEventType Defined in 6.4.18
HasProperty Variable Certificate ByteString | PropertyType | Mandatory

This EventType inherits all Properties of the AuditSecurityEventType. Their semantic is defined
in 6.4.4. The SourceName for Events of this type shall be “Security/Certificate”.

Certificate is the certificate that encountered a validation issue. Additional subtypes of this
EventType will be defined representing the individual validation errors. This certificate can be
matched to the Service that passed it (Session or SecureChannel Service Set) since the
AuditEvents for these Services also included the Certificate.

6.4.13 AuditCertificateDataMismatchEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 34.

Release 1.04 26 OPC 10000-5: Information Model

Table 34 — AuditCertificateDataMismatchEventType Definition

Attribute Value

BrowseName AuditCertificateDataMismatchEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.
HasProperty Variable InvalidHostname String PropertyType Mandatory
HasProperty Variable InvalidUri String PropertyType Mandatory

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is
defined in 6.4.12. The SourceName for Events of this type shall be “Security/Certificate”.

InvalidHostname is the string that represents the host name passed in as part of the URL that
is found to be invalid. If the host name was not invalid it can be null.

InvalidUri is the URI that was passed in and found to not match what is contained in the
certificate. If the URI was not invalid it can be null.

Either the InvalidHostname or InvalidUri shall be provided.

6.4.14 AuditCertificateExpiredEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 35.

Table 35 — AuditCertificateExpiredEventType Definition

Attribute Value

BrowseName AuditCertificateExpiredEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditCertificateEventType defined in 6.4.12, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is
defined in 6.4.12. The SourceName for Events of this type shall be “Security/Certificate”. The
Message Variable shall include a description of why the certificate was expired (i.e. time before
start or time after end). There are no additional Properties defined for this EventType.

6.4.15 AuditCertificatelnvalidEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 36.

Table 36 — AuditCertificatelnvalidEventType Definition

Attribute Value

BrowseName AuditCertificatelnvalidEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditCertificateEventType defined in 6.4.12, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is
defined in 6.4.12. The SourceName for Events of this type shall be “Security/Certificate”. The
Message shall include a description of why the certificate is invalid. There are no additional
Properties defined for this EventType.

6.4.16 AuditCertificateUntrustedEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 37.

OPC 10000-5: Information Model 27 Release 1.04

Table 37 — AuditCertificateUntrustedEventType Definition

Attribute Value

BrowseName AuditCertificateUntrustedEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditCertificateEventType defined in 6.4.12, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is
defined in 6.4.12. The SourceName for Events of this type shall be “Security/Certificate”. The
Message Variable shall include a description of why the certificate is not trusted. If a trust chain
is involved then the certificate that failed in the trust chain should be described. There are no
additional Properties defined for this EventType.

6.4.17 AuditCertificateRevokedEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 38.

Table 38 — AuditCertificateRevokedEventType Definition

Attribute Value

BrowseName AuditCertificateRevokedEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditCertificateEventType defined in 6.4.12, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is
defined in 6.4.12. The SourceName for Events of this type shall be “Security/Certificate”. The
Message Variable shall include a description of why the certificate is revoked (was the
revocation list unavailable or was the certificate on the list). There are no additional Properties
defined for this EventType.

6.4.18 AuditCertificateMismatchEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 39.

Table 39 — AuditCertificateMismatchEventType Definition

Attribute Value

BrowseName AuditCertificateMismatchEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditCertificateEventType defined in 6.4.12, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is
defined in 6.4.12. The SourceName for Events of this type shall be “Security/Certificate”. The
Message Variable shall include a description of misuse of the certificate. There are no additional
Properties defined for this EventType.

6.4.19 AuditNodeManagementEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 40.

Release 1.04 28 OPC 10000-5: Information Model

Table 40 — AuditNodeManagementEventType Definition

Attribute Value

BrowseName AuditNodeManagementEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditEventType defined in 6.4.3, which means it inherits the InstanceDeclarations of that Node.
HasSubtype ObjectType AuditAddNodesEventType

HasSubtype ObjectType AuditDeleteNodesEventType

HasSubtype ObjectType AuditAddReferencesEventType

HasSubtype ObjectType AuditDeleteReferencesEventType

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3.
There are no additional Properties defined for this EventType. The SourceNode Property for
Events of this type shall be assigned to the Server Object. The SourceName for Events of this
type shall be “NodeManagement/” and the Service that generates the Event (e.g. AddNodes,
AddReferences, DeleteNodes, DeleteReferences).

6.4.20 AuditAddNodesEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 41.

Table 41 — AuditAddNodesEventType Definition

Attribute Value

BrowseName AuditAddNodesEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditNodeManagementEventType defined in 6.4.19, which means it inherits the InstanceDeclarations of that
Node.

HasProperty | Variable | NodesToAdd | AddNodesltem[] | PropertyType | Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic
is defined in 6.4.19. The SourceName for Events of this type shall be
“NodeManagement/AddNodes”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

NodesToAdd is the NodesToAdd parameter of the AddNodes Service call.

6.4.21 AuditDeleteNodesEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 42.

Table 42 — AuditDeleteNodesEventType Definition

Attribute Value

BrowseName AuditDeleteNodesEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditNodeManagementEventType defined in 6.4.19, i.e. inheriting the InstanceDeclarations of that Node.
HasProperty | Variable | NodesToDelete | DeleteNodeslitem[] | PropertyType | Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic
is defined in 6.4.19. The SourceName for Events of this type shall be
“NodeManagement/DeleteNodes”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

NodesToDelete is the nodesToDelete parameter of the DeleteNodes Service call.

OPC 10000-5: Information Model 29 Release 1.04

6.4.22 AuditAddReferencesEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 43.

Table 43 — AuditAddReferencesEventType Definition

Attribute Value

BrowseName AuditAddReferencesEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditNodeManagementEventType defined in 6.4.19, which means it inherits the InstanceDeclarations of that
Node.

HasProperty | Variable | ReferencesToAdd | AddReferencesltem[] | PropertyType | Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic
is defined in 6.4.19. The SourceName for Events of this type shall be
“NodeManagement/AddReferences”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

ReferencesToAdd is the referencesToAdd parameter of the AddReferences Service call.

6.4.23 AuditDeleteReferencesEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 44.

Table 44 — AuditDeleteReferencesEventType Definition

Attribute Value

BrowseName AuditDeleteReferencesEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditNodeManagementEventType defined in 6.4.19, which means it inherits the InstanceDeclarations of that
Node.

HasProperty | Variable | ReferencesToDelete | DeleteReferencesitem]] | PropertyType | Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic
is defined in 6.4.19. The SourceName for Events of this type shall be
“NodeManagement/DeleteReferences”.

The additional Properties defined for this EventType reflect parameters of the Service call that
triggers the Event.

ReferencesToDelete is the referencesToDelete parameter of the DeleteReferences Service
call.

6.4.24 AuditUpdateEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 45.

Table 45 — AuditUpdateEventType Definition

Attribute Value

BrowseName AuditUpdateEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditEventType defined in 6.4.3, which means it inherits the InstanceDeclarations of that Node.

HasSubtype ObjectType AuditWriteUpdateEventType Defined in 6.4.25

HasSubtype ObjectType AuditHistoryUpdateEventType Defined in 6.4.26

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3.
The SourceNode Property for Events of this type shall be assigned to the Nodeld that was

Release 1.04 30 OPC 10000-5: Information Model

changed. The SourceName for Events of this type shall be “Attribute/” and the Service that
generated the event (e.g. Write, HistoryUpdate). Note that one Service call may generate
several Events of this type, one per changed value.

6.4.25 AuditWriteUpdateEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 46.

Table 46 — AuditWriteUpdateEventType Definition

Attribute Value

BrowseName AuditWriteUpdateEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditUpdateEventType defined in 6.4.24, which means it inherits the InstanceDeclarations of that Node.
HasProperty Variable Attributeld Uint32 PropertyType Mandatory
HasProperty Variable IndexRange NumericRange PropertyType Mandatory
HasProperty Variable NewValue BaseDataType PropertyType Mandatory
HasProperty Variable OldValue BaseDataType PropertyType Mandatory

This EventType inherits all Properties of the AuditUpdateEventType. The SourceName for
Events of this type shall be “Attribute/Write”. Their semantic is defined in 6.4.24.

Attributeld identifies the Attribute that was written. The SourceNode Property identifies the
Node that was written.

IndexRange identifies the index range of the written Attribute if the Attribute is an array. If the
Attribute is not an array or the whole array was written, the IndexRange is set to null.

NewValue identifies the value that was written. If the IndexRange is provided, only the values
in the provided range are shown.

OldValue identifies the value that the Attribute contained before the write. If the IndexRange is
provided, only the value of that range is shown. It is acceptable for a Server that does not have
this information to report a null value.

Both the NewValue and the OldValue will contain a value in the DataType and encoding used
for writing the value.

6.4.26

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 47.

AuditHistoryUpdateEventType

Table 47 — AuditHistoryUpdateEventType Definition

Attribute Value

BrowseName AuditHistoryUpdateEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition I ModellingRule

Subtype of the AuditUpdateEventType defined in 6.4.24, which means it inherits the InstanceDeclarations of that Node.

HasProperty | Variable | ParameterDataTypeld | Nodeld | PropertyType | New

This EventType inherits all Properties of the AuditUpdateEventType. Their semantic is defined
in 6.4.24.

The ParameterDataTypeld identifies the DataTypeld for the extensible parameter used by the
HistoryUpdate. This parameter indicates the type of HistoryUpdate being performed.

Subtypes of this EventType are defined in OPC 10000-11 representing the different possibilities
to manipulate historical data.

OPC 10000-5: Information Model 31 Release 1.04

6.4.27 AuditUpdateMethodEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 48.

Table 48 — AuditUpdateMethodEventType Definition

Attribute Value

BrowseName AuditUpdateMethodEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditEventType defined in 6.4.3, which means it inherits the InstanceDeclarations of that Node.
HasProperty Variable Methodld Nodeld PropertyType Mandatory
HasProperty Variable InputArguments BaseDataType[] PropertyType Mandatory

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3.
The SourceNode Property for Events of this type shall be assigned to the Nodeld of the Object
that the Method resides on. The SourceName for Events of this type shall be “Attribute/Call”.
Note that one Service call may generate several Events of this type, one per method called.
This EventType should be further subtyped to better reflect the functionality of the method and
to reflect changes to the address space or updated values triggered by the method.

Methodld identifies the method that was called.

InputArguments identifies the input Arguments for the method. This parameter can be null if no
input arguments where provided.

6.4.28 SystemEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 49.

Table 49 — SystemEventType Definition

Attribute Value

BrowseName SystemEventType

IsAbstract True

References NodeClass BrowseName DataType | TypeDefinition I ModellingRule
HasSubtype ObjectType DeviceFailureEventType Defined in 6.4.29

HasSubtype ObjectType SystemStatusChangeEventType | Defined in 6.4.30

Subtype of the BaseEventType defined in 6.4.2, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.
There are no additional Properties defined for this EventType.

6.4.29 DeviceFailureEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 50.

Table 50 — DeviceFailureEventType Definition

Attribute Value

BrowseName DeviceFailureEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition I ModellingRule

Subtype of the SystemEventType defined in 6.4.28, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the SystemEventType. Their semantic is defined in
6.4.28. There are no additional Properties defined for this EventType.
6.4.30 SystemStatusChangeEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 51.

Release 1.04 32 OPC 10000-5: Information Model

Table 51 — SystemStatusChangeEventType Definition

Attribute Value

BrowseName SystemStatusChangeEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the SystemEventType defined in 6.4.28, which means it inherits the InstanceDeclarations of that Node.
HasProperty | Variable | SystemState | ServerState | PropertyType | Mandatory

This EventType inherits all Properties of the SystemEventType. Their semantic is defined in
6.4.28. The SourceNode Property and the SourceName shall identify the system. The system
can be the Server itself or some underlying system.

The SystemState specifies the current state of the system. Changes to the ServerState of the
system shall trigger a SystemStatusChangeEvent, when the event is supported by the system.

6.4.31 BaseModelChangeEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 52.

Table 52 — BaseModelChangeEventType Definition

Attribute Value

BrowseName BaseModelChangeEventType

IsAbstract True

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseEventType defined in 6.4.2, which means it inherits the InstanceDeclarations of that Node.

HasSubtype | ObjectType | GeneralModelChangeEventType | Defined in 6.4.32

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.
There are no additional Properties defined for this EventType. The SourceNode Property for
Events of this type shall be the Node of the View that gives the context of the changes. If the
whole AddressSpace is the context, the SourceNode Property is set to the Nodeld of the Server
Object. The SourceName for Events of this type shall be the String part of the BrowseName of
the View; for the whole AddressSpace it shall be “Server”.

6.4.32 GeneralModelChangeEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 53.

Table 53 — GeneralModelChangeEventType Definition

Attribute Value

BrowseName | GeneralModelChangeEventType

IsAbstract True

References NodeClass | BrowseName | DataType | TypeDefinition I ModellingRule
Subtype of the BaseModelChangeEventType defined in 6.4.31, which means it inherits the InstanceDeclarations of that Node.
HasProperty | Variable | Changes | ModelChangeStructureDataType[] | PropertyType I Mandatory

This EventType inherits all Properties of the BaseModelChangeEventType. Their semantic is
defined in 6.4.31.

The additional Property defined for this EventType reflects the changes that issued the
ModelChangeEvent. It shall contain at least one entry in its array. Its structure is defined in
12.16.

6.4.33 SemanticChangeEventType

This EventType is defined in OPC 10000-3. Its representation in the AddressSpace is formally
defined in Table 54.

OPC 10000-5: Information Model 33 Release 1.04

Table 54 — SemanticChangeEventType Definition

Attribute Value

BrowseName | SemanticChangeEventType

IsAbstract True

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseEventType defined in 6.4.2, which means it inherits the InstanceDeclarations of that Node.

HasProperty | Variable | Changes | SemanticChangeStructureDataType[] | PropertyType | Mandatory

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.
There are no additional Properties defined for this EventType. The SourceNode Property for
Events of this type shall be the Node of the View that gives the context of the changes. If the
whole AddressSpace is the context, the SourceNode Property is set to the Nodeld of the Server
Object. The SourceName for Events of this type shall be the String part of the BrowseName of
the View, for the whole AddressSpace it shall be “Server”.

The additional Property defined for this EventType reflects the changes that issued the
SemanticChangeEvent. Its structure is defined in 12.17.

6.4.34 EventQueueOverflowEventType

EventQueueOverflow Events are generated when an internal queue of a Monitoreditem
subscribing for Events in the Server overflows. OPC 10000-4 defines when the internal
EventQueueOverflow Events shall be generated.

The EventType for EventQueueOverflow Events is formally defined in Table 55.

Table 55 — EventQueueOverflowEventType Definition

Attribute Value

BrowseName | EventQueueOverflowEventType

IsAbstract True

References NodeClass | BrowseName | DataType | TypeDefinition I ModellingRule

Subtype of the BaseEventType defined in 6.4.2, which means it inherits the InstanceDeclarations of that Node.

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.
The SourceNode Property for Events of this type shall be assigned to the Nodeld of the Server
Object. The SourceName for Events of this type shall be “Internal/EventQueueOverflow”.

6.4.35 ProgressEventType

ProgressEvents are generated to identify the progress of an operation. An operation can be a
Service call or something application specific like a program execution.

The EventType for Progress Events is formally defined in Table 56.

Table 56 — ProgressEventType Definition

Attribute Value

BrowseName | ProgressEventType

IsAbstract True

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseEventType defined in 6.4.2, which means it inherits the InstanceDeclarations of that Node.

HasProperty Variable Context BaseDataType PropertyType Mandatory
HasProperty Variable Progress Uint16 PropertyType Mandatory

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.
The SourceNode Property for Events of this type shall be assigned to the Nodeld of the Session
Object where the operation was initiated. The SourceName for Events of this type shall be
“Service/<Service Name as defined in OPC 10000-4>" when the progress of a Service call is
exposed.

Release 1.04 34 OPC 10000-5: Information Model

The additional Property Context contains context information about what operation progress is
reported. In the case of Service calls it shall be a UInt32 containing the requestHandle of the
RequestHeader of the Service call.

The additional Property Progress contains the percentage completed of the progress. The value
shall be between 0 and 100, where 100 identifies that the operation has been finished.

It is recommended that Servers only expose ProgressEvents for Service calls to the Session
that invoked the Service.

6.5 ModellingRuleType

ModellingRules are defined in OPC 10000-3. This ObjectType is used as the type for the
ModellingRules. It is formally defined in Table 57.

Table 57 — ModellingRuleType Definition

Attribute Value

BrowseName ModellingRuleType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseObjectType defined in 6.2

HasProperty | Variable | NamingRule | NamingRuleType | PropertyType I Mandatory

The Property NamingRule identifies the NamingRule of a ModellingRule as defined in OPC
10000-3.

6.6 FolderType

Instances of this ObjectType are used to organise the AddressSpace into a hierarchy of Nodes.
They represent the root Node of a subtree, and have no other semantics associated with them.
However, the DisplayName of an instance of the FolderType, such as “ObjectTypes”, should
imply the semantics associated with the use of it. There are no References specified for this
ObjectType. It is formally defined in Table 58.

Table 58 — FolderType Definition

Attribute Value

BrowseName FolderType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition I ModellingRule

Subtype of the BaseObjectType defined in 6.2.

6.7 DataTypeEncodingType

DataTypeEncodings are defined in OPC 10000-3. This ObjectType is used as type for the
DataTypeEncodings. There are no References specified for this ObjectType. It is formally
defined in Table 59.

Table 59 — DataTypeEncodingType Definition

Attribute Value

BrowseName DataTypeEncodingType

IsAbstract False

References | NodeClass | BrowseName DataType | TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2.

6.8 AggregateFunctionType

This ObjectType defines an AggregateFunction supported by a UA Server. It is formally defined
in Table 60.

OPC 10000-5: Information Model 35 Release 1.04

Table 60 — AggregateFunctionType Definition

Attribute Value

BrowseName AggregateFunctionType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2.

For the AggregateFunctionType, the Description Attribute is mandatory. The Description
Attribute provides a localized description of the AggregateFunction. Specific
AggregateFunctions may be defined in further parts of this series of standards.

7 Standard VariableTypes

7.1 General

Typically, the components of a complex VariableType are fixed and can be extended by
subtyping. However, because each Variable of a VariableType can be extended with additional
components this standard allows the extension of the standard VariableTypes defined in this
document with additional components. This allows the expression of additional information in
the type definition that would be contained in each Variable anyway. However, it is not allowed
to restrict the components of the standard VariableTypes defined in this International Standard.
An example of extending VariableTypes would be putting the standard Property NodeVersion,
defined in OPC 10000-3, into the BaseDataVariableType, stating that each DataVariable of the
Server will provide a NodeVersion.

7.2 BaseVariableType

The BaseVariableType is the abstract base type for all other VariableTypes. However, only the
PropertyType and the BaseDataVariableType directly inherit from this type.

There are no References, except for HasSubtype References, specified for this VariableType.
It is formally defined in Table 61.

Table 61 — BaseVariableType Definition

Attribute Value

BrowseName BaseVariableType

IsAbstract True

ValueRank -2 (-2 = Any)

DataType BaseDataType

References NodeClass BrowseName DataType | TypeDefinition | ModellingRule
HasSubtype VariableType PropertyType Defined in 7.3

HasSubtype VariableType BaseDataVariableType Defined in 7.4

7.3 PropertyType

The PropertyType is a subtype of the BaseVariableType. It is used as the type definition for all
Properties. Properties are defined by their BrowseName and therefore they do not need a
specialised type definition. It is not allowed to subtype this VariableType.

There are no References specified for this VariableType. It is formally defined in Table 62.

Table 62 — PropertyType Definition

Attribute Value

BrowseName PropertyType

IsAbstract False

ValueRank -2 (-2 = Any)

DataType BaseDataType

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseVariableType defined in 7.2.

Release 1.04 36 OPC 10000-5: Information Model

7.4 BaseDataVariableType

The BaseDataVariableType is a subtype of the BaseVariableType. It is used as the type
definition whenever there is a DataVariable having no more concrete type definition available.
This VariableType is the base VariableType for VariableTypes of DataVariables, and all other
VariableTypes of DataVariables shall either directly or indirectly inherit from it. However, it might
not be possible for Servers to provide all HasSubtype References from this VariableType to its
subtypes, and therefore it is not required to provide this information.

There are no References except for HasSubtype References specified for this VariableType. It
is formally defined in Table 63.

Table 63 — BaseDataVariableType Definition

Attribute Value

BrowseName BaseDataVariableType

IsAbstract False

ValueRank -2 (-2 = Any)

DataType BaseDataType

References | NodeClass | BrowseName | Comment
Subtype of the BaseVariableType defined in 7.2.

HasSubtype VariableType ServerVendorCapabilityType Defined in 7.5
HasSubtype VariableType ServerStatusType Defined in 7.6
HasSubtype VariableType BuildInfoType Defined in 7.7
HasSubtype VariableType ServerDiagnosticsSummaryType Defined in 7.8
HasSubtype VariableType SamplingIntervalDiagnosticsArray Type Defined in 7.9
HasSubtype VariableType SamplinglntervalDiagnosticsType Defined in 7.10
HasSubtype VariableType SubscriptionDiagnosticsArrayType Defined in 7.11
HasSubtype VariableType SubscriptionDiagnosticsType Defined in 7.12
HasSubtype VariableType SessionDiagnosticsArrayType Defined in 7.13
HasSubtype VariableType SessionDiagnosticsVariableType Defined in 7.14
HasSubtype VariableType SessionSecurityDiagnosticsArrayType Defined in 7.15
HasSubtype VariableType SessionSecurityDiagnosticsType Defined in 7.16
HasSubtype VariableType OptionSetType Defined in 7.17

7.5 ServerVendorCapabilityType

This VariableType is an abstract type whose subtypes define capabilities of the Server. Vendors

may define subtypes of this type. This VariableType is formally defined in Table 64.

Table 64 — ServerVendorCapabilityType Definition

Attribute Value

BrowseName ServerVendorCapabilityType

IsAbstract True

ValueRank -1 (-1 = Scalar)

DataType BaseDataType

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseDataVariableType defined in 7.4.

7.6 ServerStatusType

This complex VariableType is used for information about the Server status. Its DataVariables
reflect its DataType having the same semantic defined in 12.10. The VariableType is formally
defined in Table 65.

OPC 10000-5: Information Model 37 Release 1.04
Table 65 — ServerStatusType Definition

Attribute Value

BrowseName ServerStatusType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType ServerStatusDataType

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent | Variable StartTime UtcTime BaseDataVariableType | Mandatory

HasComponent | Variable CurrentTime UtcTime BaseDataVariableType | Mandatory

HasComponent | Variable State ServerState BaseDataVariableType | Mandatory

HasComponent | Variable BuildInfo? BuildInfo BuildInfoType Mandatory

HasComponent | Variable SecondsTillShutdown UInt32 BaseDataVariableType | Mandatory

HasComponent | Variable ShutdownReason LocalizedText BaseDataVariableType | Mandatory

NOTE Containing Objects and Variables of these Objects and Variables are defined by their BrowseName defined in the
corresponding TypeDefinitionNode. The Nodeld is defined by the composed symbolic name described in 4.1.

7.7

BuildinfoType

This complex VariableType is used for information about the Server status. Its DataVariables
reflect its DataType having the same semantic defined in 12.4. The VariableType is formally

defined in Table 66.

Table 66 — BuildInfoType Definition

Attribute Value

BrowseName BuildInfoType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType BuildInfo

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseDataVariableType defined in 7.4.

HasComponent | Variable ProductUri String BaseDataVariableType Mandatory
HasComponent | Variable ManufacturerName String BaseDataVariableType Mandatory
HasComponent | Variable ProductName String BaseDataVariableType Mandatory
HasComponent | Variable SoftwareVersion String BaseDataVariableType Mandatory
HasComponent | Variable BuildNumber String BaseDataVariableType Mandatory
HasComponent | Variable BuildDate UtcTime BaseDataVariableType Mandatory
7.8 ServerDiagnosticsSummaryType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its
DataType having the same semantic defined in 12.9. The VariableType is formally defined in

Table 67.

Release 1.04 38 OPC 10000-5: Information Model

Table 67 — ServerDiagnosticsSummaryType Definition

Attribute Value

BrowseName ServerDiagnosticsSummaryType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType ServerDiagnosticsSummaryDataType

References NodeClass BrowseName DataType | TypeDefinition Modelling
Rule

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent | Variable ServerViewCount UInt32 BaseDataVariableType Mandatory

HasComponent | Variable CurrentSessionCount UlInt32 BaseDataVariableType Mandatory

HasComponent | Variable CumulatedSessionCount UInt32 BaseDataVariableType Mandatory

HasComponent | Variable SecurityRejectedSessionCount UlInt32 BaseDataVariableType Mandatory

HasComponent | Variable RejectedSessionCount UInt32 BaseDataVariableType Mandatory

HasComponent | Variable SessionTimeoutCount Uint32 BaseDataVariableType Mandatory

HasComponent | Variable SessionAbortCount UInt32 BaseDataVariableType Mandatory

HasComponent | Variable PublishinglntervalCount UInt32 BaseDataVariableType Mandatory

HasComponent | Variable CurrentSubscriptionCount Uint32 BaseDataVariableType Mandatory

HasComponent | Variable CumulatedSubscriptionCount UInt32 BaseDataVariableType Mandatory

HasComponent | Variable SecurityRejectedRequestsCount | UlInt32 BaseDataVariableType Mandatory

HasComponent | Variable RejectedRequestsCount UInt32 BaseDataVariableType Mandatory

7.9 SamplinglntervalDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array,
instances of this type will provide a Variable of the SamplingintervalDiagnosticsType
VariableType having the sampling rate as BrowseName. The VariableType is formally defined
in Table 68.

Table 68 — SamplinglIntervalDiagnosticsArrayType Definition

Attribute Value

BrowseName SamplinglntervalDiagnosticsArrayType

IsAbstract False

ValueRank 1 (1 = OneDimension)

ArrayDimensions {0} (0 = UnknownSize)

DataType SamplingIntervalDiagnosticsDataType

References NodeClass BrowseName DataType Modelling
TypeDefinition Rule

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent Variable SamplingIntervalDiagnostics | SamplingintervalDiagnosticsDataType | ExposesltsArr
SamplingIntervalDiagnosticsType ay

7.10 SamplingintervalDiagnosticsType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its
DataType, having the same semantic defined in 12.8. The VariableType is formally defined in
Table 69.

Table 69 — SamplingintervalDiagnosticsType Definition

Attribute Value

BrowseName SamplingIntervalDiagnosticsType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType SamplingIntervalDiagnosticsDataType

References Node BrowseName Data TypeDefinition Modelling
Class Type Rule

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent | Variable | Samplinginterval Duration | BaseDataVariableType Mandatory

HasComponent | Variable | SampledMonitoredlitemsCount Uint32 BaseDataVariableType Mandatory

HasComponent | Variable | MaxSampledMonitoredltemsCount Uint32 BaseDataVariableType Mandatory

HasComponent | Variable DisabledMonitoredltemsSamplingCount UlInt32 BaseDataVariableType Mandatory

OPC 10000-5: Information Model 39 Release 1.04

7.11 SubscriptionDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array,
instances of this type will provide a Variable of the SubscriptionDiagnosticsType VariableType
having the Subscriptionld as BrowseName. The VariableType is formally defined in Table 70.

Table 70 — SubscriptionDiagnosticsArrayType Definition

Attribute Value

BrowseName SubscriptionDiagnosticsArrayType

IsAbstract False

ValueRank 1 (1 = OneDimension)

ArrayDimensions {0} (0 = UnknownSize)

DataType SubscriptionDiagnosticsDataType

References NodeClass BrowseName DataType ModellingRule

TypeDefinition

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent Variable SubscriptionDiagnostics SubscriptionDiagnosticsDataType ExposesltsArray
SubscriptionDiagnosticsType

7.12 SubscriptionDiagnosticsType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its
DataType, having the same semantic defined in 12.15. The VariableType is formally defined in
Table 71.

Release 1.04 40 OPC 10000-5: Information Model

Table 71 — SubscriptionDiagnosticsType Definition

Attribute Value
BrowseName SubscriptionDiagnosticsType
IsAbstract False
ValueRank -1 (-1 = Scalar)
DataType SubscriptionDiagnosticsDataType
References Node BrowseName DataType | TypeDefinition Modelling
Class Rule
Subtype of the BaseDataVariableType defined in 7.4.
HasComponent Variable Sessionld Nodeld BaseDataVariableType Mandatory
HasComponent Variable Subscriptionld UlInt32 BaseDataVariableType Mandatory
HasComponent Variable Priority Byte BaseDataVariableType Mandatory
HasComponent Variable PublishinglInterval Duration BaseDataVariableType Mandatory
HasComponent Variable MaxKeepAliveCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable MaxLifetimeCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable MaxNotificationsPerPublish UInt32 BaseDataVariableType Mandatory
HasComponent Variable PublishingEnabled Boolean BaseDataVariableType Mandatory
HasComponent Variable ModifyCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable EnableCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable DisableCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable RepublishRequestCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable RepublishMessageRequestCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable RepublishMessageCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable TransferRequestCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable TransferredToAltClientCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable TransferredToSameClientCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable PublishRequestCount Uint32 BaseDataVariableType Mandatory
HasComponent Variable DataChangeNotificationsCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable EventNotificationsCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable NotificationsCount UlInt32 BaseDataVariableType Mandatory
HasComponent Variable LatePublishRequestCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable CurrentKeepAliveCount UlInt32 BaseDataVariableType Mandatory
HasComponent Variable CurrentLifetimeCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable UnacknowledgedMessageCount UlInt32 BaseDataVariableType Mandatory
HasComponent Variable DiscardedMessageCount UlInt32 BaseDataVariableType Mandatory
HasComponent Variable MonitoredltemCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable DisabledMonitoredltemCount UlInt32 BaseDataVariableType Mandatory
HasComponent Variable MonitoringQueueOverflowCount UInt32 BaseDataVariableType Mandatory
HasComponent Variable NextSequenceNumber UlInt32 BaseDataVariableType Mandatory
HasComponent Variable EventQueueOverflowCount UInt32 BaseDataVariableType Mandatory

7.13 SessionDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array
instances of this type will provide a Variable of the SessionDiagnosticsVariableType
VariableType, having the SessionDiagnostics as BrowseName. Those Variables will also be
referenced by the SessionDiagnostics Objects defined by their type in 6.3.5. The VariableType
is formally defined in Table 72.

Table 72 — SessionDiagnosticsArrayType Definition

Attribute Value

BrowseName SessionDiagnosticsArrayType

IsAbstract False

ValueRank 1 (1 = OneDimension)

ArrayDimensions {0} (0 = UnknownSize)

DataType SessionDiagnosticsDataType

References NodeClass BrowseName DataType ModellingRule

TypeDefinition

Subtype of the BaseDataVariableType defined in 7.4.

HasComponen | Variable SessionDiagnostics SessionDiagnosticsDataType ExposesltsArray
t SessionDiagnosticsVariableType

OPC 10000-5: Information Model 41 Release 1.04

7.14 SessionDiagnosticsVariableType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its
DataType, having the same semantic defined in 12.11. The VariableType is formally defined in
Table 73.

Table 73 — SessionDiagnosticsVariableType Definition

Attribute Value

BrowseName SessionDiagnosticsVariableType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType SessionDiagnosticsDataType

References Node BrowseName DataType Modelling

Class TypeDefinition Rule

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent | Variable | Sessionld Nodeld Mandatory
BaseDataVariableType

HasComponent | Variable | SessionName String Mandatory
BaseDataVariableType

HasComponent | Variable | ClientDescription ApplicationDescription Mandatory
BaseDataVariableType

HasComponent | Variable | ServerUri String Mandatory
BaseDataVariableType

HasComponent | Variable | EndpointUrl String Mandatory
BaseDataVariableType

HasComponent | Variable | Localelds Localeld[] Mandatory
BaseDataVariableType

HasComponent | Variable | MaxResponseMessageSize Uint32 Mandatory
BaseDataVariableType

HasComponent | Variable | ActualSessionTimeout Duration Mandatory
BaseDataVariableType

HasComponent | Variable | ClientConnectionTime UtcTime Mandatory
BaseDataVariableType

HasComponent | Variable | ClientLastContactTime UtcTime Mandatory
BaseDataVariableType

HasComponent | Variable | CurrentSubscriptionsCount Uint32 Mandatory
BaseDataVariableType

HasComponent | Variable | CurrentMonitoredltemsCount Uint32 Mandatory
BaseDataVariableType

HasComponent | Variable | CurrentPublishRequestsinQueue Uint32 Mandatory
BaseDataVariableType

HasComponent | Variable | TotalRequestCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | UnauthorizedRequestCount Uint32 Mandatory
BaseDataVariableType

HasComponent | Variable | ReadCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | HistoryReadCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | WriteCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | HistoryUpdateCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | CallCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | CreateMonitoredltemsCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | ModifyMonitoreditemsCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | SetMonitoringModeCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | SetTriggeringCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | DeleteMonitoredlitemsCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | CreateSubscriptionCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | ModifySubscriptionCount ServiceCounterDataType Mandatory

Release 1.04 42 OPC 10000-5: Information Model
BaseDataVariableType

HasComponent | Variable | SetPublishingModeCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | PublishCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | RepublishCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | TransferSubscriptionsCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | DeleteSubscriptionsCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | AddNodesCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | AddReferencesCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | DeleteNodesCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | DeleteReferencesCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | BrowseCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | BrowseNextCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | TranslateBrowsePathsToNodeldsCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | QueryFirstCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | QueryNextCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | RegisterNodesCount ServiceCounterDataType Mandatory
BaseDataVariableType

HasComponent | Variable | UnregisterNodesCount ServiceCounterDataType Mandatory
BaseDataVariableType

7.15 SessionSecurityDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array

instances of this type will

provide a Variable of the SessionSecurityDiagnosticsType

VariableType, having the SessionSecurityDiagnostics as BrowseName. Those Variables will
also be referenced by the SessionDiagnostics Objects defined by their type in 6.3.5. The
VariableType is formally defined in Table 74. Since this information is security related, it should
not be made accessible to all users, but only to authorised users.

Table 74 — SessionSecurityDiagnosticsArrayType Definition

Attribute Value

BrowseName SessionSecurityDiagnosticsArrayType
IsAbstract False

ValueRank 1 (1 = OneDimension)

ArrayDimensions

{0} (0 = UnknownSize)

DataType SessionSecurityDiagnosticsDataType
References Node Browse DataType Modelling
Class Name TypeDefinition Rule

Subtype of the BaseDataVariableType defined in 7.4.

HasComponent

Variable

SessionSecurityDiagnostics

SessionSecurityDiagnosticsDataType
SessionSecurityDiagnosticsType

ExposesltsArray

7.16

SessionSecurityDiagnosticsType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its
DataType, having the same semantic defined in 12.12. The VariableType is formally defined in
Table 75. Since this information is security-related, it should not be made accessible to all
users, but only to authorised users.

OPC 10000-5: Information Model 43 Release 1.04
Table 75 — SessionSecurityDiagnosticsType Definition

Attribute Value

BrowseName SessionSecurityDiagnosticsType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType SessionSecurityDiagnosticsDataType

References Node BrowseName DataType Modelling

Class TypeDefinition Rule

Subtype of the BaseDataVariableType defined in 7.4

HasComponent Variable Sessionld Nodeld Mandatory
BaseDataVariableType

HasComponent Variable ClientUserldOfSession String Mandatory
BaseDataVariableType

HasComponent Variable ClientUserldHistory String[] Mandatory
BaseDataVariableType

HasComponent Variable AuthenticationMechanism String Mandatory
BaseDataVariableType

HasComponent Variable Encoding String Mandatory
BaseDataVariableType

HasComponent Variable TransportProtocol String Mandatory
BaseDataVariableType

HasComponent Variable SecurityMode MessageSecurityMode Mandatory
BaseDataVariableType

HasComponent Variable SecurityPolicyUri String Mandatory
BaseDataVariableType

HasComponent Variable ClientCertificate ByteString Mandatory
BaseDataVariableType

7.17 OptionSetType

The OptionSetType VariableType is used to represent a bit mask. Each array element of the
OptionSetValues Property contains either the human-readable representation for the
corresponding bit used in the option set or an empty LocalizedText for a bit that has no specific
meaning. The order of the bits of the bit mask maps to a position of the array, i.e. the first bit
(least significant bit) maps to the first entry in the array, etc.

In addition to this VariableType, the DataType OptionSet can alternatively be used to represent
a bit mask. As a guideline the DataType would be used when the bit mask is fixed and applies
to several Variables. The VariableType would be used when the bit mask is specific for only
that Variable.

The DataType of this VariableType shall be capable of representing a bit mask. It shall be either
a numeric DataType representing a signed or unsigned integer, or a ByteString. For example,
it can be the BitFieldMaskDataType.

The optional BitMask Property provides the bit mask in an array of Booleans. This allows
subscribing to individual entries of the bit mask. The order of the bits of the bit mask points to
a position of the array, i.e. the first bit points to the first entry in the array, etc. The VariableType
is formally defined in Table 74.

Table 76 — OptionSetType Definition

Attribute Value

BrowseName OptionSetType

IsAbstract False

ValueRank -1 (-1 = Scalar)

ArrayDimensions {0} (0 = UnknownSize)

DataType BaseDataType

References NodeClass Browse DataType Modelling

Name TypeDefinition Rule

Subtype of the BaseDataVariableType defined in 7.4

HasProperty Variable OptionSetValues LocalizedText[] Mandatory
PropertyType

HasProperty Variable BitMask Boolean(] Optional
PropertyType

Release 1.04 44 OPC 10000-5: Information Model

7.18 SelectionListType

The SelectionListType VariableType is used for a Variable where the possible values are
provided by a set of values.

The Selections Property contains an array of values which represent valid values for this
VariableType’s value.

The DataType of the Selections Property array shall be of the same DataType as this
VariableType.

Each array element of the optional SelectionDescriptions Property contains a human-readable
representation of the corresponding value in the Selections Property and shall be of the same
array size as the Selections Property.

The value of this VariableType may be restricted to only the values defined in the Selections
Property by setting the optional RestrictToList Property to a value of True. If the RestrictToList
Property is not present or has a value of False then the value is not restricted to the set defined
by the Selections Property.

The VariableType is formally defined in Table 77.

Table 77 — SelectionListType Definition

Attribute Value

BrowseName SelectionListType

IsAbstract False

ValueRank -2 (-2 = Any)

DataType BaseDataType

References NodeClass Browse DataType Modelling

Name TypeDefinition Rule

Subtype of the BaseDataVariableType defined in 7.4

HasProperty Variable Selections BaseDataType[] Mandatory
PropertyType

HasProperty Variable SelectionDescriptions LocalizedText[] Optional
PropertyType

HasProperty Variable RestrictToList Boolean Optional
PropertyType

7.19 AudioVariableType

The AudioVariableType VariableType defines a Multipurpose Internet Mail Extensions (MIME)
media type of the AudibleSound Property. This standard recommends use of text code defined
in IETF RFC 2045, IETF RFC 2046 and IETF RFC 2047 for MIME types. The AudioVariableType
references the Content-Type that is defined as part of the MIME type and commonly used as a
reference to a specific MIME. The top-level media type is used to declare the general type of
data, while the subtype specifies a specific format for that type of data. Thus, a media type of
"audio /xyz" is a sufficient description for a user agent to determine the data is an audio file,
even if the user agent has no knowledge of the specific audio format "xyz".

The VariableType is formally defined in Table 78.

OPC 10000-5: Information Model 45 Release 1.04
Table 78 — AudioVariableType Definition

Attribute Value

BrowseName AudioVariableType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType ByteString

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseDataVariableType defined in 7.4

HasProperty Variable Listld String PropertyType Optional

HasProperty Variable Agencyld String PropertyType Optional

HasProperty Variable Versionld String PropertyType Optional

8 Standard Objects and their Variables

8.1 General

Objects and Variables described in the following subclauses can be extended by additional
Properties or References to other Nodes, except where it is stated in the text that it is restricted.

8.2 Objects used to organise the AddressSpace structure
8.2.1

To promote interoperability of clients and Servers, the OPC UA AddressSpace is structured as
a hierarchy, with the top levels standardised for all Servers. Figure 1 illustrates the structure of
the AddressSpace. All Objects in this figure are organised using Organizes References and
have the ObjectType FolderType as type definition.

Overview

= OPC UA Root
Views
Objects
Server
= Types
-
4
-
-

ReferenceTypes
ObjectTypes
VariableTypes

DataTypes

Figure 1 — Standard AddressSpace Structure

The remainder of this provides descriptions of these standard Nodes and the organization of
Nodes beneath them. Servers typically implement a subset of these standard Nodes, depending
on their capabilities.

8.2.2

This standard Object is the browse entry point for the AddressSpace. It contains a set of
Organizes References that point to the other standard Objects. The “Root” Object shall not
reference any other NodeClasses. It is formally defined in Table 79.

Root

Release 1.04

46

OPC 10000-5: Information Model

Table 79 — Root Definition

Attribute Value

BrowseName Root

References NodeClass BrowseName Comment

HasTypeDefinition ObjectType FolderType Defined in 6.6

Organizes Object Views Defined in 8.2.3

Organizes Object Objects Defined in 8.2.4

Organizes Object Types Defined in 8.2.5
8.2.3 Views

This standard Object is the browse entry point for Views. Only Organizes References are used
to relate View Nodes to the “Views” standard Object. All View Nodes in the AddressSpace shall
be referenced by this Node, either directly or indirectly. That is, the “Views” Object may
reference other Objects using Organizes References. Those Objects may reference additional
Views. Figure 2 illustrates the Views Organization. The “Views” standard Object directly
references the Views “View1” and “View2” and indirectly “View3” by referencing another Object
called “Engineering”.

Object
“Views”
=]
View View Object
“View1” “View2” “Engineering”
View
“Viewd”

Figure 2 — Views Organization

The “Views” Object shall not reference any other NodeClasses. The “Views” Object is formally
defined in Table 80.

Table 80 — Views Definition

Attribute Value

BrowseName Views

References NodeClass BrowseName Comment

HasTypeDefinition ObjectType FolderType Defined in 6.6
8.2.4 Objects

This standard Object is the browse entry point for Object Nodes. Figure 3 illustrates the
structure beneath this Node. Only Organizes References are used to relate Objects to the
“Objects” standard Object. A View Node can be used as entry point into a subset of the
AddressSpace containing Objects and Variables and thus the “Objects” Object can also
reference View Nodes using Organizes References. The intent of the “Objects” Object is that
all Objects and Variables that are not used for type definitions or other organizational purposes
(e.g. organizing the Views) are accessible through hierarchical References starting from this
Node. However, this is not a requirement, because not all Servers may be able to support this.
This Object references the standard Server Object defined in 8.3.2.

OPC 10000-5: Information Model 47 Release 1.04

Object
“Objects”

|
Object Object Object
“Server’ “Al” “‘C1”
standard
Server Object Organizes HasProperty

-
I

Object Variable
“B1” “c1”

Figure 3 — Objects Organization

The “Objects” Object shall not reference any other NodeClasses. The “Objects” Object is
formally defined in Table 81.

Table 81 — Objects Definition

Attribute Value

BrowseName Objects

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes Object Server Defined in 8.3.2

8.2.5 Types

This standard Object Node is the browse entry point for type Nodes. Figure 1 illustrates the
structure beneath this Node. Only Organizes References are used to relate Objects to the
“Types” standard Object. The “Types” Object shall not reference any other NodeClasses. It is
formally defined in Table 82.

Table 82 — Types Definition

Attribute Value

BrowseName Types

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes Object ObjectTypes Defined in 8.2.6
Organizes Object VariableTypes Defined in 8.2.7
Organizes Object ReferenceTypes Defined in 8.2.8
Organizes Object DataTypes Defined in 8.2.9
Organizes Object EventTypes Defined in 8.2.10

8.2.6 ObjectTypes

This standard Object Node is the browse entry point for ObjectType Nodes. Figure 4 illustrates
the structure beneath this Node showing some of the standard ObjectTypes defined in 6. Only
Organizes References are used to relate Objects and ObjectTypes to the “ObjectTypes”
standard Object. The “ObjectTypes” Object shall not reference any other NodeClasses.

Release 1.04 48 OPC 10000-5: Information Model

Object
“ObjectTypes”
J |
Object ObjectType
“ServerTypes” “BaseObjectType”
Organizes HasSubtype

A 4

ObjectType
“ServerType”

HasComponent

Object
“ServerCapabilities”

Figure 4 — ObjectTypes Organization

The intention of the “ObjectTypes” Object is that all ObjectTypes of the Server are either directly
or indirectly accessible browsing HierarchicalReferences starting from this Node. However, this
is not required and Servers might not provide some of their ObjectTypes because they may be
well-known in the industry, such as the ServerType defined in 6.3.1.

This Object also indirectly references the BaseEventType defined in 6.4.2, which is the base
type of all EventTypes. Thereby it is the entry point for all EventTypes provided by the Server.
It is required that the Server expose all its EventTypes, so a client can usefully subscribe to
Events.

The “ObjectTypes” Object is formally defined in Table 83.

Table 83 — ObjectTypes Definition

Attribute Value

BrowseName ObjectTypes

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes ObjectType BaseObjectType Defined in 6.2

8.2.7 VariableTypes

This standard Object is the browse entry point for VariableType Nodes. Figure 5 illustrates the
structure beneath this Node. Only Organizes References are used to relate Objects and
VariableTypes to the “VariableTypes” standard Object. The “VariableTypes” Object shall not
reference any other NodeClasses.

OPC 10000-5: Information Model 49 Release 1.04

Object
“VariableTypes”
| [
Organizes Organizes
[J
VariableType Object
“BaseVariableType” “MyVariableTypes”
Variable Type
“BaseDataVariableType”
HasSubtype
VariableType
“VT_17

Figure 5 — VariableTypes Organization

The intent of the “VariableTypes” Object is that all VariableTypes of the Server are either
directly or indirectly accessible browsing HierarchicalReferences starting from this Node.
However, this is not required and Servers might not provide some of their VariableTypes,
because they may be well-known in the industry, such as the “BaseVariableType” defined in

7.2.
The “VariableTypes” Object is formally defined in Table 84.

Table 84 — VariableTypes Definition

Attribute Value

BrowseName VariableTypes

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes VariableType BaseVariableType Defined in 7.2

8.2.8 ReferenceTypes

This standard Object is the browse entry point for ReferenceType Nodes. Figure 6 illustrates
the organization of ReferenceTypes. Organizes References are used to define ReferenceTypes
and Objects referenced by the “ReferenceTypes” Object. The “ReferenceTypes” Object shall
not reference any other NodeClasses. See Clause 11 for a discussion of the standard
ReferenceTypes that appear beneath the “ReferenceTypes” Object.

Release 1.04 50 OPC 10000-5: Information Model

Object
“ReferenceTypes”
| [
Organizes Organizes
v y
ReferenceType Object
“References” “MyRefTypes”
HasSubtype Organizes

ReferenceType
“HierarchicalReferences”

HasSubtype \ 2
R ReferenceType
> ‘RT_1"

i

Figure 6 — ReferenceType Definitions

Since ReferenceTypes will be used as filters in the browse Service and in queries, the Server
shall provide all its ReferenceTypes, directly or indirectly following hierarchical References
starting from the “ReferenceTypes” Object. This means that, whenever the client follows a
Reference, the Server shall expose the type of this Reference in the ReferenceType hierarchy.
It shall provide all ReferenceTypes so that the client would be able, following the inverse
subtype of References, to come to the base References ReferenceType. It does not mean that
the Server shall expose the ReferenceTypes that the client has not used any Reference of.

The “ReferenceTypes” Object is formally defined in Table 85.

Table 85 — ReferenceTypes Definition

Attribute Value

BrowseName ReferenceTypes

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes ReferenceType References Defined in 11.1

8.2.9 DataTypes

This standard Object is the browse entry point for DataTypes that the Server wishes to expose
in the AddressSpace.

DataType Nodes should be made available using Organizes References pointing either directly
from the “DataTypes” Object to the DataType Nodes or using additional Folder Objects for
grouping purposes. The intent is that all DataTypes of the Server exposed in the AddressSpace
are accessible following hierarchical References starting from the “DataTypes” Object.
However, this is not required.

The “DataTypes” Object is formally defined in Table 86.

Table 86 — DataTypes Definition

Attribute Value

BrowseName DataTypes

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes DataType BaseDataType Defined in 12.2

OPC 10000-5: Information Model 51 Release 1.04

8.2.10 EventTypes

This standard Object Node is the browse entry point for EventType Nodes. Figure 7 illustrates
the structure beneath this Node showing some of the standard EventTypes defined in Clause
6. Only Organizes References are used to relate Objects and ObjectTypes to the “EventTypes”
standard Object. The “EventTypes” Object shall not reference any other NodeClasses.

Object
“EventTypes”

Organizes Organizes

1
i

Object ObjectType
“AuditEventTypes” “BaseEventType”

I

Organizes HasSubtype

Y

ObjectType
“AuditEventType”

v

Figure 7 — EventTypes Organization
The intention of the “EventTypes” Object is that all EventTypes of the Server are either directly
or indirectly accessible browsing HierarchicalReferences starting from this Node. It is required
that the Server expose all its EventTypes, so a client can usefully subscribe to Events.
The “EventTypes” Object is formally defined in Table 87.

Table 87 — EventTypes Definition

Attribute Value

BrowseName ObjectTypes

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType FolderType Defined in 6.6
Organizes ObjectType BaseEventType Defined in 6.4.2

8.3 Server Object and its containing Objects
8.3.1 General

The Server Object and its containing Objects and Variables are built in a way that the
information can be gained in several ways, suitable for different kinds of clients having different
requirements. Annex A gives an overview of the design decisions made in providing the
information in that way, and discusses the pros and cons of the different approaches. Figure 8
gives an overview of the containing Objects and Variables of the diagnostic information of the
Server Object and where the information can be found.

The SessionsDiagnosticsSummary Object contains one Object per session and a Variable with
an array with one entry per session. This array is of a complex DataType holding the diagnostic
information about the session. Each Object representing a session references a complex
Variable containing the information about the session using the same DataType as the array
containing information about all sessions. Such a Variable also exposes all its information as
Variables with simple DataTypes containing the same information as in the complex DataType.
Not shown in Figure 8 is the security-related information per session, which follows the same
rules.

The Server provides an array with an entry per subscription containing diagnostic information
about this subscription. Each entry of this array is also exposed as a complex Variable with
Variables for each individual value. Each Object representing a session also provides such an
array, but providing the subscriptions of the session.

Release 1.04 52 OPC 10000-5: Information Model

The arrays containing information about the sessions or the subscriptions may be of different
length for different connections with different user credentials since not all users may see all
entries of the array. That also implies that the length of the array may change if the user is
impersonated. Therefore clients that subscribe to a specific index range may get unexpected
results.

Object One array
“ServerDiagnostics” entry per
session, this
information is
Object also exposed
“SessionsDiagnosticsSummary”™ as Variable
Complex Variable
° contains the same
° Variable information _in its
° “SessionDiagnosticsArray” value as its
properties
Variable
HasComponent “Session1”
One Object HasComponent Variable
per session v “Sessionld”
Object
“Session1”)
HasComponent Variable
“ClientName”
Variable °
HasComponenti—» “SubscriptionDiagnosticsArray” :
HasComponent
Variable
“123”
Redundant Information One array entry for each
subscription of the session, -
also exposed as variable Variable
o “PublishingRate”
°
) [
Variable :
“SubscriptionDiagnosticsArray”
Variable
HasComponent “123”
Variable
One array entry for each °
subscription of the server, °
also exposed as variable °

Figure 8 — Excerpt of Diagnostic Information of the Server

8.3.2 Server Object

This Object is used as the browse entry point for information about the Server. The content of
this Object is already defined by its type definition in 6.3.1. It is formally defined in Table 88.
The Server Object serves as root notifier, that is, its EventNotifier Attribute shall be set providing
Events. All Events of the Server shall be accessible subscribing to the Events of the Server
Obiject.

OPC 10000-5: Information Model

53 Release 1.04
Table 88 — Server Definition
Attribute Value
BrowseName Server
References Node BrowseName DataType TypeDefinition ModellingRule
Class
HasTypeDefinition Object ServerType Defined in 6.3.1
Type
8.4 ModellingRule Objects

8.4.1

ExposesltsArray

The ModellingRule ExposesltsArray is defined in OPC 10000-3. Its representation in the
AddressSpace, the “ExposesltsArray” Object, is formally defined in Table 89.

Table 89 — ExposeslitsArray Definition

Attribute Value

BrowseName ExposesltsArray

References NodeClass BrowseName Comment

HasTypeDefinition ObjectType ModellingRuleType Defined in 6.5

HasProperty Variable NamingRule Value set to “Constraint”

8.4.2 Mandatory

The ModellingRule Mandatory is defined in OPC 10000-3. Its representation in the

AddressSpace, the “Mandatory” Object, is formally defined in Table 90.

Table 90 — Mandatory Definition

Attribute Value

BrowseName Mandatory

References NodeClass BrowseName Comment

HasTypeDefinition ObjectType ModellingRuleType Defined in 6.5

HasProperty Variable NamingRule Value set to “Mandatory”
8.4.3 Optional

The ModellingRule Optional is defined in OPC 10000-3. Its representation in the AddressSpace,
the “Optional” Object, is formally defined in Table 91.

Table 91 — Optional Definition

Attribute Value

BrowseName Optional

References NodeClass BrowseName Comment

HasTypeDefinition ObjectType ModellingRuleType Defined in 6.5

HasProperty Variable NamingRule Value set to “Optional”
8.4.4 OptionalPlaceholder

The ModellingRule OptionalPlaceholder is defined in OPC 10000-3. Its representation in the
AddressSpace, the “OptionalPlaceholder” Object, is formally defined in Table 92.

Table 92 — OptionalPlaceholder Definition

Attribute Value

BrowseName OptionalPlaceholder

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType ModellingRuleType Defined in 6.5
HasProperty Variable NamingRule Value set to “Constraint”

Release 1.04 54 OPC 10000-5: Information Model

8.4.5 MandatoryPlaceholder

The ModellingRule MandatoryPlaceholder is defined in OPC 10000-3. Its representation in the
AddressSpace, the “MandatoryPlaceholder” Object, is formally defined in Table 93.

Table 93 — MandatoryPlaceholder Definition

Attribute Value

BrowseName MandatoryPlaceholder

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType ModellingRuleType Defined in 6.5
HasProperty Variable NamingRule Value set to “Constraint”

9 Standard Methods

9.1 GetMonitoredltems

GetMonitoreditems is used to get information about monitored items of a subscription. Its
intended use is defined in OPC 10000-4.

Signature

GetMonitoredItems (
[in] UInt32 subscriptionId
[out] UInt32[] serverHandles
[out] UInt32[] clientHandles
)

Argument Description

subscriptionld Identifier of the subscription.

serverHandles Array of monitoreditemlds (serverHandles) for all MonitoredItems of the Subscription
identified by subscriptionld

clientHandles Array of clientHandles for all Monitoredltems of the Subscription identified by
subscriptionld

Method Result Codes (defined in Call Service)

Result Code Description
Bad_SubscriptionldInvalid Defined in OPC 10000-4
Bad_UserAccessDenied Defined in OPC 10000-4
The Method was not called in the context of the Session that owns the Subscription.

Table 94 specifies the AddressSpace representation for the GetMonitoreditems Method.

Table 94 — GetMonitoredltems Method AddressSpace Definition

Attribute Value

BrowseName GetMonitoredltems

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

9.2 ResendData

ResendData is used to get the current values of the data monitored items of a Subscription
where the MonitoringMode is set to Reporting. Its intended use is defined in OPC 10000-4.
Signature

ResendData (
[in] UInt32 subscriptionId
) ;

OPC 10000-5: Information Model 55 Release 1.04

Description
Identifier of the Subscription to refresh.

Argument
subscriptionld

Method Result Codes (defined in Call Service)

Result Code
Bad_Subscriptionldinvalid
Bad_UserAccessDenied

Description
Defined in OPC 10000-4

Defined in OPC 10000-4
The Method was not called in the context of the Session that owns the Subscription.

Table 95 specifies the AddressSpace representation for the ResendData Method.

Table 95 — ResendData Method AddressSpace Definition

Attribute Value

BrowseName ResendData

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory

9.3 SetSubscriptionDurable

SetSubscriptionDurable Method is used to set a Subscription into a mode where
Monitoreditem data and event queues are stored and delivered even if an OPC UA Client was
disconnected for a longer time or the OPC UA Server was restarted. Its intended use is
defined in OPC 10000-4.

Signature

SetSubscriptionDurable (
[in] UInt32 subscriptionId
[in] UInt32 lifetimelInHours
[out] UInt32 revisedLifetimeInHours

) ;

Argument

Description

subscriptionld

Identifier of the Subscription.

lifetimelnHours

The requested lifetime in hours for the durable Subscription.

revisedLifetimelnHours The revised lifetime in hours the Server applied to the durable Subscription.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_Subscriptionldinvalid Defined in OPC 10000-4

Defined in OPC 10000-4
This is returned when a Subscription already contains Monitoredltems.

Bad_InvalidState

Defined in OPC 10000-4
The Method was not called in the context of the Session that owns the Subscription.

Bad_UserAccessDenied

Table 96 specifies the AddressSpace representation for the SetSubscriptionDurable Method.

Table 96 — SetSubscriptionDurable Method AddressSpace Definition

Attribute Value

BrowseName SetSubscriptionDurable

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

9.4 RequestServerStateChange

The Method RequestServerStateChange allows a Client to request a state change in the
Server.

Release 1.04 56 OPC 10000-5: Information Model

The Client shall provide credentials with administrative rights when invoking this Method on
the Server.

Signature

RequestServerStateChange (

] ServerState state

n] DateTime estimatedReturnTime
n] UInt32 secondsTillShutdown
n] LocalizedText reason

n] Boolean restart

Argument Description

state The requested target state for the Server. If the new state is accepted by the Server, the
State in the ServerStatus is updated with the new value.

estimatedReturnTime Indicates the time at which the Server is expected to be available in the state

RUNNING_O0. If no estimate is known, a null DateTime shall be provided. This time will
be available in the EstimatedReturnTime Property.
This parameter shall be ignored by the Server and the Property EstimatedReturnTime
shall be set to null if the new state is RUNNING_O.

secondsTillShutdown The number of seconds until a Server shutdown. This parameter is ignored unless the
state is set to SHUTDOWN_4 or restart is set to True.

reason A localized text string that describes the reason for the state change request.

restart A flag indicating if the Server should be restarted before it attempts to change into the

requested change. If the restart is True the server changes it state to SHUTDOWN_4
before the restart if secondsTillShutdown is not 0.

Method Result Codes (defined in Call Service)

Result Code Description
Bad_UserAccessDenied The current user is not authorized to invoke the method
Bad_InvalidState The requested state was not accepted by the server

Table 97 specifies the AddressSpace representation for the RequestServerStateChange
Method.

Table 97 — RequestServerStateChange Method AddressSpace Definition

Attribute Value

BrowseName RequestServerStateChange

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory

10 Standard Views
There are no core OPC UA Views defined.
11 Standard ReferenceTypes

11.1 References

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 98.

OPC 10000-5: Information Model

57

Table 98 — References ReferenceType

Release 1.04

Attributes Value

BrowseName References

InverseName --

Symmetric True

IsAbstract True

References NodeClass BrowseName Comment

HasSubtype ReferenceType HierarchicalReferences Defined in 11.2

HasSubtype ReferenceType NonHierarchicalReferences Defined in 11.3
11.2 HierarchicalReferences
This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 99.

Table 99 — HierarchicalReferences ReferenceType

Attributes Value

BrowseName HierarchicalReferences

InverseName -

Symmetric False

IsAbstract True

References NodeClass BrowseName Comment

HasSubtype ReferenceType HasChild Defined in 11.4

HasSubtype ReferenceType Organizes Defined in 11.6

HasSubtype ReferenceType HasEventSource Defined in 11.14
11.3 NonHierarchicalReferences
This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 100.

Table 100 — NonHierarchicalReferences ReferenceType

Attributes Value

BrowseName NonHierarchicalReferences

InverseName --

Symmetric True

IsAbstract True

References NodeClass BrowseName Comment

HasSubtype ReferenceType HasModellingRule Defined in 11.11

HasSubtype ReferenceType HasTypeDefinition Defined in 11.12

HasSubtype ReferenceType HasEncoding Defined in 11.13

HasSubtype ReferenceType GeneratesEvent Defined in 11.16
11.4 HascChild
This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 101.

Table 101 — HasChild ReferenceType

Attributes Value

BrowseName HasChild

InverseName --

Symmetric False

IsAbstract True

References NodeClass BrowseName Comment

HasSubtype ReferenceType Aggregates Defined in 11.5

HasSubtype ReferenceType HasSubtype Defined in 11.10
11.5 Aggregates
This standard ReferenceType is defined in OPC 10000-3. Its representation in the

AddressSpace is specified in Table 102.

Release 1.04

58

OPC 10000-5: Information Model

Table 102 — Aggregates ReferenceType

Attributes Value
BrowseName Aggregates
InverseName --
Symmetric False
IsAbstract True
References NodeClass BrowseName Comment
HasSubtype ReferenceType HasComponent Defined in 11.7
HasSubtype ReferenceType HasProperty Defined in 11.9
11.6 Organizes
This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 103.
Table 103 — Organizes ReferenceType
Attributes Value
BrowseName Organizes
InverseName OrganizedBy
Symmetric False
IsAbstract False
References NodeClass BrowseName Comment
11.7 HasComponent
This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 104.
Table 104 — HasComponent ReferenceType
Attributes Value
BrowseName HasComponent
InverseName ComponentOf
Symmetric False
IsAbstract False
References NodeClass BrowseName Comment
HasSubtype ReferenceType HasOrderedComponent Defined in 11.8
11.8 HasOrderedComponent
This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 105.
Table 105 — HasOrderedComponent ReferenceType
Attributes Value
BrowseName HasOrderedComponent
InverseName OrderedComponentOf
Symmetric False
IsAbstract False
References NodeClass BrowseName Comment
11.9 HasProperty
This standard ReferenceType is defined in OPC 10000-3. Its representation in the

AddressSpace is specified in Table 106.

OPC 10000-5: Information Model 59 Release 1.04

Table 106 — HasProperty ReferenceType

Attributes Value

BrowseName HasProperty

InverseName PropertyOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

11.10 HasSubtype

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 107.

Table 107 — HasSubtype ReferenceType

Attributes Value

BrowseName HasSubtype

InverseName SubtypeOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

11.11 HasModellingRule

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 108.

Table 108 — HasModellingRule ReferenceType

Attributes Value

BrowseName HasModellingRule

InverseName ModellingRuleOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

11.12 HasTypeDefinition

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 109.

Table 109 — HasTypeDefinition ReferenceType

Attributes Value

BrowseName HasTypeDefinition

InverseName TypeDefinitionOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

11.13 HasEncoding

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 110.

Release 1.04

60 OPC 10000-5: Information Model

Table 110 — HasEncoding ReferenceType

Attributes Value

BrowseName HasEncoding

InverseName EncodingOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

11.14 HasEventSource

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 111.

Table 111 — HasEventSource ReferenceType

Attributes Value

BrowseName HasEventSource

InverseName EventSourceOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment
HasSubtype ReferenceType HasNotifier Defined in 11.15

11.15 HasNotifier

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 112.

Table 112 — HasNotifier ReferenceType

Attributes Value

BrowseName HasNotifier

InverseName NotifierOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

11.16 GeneratesEvent

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 113.

Table 113 — GeneratesEvent ReferenceType

Attributes Value

BrowseName GeneratesEvent

InverseName GeneratedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment
HasSubtype ReferenceType AlwaysGeneratesEvent Defined in 11.17

11.17 AlwaysGeneratesEvent

This standard ReferenceType is defined in OPC 10000-3. Its representation in the
AddressSpace is specified in Table 114.

OPC 10000-5: Information Model

61

Table 114 — AlwaysGeneratesEvent ReferenceType

Release 1.04

Attributes Value

BrowseName AlwaysGeneratesEvent

InverseName AlwaysGeneratedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

12 Standard DataTypes

12.1 Overview

An OPC UA Server need not expose its DataTypes in its AddressSpace. Independent of the
exposition of DataTypes, it shall support the DataTypes as described in the following

subclauses.

12.2 DataTypes defined in OPC 10000-3
OPC 10000-3 defines a set of DataTypes. Their representation in the AddressSpace is defined

in Table 115.

Release 1.04

62

BrowseName

Argument

AudioDataType

BaseDataType

Boolean

Byte

ByteString

DataTypeDefinition

DateString

DateTime

Decimal

DecimalString

Double

Duration

DurationString

EnumDefinition

Enumeration

EnumField

EnumValueType

Float

Guid

1dType

Image

ImageBMP

ImageGIF

ImageJPG

ImagePNG

Int16

Int32

Int64

Integer

Localeld

LocalizedText

NamingRuleType

NodeClass

Nodeld

NormalizedString

Number

OptionSet

QualifiedName

SByte

String

Structure

StructureDefinition

StructureField

TimeString

TimeZoneDataType

Uint16

Uint32

Uint64

Ulnteger

Union

UtcTime

XmlElement

OPC 10000-5: Information Model

Table 115 — OPC 10000-3 DataType Definitions

Of the DataTypes defined in Table 115 only some are the sources of References as defined in

the following tables.

The References of the BaseDataType are defined in Table 116.

OPC 10000-5: Information Model

63

Table 116 — BaseDataType Definition

Release 1.04

Attributes Value
BrowseName BaseDataType
IsAbstract TRUE
References NodeClass BrowseName IsAbstract
HasSubtype DataType Boolean FALSE
HasSubtype DataType ByteString FALSE
HasSubtype DataType DateTime FALSE
HasSubtype DataType DataValue FALSE
HasSubtype DataType Diagnosticlnfo FALSE
HasSubtype DataType Enumeration TRUE
HasSubtype DataType ExpandedNodeld FALSE
HasSubtype DataType Guid FALSE
HasSubtype DataType LocalizedText FALSE
HasSubtype DataType Nodeld FALSE
HasSubtype DataType Number TRUE
HasSubtype DataType QualifiedName FALSE
HasSubtype DataType String FALSE
HasSubtype DataType Structure TRUE
HasSubtype DataType XmlElement FALSE

The References of Structure are defined in Table 117.

Table 117 — Structure Definition

Attributes Value
BrowseName Structure
IsAbstract TRUE
References NodeClass BrowseName IsAbstract
HasSubtype DataType Argument FALSE
HasSubtype DataType UserldentityToken TRUE
HasSubtype DataType AddNodesltem FALSE
HasSubtype DataType AddReferencesltem FALSE
HasSubtype DataType DeleteNodesltem FALSE
HasSubtype DataType DeleteReferencesltem FALSE
HasSubtype DataType ApplicationDescription FALSE
HasSubtype DataType BuildInfo FALSE
HasSubtype DataType RedundantServerDataType FALSE
HasSubtype DataType SamplingIntervalDiagnosticsDataType FALSE
HasSubtype DataType ServerDiagnosticsSummaryDataType FALSE
HasSubtype DataType ServerStatusDataType FALSE
HasSubtype DataType SessionDiagnosticsDataType FALSE
HasSubtype DataType SessionSecurityDiagnosticsDataType FALSE
HasSubtype DataType ServiceCounterDataType FALSE
HasSubtype DataType StatusResult FALSE
HasSubtype DataType SubscriptionDiagnosticsDataType FALSE
HasSubtype DataTypes ModelChangeStructureDataType FALSE
HasSubtype DataTypes SemanticChangeStructureDataType FALSE
HasSubtype DataType SignedSoftwareCertificate FALSE
HasSubtype DataType TimeZoneDataType FALSE
HasSubtype DataType EnumValueType FALSE
HasSubtype DataType OptionSet TRUE
HasSubtype DataType Union TRUE
HasSubtype DataType StructureField FALSE
HasSubtype DataType DataTypeDefinition TRUE

The References of Enumeration are defined in Table 118.

Release 1.04

64

OPC 10000-5: Information Model

Table 118 — Enumeration Definition

Attributes Value
BrowseName Enumeration
IsAbstract TRUE
References NodeClass BrowseName IsAbstract
HasSubtype DataType IdType FALSE
HasSubtype DataType NamingRuleType FALSE
HasSubtype DataType NodeClass FALSE
HasSubtype DataType SecurityTokenRequestType FALSE
HasSubtype DataType MessageSecurityMode FALSE
HasSubtype DataType RedundancySupport FALSE
HasSubtype DataType ServerState FALSE
The References of ByteString are defined in Table 119.
Table 119 — ByteString Definition
Attributes Value
BrowseName ByteString
IsAbstract FALSE
References NodeClass BrowseName IsAbstract
HasSubtype DataType Image TRUE
HasSubtype DataType AudioDataType FALSE
The References of Number are defined in Table 120.
Table 120 — Number Definition
Attributes Value
BrowseName Number
IsAbstract TRUE
References NodeClass BrowseName IsAbstract
HasSubtype DataType Integer TRUE
HasSubtype DataType Ulnteger TRUE
HasSubtype DataType Double FALSE
HasSubtype DataType Float FALSE
HasSubtype DataType Decimal FALSE
The References of Double are defined in Table 121.
Table 121 — Double Definition
Attributes Value
BrowseName Double
IsAbstract FALSE
References NodeClass BrowseName IsAbstract
HasSubtype DataType Duration FALSE
The References of Integer are defined in Table 122.
Table 122 — Integer Definition
Attributes Value
BrowseName Integer
IsAbstract TRUE
References NodeClass BrowseName IsAbstract
HasSubtype DataType SByte FALSE
HasSubtype DataType Int16 FALSE
HasSubtype DataType Int32 FALSE
HasSubtype DataType Int64 FALSE

The References of DateTime are defined in Table 123.

OPC 10000-5: Information Model 65 Release 1.04

Table 123 — DateTime Definition

Attributes Value

BrowseName DateTime

IsAbstract FALSE

References NodeClass BrowseName IsAbstract
HasSubtype DataType UtcTime FALSE

The References of String are defined in Table 124.

Table 124 — String Definition

Attributes Value

BrowseName String

IsAbstract FALSE

References NodeClass BrowseName IsAbstract
HasSubtype DataType Localeld FALSE
HasSubtype DataType NumericRange FALSE
HasSubtype DataType NormalizedString FALSE
HasSubtype DataType DecimalString FALSE
HasSubtype DataType DurationString FALSE
HasSubtype DataType TimeString FALSE
HasSubtype DataType DateString FALSE

The References of Ulnteger are defined in Table 125.

Table 125 — UInteger Definition

Attributes Value

BrowseName Ulnteger

IsAbstract TRUE

References NodeClass BrowseName IsAbstract
HasSubtype DataType Byte FALSE
HasSubtype DataType UInt16 FALSE
HasSubtype DataType Ulnt32 FALSE
HasSubtype DataType UlInt64 FALSE

The References of Image are defined in Table 126.

Table 126 — Image Definition

Attributes Value

BrowseName Image

IsAbstract TRUE

References NodeClass BrowseName IsAbstract
HasSubtype DataType ImageBMP FALSE
HasSubtype DataType ImageGIF FALSE
HasSubtype DataType ImageJPG FALSE
HasSubtype DataType ImagePNG FALSE

The References of UInt64 are defined in Table 127.

Table 127 — UInt64 Definition

Attributes Value

BrowseName Uint64

IsAbstract FALSE

References NodeClass BrowseName IsAbstract
HasSubtype DataType BitFieldMaskDataType FALSE

The References of DataTypeDefinition are defined in Table 128.

Release 1.04

The References of EnumValueType are defined in Table 129.

66

OPC 10000-5: Information Model

Table 128 — DataTypeDefinition Definition

Attributes Value

BrowseName DataTypeDefinition

IsAbstract TRUE

References NodeClass BrowseName IsAbstract
HasSubtype DataType StructureDefinition FALSE
HasSubtype DataType EnumDefinition FALSE

Table 129 — EnumValueType Definition

Attributes Value

BrowseName EnumValueType

IsAbstract FALSE

References NodeClass BrowseName IsAbstract
HasSubtype DataType EnumField FALSE

12.3 DataTypes defined in OPC 10000-4

OPC 10000-4 defines a set of DataTypes. Their representation in the AddressSpace is defined
in Table 130.

Table 130 — OPC 10000-4 DataType Definitions

BrowseName
AnonymousldentityToken
DataValue

Diagnosticlnfo
ExpandedNodeld
SignedSoftwareCertificate
UserldentityToken
UserNameldentityToken
X509IdentityToken
WssldentityToken
SecurityTokenRequestType
AddNodesltem
AddReferencesltem
DeleteNodesltem
DeleteReferencesltem
NumericRange
MessageSecurityMode
ApplicationDescription

The SecurityTokenRequestType is an enumeration that is defined as the type of the
requestType parameter of the OpenSecureChannel Service in OPC 10000-4.

The AddNodesltem is a structure that is defined as the type of the nodesToAdd parameter of
the AddNodes Service in OPC 10000-4.

The AddReferencesltem is a structure that is defined as the type of the referencesToAdd
parameter of the AddReferences Service in OPC 10000-4.

The DeleteNodesltem is a structure that is defined as the type of the nodesToDelete parameter
of the DeleteNodes Service in OPC 10000-4.

The DeleteReferencesltem is a structure that is defined as the type of the referencesToDelete
parameter of the DeleteReferences Service in OPC 10000-4.

The References of UserldentityToken are defined in Table 131.

OPC 10000-5: Information Model 67 Release 1.04

Table 131 — UserldentityToken Definition

Attributes Value

BrowseName UserldentityToken

IsAbstract TRUE

References NodeClass BrowseName IsAbstract
HasSubtype DataType UserNameldentityToken FALSE
HasSubtype DataType X509IdentityToken FALSE
HasSubtype DataType WssldentityToken FALSE
HasSubtype DataType AnonymousldentityToken FALSE

12.4 BuildInfo

This structure contains elements that describe the build information of the Server. Its elements
are defined in Table 132.

Table 132 — BuildInfo Structure

Name Type Description
BuildInfo structure Information that describes the build of the software.
productUri String URI that identifies the software
manufacturerName String Name of the software manufacturer.
productName String Name of the software.
softwareVersion String Software version
buildNumber String Build number
buildDate UtcTime Date and time of the build.

Its representation in the AddressSpace is defined in Table 133.

Table 133 — BuildInfo Definition

Attributes Value

BrowseName BuildInfo

12.5 RedundancySupport

This DataType is an enumeration that defines the redundancy support of the Server. Its values
are defined in Table 134.

Table 134 — RedundancySupport Values

Value Description

NONE_0 None means that there is no redundancy support.

COLD 1 Cold means that the server supports cold redundancy as defined in OPC 10000-4.
WARM_2 Warm means that the server supports warm redundancy as defined in OPC 10000-4.
HOT 3 Hot means that the server supports hot redundancy as defined in OPC 10000-4.

TRANSPARENT_4

Transparent means that the server supports transparent redundancy as defined in OPC
10000-4.

HOT_AND_MIRRORED_5

HotAndMirrored means that the server supports HotAndMirrored redundancy as defined in
OPC 10000-4.

See OPC 10000-4 for a more detailed description of the different values.

Its representation in the AddressSpace is defined in Table 135.

Table 135 - RedundancySupport Definition

Attributes Value

BrowseName RedundancySupport

Release 1.04 68 OPC 10000-5: Information Model

12.6 ServerState

This DataType is an enumeration that defines the execution state of the Server. Its values are
defined in Table 136.

Table 136 — ServerState Values

Value Description
RUNNING_0 The Server is running normally. This is the usual state for a Server.
FAILED_1 A vendor-specific fatal error has occurred within the Server. The Server is no longer

functioning. The recovery procedure from this situation is vendor-specific. Most Service
requests should be expected to fail.

NO_CONFIGURATION_2 The Server is running but has no configuration information loaded and therefore does not
transfer data.

SUSPENDED_3 The Server has been temporarily suspended by some vendor-specific method and is not
receiving or sending data.

SHUTDOWN_4 The Server initiated a shut down or is in the process of shutting down. This ServerState is
intended as an indication to Clients connected to the Server to orderly disconnect from the
Server before the Server completes the shut down.

TEST_5 The Server is in Test Mode. The outputs are disconnected from the real hardware, but the
Server will otherwise behave normally. Inputs may be real or may be simulated depending
on the vendor implementation. StatusCode will generally be returned normally.

COMMUNICATION_FAULT_6 | The Server is running properly, but is having difficulty accessing data from its data
sources. This may be due to communication problems or some other problem preventing
the underlying device, control system, etc. from returning valid data. It may be a complete
failure, meaning that no data is available, or a partial failure, meaning that some data is still
available. It is expected that items affected by the fault will individually return with a BAD
FAILURE status code indication for the items.

UNKNOWN_7 This state is used only to indicate that the OPC UA Server does not know the state of
underlying system.

Its representation in the AddressSpace is defined in Table 137.

Table 137 — ServerState Definition

Attributes Value
BrowseName ServerState

12.7 RedundantServerDataType

This structure contains elements that describe the status of the Server. Its composition is
defined in Table 138.

Table 138 — RedundantServerDataType Structure

Name Type Description
RedundantServerDataType structure
serverld String The Id of the server (not the URI).
serviceLevel Byte The service level of the server.
serverState ServerState The current state of the server.

Its representation in the AddressSpace is defined in Table 139.

Table 139 — RedundantServerDataType Definition

Attributes Value
BrowseName RedundantServerDataType

12.8 SamplinglintervalDiagnosticsDataType

This structure contains diagnostic information about the sampling rates currently used by the
Server. Its elements are defined in Table 140.

OPC 10000-5: Information Mode

69 Release 1.04

Table 140 — SamplingIntervalDiagnosticsDataType Structure

Name Type Description
SamplinglntervalDiagnosticsDataType structure
samplingInterval Duration The sampling interval in milliseconds.
sampledMonitoreditemsCount Uint32 The number of Monitoredltems being sampled at this sample
rate.
maxSampledMonitoredltemsCount UiInt32 The maximum number of Monitoredltems being sampled at this
sample rate at the same time since the server was started
(restarted).
disabledMonitoredltemsSamplingCount | UInt32 The number of Monitoredltems at this sample rate whose
sampling currently disabled.

Its representation in the AddressSpace is defined in Table 141.

Table 141 — SamplingIntervalDiagnosticsDataType Definition

Attributes

Value

BrowseName

SamplinglntervalDiagnosticsDataType

12.9 ServerDiagnosticsSummaryDataType

This structure contains diagnostic summary information for the Server. Its elements are defined

in Table 142.
Table 142 — ServerDiagnosticsSummaryDataType Structure
Name Type Description
ServerDiagnosticsSummaryDataType structure

serverViewCount Uint32 The number of server-created views in the server.

currentSessionCount Ulnt32 The number of client sessions currently established in the server.

cumulatedSessionCount Uint32 The cumulative number of client sessions that have been
established in the server since the server was started (or restarted).
This includes the currentSessionCount.

securityRejectedSessionCount UInt32 The number of client session establishment requests
(ActivateSession and CreateSession) that were rejected due to
security constraints since the server was started (or restarted).

rejectedSessionCount Uint32 The number of client session establishment requests
(ActivateSession and CreateSession) that were rejected since the
server was started (or restarted). This number includes the
securityRejectedSessionCount.

sessionTimeoutCount Uint32 The number of client sessions that were closed due to timeout since
the server was started (or restarted).

sessionAbortCount Uint32 The number of client sessions that were closed due to errors since
the server was started (or restarted).

publishinglIntervalCount Ulnt32 The number of publishing intervals currently supported in the server.

currentSubscriptionCount Uint32 The number of subscriptions currently established in the server.

cumulatedSubscriptionCount UlInt32 The cumulative number of subscriptions that have been established
in the server since the server was started (or restarted). This
includes the currentSubscriptionCount.

securityRejectedRequestsCount UlInt32 The number of requests that were rejected due to security
constraints since the server was started (or restarted). The requests
include all Services defined in OPC 10000-4, also requests to create
sessions.

rejectedRequestsCount Uint32 The number of requests that were rejected since the server was

started (or restarted). The requests include all Services defined in
OPC 10000-4, also requests to create sessions. This number
includes the securityRejectedRequestsCount.

Its representation in the AddressSpace is defined in Table 143.

Table 143 — ServerDiagnosticsSummaryDataType Definition

Attributes

Value

BrowseName

ServerDiagnosticsSummaryDataType

Release 1.04 70 OPC 10000-5: Information Model

12.10 ServerStatusDataType

This structure contains elements that describe the status of the Server. Its composition is
defined in Table 144.

Table 144 — ServerStatusDataType Structure

Name Type Description
ServerStatusDataType structure
startTime UtcTime Time (UTC) the Server was started. This is constant for the Server

instance and is not reset when the Server changes state. Each instance
of a Server should keep the time when the process started.

currentTime UtcTime The current time (UTC) as known by the Server.

state ServerState The current state of the Server. Its values are defined in 12.6.

buildinfo Buildinfo

secondsTillShutdown Uint32 Approximate number of seconds until the Server will be shut down. The

value is only relevant once the state changes into SHUTDOWN_4.
After the Server shut down is initated, the state changes to
SHUTDOWN_4 and the actual shut down should be delayed for a
configurable time if Clients are connected to the Server to allow these
Clients an orderly disconnect.

shutdownReason LocalizedText | An optional localized text indicating the reason for the shutdown. The
value is only relevant once the state changes into SHUTDOWN_4.

Its representation in the AddressSpace is defined in Table 145.

Table 145 - ServerStatusDataType Definition

Attributes Value
BrowseName ServerStatusDataType

12.11 SessionDiagnosticsDataType

This structure contains diagnostic information about client sessions. Its elements are defined in
Table 146. Most of the values represented in this structure provide information about the
number of calls of a Service, the number of currently used Monitoredltems, etc. Those numbers
need not provide the exact value; they need only provide the approximate number, so that the
Server is not burdened with providing the exact numbers.

Table 146 — SessionDiagnosticsDataType Structure

Name Type Description
SessionDiagnosticsDataType structure

sessionld Nodeld Server-assigned identifier of the session.

sessionName String The name of the session provided in the CreateSession
request.

clientDescription Application The description provided by the client in the CreateSession

Description request.

serverUri String The serverUri request in the CreateSession request.

endpointUrl String The endpointUrl passed by the client to the CreateSession
request.

localelds Localeld[] Array of Localelds specified by the client in the open session
call.

actualSessionTimeout Duration The requested session timeout specified by the client in the
open session call.

maxResponseMessageSize Uint32 The maximum size for the response message sent to the
client.

clientConnectionTime UtcTime The server timestamp when the client opens the session.

clientLastContactTime UtcTime The server timestamp of the last request of the client in the
context of the session.

currentSubscriptionsCount UInt32 The number of subscriptions currently used by the session.

currentMonitoredltemsCount UlInt32 The number of Monitoredltems currently used by the session

currentPublishRequestsinQueue UInt32 The number of publish requests currently in the queue for
the session.

totalRequestCount ServiceCounter Counter of all Services, identifying the number of received

DataType requests of any Services on the session.

unauthorizedRequestCount UiInt32 Counter of all Services, identifying the number of Service

requests that were rejected due to authorization failure

OPC 10000-5: Information Model 71 Release 1.04
Name Type Description
readCount ServiceCounter Counter of the Read Service, identifying the number of
DataType received requests of this Service on the session.
historyReadCount ServiceCounter Counter of the HistoryRead Service, identifying the number
DataType of received requests of this Service on the session.
writeCount ServiceCounter Counter of the Write Service, identifying the number of
DataType received requests of this Service on the session.
historyUpdateCount ServiceCounter Counter of the HistoryUpdate Service, identifying the number
DataType of received requests of this Service on the session.
callCount ServiceCounter Counter of the Call Service, identifying the number of
DataType received requests of this Service on the session.
createMonitoredltemsCount ServiceCounter Counter of the CreateMonitoreditems Service, identifying the
DataType number of received requests of this Service on the session.
modifyMonitoredltemsCount ServiceCounter Counter of the ModifyMonitoredltems Service, identifying the
DataType number of received requests of this Service on the session.
setMonitoringModeCount ServiceCounter Counter of the SetMonitoringMode Service, identifying the
DataType number of received requests of this Service on the session.
setTriggeringCount ServiceCounter Counter of the SetTriggering Service, identifying the number
DataType of received requests of this Service on the session.
deleteMonitoredltemsCount ServiceCounter Counter of the DeleteMonitoredltems Service, identifying the
DataType number of received requests of this Service on the session.
createSubscriptionCount ServiceCounter Counter of the CreateSubscription Service, identifying the
DataType number of received requests of this Service on the session.
modifySubscriptionCount ServiceCounter Counter of the ModifySubscription Service, identifying the
DataType number of received requests of this Service on the session.
setPublishingModeCount ServiceCounter Counter of the SetPublishingMode Service, identifying the
DataType number of received requests of this Service on the session.
publishCount ServiceCounter Counter of the Publish Service, identifying the number of
DataType received requests of this Service on the session.
republishCount ServiceCounter Counter of the Republish Service, identifying the number of
DataType received requests of this Service on the session.
transferSubscriptionsCount ServiceCounter Counter of the TransferSubscriptions Service, identifying the
DataType number of received requests of this Service on the session.
deleteSubscriptionsCount ServiceCounter Counter of the DeleteSubscriptions Service, identifying the
DataType number of received requests of this Service on the session.
addNodesCount ServiceCounter Counter of the AddNodes Service, identifying the number of
DataType received requests of this Service on the session.
addReferencesCount ServiceCounter Counter of the AddReferences Service, identifying the
DataType number of received requests of this Service on the session.
deleteNodesCount ServiceCounter Counter of the DeleteNodes Service, identifying the number
DataType of received requests of this Service on the session.
deleteReferencesCount ServiceCounter Counter of the DeleteReferences Service, identifying the
DataType number of received requests of this Service on the session.
browseCount ServiceCounter Counter of the Browse Service, identifying the number of
DataType received requests of this Service on the session.
browseNextCount ServiceCounter Counter of the BrowseNext Service, identifying the number
DataType of received requests of this Service on the session.
translateBrowsePathsToNodeldsCount ServiceCounter Counter of the TranslateBrowsePathsToNodelds Service,
DataType identifying the number of received requests of this Service
on the session.
queryFirstCount ServiceCounter Counter of the QueryFirst Service, identifying the number of
DataType received requests of this Service on the session.
queryNextCount ServiceCounter Counter of the QueryNext Service, identifying the number of
DataType received requests of this Service on the session.
registerNodesCount ServiceCounter Counter of the RegisterNodes Service, identifying the
DataType number of received requests of this Service on the session.
unregisterNodesCount ServiceCounter Counter of the UnregisterNodesService, identifying the
DataType number of received requests of this Service on the session.

Its representation in the AddressSpace is defined in Table 147.

Table 147 — SessionDiagnosticsDataType Definition

Attributes

Value

BrowseName

SessionDiagnosticsDataType

Release 1.04 72 OPC 10000-5: Information Model

12.12 SessionSecurityDiagnosticsDataType

This structure contains security-related diagnostic information about client sessions. Its
elements are defined in Table 148. Because this information is security-related, it shall only be
accessible by authorised users.

Table 148 — SessionSecurityDiagnosticsDataType Structure

Name Type Description
SessionSecurityDiagnosticsDataType structure
sessionld Nodeld Server-assigned identifier of the session.
clientUserldOfSession String Name of authenticated user when creating the
session.
clientUserldHistory String[] Array containing the name of the authenticated user

currently active (either from creating the session or
from calling the ActivateSession Service) and the
history of those names. Each time the active user
changes, an entry shall be made at the end of the
array. The active user is always at the end of the
array. Servers may restrict the size of this array, but
shall support at least a size of 2.

How the name of the authenticated user can be
obtained from the system via the information
received as part of the session establishment is
defined in 6.4.3.

authenticationMechanism String Type of authentication currently used by the session.
The String shall be one of the lexical names of the
UserldentityTokenType Enum.

encoding String Which encoding is used on the wire. The String shall
be ‘XML’, ‘JSON’ or ‘UA Binary’'.
transportProtocol String Which transport protocol is used. The String shall be

the scheme from the URL used to establish the
session. For example, ‘opc.tcp’, ‘opc.wss’ or ‘https’.
The formal protocol URL scheme strings are defined
in OPC 10000-6.

securityMode MessageSecurityMode The message security mode used for the session.
securityPolicyUri String The name of the security policy used for the session.
clientCertificate ByteString The application instance certificate provided by the

client in the CreateSession request.

Its representation in the AddressSpace is defined in Table 149.

Table 149 — SessionSecurityDiagnosticsDataType Definition

Attributes Value
BrowseName SessionSecurityDiagnosticsDataType

12.13 ServiceCounterDataType

This structure contains diagnostic information about subscriptions. Its elements are defined in
Table 150.

Table 150 — ServiceCounterDataType Structure

Name Type Description

ServiceCounterDataType structure
totalCount UInt32 The number of Service requests that have been received.
errorCount UInt32 The total number of Service requests that were rejected.

Its representation in the AddressSpace is defined in Table 151.

Table 151 — ServiceCounterDataType Definition

Attributes Value
BrowseName ServiceCounterDataType

OPC 10000-5: Information Model 73 Release 1.04

12.14 StatusResult

This structure combines a StatusCode and diagnostic information and can, for example, be
used by Methods to return several StatusCodes and the corresponding diagnostic information
that are not handled in the Call Service parameters. The elements of this DataType are defined
in Table 152. Whether the diagnosticInfo is returned depends on the setting of the Service calls.

Table 152 — StatusResult Structure

Name Type Description
StatusResult structure
statusCode StatusCode The StatusCode.
diagnosticinfo Diagnosticlnfo The diagnostic information for the statusCode.

Its representation in the AddressSpace is defined in Table 153.

Table 153 — StatusResult Definition

Attributes Value
BrowseName StatusResult

12.15 SubscriptionDiagnosticsDataType

This structure contains diagnostic information about subscriptions. Its elements are defined in
Table 154.

Release 1.04 74 OPC 10000-5: Information Model

Table 154 — SubscriptionDiagnosticsDataType Structure

Name Type Description
SubscriptionDiagnosticsDataType structure
sessionld Nodeld Server-assigned identifier of the session the subscription belongs to.
subscriptionld UInt32 Server-assigned identifier of the subscription.
priority Byte The priority the client assigned to the subscription.
publishingInterval Duration | The publishing interval of the subscription in milliseconds
maxKeepAliveCount Uint32 The maximum keep-alive count of the subscription.
maxLifetimeCount UInt32 The maximum lifetime count of the subscription.
maxNotificationsPerPublish Uint32 The maximum number of notifications per publish response.
publishingEnabled Boolean | Whether publishing is enabled for the subscription.
modifyCount UInt32 The number of ModifySubscription requests received for the
subscription.
enableCount Uint32 The number of times the subscription has been enabled.
disableCount Uint32 The number of times the subscription has been disabled.
republishRequestCount UInt32 The number of Republish Service requests that have been received
and processed for the subscription.
republishMessageRequestCount Uint32 The total number of messages that have been requested to be

republished for the subscription.
Note that due to the design of the Republish Service this number is
always equal to the republishRequestCount.

republishMessageCount Uint32 The number of messages that have been successfully republished for
the subscription.

transferRequestCount Uint32 The total number of TransferSubscriptions Service requests that have
been received for the subscription.

transferredToAltClientCount UInt32 The number of times the subscription has been transferred to an
alternate client.

transferredToSameClientCount UInt32 The number of times the subscription has been transferred to an
alternate session for the same client.

publishRequestCount UInt32 The number of Publish Service requests that have been received and
processed for the subscription.

dataChangeNotificationsCount UInt32 The number of data change Notifications sent by the subscription.

eventNotificationsCount Ulnt32 The number of Event Natifications sent by the subscription.

notificationsCount UInt32 The total number of Notifications sent by the subscription.

latePublishRequestCount Uint32 The number of times the subscription has entered the LATE State, i.e.
the number of times the publish timer expires and there are unsent
notifications.

currentKeepAliveCount UInt32 The number of times the subscription has entered the KEEPALIVE
State.

currentLifetimeCount UInt32 The current lifetime count of the subscription.

unacknowledgedMessageCount Uint32 The number of unacknowledged messages saved in the republish
queue.

discardedMessageCount Uint32 The number of messages that were discarded before they were
acknowledged.

monitoredltemCount UInt32 The total number of monitored items of the subscription, including the
disabled monitored items.

disabledMonitoredltemCount UInt32 The number of disabled monitored items of the subscription.

monitoringQueueOverflowCount Uint32 The number of times a monitored item dropped notifications because
of a queue overflow.

nextSequenceNumber UInt32 Sequence number for the next notification message.

eventQueueOverFlowCount Uint32 The number of times a monitored item in the subscription has

generated an Event of type EventQueueOverflowEventType.

Its representation in the AddressSpace is defined in Table 155.

Table 155 — SubscriptionDiagnosticsDataType Definition

Attributes Value
BrowseName SubscriptionDiagnosticsDataType

12.16 ModelChangeStructureDataType

This structure contains elements that describe changes of the model. Its composition is defined
in Table 156.

OPC 10000-5: Information Model 75 Release 1.04

Table 156 — ModelChangeStructureDataType Structure

Name Type Description
ModelChangeStructure | structure
DataType
affected Nodeld Nodeld of the Node that was changed. The client should assume that the affected

Node has been created or deleted, had a Reference added or deleted, or the
DataType has changed as described by the verb.

affectedType Nodeld If the affected Node was an Object or Variable, affectedType contains the Nodeld of
the TypeDefinitionNode of the affected Node. Otherwise it is set to null.
verb Byte Describes the changes happening to the affected Node.

The verb is an 8-bit unsigned integer used as bit mask with the structure defined in the
following table:

Field Bit Description

NodeAdded 0 Indicates the affected Node has been added.
NodeDeleted 1 Indicates the affected Node has been deleted.
ReferenceAdded 2 Indicates a Reference has been added. The affected

Node may be either a SourceNode or TargetNode.
Note that an added bidirectional Reference is
reflected by two changes.

ReferenceDeleted 3 Indicates a Reference has been deleted. The
affected Node may be either a SourceNode or
TargetNode. Note that a deleted bidirectional
Reference is reflected by two changes.

DataTypeChanged 4 This verb may be used only for affected Nodes that
are Variables or VariableTypes. It indicates that the
DataType Attribute has changed.

Reserved 5:7 Reserved for future use. Shall always be zero.

A verb may identify several changes on the affected Node at once. This feature should
be used if event compression is used (see OPC 10000-3 for details).

Note that all verbs shall always be considered in the context where the
ModelChangeStructureDataType is used. A NodeDeleted may indicate that a Node
was removed from a view but still exists in other Views.

Its representation in the AddressSpace is defined in Table 157.

Table 157 — ModelChangeStructureDataType Definition

Attributes Value
BrowseName ModelChangeStructureDataType

12.17 SemanticChangeStructureDataType

This structure contains elements that describe a change of the model. Its composition is defined
in Table 158.

Table 158 — SemanticChangeStructureDataType Structure

Name Type Description
SemanticChangeStructureDataType | structure
affected Nodeld Nodeld of the Node that owns the Property that has changed.
affectedType Nodeld If the affected Node was an Object or Variable, affectedType contains the
Nodeld of the TypeDefinitionNode of the affected Node. Otherwise it is set
to null.

Its representation in the AddressSpace is defined in Table 159.

Table 159 — SemanticChangeStructureDataType Definition

Attributes Value
BrowseName SemanticChangeStructureDataType

12.18 BitFieldMaskDataType

This simple DataType is a subtype of UInt64 and represents a bit mask up to 32 bits where
individual bits can be written without modifying the other bits.

Release 1.04 76 OPC 10000-5: Information Model

The first 32 bits (least significant bits) of the BitFieldMaskDataType represent the bit mask and
the second 32 bits represent the validity of the bits in the bit mask. When the Server returns the
value to the client, the validity provides information of which bits in the bit mask have a meaning.
When the client passes the value to the Server, the validity defines which bits should be written.
Only those bits defined in validity are changed in the bit mask, all others stay the same. The
BitFieldMaskDataType can be used as DataType in the OptionSetType VariableType

Its representation in the AddressSpace is defined in Table 160.

Table 160 - BitFieldMaskDataType Definition

Attributes Value
BrowseName BitFieldMaskDataType

12.19 NetworkGroupDataType

This structure contains information on different network paths for one Server. Its composition
is defined in Table 161.

Table 161 — NetworkGroupDataType Structure

Name Type Description

NetworkGroupDataType structure
serverUri String URI of the Server represented by the network group.
networkPaths EndpointUrlListDataType[] Array of different network paths to the server, for example

provided by different network cards in a Server node. Each
network path can have several Endpoints representing
different protocol options for the same path.

Its representation in the AddressSpace is defined in Table 162.

Table 162 — NetworkGroupDataType Definition

Attributes Value
BrowseName NetworkGroupDataType

12.20 EndpointUriListDataType
This structure represents a list of URLs of an Endpoint. Its composition is defined in Table 163.

Table 163 — EndpointUrlListDataType Structure

Name Type Description
EndpointUrlListDataType structure
endpointUrlList String[] List of URLs of an Endpoint.

Its representation in the AddressSpace is defined in Table 164.

Table 164 — EndpointUriListDataType Definition

Attributes Value
BrowseName EndpointUriListDataType

12.21 KeyValuePair

This DataType is used to provide a key value pair. The KeyValuePair is formally defined in
Table 165.

Table 165 — KeyValuePair Structure

Name Type Description
KeyValuePair structure
key QualifiedName The key of the value.
value BaseDataType The value associated with the key.

OPC 10000-5: Information Model 77 Release 1.04

12.22 EndpointType
This structure describes an Endpoint. The EndpointType is formally defined in Table 166.

Table 166 — EndpointType Structure

Name Type Description
EndpointType structure
endpointUrl String The URL for the Endpoint.
securityMode MessageSecurityMode The type of message security.
The type MessageSecurityMode type is defined in OPC 10000-4.
securityPolicyUri String The URI of the SecurityPolicy.
transportProfileUri String The URI of the Transport Profile.

Release 1.04 78 OPC 10000-5: Information Model

Annex A
(informative)

Design decisions when modelling the server information

A.1 Overview

This annex describes the design decisions of modelling the information provided by each OPC
UA Server, exposing its capabilities, diagnostic information, and other data needed to work with
the Server, such as the NamespaceArray.

This annex gives an example of what should be considered when modelling data using the
Address Space Model. General considerations for using the Address Space Model can be found
in OPC 10000-3.

This annex is for information only, that is, each Server vendor can model its data in the
appropriate way that fits its needs.

The following subclauses describe the design decisions made while modelling the Server
Object. General DataTypes, VariableTypes and ObjectTypes such as the EventTypes described
in this standard are not taken into account.

A.2 ServerType and Server Object

The first decision is to decide at what level types are needed. Typically, each Server will provide
one Server Object with a well-known Nodeld. The Nodelds of the containing Nodes are also
well-known because their symbolic name is specified in this standard and the Nodeld is based
on the symbolic name in OPC 10000-6. Nevertheless, aggregating Servers may want to expose
the Server Objects of the OPC UA Servers they are aggregating in their AddressSpace.
Therefore, it is very helpful to have a type definition for the Server Object. The Server Object is
an Object, because it groups a set of Variables and Objects containing information about the
Server. The ServerType is a complex ObjectType, because the basic structure of the Server
Object should be well-defined. However, the Server Object can be extended by adding
Variables and Objects in an appropriate structure of the Server Object or its containing Objects.

A.3 Typed complex Objects beneath the Server Object

Objects beneath the Server Object used to group information, such as Server capabilities or
diagnostics, are also typed because an aggregating Server may want to provide only part of the
Server information, such as diagnostics information, in its AddressSpace. Clients are able to
program against these structures if they are typed, because they have its type definition.

A.4 Properties versus DataVariables

Since the general description in OPC 10000-3 about the semantic difference between
Properties and DataVariables are not applicable for the information provided about the Server
the rules described in OPC 10000-3 are used.

If simple data structures should be provided, Properties are used. Examples of Properties are
the NamespaceArray of the Server Object and the MinSupportedSampleRate of the
ServerCapabilities Object.

If complex data structures are used, DataVariables are used. Examples of DataVariables are
the ServerStatus of the Server Object and the ServerDiagnosticsSummary of the
ServerDiagnostics Object.

A.5 Complex Variables using complex DataTypes
DataVariables providing complex data structures expose their information as complex

DataTypes, as well as components in the AddressSpace. This allows access to simple values
as well as access to the whole information at once in a transactional context.

OPC 10000-5: Information Model 79 Release 1.04

For example, the ServerStatus Variable of the Server Object is modelled as a complex
DataVariable having the ServerStatusDataType providing all information about the Server
status. But it also exposes the CurrentTime as a simple DataVariable, because a client may
want to read only the current time of the Server, and is not interested in the build information,
etc.

A.6 Complex Variables having an array

A special case of providing complex data structures is an array of complex data structures. The
SubscriptionDiagnosticsArrayType is an example of how this is modelled. It is an array of a
complex data structure, providing information of a subscription. Because a Server typically has
several subscriptions, it is an array. Some clients may want to read the diagnostic information
about all subscriptions at once; therefore it is modelled as an array in a Variable. On the other
hand, a client may be interested in only a single entry of the complex structure, such as the
PublishRequestCount. Therefore, each entry of the array is also exposed individually as a
complex DataVariable, having each entry exposed as simple data.

Note that it is never necessary to expose the individual entries of an array to access them
separately. The Services already allow accessing individual entries of an array of a Variable.
However, if the entries should also be used for other purposes in the AddressSpace, such as
having References or additional Properties or exposing their complex structure using
DataVariables, it is useful to expose them individually.

A.7 Redundant information

Providing redundant information should generally be avoided. But to fulfil the needs of different
clients, it may be helpful.

Using complex DataVariables automatically leads to providing redundant information, because
the information is directly provided in the complex DataType of the Value Attribute of the
complex Variable, and also exposed individually in the components of the complex Variable.

The diagnostics information about subscriptions is provided in two different locations. One
location is the SubscriptionDiagnosticsArray of the ServerDiagnostics Object, providing the
information for all subscriptions of the Server. The second location is the
SubscriptionDiagnosticsArray of each individual SessionDiagnosticsObject Object, providing
only the subscriptions of the session. This is useful because some clients may be interested in
only the subscriptions grouped by sessions, whereas other clients may want to access the
diagnostics information of all sessions at once.

The SessionDiagnosticsArray and the SessionSecurityDiagnosticsArray of the
SessionsDiagnosticsSummary Object do not expose their individual entries, although they
represent an array of complex data structures. But the information of the entries can also be
accessed individually as components of the SessionDiagnostics Objects provided for each
session by the SessionsDiagnosticsSummary Object. A client can either access the arrays (or
parts of the arrays) directly or browse to the SessionDiagnostics Objects to get the information
of the individual entries. Thus, the information provided is redundant, but the Variables
containing the arrays do not expose their individual entries.

A.8 Usage of the BaseDataVariableType

All DataVariables used to expose complex data structures of complex DataVariables have the
BaseDataVariableType as type definition if they are not complex by themselves. The reason for
this approach is that the complex DataVariables already define the semantic of the containing
DataVariables and this semantic is not used in another context. It is not expected that they are
subtyped, because they should reflect the data structure of the DataType of the complex
DataVariable.

A.9 Subtyping

Subtyping is used for modelling information about the redundancy support of the Server.
Because the provided information shall differ depending on the supported redundancy of the
Server, subtypes of the ServerRedundancyType will be used for this purpose.

Release 1.04 80 OPC 10000-5: Information Model

Subtyping is also used as an extensibility mechanism (see A.10).
A.10 Extensibility mechanism

The information of the Server will be extended by other parts of this series of standards, by
companion specifications or by Server vendors. There are preferred ways to provide the
additional information.

Do not subtype DataTypes to provide additional information about the Server. Clients might not
be able to read those new defined DataTypes and are not able to get the information, including
the basic information. If information is added by several sources, the DataType hierarchy may
be difficult to maintain. Note that this rule applies to the information about the Server; in other
scenarios this may be a useful way to add information.

Add Objects containing Variables or add Variables to the Objects defined in this part. If, for
example, additional diagnostic information per subscription is needed, add a new Variable
containing in array with an entry per subscription in the same places that the
SubscriptionDiagnosticsArray is used.

Use subtypes of the ServerVendorCapabilityType to add information about the server-specific
capabilities on the ServerCapabilities Objects. Because this extensibility point is already
defined in this part, clients will look there for additional information.

Use a subtype of the VendorServerinfoType to add server-specific information. Because an
Object of this type is already defined in this part, clients will look there for server-specific
information.

OPC 10000-5: Information Model 81 Release 1.04

Annex B
(normative)

StateMachines

B.1 General

This annex describes the basic infrastructure to model state machines. It defines ObjectTypes,
VariableTypes and ReferenceTypes and explains how they should be used.

This annex is an integral part of this standard, that is, the types defined in this annex have to
be used as defined. However, it is not required but strongly recommended that a Server uses
these types to expose its state machines. The defined types may be subtyped to refine their
behaviour.

When a Server exposes its state machine using the types defined in this annex, it might only
provide a simplified view on its internal state machine, hiding for example substates or putting
several internal states into one exposed state.

The scope of the state machines described in this annex is to provide an appropriate foundation
for state machines needed for OPC 10000-9 and OPC 10000-10. It does not provide more
complex functionality of a state machine like parallel states, forks and joins, history states,
choices and junctions, etc. However, the base state machine defined in this annex can be
extended to support such concepts.

The following clauses describe examples of state machines, define state machines in the
context of this annex and define the representation of state machines in OPC UA. Finally, some
examples of state machines, represented in OPC UA, are given.

B.2 Examples of finite state machines

B.2.1 Simple state machine

The following example provides an overview of the base features that the state machines
defined in this annex will support. In the following, a more complex example is given, that also
supports sub-state machines.

Figure B.1 gives an overview over a simple state machine. It contains the three states “State1”,
“State2” and “State3”. There are transitions from “State1” to “State2”, “State2” to “State2”, etc.
Some of the transitions provide additional information with regard to what causes (or triggers)
the transition, for example the call of “Method1” for the transition from “State1” to “State2”. The
effect (or action) of the transition can also be specified, for example the generation of an Event
of the “EventType1” in the same transition. The notation used to identify the cause is simply
listing it on the transition, the effect is prefixed with a “/”. More than one cause or effect are

separated by a “,”. Not every transition has to have a cause or effect, for example the transition
between “State2” and “State3”.

Release 1.04

82

OPC 10000-5: Information Model

Statel

Method1 /EventTypel

/EventType2

State2

Method2

State3

Figure B.1 — Example of a simple state machine

For simplicity, the state machines described in this annex will only support causes in form of
specifying Methods that have to be called and effects in form of EventTypes of Events that are
generated. However, the defined infrastructure allows extending this to support additional

different causes and effects.

B.2.2 State machine containing substates

Figure B.2 shows an example of a state machine where “State6” is a sub-state-machine. This
means, that when the overall state machine is in State6, this state can be distinguished to be
in the sub-states “State7” or “State8”. Sub-state-machines can be nested, that is, “State7” could
be another sub-state-machine.

State4

State5

o

State7

State6

Method3

>

Figure B.2 — Example of a state machine having a sub-machine

OPC 10000-5: Information Model 83 Release 1.04

B.3 Definition of state machine

The infrastructure of state machines defined in this annex only deals with the basics of state
machines needed to support OPC 10000-9 and OPC 10000-10. The intention is to keep the
basic simple but extensible.

For the state machines defined in this annex we assume that state machines are typed and
instances of a type have their states and semantics specified by the type. For some types, this
means that the states and transitions are fixed. For other types the states and transitions may
be dynamic or unknown. A state machine where all the states are specified explicitly by the type
is called a finite state machine.

Therefore we distinguish between StateMachineType and StateMachine and their subtypes like
FiniteStateMachineType. The StateMachineType specifies a description of the state machine,
that is, its states, transitions, etc., whereas the StateMachine is an instance of the
StateMachineType and only contains the current state.

Each StateMachine contains information about the current state. If the StateMachineType has
SubStateMachines, the StateMachine also contains information about the current state of the
SubStateMachines. StateMachines which have their states completely defined by the type are
instances of a FiniteStateMachineType.

Each FiniteStateMachineType has one or more States. For simplicity, we do not distinguish
between different States like the start or the end states.

Each State can have one or more SubStateMachines.

Each FiniteStateMachineType may have one or more Transitions. A Transition is directed and
points from one State to another State.

Each Transition can have one or more Causes. A Cause leads a FiniteStateMachine to change
its current State from the source of the Transition to its target. In this annex we only specify
Method calls to be Causes of Transitions. Transitions do not have to have a Cause. A Transition
can always be caused by some server-internal logic that is not exposed in the AddressSpace.

Each Transition can have one or more Effects. An Effect occurs if the Transition is used to
change the State of a StateMachine. In this annex we only specify the generation of Events to
be Effects of a Transition. A Transition is not required to expose any Effects in the
AddressSpace.

Although this annex only specifies simple concepts for state machines, the provided
infrastructure is extensible. If needed, special States can be defined as well as additional
Causes or Effects.

B.4 Representation of state machines in the AddressSpace

B.4.1 Overview

The types defined in this annex are illustrated in Figure B.3. The MyFiniteStateMachineType is
a minimal example which illustrates how these Types can be used to describe a StateMachine.
See OPC 10000-9 and OPC 10000-10 for additional examples of StateMachines.

Release 1.04 84 OPC 10000-5: Information Model
StateMachineType StateVariableType
A
N A
CurrentState Id
LastTransition H Name
FiniteStateMachineType Number
f Effective
DisplayName
MyfFiniteStateMachine Type 4
‘ TransitionVariable Type
MyState E— StateType K H Id
ToState FromState
. N
GeneratesEvent ‘ ‘ StateNumber ame
MyT iti
yTransition) Number
L» TransitionType
g HasCause JF TransitionTime
MyMeth <«
@ TransitionNumber
HasEffect
—» MyEventType InitialState Type
Figure B.3 — The StateMachine Information Model
B.4.2 StateMachineType

The StateMachineType is the base ObjectType for all StateMachineTypes. It defines a single
Variable which represents the current state of the machine. An instance of this ObjectType shall
generate an Event whenever a significant state change occurs. The Server decides which state
changes are significant. Servers shall use the GeneratesEvent ReferenceType to indicate which
Event(s) could be produced by the StateMachine.

Subtypes may add Methods which affect the state of the machine. The Executable Attribute is
used to indicate whether the Method is valid given the current state of the machine. The
generation of AuditEvents for Methods is defined in OPC 10000-4. A StateMachine may not be
active. In this case, the CurrentState and LastTransition Variables shall have a status equal to
Bad_StateNotActive (see Table B.17).

Subtypes may add components which are instances of StateMachineTypes. These components
are considered to be sub-states of the StateMachine. SubStateMachines are only active when
the parent machine is in an appropriate state.

Events produced by SubStateMachines may be suppressed by the parent machine. In some
cases, the parent machine will produce a single Event that reflects changes in multiple
SubStateMachines.

OPC 10000-5: Information Model 85 Release 1.04

FiniteStateMachineType is subtype of StateMachineType that provides a mechanism to
explicitly define the states and transitions. A Server should use this mechanism if it knows what
the possible states are and the state machine is not trivial. The FiniteStateMachineType is
defined in B.4.5.

The StateMachineType is formally defined in Table B.1.

Table B.1 — StateMachineType Definition

Attribute Value

BrowseName StateMachineType

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the BaseObjectType defined in 6.2.
Note that a Reference to this subtype is not shown in the definition of the BaseObjectType.

HasSubtype ObjectType | FiniteStateMachineType Defined in B.4.5
HasComponent Variable CurrentState LocalizedText StateVariableType Mandatory
HasComponent Variable LastTransition LocalizedText TransitionVariableType Optional

CurrentState stores the current state of an instance of the StateMachineType. CurrentState
provides a human readable name for the current state which may not be suitable for use in
application control logic. Applications should use the Id Property of CurrentState if they need a
unique identifier for the state.

LastTransition stores the last transition which occurred in an instance of the StateMachineType.
LastTransition provides a human readable name for the last transition which may not be suitable
for use in application control logic. Applications should use the Id Property of LastTransition if
they need a unique identifier for the transition.

B.4.3 StateVariableType

The StateVariableType is the base VariableType for Variables that store the current state of a
StateMachine as a human readable name.

The StateVariableType is formally defined in Table B.2.

Table B.2 — StateVariableType Definition

Attribute Value

BrowseName StateVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the BaseDataVariableType defined in 7.4.
Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasSubtype VariableType | FiniteStateVariableType Defined in B.4.6

HasProperty Variable Id BaseDataType | PropertyType Mandatory
HasProperty Variable Name QualifiedName | PropertyType Optional
HasProperty Variable Number UInt32 PropertyType Optional
HasProperty Variable EffectiveDisplayName LocalizedText | PropertyType Optional

Id is a name which uniquely identifies the current state within the StateMachineType. A subtype
may restrict the DataType.

Name is a QualifiedName which uniquely identifies the current state within the
StateMachineType.

Number is an integer which uniquely identifies the current state within the StateMachineType.

EffectiveDisplayName contains a human readable name for the current state of the state
machine after taking the state of any SubStateMachines in account. There is no rule specified

Release 1.04 86 OPC 10000-5: Information Model

for which state or sub-state should be used. It is up to the Server and will depend on the
semantics of the StateMachineType.

StateMachines produce Events which may include the current state of a StateMachine. In that
case Servers shall provide all the optional Properties of the StateVariableType in the Event,
even if they are not provided on the instances in the AddressSpace.

B.4.4 TransitionVariableType

The TransitionVariableType is the base VariableType for Variables that store a Transition that
occurred within a StateMachine as a human readable name.

The SourceTimestamp for the value specifies when the Transition occurred. This value may
also be exposed with the TransitionTime Property.

The TransitionVariableType is formally defined in Table B.3.

Table B.3 — TransitionVariableType Definition

Attribute Value

BrowseName TransitionVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the BaseDataVariableType defined in 7.4.
Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasSubtype VariableType | FiniteTransitionVariableType Defined in B.4.7

HasProperty Variable Id BaseDataType | PropertyType Mandatory
HasProperty Variable Name QualifiedName | PropertyType Optional
HasProperty Variable Number Ulnt32 PropertyType Optional
HasProperty Variable TransitionTime UtcTime PropertyType Optional
HasProperty Variable EffectiveTransitionTime UtcTime PropertyType Optional

Id is a name which uniquely identifies a Transition within the StateMachineType. A subtype may
restrict the DataType.

Name is a QualifiedName which uniquely identifies a transition within the StateMachineType.
Number is an integer which uniquely identifies a transition within the StateMachineType.
TransitionTime specifies when the transition occurred.

EffectiveTransitionTime specifies the time when the current state or one of its substates was
entered. If, for example, a StateA is active and — while active — switches several times between
its substates SubA and SubB, then the TransitionTime stays at the point in time where StateA
became active whereas the EffectiveTransitionTime changes with each change of a substate.

B.4.5 FiniteStateMachineType

The FiniteStateMachineType is the base ObjectType for StateMachines that explicitly define
the possible States and Transitions. Once the States and Transitions are defined subtypes shall
not add new States and Transitions (see B.4.18). Subtypes may add causes or effects.

The States of the machine are represented with instances of the StateType ObjectType. Each
State shall have a BrowseName which is unique within the StateMachine and shall have a
StateNumber which shall also be unique across all States defined in the StateMachine. Be
aware that States in a SubStateMachine may have the same StateNumber or BrowseName as
States in the parent machine. A concrete subtype of FiniteStateMachineType shall define at
least one State.

A StateMachine may define one State which is an instance of the InitialStateType. This State
is the State that the machine goes into when it is activated.

OPC 10000-5: Information Model 87 Release 1.04

The Transitions that may occur are represented with instances of the TransitionType. Each
Transition shall have a BrowseName which is unique within the StateMachine and may have a
TransitionNumber which shall also be unique across all Transitions defined in the StateMachine.

The initial State for a Transition is a StateType Object which is the target of a FromState
Reference. The final State for a Transition is a StateType Object which is the target of a ToState
Reference. The FromState and ToState References shall always be specified.

A Transition may produce an Event. The Event is indicated by a HasEffect Reference to a
subtype of BaseEventType. The StateMachineType shall have GeneratesEvent References to
the targets of a HasEffect Reference for each of its Transitions.

A FiniteStateMachineType may define Methods that cause a transition to occur. These Methods
are targets of HasCause References for each of the Transitions that may be triggered by the
Method. The Executable Attribute for a Method is used to indicate whether the current State of
the machine allows the Method to be called.

A FiniteStateMachineType may have sub-state-machines which are represented as instances
of StateMachineType ObjectTypes. Each State shall have a HasSubStateMachine Reference
to the StateMachineType Object which represents the child States. The SubStateMachine is
not active if the parent State is not active. In this case the CurrentState and LastTransition
Variables of the SubStateMachine shall have a status equal to Bad_StateNotActive (see Table
B.17).

The FiniteStateMachineType is formally defined in Table B.4.

Table B.4 — FiniteStateMachineType Definition

Attribute Value

BrowseName FiniteStateMachineType

IsAbstract True

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the StateMachineType defined in 6.2.

HasComponent Variable CurrentState LocalizedText | FiniteStateVariableType Mandatory

HasComponent Variable LastTransition LocalizedText | FiniteTransitionVariableType Optional

HasComponent Variable AvailableStates Nodeld[] BaseDataVariableType Optional

HasComponent Variable AvailableTransitions Nodeld[] BaseDataVariableType Optional

In some Servers an instance of a StateMachine may restrict the States and / or Transitions that
are available. These restrictions may result from the internal design of the instance. For
example the StateMachine for an instrument’s limit alarm which only supports Hi and HiHi and
can not produce a Low or LowLow. An instance of a StateMachine may also dynamically change
the available States and/or Transitions based on its operating mode. For example when a piece
of equipment is in a maintenance mode the available States may be limited to some subset of
the States available during normal operation.

The AvailableStates Variable provides a Nodeld list of the States that are present in the
StateMachine instance. The list may change during operation of the Server.

The AvailableTransitions Variable provides a Nodeld list of the Transitions that are present in
the StateMachine instance. The list may change during operation of the Server.

An example of a FiniteStateMachine type is shown in Figure B.4 below.

Release 1.04 88 OPC 10000-5: Information Model
M Held (11) <—L
Unholding (12) Holding (10)
L)
,—K
Idle (4) D Starting (5) E Execute (6) F Complete (13)
— L
c [1
]
- Unsuspended (9) Suspending (7)
ResettingState
@) T
B] Suspending (8) <——H
A
N
Transactions to

Stopped (2)

o

Stopping (1)

<—{P,Q,R,S,T,UV,W,Y}—

Stopped (2) from
States (5 to 13)

Figure B.4 — Example of a FiniteStateMachine type

An example instance of the type is shown in Figure B.5. In this example the States {7,8,9} and
the Transitions {G,H,I,J} are not available in this instance.

M— Held (11) <L
Unholding (12) Holding (10)

]]

Complete (13)

iyl

Idle (4) D Starting (5) E Execute (6)

TC_I

ResettingState
®3)

B
L
]

Transactions to Stopped (2)
from
States (5,6,10,11,12 and 13)

Stopped (2) Stopping (1) [<—{S,T,U,V,W,Y}—

@)

Figure B.5 — Example of a FiniteStateMachine instance

B.4.6

The FiniteStateVariableType is a subtype of StateVariableType and is used to store the current
state of a FiniteStateMachine as a human readable name.

FiniteStateVariableType

The FiniteStateVariableType is formally defined in Table B.5.

OPC 10000-5: Information Model 89 Release 1.04

Table B.5 — FiniteStateVariableType Definition

Attribute Value

BrowseName FiniteStateVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the StateVariableType defined in B.4.3

HasProperty | Variable | Id | Nodeld | PropertyType | Mandatory

Id is inherited from the StateVariableType and overridden to reflect the required DataType. This
value shall be the Nodeld of one of the State Objects of the FiniteStateMachineType.

The Name Property is inherited from StateVariableType. Its Value shall be the BrowseName of
one of the State Objects of the FiniteStateMachineType.

The Number Property is inherited from StateVariableType. Its Value shall be the StateNumber
for one of the State Objects of the FiniteStateMachineType.

B.4.7 FiniteTransitionVariableType

The FiniteTransitionVariableType is a subtype of TransitionVariableType and is used to store a
Transition that occurred within a FiniteStateMachine as a human readable name.

The FiniteTransitionVariableType is formally defined in Table B.6.

Table B.6 — FiniteTransitionVariableType Definition

Attribute Value

BrowseName FiniteTransitionVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

References Node BrowseName DataType TypeDefinition Modelling
Class Rule

Subtype of the TransitionVariableType defined inB.4.4.
Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

HasProperty | Variable | Id | Nodeld | PropertyType | Mandatory

Id is inherited from the TransitionVariableType and overridden to reflect the required DataType.
This value shall be the Nodeld of one of the Transition Objects of the FiniteStateMachineType.

The Name Property is inherited from the TransitionVariableType. Its Value shall be the
BrowseName of one of the Transition Objects of the FiniteStateMachineType.

The Number Property is inherited from the TransitionVariableType. Its Value shall be the
TransitionNumber for one of the Transition Objects of the FiniteStateMachineType.

B.4.8 StateType
States of a FiniteStateMachine are represented as Objects of the StateType.

The StateType is formally defined in Table B.7.

Release 1.04 90 OPC 10000-5: Information Model

Table B.7 — StateType Definition

Attribute Value

BrowseName StateType

IsAbstract False

References NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2. Note that a Reference to this subtype is not shown in the definition of the
BaseObjectType.

HasProperty Variable StateNumber UInt32 | PropertyType | Mandatory
HasSubtype ObjectType | InitialStateType Defined in B.4.9

B.4.9 InitialStateType

The InitialStateType is a subtype of the StateType and is formally defined in Table B.8. An
Object of the InitialStateType represents the State that a FiniteStateMachine enters when it is
activated. Each FiniteStateMachine can have at most one State of type InitialStateType, but a
FiniteStateMachine does not have to have a State of this type.

A SubStateMachine goes into its initial state whenever the parent state is entered. However, a
state machine may define a transition that goes directly to a state of the SubStateMachine. In
this case the SubStateMachine goes into that State instead of the initial State. The two
scenarios are illustrated in Figure B.6. The transition from State5 to State6 causes the
SubStateMachine to go into the initial State (State7), however, the transition from State4 to
State8 causes the parent machine to go to State6 and the SubStateMachine will go to State8.

State4 State5

J

4 Stae6)

State8

. Method3

State7

- o

Figure B.6 — Example of an initial State in a sub-machine

If no initial state for a SubStateMachine exists and the State having the SubStateMachine is
entered directly, then the State of the SubStateMachine is server-specific.

OPC 10000-5: Information Model 91 Release 1.04

Table B.8 — InitialStateType Definition

Attribute Value

BrowseName InitialState Type

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the StateType defined in B.4.8

B.4.10 TransitionType

Transitions of a FiniteStateMachine are represented as Objects of the ObjectType
TransitionType formally defined in Table B.9.

Each valid Transition shall have exactly one FromState Reference and exactly one ToState
Reference, each pointing to an Object of the ObjectType StateType.

Each Transition can have one or more HasCause References pointing to the cause that triggers
the Transition.

Each Transition can have one or more HasEffect References pointing to the effects that occur
when the Transition was triggered.

Table B.9 — TransitionType Definition

Attribute Value

BrowseName TransitionType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2. Note that a Reference to this subtype is not shown in the definition of the
BaseObjectType.

HasProperty | Variable | TransitionNumber [uInt32 | PropertyType | Mandatory

B.4.11 FromState

The FromState ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to the starting State the
Transition connects.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode of this ReferenceType shall be an Object of the ObjectType
StateType or one of its subtypes.

The representation of the FromState ReferenceType in the AddressSpace is specified in Table
B.10.

Table B.10 — FromState ReferenceType

Attributes Value

BrowseName FromState

InverseName ToTransition

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

B.4.12 ToState

The ToState ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to the ending State the
Transition connects.

Release 1.04 92 OPC 10000-5: Information Model

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode of this ReferenceType shall be an Object of the ObjectType
StateType or one of its subtypes.

References of this ReferenceType may be only exposed uni-directional. Sometimes this is
required, for example, if a Transition points to a State of a sub-machine.

The representation of the ToState ReferenceType in the AddressSpace is specified in
Table B.11.

Table B.11 — ToState ReferenceType

Attributes Value

BrowseName ToState

InverseName FromTransition

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

B.4.13 HasCause

The HasCause ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point from a Transition to something that causes the
Transition. In this annex we only define Methods as Causes. However, the ReferenceType is
not restricted to point to Methods. The referenced Methods can, but do not have to point to a
Method of the StateMachineType. For example, it is allowed to point to a server-wide restart
Method leading the state machine to go into its initial state.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasCause ReferenceType in the AddressSpace is specified in Table
B.12.

Table B.12 — HasCause ReferenceType

Attributes Value

BrowseName HasCause

InverseName MayBeCausedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

B.4.14 HasEffect

The HasEffect ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to something that will be
effected when the Transition is triggered. In this annex we only define EventTypes as Effects.
However, the ReferenceType is not restricted to point to EventTypes.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffect ReferenceType in the AddressSpace is specified in
Table B.13.

OPC 10000-5: Information Model 93 Release 1.04

Table B.13 — HasEffect ReferenceType

Attributes Value

BrowseName HasEffect

InverseName MayBeEffectedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

B.4.15 HasSubStateMachine

The HasSubStateMachine ReferenceType is a concrete ReferenceType and can be used
directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point from a State to an instance of a
StateMachineType which represents the sub-states for the State.

The SourceNode of this ReferenceType shall be an Object of the ObjectType StateType. The
TargetNode shall be an Object of the ObjectType StateMachineType or one of its subtypes.
Each Object can be the TargetNode of at most one HasSubStateMachine Reference.

The SourceNode (the state) and the TargetNode (the SubStateMachine) shall belong to the
same StateMachine, that is, both shall be referenced from the same Object of type
StateMachineType using a HasComponent Reference or a subtype of HasComponent.

The representation of the HasSubStateMachine ReferenceType in the AddressSpace is
specified in Table B.14.

Table B.14 — HasSubStateMachine ReferenceType

Attributes Value

BrowseName HasSubStateMachine

InverseName SubStateMachineOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

B.4.16 TransitionEventType

The TransitionEventType is a subtype of the BaseEventType. It can be used to generate an

Event identifying that a Transition of a StateMachine was triggered. It is formally defined in
Table B.15.

Table B.15 - TransitionEventType

Attribute Value

BrowseNam TransitionEventType
e

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition I ModellingRule
Subtype of the base BaseEventType defined in 6.4.2

HasComponent Variable Transition LocalizedText TransitionVariableType Mandatory
HasComponent Variable FromState LocalizedText StateVariableType Mandatory
HasComponent Variable ToState LocalizedText StateVariableType Mandatory

The TransitionEventType inherits the Properties of the BaseEventType.

The inherited Property SourceNode shall be filled with the Nodeld of the StateMachine instance
where the Transition occurs. If the Transition occurs in a SubStateMachine, then the Nodeld of
the SubStateMachine has to be used. If the Transition occurs between a StateMachine and a
SubStateMachine, then the Nodeld of the StateMachine has to be used, independent of the
direction of the Transition.

Release 1.04 94 OPC 10000-5: Information Model

Transition identifies the Transition that triggered the Event.
FromState identifies the State before the Transition.
ToState identifies the State after the Transition.

B.4.17 AuditUpdateStateEventType

The AuditUpdateStateEventType is a subtype of the AuditUpdateMethodEventType. It can be
used to generate an Event identifying that a Transition of a StateMachine was triggered. It is
formally defined in Table B.16.

Table B.16 — AuditUpdateStateEventType

Attribute Value

BrowseName AuditUpdateStateEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the AuditUpdateMethodEventType defined in 6.4.27

HasProperty Variable OldStateld BaseDataType PropertyType Mandatory
HasProperty Variable NewStateld BaseDataType PropertyType Mandatory

The AuditUpdateStateEventType inherits the Properties of the AuditUpdateMethodEventType.

The inherited Property SourceNode shall be filled with the Nodeld of the StateMachine instance
where the State changed. If the State changed in a SubStateMachine, then the Nodeld of the
SubStateMachine has to be used.

The SourceName for Events of this type should be the effect that generated the event (e.g. the
name of a Method). If the effect was generated by a Method call, the SourceName should be
the name of the Method prefixed with “Method/”.

OldStateld reflects the Id of the state prior the change.
NewsStateld reflects the new Id of the state after the change.

B.4.18 Special Restrictions on subtyping StateMachines

In general, all rules on subtyping apply for StateMachine types as well. Some additional rules
apply for StateMachine types. If a StateMachine type is not abstract, subtypes of it shall not
change the behaviour of it. That means, that in this case a subtype shall not add States and it
shall not add Transitions between its States. However, a subtype may add SubStateMachines,
it may add Transitions from the States to the States of the SubStateMachine, and it may add
Causes and Effects to a Transition. In addition, a subtype of a StateMachine type shall not
remove States or Transitions.

B.4.19 Specific StatusCodes for StateMachines

In Table B.17 specific StatusCodes used for StateMachines are defined.

Table B.17 — Specific StatusCodes for StateMachines

Symbolic Id Description
Bad_StateNotActive The accessed state is not active.

OPC 10000-5: Information Model

95

Release 1.04

B.5 Examples of StateMachines in the AddressSpace

B.5.1 StateMachineType using inheritance

StateMachineType

/\

—l+ CurrentState ‘

T CurrentState
letEStatEMaChmeType No value assigned for the TypeDefinition
Q
o For simplicity the Properties of
—(CurrentState are not shown
MyStateMachineType
A GeneratesEvent
A
A >p
— Statel < ¥ StateType
—H State2 FromState
ToState
|
— Transitionl TransitionType
A >p
\
HasCause N
- HasEffect
. ‘ Contains the current state of MyStateMachine
MyStateMachine

Figure B.7 — Example of a StateMachineType using inheritance

In Figure B.7 an example of a StateMachine is given using the Notation defined in OPC 10000-
3. First, a new StateMachineType is defined, called “MyStateMachineType”, inheriting from the
base FiniteStateMachineType. It contains two States, “State1” and “State2” and a Transition
“Transition1” between them. The Transition points to a Method “MyMethod” as the Cause of the
Transition and an EventType “EventType1” as the Effect of the Transition.

Instances of “MyStateMachineType” can be created, for example “MyStateMachine”. It has a
Variable “CurrentState” representing the current State. The “MyStateMachine” Object only
includes the Nodes which expose information specific to the instance.

Release 1.04 96 OPC 10000-5: Information Model

B.5.2 StateMachineType with a sub-machine using inheritance

StateMachineType No value assigned for the TypeDefinition
£ For simplicity the Properties of
T CurrentState are not shown
FiniteStateMachineType |1 /
4% CurrentState ‘
MyStateMachineType AnotherStateMachineType
A i
A
— StateX
—H Statel <
— StateY
—H State2 FromState
ToState HasSubStateMachine
— Transitionl
—+| MySubMachine
‘ No value assigned ‘
CurrentState ‘
MyStateMachine _)
Contains the current state of MyStateMachine ‘

—I+ CurrentState

Contains the current state of MySubMachine if
MyStateMachine is in Statel, otherwise a BAD
status code is assigned to it.

MySubMachine

—H CurrentState

Figure B.8 — Example of a StateMachineType with a SubStateMachine using inheritance

Figure B.8 gives an example of a StateMachineType having a SubStateMachine for its “State1”.
For simplicity no effects and causes are shown, as well as type information for the States or
ModellingRules.

The “MyStateMachineType” contains an Object “MySubMachine” of type
“AnotherStateMachineType” representing a SubStateMachine. The “State1” references this

OPC 10000-5: Information Model 97 Release 1.04

Object with a HasSubStateMachine Reference, thus it is a SubStateMachine of “State1”. Since
“MySubMachine” is an Object of type “AnotherStateMachineType” it has a Variable representing
the current State. Since it is used as an InstanceDeclaration, no value is assigned to this
Variable.

An Object of “MyStateMachineType”, called “MyStateMachine” has Variables for the current
State, but also has an Object “MySubMachine” and a Variable representing the current state of
the SubStateMachine. Since the SubStateMachine is only used when “MyStateMachine” is in
“State1”, a client would receive a Bad_StateNotActive StatusCode when reading the
SubStateMachine CurrentState Variable if “MyStateMachine” is in a different State.

B.5.3 StateMachineType using containment

BaseObjectType No value assigned for the TypeDefinition

/

=

For simplicity the Properties of
CurrentState are not shown

FiniteStateMachineType

4{ CurrentState j

MyObjectType MyStateMachineType
GeneratesEvent
A
A
= MyComponent
] Statel <
+| MyStateMachine
—H State2 FromState
ToState
CurrentState]
—+ Transitionl

HasCause ‘
Y HasEffect—»|

EventTypel

MyComponent

‘ Contains the current state of MyStateMachine

MyStateMachine

CurrentState]

Figure B.9 — Example of a StateMachineType using containment

Figure B.9 gives an example of an ObjectType not only representing a StateMachine but also
having some other functionality. The ObjectType “MyObjectType” has an Object
“MyComponent” representing this other functionality. But it also contains a StateMachine
“MyStateMachine” of the type “MyStateMachineType”. Objects of “MyObjectType” also contain
such an Object representing the StateMachine and a Variable containing the current state of
the StateMachine, as shown in the Figure.

Release 1.04 98 OPC 10000-5: Information Model

B.5.4 Example of a StateMachine having Transition to SubStateMachine

The StateMachines shown so far only had Transitions between States on the same level, that
is, on the same StateMachine. Of cause, it is possible and often required to have Transitions
between States of the StateMachine and States of its SubStateMachine.

Because a SubStateMachine can be defined by another StateMachineType and this type can
be used in several places, it is not possible to add a bi-directional Reference from one of the
shared States of the SubStateMachine to another StateMachine. In this case it is suitable to
expose the FromState or ToState References uni-directional, that is, only pointing from the
Transition to the State and not being able to browse to the other direction. If a Transition points
from a State of a SubStateMachine to a State of another sub-machine, both, the FromState and
the ToState Reference, are handled uni-directional.

A Client shall be able to handle the information of a StateMachine if the ToState and FromState
References are only exposed as forward References and the inverse References are omitted.

Figure B.10 gives an example of a state machine having a transition from a sub-state to a state.

/ Statel \

StateX State2

:
ko

- ~

Figure B.10 — Example of a state machine with transitions from sub-states

In Figure B.11, the representation of this example as StateMachineType in the AddressSpace
is given. The “Transition1”, part of the definition of “MyStateMachineType”, points to the
“StateX” of the StateMachineType “AnotherStateMachineType”. The Reference is only exposed
as forward Reference and the inverse Reference is omitted. Thus, there is no Reference from
the “StateX” of “AnotherStateMachineType” to any part of “MyStateMachineType” and
“AnotherStateMachineType” can be used in other places as well.

OPC 10000-5: Information Model 99 Release 1.04

StateMachineType

No value assigned for the TypeDefinition

AN 1
/\ For simplicity the Properties of

T CurrentState CurrentState are not shown

FiniteStateMachineType

/\

/\

MyStateMachineType AnotherStateMachineType
A 3
A
StateX
— Statel
A
] State2
ToState HasSubStateMachine
—H Transition1 "~FromState—T
Reference is
only exposed
< uni-directional
—+ MySubMachine

‘ No value assigned ‘

CurrentState ‘

MyStateMachine

Contains the current state of MyStateMachine ‘

Contains the current state of MySubMachine if

—I+ CurrentState
MyStateMachine is in Statel, otherwise a BAD

MySubMachine status code is assigned to it.

—H CurrentState

Figure B.11 — Example of a StateMachineType having Transition to SubStateMachine

Release 1.04 100 OPC 10000-5: Information Model

Annex C
(normative)

File Transfer

C.1 Overview

This annex describes an information model for file transfer. Files could be modelled in OPC UA
as simple Variables using ByteStrings. However, the overall message size in OPC UA is limited
due to resources and security issues (denial of service attacks). Only accessing parts of the
array can lead to concurrency issues if one client is reading the array while others are
manipulating it. Therefore the ObjectType FileType is defined representing a file with Methods
to access the file. The life-cycle of a file stored on a hard disk and an instance of the FileType
representing the file in an OPC UA AddressSpace can be independent.

In addition to representing individual files this annex also defines a way to represent a whole
file system or a part of a file system. This can be done using the FileDirectoryType in
combination with the FileType. The FileDirectoryType provides Methods to create delete and
move files and directories. The root of a file system or part of a file system is represented by
an instance of the FileDirectoryType with the BrowseName FileSystem. All directories below
the root directory are represented by instances of the FileDirectoryType or a subtype. All files
below the root directory are represented by instances of the FileType or a subtype.

In different situations like transfer of configuration files or firmware update, the files are
temporary and an additional handshake is necessary to create the file for reading or to apply
the file after writing it to the server. This use case is covered by the TemporaryFileTransferType
defined in this annex.

This annex is an integral part of this standard, that is, the types defined in this annex have to
be used as defined. However, it is not required but strongly recommended that a Server uses
these types to expose its files. The defined types may be subtyped to refine their behaviour.
C.2 FileType

This ObjectType defines a type for files. It is formally defined in Table C.1.

Table C.1 - FileType

Attribute Value

BrowseName FileType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in 6.2

HasProperty Variable Size Uint64 PropertyType Mandatory

HasProperty Variable Writable Boolean PropertyType Mandatory

HasProperty Variable UserWritable Boolean PropertyType Mandatory

HasProperty Variable OpenCount UInt16 PropertyType Mandatory

HasProperty Variable MimeType String PropertyType Optional

HasComponent Method Open Defined in C.2.1 Mandatory

HasComponent Method Close Defined in C.2.2 Mandatory

HasComponent Method Read Defined in C.2.3 Mandatory

HasComponent Method Write Defined in C.2.4 Mandatory

HasComponent Method GetPosition Defined in C.2.5 Mandatory

HasComponent Method SetPosition Defined in C.2.6 Mandatory

Size defines the size of the file in Bytes. When a file is opened for write the size might not be

accurate.

Writable indicates whether the file is writable. It does not take any user access rights into
account, i.e. although the file is writable this may be restricted to a certain user / user group.

OPC 10000-5: Information Model 101 Release 1.04

The Property does not take into account whether the file is currently opened for writing by
another client and thus currently locked and not writable by others.

UserWritable indicates whether the file is writable taking user access rights into account. The
Property does not take into account whether the file is currently opened for writing by another
client and thus currently locked and not writable by others.

OpenCount indicates the number of currently valid file handles on the file.
The optional Property MimeType contains the media type of the file based on RFC 2046.
Note that all Methods on a file require a fileHandle, which is returned in the Open Method.

C.21 Open

Open is used to open a file represented by an Object of FileType. When a client opens a file it
gets a file handle that is valid while the session is open. Clients shall use the Close Method to
release the handle when they do not need access to the file anymore. Clients can open the
same file several times for read. A request to open for writing shall return Bad_NotWritable
when the file is already opened. A request to open for reading shall return Bad_NotReadable
when the file is already opened for writing.

Signature
Open (
[in] Byte mode
[out] UInt32 fileHandle
) ;
Argument Description
mode Indicates whether the file should be opened only for read operations or for read and
write operations and where the initial position is set.
The mode is an 8-bit unsigned integer used as bit mask with the structure defined in the
following table:
Field Bit Description
Read 0 The file is opened for reading. If this bit is not set the
Read Method cannot be executed.
Write 1 The file is opened for writing. If this bit is not set the
Write Method cannot be executed.
EraseExisting 2 This bit can only be set if the file is opened for writing
(Write bit is set). The existing content of the file is
erased and an empty file is provided.
Append 3 When the Append bit is set the file is opened at end
of the file, otherwise at begin of the file. The
SetPosition Method can be used to change the
position.
Reserved 4:7 Reserved for future use. Shall always be zero.
fileHandle A handle for the file used in other method calls indicating not the file (this is done by the
Object of the Method call) but the access request and thus the position in the file. The
fileHandle is generated by the server and is unique for the Session. Clients cannot
transfer the fileHandle to another Session but need to get a new fileHandle by calling
the Open Method.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotReadable See OPC 10000-4 for a general description. File might be locked and thus not readable.
Bad_NotWritable See OPC 10000-4 for a general description.

Bad_InvalidState See OPC 10000-4 for a general description. The file is locked and thus not writable.
Bad_InvalidArgument See OPC 10000-4 for a general description. Mode setting is invalid.

Bad_NotFound See OPC 10000-4 for a general description.

Bad_UnexpectedError See OPC 10000-4 for a general description.

Table C.2 specifies the AddressSpace representation for the Open Method.

Release 1.04 102 OPC 10000-5: Information Model

Table C.2 — Open Method AddressSpace Definition

Attribute Value

BrowseName Open

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument([] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

C.2.2 Close

Close is used to close a file represented by a FileType. When a client closes a file the handle
becomes invalid.

Signature

Close (
[in] UInt32 fileHandle

) ;

Argument Description
fileHandle A handle indicating the access request and thus indirectly the position inside the file.

Method Result Codes (defined in Call Service)

Result Code Description
Bad_InvalidArgument See OPC 10000-4 for a general description. Invalid file handle in call.

Table C.3 specifies the AddressSpace representation for the Close Method.

Table C.3 — Close Method AddressSpace Definition

Attribute Value

BrowseName Close

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory
Cc.2.3 Read

Read is used to read a part of the file starting from the current file position. The file position is
advanced by the number of bytes read.

Signature

Read (

[in] UInt32 fileHandle

[in] Int32 length

[out] ByteString data

) ;

Argument Description
fileHandle A handle indicating the access request and thus indirectly the position inside the file.
Length Defines the length in bytes that should be returned in data, starting from the current

position of the file handle. If the end of file is reached all data until the end of the file is
returned. The Server is allowed to return less data than specified length.

Only positive values are allowed.

Data Contains the returned data of the file. If the ByteString is empty it indicates that the end
of the file is reached.

Method Result Codes (defined in Call Service)

OPC 10000-5: Information Model 103 Release 1.04

Result Code Description

Bad_InvalidArgument See OPC 10000-4 Invalid file handle in call or non-positive length.
Bad_UnexpectedError See OPC 10000-4 for a general description.

Bad_InvalidState See OPC 10000-4 for a general description. File was not opened for read access.

Table C.4 specifies the AddressSpace representation for the Read Method.

Table C.4 — Read Method AddressSpace Definition

Attribute Value

BrowseName Read

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

cC.24 Write

Write is used to write a part of the file starting from the current file position. The file position is
advanced by the number of bytes written.

Signature

Write (
[in] UInt32 fileHandle
[in] ByteString data
) ;

Argument Description
fileHandle A handle indicating the access request and thus indirectly the position inside the file.
data Contains the data to be written at the position of the file. It is server-dependent whether the

written data are persistently stored if the session is ended without calling the Close Method with
the fileHandle.
Writing an empty or null ByteString returns a Good result code without any affect on the file.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument See OPC 10000-4 for a general description. Invalid file handle in call.
Bad_NotWritable See OPC 10000-4 for a general description. File might be locked and thus not writable.
Bad_InvalidState See OPC 10000-4 for a general description. File was not opened for write access.

Table C.5 specifies the AddressSpace representation for the Write Method.

Table C.5 — Write Method AddressSpace Definition

Attribute Value

BrowseName Write

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory

C.25 GetPosition
GetPosition is used to provide the current position of the file handle.

Signature

GetPosition (
[in] UInt32 fileHandle
[out] UInt64 position
) ;

Release 1.04 104 OPC 10000-5: Information Model
Argument Description
fileHandle A handle indicating the access request and thus indirectly the position inside the file.
Position The position of the fileHandle in the file. If a Read or Write is called it starts at that
position.

Method Result Codes (defined in Call Service)

Result Code

Description

Bad_InvalidArgument

See OPC 10000-4 for a general description. Invalid file handle in call.

Table C.6 specifies the AddressSpace representation for the GetPosition Method.

Table C.6 — GetPosition Method AddressSpace Definition

Attribute Value

BrowseName GetPosition

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

C.2.6 SetPosition
SetPosition is used to set the current position of the file handle.

Signature

SetPosition (
UInt32 fileHandle
UInt64 position

[in]
[in]
) ;

Argument

Description

fileHandle

A handle indicating the access request and thus indirectly the position inside the file.

Position

The position to be set for the fileHandle in the file. If a Read or Write is called it starts at
that position. If the position is higher than the file size the position is set to the end of the

file.

Method Result Codes (defined in Call Service)

Result Code

Description

Bad_InvalidArgument

See OPC 10000-4 for a general description. Invalid file handle in call.

Table C.7 specifies the AddressSpace representation for the SetPosition Method.

Table C.7 — SetPosition Method AddressSpace Definition

Attribute Value

BrowseName SetPosition

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory

C.3 File System

C.31 FileDirectoryType

This ObjectType defines a type for the representation of file directories. It is formally defined in

Table C.8.

It is expected that
FileDirectoryType with additional functionalities like Methods for creating symbolic links or

OPC UA Servers will

create vendor-specific subtypes of the

OPC 10000-5: Information Model

105

setting access permissions. OPC UA Clients providing specialized file transfer
should be prepared to expose such additional Methods to the user.

Table C.8 — FileDirectoryType

Release 1.04

user interfaces

Attribute Value

BrowseName FileDirectoryType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of the FolderType defined in 6.6.

Organizes Object <FileDirectoryName> FileDirectoryType OptionalPlaceholder
Organizes Object <FileName> FileType OptionalPlaceholder
HasComponent Method CreateDirectory Defined in C.3.3 Mandatory
HasComponent Method CreateFile Defined in C.3.4 Mandatory
HasComponent Method Delete Defined in C.3.5 Mandatory
HasComponent Method MoveOrCopy Defined in C.3.6 Mandatory

Instances of the ObjectType contain a list of FileDirectoryType Objects representing the
subdirectories of the file directory represented by the instance of this ObjectType.

Instances of the ObjectType contain a list of FileType Objects representing the files in the file
directory represented by the instance of this ObjectType.

C.3.2

The support of file directory structures is declared by aggregating an instance of the
FileDirectoryType with the BrowseName FileSystem as illustrated in Figure C.1.

FileSystem Object

|
: 1 Objects
| BaseObjectType :
|
| :
: 1 FileSystem
| | ::FileDirectory Type
: FileType 1
| |
: : Devicel
| I
| FolderType |
: : FileSystem
| i | :FileDirectory Type
| I
i FileDirectoryType | | -
| | Directoryl
| | ::FileDirectory Type
e S J
CreateDirectory FileA
::FileType
CreateFile
Filel
::FileType
MoveOrCopy File2
::FileType

Figure C.1 — FileSystem Example

The Object representing the root of a file directory structure shall have the BrowseName
FileSystem. An OPC UA Server may have different FileSystem Objects in the AddressSpace.
HasComponent is used to reference a FileSystem from aggregating Objects like the Objects
Folder or the Object representing a device.

C.3.3
CreateDirectory is used to create a new FileDirectoryType Object organized by this Object.

CreateDirectory

Signature

CreateDirectory (
[in] String
[out] NodeId

directoryName
directoryNodeId

Release 1.04

) ;

106 OPC 10000-5: Information Model

Argument

Description

directoryName

The name of the directory to create. The name is used for the BrowseName and
DisplayName of the directory object and also for the directory in the file system.

For the BrowseName, the directoryName is used for the name part of the
QualifiedName. The namespace index is Server specific.

For the DisplayName, the directoryName is used for the text part of the LocalizedText.
The locale part is Server specific.

directoryNodeld

The Nodeld of the created directory Object.

Method Result Codes (defined in Call Service)

Result Code

Description

Bad_BrowseNameDuplicated

See OPC 10000-4 for a general description. A directory with the name already
exists.

Bad_UserAccessDenied

See OPC 10000-4 for a general description.

Table C.9 specifies the AddressSpace representation for the CreateDirectory Method.

Table C.9 — CreateDirectory Method AddressSpace Definition

Attribute Value

BrowseName CreateDirectory

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument(] PropertyType Mandatory
C.3.4 CreateFile

CreateFile is used to create a new FileType Object organized by this Object. The created file
can be written using the Write Method of the FileType.

Signature

CreateFile (

[in] String fileName
[in] Boolean requestFileOpen
[out] NodeId fileNodeId
[out] UInt32 fileHandle
) ;
Argument Description
fileName The name of the file to create. The name is used for the BrowseName and

DisplayName of the file object and also for the file in the file system.

For the BrowseName, the fileName is used for the name part of the QualifiedName. The
namespace index is Server specific.

For the DisplayName, the fileName is used for the text part of the LocalizedText. The
locale part is Server specific.

requestFileOpen

Flag indicating if the new file should be opened with the Write and Read bits set in the
open mode after the creation of the file. If the flag is set to True, the file is created and
opened for writing. If the flag is set to False, the file is just created.

fileNodeld

The Nodeld of the created file Object.

fileHandle

The fileHandle is returned if the requestFileOpen is set to True.

The fileNodeld and the fileHandle can be used to access the new file through the
FileType Object representing the new file.

If requestFileOpen is set to False, the returned value shall be 0 and shall be ignored by
the caller.

Method Result Codes (defined in Call Service)

Result Code

Description

Bad_BrowseNameDuplicated

See OPC 10000-4 for a general description. A file with the name already exists.

Bad_UserAccessDenied

See OPC 10000-4 for a general description.

OPC 10000-5: Information Model 107 Release 1.04

Table C.10 specifies the AddressSpace representation for the CreateFile Method.

Table C.10 — CreateFile Method AddressSpace Definition

Attribute Value

BrowseName CreateFile

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

C.3.5 Delete
Delete is used to delete a file or directory organized by this Object.

Signature

Delete (
[in] NodeId objectToDelete

) ;

Argument Description

objectToDelete The Nodeld of the file or directory to delete.

In the case of a directory, all file and directory Objects below the directory to delete are
deleted recursively.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound See OPC 10000-4 for a general description. A file or directory with the provided
Nodeld is not organized by this object.

Bad_InvalidState See OPC 10000-4 for a general description. The file or directory is locked and thus
cannot be deleted.

Bad_UserAccessDenied See OPC 10000-4 for a general description.

Table C.11 specifies the AddressSpace representation for the Delete Method.

Table C.11 — Delete Method AddressSpace Definition

Attribute Value

BrowseName Delete

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument]] PropertyType Mandatory

C.3.6 MoveOrCopy

MoveOrCopy is used to move or copy a file or directory organized by this Object to another
directory or to rename a file or directory.

out] NodeId newNodeId

Signature
MoveOrCopy (
[in] NodeId objectToMoveOrCopy
[in] NodeId targetDirectory
[in] Boolean createCopy
[in] String newName
[

)i

Release 1.04 108 OPC 10000-5: Information Model
Argument Description
objectToMoveOrCopy The Nodeld of the file or directory to move or copy.

targetDirectory The Nodeld of the target directory of the move or copy command. If the file or directory

is just renamed, the targetDirectory matches the Objectld passed to the method call.

createCopy A flag indicating if a copy of the file or directory should be created at the target directory.

newName The new name of the file or directory in the new location. If the string is empty, the
name is unchanged.

newNodeld The Nodeld of the moved or copied object. Even if the Object is moved, the Server may

return a new Nodeld.

Method Result Codes (defined in Call Service)

Result Code
Bad_BrowseNameDuplicated

Description

See OPC 10000-4 for a general description. A file or directory with the name
already exists.

See OPC 10000-4 for a general description. A file or directory with the provided
Nodeld is not organized by this object.

See OPC 10000-4 for a general description. The file or directory is locked and thus
cannot be moved or copied.

See OPC 10000-4 for a general description.

Bad_NotFound

Bad_|InvalidState

Bad_UserAccessDenied

Table C.12 specifies the AddressSpace representation for the MoveOrCopy Method.

Table C.12 — MoveOrCopy Method AddressSpace Definition

Attribute Value

BrowseName MoveOrCopy

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument(] PropertyType Mandatory

C.4 Temporary File Transfer

C4.1 TemporaryFileTransferType

This ObjectType defines a type for the representation of temporary file transfers. It is formally
defined in Table C.13. The Methods GenerateFileForRead or GenerateFileForWrite generate a
temporary FileType Object that is not browsable in the AddressSpace and can only be accessed
with the Nodeld and FileHandle returned by the Methods in the same Session. This Object is
used to transfer the temporary file between OPC UA Client and Server.

Table C.13 — TemporaryFileTransferType

Attribute Value

BrowseName TemporaryFileTransferType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | Modelling Rule

Subtype of the BaseObjectType defined in 6.2.

HasProperty Variable ClientProcessingTimeout | Duration | PropertyType Mandatory

HasComponent Method GenerateFileForRead Defined in C.4.3 Mandatory

HasComponent Method GenerateFileForWrite Defined in C.4.4 Mandatory

HasComponent Method CloseAndCommit Defined in C.4.5 Mandatory

HasComponent | Object <TransferState> FileTransferStateMachine OptionalPlaceholder
Type

The Property ClientProcessingTimeout defines the maximum time in milliseconds the Server
accepts between Method calls necessary to complete a file read transfer or a file write transfer
transaction. This includes the Method calls to read or write the file content from the virtual
temporary FileType Object. If the Client exceeds the timeout between Method calls, the Server
may close the file and cancel the corresponding transfer transaction. Any open temporary
transfer file shall be deleted if the Session used to create the file is no longer valid.

The TransferState Objects are used to expose the state of a transfer transaction in the case
that the preparation of a file for reading or the processing of the file after writing completes

OPC 10000-5: Information Model 109 Release 1.04

asynchronous after the corresponding Method execution. If the transactions are completed
when the Method is returned, the optional TransferState Objects are not available. A Server
may allow more than one parallel read transfer. A Server may not allow more than one write
transfer or a parallel read and writer transfer.

C.4.2 File Transfer Sequences

The sequence of Method calls necessary to execute a read file transfer transaction is illustrated
in Figure C.2.

OPC UA Client FileTransfer Objectl TemporaryFile

GenerateFileForRead() :

i

! »

! Read()
: Read()
L |
|

|

|

I

Cloée()
|
]
|

- y_v__v_____|

Figure C.2 — Read File Transfer Example Sequence

The read file transfer transaction is started with the Method GenerateFileForRead defined by
the TemporaryFileTransferType. After a successful call of this Method, the Client reads the file
content by calling the Method Read defined by the FileType until the whole file is transferred
from the Server to the Client. The transaction is completed by calling the Method Close defined
by the FileType.

The sequence of Method calls necessary to execute a write file transfer transaction is illustrated
in Figure C.3.

OPC UA Client FileTransfer Object2 TemporaryFile

GenerateFileForWrite()

CloseAndCommit() |

————_——_ N __w_____ |

i
|
|
: Write()
i
|
]
|

Figure C.3 — Write File Transfer Example Sequence

The write file transfer transaction is started with the Method StartWriteTransfer defined by the
TemporaryFileTransferType. After a successful call of this Method, the Client writes the file
content by calling the Method Write defined by the FileType until the whole file is transferred
from the Client to the Server. The transaction is completed by calling the Method

Release 1.04 110 OPC 10000-5: Information Model

CloseAndCommit defined by the TemporaryFileTransferType. If the Client wants to abort the
operation it uses the Close Method of the temporary FileType Object.

C.4.3 GenerateFileForRead

GenerateFileForRead is used to start the read file transaction. A successful call of this
Method creates a temporary FileType Object with the file content and returns the Nodeld of
this Object and the file handle to access the Object.

Signature

GenerateFileForRead (

[in] BaseDataType generateOptions
out] NodeId fileNodeId
fileHandle

out] NodeId

[
[out] UInt32
[completionStateMachine

) 14

Description
The optional parameter can be used to specify server specific file generation options.
To allow such options, the Server shall specify a concrete DataType in the Argument
Structure for this argument in the instance of the Method.
If the DataType is BaseDataType, the Client shall pass Null for this argument.
Examples for concrete DataTypes are
OptionsSet Used to provide a bit mask for file content selection
String Can be used to provide a string filter or a regular expression
Structure Can be used to provide a structure with create settings e.g. to
create a report
Enumeration ~ Can be used to provide a list of options
Nodeld of the temporary file.
The fileHandle of the opened TransferFile.
The fileHandle can be used to access the TransferFile Methods Read and Close.
If the creation of the file is completed asynchronous, the parameter returns the Nodeld
of the corresponding FileTransferStateMachineType Object.
If the creation of the file is already completed, the parameter is null.
If a FileTransferStateMachineType Object Nodeld is returned, the Read Method of the
file fails until the TransferState changed to ReadTransfer.

Argument
generateOptions

fileNodeld
fileHandle

completionStateMachine

Method Result Codes (defined in Call Service)

Result Code
Bad_UserAccessDenied

Description
See OPC 10000-4 for a general description.

Table C.14 specifies the AddressSpace representation for the GenerateFileForRead Method.

Table C.14 - GenerateFileForRead Method AddressSpace Definition

Attribute Value

BrowseName StartReadTransfer

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument][] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory

C.4.4 GenerateFileForWrite

GenerateFileForWrite is used to start the write file transaction. A successful call of this
Method creates a temporary FileType Object and returns the Nodeld of this Object and the file
handle to access the Object.

Signature

GenerateFileForWrite (

[in] BaseDataType generateOptions
[out] NodeId fileNodeId
[out] UInt32 fileHandle

OPC 10000-5: Information Model 111 Release 1.04

) ;

Argument Description
generateOptions The optional parameter can be used to specify server specific file generation options.
To allow such options, the Server shall specify a concrete DataType in the Argument
Structure for this argument in the instance of the Method.
If the DataType is BaseDataType, the Client shall pass Null for this argument.
Examples for concrete DataTypes are

OptionsSet Used to provide a bit mask for file use selection

Structure Can be used to provide a structure with create settings e.g.

firmware update settings

Enumeration ~ Can be used to provide a list of options like file handling options
fileNodeld Nodeld of the temporary file.
fileHandle The fileHandle of the opened TransferFile.
The fileHandle can be used to access the TransferFile Methods Write and Close.

Method Result Codes (defined in Call Service)

Result Code Description
Bad_UserAccessDenied See OPC 10000-4 for a general description.

Table C.15 specifies the AddressSpace representation for the GenerateFileForWrite Method.

Table C.15 — GenerateFileForWrite Method AddressSpace Definition

Attribute Value

BrowseName StartWriteTransfer

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable OutputArguments | Argument(] PropertyType Mandatory

Cc.4.5 CloseAndCommit

CloseAndCommit is used to apply the content of the written file and to delete the temporary
file after the completion of the transaction.

Signature

CloseAndCommi t (
[in] UInt32 fileHandle
[out] NodeId completionStateMachine
) ;

Argument Description

fileHandle The fileHandle used to write the file.

completionStateMachine If the processing of the file is completed asynchronous, the parameter returns the
Nodeld of the corresponding FileTransferStateMachineType Object.

If the processing of the file is already completed, the parameter is null.

If a FileTransferStateMachineType Object Nodeld is returned, the processing is in
progress until the TransferState changed to Idle.

Method Result Codes (defined in Call Service)

Result Code Description
Bad_UserAccessDenied See OPC 10000-4 for a general description.

Table C.16 specifies the AddressSpace representation for the CloseAndCommit Method.

Release 1.04

112 OPC 10000-5: Information Model

Table C.16 — CloseAndCommit Method AddressSpace Definition

Attribute Value

BrowseName CloseAndCommit

References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument([] PropertyType Mandatory
HasProperty Variable OutputArguments | Argument[] PropertyType Mandatory
C.4.6

FileTransferStateMachineType

The states of the file transfer state machine are shown in Figure C.4.

Y
ReadPrepare
GenerateFileForRead
Method called \ J

Error during file preparation

File preparation finished
)

ReadTransfer

File Close Method called
Error during read transfer.

CloseAndCommit Method called

Error during applying write

Apply finished
ApplyingWrite

Reset:

Figure C.4 — File Transfer States

The FileTransferStateMachineType and the related type are illustrated in Figure C.5.

OPC 10000

-5: Information Model

TemporaryFileTransferType

1

ClientProcessingTimeout

—

FileTransferStateMachine:
<TransferState>

113

GenerateFileForWrite

CloseAndCommit

GenerateFileForRead HasCausb‘

HasCause———

:

Release 1.04

Finite StateMachineType

FileTransferStateMachine Type

TransitionType:
IdleToReadPrepare

InitialStateType:

TransitionType:

ReadPrepareToRead Transfer

Idle

StateType:

TransitionType:
ReadTransferToldle

ReadPrepare

StateType:

TransitionType:
IdleT oApplyWrite

ReadTransfer

StateType:

TransitionType:
ApplyWriteToldle

ApplyingWrite

StateType:

TransitionType:
ReadPrepareToError

Error

TransitionType:
ReadTransferToError

TransitionType:
ApplyWriteT oError

TransitionType:
ErrorToldle

ReseD

-

al

Figure C.5 — FileTransferStateMachineType

This ObjectType defines the StateMachine for asynchronous processing of temporary file

transfers. It is formally defined in Table C.17.

Table C.17 — FileTransferStateMachineType

Attribute Value

BrowseName FileTransferStateMachineType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of the FiniteStateMachineType defined in B.4.5.

HasComponent Object Idle InitialState Type
HasComponent Object ReadPrepare StateType
HasComponent Object ReadTransfer StateType
HasComponent Object ApplyWrite StateType
HasComponent Object Error StateType
HasComponent Object IdleToReadPrepare TransitionType
HasComponent Object ReadPrepareToReadTransfer TransitionType
HasComponent Object ReadTransferToldle TransitionType
HasComponent Object IdleToApplyWrite TransitionType
HasComponent Object ApplyWriteToldle TransitionType
HasComponent Object ReadPrepareToError TransitionType
HasComponent Object ReadTransferToError TransitionType
HasComponent Object ApplyWriteToError TransitionType
HasComponent Object ErrorToldle TransitionType
HasComponent Method Reset Defined in C 4.7

Release 1.04 114 OPC 10000-5: Information Model

Table C.18 — FileTransferStateMachineType transitions

BrowseName | References | BrowseName | TypeDefinition

Transitions

IdleToReadPrepare FromState Idle StateType
ToState ReadPrepare StateType
HasEffect TransitionEventType

ReadPrepareToReadTransfer FromState ReadPrepare StateType
ToState ReadTransfer StateType
HasEffect TransitionEventType

ReadTransferToldle FromState ReadTransfer StateType
ToState Idle StateType
HasEffect TransitionEventType

IdleToApplyWrite FromState Idle StateType
ToState ApplyWrite StateType
HasEffect TransitionEventType

ApplyWriteToldle FromState ApplyWrite StateType
ToState Idle StateType
HasEffect TransitionEventType

ReadPrepareToError FromState ReadPrepare StateType
ToState Error StateType
HasEffect TransitionEventType

ReadTransferToError FromState ReadTransfer StateType
ToState Error StateType
HasEffect TransitionEventType

ApplyWriteToError FromState ApplyWrite StateType
ToState Error StateType
HasEffect TransitionEventType

ErrorToldle FromState Error StateType
ToState Idle StateType
HasEffect TransitionEventType

c.4.7 Reset
Reset is used to reset the Error state of a FileTransferStateMachineType Object.

Signature

Reset () ;

OPC 10000-5: Information Model 115 Release 1.04

Annex D
(normative)

DataTypeDictionary

D.1 Overview

This annex defines a way to provide encoding information for custom DataTypes. In previous
releases of the specification this approach was defined in OPC 10000-3. In OPC 10000-3 a
simplified approach is now defined having a DataTypeDefinition Attribute on the DataType
Node. The approach using DataTypeDictionaries is provided for backwards compatibility and in
case some specific requirements cannot be fulfilled with the simplified approach. It is
recommended to only use the approach using the DataTypeDefinition Attribute.

D.2 Data Type Model

OPC 10000-3 defines the data type model. A DataType points to one or several
DataTypeEncoding Objects. The approach of DataTypeDictionaries extends this model (see
Figure D.1). The DataTypeEncoding Object points to exactly one Variable of type
DataTypeDescriptionType. The DataTypeDescription Variable belongs to a DataTypeDictionary
Variable.

DataType

\Each DataType can have
several DataTypeEncoding,
e.g. “Default”, “UA Binary”,

and “XML”
A 4
Object Object Object
of ObjectType of ObjectType of ObjectType
DataTypeEncodingType DataTypeEncodingType DataTypeEncodingType

Several DataTypeEncoding can point

y to the same DataTypeDescription, h 4
Variable e.g. “Default” and “UA Binary” Variable
of VariableType of VariableType
DataTypeDescriptionType DataTypeDescriptionType
Value identifies the description
of the data type in the
v DataTypeDictionary v
Variable Variable
of VariableType of VariableType
DataTypeDictionaryType DataTypeDictionaryType
v \4
Object Object
of ObjectType of ObjectType
DataTypeSystemType DataTypeSystemType

Figure D.1 — DataType Model

The DataTypeDictionary describes a set of DataTypes in sufficient detail to allow Clients to
parse/interpret Variable Values that they receive and to construct Values that they send. The

Release 1.04 116 OPC 10000-5: Information Model

DataTypeDictionary is represented as a Variable of type DataTypeDictionaryType in the
AddressSpace, the description about the DataTypes is contained in its Value Attribute. All
containing DataTypes exposed in the AddressSpace are represented as Variables of type
DataTypeDescriptionType. The Value of one of these Variables identifies the description of a
DataType in the Value Attribute of the DataTypeDictionary.

The DataType of a DataTypeDictionary Variable is always a ByteString. The format and
conventions for defining DataTypes in this ByteString are defined by DataTypeSystems.
DataTypeSystems are identified by Nodelds. They are represented in the AddressSpace as
Objects of the ObjectType DataTypeSystemType. Each Variable representing a
DataTypeDictionary references a DataTypeSystem Object to identify their DataTypeSystem.

A client shall recognise the DataTypeSystem to parse any of the type description information.
OPC UA Clients that do not recognise a DataTypeSystem will not be able to interpret its type
descriptions, and consequently, the values described by them. In these cases, Clients interpret
these values as opaque ByteStrings.

OPC Binary and W3C XML Schema are examples of DataTypeSystems. The OPC Binary
DataTypeSystem is defined in Annex E. OPC Binary uses XML to describe binary data values.
W3C XML Schema is specified in XML Schema Part 1 and XML Schema Part 2.

D.3 DataTypeDictionary, DataTypeDescription, DataTypeEncoding and
DataTypeSystem

A DataTypeDictionary is an entity that contains a set of type descriptions, such as an XML
schema. DataTypeDictionaries are defined as Variables of the VariableType
DataTypeDictionaryType.

A DataTypeSystem specifies the format and conventions for defining DataTypes in
DataTypeDictionaries. DataTypeSystems are defined as Objects of the ObjectType
DataTypeSystemType.

The ReferenceType used to relate Objects of the ObjectType DataTypeSystemType to
Variables of the VariableType DataTypeDictionaryType is the HasComponent ReferenceType.
Thus, the Variable is always the TargetNode of a HasComponent Reference; this is a
requirement for Variables. However, for DataTypeDictionaries the Server shall always provide
the inverse Reference, since it is necessary to know the DataTypeSystem when processing the
DataTypeDictionary.

Changes may be a result of a change to a type description, but it is more likely that dictionary
changes are a result of the addition or deletion of type descriptions. This includes changes
made while the Server is offline so that the new version is available when the Server restarts.
Clients may subscribe to the DataTypeVersion Property to determine if the DataTypeDictionary
has changed since it was last read.

The Server may, but is not required to, make the DataTypeDictionary contents available to
Clients through the Value Attribute. Clients should assume that DataTypeDictionary contents
are relatively large and that they will encounter performance problems if they automatically read
the DataTypeDictionary contents each time they encounter an instance of a specific DataType.
The client should use the DataTypeVersion Property to determine whether the locally cached
copy is still valid. If the client detects a change to the DataTypeVersion, then it shall re-read
the DataTypeDictionary. This implies that the DataTypeVersion shall be updated by a Server
even after restart since Clients may persistently store the locally cached copy.

The Value Attribute of the DataTypeDictionary containing the type descriptions is a ByteString
whose formatting is defined by the DataTypeSystem. For the “XML Schema” DataTypeSystem,
the ByteString contains a valid XML Schema document. For the “OPC Binary” DataTypeSystem,
the ByteString contains a string that is a valid XML document. The Server shall ensure that any
change to the contents of the ByteString is matched with a corresponding change to the
DataTypeVersion Property. In other words, the client may safely use a cached copy of the
DataTypeDictionary, as long as the DataTypeVersion remains the same.

OPC 10000-5: Information Model 117 Release 1.04

DataTypeDictionaries are complex Variables which expose their DataTypeDescriptions as
Variables using HasComponent References. A DataTypeDescription provides the information
necessary to find the formal description of a DataType within the DataTypeDictionary. The
Value of a DataTypeDescription depends on the DataTypeSystem of the DataTypeDictionary.
When using “OPC Binary” dictionaries the Value shall be the name of the TypeDescription.
When using “XML Schema” dictionaries the Value shall be an Xpath expression (see XPATH)
which points to an XML element in the schema document.

Like DataTypeDictionaries each DataTypeDescription provides the Property DataTypeVersion
indicating whether the type description of the DataType has changed. Changes to the
DataTypeVersion may impact the operation of Subscriptions. If the DataTypeVersion changes
for a Variable that is being monitored for a Subscription and that uses this DataTypeDescription,
then the next data change Notification sent for the Variable will contain a status that indicates
the change in the DataTypeDescription.

DataTypeEncoding Objects of the DataTypes reference their DataTypeDescriptions of the
DataTypeDictionaries using HasDescription References. Servers shall provide the inverse
References that relate the DataTypeDescriptions back to the DataTypeEncoding Objects. If a
DataType Node is exposed in the AddressSpace, it shall provide its DataTypeEncodings and if
a DataTypeDictionary is exposed then it should expose all of its DataTypeDescriptions. Both of
these References shall be bi-directional.

Figure D.2 provides an example how DataTypes are modelled in the AddressSpace.

MyDataType

(HasEncoding) (HasEncoding) (HasEncoding)\(HasEncoding)

Object Object Object Object
Default Binary UA Binary Default XML EDDL XML
of ObjectType of ObjectType of ObjectType of ObjectType
DataTypeEncodingType| |DataTypeEncodingType] DataTypeEncodingType DataTypeEncodingType
| e
(HasDescription) ‘/(HasDescription) HasDescription HasDescription
v
Variable Variable Variable
MyDataType MyDataType MyDataType
of VariableType of VariableType of VariableType
DataTypeDescriptionType DataTypeDescriptionType DataTypeDescriptionType

HasComponent

(HasComponent) (HasComponent)

Variable Variable Variable
BasicTypes BasicXMLTypes BasicEDDLTypes
of VariableType of VariableType of VariableType
DataTypeDictionaryType DataTypeDictionaryType DataTypeDictionaryType
A 7\ /4
(HasComponent) (HasComponent) (HasComponent)
Object Object
OPC Binary XML Schema
of ObjectType of ObjectType
DataTypeSystemType DataTypeSystemType

Release 1.04 118 OPC 10000-5: Information Model

Figure D.2 — Example of DataType Modelling

In some scenarios an OPC UA Server may have resource limitations which make it impractical
to expose large DataTypeDictionaries. In these scenarios the Server may be able to provide
access to descriptions for individual DataTypes even if the entire dictionary cannot be read. For
this reason, this standard defines a Property for the DataTypeDescription called
DictionaryFragment. This Property is a ByteString that contains a subset of the
DataTypeDictionary which describes the format of the DataType associated with the
DataTypeDescription. Thus, the Server splits the large DataTypeDictionary into several small
parts and Clients can access without affecting the overall system performance.

However, Servers should provide the whole DataTypeDictionary at once if this is possible. It is
typically more efficient to read the whole DataTypeDictionary at once instead of reading
individual parts.

D.4 AddressSpace Organization

In 8.2.9 the standard Object is introduced as entry point for DataTypes that the Server wishes
to expose in the AddressSpace. When using DataTypeSystems and DataTypeDictionaries those
Nodes can be referenced by this Object as well. The standard Object uses Organizes
References to reference Objects of the DataTypeSystemType representing DataTypeSystems.
Referenced by those Objects are DataTypeDictionaries that refer to their
DataTypeDescriptions. However, it is not required to provide the DataTypeSystem Objects, and
the DataTypeDictionary need not to be provided.

Because DataTypes are not related to DataTypeDescriptions using hierarchical References,
DataType Nodes should be made available using Organizes References pointing either directly
from the “DataTypes” Object to the DataType Nodes or using additional Folder Objects for
grouping purposes. The intent is that all DataTypes of the Server exposed in the AddressSpace
are accessible following hierarchical References starting from the “DataTypes” Object.
However, this is not required.

Figure D.3 illustrates this hierarchy using the “OPC Binary” and “XML Schema” standard
DataTypeSystems as examples. Other DataTypeSystems may be defined under this Object.

OPC 10000-5: Information Model 119 Release 1.04

Object
“DataTypes”

- !

Organizes Organizes Organizes

\ \ A

Object Object DataType
“OPC Binary” “XML Schema” “Int32”

HasComponent HasComponent [HasComponent] [HasComponent] [HasEncoding]
| : I
Variable Variable Variable Variable
“OPCDict_1” “OPCDict_2” “Dev_1.xsd” “Dev_2.xsd”

HasComponent HasComponent

\ 4

Object
Variable Variable “Default Binary”
“DTDesc1” “DTDescl”

Figure D.3 — DataTypes Organization

Each DataTypeSystem Object is related to its DataTypeDictionary Nodes using HasComponent
References. Each DataTypeDictionary Node is related to its DataTypeDescription Nodes using
HasComponent References. These References indicate that the DataTypeDescriptions are
defined in the dictionary.

In the example, the “DataTypes” Object references the DataType “Int32” using an Organizes
Reference. The DataType uses the non-hierarchical HasEncoding Reference to point to its
default encoding, which references a DataTypeDescription using the non-hierarchical
HasDescription Reference.

In case DataTypeSystems are used, the standard Objects “OPC Binary” and “XML Schema”
defined in D.5.5 and D.5.6 are connected via a Organizes Reference from the “DataTypes”
Obiject.

D.5 Node Definitions

D.5.1 HasDescription
The HasDescription ReferenceType is a concrete ReferenceType and can be used directly. It
is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to reference the DataTypeDescription of a
DataTypeEncoding.

The SourceNode of References of this type shall be an Object of the ObjectType
DataTypeEncodingType or one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable of the VariableType
DataTypeDescriptionType or one of its subtypes.

Release 1.04 120 OPC 10000-5: Information Model

Its representation in the AddressSpace is specified in Table D.1.

Table D.1 — HasDescription ReferenceType

Attributes Value

BrowseName HasDescription

InverseName DescriptionOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

D.5.2 DataTypeDictionaryType

The DataTypeDictionaryType VariableType is used as the type for the DataTypeDictionaries. It
is formally defined in Table D.2.

Table D.2 — DataTypeDictionaryType Definition

Attribute Value

BrowseName DataTypeDictionaryType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType ByteString

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseDataVariableType defined in 7.4.

HasProperty Variable DataTypeVersion | String PropertyType Optional
HasProperty Variable NamespaceUri String PropertyType Optional
HasProperty Variable Deprecated Boolean Property Type Optional

The Property DataTypeVersion is explained in D.3.

The NamespaceUri is the URI for the namespace described by the Value Attribute of the
DataTypeDictionary. This is not always the same as the NamespaceUri of the DataType Nodeld.

The Deprecated Property is used to indicate that all of the DataType definitions represented by
the DataTypeDictionaryType are available through a DataTypeDefinition Attribute. Servers that
provide DataType definitions as a DataTypeDefinition Attribute and through a
DataTypeDictionaryType shall expose this Property.

D.5.3 DataTypeDescriptionType

The DataTypeDescriptionType VariableType is used as the type for the DataTypeDescriptions.
It is formally defined in Table D.3.

Table D.3 — DataTypeDescriptionType Definition

Attribute Value

BrowseName DataTypeDescriptionType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType ByteString

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule
Subtype of the BaseDataVariableType defined in 7.4.

HasProperty Variable DataTypeVersion String PropertyType Optional
HasProperty Variable DictionaryFragment ByteString PropertyType Optional

The Properties DataTypeVersion and DictionaryFragment are explained in D.3.

D.5.4 DataTypeSystemType

The DataTypeSystems ObjectType is used as type for the DataTypeSystems. There are no
References specified for this ObjectType. It is formally defined in Table D.4.

OPC 10000-5: Information Model 121 Release 1.04

Table D.4 — DataTypeSystemType Definition

Attribute Value

BrowseName DataTypeSystemType

IsAbstract False

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the BaseObjectType defined in 6.2.

D.5.5 OPC Binary

OPC Binary is a standard DataTypeSystem defined by OPC. It is represented in the
AddressSpace by an Object Node. The OPC Binary DataTypeSystem is defined in
OPC 10000-3. OPC Binary uses XML to describe complex binary data values. The “OPC Binary”
Object is formally defined in Table D.5.

Table D.5 — OPC Binary Definition

Attribute Value

BrowseName OPC Binary

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType DataTypeSystemType Defined in D.5.4

D.5.6 XML Schema

XML Schema is a standard DataTypeSystem defined by the W3C. It is represented in the
AddressSpace by an Object Node. XML Schema documents are XML documents whose xmlns
attribute in the first line is:

schema xmlns =http://www.w3.0rg/1999/XMLSchema

The “XML Schema” Object is formally defined in Table D.6.

Table D.6 — XML Schema Definition

Attribute Value

BrowseName XML Schema

References NodeClass BrowseName Comment
HasTypeDefinition ObjectType DataTypeSystemType Defined in D.5.4

http://www.w3.org/1999/XMLSchema

Release 1.04 122 OPC 10000-5: Information Model

Annex E
(normative)

OPC Binary Type Description System

E.1 Concepts

The OPC Binary XML Schema defines the format of OPC Binary TypeDictionaries. Each OPC
Binary TypeDictionary is an XML document that contains one or more TypeDescriptions that
describe the format of a binary-encoded value. Applications that have no advanced knowledge
of a particular binary encoding can use the OPC Binary TypeDescription to interpret or construct
a value.

The OPC Binary Type Description System does not define a standard mechanism to encode
data in binary. It only provides a standard way to describe an existing binary encoding. Many
binary encodings will have a mechanism to describe types that could be encoded; however,
these descriptions are useful only to applications that have knowledge of the type description
system used with each binary encoding. The OPC Binary Type Description System is a generic
syntax that can be used by any application to interpret any binary encoding.

The OPC Binary Type Description System was originally defined in the OPC Complex Data
Specification. The OPC Binary Type Description System described in Annex C is quite different
and is correctly described as the OPC Binary Type Description System Version 2.0.

Each TypeDescription is identified by a TypeName which shall be unigue within the
TypeDictionary that defines it. Each TypeDictionary also has a TargetNamespace which should
be uniqgue among all OPC Binary TypeDictionaries. This means that the TypeName qualified
with the TargetNamespace for the dictionary should be a globally-unique identifier for a
TypeDescription.

Figure E.1 below illustrates the structure of an OPC Binary TypeDictionary.

imports
TypeDictionary TypeDictionary

nnnnnnnn

TypeDescription
References

s Subtype Of

‘ OpaqueType StructuredType
T

Is Subiype Of Contains

[i
‘ FieldType

EnumeratedType

Figure E.1 — OPC Binary Dictionary Structure

Each binary encoding is built from a set of opaque building blocks that are either primitive types
with a fixed length or variable-length types with a structure that is too complex to describe
properly in an XML document. These building blocks are described with an OpaqueType. An
instance of one of these building blocks is a binary-encoded value.

The OPC Binary Type Description System defines a set of standard OpaqueTypes that all OPC
Binary TypeDictionaries should use to build their TypeDescriptions. These standard type
descriptions are described in Clause E.3.

In some cases, the binary encoding described by an OpaqueType may have a fixed size which
would allow an application to skip an encoded value that it does not understand. If that is the
case, then the LengthinBits attribute should be specified for the OpaqueType. If authors of
TypeDictionaries need to define new OpaqueTypes that do not have a fixed size then they
should use the documentation elements to describe how to encode binary values for the type.
This description should provide enough detail to allow a human to write a program that can
interpret instances of the type.

OPC 10000-5: Information Model 123 Release 1.04

A StructuredType breaks a complex value into a sequence of values that are described by a
FieldType. Each FieldType has a name, type and a number of qualifiers that specify when the
field is used and how many instances of the type exist. A FieldType is described completely in
E.2.6.

An EnumeratedType describes a numeric value that has a limited set of possible values, each
of which has a descriptive name. EnumeratedTypes provide a convenient way to capture
semantic information associated with what would otherwise be an opaque numeric value.

E.2 Schema Description

E.2.1 TypeDictionary

The TypeDictionary element is the root element of an OPC Binary Dictionary. The components
of this element are described in Table E.1.

Table E.1 — TypeDictionary Components

Name Type Description

Documentation Documentation An element that contains human-readable text and XML that provides an
overview of what is contained in the dictionary.

Import ImportDirective[] Zero or more elements that specify other TypeDictionaries that are referenced by
StructuredTypes defined in the dictionary. Each import element specifies the
NamespaceUri of the TypeDictionary being imported. The TypeDictionary
element shall declare an XML namespace prefix for each imported namespace.

TargetNamespace Xs:string Specifies the URI that qualifies all TypeDescriptions defined in the dictionary.

DefaultByteOrder ByteOrder Specifies the default ByteOrder for all TypeDescriptions that have the
ByteOrderSignificant attribute set to “true”.

This value overrides the setting in any imported TypeDictionary.
This value is overridden by the DefaultByteOrder specified on a TypeDescription.

TypeDescription TypeDescription[] One or more elements that describe the structure of a binary encoded value.

A TypeDescription is an abstract type. A dictionary may only contain the
OpaqueType, EnumeratedType and StructuredType elements.

E.2.2 TypeDescription

A TypeDescription describes the structure of a binary encoded value. A TypeDescription is an
abstract base type and only instances of subtypes may appear in a TypeDictionary. The
components of a TypeDescription are described in Table E.2.

Table E.2 — TypeDescription Components

Name Type Description

Documentation Documentation An element that contains human readable text and XML that describes the type.
This element should capture any semantic information that would help a human
to understand what is contained in the value.

Name xs: NCName An attribute that specifies a name for the TypeDescription that is unique within
the dictionary. The fields of structured types reference TypeDescriptions by using
this name qualified with the dictionary namespace URI.

DefaultByteOrder ByteOrder An attribute that specifies the default ByteOrder for the type description.

This value overrides the setting in any TypeDictionary or in any StructuredType
that references the type description.

anyAttribute * Authors of a TypeDictionary may add their own attributes to any TypeDescription
that shall be qualified with a namespace defined by the author. Applications
should not be required to understand these attributes in order to interpret a
binary encoded instance of the type.

E.2.3 OpaqueType

An OpaqueType describes a binary encoded value that is either a primitive fixed length type or
that has a structure too complex to capture in an OPC Binary type dictionary. Authors of type
dictionaries should avoid defining OpaqueTypes that do not have a fixed length because it
would prevent applications from interpreting values that use these types without having built-in
knowledge of the OpaqueType. The OPC Binary Type Description System defines many

Release 1.04 124 OPC 10000-5: Information Model

standard OpaqueTypes that should allow authors to describe most binary encoded values as
StructuredTypes.

The components of an OpaqueType are described in Table E.3.

Table E.3 — OpaqueType Components

Name Type Description

TypeDescription TypeDescription An OpaqueType inherits all elements and attributes defined for a
TypeDescription in Table E.2.

LengthInBits xs:string An attribute which specifies the length of the OpaqueType in bits. This value

should always be specified. If this value is not specified the Documentation
element should describe the encoding in a way that a human understands.

ByteOrderSignificant xs:boolean An attribute that indicates whether byte order is significant for the type.

If byte order is significant then the application shall determine the byte order to
use for the current context before interpreting the encoded value. The
application determines the byte order by looking for the DefaultByteOrder
attribute specified for containing StructuredTypes or the TypeDictionary. If
StructuredTypes are nested the inner StructuredTypes override the byte order
of the outer descriptions.

If the DefaultByteOrder attribute is specified for the OpaqueType, then the
ByteOrder is fixed and does not change according to context.

If this attribute is “true”, then the LengthInBits attribute shall be specified and it
shall be an integer multiple of 8 bits.

E.2.4 EnumeratedType

An EnumeratedType describes a binary-encoded numeric value that has a fixed set of valid
values. The encoded binary value described by an EnumeratedType is always an unsigned
integer with a length specified by the LengthInBits attribute.

The names for each of the enumerated values are not required to interpret the binary encoding,
however, they form part of the documentation for the type.

The components of an EnumeratedType are described in Table E.4.

Table E.4 — EnumeratedType Components

Name Type Description

OpaqueType OpaqueTypeDescription | An EnumeratedType inherits all elements and attributes defined for a
TypeDescription in Table E.2 and for an OpaqueType defined in
Table E.3.

The LengthInBits attribute shall always be specified.

EnumeratedValue EnumeratedValue One or more elements that describe the possible values for the
instances of the type.

E.2.5 StructuredType

A StructuredType describes a type as a sequence of binary-encoded values. Each value in the
sequence is called a Field. Each Field references a TypeDescription that describes the binary-
encoded value that appears in the field. A Field may specify that zero, one or multiple instances
of the type appear within the sequence described by the StructuredType.

Authors of type dictionaries should use StructuredTypes to describe a variety of common data
constructs including arrays, unions and structures.

Some fields have lengths that are not multiples of 8 bits. Several of these fields may appear in
a sequence in a structure, however, the total number of bits used in the sequence shall be fixed
and it shall be a multiple of 8 bits. Any field which does not have a fixed length shall be aligned
on a byte boundary.

A sequence of fields which do not line up on byte boundaries are specified from the least
significant bit to the most significant bit. Sequences which are longer than one byte overflow
from the most significant bit of the first byte into the least significant bit of the next byte.

The components of a StructuredType are described in Table E.5.

OPC 10000-5: Information Model

125 Release 1.04

Table E.5 — StructuredType Components

Name Type Description

TypeDescription TypeDescription A StructuredType inherits all elements and attributes defined for a
TypeDescription in Table E.2.

Field FieldType One or more elements that describe the fields of the structure. Each field shall
have a name that is unique within the StructuredType. Some fields may
reference other fields in the StructuredType by using this name.

E.2.6 FieldType

A FieldType describes a binary encoded value that appears in sequence within a
StructuredType. Every FieldType shall reference a TypeDescription that describes the encoded

value for the field.

A FieldType may specify an array of encoded values.

Fields may be optional and they reference other FieldTypes, which indicate if they are present
in any specific instance of the type.

The components of a FieldType are described in Table E.6.

Table E.6 — FieldType Components

Name

Type

Description

Documentation

Documentation

An element that contains human readable text and XML that describes the field.
This element should capture any semantic information that would help a human
to understand what is contained in the field.

Name

xs:string

An attribute that specifies a name for the Field that is unique within the
StructuredType.

Other fields in the structured type reference a Field by using this name.

TypeName

xs:QName

An attribute that specifies the TypeDescription that describes the contents of the
field. A field may contain zero or more instances of this type depending on the
settings for the other attributes and the values in other fields.

Length

xs:unsignedint

An attribute that indicates the length of the field. This value may be the total
number of encoded bytes or it may be the number of instances of the type
referenced by the field. The IsLengthinBytes attributes specifies which of these
definitions applies.

LengthField

xs:string

An attribute that indicates which other field in the StructuredType specifies the
length of the field. The length of the field may be in bytes or it may be the number
of instances of the type referenced by the field. The IsLengthinBytes attributes
specify which of these definitions applies.

If this attribute refers to a field that is not present in an encoded value, then the
default value for the length is 1. This situation could occur if the field referenced
is an optional field (see the SwitchField attribute).

The length field shall be a fixed length Base-2 representation of an integer. If the
length field is one of the standard signed integer types and the value is a
negative integer, then the field is not present in the encoded stream.

The FieldType referenced by this attribute shall precede the field with the
StructuredType.

IsLengthinBytes

xs:boolean

An attribute that indicates whether the Length or LengthField attributes specify
the length of the field in bytes or in the number of instances of the type
referenced by the field.

SwitchField

xs:string

If this attribute is specified, then the field is optional and may not appear in every
instance of the encoded value.

This attribute specifies the name of another Field that controls whether this field
is present in the encoded value. The field referenced by this attribute shall be an
integer value (see the LengthField attribute).

The current value of the switch field is compared to the SwitchValue attribute
using the SwitchOperand. If the condition evaluates to true then the field appears
in the stream.

If the SwitchValue attribute is not specified, then this field is present if the value
of the switch field is non-zero. The SwitchOperand field is ignored if it is present.

If the SwitchOperand attribute is missing, then the field is present if the value of
the switch field is equal to the value of the SwitchValue attribute.

The Field referenced by this attribute shall precede the field with the
StructuredType.

Release 1.04 126 OPC 10000-5: Information Model

Name Type Description

SwitchValue xs:unsignedint This attribute specifies when the field appears in the encoded value. The value of
the field referenced by the SwitchField attribute is compared using the
SwitchOperand attribute to this value. The field is present if the expression
evaluates to true. The field is not present otherwise.

SwitchOperand xs:string This attribute specifies how the value of the switch field should be compared to
the switch value attribute. This field is an enumeration with the following values:

Equal SwitchField is equal to the SwitchValue.

GreaterThan SwitchField is greater than the SwitchValue.

LessThan SwitchField is less than the SwitchValue.

GreaterThanOrEqual SwitchField is greater than or equal to the
SwitchValue.

LessThanOrEqual SwitchField is less than or equal to the SwitchValue.

NotEqual SwitchField is not equal to the SwitchValue.

In each case the field is present if the expression is true.

Terminator xs:hexBinary This attribute indicates that the field contains one or more instances of
TypeDescription referenced by this field and that the last value has the binary
encoding specified by the value of this attribute.

If this attribute is specified then the TypeDescription referenced by this field shall
either have a fixed byte order (i.e. byte order is not significant or explicitly
specified) or the containing StructuredType shall explicitly specify the byte order.

Examples:
Field Data Type Terminator Byte Order Hexadecimal String
Char tab character not applicable 09
WideChar tab character BigEndian 0009
WideChar tab character LittleEndian 0900
Int16 1 BigEndian 0001
Int16 1 LittleEndian 0100
anyAttribute * Authors of a TypeDictionary may add their own attributes to any FieldType which

shall be qualified with a namespace defined by the authors. Applications should
not be required to understand these attributes in order to interpret a binary
encoded field value.

E.2.7 EnumeratedValue
An EnumeratedValue describes a possible value for an EnumeratedType.

The components of an EnumeratedValue are described in Table E.7.

Table E.7 — EnumeratedValue Components

Name Type Description

Name Xs:string This attribute specifies a descriptive name for the enumerated value.

Value xs:int This attribute specifies the numeric value that could appear in the binary
encoding.

E.2.8 ByteOrder

A ByteOrder is an enumeration that describes a possible value byte orders for TypeDescriptions
that allow different byte orders to be used. There are two possible values: BigEndian and
LittleEndian. BigEndian indicates the most significant byte appears first in the binary encoding.
LittleEndian indicates that the least significant byte appears first.

E.2.9 ImportDirective

An ImportDirective specifies a TypeDictionary that is referenced by types defined in the current
dictionary.

The components of an ImportDirective are described in Table E.8.

OPC 10000-5: Information Model 127 Release 1.04

Table E.8 — ImportDirective Components

Name Type Description

Namespace Xs:string This attribute specifies the TargetNamespace for the TypeDictionary being
imported. This may be a well-known URI which means applications need not
have access to the physical file to recognise types that are referenced.

Location xs:string This attribute specifies the physical location of the XML file containing the
TypeDictionary to import. This value could be a URL for a network resource, a

Nodeld in an OPC UA Server address space or a local file path.

E.3 Standard Type Descriptions

The OPC Binary Type Description System defines a number of standard type descriptions that
can be used to describe many common binary encodings using a StructuredType. The standard

type descriptions are described in Table E.9.

Table E.9 — Standard Type Descriptions

Type name Description

Bit A single bit value.

Boolean A two-state logical value represented as an 8-bit value.

SByte An 8-bit signed integer.

Byte An 8-bit unsigned integer.

Int16 A 16-bit signed integer.

Uint16 A 16-bit unsigned integer.

Int32 A 32-bit signed integer.

Uint32 A 32-bit unsigned integer.

Int64 A 64-bit signed integer.

Uint64 A 64-bit unsigned integer.

Float An ISO/IEC/IEEE 60559:2011 single precision floating point value.

Double AnISO/IEC/IEEE 60559:2011 : Information technology — Microprocessor Systems
— Floating-Point arithmetic ISO/IEC/IEEE 60559:2011 double precision floating
point value.

Char An 8-bit UTF-8 character value.

String A sequence of UTF-8 characters preceded by the number of UTF-8 Code Units
(bytes).

WideString A sequence of UTF-16 characters preceded by the number of UTF-16 Code
Units.

DateTime A 64-bit signed integer representing the number of 100 nanoseconds intervals
since 1601-01-01 00:00:00. This is the same as the WIN32 FILETIME type.

ByteString A sequence of bytes preceded by its length in bytes.

Guid A 128-bit structured type that represents a WIN32 GUID value.

E.4 Type Description Examples

1. A 128-bit signed integer.

<opc:0paqueType Name="Intl28" LengthInBits="128" ByteOrderSignificant="true">
<opc:Documentation>A 128-bit signed integer.</opc:Documentation>
</opc:0paqueType>

2. A 16-bit value divided into several fields.

<opc:StructuredType Name="Quality">
<opc:Documentation>An OPC COM-DA quality value.</opc:Documentation>
<opc:Field Name="LimitBits" TypeName="opc:Bit" Length="2" />
<opc:Field Name="QualityBits" TypeName="opc:Bit" Length="6"/>
<opc:Field Name="VendorBits" TypeName="opc:Byte" />
</opc:StructuredType>

When using bit fields, the least significant bits within a byte shall appear first.

3. A structured type with optional fields.

<opc:StructuredType Name="DataValue">
<opc:Documentation>A value with an associated timestamp,
quality.</opc:Documentation>

and

Release 1.04 128 OPC 10000-5: Information Model

<opc:Field Name="ValueSpecified" TypeName="Bit" />

<opc:Field Name="StatusCodeSpecified" TypeName="Bit" />

<opc:Field Name="TimestampSpecified" TypeName="Bit" />

<opc:Field Name="Reservedl" TypeName="Bit" Length="5" />

<opc:Field Name="Value" TypeName="Variant" SwitchField="ValueSpecified" />

<opc:Field Name="Quality" TypeName="Quality" SwitchField="StatusCodeSpecified" />

<opc:Field Name="Timestamp"

TypeName="opc:DateTime" SwitchField="SourceTimestampSpecified" />

</opc:StructuredType>

It is necessary to explicitly specify any padding bits required to ensure subsequent fields line
up on byte boundaries.

4. An array of integers.

<opc:StructuredType Name="IntegerArray">
<opc:Documentation>An array of integers prefixed by its length.</opc:Documentation>
<opc:Field Name="Size" TypeName="opc:Int32" />
<opc:Field Name="Array" TypeName="opc:Int32" LengthField="Size" />
</opc:StructuredType>

Nothing is encoded for the Array field if the Size field has a value < 0.

5. An array of integers with a terminator instead of a length prefix.

<opc:StructuredType Name="IntegerArray" DefaultByteOrder="LittleEndian">
<opc:Documentation>An array of integers terminated with a known
value.</opc:Documentation>
<opc:Field Name="Value" TypeName="opc:Intlé6" Terminator="FF7F" />
</opc:StructuredType>

The terminator is 32,767 converted to hexadecimal with LittleEndian byte order.

6. A simple union.

<opc:StructuredType Name="Variant">
<opc:Documentation>A union of several types.</opc:Documentation>
<opc:Field Name="ArrayLengthSpecified" TypeName="opc:Bit" Length="1"/>
<opc:Field Name="VariantType" TypeName="opc:Bit" Length="7" />
<opc:Field Name="ArrayLength" TypeName="opc:Int32"
SwitchField="ArrayLengthSpecified" />
<opc:Field Name="Int32" TypeName="opc:Int32" LengthField="ArrayLength"
SwitchField="VariantType" SwitchValue="1" />
<opc:Field Name="String" TypeName="opc:String" LengthField="ArrayLength"
SwitchField="VariantType" SwitchValue="2" />
<opc:Field Name="DateTime" TypeName="opc:DateTime" LengthField="ArrayLength"
SwitchField="VariantType" SwitchValue="3" />
</opc:StructuredType>

The ArrayLength field is optional. If it is not present in an encoded value, then the length of all
fields with LengthField set to “ArrayLength” have a length of 1.

It is valid for the VariantType field to have a value that has no matching field defined. This
simply means all optional fields are not present in the encoded value.

7. An enumerated type.

<opc:EnumeratedType Name="TrafficLight" LengthInBits="32">
<opc:Documentation>The possible colours for a traffic signal.</opc:Documentation>
<opc:EnumeratedValue Name="Red" Value="4">
<opc:Documentation>Red says stop immediately.</opc:Documentation>
</opc:EnumeratedValue>
<opc:EnumeratedValue Name="Yellow" Value="3">
<opc:Documentation>Yellow says prepare to stop.</opc:Documentation>
</opc:EnumeratedvValue>
<opc:EnumeratedValue Name="Green" Value="2">
<opc:Documentation>Green says you may proceed.</opc:Documentation>
</opc:EnumeratedvValue>
</opc:EnumeratedType>

The documentation element is used to provide human readable description of the type and
values.

8. A nillable array.

OPC 10000-5: Information Model 129 Release 1.04

<opc:StructuredTypen Name="NillableArray">
<opc:Documentation>An array where a length of -1 means null.</opc:Documentation>
<opc:Field Name="Length" TypeName="opc:Int32" />
<opc:Field
Name="Int32"
TypeName="opc:Int32"
LengthField="Length"
SwitchField="Length"
SwitchValue="0"
SwitchOperand="GreaterThanOrEqual" />
</opc:StructuredType>

If the length of the array is —1 then the array does not appear in the stream.

E.5 OPC Binary XML Schema

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema
targetNamespace="http://opcfoundation.org/BinarySchema/"
elementFormDefault="qualified"
xmlns="http://opcfoundation.org/BinarySchema/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

<xs:element name="Documentation">
<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:any minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
<xs:anyAttribute/>
</xs:complexType>
</xs:element>

<xs:complexType name="ImportDirective">
<xs:attribute name="Namespace" type="xs:string" use="optional" />
<xs:attribute name="Location" type="xs:string" use="optional" />
</xs:complexType>

<xs:simpleType name="ByteOrder">
<xs:restriction base="xs:string">
<xs:enumeration value="BigEndian" />
<xs:enumeration value="LittleEndian" />
</xs:restriction>
</xs:simpleType>

<xs:complexType name="TypeDescription">

<xs:sequence>
<xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="Name" type="xs:NCName" use="required" />
<xs:attribute name="DefaultByteOrder" type="ByteOrder" use="optional" />
<xs:anyAttribute processContents="lax" />

</xs:complexType>

<xs:complexType name="OpaqueType">
<xs:complexContent>
<xs:extension base="TypeDescription">
<xs:attribute name="LengthInBits" type="xs:int" use="optional" />
<xs:attribute name="ByteOrderSignificant" type="xs:boolean" default="false" />
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="EnumeratedValue">
<xs:sequence>
<xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="optional" />
<xs:attribute name="Value" type="xs:unsignedInt" use="optional" />
</xs:complexType>

<xs:complexType name="EnumeratedType">
<xs:complexContent>
<xs:extension base="OpaqueTypeDescription">
<xs:sequence>
<xs:element name="EnumeratedValue"
type="EnumeratedValueDescription" maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>

Release 1.04 130 OPC 10000-5: Information Model

</xs:complexContent>
</xs:complexType>

<xs:simpleType name="SwitchOperand">
<xs:restriction base="xs:string">
<xs:enumeration value="Equals" />
<xs:enumeration value="GreaterThan" />
<xs:enumeration value="LessThan" />
<xs:enumeration value="GreaterThanOrEqual" />
<xs:enumeration value="LessThanOrEqual" />
<xs:enumeration value="NotEqual" />
</xs:restriction>
</xs:simpleType>

<xs:complexType name="FieldType">

<xs:sequence>
<xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required" />
<xs:attribute name="TypeName" type="xs:QName" use="optional" />
<xs:attribute name="Length" type="xs:unsignedInt" use="optional" />
<xs:attribute name="LengthField" type="xs:string" use="optional" />
<xs:attribute name="IsLengthInBytes" type="xs:boolean" default="false" />
<xs:attribute name="SwitchField" type="xs:string" use="optional" />
<xs:attribute name="SwitchValue" type="xs:unsignedInt" use="optional" />
<xs:attribute name="SwitchOperand" type="SwitchOperand" use="optional" />
<xs:attribute name="Terminator" type="xs:hexBinary" use="optional" />
<xs:anyAttribute processContents="lax" />

</xs:complexType>

<xs:complexType name="StructuredType">
<xs:complexContent>
<xs:extension base="TypeDescription">
<xs:sequence>
<xs:element name="Field" type="FieldType"
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="TypeDictionary">
<xs:complexType>
<xs:sequence>
<xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />
<xs:element name="Import" type="ImportDirective"
minOccurs="0" maxOccurs="unbounded" />
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="OpaqueType" type="OpaqueType" />
<xs:element name="EnumeratedType" type="EnumeratedType" />
<xs:element name="StructuredType" type="StructuredType" />
</xs:choice>
</xs:sequence>
<xs:attribute name="TargetNamespace" type="xs:string" use="required" />
<xs:attribute name="DefaultByteOrder" type="ByteOrder" use="optional" />
</xs:complexType>
</xs:element>

</xs:schema>

E.6 OPC Binary Standard TypeDictionary

<?xml version="1.0" encoding="utf-8"?>

<opc:TypeDictionary
xmlns="http://opcfoundation.org/BinarySchema/"
xmlns:opc="http://opcfoundation.org/BinarySchema/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
TargetNamespace="http://opcfoundation.org/BinarySchema/"

>
<opc:Documentation>This dictionary defines the standard types used by the OPC Binary

type description system.</opc:Documentation>

<opc:0paqueType Name="Bit" LengthInBits="1">
<opc:Documentation>A single bit.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="Boolean" LengthInBits="8">

OPC 10000-5: Information Model 131 Release 1.04

<opc:Documentation>A two state logical value represented as a 8-bit
value.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="SByte" LengthInBits="8">
<opc:Documentation>An 8-bit signed integer.</opc:Documentation>
</opc:0paqueType>

<opc:0paqueType Name="Byte" LengthInBits="8">
<opc:Documentation>A 8-bit unsigned integer.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="Intl6" LengthInBits="16" ByteOrderSignificant="true">
<opc:Documentation>A 16-bit signed integer.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="UIntl6" LengthInBits="16" ByteOrderSignificant="true">
<opc:Documentation>A 16-bit unsigned integer.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="Int32" LengthInBits="32" ByteOrderSignificant="true">
<opc:Documentation>A 32-bit signed integer.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="UInt32" LengthInBits="32" ByteOrderSignificant="true">
<opc:Documentation>A 32-bit unsigned integer.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="Int64" LengthInBits="32" ByteOrderSignificant="true">
<opc:Documentation>A 64-bit signed integer.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="UInt64" LengthInBits="64" ByteOrderSignificant="true">
<opc:Documentation>A 64-bit unsigned integer.</opc:Documentation>
</opc:0paqueType>

<opc:0paqueType Name="Float" LengthInBits="32" ByteOrderSignificant="true">
<opc:Documentation>An IEEE-754 single precision floating point
value.</opc:Documentation>
</opc:0paqueType>

<opc:0paqueType Name="Double" LengthInBits="64" ByteOrderSignificant="true">
<opc:Documentation>An IEEE-754 double precision floating point
value.</opc:Documentation>
</opc:0paqueType>

<opc:0OpaqueType Name="Char" LengthInBits="8">
<opc:Documentation>A 8-bit character value.</opc:Documentation>
</opc:0paqueType>

<opc:StructuredType Name="String">
<opc:Documentation>A UTF-8 null terminated string value.</opc:Documentation>
<opc:Field Name="Value" TypeName="Char" Terminator="00" />
</opc:StructuredType>

<opc:StructuredType Name="CharArray">
<opc:Documentation>A UTF-8 string prefixed by its length in
characters.</opc:Documentation>
<opc:Field Name="Length" TypeName="Int32" />
<opc:Field Name="Value" TypeName="Char" LengthField="Length" />
</opc:StructuredType>

<opc:0paqueType Name="WideChar" LengthInBits="16" ByteOrderSignificant="true">
<opc:Documentation>A 16-bit character value.</opc:Documentation>
</opc:0paqueType>

<opc:StructuredType Name="WideString">
<opc:Documentation>A UTF-16 null terminated string value.</opc:Documentation>
<opc:Field Name="Value" TypeName="WideChar" Terminator="0000" />
</opc:StructuredType>

<opc:StructuredType Name="WideCharArray">
<opc:Documentation>A UTF-16 string prefixed by its length in
characters.</opc:Documentation>
<opc:Field Name="Length" TypeName="Int32" />
<opc:Field Name="Value" TypeName="WideChar" LengthField="Length" />
</opc:StructuredType>

Release 1.04 132 OPC 10000-5: Information Model

<opc:StructuredType Name="ByteString">
<opc:Documentation>An array of bytes prefixed by its length.</opc:Documentation>
<opc:Field Name="Length" TypeName="Int32" />
<opc:Field Name="Value" TypeName="Byte" LengthField="Length" />
</opc:StructuredType>

<opc:0OpaqueType Name="DateTime" LengthInBits="64" ByteOrderSignificant="true">
<opc:Documentation>The number of 100 nanosecond intervals since January 01,
1601.</opc:Documentation>
</opc:0paqueType>

<opc:StructuredType Name="Guid">
<opc:Documentation>A 128-bit globally unique identifier.</opc:Documentation>
<opc:Field Name="Datal" TypeName="UInt32" />
<opc:Field Name="Data2" TypeName="UIntleée" />
<opc:Field Name="Data3" TypeName="UIntlé6" />
<opc:Field Name="Data4" TypeName="Byte" Length="8" />
</opc:StructuredType>

</opc:TypeDictionary>

OPC 10000-5: Information Model 133 Release 1.04

Annex F
(normative)

User Authorization

F.1 Overview

OPC UA defines a standard approach for implementing role based security. Servers may
choose to implement part or all of the mechanisms defined here. The OPC UA approach assigns
Permissions to Roles for each Node in the AddressSpace. Clients are then granted Roles when
they create a Session based on the information provided by the Client.

F.2 RoleSetType

F.2.1 RoleSetType Definition

The RoleSet Object defined in Table 10 is a RoleSetType which is formally defined in Table
F.1.

Table F.1 — RoleSetType Definition

Attribute Value

BrowseName RoleSetType

IsAbstract False

References Node Class | BrowseName | DataType | TypeDefinition | Modelling Rule
Subtype of BaseObjectType defined in 6.2.

HasComponent Object <RoleName> RoleType OptionalPlaceholder
HasComponent Method AddRole Defined in F.2.2 Mandatory
HasComponent Method RemoveRole Defined in F.2.3. Mandatory

The AddRole Method allows configuration Clients to add a new Role to the Server.
The RemoveRole Method allows configuration Clients to remove a Role from the Server.

F.2.2 AddRole Method
This Method is used to add a Role to the RoleSet Object.

The combination of the NamespaceUri and RoleName parameters are used to construct the
BrowseName for the new Node. The BrowseName shall be unique within the RoleSet Object.

This Method affects security and shall only be browseable and callable by authorized
administrators.

OPC 10000-3 defines well-known Roles. If this Method is used to add a well-known Role, the
name of the Role from OPC 10000-3 is used together with the OPC UA namespace URI. The
Server shall use the Nodelds for the well-known Roles in this case. The Nodelds for the well-
known Roles are defined in OPC 10000-6.

Signature
AddRole (
[in] String RoleName
[in] String NamespaceUri
[out] NodeId RoleNodeId
) 7
Argument Description
RoleName The name of the Role.
NamespaceUri The NamespaceUri qualifies the RoleName. If this value is null or empty then the
resulting BrowseName will be qualified by the Server’s NamespaceUri.

RoleNodeld The Nodeld assigned by the Server to the new Node.

Release 1.04 134 OPC 10000-5: Information Model

Method Result Codes

ResultCode Description
Bad_InvalidArgument The RoleName or NamespaceUri is not valid.

The text associated with the error shall indicate the exact problem.
Bad_NotSupported The Server does not allow more Roles to be added.
Bad_UserAccessDenied | The caller does not have the necessary Permissions.

F.2.3 RemoveRole Method
This Method is used to remove a Role from the RoleSet Object.

The RoleNodeld is the Nodeld of the Role Object to remove.

The Server may prohibit the removal of some Roles because they are necessary for the Server
to function.

If a Role is removed all Permissions associated with the Role are deleted as well. Ideally these
changes should take effect immediately, however, some lag may occur.

This Method affects security and shall only be browseable and callable by authorized
administrators.

Signature

RemoveRole (
[in] NodeId RoleNodeId
)

Argument Description

RoleNodeld The Nodeld of the Role Object.

Method Result Codes

ResultCode Description
Bad_NodeldUnknown The specified Role Object does not exist.
Bad_NotSupported The Server does not allow the Role Object to be removed.

Bad_UserAccessDenied | The caller does not have the necessary Permissions.

Bad_RequestNotAllowed | The specified Role Object cannot be removed.

F.3 RoleType

F.3.1 RoleType Definition

Each Role Object has the Properties and Methods defined by the RoleType which is formally
defined in Table F.2.

OPC 10000-5: Information Model

Table F.2 — RoleType Definition

135

Release 1.04

Attribute Value

BrowseName RoleType

IsAbstract False

References Node Class | BrowseName DataType | TypeDefinition | Modelling Rule

Subtype of BaseObjectType

HasProperty Variable Identities IdentityMapping PropertyType Mandatory
RuleType []

HasProperty Variable ApplicationsExclude Boolean PropertyType Optional

HasProperty Variable Applications String [] PropertyType Optional

HasProperty Variable EndpointsExclude Boolean PropertyType Optional

HasProperty Variable Endpoints EndpointType [] PropertyType Optional

HasComponent Method Addldentity Defined in F.3.3. Optional

HasComponent Method Removeldentity Defined in F.3.4. Optional

HasComponent Method AddApplication Defined in F.3.3. Optional

HasComponent Method RemoveApplication Defined in F.3.4. Optional

HasComponent Method AddEndpoint Defined in F.3.3. Optional

HasComponent Method RemoveEndpoint Defined in F.3.4. Optional

The Properties and Methods of the RoleType contain sensitive security related information and
shall only be browseable, writeable and callable by authorized administrators through an
encrypted channel.

The Identities Property specifies the currently configured rules for mapping a UserldentityToken
to the Role. If this Property is an empty array, then the Role cannot be granted to any Session.

The ApplicationsExclude Property defines the Applications Property as an include list or exclude
list. If this Property is not provided or has a value of FALSE then only Application Instance
Certificates included in the Applications Property shall be included in this Role. All other
Application Instance Certificates shall not be included in this Role. If this Property has a value
of TRUE then all Application Instance Certificates included in the Applications Property shall be
excluded from this Role. All other Application Instance Certificates shall be included in this
Role.

The Applications Property specifies the Application Instance Certificates of Clients which shall
be included or excluded from this Role. Each element in the array is an ApplicationUri from a
Client Certificate which is trusted by the Server.

The EndpontsExclude Property defines the Endpoints Property as an include list or exclude list.
If this Property is not provided or has a value of FALSE then only Endpoints included in the
Endpoints Property shall be included in this Role. All other Endpoints shall not be include this
Role. If this Property has a value of TRUE then all Endpoints included in the Endpoints Property
shall be excluded from this Role. All other Endpoints shall be included in this Role.

The Endpoints Property specifies the Endpoints which shall be included or excluded from this
Role. The value is an EndpointType array which contains one or more Endpoint descriptions.
The EndpointType DataType is defined in 12.22.

The Addldentity Method adds a rule used to map a UserldentityToken to the Role. If the Server
does not allow changes to the mapping rules, then the Method is not present. A Server should
prevent certain rules from being added to particular Roles. For example, a Server should refuse
to allow an ANONYMOUS_5 (see F.3.2) mapping rule to be added to Roles with administrator
privileges.

The Removeldentity Method removes a mapping rule used to map a UserldentityToken to the
Role. If the Server does not allow changes to the mapping rules, then the Method is not present.

The AddApplication Method adds an Application Instance Certificate to the list of. If the Server
does not enforce application restrictions or does not allow changes to the mapping rules for the
Role the Method is not present.

Release 1.04 136 OPC 10000-5: Information Model

The RemoveApplication Method removes an Application Instance Certificate from the list of
applications. If the Server does not enforce application restrictions or does not allow changes
to the mapping rules for the Role the Method is not present.

F.3.2 IdentityMappingRuleType

The ldentityMappingRuleType structure defines a single rule for selecting a UserldentityToken.
The structure is described in Table F.3.

Table F.3 — IdentityMappingRuleType

Name Type Description
IdentityMappingRuleType | Structure Specifies a rule used to map a UserldentityToken to a Role.
criteriaType Enumeration | The type of criteria contained in the rule.
Identity USERNAME_1 The rule specifies a UserName from a UserNameldentityToken;
Mapping THUMBPRINT_2 The rule specifies the Thumbprint of a User or CA Certificate;
Type ROLE_3 The rule is a Role specified in an Access Token;
GROUPID_4 The rule is a user group specified in the Access Token;

ANONYMOUS_5 The rule specifies Anonymous UserldentityToken;
AUTHENTICATED_USER_6 The rules specify any non-Anonymous
UserldentityToken;

criteria String The criteria which the UserldentityToken must meet for a Session to be mapped to
the Role. The meaning of the criteria depends on the mappingType. The criteria are
a“ for ANONYMOUS_5 and AUTHENTICATED _USER_6

If the criteriaType is USERNAME_1, the criteria is a name of a user known to the Server, For
example, the user could be the name of a local operating system account.

If the criteriaType is THUMBPRINT_2, the criteria is a thumbprint of a Certificate of a user or
CA which is trusted by the Server.

If the criteriaType is ROLE_3, the criteria is a name of a restriction found in the Access Token.
For example, the Role “subscriber” may only be allowed to access PubSub related Nodes.

If the criteriaType is GROUPID_4, the criteria is a generic text identifier for a user group specific
to the Authorization Service. For example, an Authorization Service providing access to an
Active Directory may add one or more Windows Security Groups to the Access Token. OPC
10000-6 provides details on how groups are added to Access Tokens.

If the criteriaType is ANONYMOUS_5, the criteria is a null string which indicates no user
credentials have been provided.

If the criteriaType is AUTHENTICATED_USER_6, the criteria is a null string which indicates
any valid user credentials have been provided.

F.3.3 Addldentity Method
This Method is used to add an identity mapping rule to a Role.

The Client shall use an encrypted channel and shall provide user credentials with administrator
rights when invoking this Method on the Server.

Signature

AddIdentity (
[in] IdentityMappingRuleType Rule
) ;

Argument Description

Rule The rule to add.

Method Result Codes

OPC 10000-5: Information Model 137 Release 1.04

ResultCode Description

Bad_InvalidArgument The rule is not valid.

Bad_RequestNotAllowed | The rule cannot be added to the Role because of Server imposed restrictions.
Bad_NotSupported The rule is not supported by the Server.

Bad_AlreadyExists An equivalent rule already exists.

F.3.4 Removeldentity Method
This Method is used to remove an identity mapping rule from a Role.

The Client shall provide user credentials with administrator rights when invoking this Method
on the Server.

Signature

RemoveIdentity (
[in] IdentityMappingRuleType Rule
)i

Argument Description

Rule The Rule to remove.

Method Result Codes

ResultCode Description

Bad_NotFound The rule does not exist.

Bad_UserAccessDenied | The session user is not allowed to configure the object.

F.3.5 AddApplication Method
This Method is used to add an application mapping rule to a Role.

The Client shall provide user credentials with administrator rights when invoking this Method
on the Server.

Signature

AddApplication (
[in] String ApplicationUri
)i

Argument Description

ApplicationUri The ApplicationUri for the application.

Method Result Codes

ResultCode Description

Bad_InvalidArgument The ApplicationUri is not valid.

Bad_RequestNotAllowed | The mapping cannot be added to the Role because of Server imposed restrictions.
Bad_AlreadyExists The ApplicationUri is already assigned to the Role.

Bad_UserAccessDenied | The session user is not allowed to configure the object.

F.3.6 RemoveApplication Method
This Method is used to remove an application mapping rule from a Role.

The Client shall provide user credentials with administrator rights when invoking this Method
on the Server.

Signature

RemoveApplication (
[in] String ApplicationUri
) ;

Release 1.04 138 OPC 10000-5: Information Model

Argument Description

ApplicationUri The ApplicationUri for the application.

Method Result Codes

ResultCode Description

Bad_NotFound The ApplicationUri is not assigned to the Role.

Bad_UserAccessDenied | The session user is not allowed to configure the object.

F.3.7 AddEndpoint Method
This Method is used to add an endpoint mapping rule to a Role.

The Client shall provide user credentials with administrator rights when invoking this Method
on the Server.

Signature

AddEndpoint (
[in] EndpointType Endpoint
)i

Argument

Description

Endpoint

The Endpoint to add.

Method Result Codes

ResultCode

Description

Bad_InvalidArgument

The EndpointUrl is not valid.

Bad_RequestNotAllowed

The mapping cannot be added to the Role because of Server imposed restrictions.

Bad_AlreadyExists

The EndpointUrl is already assigned to the Role.

Bad_UserAccessDenied

The session user is not allowed to configure the object.

F.3.8
This Method is used to remove an endpoint mapping rule from a Role.

RemoveEndpoint Method

The Client shall provide user credentials with administrator rights when invoking this Method
on the Server.

Signature

RemoveEndpoint (

[in] EndpointType Endpoint

) ;

Argument Description

Endpoint The Endpoint to remove.

Method Result Codes

ResultCode Description

Bad_NotFound The EndpointUrl is not assigned to the Role.

Bad_UserAccessDenied | The session user is not allowed to configure the object.

F.4 RoleMappingRuleChangedAuditEventType
This Event is raised when a mapping rule for a Role is changed.

This is the result of calling any of the add or remove Methods defined on the RoleType.

OPC 10000-5: Information Model 139 Release 1.04

It shall be raised when the Addldentity, Removeldentity, AddApplication, RemoveApplication,
AddEndpoint or RemoveEndpoint Method causes an update to a Role.

Its representation in the AddressSpace is formally defined in Table F.4.

Table F.4 — RoleMappingRuleChangedAuditEventType Definition

Attribute Value

BrowseName RoleMappingRuleChangedAuditEventType

IsAbstract True

References | NodeClass | BrowseName | DataType | TypeDefinition | ModellingRule

Subtype of the AuditUpdateMethodEventType defined in 6.4.27

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantics
are defined in 6.4.27.

	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions and conventions
	3.1 Terms and definitions
	3.2 Abbreviations and symbols
	3.3 Conventions for Node descriptions

	4 NodeIds and BrowseNames
	4.1 NodeIds
	4.2 BrowseNames

	5 Common Attributes
	5.1 General
	5.2 Objects
	5.3 Variables
	5.4 VariableTypes
	5.5 Methods

	6 Standard ObjectTypes
	6.1 General
	6.2 BaseObjectType
	6.3 ObjectTypes for the Server Object
	6.3.1 ServerType
	6.3.2 ServerCapabilitiesType
	6.3.3 ServerDiagnosticsType
	6.3.4 SessionsDiagnosticsSummaryType
	6.3.5 SessionDiagnosticsObjectType
	6.3.6 VendorServerInfoType
	6.3.7 ServerRedundancyType
	6.3.8 TransparentRedundancyType
	6.3.9 NonTransparentRedundancyType
	6.3.10 NonTransparentNetworkRedundancyType
	6.3.11 OperationLimitsType
	6.3.12 AddressSpaceFileType
	6.3.13 NamespaceMetadataType
	6.3.14 NamespacesType

	6.4 ObjectTypes used as EventTypes
	6.4.1 General
	6.4.2 BaseEventType
	6.4.3 AuditEventType
	6.4.4 AuditSecurityEventType
	6.4.5 AuditChannelEventType
	6.4.6 AuditOpenSecureChannelEventType
	6.4.7 AuditSessionEventType
	6.4.8 AuditCreateSessionEventType
	6.4.9 AuditUrlMismatchEventType
	6.4.10 AuditActivateSessionEventType
	6.4.11 AuditCancelEventType
	6.4.12 AuditCertificateEventType
	6.4.13 AuditCertificateDataMismatchEventType
	6.4.14 AuditCertificateExpiredEventType
	6.4.15 AuditCertificateInvalidEventType
	6.4.16 AuditCertificateUntrustedEventType
	6.4.17 AuditCertificateRevokedEventType
	6.4.18 AuditCertificateMismatchEventType
	6.4.19 AuditNodeManagementEventType
	6.4.20 AuditAddNodesEventType
	6.4.21 AuditDeleteNodesEventType
	6.4.22 AuditAddReferencesEventType
	6.4.23 AuditDeleteReferencesEventType
	6.4.24 AuditUpdateEventType
	6.4.25 AuditWriteUpdateEventType
	6.4.26 AuditHistoryUpdateEventType
	6.4.27 AuditUpdateMethodEventType
	6.4.28 SystemEventType
	6.4.29 DeviceFailureEventType
	6.4.30 SystemStatusChangeEventType
	6.4.31 BaseModelChangeEventType
	6.4.32 GeneralModelChangeEventType
	6.4.33 SemanticChangeEventType
	6.4.34 EventQueueOverflowEventType
	6.4.35 ProgressEventType

	6.5 ModellingRuleType
	6.6 FolderType
	6.7 DataTypeEncodingType
	6.8 AggregateFunctionType

	7 Standard VariableTypes
	7.1 General
	7.2 BaseVariableType
	7.3 PropertyType
	7.4 BaseDataVariableType
	7.5 ServerVendorCapabilityType
	7.6 ServerStatusType
	7.7 BuildInfoType
	7.8 ServerDiagnosticsSummaryType
	7.9 SamplingIntervalDiagnosticsArrayType
	7.10 SamplingIntervalDiagnosticsType
	7.11 SubscriptionDiagnosticsArrayType
	7.12 SubscriptionDiagnosticsType
	7.13 SessionDiagnosticsArrayType
	7.14 SessionDiagnosticsVariableType
	7.15 SessionSecurityDiagnosticsArrayType
	7.16 SessionSecurityDiagnosticsType
	7.17 OptionSetType
	7.18 SelectionListType
	7.19 AudioVariableType

	8 Standard Objects and their Variables
	8.1 General
	8.2 Objects used to organise the AddressSpace structure
	8.2.1 Overview
	8.2.2 Root
	8.2.3 Views
	8.2.4 Objects
	8.2.5 Types
	8.2.6 ObjectTypes
	8.2.7 VariableTypes
	8.2.8 ReferenceTypes
	8.2.9 DataTypes
	8.2.10 EventTypes

	8.3 Server Object and its containing Objects
	8.3.1 General
	8.3.2 Server Object

	8.4 ModellingRule Objects
	8.4.1 ExposesItsArray
	8.4.2 Mandatory
	8.4.3 Optional
	8.4.4 OptionalPlaceholder
	8.4.5 MandatoryPlaceholder

	9 Standard Methods
	9.1 GetMonitoredItems
	9.2 ResendData
	9.3 SetSubscriptionDurable
	9.4 RequestServerStateChange

	10 Standard Views
	11 Standard ReferenceTypes
	11.1 References
	11.2 HierarchicalReferences
	11.3 NonHierarchicalReferences
	11.4 HasChild
	11.5 Aggregates
	11.6 Organizes
	11.7 HasComponent
	11.8 HasOrderedComponent
	11.9 HasProperty
	11.10 HasSubtype
	11.11 HasModellingRule
	11.12 HasTypeDefinition
	11.13 HasEncoding
	11.14 HasEventSource
	11.15 HasNotifier
	11.16 GeneratesEvent
	11.17 AlwaysGeneratesEvent

	12 Standard DataTypes
	12.1 Overview
	12.2 DataTypes defined in OPC 10000-3
	12.3 DataTypes defined in OPC 10000-4
	12.4 BuildInfo
	12.5 RedundancySupport
	12.6 ServerState
	12.7 RedundantServerDataType
	12.8 SamplingIntervalDiagnosticsDataType
	12.9 ServerDiagnosticsSummaryDataType
	12.10 ServerStatusDataType
	12.11 SessionDiagnosticsDataType
	12.12 SessionSecurityDiagnosticsDataType
	12.13 ServiceCounterDataType
	12.14 StatusResult
	12.15 SubscriptionDiagnosticsDataType
	12.16 ModelChangeStructureDataType
	12.17 SemanticChangeStructureDataType
	12.18 BitFieldMaskDataType
	12.19 NetworkGroupDataType
	12.20 EndpointUrlListDataType
	12.21 KeyValuePair
	12.22 EndpointType

	Annex A (informative) Design decisions when modelling the server information
	A.1 Overview
	A.2 ServerType and Server Object
	A.3 Typed complex Objects beneath the Server Object
	A.4 Properties versus DataVariables
	A.5 Complex Variables using complex DataTypes
	A.6 Complex Variables having an array
	A.7 Redundant information
	A.8 Usage of the BaseDataVariableType
	A.9 Subtyping
	A.10 Extensibility mechanism

	Annex B (normative) StateMachines
	B.1 General
	B.2 Examples of finite state machines
	B.2.1 Simple state machine
	B.2.2 State machine containing substates

	B.3 Definition of state machine
	B.4 Representation of state machines in the AddressSpace
	B.4.1 Overview
	B.4.2 StateMachineType
	B.4.3 StateVariableType
	B.4.4 TransitionVariableType
	B.4.5 FiniteStateMachineType
	B.4.6 FiniteStateVariableType
	B.4.7 FiniteTransitionVariableType
	B.4.8 StateType
	B.4.9 InitialStateType
	B.4.10 TransitionType
	B.4.11 FromState
	B.4.12 ToState
	B.4.13 HasCause
	B.4.14 HasEffect
	B.4.15 HasSubStateMachine
	B.4.16 TransitionEventType
	B.4.17 AuditUpdateStateEventType
	B.4.18 Special Restrictions on subtyping StateMachines
	B.4.19 Specific StatusCodes for StateMachines

	B.5 Examples of StateMachines in the AddressSpace
	B.5.1 StateMachineType using inheritance
	B.5.2 StateMachineType with a sub-machine using inheritance
	B.5.3 StateMachineType using containment
	B.5.4 Example of a StateMachine having Transition to SubStateMachine

	Annex C (normative) File Transfer
	C.1 Overview
	C.2 FileType
	C.2.1 Open
	C.2.2 Close
	C.2.3 Read
	C.2.4 Write
	C.2.5 GetPosition
	C.2.6 SetPosition

	C.3 File System
	C.3.1 FileDirectoryType
	C.3.2 FileSystem Object
	C.3.3 CreateDirectory
	C.3.4 CreateFile
	C.3.5 Delete
	C.3.6 MoveOrCopy

	C.4 Temporary File Transfer
	C.4.1 TemporaryFileTransferType
	C.4.2 File Transfer Sequences
	C.4.3 GenerateFileForRead
	C.4.4 GenerateFileForWrite
	C.4.5 CloseAndCommit
	C.4.6 FileTransferStateMachineType
	C.4.7 Reset

	Annex D (normative) DataTypeDictionary
	D.1 Overview
	D.2 Data Type Model
	D.3 DataTypeDictionary, DataTypeDescription, DataTypeEncoding and DataTypeSystem
	D.4 AddressSpace Organization
	D.5 Node Definitions
	D.5.1 HasDescription
	D.5.2 DataTypeDictionaryType
	D.5.3 DataTypeDescriptionType
	D.5.4 DataTypeSystemType
	D.5.5 OPC Binary
	D.5.6 XML Schema

	Annex E (normative) OPC Binary Type Description System
	E.1 Concepts
	E.2 Schema Description
	E.2.1 TypeDictionary
	E.2.2 TypeDescription
	E.2.3 OpaqueType
	E.2.4 EnumeratedType
	E.2.5 StructuredType
	E.2.6 FieldType
	E.2.7 EnumeratedValue
	E.2.8 ByteOrder
	E.2.9 ImportDirective

	E.3 Standard Type Descriptions
	E.4 Type Description Examples
	E.5 OPC Binary XML Schema
	E.6 OPC Binary Standard TypeDictionary

	Annex F (normative) User Authorization
	F.1 Overview
	F.2 RoleSetType
	F.2.1 RoleSetType Definition
	F.2.2 AddRole Method
	F.2.3 RemoveRole Method

	F.3 RoleType
	F.3.1 RoleType Definition
	F.3.2 IdentityMappingRuleType
	F.3.3 AddIdentity Method
	F.3.4 RemoveIdentity Method
	F.3.5 AddApplication Method
	F.3.6 RemoveApplication Method
	F.3.7 AddEndpoint Method
	F.3.8 RemoveEndpoint Method

	F.4 RoleMappingRuleChangedAuditEventType

