

F O U N D A T I O N

®

 O
P

C
 U

A
 S

p
e

c
ific

a
tio

n

OPC 10000-6

OPC Unified Architecture

Part 6: Mappings

Release 1.05.00

2021-10-12

1.05.00 i OPC 10000-6: Mappings

Specification
Type

Industry Standard
Specification

Comments
:

Document
Number OPC 10000-6

Title: OPC Unified Architecture
Mappings

Date: 2021-10-12

Version: Release 1.05.00 Software MS-Word

 Source: OPC 10000-6 - UA Specification Part 6 -
Mappings 1.05.00.docx

Author: OPC Foundation Status: Release

OPC 10000-6: Mappings ii 1.05.00

CONTENTS

FIGURES ... v

TABLES ... v

1 Scope ... 1

2 Normative references .. 1

3 Terms, definitions and abbreviated terms .. 3

3.1 Terms and definitions ... 3

3.2 Abbreviated terms .. 4

4 Overview ... 5

5 Data encoding ... 6

5.1 General .. 6

5.1.1 Overview ... 6

5.1.2 Built-in Types .. 6

5.1.3 Guid .. 7

5.1.4 DateTime .. 7

5.1.5 ByteString ... 7

5.1.6 ExtensionObject .. 8

5.1.7 Variant .. 8

5.1.8 Decimal ... 9

5.1.9 Null, Empty and Zero-Length Arrays .. 9

5.2 OPC UA Binary .. 9

5.2.1 General ... 9

5.2.2 Built-in Types .. 10

5.2.3 Decimal ... 19

5.2.4 Enumerations .. 19

5.2.5 Arrays ... 19

5.2.6 Structures ... 19

5.2.7 Structures with optional fields ... 21

5.2.8 Unions .. 23

5.2.9 Messages ... 25

5.3 OPC UA XML ... 25

5.3.1 Built-in Types .. 25

5.3.2 Decimal ... 31

5.3.3 Enumerations .. 31

5.3.4 Arrays ... 32

5.3.5 Structures ... 32

5.3.6 Structures with optional fields ... 33

5.3.7 Unions .. 33

5.3.8 Messages ... 34

5.4 OPC UA JSON ... 34

5.4.1 General ... 34

5.4.2 Built-in Types .. 34

5.4.3 Decimal ... 38

5.4.4 Enumerations .. 39

5.4.5 Arrays ... 39

5.4.6 Structures ... 39

5.4.7 Structures with optional fields ... 40

1.05.00 iii OPC 10000-6: Mappings

5.4.8 Unions .. 40

5.4.9 Messages ... 41

6 Message SecurityProtocols ... 41

6.1 Security handshake .. 41

6.2 Certificates ... 43

6.2.1 General ... 43

6.2.2 Application Instance Certificate ... 43

6.2.3 Certificate Revocation List (CRL) .. 44

6.2.4 Certificate Chains ... 44

6.3 Time synchronization ... 45

6.4 UTC and International Atomic Time (TAI) ... 45

6.5 Issued User Identity Tokens ... 45

6.5.1 Kerberos ... 45

6.5.2 JSON Web Token (JWT) ... 45

6.5.3 OAuth2 ... 46

6.6 WS Secure Conversation.. 48

6.7 OPC UA Secure Conversation .. 48

6.7.1 Overview ... 48

6.7.2 MessageChunk structure ... 48

6.7.3 MessageChunks and error handling .. 52

6.7.4 Establishing a SecureChannel... 53

6.7.5 Deriving keys .. 54

6.7.6 Verifying Message Security ... 55

6.8 Elliptic Curve Cryptography (ECC) ... 56

6.8.2 Secure Channel Handshake .. 56

6.8.3 UserIdentityToken Encryption ... 59

6.8.4 ECC Encrypted Secret .. 60

7 TransportProtocols .. 61

7.1 OPC UA Connection Protocol ... 61

7.1.1 Overview ... 61

7.1.2 Message structure... 61

7.1.3 Establishing a connection ... 64

7.1.4 Closing a connection ... 65

7.1.5 Error handling ... 66

7.2 OPC UA TCP ... 67

7.3 SOAP/HTTP ... 67

7.4 OPC UA HTTPS ... 68

7.4.1 Overview ... 68

7.4.2 Session-less Services ... 69

7.4.3 XML Encoding ... 69

7.4.4 OPC UA Binary Encoding .. 70

7.4.5 JSON Encoding ... 71

7.5 WebSockets ... 71

7.5.1 Overview ... 71

7.5.2 Protocol Mapping .. 72

7.5.3 Security .. 72

7.6 Well known addresses .. 73

8 Normative Contracts ... 73

8.1 OPC Binary Schema ... 73

OPC 10000-6: Mappings iv 1.05.00

8.2 XML Schema and WSDL .. 73

8.3 Information Model Schema ... 74

8.4 Formal definition of UA Information Model .. 74

8.5 Constants ... 74

8.6 DataType encoding .. 74

8.7 Security configuration ... 74

Annex A (normative) Constants ... 75

A.1 Attribute Ids .. 75

A.2 Status Codes .. 75

A.3 Numeric Node Ids ... 75

Annex B (normative) OPC UA NodeSet ... 77

Annex C (normative) Type declarations for the OPC UA native Mapping 78

Annex D (normative) WSDL for the XML Mapping ... 79

D.1 XML Schema .. 79

D.2 WDSL Port Types ... 79

D.3 WSDL Bindings .. 79

Annex E (normative) Security settings management .. 80

E.1 Overview .. 80

E.2 SecuredApplication .. 81

E.3 CertificateIdentifier ... 85

E.4 CertificateStoreIdentifier ... 86

E.5 CertificateList ... 87

E.6 CertificateValidationOptions ... 87

Annex F (normative) Information Model XML Schema ... 89

F.1 Overview .. 89

F.2 UANodeSet .. 89

F.3 UANode ... 91

F.4 Reference .. 92

F.5 RolePermission .. 92

F.6 UAType .. 92

F.7 UAInstance .. 92

F.8 UAVariable ... 93

F.9 UAMethod .. 93

F.10 TranslationType ... 94

F.11 UADataType ... 95

F.12 DataTypeDefinition ... 95

F.13 DataTypeField .. 96

F.14 Variant ... 97

F.15 Example ... 98

F.16 UANodeSetChanges... 100

F.17 NodesToAdd .. 100

F.18 ReferencesToChange ... 101

F.19 ReferenceToChange .. 101

F.20 NodesToDelete .. 101

F.21 NodeToDelete .. 102

F.22 UANodeSetChangesStatus ... 102

F.23 NodeSetStatusList .. 102

F.24 NodeSetStatus ... 103

1.05.00 v OPC 10000-6: Mappings

FIGURES

Figure 1 – The OPC UA Stack Overview .. 5

Figure 2 – Encoding Integers in a binary stream ... 10

Figure 3 – Encoding Floating Points in a binary stream .. 11

Figure 4 – Encoding Strings in a binary stream .. 11

Figure 5 – Encoding Guids in a binary stream .. 12

Figure 6 – Encoding XmlElement in a binary stream ... 12

Figure 7 – A String NodeId ... 13

Figure 8 – A Two Byte NodeId .. 14

Figure 9 – A Four Byte NodeId ... 14

Figure 10 – Security handshake ... 42

Figure 11 – MessageChunk for Unauthenticated Encryption Algorithms 48

Figure 12 – MessageChunk for Authenticated Encryption Algorithms 49

Figure 13 – ECC Key Negotiation ... 56

Figure 14 – ECC CreateSession/ActivateSession Handshake ... 59

Figure 15 – OPC UA Connection Protocol Message structure ... 61

Figure 16 – Client initiated OPC UA Connection Protocol connection 65

Figure 17 – Server initiated OPC UA Connection Protocol connection 65

Figure 18 – Closing a OPC UA Connection Protocol connection ... 66

Figure 19 – Scenarios for the HTTPS Transport ... 68

Figure 20 – Setting up Communication over a WebSocket .. 72

TABLES

Table 1 – Built-in Data Types ... 6

Table 2 – Guid structure ... 7

Table 3 – Layout of Decimal ... 9

Table 4 – Supported Floating Point Types .. 10

Table 5 – NodeId components .. 13

Table 6 – NodeId DataEncoding values .. 13

Table 7 – Standard NodeId Binary DataEncoding ... 13

Table 8 – Two Byte NodeId Binary DataEncoding ... 14

Table 9 – Four Byte NodeId Binary DataEncoding .. 14

Table 10 – ExpandedNodeId Binary DataEncoding ... 15

Table 11 – DiagnosticInfo Binary DataEncoding ... 15

Table 12 – QualifiedName Binary DataEncoding .. 16

Table 13 – LocalizedText Binary DataEncoding .. 16

Table 14 – Extension Object Binary DataEncoding ... 17

Table 15 – Variant Binary DataEncoding .. 18

Table 16 – Data Value Binary DataEncoding .. 19

Table 17 – Sample OPC UA Binary Encoded structure ... 20

OPC 10000-6: Mappings vi 1.05.00

Table 18 – Sample OPC UA Binary Encoded Structure with optional fields 22

Table 19 – Sample OPC UA Binary Encoded Structure .. 24

Table 20 – XML Data Type Mappings for Integers .. 25

Table 21 – XML Data Type Mappings for Floating Points .. 26

Table 22 – Components of NodeId ... 27

Table 23 – Components of ExpandedNodeId .. 28

Table 24 – Components of Enumeration ... 31

Table 25 – JSON Object Definition for a NodeId ... 35

Table 26 – JSON Object Definition for an ExpandedNodeId ... 36

Table 27 – JSON Object Definition for a StatusCode .. 36

Table 28 – JSON Object Definition for a DiagnosticInfo .. 37

Table 29 – JSON Object Definition for a QualifiedName ... 37

Table 30 – JSON Object Definition for a LocalizedText... 37

Table 31 – JSON Object Definition for an ExtensionObject ... 38

Table 32 – JSON Object Definition for a Variant ... 38

Table 33 – JSON Object Definition for a DataValue .. 38

Table 34 – JSON Object Definition for a Decimal ... 39

Table 35 – JSON Object Definition for a Structures with Optional Fields............................... 40

Table 36 – JSON Object Definition for a Union ... 40

Table 37 – SecurityPolicy ... 43

Table 38 – Application Instance Certificate ... 44

Table 39 – Certificate Revocation List Extensions .. 44

Table 40 – JWT UserTokenPolicy ... 46

Table 41 – JWT IssuerEndpointUrl Definition ... 46

Table 42 – Access Token Claims .. 47

Table 43 – OPC UA Secure Conversation Message Header ... 49

Table 44 – Asymmetric algorithm Security header .. 50

Table 45 – Symmetric algorithm Security header .. 51

Table 46 – Sequence header .. 51

Table 47 – Message Footer for Unauthenticated Encryption Algorithms 52

Table 48 – Message Footer for Authenticated Encryption Algorithms.................................... 52

Table 49 – OPC UA Secure Conversation Message abort body .. 53

Table 50 – OPC UA Secure Conversation OpenSecureChannel Service 53

Table 51 – PRF inputs for RSA based SecurityPolicies .. 55

Table 52 – Cryptography key generation parameters .. 55

Table 53 – Deriving Client Keys from Keying Material .. 58

Table 54 – Deriving Server Keys from Keying Material ... 58

Table 55 – Creating a Mask for the Initialization Vector .. 58

Table 56 – Additional Header Key Names .. 60

Table 57 – Deriving Keys from Keying Material .. 60

Table 58 – OPC UA Connection Protocol Message header ... 62

Table 59 – OPC UA Connection Protocol Hello Message.. 62

Table 60 – OPC UA Connection Protocol Acknowledge Message ... 63

1.05.00 vii OPC 10000-6: Mappings

Table 61 – OPC UA Connection Protocol Error Message .. 63

Table 62 – OPC UA Connection Protocol ReverseHello Message ... 64

Table 63 – OPC UA Connection Protocol error codes ... 67

Table 64 – WebSocket Protocols Mappings .. 72

Table 65 – Well known addresses for Local Discovery Servers... 73

Table A.1 – Identifiers assigned to Attributes ... 75

Table E.1 – SecuredApplication.. 82

Table E.2 – CertificateIdentifier .. 85

Table E.3 – Structured directory store .. 86

Table E.4 – CertificateStoreIdentifier .. 87

Table E.5 – CertificateList .. 87

Table E.6 – CertificateValidationOptions .. 88

Table F.1 – UANodeSet.. 90

Table F.2 – UANode ... 91

Table F.3 – Reference .. 92

Table F.4 – RolePermission ... 92

Table F.5 – UANodeSet Type Nodes .. 92

Table F.6 – UANodeSet Instance Nodes .. 93

Table F.7 – UAInstance .. 93

Table F.8 – UAVariable .. 93

Table F.9 – UAMethod ... 94

Table F.10 – TranslationType ... 95

Table F.11 – UADataType .. 95

Table F.12 – DataTypeDefinition .. 96

Table F.13 – DataTypeField ... 97

Table F.14 – UANodeSetChanges .. 100

Table F.15 – NodesToAdd .. 101

Table F.16 – ReferencesToChange .. 101

Table F.17 – ReferencesToChange .. 101

Table F.18 – NodesToDelete .. 102

Table F.19 – ReferencesToChange .. 102

Table F.20 – UANodeSetChangesStatus .. 102

Table F.21 – NodeSetStatusList ... 103

Table F.22 – NodeSetStatus .. 103

OPC 10000-6: Mappings viii 1.05.00

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2021, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that a re
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LO SS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials .
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

1.05.00 ix OPC 10000-6: Mappings

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

OPC 10000-6: Mappings x 1.05.00

Revision 1.05.00 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

3819 Add Support for ECC to UA Secure
Conversation.

Added 6.8.

4144 Version of TLS should not be listed in Part
6.

Removed text from 7.4.1.

4200 BadSequenceNumberInvalid status code
is not defined in the specification.

Added text to 6.7.6.

4205 Type of element "Extensions" is wrong. Updated Table F.1, Table F.2, Table
F.14, Table F.20, and Table E.1.

4207 UAMethod attribute "Executable" is
missing.

Updated Table F.9.

4208 DataTypeDefinition "BaseDataType" is
missing.

Updated Table F.12.

4233 Certificate authority key length
verification.

Added text to 6.1.

4253 AccessLevelEx missing Annex F
(normative) Information Model XML
Schema.

Added text to F.8.

4324 Attribute SymbolicName: Value has
further restriction

Updated F.3.

4325 Reconnect was removed from UATCP but
one paragraph was left in 6.7.4.

Remove text from 6.7.4.

4369 Allowable content of DataTypeDefinition
in Part 6 - Annex F is unclear.

Update Table F.12.

4370 We need a way to add standard browse
names to UANodeSet.

Update F.1.

4377 Reverse connect description is incomplete
as the reconnect behaviour is not clearly
defined.

Updated 7.1.2.6.

4393 Incorrect URL Scheme in Well Known
Addresses Table.

Updated Table 65.

4418 Encoding node for GenericAttributeValue
missing.

Added additional link to Annex B.

4419 Generated 1.04 resources contains
references to types not in the
specification.

Added ReleaseStatus attribute to
UANode in F.3.

4433 Allowed types within an
ExtensionObjectArray are not clearly
specified.

Added text indicating that all valid
ExtensionObjects are permitted in
5.1.6.

4478 Unknown built-in type handling for Variant
decoding, arrays and array dimensions
bits, possible confusion.

Made it clear that unknown arrays are
arrays of ByteStrings in 5.2.2.16.

4466 Link to 1.04 NodeSet should indicate that
errata and amendments are applied.

Updated Annex B.

4523 Clarification on NULL values. Updated Table 1.

https://www.opcfoundation.org/mantis/view.php?id=3819
https://www.opcfoundation.org/mantis/view.php?id=4144
https://www.opcfoundation.org/mantis/view.php?id=4200
https://www.opcfoundation.org/mantis/view.php?id=4205
https://www.opcfoundation.org/mantis/view.php?id=4207
https://www.opcfoundation.org/mantis/view.php?id=4208
https://www.opcfoundation.org/mantis/view.php?id=4233
https://www.opcfoundation.org/mantis/view.php?id=4253
https://www.opcfoundation.org/mantis/view.php?id=4324
https://www.opcfoundation.org/mantis/view.php?id=4325
https://www.opcfoundation.org/mantis/view.php?id=4369
https://www.opcfoundation.org/mantis/view.php?id=4370
https://www.opcfoundation.org/mantis/view.php?id=4377
https://www.opcfoundation.org/mantis/view.php?id=4393
https://www.opcfoundation.org/mantis/view.php?id=4418
https://www.opcfoundation.org/mantis/view.php?id=4419
https://www.opcfoundation.org/mantis/view.php?id=4433
https://www.opcfoundation.org/mantis/view.php?id=4478
https://www.opcfoundation.org/mantis/view.php?id=4466
https://www.opcfoundation.org/mantis/view.php?id=4523

1.05.00 xi OPC 10000-6: Mappings

Mantis
ID

Summary Resolution

4574 Undefined status code
Bad_CertificateUnknown.

Updated 6.7.6.

4651 DataValue encoding mask bits with zero
picoseconds.

Updated Table 16.

4661 The Hello ProtocolVersion description is
contradictory.

Updated 7.1.2.3 and 7.1.2.4.

4712 UADataType.Definition.Name wrong
value.

Updated F.12.

4775 Add clarification for protocol tables where
the UA binary encoding for arrays does
not fully apply.

Updated Table 3, Table 14, Table 47
and Table 48.

4781 Use of the AuthorityKeyIdentifier
extension in Certificate Revocation Lists .

Added 6.2.3.

4799 Timestamp field in RequestHeader says it
is only used for diagnostics but it is also
used for security.

Removed text from 6.3.

4930 Need to add the term "DefaultValue" for
all datatypes.

Updated 5.1.2.

4965 Can abstract data types be used as
structure fields.

Updated 5.1.6.

4994 Clarification for the usage of
DataTypeDefinition in NodeSet files: Base
Type.

Updated F.11.

5029 Missing: ArrayDimensions and
MaxStringLength.

Updated 5.2.6, 5.2.7 and 5.2.8.

5265 Sequence number erratum incompatible
to existing stacks.

Updated 6.1 and 6.7.2.4.

5339 DataType Field should allow abstract
supertypes.

Updated F.13.

5465 Security check description is incorrect. Updated 6.7.6.

5467 Protocol Version contradicting in
7.1.2.3/7.1.2.4 vs. 6.7.4.

Updated 6.7.4.

5475 Incorrect field names in Union example,
and misleading text.

Updated 5.2.8.

5477 ExtensionObject binary encoding -
preamble text is incorrect.

Updated 5.2.2.15.

5486 JSON mapping of Unions not specified
well.

Updated 5.4.8.

5515 Error and Abort messages shall return
only protocol error codes but other codes
are requested to be sent.

Updated 6.7.3 and 7.1.2.5.

6080 Decimal data type encoding is missing. Added clarification to 5.1.8.

6109 Add rule to SymbolicName. Updated F.3 and F.12.

6251 CertificateStoreIdentifier.ValidationOption
s has wrong DataType.

Updated E.3 and E.4.

https://www.opcfoundation.org/mantis/view.php?id=4574
https://www.opcfoundation.org/mantis/view.php?id=4651
https://www.opcfoundation.org/mantis/view.php?id=4661
https://www.opcfoundation.org/mantis/view.php?id=4712
https://www.opcfoundation.org/mantis/view.php?id=4775
https://www.opcfoundation.org/mantis/view.php?id=4781
https://www.opcfoundation.org/mantis/view.php?id=4799
https://www.opcfoundation.org/mantis/view.php?id=4930
https://www.opcfoundation.org/mantis/view.php?id=4965
https://www.opcfoundation.org/mantis/view.php?id=4994
https://www.opcfoundation.org/mantis/view.php?id=5029
https://www.opcfoundation.org/mantis/view.php?id=5265
https://www.opcfoundation.org/mantis/view.php?id=5339
https://www.opcfoundation.org/mantis/view.php?id=5465
https://www.opcfoundation.org/mantis/view.php?id=5467
https://www.opcfoundation.org/mantis/view.php?id=5475
https://www.opcfoundation.org/mantis/view.php?id=5477
https://www.opcfoundation.org/mantis/view.php?id=5486
https://www.opcfoundation.org/mantis/view.php?id=5515
https://www.opcfoundation.org/mantis/view.php?id=6080
https://www.opcfoundation.org/mantis/view.php?id=6109
https://www.opcfoundation.org/mantis/view.php?id=6251

OPC 10000-6: Mappings xii 1.05.00

Mantis
ID

Summary Resolution

6276 Clarification needed for "content" of the
DataTypeDefinition Attribute.

Updated F.12.

6277 Disalow cyclic references between
NodeSet-Files.

Updated F.2.

6384 Conflict between UA Spec and RFC 6960. Updated Table E.6.

6474 ECC keyUsage rules need to be specified. Updated Table 38.

6478 Handling of StructureFields with abstract
DataType.

Updated Table F.13.

6489 DataTypeField need clarifications for
OptionSet.

Updated Table F.13.

6829 5.2.5 differentiates between a zero length
array and a null array.

Added 5.1.9.

7264 UANodeSet needs to explain association
with XSDs.

Added paragraph to F.1 and added
XmlSchemaUri to UANodeSet.

7270 UANodeSet needs to explain the scope of
Aliases.

Added additional text to F.15.

7271 DataTypeDescription and
DataTypeDictionary are deprecated and
should be removed from NodeSet
examples.

Removed examples from F.15.

7272 Normative References have newer
versions

Updated links in 2.

7275 Need to explain how null values work for
types normally seen as non-nullable such
as StatusCode.

Added text in 5.1.2

7276 5.1.6 ExtensionObject - need reference to
AllowSubTypes flag.

Change text in 5.1.6.

7277 5.2.2.4 String - incorrect text for null
terminator

Change text in 5.2.2.4.

7291 Application Instance Certificate - Self-
signed keyUsage bits need to be stated.

Add text to 6.2.2.

7292 OPC UA Secure Conversation - Algorithm
Not Known when Minimum Buffer Size
Negotiated

Updated text in 6.7.1. Added
requirements to Table 59 and Table 60.

7295 Figure 12 has unexplained Counter block
in footer.

Removed block from Figure 12.

7296 Annex C is obsolete due to
DataTypeDefinition Attribute.

Changed Annex C to informative.

7297 Clarify DataTypeDefinitions when No
Fields Exist.

Updated text in F.12.

.

https://www.opcfoundation.org/mantis/view.php?id=6276
https://www.opcfoundation.org/mantis/view.php?id=6277
https://www.opcfoundation.org/mantis/view.php?id=6384
https://www.opcfoundation.org/mantis/view.php?id=6474
https://www.opcfoundation.org/mantis/view.php?id=6478
https://www.opcfoundation.org/mantis/view.php?id=6489
https://www.opcfoundation.org/mantis/view.php?id=6829
https://www.opcfoundation.org/mantis/view.php?id=7264
https://www.opcfoundation.org/mantis/view.php?id=7270
https://www.opcfoundation.org/mantis/view.php?id=7271
https://www.opcfoundation.org/mantis/view.php?id=7272
https://www.opcfoundation.org/mantis/view.php?id=7275
https://www.opcfoundation.org/mantis/view.php?id=7276
https://www.opcfoundation.org/mantis/view.php?id=7277
https://www.opcfoundation.org/mantis/view.php?id=7291
https://www.opcfoundation.org/mantis/view.php?id=7292
https://www.opcfoundation.org/mantis/view.php?id=7295
https://www.opcfoundation.org/mantis/view.php?id=7296
https://www.opcfoundation.org/mantis/view.php?id=7297

1.05.00 1 OPC 10000-6: Mappings

OPC Unified Architecture Specification

Part 6: Mappings

1 Scope

This part of OPC Unified Architecture (OPC UA) specifies the mapping between the security
model described in OPC 10000-2, the abstract service definitions specified in OPC 10000-4,
the data structures defined in OPC 10000-5 and the physical network protocols that can be
used to implement the OPC UA specification.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-12, OPC Unified Architecture - Part 12: Discovery and Global Services

http://www.opcfoundation.org/UA/Part12/

XML Schema Part 2: XML Schema Part 2: Datatypes

http://www.w3.org/TR/xmlschema-2/

SOAP Part 1, SOAP Version 1.2 Part 1: Messaging Framework

http://www.w3.org/TR/soap12-part1/

WS Addressing, Web Services Addressing (WS-Addressing)

http://www.w3.org/Submission/ws-addressing/

SSL/TLS, RFC 8446 – The Transport Layer Security (TLS) Protocol Version 1.3

https://datatracker.ietf.org/doc/html/rfc8446

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part12/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/Submission/ws-addressing/

OPC 10000-6: Mappings 2 1.05.00

X.509 v3, ISO/IEC 9594-8 (ITU-T Rec. X.509), Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate frameworks

https://www.iso.org/standard/72557.html

HTTP, Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

https://datatracker.ietf.org/doc/html/rfc7230

HTTPS, HTTP Over TLS

http://www.ietf.org/rfc/rfc2818.txt

Base64, The Base16, Base32, and Base64 Data Encodings

https://datatracker.ietf.org/doc/html/rfc4648

X690, ISO/IEC 8825-1 (ITU-T Rec. X.690), Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)

https://www.iso.org/standard/35688.html

X200, ISO/IEC 7498-1 (ITU-T Rec. X.200), Information technology – Open Systems
Interconnection – Basic Reference Model: The Basic Model

https://www.iso.org/standard/20269.html

IEEE-754, 60559-2020 - ISO/IEC/IEEE International Standard - Standard for Floating-Point
Arithmetic

https://ieeexplore.ieee.org/document/9091348

HMAC, Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt

PKCS #1, RSA Cryptography Specifications Version 2.2

https://datatracker.ietf.org/doc/html/rfc8017

PKCS #12, Personal Information Exchange Syntax v1.1

https://datatracker.ietf.org/doc/html/rfc7292

FIPS 180-4, Secure Hash Standard (SHS)

https://csrc.nist.gov/publications/detail/fips/180/4/final

FIPS 197, Advanced Encryption Standard (AES)

https://www.nist.gov/publications/advanced-encryption-standard-aes

UTF-8, UTF-8, a transformation format of ISO 10646

https://datatracker.ietf.org/doc/html/rfc3629

RFC 5280, Internet X.509 Public Key Infrastructure Certificate

 and Certificate Revocation List (CRL) Profile

https://datatracker.ietf.org/doc/html/rfc5280

RFC 4514, LDAP: String Representation of Distinguished Names

https://datatracker.ietf.org/doc/html/rfc4514

NTP, Network Time Protocol Version 4: Protocol and Algorithms Specification

https://datatracker.ietf.org/doc/html/rfc5905

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

https://datatracker.ietf.org/doc/html/rfc3986

RFC 8141, Uniform Resource Names (URNs)

https://datatracker.ietf.org/doc/html/rfc8141

RFC 6455, The WebSocket Protocol

https://www.iso.org/standard/72557.html
https://datatracker.ietf.org/doc/html/rfc7230
http://www.ietf.org/rfc/rfc2818.txt
https://datatracker.ietf.org/doc/html/rfc4648
https://www.iso.org/standard/35688.html
https://www.iso.org/standard/20269.html
https://ieeexplore.ieee.org/document/9091348
http://www.ietf.org/rfc/rfc2104.txt
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc7292
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc8141

1.05.00 3 OPC 10000-6: Mappings

https://datatracker.ietf.org/doc/html/rfc6455

RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format

https://datatracker.ietf.org/doc/html/rfc8259

RFC 7523, JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and

Authorization Grants

https://datatracker.ietf.org/doc/html/rfc7523

RFC 6749, The OAuth 2.0 Authorization Framework

https://datatracker.ietf.org/doc/html/rfc6749

OpenID-Core, OpenID Connect Core 1.0

http://openid.net/specs/openid-connect-core-1_0.html

OpenID-Discovery, OpenID Connect Discovery 1.0

https://openid.net/specs/openid-connect-discovery-1_0.html

RFC 6960, X.509 Internet Public Key Infrastructure – Online Certificate Status Protocol – OCSP

https://datatracker.ietf.org/doc/html/rfc6960

RFC 5869, HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

https://datatracker.ietf.org/doc/html/rfc5869

RFC 8422, Elliptic Curve Cryptography (ECC) Cipher Suites

https://datatracker.ietf.org/doc/html/rfc8422

ISO 8601-1, Date and time - Representations for information interchange - Part 1: Basic rules

https://www.iso.org/standard/70907.html

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document the terms and definitions given in OPC 10000-1, OPC 10000-
2 and OPC 10000-3 as well as the following apply.

3.1.1
CertificateDigest
short identifier used to uniquely identify an X.509v3 Certificate.

Note 1 to entry: This is the SHA1 hash of DER encoded form of the Certificate.

3.1.2
DataEncoding
way to serialize OPC UA Messages and data structures.

3.1.3
DefaultValue
a value that is used when no other value is known or available.

3.1.4
DevelopmentPlatform
suite of tools and/or programming languages used to create software.

3.1.5
Mapping
specification on how to implement an OPC UA feature with a specific technology.

Note 1 to entry: For example, the OPC UA Binary Encoding is a Mapping that specifies how to serialize OPC UA
data structures as sequences of bytes.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8422
https://www.iso.org/standard/70907.html

OPC 10000-6: Mappings 4 1.05.00

3.1.6
OctetString
a sequence of zero or more octets without any length prefix .

Note 1 to entry: an OctetString is not defined as a DataType and only used in this document when a ByteString is
not appropriate.

3.1.7
SecurityProtocol
Protocol which ensures the integrity and privacy of UA Messages that are exchanged between
OPC UA applications

3.1.8
StackProfile
combination of DataEncodings, SecurityProtocol and TransportProtocol Mappings

Note 1 to entry: OPC UA applications implement one or more StackProfiles and can only communicate with OPC
UA applications that support a StackProfile that they support.

3.1.9
TransportConnection
full-duplex communication link established between OPC UA applications.

Note 1 to entry: A TCP/IP socket is an example of a TransportConnection.

3.1.10
TransportProtocol
way to exchange serialized OPC UA Messages between OPC UA applications

3.2 Abbreviated terms

AEAD Authenticated Encryption with Associated Data

API Application Programming Interface

ASN.1 Abstract Syntax Notation #1 (used in X690)

CSV Comma Separated Value (File Format)

ECC Elliptic Curve Cryptography

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IPSec Internet Protocol Security

OID Object Identifier (used with ASN.1)

PRF Pseudo Random Function

RSA Rivest, Shamir and Adleman [Public Key Encryption System]

SHA1 Secure Hash Algorithm

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer (Defined in SSL/TLS)

TCP Transmission Control Protocol

TLS Transport Layer Security (Defined in SSL/TLS)

UA Unified Architecture

UACP OPC UA Connection Protocol

UASC OPC UA Secure Conversation

WS-* XML Web Services Specifications

XML Extensible Markup Language

1.05.00 5 OPC 10000-6: Mappings

4 Overview

Other parts of the OPC 10000 series are written to be independent of the technology used for
implementation. This approach means OPC UA is a flexible specification that will continue to
be applicable as technology evolves. On the other hand, this approach means that it is not
possible to build an OPC UA application with the information contained in OPC 10000-1 through
to OPC 10000-5 because important implementation details have been left out.

This document defines Mappings between the abstract specifications and technologies that can
be used to implement them. The Mappings are organized into three groups: DataEncodings,
SecurityProtocols and TransportProtocols. Different Mappings are combined together to create
StackProfiles. All OPC UA applications shall implement at least one StackProfile and can only
communicate with other OPC UA applications that implement the same StackProfile.

This document defines the DataEncodings in Clause 5, the SecurityProtocols in 5.4 and the
TransportProtocols in 6.7.6. The StackProfiles are defined in OPC 10000-7.

All communication between OPC UA applications is based on the exchange of Messages. The
parameters contained in the Messages are defined in OPC 10000-4; however, their format is
specified by the DataEncoding and TransportProtocol. For this reason, each Message defined
in OPC 10000-4 shall have a normative description which specifies exactly what shall be put on
the wire. The normative descriptions are defined in the annexes.

A Stack is a collection of software libraries that implement one or more StackProfiles. The
interface between an OPC UA application and the Stack is a non-normative API which hides
the details of the Stack implementation. An API depends on a specific DevelopmentPlatform.
Note that the datatypes exposed in the API for a DevelopmentPlatform may not match the
datatypes defined by the specification because of limitations of the DevelopmentPlatform. For
example, Java Progamming Language does not support an unsigned integer which means that
any API will need to map unsigned integers onto a signed integer type.

Figure 1 illustrates the relationships between the different concepts defined in this document.

Serialization Layer

UA Application

API

Secure Channel Layer

Encoded Message

Transport Layer

Secured Message

Development Platforms

.NET Framework

C++/ANSI C

Java

Data Encodings

UA Binary

UA XML

UA JSON

Security Protocols

UA Secure Conversation

Transport Protocols

UA TCP

HTTPS

WebSockets

Security Transforms

Signing

Encryption

WSDL and XML Schema

UA Binary Schema

Client

Server

Mappings

Stack

Wire Protocol

Figure 1 – The OPC UA Stack Overview

The layers described in this specification do not correspond to layers in the OSI 7-layer model
[X200]. Each OPC UA StackProfile should be treated as a single Layer 7 (application) protocol
that is built on an existing Layer 5, 6 or 7 protocol such as TCP/IP, TLS or HTTP. The
SecureChannel layer is always present even if the SecurityMode is None. In this situation, no
security is applied but the SecurityProtocol implementation shall maintain a logical channel with
a unique identifier. Users and administrators are expected to understand that a SecureChannel

OPC 10000-6: Mappings 6 1.05.00

with SecurityMode set to None cannot be trusted unless the application is operating on a
physically secure network or a low-level protocol such as IPSec is being used.

5 Data encoding

5.1 General

5.1.1 Overview

This document defines three DataEncodings: OPC UA Binary, OPC UA XML and OPC UA
JSON. It describes how to construct Messages using each of these encodings.

5.1.2 Built-in Types

All OPC UA DataEncodings are based on rules that are defined for a standard set of built -in
types. These built-in types are then used to construct structures, arrays and Messages. The
built-in types are described in Table 1.

Table 1 – Built-in Data Types

ID Name Nullable Default Description

1 Boolean No false A two-state logical value (true or false).

2 SByte No 0 An integer value between −128 and 127 inclusive.

3 Byte No 0 An integer value between 0 and 255 inclusive.

4 Int16 No 0 An integer value between −32 768 and 32 767 inclusive.

5 UInt16 No 0 An integer value between 0 and 65 535 inclusive.

6 Int32 No 0 An integer value between −2 147 483 648 and 2 147 483 647
inclusive.

7 UInt32 No 0 An integer value between 0 and 4 294 967 295 inclusive.

8 Int64 No 0 An integer value between −9 223 372 036 854 775 808 and
9 223 372 036 854 775 807 inclusive.

9 UInt64 No 0 An integer value between 0 and 18 446 744 073 709 551 615
inclusive.

10 Float No 0 An IEEE single precision (32 bit) floating point value.

11 Double No 0 An IEEE double precision (64 bit) floating point value.

12 String Yes null A sequence of Unicode characters.

13 DateTime Yes DateTime.MinVa
lue (see 5.1.4)

An instance in time.

14 Guid Yes All zeros A 16-byte value that can be used as a globally unique identifier.

15 ByteString Yes null A sequence of octets.

16 XmlElement Yes null A sequence of Unicode characters that is an XML element.

17 NodeId Yes All fields set to
default.

An identifier for a node in the address space of an OPC UA
Server.

18 ExpandedNodeId Yes All fields set to
default.

A NodeId that allows the namespace URI to be specified instead
of an index.

19 StatusCode No Good A numeric identifier for an error or condition that is associated
with a value or an operation.

20 QualifiedName Yes All fields set to
default.

A name qualified by a namespace.

21 LocalizedText Yes All fields set to
default.

Human readable text with an optional locale identifier.

22 ExtensionObject Yes All fields set to
default.

A structure that contains an application specific data type that
may not be recognized by the receiver.

23 DataValue Yes All fields set to
default.

A data value with an associated status code and timestamps.

24 Variant Yes Null A union of all of the types specified above.

25 DiagnosticInfo Yes No fields
specified.

A structure that contains detailed error and diagnostic information
associated with a StatusCode.

Most of these data types are the same as the abstract types defined in OPC 10000-3 and OPC
10000-4. However, the ExtensionObject and Variant types are defined in this document. In
addition, this document defines a representation for the Guid type defined in OPC 10000-3.

1.05.00 7 OPC 10000-6: Mappings

The Nullable column indicates whether a ‘null’ value exists for the DataType in all
DataEncodings. A ‘null’ value is a value that is equavalent ‘no value specified’. A nullable type
with a default value means the default value shall be interpreted equivalent to a null.

The Default column specifies the default value for the type if a default value is needed. The
default value for all arrays is ‘null’.

5.1.3 Guid

A Guid is a 16-byte globally unique identifier with the layout shown in Table 2.

Table 2 – Guid structure

Component Data Type

Data1 UInt32

Data2 UInt16

Data3 UInt16

Data4 Byte [8]

Guid values may be represented as a string in this form:

<Data1>-<Data2>-<Data3>-<Data4[0:1]>-<Data4[2:7]>

where Data1 is 8 characters wide, Data2 and Data3 are 4 characters wide and each Byte in
Data4 is 2 characters wide. Each value is formatted as a hexadec imal number with padded
zeros. A typical Guid value would look like this when formatted as a string:

C496578A-0DFE-4B8F-870A-745238C6AEAE

5.1.4 DateTime

DateTime values have different ranges on different DevelopmentPlatforms. To ensure
interoperablity two named values are defined:

“DateTime.MinValue” is the earliest value that can be represented;

“DateTime.MaxValue” is the latest value that can be represented.

If the range supported by the DataEncoding is larger that then range supported by a
DevelopmentPlatform then decoders shall replace any out of range values by either
DateTime.MinValue or DateTime.MaxValue for the DevelopmentPlatform.

If the range supported by the DataEncoding is smaller than the range supported by a
DevelopmentPlatform then encoders shall replace any out of range values by either
DateTime.MinValue or DateTime.MaxValue for the DataEncoding.

Concrete examples can be found in 5.2.2.5.

5.1.5 ByteString

A ByteString is structurally the same as a one-dimensional array of Byte. It is represented as a
distinct built-in data type because it allows encoders to optimize the transmission of the value.
However, some DevelopmentPlatforms will not be able to preserve the distinction between a
ByteString and a one-dimensional array of Byte.

If a decoder for DevelopmentPlatform cannot preserve the distinction it shall convert all one-
dimensional arrays of Byte to ByteStrings.

Each element in a one-dimensional array of ByteString can have a different length which means
is structurally different from a two-dimensional array of Byte where the length of each dimension
is the same. This means decoders shall preserve the distinction between two or more dimension
arrays of Byte and one or more dimension arrays of ByteString.

OPC 10000-6: Mappings 8 1.05.00

If a DevelopmentPlatform does not support unsigned integers, then it will have to represent
ByteStrings as arrays of SByte. In this case, the requirements for Byte would then apply to
SByte.

5.1.6 ExtensionObject

An ExtensionObject is a container for any Structured DataTypes which cannot be encoded as
one of the other built-in data types. The ExtensionObject contains a complex value serialized
as a sequence of bytes or as an XML element. It also contains an identifier which indicates
what data it contains and how it is encoded.

There are four primary use cases where ExtensionObjects appear:

• When encoding a top-level DataType as a Service Request or Response;

• When encoding a Structure value inside a Variant;

• When encoding a field value in a Structure where the field DataType is Structure.

• When encoding a field value in a Structure where AllowSubTypes=TRUE (see F.13).

In all of these cases, the ExtensionObject provides an identifier that allows a decoder to know
if it understands the Structure contained with it and a length that allows the Structure to be
skipped if it is not recognized.

Structured DataTypes are represented in a Server address space as sub-types of the Structure
DataType. The DataEncodings available for any given Structured DataTypes are represented
as a DataTypeEncoding Object in the Server AddressSpace. The NodeId for the
DataTypeEncoding Object is the identifier stored in the ExtensionObject. OPC 10000-3
describes how DataTypeEncoding Nodes are related to other Nodes of the AddressSpace.

Elements of an array of ExtensionObjects may have different DataTypeEncoding NodeIds
specified. In some cases, this will be invalid, however, it is the responsibility of the application
layer to enforce whatever constraints are imposed by the Information Model on a given array.
Decoders shall accept any valid ExtensionObject as an array element.

Server implementers should use namespace qualified numeric NodeIds for any
DataTypeEncoding Objects they define. This will minimize the overhead introduced by packing
Structured DataType values into an ExtensionObject.

ExtensionObjects and Variants allow unlimited nesting which could result in stack overflow
errors even if the message size is less than the maximum allowed. Decoders shall support at
least 100 nesting levels. Decoders shall report an error if the number of nesting levels exceeds
what it supports.

5.1.7 Variant

A Variant is a union of all built-in data types including an ExtensionObject. Variants can also
contain arrays of any of these built-in types. Variants are used to store any value or parameter
with a data type of BaseDataType or one of its subtypes.

Variants can be empty. An empty Variant is described as having a null value and should be
treated like a null column in a SQL database. A null value in a Variant may not be the same as
a null value for data types that support nulls such as Strings. Some DevelopmentPlatforms may
not be able to preserve the distinction between a null for a DataType and a null for a Variant,
therefore, applications shall not rely on this distinction. This requirement also means that if an
Attribute supports the writing of a null value it shall also support writing of an empty Variant and
vice versa.

Variants can contain arrays of Variants but they cannot directly contain another Variant.

DiagnosticInfo types only have meaning when returned in a response message with an
associated StatusCode and table of strings. As a result, Variants cannot contain instances of
DiagnosticInfo.

1.05.00 9 OPC 10000-6: Mappings

Values of Attributes are always returned in instances of DataValues. Therefore, the DataType
of an Attribute cannot be a DataValue. Variants can contain DataValue when used in other
contexts such as Method Arguments or PubSub Messages. The Variant in a DataValue cannot,
directly or indirectly, contain another DataValue.

ExtensionObjects and Variants allow unlimited nesting which could result in stack overflow
errors even if the message size is less than the maximum allowed. Decoders shall support at
least 100 nesting levels. Decoders shall report an error if the number of nesting levels exceeds
what it supports.

5.1.8 Decimal

A Decimal is a high-precision signed decimal number. It consists of an arbitrary precision
integer unscaled value and an integer scale. The scale is the power of ten that is applied to the
unscaled value.

A Decimal has the fields described in Table 3.

Table 3 – Layout of Decimal

Field Type Description

TypeId NodeId The identifier for the Decimal DataType.

Encoding Byte This value is always 1.

Length Int32 The length of the Scale and Value fields in bytes.
If the length is less than or equal to 2 then the Decimal is an invalid value that
cannot be used.

Scale Int16 A signed integer representing the power of ten used to scale the value.

i.e. the decimal number of the value multiplied by 10-scale

The integer is encoded starting with the least significant bit.

Value OctetString A 2-complement signed integer representing the unscaled value.

The number of bytes is the value of the Length field minus size of the Scale field.

The integer is encoded with the least significant byte first.

When a Decimal is encoded in a Variant the built-in type is set to ExtensionObject. Decoders
that do not understand the Decimal type shall treat it like any other unknown Structure and pass
it on to the application. Decoders that do understand the Decimal can parse the value and use
any construct that is suitable for the DevelopmentPlatform. Note that a Decimal is like a built-
in type and a DevelopmentPlatform has to have hardcoded knowledge of the type. No Structure
metadata is published for this type.

If a Decimal is embedded in another Structure then the DataTypeDefinition for the field shall
specify the NodeId of the Decimal Node as the DataType. If a Server publishes an OPC Binary
type description for the Structure then the type description shall set the DataType for the field
to ExtensionObject.

5.1.9 Null, Empty and Zero-Length Arrays

The terms null, empty and zero-length are used to describe array values (Strings are arrays of
characters and ByteStrings are arrays of Bytes for purposes of this discussion). A null array
has no value. A zero-length or empty array is an array with 0 elements. Some DataEncodings
will allow the distinction to be preserved on the wire, however, not all DevelopmentPlatforms
will be able to preseve the distinction. For this reason, null, empty and zero length arrays are
semantically the same for all DataEncodings. Decoders shall be able to handle all variations
supported by the DataEncoding, however, decoders are not required to preserve the distinction.
When testing for equality, applications shall treat null and empty arrays as equal. When a
DevelopmentPlatform supports the distinction, writing and reading back an array value may
result in null array becoming an empty array or vise versa.

5.2 OPC UA Binary

5.2.1 General

The OPC UA Binary DataEncoding is a data format developed to meet the performance needs
of OPC UA applications. This format is designed primarily for fast encoding and decoding,
however, the size of the encoded data on the wire was also a consideration.

OPC 10000-6: Mappings 10 1.05.00

The OPC UA Binary DataEncoding relies on several primitive data types with clearly defined
encoding rules that can be sequentially written to or read from a binary stream. A structure is
encoded by sequentially writing the encoded form of each field. If a given field is also a
structure, then the values of its fields are written sequentially before writing the next field in the
containing structure. All fields shall be written to the stream even if they contain null values.
The encodings for each primitive type specify how to encode either a null or a DefaultValue for
the type.

The OPC UA Binary DataEncoding does not include any type or field name information because
all OPC UA applications are expected to have advance knowledge of the services and structures
that they support. An exception is an ExtensionObject which provides an identifier and a size
for the Structured DataType structure it represents. This allows a decoder to skip over types
that it does not recognize.

5.2.2 Built-in Types

5.2.2.1 Boolean

A Boolean value shall be encoded as a single byte where a value of 0 (zero) is false and any
non-zero value is true.

Encoders shall use the value of 1 to indicate a true value; however, decoders shall treat any
non-zero value as true.

5.2.2.2 Integer

All integer types shall be encoded as little-endian values where the least significant byte
appears first in the stream.

Figure 2 illustrates how value 1 000 000 000 (Hex: 3B9ACA00) is encoded as a 32-bit integer
in the stream.

00 CA 9A 3B

0 1 2 3 4

Figure 2 – Encoding Integers in a binary stream

5.2.2.3 Floating Point

All floating-point values shall be encoded with the appropriate IEEE-754 binary representation
which has three basic components: the sign, the exponent, and the fraction. The bit ranges
assigned to each component depend on the width of the type. Table 4 lists the bit ranges for
the supported floating point types.

Table 4 – Supported Floating Point Types

Name Width (bits) Fraction Exponent Sign

Float 32 0-22 23-30 31

Double 64 0-51 52-62 63

In addition, the order of bytes in the stream is significant. All floating point values shall be
encoded with the least significant byte appearing first (i.e. little endian).

Figure 3 illustrates how the value −6,5 (Hex: C0D00000) is encoded as a Float.

The floating-point type supports positive and negative infinity and not-a-number (NaN). The
IEEE specification allows for multiple NaN variants; however, the encoders/decoders may not
preserve the distinction. Encoders shall encode a NaN value as an IEEE quiet -NAN
(000000000000F8FF) or (0000C0FF). Any unsupported types such as denormalized numbers
shall also be encoded as an IEEE quiet-NAN. Any test for equality between NaN values always
fails.

1.05.00 11 OPC 10000-6: Mappings

00 00 D0 C0

0 1 2 3 4

Figure 3 – Encoding Floating Points in a binary stream

5.2.2.4 String

All String values are encoded as a sequence of UTF-8 characters preceded by the length in
bytes.

The length in bytes is encoded as Int32. A value of −1 is used to indicate a ‘null’ string.

Strings with embedded nulls (‘\0’) are not guaranteed to be interoperable because not all
DevelopmentPlatforms can handle Strings with embedded nulls. For this reason, embedded
nulls are not recommended. Encoders may encode Strings with embedded nulls. Decoders shall
use the length to read all bytes in String, however decoders may truncate the String at the first
embedded null before passing it on to the application.

Figure 4 illustrates how the multilingual string ‘水Boy’ is encoded in a byte stream.

0 1 2 3 4 5 6

06 00 00 00

水

B0 B4 42 6F 79

Length

E6

B o y

7 8 9 10

Figure 4 – Encoding Strings in a binary stream

5.2.2.5 DateTime

A DateTime value shall be encoded as a 64-bit signed integer (see 5.2.2.2) which represents
the number of 100 nanosecond intervals since January 1, 1601 (UTC) .

Not all DevelopmentPlatforms will be able to represent the full range of dates and times that
can be represented with this DataEncoding. For example, the UNIX time_t structure only has a
1 second resolution and cannot represent dates prior to 1970. For this reason , a number of
rules shall be applied when dealing with date/time values that exceed the dynamic range of a
DevelopmentPlatform. These rules are:

a) A date/time value is encoded as 0 if either

1) The value is equal to or earlier than 1601-01-01 12:00AM UTC.

2) The value is the earliest date that can be represented with the DevelopmentPlatform ’s
encoding.

b) A date/time is encoded as the maximum value for an Int64 if either

3) The value is equal to or greater than 9999-12-31 11:59:59PM UTC,

4) The value is the latest date that can be represented with the DevelopmentPlatform ’s
encoding.

c) A date/time is decoded as the earliest time that can be represented on the platform if either

5) The encoded value is 0,

6) The encoded value represents a time earlier than the earliest time that can be
represented with the DevelopmentPlatform ’s encoding.

d) A date/time is decoded as the latest time that can be represented on the platform if either

7) The encoded value is the maximum value for an Int64,

8) The encoded value represents a time later than the latest time that can be represented
with the DevelopmentPlatform ’s encoding.

OPC 10000-6: Mappings 12 1.05.00

These rules imply that the earliest and latest times that can be represented on a given platform
are invalid date/time values and should be treated that way by applications.

A decoder shall truncate the value if a decoder encounters a DateTime value with a resolution
that is greater than the resolution supported on the DevelopmentPlatform.

5.2.2.6 Guid

A Guid is encoded in a structure as shown in Table 2. Fields are encoded sequentially according
to the data type for field.

Figure 5 illustrates how the Guid “72962B91-FA75-4AE6-8D28-B404DC7DAF63” is encoded in
a byte stream.

0 1 2 3 4 5 6

91 2B 96 72 FA E6 4A 8D 28

Data1

75

7 8 9 10

B4

11

04 DC 7D

12 13 14

AF

15

Data2 Data3 Data4

63

16

Figure 5 – Encoding Guids in a binary stream

5.2.2.7 ByteString

A ByteString is encoded as sequence of bytes preceded by its length in bytes. The length is
encoded as a 32-bit signed integer as described above.

If the length of the byte string is −1 then the byte string is ‘null’.

5.2.2.8 XmlElement

An XmlElement is an XML fragment serialized as UTF-8 string and then encoded as ByteString.

Figure 6 illustrates how the XmlElement “<A>Hot水” is encoded in a byte stream.

.
0 1 2 3 4 5 6

3C 41 3E 72 74 E6 B0 B4 3C

<A>

6F

7 8 9 10

3F

11

41 3E

12 13

Hot 水

0D 00 00 00

Length

14 15 16 17

Figure 6 – Encoding XmlElement in a binary stream

A decoder may choose to parse the XML after decoding; if an unrecoverable parsing error
occurs then the decoder should try to continue processing the stream. For example, if the
XmlElement is the body of a Variant or an element in an array which is the body of a Variant
then this error can be reported by setting value of the Variant to the StatusCode
Bad_DecodingError.

5.2.2.9 NodeId

The components of a NodeId are described the Table 5.

1.05.00 13 OPC 10000-6: Mappings

Table 5 – NodeId components

Name Data Type Description

Namespace UInt16 The index for a namespace URI.

An index of 0 is used for OPC UA defined NodeIds.

IdentifierType Enumeration The format and data type of the identifier.

The value may be one of the following:

 NUMERIC - the value is an UInteger;

 STRING - the value is String;

 GUID - the value is a Guid;

 OPAQUE - the value is a ByteString;

Value UInt32 or String or
Guid or ByteString

The identifier for a node in the address space of an OPC UA Server.

The DataEncoding of a NodeId varies according to the contents of the instance. For that reason,
the first byte of the encoded form indicates the format of the rest of the encoded NodeId. The
possible DataEncoding formats are shown in Table 6. Table 6 through Table 9 describe the
structure of each possible format (they exclude the byte which indicates the format).

Table 6 – NodeId DataEncoding values

Name Value Description

Two Byte 0x00 A numeric value that fits into the two-byte representation.

Four Byte 0x01 A numeric value that fits into the four-byte representation.

Numeric 0x02 A numeric value that does not fit into the two or four byte representations.

String 0x03 A String value.

Guid 0x04 A Guid value.

ByteString 0x05 An opaque (ByteString) value.

NamespaceUri Flag 0x80 See discussion of ExpandedNodeId in 5.2.2.10.

ServerIndex Flag 0x40 See discussion of ExpandedNodeId in 5.2.2.10.

The standard NodeId DataEncoding has the structure shown in Table 7. The standard
DataEncoding is used for all formats that do not have an explicit format defined.

Table 7 – Standard NodeId Binary DataEncoding

Name Data Type Description

Namespace UInt16 The NamespaceIndex.

Identifier * The identifier which is encoded according to the following rules:

NUMERIC UInt32

STRING String

GUID Guid

OPAQUE ByteString

An example of a String NodeId with Namespace = 1 and Identifier = “Hot水” is shown in Figure

7.

0 1 2 3 4 5 6

00 00 00 72 74 E6 B0 B46F

7 8 9 10 11 12 13

Hot 水

03 01 00 06

Length

Encoding Byte

Namespace

Figure 7 – A String NodeId

The Two Byte NodeId DataEncoding has the structure shown in Table 8.

OPC 10000-6: Mappings 14 1.05.00

Table 8 – Two Byte NodeId Binary DataEncoding

Name Data Type Description

Identifier Byte The Namespace is the default OPC UA namespace (i.e. 0).

The Identifier Type is ‘Numeric’.

The Identifier shall be in the range 0 to 255.

An example of a Two Byte NodeId with Identifier = 72 is shown in Figure 8.

0

72

1 2

Identifier

00

Encoding

Figure 8 – A Two Byte NodeId

The Four Byte NodeId DataEncoding has the structure shown in Table 9.

Table 9 – Four Byte NodeId Binary DataEncoding

Name Data Type Description

Namespace Byte The Namespace shall be in the range 0 to 255.

Identifier UInt16 The Identifier Type is ‘Numeric’.

The Identifier shall be an integer in the range 0 to 65 535.

An example of a Four Byte NodeId with Namespace = 5 and Identifier = 1 025 is shown in Figure
9.

0 1 2 3 4

01 05 01 40

Identifier

Encoding Byte Namespace

Figure 9 – A Four Byte NodeId

5.2.2.10 ExpandedNodeId

An ExpandedNodeId extends the NodeId structure by allowing the NamespaceUri to be
explicitly specified instead of using the NamespaceIndex. The NamespaceUri is optional. If it is
specified, then the NamespaceIndex inside the NodeId shall be ignored.

The ExpandedNodeId is encoded by first encoding a NodeId as described in 5.2.2.9 and then
encoding NamespaceUri as a String.

An instance of an ExpandedNodeId may still use the NamespaceIndex instead of the
NamespaceUri. In this case, the NamespaceUri is not encoded in the stream. The presence of
the NamespaceUri in the stream is indicated by setting the NamespaceUri flag in the encoding
format byte for the NodeId.

If the NamespaceUri is present, then the encoder shall encode the NamespaceIndex as 0 in the
stream when the NodeId portion is encoded. The unused NamespaceIndex is included in the
stream for consistency.

1.05.00 15 OPC 10000-6: Mappings

An ExpandedNodeId may also have a ServerIndex which is encoded as a UInt32 after the
NamespaceUri. The ServerIndex flag in the NodeId encoding byte indicates whether the
ServerIndex is present in the stream. The ServerIndex is omitted if it is equal to zero.

The ExpandedNodeId encoding has the structure shown in Table 10.

Table 10 – ExpandedNodeId Binary DataEncoding

Name Data Type Description

NodeId NodeId The NamespaceUri and ServerIndex flags in the NodeId encoding indicate
whether those fields are present in the stream.

NamespaceUri String Not present if null or Empty.

ServerIndex UInt32 Not present if 0.

5.2.2.11 StatusCode

A StatusCode is encoded as a UInt32.

5.2.2.12 DiagnosticInfo

A DiagnosticInfo structure is described in OPC 10000-4. It specifies a number of fields that
could be missing. For that reason, the encoding uses a bit mask to indicate which fields are
actually present in the encoded form.

As described in OPC 10000-4, the SymbolicId, NamespaceUri, LocalizedText and Locale fields
are indexes in a string table which is returned in the response header. Only the index of the
corresponding string in the string table is encoded. An index of −1 indicates that there is no
value for the string.

DiagnosticInfo allows unlimited nesting which could result in stack overflow errors even if the
message size is less than the maximum allowed. Decoders shall support at least 100 nesting
levels. Decoders shall report an error if the number of nesting levels exceeds what it supports.

Table 11 – DiagnosticInfo Binary DataEncoding

Name Data Type Description

Encoding Mask Byte A bit mask that indicates which fields are present in the stream.

The mask has the following bits:

0x01 Symbolic Id

0x02 Namespace

0x04 LocalizedText

0x08 Locale

0x10 Additional Info

0x20 InnerStatusCode

0x40 InnerDiagnosticInfo

SymbolicId Int32 A symbolic name for the status code.

NamespaceUri Int32 A namespace that qualifies the symbolic id.

Locale Int32 The locale used for the localized text.

LocalizedText Int32 A human readable summary of the status code.

Additional Info String Detailed application specific diagnostic information.

Inner StatusCode StatusCode A status code provided by an underlying system.

Inner
DiagnosticInfo

DiagnosticInfo Diagnostic info associated with the inner status code.

5.2.2.13 QualifiedName

A QualifiedName structure is encoded as shown in Table 12.

The abstract QualifiedName structure is defined in OPC 10000-3.

OPC 10000-6: Mappings 16 1.05.00

Table 12 – QualifiedName Binary DataEncoding

Name Data Type Description

NamespaceIndex UInt16 The namespace index.

Name String The name.

5.2.2.14 LocalizedText

A LocalizedText structure contains two fields that could be missing. For that reason, the
encoding uses a bit mask to indicate which fields are actually present in the encoded form.

The abstract LocalizedText structure is defined in OPC 10000-3.

Table 13 – LocalizedText Binary DataEncoding

Name Data Type Description

EncodingMask Byte A bit mask that indicates which fields are present in the stream.

The mask has the following bits:

0x01 Locale

0x02 Text

Locale String The locale.

Omitted is null or empty.

Text String The text in the specified locale.

Omitted is null or empty.

5.2.2.15 ExtensionObject

An ExtensionObject is encoded as sequence of bytes prefixed by the NodeId of its
DataTypeEncoding, the DataEncoding used and the number of bytes encoded.

An ExtensionObject may be serialized as a ByteString or an XmlElement by the application and
then passed to the encoder. In this case, the encoder will be able to write the number of bytes
in the object before it encodes the bytes. However, an ExtensionObject may know how to
encode/decode itself which means the encoder shall calculate the number of bytes before it
encodes the object or it shall be able to seek backwards in the stream and update the length
after encoding the body.

When a decoder encounters an ExtensionObject it shall check if it recognizes the
DataTypeEncoding identifier. If it does, then it can call the appropriate function to decode the
object body. If the decoder does not recognize the type it shall use the Encoding to determine
if the body is a ByteString or an XmlElement and then decode the object body or treat it as
opaque data and skip over it.

The serialized form of an ExtensionObject is shown in Table 14.

1.05.00 17 OPC 10000-6: Mappings

Table 14 – Extension Object Binary DataEncoding

Name Data Type Description

TypeId NodeId The identifier for the DataTypeEncoding node in the Server's AddressSpace.
ExtensionObjects defined by the OPC UA specification have a numeric node
identifier assigned to them with a NamespaceIndex of 0. The numeric
identifiers are defined in A.3.

Decoders use this field to determine the syntax of the Body. For example, if
this field is the NodeId of the JSON Encoding Object for a DataType then the
Body is a ByteString containing a JSON document encoded as a UTF-8
string.

Encoding Byte An enumeration that indicates how the body is encoded.

The parameter may have the following values:

0x00 No body is encoded.

0x01 The body is encoded as a ByteString.

0x02 The body is encoded as an XmlElement.

Length Int32 The length of the object body.

The length shall be specified if the body is encoded.

Body OctetString The encoded object.

This field contains the raw bytes for ByteString bodies.

For XmlElement bodies this field contains the XML encoded as a UTF-8
string without any null terminator.

Some binary encoded structures may have a serialized length that is not a
multiple of 8 bits. Encoders shall append 0 bits to ensure the serialized length
is a multiple of 8 bits. Decoders that understand the serialized format shall
ignore the padding bits.

A decoder may choose to parse an XmlElement body after decoding; if an unrecoverable
parsing error occurs then the decoder should try to continue processing the stream. For
example, if the ExtensionObject is the body of a Variant or an element in an array that is the
body of Variant then this error can be reported by setting the value of the Variant to the
StatusCode Bad_DecodingError.

5.2.2.16 Variant

A Variant is a union of the built-in types.

The structure of a Variant is shown in Table 15.

OPC 10000-6: Mappings 18 1.05.00

Table 15 – Variant Binary DataEncoding

Name Data Type Description

EncodingMask Byte The type of data encoded in the stream.
A value of 0 specifies a NULL and that no other fields are encoded.
The mask has the following bits assigned:

0:5 Built-in Type Id (see Table 1).

6 True if the Array Dimensions field is encoded.

7 True if an array of values is encoded.

The Built-in Type Ids 26 through 31 are not currently assigned but may be
used in the future. Decoders shall accept these IDs, assume the Value
contains a ByteString or an array of ByteStrings and pass both onto the
application. Encoders shall not use these IDs.

ArrayLength Int32 The number of elements in the array.

This field is only present if the array bit is set in the encoding mask.

Multi-dimensional arrays are encoded as a one-dimensional array and this
field specifies the total number of elements. The original array can be
reconstructed from the dimensions that are encoded after the value field.

Higher rank dimensions are serialized first. For example, an array with
dimensions [2,2,2] is written in this order:

 [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1]

Value * The value encoded according to its built-in data type.

If the array bit is set in the encoding mask, then each element in the array is
encoded sequentially. Since many types have variable length encoding each
element shall be decoded in order.

The value shall not be a Variant but it could be an array of Variants.

Many implementation platforms do not distinguish between one dimensional
Arrays of Bytes and ByteStrings. For this reason, decoders are allowed to
automatically convert an Array of Bytes to a ByteString.

ArrayDimensions
Length

Int32 The number of dimensions.

This field is only present if the ArrayDimensions flag is set in the encoding
mask.

ArrayDimensions Int32[] The length of each dimension encoded as a sequence of Int32 values

This field is only present if the ArrayDimensions flag is set in the encoding
mask. The lower rank dimensions appear first in the array.

All dimensions shall be specified and shall be greater than zero.

If ArrayDimensions are inconsistent with the ArrayLength then the decoder
shall stop and raise a Bad_DecodingError.

The types and their identifiers that can be encoded in a Variant are shown in Table 1.

5.2.2.17 DataValue

A DataValue is always preceded by a mask that indicates which fields are present in the stream.

The fields of a DataValue are described in Table 16.

1.05.00 19 OPC 10000-6: Mappings

Table 16 – Data Value Binary DataEncoding

Name Data Type Description

Encoding Mask Byte A bit mask that indicates which fields are present in the stream.

The mask has the following bits:

0x01 False if the Value is Null.

0x02 False if the StatusCode is Good.

0x04 False if the SourceTimestamp is DateTime.MinValue.

0x08 False if the ServerTimestamp is DateTime.MinValue.

0x10 False if the SourcePicoSeconds is not present.

0x20 False if the ServerPicoSeconds is not present.

Value Variant The value.

Not present if the Value bit in the EncodingMask is False.

Status StatusCode The status associated with the value.

Not present if the StatusCode bit in the EncodingMask is False.

SourceTimestamp DateTime The source timestamp associated with the value.

Not present if the SourceTimestamp bit in the EncodingMask is False.

SourcePicoSeconds UInt16 The number of 10 picosecond intervals for the SourceTimestamp.

Not present if the SourcePicoSeconds bit in the EncodingMask is False.

If the source timestamp is missing the picoseconds are ignored.

ServerTimestamp DateTime The Server timestamp associated with the value.

Not present if the ServerTimestamp bit in the EncodingMask is False.

ServerPicoSeconds UInt16 The number of 10 picosecond intervals for the ServerTimestamp.

Not present if the ServerPicoSeconds bit in the EncodingMask is False.

If the Server timestamp is missing the picoseconds are ignored.

The Picoseconds fields store the difference between a high-resolution timestamp with a
resolution of 10 picoseconds and the Timestamp field value which only has a 100 ns resolution.
The Picoseconds fields shall contain values less than 10 000. The decoder shall treat values
greater than or equal to 10 000 as the value ‘9999’.

5.2.3 Decimal

Decimals are encoded as described in 5.1.8.

A Decimal does not have a NULL value.

5.2.4 Enumerations

Enumerations are encoded as Int32 values.

An Enumeration does not have a NULL value.

5.2.5 Arrays

One dimensional Arrays are encoded as a sequence of elements preceded by the number of
elements encoded as an Int32 value. If an Array is null, then its length is encoded as −1. An
Array of zero length is different from an Array. See 5.1.9 for a discussion of zero-length vs null
arrays.

Multi-dimensional Arrays are encoded as an Int32 Array containing the dimensions followed by
a list of all the values in the Array. The total number of values is equal to the product of the
dimensions. The number of values is 0 if one or more dimensions are less than or equal to 0.
The process for reconstructing the multi-dimensional array is described in 5.2.2.16.

5.2.6 Structures

Structures are encoded as a sequence of fields in the order that they appear in the definition.
The encoding for each field is determined by the built-in type for the field.

All fields specified in the structure shall be encoded. If optional fields exist in the structure then
see 5.2.7.

OPC 10000-6: Mappings 20 1.05.00

Structures do not have a null value. If an encoder is written in a programming language that
allows structures to have null values, then the encoder shall create a new instance with
DefaultValues for all fields and serialize that. Encoders shall not generate an encoding error in
this situation.

The following is an example of a structure using C/C++ syntax:

struct Type2

{

 Int32 A;

 Int32 B;

};

struct Type1

{

 Int32 X;

 Byte NoOfY;

 Type2* Y;

 Int32 Z;

};

In the C/C++ example above, the Y field is a pointer to an array with a length stored in NoOfY.
When encoding an array, the length is part of the array encoding so the NoOfY field is not
encoded. That said, encoders and decoders use NoOfY during encoding.

An instance of Type1 which contains an array of two Type2 instances would be encoded as 28-
byte sequence. If the instance of Type1 was encoded in an ExtensionObject it would have an
additional prefix shown in Table 17 which would make the total length 37 bytes The TypeId,
Encoding and the Length are fields defined by the ExtensionObject. The encoding of the Type2
instances do not include any type identifier because it is explicitly defined in Type1.

Table 17 – Sample OPC UA Binary Encoded structure

Field Bytes Value

Type Id 4 The identifier for the Type1 Binary Encoding Node

Encoding 1 0x1 for ByteString

Length 4 28

X 4 The value of field ‘X’

Y.Length 4 2

Y.A 4 The value of field ‘Y[0].A’

Y.B 4 The value of field ‘Y[0].B’

Y.A 4 The value of field ‘Y[1].A’

Y.B 4 The value of field ‘Y[1].B’

Z 4 The value of field ‘Z’

1.05.00 21 OPC 10000-6: Mappings

The Value of the DataTypeDefinition Attribute for a DataType Node describing Type1 is:

Name Type Description

defaultEncodingId NodeId NodeId of the “Type1_Encoding_DefaultBinary” Node.

baseDataType NodeId “i=22” [Structure]

structureType StructureType Structure_0 [Structure without optional fields]

fields [0] StructureField

 name String “X”

 description LocalizedText Description of X

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

fields [1] StructureField

 name String “Y“

 description LocalizedText Description of Y-Array

 dataType NodeId NodeId of the Type2 DataType Node (e.g. “ns=3; s=MyType2”)

 valueRank Int32 1 (OneDimension)

 arrayDimensions UInt32[] { 0 }

 maxStringLength UInt32 0

 isOptional Boolean false

fields [2] StructureField

 name String “Z“

 description LocalizedText Description of Z

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

The Value of the DataTypeDefinition Attribute for a DataType Node describing Type2 is:

Name Type Description

defaultEncodingId NodeId NodeId of the “Type2_Encoding_DefaultBinary” Node.

baseDataType NodeId “i=22” [Structure]

structureType StructureType Structure_0 [Structure without optional fields]

fields [0] StructureField

 name String “A“

 description LocalizedText Description of A

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

fields [1] StructureField

 name String “B“

 description LocalizedText Description of B

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

5.2.7 Structures with optional fields

Structures with optional fields are encoded with an encoding mask preceding a sequence of
fields in the order that they appear in the definition. The encoding for each field is determined
by the data type for the field.

The EncodingMask is a 32-bit unsigned integer. Each optional field is assigned exactly one bit.
The first optional field is assigned bit ‘0’, the second optional field is assigned bit ‘1’ and so until
all optional fields are assigned bits. A maximum of 32 optional fields can appear within a single
Structure. Unassigned bits are set to 0 by encoders. Decoders shall report an error if
unassigned bits are not 0.

OPC 10000-6: Mappings 22 1.05.00

The following is an example of a structure with optional fields using C++ syntax:

struct TypeA

{

 Int32 X;

 Int32* O1;

 SByte Y;

 Int32* O2;

};

O1 and O2 are optional fields which are NULL if not present

An instance of TypeA which contains two mandatory (X and Y) and two optional (O1 and O2)
fields would be encoded as a byte sequence. The length of the byte sequence depends on the
available optional fields. An encoding mask field determines the available optional fields.

An instance of TypeA where field O2 is available and field O1 is not avai lable would be encoded
as a 13-byte sequence. If the instance of TypeA was encoded in an ExtensionObject it would
have the encoded form shown in Table 18 and have a total length of 22 bytes. The length of
the TypeId, Encoding and the Length are fields defined by the ExtensionObject.

Table 18 – Sample OPC UA Binary Encoded Structure with optional fields

Field Bytes Value

Type Id 4 The identifier for the TypeA Binary Encoding Node

Encoding 1 0x1 for ByteString

Length 4 13

EncodingMask 4 0x02 for O2

X 4 The value of X

Y 1 The value of Y

O2 4 The value of O2

If a Structure with optional fields is subtyped, the subtypes extend the EncodingMask defined
for the parent.

1.05.00 23 OPC 10000-6: Mappings

The Value of the DataTypeDefinition Attribute for a DataType Node describing TypeA is:

Name Type Description

defaultEncodingId NodeId NodeId of the “TypeA_Encoding_DefaultBinary” Node.

baseDataType NodeId “i=22” [Structure]

structureType StructureType StructureWithOptionalFields_1 [Structure without optional fields]

fields [0] StructureField

 name String “X”

 description LocalizedText Description of X

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

fields [1] StructureField

 name String “O1“

 description LocalizedText Description of O1

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean true

fields [2] StructureField

 name String “Y“

 description LocalizedText Description of Z

 dataType NodeId “i=2” [SByte]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

fields [3] StructureField

 name String “O2“

 description LocalizedText Description of O2

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean true

5.2.8 Unions

Unions are encoded as a switch field preceding one of the possible fields. The encoding for the
selected field is determined by the data type for the field.

The switch field is encoded as a UInt32.

The switch field is the index of the available union fields starting with 1. If the switch field is 0
then no field is present. For any value greater than the number of defined union fields the
encoders or decoders shall report an error.

A Union with no fields present has the same meaning as a NULL value. A Union with any field
present is not a NULL value even if the value of the field itself is NULL.

OPC 10000-6: Mappings 24 1.05.00

The following is an example of a union using C/C++ syntax:

struct Type2

{

 Int32 A;

 Int32 B;

};

struct Type1

{

 Byte Selector;

 union

 {

 Int32 Field1;

 Type2 Field2;

 }

 Value;

};

In the C/C++ example above, the Selector, Field1 and Field2 are semantically coupled to form
a union.

An instance of Type1 would be encoded as byte sequence. The length of the byte sequence
depends on the selected field.

An instance of Type1 where field Field1 is available would be encoded as 8-byte sequence. If
the instance of Type 1 was encoded in an ExtensionObject it would have the encoded form
shown in Table 19 and it would have a total length of 17 bytes. The TypeId, Encoding and the
Length are fields defined by the ExtensionObject.

Table 19 – Sample OPC UA Binary Encoded Structure

Field Bytes Value

Type Id 4 The identifier for Type1

Encoding 1 0x1 for ByteString

Length 4 8

SwitchValue 4 1 for Field1

Field1 4 The value of Field1

The Value of the DataTypeDefinition Attribute for a DataType Node describing Type1 is:

Name Type Description

defaultEncodingId NodeId NodeId of the “Type1_Encoding_DefaultBinary” Node.

baseDataType NodeId “i=22” [Union]

structureType StructureType Union_2 [Union]

fields [0] StructureField

 name String “Field1”

 description LocalizedText Description of Field1

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean true

fields [1] StructureField

 name String “Field2“

 description LocalizedText Description of Field2

 dataType NodeId NodeId of the Type2 DataType Node (e.g. “ns=3; s=MyType2”)

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean true

1.05.00 25 OPC 10000-6: Mappings

The Value of the DataTypeDefinition Attribute for a DataType Node describing Type2 is:

Name Type Description

defaultEncodingId NodeId NodeId of the “Type2_Encoding_DefaultBinary” Node.

baseDataType NodeId “i=22” [Structure]

structureType StructureType Structure_0 [Structure without optional fields]

fields [0] StructureField

 name String “A“

 description LocalizedText Description of A

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

fields [1] StructureField

 name String “B“

 description LocalizedText Description of B

 dataType NodeId “i=6” [Int32]

 valueRank Int32 -1 (Scalar)

 arrayDimensions UInt32[] null

 maxStringLength UInt32 0

 isOptional Boolean false

5.2.9 Messages

Messages are Structures encoded as sequence of bytes prefixed by the NodeId of for the OPC
UA Binary DataTypeEncoding defined for the Message.

Each OPC UA Service described in OPC 10000-4 has a request and response Message. The
DataTypeEncoding IDs assigned to each Service are specified in Clause A.3.

5.3 OPC UA XML

5.3.1 Built-in Types

5.3.1.1 General

Most built-in types are encoded in XML using the formats defined in XML Schema Part 2
specification. Any special restrictions or usages are discussed below. Some of the bui lt-in types
have an XML Schema defined for them using the syntax defined in XML Schema Part 2.

The prefix xs: is used to denote a symbol defined by the XML Schema specifica tion.

5.3.1.2 Boolean

A Boolean value is encoded as an xs:boolean value.

5.3.1.3 Integer

Integer values are encoded using one of the subtypes of the xs:decimal type. The mappings
between the OPC UA integer types and XML schema data types are shown in Table 20.

Table 20 – XML Data Type Mappings for Integers

Name XML Type

SByte xs:byte

Byte xs:unsignedByte

Int16 xs:short

UInt16 xs:unsignedShort

Int32 xs:int

UInt32 xs:unsignedInt

Int64 xs:long

UInt64 xs:unsignedLong

5.3.1.4 Floating Point

Floating point values are encoded using one of the XML floating point types. The mappings
between the OPC UA floating point types and XML schema data types are shown in Table 21.

OPC 10000-6: Mappings 26 1.05.00

Table 21 – XML Data Type Mappings for Floating Points

Name XML Type

Float xs:float

Double xs:double

The XML floating point type supports positive infinity (INF), negative infinity (-INF) and not-a-
number (NaN).

5.3.1.5 String

A String value is encoded as an xs:string value.

Strings with embedded nulls (‘\u0000’) are not guaranteed to be interoperable because not all
DevelopmentPlatforms can handle Strings with embedded nulls. For this reason, embedded
nulls are not recommended. Encoders may encode Strings with embedded nulls. Decoders shall
read all bytes in String; however, decoders may truncate the String at the first embedded null
before passing it on to the application.

5.3.1.6 DateTime

A DateTime value is encoded as an xs:dateTime value.

All DateTime values shall be encoded as UTC times or with the time zone explicitly specified.

Correct:

2002-10-10T00:00:00+05:00

2002-10-09T19:00:00Z

Incorrect:

2002-10-09T19:00:00

It is recommended that all xs:dateTime values be represented in UTC format.

The earliest and latest date/time values that can be represented on a DevelopmentPlatform
have special meaning and shall not be literally encoded in XML.

The earliest date/time value on a DevelopmentPlatform shall be encoded in XML as '0001-01-
01T00:00:00Z'.

The latest date/time value on a DevelopmentPlatform shall be encoded in XML as '9999-12-
31T23:59:59Z'

If a decoder encounters a xs:dateTime value that cannot be represented on the
DevelopmentPlatform it should convert the value to either the earliest or latest date/time that
can be represented on the DevelopmentPlatform. The XML decoder should not generate an
error if it encounters an out of range date value.

The earliest date/time value on a DevelopmentPlatform is equivalent to a null date/time value.

5.3.1.7 Guid

A Guid is encoded using the string representation defined in 5.1.3.

The XML schema for a Guid is:

<xs:complexType name="Guid">

 <xs:sequence>

 <xs:element name="String" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.8 ByteString

A ByteString value is encoded as an xs:base64Binary value (see Base64).

1.05.00 27 OPC 10000-6: Mappings

The XML schema for a ByteString is:

<xs:element name="ByteString" type="xs:base64Binary" nillable="true"/>

5.3.1.9 XmlElement

An XmlElement value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="XmlElement">

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="1" processContents="lax" />

 </xs:sequence>

</xs:complexType>

XmlElements may only be used inside Variant or ExtensionObject values.

5.3.1.10 NodeId

A NodeId value is encoded as an xs:string with the syntax:

ns=<namespaceindex>;<type>=<value>

The elements of the syntax are described in Table 22.

Table 22 – Components of NodeId

Field Data Type Description

<namespaceindex> UInt16 The NamespaceIndex formatted as a base 10 number.

If the index is 0 then the entire 'ns=0;' clause shall be omitted.

<type> Enumeration A flag that specifies the IdentifierType.

The flag has the following values:

i NUMERIC (UInt32)

s STRING (String)

g GUID (Guid)

b OPAQUE (ByteString)

<value> * The Identifier encoded as string.

The Identifier is formatted using the XML data type mapping for the
IdentifierType.

Note that the Identifier may contain any non-null UTF-8 character including
whitespace.

Examples of NodeIds:

i=13
ns=10;i=-1
ns=10;s=Hello:World
g=09087e75-8e5e-499b-954f-f2a9603db28a

ns=1;b=M/RbKBsRVkePCePcx24oRA==

The XML schema for a NodeId is:

<xs:complexType name="NodeId">

 <xs:sequence>

 <xs:element name="Identifier" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

OPC 10000-6: Mappings 28 1.05.00

5.3.1.11 ExpandedNodeId

An ExpandedNodeId value is encoded as an xs:string with the syntax:

svr=<serverindex>;ns=<namespaceindex>;<type>=<value>

or

svr=<serverindex>;nsu=<uri>;<type>=<value>

The possible fields are shown in Table 23.

Table 23 – Components of ExpandedNodeId

Field Data Type Description

<serverindex> UInt32 The ServerIndex formatted as a base 10 number.

If the ServerIndex is 0 then the entire 'svr=0;' clause shall be omitted.

<namespaceindex> UInt16 The NamespaceIndex formatted as a base 10 number.

If the NamespaceIndex is 0 then the entire 'ns=0;' clause shall be omitted.

The NamespaceIndex shall not be present if the URI is present.

<uri> String The NamespaceUri formatted as a string.

Any reserved characters in the URI shall be replaced with a ‘%’ followed by its 8
bit ANSI value encoded as two hexadecimal digits (case insensitive). For
example, the character ‘;’ would be replaced by ‘%3B’.

The reserved characters are ‘;’ and ‘%’.

If the NamespaceUri is null or empty, then 'nsu=;' clause shall be omitted.

<type> Enumeration A flag that specifies the IdentifierType.

This field is described in Table 22.

<value> * The Identifier encoded as string.

This field is described in Table 22.

The XML schema for an ExpandedNodeId is:

<xs:complexType name="ExpandedNodeId">

 <xs:sequence>

 <xs:element name="Identifier" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.12 StatusCode

A StatusCode is encoded as an xs:unsignedInt with the following XML schema:

<xs:complexType name="StatusCode">

 <xs:sequence>

 <xs:element name="Code" type="xs:unsignedInt" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

1.05.00 29 OPC 10000-6: Mappings

5.3.1.13 DiagnosticInfo

An DiagnosticInfo value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="DiagnosticInfo">

 <xs:sequence>

 <xs:element name="SymbolicId" type="xs:int" minOccurs="0" />

 <xs:element name="NamespaceUri" type="xs:int" minOccurs="0" />

 <xs:element name="Locale" type="xs:int" minOccurs="0/>

 <xs:element name="LocalizedText" type="xs:int" minOccurs="0/>

 <xs:element name="AdditionalInfo" type="xs:string" minOccurs="0"/>

 <xs:element name="InnerStatusCode" type="tns:StatusCode"

 minOccurs="0" />

 <xs:element name="InnerDiagnosticInfo" type="tns:DiagnosticInfo"

 minOccurs="0" />

 </xs:sequence>

</xs:complexType>

DiagnosticInfo allows unlimited nesting which could result in stack overflow errors even if the
message size is less than the maximum allowed. Decoders shall support at least 100 nesting
levels. Decoders shall report an error if the number of nesting levels exceeds what it supports.

5.3.1.14 QualifiedName

A QualifiedName value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="QualifiedName">

 <xs:sequence>

 <xs:element name="NamespaceIndex" type="xs:int" minOccurs="0" />

 <xs:element name="Name" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.15 LocalizedText

A LocalizedText value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="LocalizedText">

 <xs:sequence>

 <xs:element name="Locale" type="xs:string" minOccurs="0" />

 <xs:element name="Text" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.16 ExtensionObject

An ExtensionObject value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="ExtensionObject">

 <xs:sequence>

 <xs:element name="TypeId" type="tns:NodeId" minOccurs="0" />

 <xs:element name="Body" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" processContents="lax"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

The body of the ExtensionObject contains a single element which is either a ByteString or XML
encoded Structure. A decoder can distinguish between the two by inspecting the top-level
element. An element with the name tns:ByteString contains an OPC UA Binary encoded body.

OPC 10000-6: Mappings 30 1.05.00

Any other name shall contain an OPC UA XML encoded body. The TypeId specifies the syntax
of a ByteString body which could be UTF-8 encoded JSON, UA Binary or some other format.

The TypeId is the NodeId for the DataTypeEncoding Object.

5.3.1.17 Variant

A Variant value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="Variant">

 <xs:sequence>

 <xs:element name="Value" minOccurs="0" nillable="true">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" processContents="lax"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

If the Variant represents a scalar value, then it shall contain a single child element with the
name of the built-in type. For example, the single precision floating point value 3 ,141 5 would
be encoded as:

<tns:Float>3.1415</tns:Float>

If the Variant represents a single dimensional array, then it shall contain a single child element
with the prefix 'ListOf' and the name built-in type. For example, an Array of strings would be
encoded as:

<tns:ListOfString>

 <tns:String>Hello</tns:String>

 <tns:String>World</tns:String>

</tns:ListOfString>

If the Variant represents a multidimensional Array, then it shall contain a child element with the
name ‘Matrix’ with the two sub-elements shown in this example:

<tns:Matrix>

 <tns:Dimensions>

 <tns:Int32>2</tns:Int32>

 <tns:Int32>2</tns:Int32>

 </tns:Dimensions>

 <tns:Elements>

 <tns:String>A</tns:String>

 <tns:String>B</tns:String>

 <tns:String>C</tns:String>

 <tns:String>D</tns:String>

 </tns:Elements>

</tns:Matrix>

In this example, the array has the following elements:

[0,0] = "A"; [0,1] = "B"; [1,0] = "C"; [1,1] = "D"

The elements of a multi-dimensional Array are always flattened into a single dimensional Array
where the higher rank dimensions are serialized first. This single dimensional Array is encoded
as a child of the ‘Elements’ element. The ‘Dimensions’ element is an Array of Int32 values that
specify the dimensions of the array starting with the lowest rank dimension. The multi-
dimensional Array can be reconstructed by using the dimensions encoded. All dimensions shall

1.05.00 31 OPC 10000-6: Mappings

be specified and shall be greater than zero. If the dimensions are inconsistent with the number
of elements in the array, then the decoder shall stop and raise a Bad_DecodingError.

The complete set of built-in type names is found in Table 1.

5.3.1.18 DataValue

A DataValue value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="DataValue">

 <xs:sequence>

 <xs:element name="Value" type="tns:Variant" minOccurs="0"

 nillable="true" />

 <xs:element name="StatusCode" type="tns:StatusCode"

 minOccurs="0" />

 <xs:element name="SourceTimestamp" type="xs:dateTime"

 minOccurs="0" />

 <xs:element name="SourcePicoseconds" type="xs:unsignedShort"

 minOccurs="0"/>

 <xs:element name="ServerTimestamp" type="xs:dateTime"

 minOccurs="0" />

 <xs:element name="ServerPicoseconds" type="xs:unsignedShort"

 minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

5.3.2 Decimal

A Decimal Value is a encoded as an xs:complexType wit the following XML schema:

<xs:complexType name="Decimal">

 <xs:sequence>

 <xs:element name="TypeId" type="tns:NodeId" minOccurs="0" />

 <xs:element name="Body" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Scale" type="xs:unsignedShort" />

 <xs:element name="Value" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

The NodeId is always the NodeId of the Decimal DataType. When encoded in a Variant the
Decimal is encoded as an ExtensionObject. Arrays of Decimals are Arrays of ExtensionObjects.

The Value is a base-10 signed integer with no limit on size. See 5.1.8 for a description of the
Scale and Value fields.

5.3.3 Enumerations

Enumerations that are used as parameters in the Messages defined in OPC 10000-4 are
encoded as xs:string with the following syntax:

<symbol>_<value>

The elements of the syntax are described in Table 24.

Table 24 – Components of Enumeration

Field Type Description

<symbol> String The symbolic name for the enumerated value.

<value> UInt32 The numeric value associated with enumerated value.

OPC 10000-6: Mappings 32 1.05.00

For example, the XML schema for the NodeClass enumeration is:

<xs:simpleType name="NodeClass">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Unspecified_0" />

 <xs:enumeration value="Object_1" />

 <xs:enumeration value="Variable_2" />

 <xs:enumeration value="Method_4" />

 <xs:enumeration value="ObjectType_8" />

 <xs:enumeration value="VariableType_16" />

 <xs:enumeration value="ReferenceType_32" />

 <xs:enumeration value="DataType_64" />

 <xs:enumeration value="View_128" />

 </xs:restriction>

</xs:simpleType>

Enumerations that are stored in a Variant are encoded as an Int32 value.

For example, any Variable could have a value with a DataType of NodeClass. In this case, the
corresponding numeric value is placed in the Variant (e.g. NodeClass Object would be stored
as a 1).

5.3.4 Arrays

One dimensional Array parameters are always encoded by wrapping the elements in a container
element and inserting the container into the structure. The name of the container element should
be the name of the parameter. The name of the element in the array shall be the type name.

For example, the Read service takes an array of ReadValueIds. The XML schema would look
like:

<xs:complexType name="ListOfReadValueId">

 <xs:sequence>

 <xs:element name="ReadValueId" type="tns:ReadValueId"

 minOccurs="0" maxOccurs="unbounded" nillable="true" />

 </xs:sequence>

</xs:complexType>

The nillable attribute shall be specified because XML encoders will drop elements in arrays if
those elements are empty.

Multi-dimensional Array parameters are encoded using the Matrix type defined in 5.3.1.17.

5.3.5 Structures

Structures are encoded as a xs:complexType with all of the fields appearing in a sequence. All
fields are encoded as an xs:element. All elements have minOccurs set 0 to allow for compact
XML representations. If an element is missing the DefaultValue for the field type is used. If the
field type is a structure the DefaultValue is an instance of the structure with DefaultValues for
each contained field.

Types which have a NULL value defined shall have the nillable="true" flag set.

For example, the Read service has a ReadValueId structure in the request. The XML schema
would look like:

<xs:complexType name="ReadValueId">

 <xs:sequence>

 <xs:element name="NodeId" type="tns:NodeId"

 minOccurs="0" nillable="true" />

 <xs:element name="AttributeId" type="xs:int" minOccurs="0" />

 <xs:element name="IndexRange" type="xs:string"

 minOccurs="0" nillable="true" />

 <xs:element name="DataEncoding" type="tns:NodeId"

1.05.00 33 OPC 10000-6: Mappings

 minOccurs="0" nillable="true" />

 </xs:sequence>

</xs:complexType>

5.3.6 Structures with optional fields

Structures with optional fields are encoded as a xs:complexType with all of the fields appearing
in a sequence. The first element is a bit mask that specifies what fields are encoded. The bits
in the mask are sequentially assigned to optional fields in the order they appear in the Structure.

To allow for compact XML, any field can be omitted from the XML so decoders shall assign
DefaultValues based on the field type for any mandatory fields.

For example, the following Structure has one mandatory and two optional fields. The XML
schema would look like:

<xs:complexType name="OptionalType">

 <xs:sequence>

 <xs:element name="EncodingMask" type="xs:unsignedLong" />

 <xs:element name="X" type="xs:int" minOccurs="0" />

 <xs:element name="O1" type="xs:int" minOccurs="0" />

 <xs:element name="Y" type="xs:byte" minOccurs="0" />

 <xs:element name="O2" type="xs:int" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

In the example above, the EncodingMask has a value of 3 if both O1 and O2 are encoded.
Encoders shall set unused bits to 0 and decoders shall ignore unused bits.

If a Structure with optional fields is subtyped, the subtypes extend the EncodingMask defined
for the parent.

5.3.7 Unions

Unions are encoded as an xs:complexType containing an xs:sequence with two entries.

The first entry in the sequence is the SwitchField xs:element and specifies a numeric value
which identifies which element in the xs:choice is encoded. The name of the element may be
any valid text.

The second entry in the sequence is an xs:choice which specifies the possible fields. The order
in the xs:choice determines the value of the SwitchField when that choice is encoded. The first
element has a SwitchField value of 1 and the last value has a SwitchField equal to the number
of choices.

No additional elements in the sequence are permitted. If the SwitchField is missing or 0 then
the union has a NULL value. Encoders or decoders shall report an error for any SwitchField
value greater than the number of defined union fields.

For example, the following union has two fields. The XML schema would look like:

<xs:complexType name="Type1">

 <xs:sequence>

 <xs:element name="SwitchField"

 type="xs:unsignedInt" minOccurs="0"/>

 <xs:choice>

 <xs:element name="Field1" type="xs:int" minOccurs="0"/>

 <xs:element name="Field2" type="tns:Field2" minOccurs="0"/>

 </xs:choice>

 </xs:sequence>

</xs:complexType>

OPC 10000-6: Mappings 34 1.05.00

5.3.8 Messages

Messages are encoded as an xs:complexType. The parameters in each Message are serialized
in the same way the fields of a Structure are serialized.

5.4 OPC UA JSON

5.4.1 General

The JSON DataEncoding was developed to allow OPC UA applications to interoperate with web
and enterprise software that use this format. The OPC UA JSON DataEncoding defines
standard JSON representations for all OPC UA Built -In types.

The JSON format is defined in RFC 8259. It is partially self-describing because each field has
a name encoded in addition to the value, however, JSON has no mechanism to qualify names
with namespaces.

The JSON format does not have a published standard for a schema that can be used to describe
the contents of a JSON document. However, the schema mechanisms defined in this document
can be used to describe JSON documents. Specifically, the DataTypeDescription structure
defined in OPC 10000-3 can define any JSON document that conforms to the rules described
below.

Servers that support the JSON DataEncoding shall add DataTypeEncoding Nodes called
“Default JSON” to all DataTypes which can be serialized with the JSON encoding. The NodeIds
of these Nodes are defined by the information model which defines the DataType. These
NodeIds are used in ExtensionObjects as described in 5.4.2.16.

There are two important use cases for the JSON encoding: Cloud applications which consume
PubSub messages and JavaScript Clients (JSON is the preferred serialization format for
JavaScript). For the Cloud application use case, the PubSub message needs to be self-
contained which implies it cannot contain numeric references to an externally defined
namespace table. Cloud applications also often rely on scripting languages to process the
incoming messages so artefacts in the DataEncoding that exist to ensure fidelity during
decoding are not necessary. For this reason, this DataEncoding defines a ‘non-reversible’ form
which is designed to meet the needs of Cloud applications. Applications, such as JavaScript
Clients, which use the DataEncoding for communication with other OPC UA applications use
the normal or ‘reversible’ form. The differences, if any, between the reversible and non-
reversible forms are described for each type.

5.4.2 Built-in Types

5.4.2.1 General

Any value for a Built-In type that is NULL shall be encoded as the JSON literal ‘null’ if the value
is an element of an array. If the NULL value is for a field within a Structure or Union, the field
shall not be encoded.

5.4.2.2 Boolean

A Boolean value shall be encoded as the JSON literal ‘true’ or ‘false’.

5.4.2.3 Integer

Integer values other than Int64 and UInt64 shall be encoded as a JSON number.

Int64 and UInt64 values shall be formatted as a decimal number encoded as a JSON string
(See the XML encoding of 64-bit values described in 5.3.1.3).

5.4.2.4 Floating point

Normal Float and Double values shall be encoded as a JSON number.

Special floating-point numbers such as positive infinity (INF), negative infinity (-INF) and not-a-
number (NaN) shall be represented by the values “ Infinity”, “-Infinity” and “NaN” encoded as a
JSON string. See 5.2.2.3 for more information on the different types of special floating-point
numbers.

1.05.00 35 OPC 10000-6: Mappings

5.4.2.5 String

String values shall be encoded as JSON strings.

Strings with embedded nulls (‘\u0000’) are not guaranteed to be interoperable because not all
DevelopmentPlatforms can handle Strings with embedded nulls. For this reason, embedded
nulls are not recommended. Encoders may encode Strings with embedded nulls. Decoders shall
read all bytes in String; however, decoders may truncate the String at the first embedded null
before passing it on to the application.

Any characters which are not allowed in JSON strings are escaped using the rule s defined in
RFC 8259.

5.4.2.6 DateTime

DateTime values shall be formatted as specified by
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=40874 IS
O 8601-1 and encoded as a JSON string.

DateTime values which exceed the minimum or maximum values supported on a platform shall
be encoded as “0001-01-01T00:00:00Z” or “9999-12-31T23:59:59Z” respectively. During
decoding, these values shall be converted to the minimum or maximum values supported on
the platform.

DateTime values equal to “0001-01-01T00:00:00Z” are considered to be NULL values.

5.4.2.7 Guid

Guid values shall be formatted as described in 5.1.3 and encoded as a JSON string.

5.4.2.8 ByteString

ByteString values shall be formatted as a Base64 text and encoded as a JSON string.

Any characters which are not allowed in JSON strings are escaped using the rules defined in
RFC 8259.

5.4.2.9 XmlElement

XmlElement value shall be encoded as a String as described in 5.4.2.5.

5.4.2.10 NodeId

NodeId values shall be encoded as a JSON object with the fields defined in Table 25.

The abstract NodeId structure is defined in OPC 10000-3 and has three fields Identifier,
IdentifierType and NamespaceIndex. The representation these abstract fields are described in
the table.

Table 25 – JSON Object Definition for a NodeId

Name Description

IdType The IdentifierType encoded as a JSON number.

Allowed values are:

 0 - UInt32 Identifier encoded as a JSON number.

 1 - A String Identifier encoded as a JSON string.

 2 - A Guid Identifier encoded as described in 5.4.2.7.

 3 - A ByteString Identifier encoded as described in 5.4.2.8.

This field is omitted for UInt32 identifiers.

Id The Identifier.

The value of the id field specifies the encoding of this field.

Namespace The NamespaceIndex for the NodeId.

The field is encoded as a JSON number for the reversible encoding.

The field is omitted if the NamespaceIndex equals 0.

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=40874

OPC 10000-6: Mappings 36 1.05.00

For the non-reversible encoding, the field is the NamespaceUri associated with the
NamespaceIndex, encoded as a JSON string.

A NamespaceIndex of 1 is always encoded as a JSON number.

5.4.2.11 ExpandedNodeId

ExpandedNodeId values shall be encoded as a JSON object with the fields defined in Table 26.

The abstract ExpandedNodeId structure is defined in OPC 10000-3 and has five fields Identifier,
IdentifierType, NamespaceIndex, NamespaceUri and ServerIndex. The representation of these
abstract fields are described in the table.

Table 26 – JSON Object Definition for an ExpandedNodeId

Name Description

IdType The IdentifierType encoded as a JSON number.

Allowed values are:

 0 - UInt32 Identifier encoded as a JSON number.

 1 - A String Identifier encoded as a JSON string.

 2 - A Guid Identifier encoded as described in 5.4.2.7.

 3 - A ByteString Identifier encoded as described in 5.4.2.8.

This field is omitted for UInt32 identifiers.

Id The Identifier.

The value of the ‘t’ field specifies the encoding of this field.

Namespace The NamespaceIndex or the NamespaceUri for the ExpandedNodeId.

If the NamespaceUri is not specified, the NamespaceIndex is encoded with these rules:

 The field is encoded as a JSON number for the reversible encoding.

 The field is omitted if the NamespaceIndex equals 0.

 For the non-reversible encoding the field is the NamespaceUri associated with the
 NamespaceIndex encoded as a JSON string.

 A NamespaceIndex of 1 is always encoded as a JSON number.

If the NamespaceUri is specified it is encoded as a JSON string in this field.

ServerUri The ServerIndex for the ExpandedNodeId.

This field is encoded as a JSON number for the reversible encoding.

This field is omitted if the ServerIndex equals 0.

For the non-reversible encoding, this field is the ServerUri associated with the ServerIndex
portion of the ExpandedNodeId, encoded as a JSON string.

5.4.2.12 StatusCode

StatusCode values shall be encoded as a JSON number for the reversible encoding.

For the non-reversible form, StatusCode values shall be encoded as a JSON object with the
fields defined in Table 27.

Table 27 – JSON Object Definition for a StatusCode

Name Description

Code The numeric code encoded as a JSON number.

The Code is omitted if the numeric code is 0 (Good).

Symbol The string literal associated with the numeric code encoded as JSON string.

e.g. 0x80AB0000 has the associated literal “BadInvalidArgument”.

The Symbol is omitted if the numeric code is 0 (Good).

A StatusCode of Good (0) is treated like a NULL and not encoded. If it is an element of an JSON
array it is encoded as the JSON literal ‘null’.

5.4.2.13 DiagnosticInfo

DiagnosticInfo values shall be encoded as a JSON object with the fields shown in Table 28.

1.05.00 37 OPC 10000-6: Mappings

Table 28 – JSON Object Definition for a DiagnosticInfo

Name Data Type Description

SymbolicId Int32 A symbolic name for the status code.

NamespaceUri Int32 A namespace that qualifies the symbolic id.

Locale Int32 The locale used for the localized text.

LocalizedText Int32 A human readable summary of the status code.

AdditionalInfo String Detailed application specific diagnostic information.

InnerStatusCode StatusCode A status code provided by an underlying system.

InnerDiagnosticInfo DiagnosticInfo Diagnostic info associated with the inner status code.

Each field is encoded using the rules defined for the built -in type specfied in the Data Type
column.

The SymbolicId, NamespaceUri, Locale and LocalizedText fields are encoded as JSON
numbers which reference the StringTable contained in the ResponseHeader.

5.4.2.14 QualifiedName

QualifiedName values shall be encoded as a JSON object with the fields shown in Table 29.

The abstract QualifiedName structure is defined in OPC 10000-3 and has two fields Name and
NamespaceIndex. The NamespaceIndex is represented by the Uri field in the JSON object.

Table 29 – JSON Object Definition for a QualifiedName

Name Description

Name The Name component of the QualifiedName.

Uri The NamespaceIndex component of the QualifiedName encoded as a JSON number.

The Uri field is omitted if the NamespaceIndex equals 0.

For the non-reversible form, the NamespaceUri associated with the NamespaceIndex portion of
the QualifiedName is encoded as JSON string unless the NamespaceIndex is 1 or if
NamespaceUri is unknown. In these cases, the NamespaceIndex is encoded as a JSON number.

5.4.2.15 LocalizedText

LocalizedText values shall be encoded as a JSON object with the fields shown in Table 30.

The abstract LocalizedText structure is defined in OPC 10000-3 and has two fields Text and
Locale.

Table 30 – JSON Object Definition for a LocalizedText

Name Description

Locale The Locale portion of LocalizedText values shall be encoded as a JSON string

Text The Text portion of LocalizedText values shall be encoded as a JSON string.

For the non-reversible form, LocalizedText value shall be encoded as a JSON string containing
the Text component.

5.4.2.16 ExtensionObject

ExtensionObject values shall be encoded as a JSON object with the fields shown in Table 31.

OPC 10000-6: Mappings 38 1.05.00

Table 31 – JSON Object Definition for an ExtensionObject

Name Description

TypeId The NodeId of a DataTypeEncoding Node formatted using the rules in 5.4.2.10.

Encoding The format of the Body field encoded as a JSON number.

This value is 0 if the body is Structure encoded as a JSON object (see 5.4.6).

This value is 1 if the body is a ByteString value encoded as a JSON string (see 5.4.2.8).

This value is 2 if the body is a XmlElement value encoded as a JSON string (see 5.4.2.9).

This field is omitted if the value is 0.

Body Body of the ExtensionObject. The type of this field is specified by the Encoding field.

If the Body is empty, the ExtensionObject is NULL and is omitted or encoded as a JSON null.

For the non-reversible form, ExtensionObject values shall be encoded as a JSON object
containing only the value of the Body field. The TypeId and Encoding fields are dropped.

5.4.2.17 Variant

Variant values shall be encoded as a JSON object with the fields shown in Table 32.

Table 32 – JSON Object Definition for a Variant

Name Description

Type The Built-in type for the value contained in the Body (see Table 1) encoded as JSON number.

If type is 0 (NULL) the Variant contains a NULL value and the containing JSON object shall be
omitted or replaced by the JSON literal ‘null’ (when an element of a JSON array).

Body If the value is a scalar it is encoded using the rules for type specified for the Type.

If the value is a one-dimensional array it is encoded as JSON array (see 5.4.5).

Multi-dimensional arrays are encoded as a one dimensional JSON array which is reconstructed
using the value of the Dimensions field (see 5.2.2.16).

Dimensions The dimensions of the array encoded as a JSON array of JSON numbers.

The Dimensions are omitted for scalar and one-dimensional array values.

For the non-reversible form, Variant values shall be encoded as a JSON object containing only
the value of the Body field. The Type and Dimensions fields are dropped. Multi-dimensional
arrays are encoded as a multi dimensional JSON array as described in 5.4.5.

5.4.2.18 DataValue

DataValue values shall be encoded as a JSON object with the fields shown in Table 33.

Table 33 – JSON Object Definition for a DataValue

Name Data Type Description

Value Variant The value.

Status StatusCode The status associated with the value.

SourceTimestamp DateTime The source timestamp associated with the value.

SourcePicoSeconds UInt16 The number of 10 picosecond intervals for the SourceTimestamp.

ServerTimestamp DateTime The Server timestamp associated with the value.

ServerPicoSeconds UInt16 The number of 10 picosecond intervals for the ServerTimestamp.

If a field has a null or DefaultValue it is omitted. Each field is encoded using the rules defined
for the built-in type specified in the Data Type column.

5.4.3 Decimal

Decimal values shall be encoded as a JSON object with the fields in Table 34.

1.05.00 39 OPC 10000-6: Mappings

Table 34 – JSON Object Definition for a Decimal

Name Description

Scale A JSON number with the scale applied to the Value.

Value A JSON string with the Value encoded as a base-10 signed integer.
(See the XML encoding of Integer values described in 5.3.1.3).

See 5.1.8 for a description of the Scale and Value fields.

5.4.4 Enumerations

Enumeration values shall be encoded as a JSON number for the reversible encoding.

For the non-reversible form, Enumeration values are encoded a literal with the value appended
as a JSON string.

The format of the string literal is:

<name>_<value>

Where the name is the enumeration literal and the value is the numeric value.

If the literal is not known to the encoder , the numeric value is encoded as a JSON string.

5.4.5 Arrays

One dimensional Arrays shall be encoded as JSON arrays.

If an element is NULL, the element shall be encoded as the JSON literal ‘null’.

Otherwise, the element is encoded according to the rules defined for the type.

Multi-dimensional Arrays are encoded as nested JSON arrays. The outer array is the first
dimension and the innermost array is the last dimension. For example, the following matrix

0 2 3
1 3 4

is encoded in JSON as

[[0, 2, 3], [1, 3, 4]]

5.4.6 Structures

Structures shall be encoded as JSON objects.

If the value of a field is NULL it shall be omitted from the encoding.

For example, instances of the structures:

struct Type2

{

 Int32 A;

 Int32 B;

 Char* C;

};

struct Type1

{

 Int32 X;

 Int32 NoOfY;

 Type2* Y;

 Int32 Z;

};

Are represented in JSON as:

OPC 10000-6: Mappings 40 1.05.00

{

 "X":1234,

 "Y":[{ "A":1, "B":2, "C":"Hello" }, { "A":3, "B":4 }],

 "Z":5678

}

Where “C” is omitted from the second Type2 instance because it has a NULL value.

5.4.7 Structures with optional fields

Structures with optional fields shall be encoded as JSON objects as shown in Table 35.

Table 35 – JSON Object Definition for a Structures with Optional Fields

Name Description

EncodingMask A bit mask indicating what fields are encoded in the structure (see 5.2.7)

This mask is encoded as a JSON number.

The bits are sequentially assigned to optional fields in the order that they are defined.

<FieldName> The fields structure encoded according to the rules defined for their DataType.

For the non-reversible form, Structures with optional fields are encoded like Structures.

If a Structure with optional fields is subtyped, the subtypes extend the EncodingMask defined
for the parent.

The following is an example of a structure with optional fields using C++ syntax:

struct TypeA

{

 Int32 X;

 Int32* O1;

 SByte Y;

 Int32* O2;

};

O1 and O2 are optional fields where a NULL indicates that the field is not present.

Assume that O1 is not specified and the value of O2 is 0.

The reversible encoding would be:

 { "EncodingMask": 2 "X": 1, "Y": 2 }

Where decoders would assign the default value of 0 to O2 since the mask bit is set even though
the field was omitted (this is the behaviour defined for the Int32 DataType). Decoders would
mark O1 as ‘not specified’.

5.4.8 Unions

Unions shall be encoded as JSON objects as shown in Table 36 for the reversible encoding.

Table 36 – JSON Object Definition for a Union

Name Description

SwitchField The identifier for the field in the Union which is encoded as a JSON number.

The valid values for this field follow the conventions defined in 5.2.8.

If the SwitchField value is its DefaultValue of 0, then the SwitchField and the Value field are not
present.

Value The value of the field encoded using the rules that apply to the data type.

For the non-reversible form, Union values are encoded using the rule for the current value. If
the SwitchField is 0 the Union is encoded as a JSON null value.

For example, instances of the union:

1.05.00 41 OPC 10000-6: Mappings

struct Union1

{

 Byte Selector;

 {

 Int32 A;

 Double B;

 Char* C;

 }

 Value;

};

would be represented in reversible form as:

{ "SwitchField":2, "Value":3.1415 }

In non-reversible form, it is represented as:

3.1415

5.4.9 Messages

Messages are encoded ExtensionObjects (see 5.4.2.16).

6 Message SecurityProtocols

6.1 Security handshake

All SecurityProtocols shall implement the OpenSecureChannel and CloseSecureChannel
services defined in OPC 10000-4. These Services specify how to establish a SecureChannel
and how to apply security to Messages exchanged over that SecureChannel. The Messages
exchanged and the security algorithms applied to them are shown in Figure 10.

SecurityProtocols shall support three SecurityModes: None, Sign and SignAndEncrypt. If the
SecurityMode is None then no security is used and the security handshake shown in
Figure 10 is not required. However, a SecurityProtocol implementation shall still maintain a
logical channel and provide a unique identifier for the SecureChannel.

OPC 10000-6: Mappings 42 1.05.00

Client Server

OpenSecureChannel Request

Signed with Client Private Key

Encrypted with Server Public Key

AsymmetricSignatureAlgorithm
AsymmetricEncryptionAlgorithm

or

AsymmetricKeyWrapAlgorithm

SymmetricEncryptionAlgorithm

OpenSecureChannel Response

Signed with Server Private Key

Encrypted with Client Public Key

CreateSession Request

Signed with Client Signing Key

Encrypted with Server Encryption Key

SymmetricEncryptionAlgorithm

KeyDerivationAlgorithm

SymmetricSignatureAlgorithm

KeyDerivationAlgorithm

DerivedSignatureKeyLength

CreateSession Response

Signed with Server Signing Key

Encrypted with Client Encryption Key

Figure 10 – Security handshake

Each SecurityProtocol mapping specifies exactly how to apply the security algorithms to the
Message. A set of security algorithms that shall be used together during a security handshake
is called a SecurityPolicy. OPC 10000-7 defines standard SecurityPolicies as parts of the
standard Profiles which OPC UA applications are expected to support. OPC 10000-7 also
defines a URI for each standard SecurityPolicy.

A Stack is expected to have built in knowledge of the SecurityPolicies that it supports.
Applications specify the SecurityPolicy they wish to use by passing the URI to the Stack.

Table 37 defines the contents of a SecurityPolicy. Each SecurityProtocol mapping specifies how
to use each of the parameters in the SecurityPolicy. A SecurityProtocol mapping may not make
use of all of the parameters.

1.05.00 43 OPC 10000-6: Mappings

Table 37 – SecurityPolicy

Name Description

PolicyUri The URI assigned to the SecurityPolicy.

SymmetricSignatureAlgorithm The symmetric signature algorithm to use.

SymmetricEncryptionAlgorithm The symmetric encryption algorithm to use.

AsymmetricSignatureAlgorithm The asymmetric signature algorithm to use.

AsymmetricEncryptionAlgorithm The asymmetric encryption algorithm to use.

MinAsymmetricKeyLength The minimum length, in bits, for an asymmetric key.

MaxAsymmetricKeyLength The maximum length, in bits, for an asymmetric key.

KeyDerivationAlgorithm The key derivation algorithm to use.

DerivedSignatureKeyLength The length in bits of the derived key used for Message authentication.

CertificateSignatureAlgorithm The asymmetric signature algorithm used to sign certificates.

CertificateKeyAlgorithm The algorithm used to create asymmetric key pairs used with Certificates.

EphemeralKeyAlgorithm The algorithm used to create asymmetric key pairs used for EphemeralKeys.

SecureChannelNonceLength The length, in bytes, of the Nonces used when opening a SecureChannel.

IntializationVectorLength The length, in bits, of the data used to initialize the symmetric algorithm.

SymmetricSignatureLength The length, in bits, of the symmetric signature.

LegacySequenceNumbers If TRUE, the 1 024 based SequenceNumber rules apply to the SecurityPolicy;

If FALSE, the 0 based SequenceNumber rules apply. See 6.7.2.4.

The KeyDerivationAlgorithm is used to create the keys used to secure Messages sent over the
SecureChannel. The length of the keys used for encryption is implied by the
SymmetricEncryptionAlgorithm. The length of the keys used for creating Signatures is specified
by the DerivedSignatureKeyLength.

The MinAsymmetricKeyLength and MaxAsymmetricKeyLength are constraints that apply to all
Certificates (including Issuers in the chain). In addition, the key length of issued Certificates
shall be less than or equal to the key length of the issuer Certificate. See 6.2.4 for information
on Certificate chains.

The CertificateKeyAlgorithm and EphemeralKeyAlgorithm are used to generate new asymmetric
key pairs used with Certificates and during the SecureChannel handshake. OPC 10000-7
specifies the algorithms that need to be supported for each SecurityPolicy.

The CertificateSignatureAlgorithm applies the Certificate and all Issuer Certificates. If a
CertificateSignatureAlgorithm allows for more than one algorithm then the algorithms are listed
in order of increasing priority. Each Issuer in a chain shall have an algorithm that is the same
or higher priority than any Certificate it issues.

The SecureChannelNonceLength specifies the length of the Nonces exchanged when
establishing a SecureChannel (see 6.7.4).

6.2 Certificates

6.2.1 General

OPC UA applications use Certificates to store the Public Keys needed for Asymmetric
Cryptography operations. All SecurityProtocols use X.509 v3 Certificates (see X.509 v3)
encoded using the DER format (see X690). Certificates used by OPC UA applications shall also
conform to RFC 5280 which defines a profile for X.509 v3 Certificates when they are used as
part of an Internet based application.

The ServerCertificate and ClientCertificate parameters used in the abstract
OpenSecureChannel service are instances of the Application Instance Certificate Data Type.
Subclause 6.2.2 describes how to create an X.509 v3 Certificate that can be used as an
Application Instance Certificate.

6.2.2 Application Instance Certificate

An Application Instance Certificate is a ByteString containing the DER encoded form (see X690)
of an X.509 v3 Certificate. This Certificate is issued by certifying authority and identifies an
instance of an application running on a single host. The X.509 v3 fields contained in an
Application Instance Certificate are described in Table 38. The fields are defined completely in
RFC 5280.

OPC 10000-6: Mappings 44 1.05.00

Table 38 also provides a mapping from the RFC 5280 terms to the terms used in the abstract
definition of an Application Instance Certificate defined in OPC 10000-4.

Table 38 – Application Instance Certificate

Name OPC 10000-4
Parameter Name

Description

Application Instance Certificate An X.509 v3 Certificate.

 version version shall be “V3”

 serialNumber serialNumber The serial number assigned by the issuer.

 signatureAlgorithm signatureAlgorithm The algorithm used to sign the Certificate.

 signature signature The signature created by the Issuer.

 issuer issuer The distinguished name of the Certificate used to create the
signature.

The issuer field is completely described in RFC 5280.

 validity validTo, validFrom When the Certificate becomes valid and when it expires.

 subject subject The distinguished name of the application Instance.

The Common Name attribute shall be specified and should be the
productName or a suitable equivalent. The Organization Name
attribute shall be the name of the Organization that executes the
application instance. This organization is usually not the vendor of
the application.

Other attributes may be specified.

The subject field is completely described in RFC 5280.

 subjectAltName applicationUri,

 hostnames

The alternate names for the application Instance.

Shall include a uniformResourceIdentifier which is equal to the
applicationUri. The URI shall be a valid URL (see RFC 3986) or a
valid URN (see RFC 8141).

Servers shall specify a partial or a fully qualified dNSName or a
static IPAddress which identifies the machine where the application
Instance runs. Additional dNSNames may be specified if the
machine has multiple names.

The subjectAltName field is completely described in RFC 5280.

 publicKey publicKey The public key associated with the Certificate.

 keyUsage keyUsage Specifies how the Certificate key may be used.

For RSA keys, the keyUsage shall include digitalSignature,
nonRepudiation, keyEncipherment and dataEncipherment.
For ECC keys, the keyUsage shall include digitalSignature.
Other keyUsage bits are allowed but not recommended.

Self-signed Certificates shall also include keyCertSign.

 extendedKeyUsage keyUsage Specifies additional limits on how the Certificate key may be used.

For RSA keys, the extendedKeyUsage shall specify serverAuth
and/or clientAuth.
For ECC keys, the extendedKeyUsage may specify serverAuth
and/or clientAuth.

Other extendedKeyUsage bits are allowed.

 authorityKeyIdentifier (no mapping) Provides more information about the key used to sign the
Certificate. It shall be specified for Certificates signed by a CA. It
should be specified for self-signed Certificates.

6.2.3 Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) is a ByteString containing the DER encoded form (see X690)
of an X.509 v3 CRL. The CRL is issued by certifying authority and contains the serial numbers
of the Certificates issued by that authority which are no longer valid. All CRLs shall have the
extension defined in Table 38. The extension is defined completely in RFC 5280.

Table 39 – Certificate Revocation List Extensions

Extension Description

 authorityKeyIdentifier Provides more information about the key used to sign the CRL.

6.2.4 Certificate Chains

Any X.509 v3 Certificate may be signed by CA which means that validating the signature
requires access to the X.509 v3 Certificate belonging to the signing CA. Whenever an
application validates a signature it shall recursively build a chain of Certificates by finding the
issuer Certificate, validating the Certificate and then repeat the process for the issuer
Certificate. The chain ends with a self-signed Certificate.

1.05.00 45 OPC 10000-6: Mappings

The number of CAs used in a system should be small so it is common to install the necessa ry
CAs on each machine with an OPC UA application. However, applications have the option of
including a partial or complete chain whenever they pass a Certificate to a peer during the
SecureChannel negotiation and during the CreateSession/ActivateSession handshake.

All OPC UA applications shall accept partial or complete chains in any field that contains a DER
encoded Certificate.

Chains are stored in a ByteString by simply appending the DER encoded form of the
Certificates. The first Certificate shall be the end Certificate followed by its issuer. If the root
CA is sent as part of the chain it is last Certificate appended to the ByteString.

Chains are parsed by extracting the length of each Certificate from the DER encoding. For
Certificates with lengths less than 65 535 bytes it is an MSB encoded UInt16 starting at the 3rd
byte.

6.3 Time synchronization

All SecurityProtocols require that system clocks on communicating machines be reasonably
synchronized in order to check the expiry times for Certificates or Messages.

The Network Time Protocol (NTP) provides a standard way to synchronize a machine clock with
a time server on the network. Systems running on a machine with a full featured operating
system like Windows or Linux will already support NTP or an equivalent. Devices running
embedded operating systems should support NTP.

If a device operating system cannot practically support NTP then an OPC UA application can
use the Timestamps in the ResponseHeader (see OPC 10000-4) to synchronize its clock. In
this scenario, the OPC UA application will have to know the URL for a Discovery Server on a
machine known to have the correct time. The OPC UA application or a separate background
utility would call the FindServers Service and set its clock to the time specified in the
ResponseHeader. This process will need to be repeated periodically because clocks can drift
over time.

6.4 UTC and International Atomic Time (TAI)

All times in OPC UA are in UTC, however, UTC can include discontinuities due to leap seconds
or repeating seconds added to deal with variations in the earth’s orbit and rotation. Servers that
have access to source for International Atomic Time (TAI) may choose to use this instead of
UTC. That said, Clients shall always be prepared to deal with discontinuities due to the UTC or
simply because the system clock is adjusted on the Server machine.

6.5 Issued User Identity Tokens

6.5.1 Kerberos

Note: Deprecated in Version 1.05.

6.5.2 JSON Web Token (JWT)

JSON Web Token (JWT) UserIdentityTokens can be passed to the Server using the
IssuedIdentityToken. The body of the token is a string that contains the JWT as defined in RFC
8259.

Servers that support JWT authentication shall provide a UserTokenPolicy which specifies the
Authorization Service which provides the token and the parameters needed to access that
service. The parameters are specified by a JSON object specified as the issuerEndpointUrl.
The contents of this JSON object are described in Table 41. The general UserTokenPolicy
settings for JWT are defined in Table 40.

OPC 10000-6: Mappings 46 1.05.00

Table 40 – JWT UserTokenPolicy

Name Description

tokenType ISSUEDTOKEN_3

issuedTokenType http://opcfoundation.org/UA/UserToken#JWT

issuerEndpointUrl For JWTs this is a JSON object with fields defined in Table 41.

Table 41 – JWT IssuerEndpointUrl Definition

Name Type Description

IssuerEndpointUrl JSON object Specifies the parameters for a JWT UserIdentityToken.

 ua:resourceId String The URI identifying the Server to the Authorization Service.

If not specified, the Server’s ApplicationUri is used.

 ua:authorityUrl

String The base URL for the Authorization Service.

This URL may be used to discover additional information about the authority.

This field is equivalent to the “issuer” defined in OpenID-Discovery.

 ua:authorityProfileUri String The profile that defines the interactions with the authority.

If not specified, the URI is “http://opcfoundation.org/UA/Authorization#OAuth2”.

 ua:tokenEndpoint String A path relative to the base URL used to request Access Tokens.

This field is equivalent to the “token_endpoint” defined in OpenID-Discovery.

 ua:authorizationEndpoint String A path relative to the base URL used to validate user credentials.

This field is equivalent to the “authorization_endpoint” defined in OpenID-
Discovery.

 ua:requestTypes JSON array

String

The list of request types supported by the authority.

The possible values depend on the authorityProfileUri.

OPC 10000-7 specifies the default for each authority profile defined.

 ua:scopes JSON array

String

A list of Scopes that are understood by the Server.

If not specified, the Client may be able to access any Scope supported by the
Authorization Service.

This field is equivalent to the “scopes_supported” defined in OpenID-Discovery.

6.5.3 OAuth2

6.5.3.1 General

The OAuth2 Authorization Framework (see RFC 6749) provides a web based mechanism to
request claims based Access Tokens from an Authorization Service (AS) that is supported by
many major companies providing cloud infrastructure. These Access Tokens are passed to a
Server by a Client in a UserIdentityToken as described in OPC 10000-4.

The OpenID Connect specification (see OpenID) builds on the OAuth2 specification by defining
the contents of the Access Tokens more strictly.

The OAuth2 specification supports a number of use cases (called ‘flows’) to handle different
application requirements. The use cases that are relevant to OPC UA are discussed below.

6.5.3.2 Access Tokens

The JSON Web Token is the Access Token format which this document requires when using
OAuth2. The JWT supports signatures using asymmetric cryptography which implies that
Servers which accept the Access Token must have access to the Certificate used by the
Authorization Service (AS). The OpenID Connect Discovery specification is implemented by
many AS products and provides a mechanism to fetch the AS Certificate via an HTTP request.
If the AS does not support the discovery specification, then the signing Certificate will have to
be provided to the Server when the location of the AS is added to the Server configuration.

Access Tokens expire and all Servers should revoke any privileges granted to the Session when
the Access Token expires. If the Server allows for anonymous users, the Server should allow
the Session to stay open but treat it as an anonymous user. If the Server does not allow
anonymous users, it should close the Session immediately.

Clients know when the Access Token will expire and should request a new Access Token and
call ActivateSession before the old Access Token expires.

1.05.00 47 OPC 10000-6: Mappings

The JWT format allows the Authorization Service to insert any number of fields. The mandatory
fields are defined in RFC 8259. Some additional fields are defined in Table 42 (see RFC 7523).

 Table 42 – Access Token Claims

Field Description

sub The subject for the token.

Usually the client_id which identifies the Client.

If returned from an Identity Provider it may be a unique identifier for the user.

aud The audience for the token.

Usually the resource_id which identifies the Server or the Server ApplicationUri.

name A human readable name for the Client application or user.

scp A list of Scopes granted to the subject.

Scopes apply to the Access Token and restrict how it may be used.

Usually permissions or other restriction which limit access rights.

nonce A nonce used to mitigate replay attacks.

Shall be the value provided by the Client in the request.

groups A list of groups which are assigned to the subject.

Usually a list of unique identifiers for specific security groups.

For example, Azure AD user account groups may be returned in this claim.

roles A list of roles which are assigned to the subject.

Roles apply to the requestor and describe what the requestor can do with the resource.

Usually a list of unique identifiers for roles known to the Authorization Service.

These values are typically mapped to the Roles defined in OPC 10000-3.

6.5.3.3 Authorization Code

The authorization code flow is available to Clients which allow interaction with a human user.
The Client application displays a window with a web browser which sends an HTTP GET to the
Identity Provider. When the human user enters credentials that the Identity Provider validates
the Identity Provider returns an authorization code which is passed to the Authorization Service.
The Authorization Service validates the code and returns an Access Token to the Client.

The complete flow is described in RFC 6749, 4.1.

A requestType of “authorization_code” in the UserTokenPolicy (see 6.5.2) means the
Authorization Service supports the authorization code flow.

6.5.3.4 Refresh Token

The refresh token flow applies when a Client application has access to a refresh token returned
in a previous response to an authorization code request. The refresh token allows applications
to skip the step that requires human interaction with the Identity Provider. This flow is initiated
when the Client sends the refresh token to Authorization Service which validates it and returns
an Access Token. A Client that saves the refresh token for later use shall use encryption or
other means to ensure the refresh token cannot be accessed by unauthorized parties .

The complete flow is described in RFC 6749, 6.

A requestType is not defined since support for refresh token is determined by checking the
response to an authorization code request.

6.5.3.5 Client Credentials

The client credentials flow applies when a Client application cannot prompt a human user for
input. This flow requires a secret know to the Authorization Service which the Client application
can protect. This flow is initiated when the Client sends the client_secret to Authorization
Service which validates it and returns an Access Token.

The complete flow is described in RFC 6749, Clause 4.4.

OPC 10000-6: Mappings 48 1.05.00

A requestType of “client_credentials” in the UserTokenPolicy (see 6.5.2) means the
Authorization Service supports the client credentials flow.

6.6 WS Secure Conversation

Note: Deprecated in Version 1.03.

6.7 OPC UA Secure Conversation

6.7.1 Overview

OPC UA Secure Conversation (UASC) allows secure communication using binary encoded
Messages.

UASC is designed to operate with different TransportProtocols that may have limited buffer
sizes. For this reason, OPC UA Secure Conversation will break OPC UA Messages into several
pieces (called ‘MessageChunks’) that are smaller than the buffer size allowed by the
TransportProtocol. UASC requires a TransportProtocol buffer size that is at least 8 192 bytes
when using RSA based Asymmetric Cryptography. This minimum buffer size drops to 1 024
when using ECC based Asymmetric Cryptography (see 6.8) is supported.

All security is applied to individual MessageChunks and not the entire OPC UA Message. A
Stack that implements UASC is responsible for verifying the security on each MessageChunk
received and reconstructing the original OPC UA Message.

All MessageChunks will have a 4-byte sequence assigned to them. These sequence numbers
are used to detect and prevent replay attacks.

UASC requires a TransportProtocol that will preserve the order of MessageChunks, however,
a UASC implementation does not necessarily process the Messages in the order that they were
received.

6.7.2 MessageChunk structure

6.7.2.1 Overview

The structure of the Message depends on whether the SecurityPolicy requires an algorithm that
combines encryption and authentication (e.g. Authenticated Encryption algorithms) used or if it
requires separate algorithms for each operation (Unauthenticated Encryption algorithms).

Figure 11 shows the structure of a MessageChunk and how security is applied to the Message
when using Unauthenticated Encryption algorithms. For these SecurityPolicies any padding is
appended to the message before appending the Signature.

Message Header

Security Header

Body

Signature

Data To Sign

Data To Encrypt

Sequence Header

Padding

Figure 11 – MessageChunk for Unauthenticated Encryption Algorithms

1.05.00 49 OPC 10000-6: Mappings

Figure 12 shows the structure of a MessageChunk and how security is applied to the Message
when using Authenticated Encryption algorithms. For these SecurityPolicies the Signature is
calculated during encryption and appended after the encrypted data. Padding is not needed.

Message Header

Security Header

Body

Data To Sign

Data To Encrypt

Sequence Header

Signature

Figure 12 – MessageChunk for Authenticated Encryption Algorithms

6.7.2.2 Message Header

Every MessageChunk has a Message header with the fields defined in Table 43.

Table 43 – OPC UA Secure Conversation Message Header

Name Data Type Description

MessageType Byte [3] A three byte ASCII code that identifies the Message type.

The following values are defined at this time:

 MSG A Message secured with the keys associated with a channel.

 OPN OpenSecureChannel Message.

 CLO CloseSecureChannel Message.

IsFinal Byte A one byte ASCII code that indicates whether the MessageChunk is the final chunk in
a Message.

The following values are defined at this time:

 C An intermediate chunk.

 F The final chunk.

 A The final chunk (used when an error occurred and the Message is aborted).

This field is only meaningful for MessageType of ‘MSG’

This field is always ‘F’ for other MessageTypes.

MessageSize UInt32 The length of the MessageChunk, in bytes.

The length starts from the beginning of the MessageType field.

SecureChannelId UInt32 A unique identifier for the SecureChannel assigned by the Server.

If a Server receives a SecureChannelId which it does not recognize it shall return an
appropriate transport layer error.

When a Server starts the first SecureChannelId used should be a value that is likely to
be unique after each restart. This ensures that a Server restart does not cause
previously connected Clients to accidently ‘reuse’ SecureChannels that did not belong
to them.

6.7.2.3 Security Header

The Message header is followed by a security header which specifies what cryptography
operations have been applied to the Message. There are two versions of the security header
which depend on the type of security applied to the Message. The security header used for
asymmetric algorithms is defined in Table 44. Asymmetric algorithms are used to secure the
OpenSecureChannel Messages. PKCS #1 defines a set of asymmetric algorithms that may be
used by UASC implementations. The AsymmetricKeyWrapAlgorithm element of the
SecurityPolicy structure defined in Table 37 is not used by UASC implementations.

OPC 10000-6: Mappings 50 1.05.00

Table 44 – Asymmetric algorithm Security header

Name Data Type Description

SecurityPolicyUriLength Int32 The length of the SecurityPolicyUri in bytes.

This value shall not exceed 255 bytes.

If a URI is not specified this value may be 0 or -1.

Other negative values are invalid.

SecurityPolicyUri Byte [] The URI of the Security Policy used to secure the Message.

This field is encoded as a UTF-8 string without a null terminator.

SenderCertificateLength Int32 The length of the SenderCertificate in bytes.

This value shall not exceed MaxSenderCertificateSize bytes.

If a certificate is not specified this value may be 0 or -1.

Other negative values are invalid.

SenderCertificate Byte [] The X.509 v3 Certificate assigned to the sending application Instance.

This is a DER encoded blob.

The structure of an X.509 v3 Certificate is defined in X.509 v3.

The DER format for a Certificate is defined in X690

This indicates what Private Key was used to sign the MessageChunk.

The Stack shall close the channel and report an error to the application if
the SenderCertificate is too large for the buffer size supported by the
transport layer.

This field shall be null if the Message is not signed.

If the Certificate is signed by a CA, the DER encoded CA Certificate may
be appended after the Certificate in the byte array. If the CA Certificate is
also signed by another CA this process is repeated until the entire
Certificate chain is in the buffer or if MaxSenderCertificateSize limit is
reached (the process stops after the last whole Certificate that can be
added without exceeding the MaxSenderCertificateSize limit).

Receivers can extract the Certificates from the byte array by using the
Certificate size contained in DER header (see X.509 v3).

Receivers that do not handle Certificate chains shall ignore the extra bytes.

ReceiverCertificateThumbprintL
ength

Int32 The length of the ReceiverCertificateThumbprint in bytes.

If encrypted the length of this field is 20 bytes.

If not encrypted the value may be 0 or -1.

Other negative values are invalid.

ReceiverCertificateThumbprint Byte [] The thumbprint of the X.509 v3 Certificate assigned to the receiving
application Instance.

The thumbprint is the CertificateDigest of the DER encoded form of the
Certificate.

This indicates what public key was used to encrypt the MessageChunk.

This field shall be null if the Message is not encrypted.

The receiver shall close the communication channel if any of the fields in the security header
have invalid lengths.

The SenderCertificate, including any chains, shall be small enough to fit into a single
MessageChunk and leave room for at least one byte of body information. The maximum size
for the SenderCertificate can be calculated with this formula:

MaxSenderCertificateSize =

 MessageChunkSize –

 12 - // Header size

 4 - // SecurityPolicyUriLength

 SecurityPolicyUri - // UTF-8 encoded string

 4 - // SenderCertificateLength

 4 - // ReceiverCertificateThumbprintLength

 20 - // ReceiverCertificateThumbprint

 8 - // SequenceHeader size

 1 - // Minimum body size

 1 - // PaddingSize if present

 Padding - // Padding if present

 ExtraPadding - // ExtraPadding if present

 AsymmetricSignatureSize // If present

The MessageChunkSize depends on the transport protocol but shall be at least 8 192 bytes.
The AsymmetricSignatureSize depends on the number of bits in the public key for the
SenderCertificate. The Int32FieldLength is the length of an encoded Int32 value and it is always
4 bytes.

1.05.00 51 OPC 10000-6: Mappings

The security header used for symmetric algor ithms defined in Table 45. Symmetric algorithms
are used to secure all Messages other than the OpenSecureChannel Messages. FIPS 197
define symmetric encryption algorithms that UASC implementations may use. FIPS 180- and
HMAC define some symmetric signature algorithms.

Table 45 – Symmetric algorithm Security header

Name Data Type Description

TokenId UInt32 A unique identifier for the SecureChannel SecurityToken used to secure the Message.

This identifier is returned by the Server in an OpenSecureChannel response Message.
If a Server receives a TokenId which it does not recognize it shall return an appropriate
transport layer error.

6.7.2.4 Sequence Header

The security header is always followed by the sequence header which is defined in Table 46.
The sequence header ensures that the first encrypted block of every Message sent over a
channel will start with different data.

Table 46 – Sequence header

Name Data Type Description

SequenceNumber UInt32 A monotonically increasing sequence number assigned by the sender to each
MessageChunk sent over the SecureChannel.

RequestId UInt32 An identifier assigned by the Client to OPC UA request Message. All MessageChunks
for the request and the associated response use the same identifier.

A SequenceNumber may not be reused for any TokenId. The SecurityToken lifetime shall be
short enough to ensure that this never happens; however, if it does the receiver shall treat it as
a transport error and force a reconnect. The SequenceNumber does not reset when a new
TokenId is issued and it shall be incremented by exactly one for each MessageChunk sent.

SecurityPolicies with LegacySequenceNumbers set to TRUE, the SequenceNumber shall
monotonically increase for all Messages and shall not wrap around until it is greater than
4 294 966 271 (UInt32.MaxValue – 1 024). The first number after the wrap around shall be less
than 1 024.

SecurityPolicies with LegacySequenceNumbers set to FALSE, the SequenceNumber shall start
at 0 and monotonically increase for all Messages and shall not wrap around until it is equal to
4 294 967 295 (UInt32.MaxValue). The first number after the wrap around shall be 0.

Some applications will find it takes time to validate the OpenSecureChannel Requests and
Responses used to renew a TokenId. In these situations, the receiver may assume the
SequenceNumber is correct which allows it to process subsequent messages secured with the
existing TokenId before the OpenSecureChannel Message is validated. When processing of the
OpenSecureChannel Message completes, the receiver checks the SequenceNumber and
closes the SecureChannel if it is incorrect.

The sequence header is followed by the Message body which is encoded with the OPC UA
Binary encoding as described in 5.2.9. The body may be split across multiple MessageChunks.

6.7.2.5 Message Footer

6.7.2.5.1 Unauthenticated Encryption Algorithms

Each MessageChunk when using SecurityPolicies with an Unauthenticated Encryption
algorithms have a footer with the fields defined in Table 47.

OPC 10000-6: Mappings 52 1.05.00

Table 47 – Message Footer for Unauthenticated Encryption Algorithms

Name Data Type Description

PaddingSize Byte The number of padding bytes (not including the byte for the PaddingSize).

Padding OctetString Padding added to the end of the Message to ensure length of the data to encrypt is an
integer multiple of the encryption block size.

The value of each byte of the padding is equal to PaddingSize.

ExtraPaddingSize Byte The most significant byte of a two-byte integer used to specify the padding size when the
key used to encrypt the message chunk is larger than 2 048 bits. This field is omitted if
the key length is less than or equal to 2 048 bits.

Signature OctetString The signature for the MessageChunk.

The signature includes the headers, all Message data, the PaddingSize and the Padding.

The signature is encoded as sequence of Bytes with a length specified by the
SecurityPolicy.

The formula to calculate the amount of padding depends on the amount of data that needs to
be sent (called BytesToWrite). The sender shall first calculate the maximum amount of space
available in the MessageChunk (called MaxBodySize) using the following formula:

MaxBodySize = PlainTextBlockSize * Floor ((MessageChunkSize

 – MessageHeaderSize

 - SecurityHeaderSize

 – SignatureSize - 1)/CipherTextBlockSize) – SequenceHeaderSize;

The MessageHeaderSize is 12 bytes and the SecurityHeader size depends on whether
symmetric or asymmetric cryptography is used. The SequenceHeaderSize is always 8 bytes.

During encryption a block with a size equal to PlainTextBlockSize is processed to produce a
block with size equal to CipherTextBlockSize. These values depend on the encryption algorithm
and may be the same.

The OPC UA Message can fit into a single chunk if BytesToWrite is less than or equal to the
MaxBodySize. In this case the PaddingSize is calculated with this formula:

PaddingSize = PlainTextBlockSize –

((BytesToWrite + SignatureSize + 1) % PlainTextBlockSize);

If the BytesToWrite is greater than MaxBodySize the sender shall write MaxBodySize bytes with
a PaddingSize of 0. The remaining BytesToWrite – MaxBodySize bytes shall be sent in
subsequent MessageChunks.

The PaddingSize and Padding fields are not present if the MessageChunk is not encrypted.

The Signature field is not present if the MessageChunk is not signed.

6.7.2.5.2 Authenticated Encryption Algorithms

Each MessageChunk when using SecurityPolicies with an Authenticated Encryption algorithms
have a footer with the fields defined in Table 48.

Table 48 – Message Footer for Authenticated Encryption Algorithms

Name Data Type Description

Signature OctetString The signature for the MessageChunk.

The signature includes the headers and all Message data.

The signature is encoded as sequence of Bytes with a length specified by the
SecurityPolicy.

6.7.3 MessageChunks and error handling

MessageChunks are sent as they are encoded. MessageChunks belonging to the same
Message shall be sent sequentially. If an error occurs creating a MessageChunk then the
sender shall send a final MessageChunk to the receiver that tells the receiver that an error
occurred and that it should discard the previous chunks. The sender indicates that the
MessageChunk contains an error by setting the IsFinal flag to ‘A’ (for Abort). Table 49 specifies
the contents of the Message abort MessageChunk.

1.05.00 53 OPC 10000-6: Mappings

Table 49 – OPC UA Secure Conversation Message abort body

Name Data Type Description

Error UInt32 The numeric code for the error.

Possible values are listed in Table 63.

Reason String A more verbose description of the error.

This string shall not be more than 4 096 bytes.

A Client shall ignore strings that are longer than this.

The receiver shall check the security on the abort MessageChunk before processing it. If
everything is ok, then the receiver shall ignore the Message but shall not close the
SecureChannel. The Client shall report the error back to the application as StatusCode for the
request. If the Client is the sender, then it shall report the error without waiting for a response
from the Server.

6.7.4 Establishing a SecureChannel

Most Messages require a SecureChannel to be established. A Client does this by sending an
OpenSecureChannel request to the Server. The Server shall validate the Message and the
ClientCertificate and return an OpenSecureChannel response. Some of the parameters defined
for the OpenSecureChannel service are specified in the security header (see 6.7.2) instead of
the body of the Message. Table 50 lists the parameters that appear in the body of the Message.

Note that OPC 10000-4 is an abstract specification which defines interfaces that can work with
any protocol. This document provides a concrete implementation for specific protocols. This
document is the normative reference for all protocols and takes precedence if there are
differences with OPC 10000-4.

Table 50 – OPC UA Secure Conversation OpenSecureChannel Service

Name Data Type

Request

 RequestHeader RequestHeader

 ClientProtocolVersion UInt32

 RequestType SecurityTokenRequestType

 SecurityMode MessageSecurityMode

 ClientNonce ByteString

 RequestedLifetime UInt32

Response

 ResponseHeader ResponseHeader

 ServerProtocolVersion UInt32

 SecurityToken ChannelSecurityToken

 SecureChannelId UInt32

 TokenId UInt32

 CreatedAt UtcTime

 RevisedLifetime UInt32

 ServerNonce ByteString

The ClientProtocolVersion and ServerProtocolVersion parameters are not defined in OPC
10000-4 and are added to the Message to allow backward compatibility if OPC UA-
SecureConversation needs to be updated in the future.

If OPC UA-SecureConversation is used with the OPC UA-TCP protocol (see 7.1) then the
ClientProtocolVersion specified in the OpenSecureChannel Request shall be the same as the
ProtocolVersion specified in the Hello Message. In addition, the ServerProtocolVersion
specified in the OpenSecureChannel Response shall be the same as the ProtocolVersion
specified in the Acknowledge Message. The receiver shall close the channel and report a
Bad_ProtocolVersionUnsupported error if there is a mismatch.

The Server shall return an error response as described in OPC 10000-4 if there are any errors
with the parameters specified by the Client.

OPC 10000-6: Mappings 54 1.05.00

The RevisedLifetime tells the Client when it shall renew the SecurityToken by sending another
OpenSecureChannel request. The Client shall continue to accept the old SecurityToken until it
receives the OpenSecureChannel response. The Server shall accept requests secured with the
old SecurityToken until that SecurityToken expires or until it receives a Message from the Client
secured with the new SecurityToken. The Server shall reject renew requests if the
SenderCertificate is not the same as the one used to create the SecureChannel or if there is a
problem decrypting or verifying the signature. The Client shall abandon the SecureChannel if
the Certificate used to sign the response is not the same as the Certificate used to encrypt the
request. Note that datatype is a UInt32 value representing the number of milliseconds instead
of the Double (Duration) defined in OPC 10000-4. This optimization is possible because sub-
millisecond timeouts are not supported.

The OpenSecureChannel Messages are signed and encrypted if the SecurityMode is not None
(even if the SecurityMode is Sign).

The Nonces shall be cryptographic random numbers with a length specified by the
SecureChannelNonceLength of the SecurityPolicy.

See OPC 10000-2 for more information on the requirements for random number generators.
The OpenSecureChannel Messages are not signed or encrypted if the SecurityMode is None.
The Nonces are ignored and should be set to null. The SecureChannelId and the TokenId are
still assigned but no security is applied to Messages exchanged via the channel. The
SecurityToken shall still be renewed before the RevisedLifetime expires. Receivers shall still
ignore invalid or expired TokenIds.

The AuthenticationToken in the RequestHeader shall be set to null.

If an error occurs after the Server has verified Message security it shall return a ServiceFault
instead of a OpenSecureChannel response. The ServiceFault Message is described in OPC
10000-4.

If the SecurityMode is not None then the Server shall verify that a SenderCertificate and a
ReceiverCertificateThumbprint were specified in the SecurityHeader.

6.7.5 Deriving keys

Once the SecureChannel is established the Messages are signed and encrypted with keys
derived from the Nonces exchanged in the OpenSecureChannel call. These keys are derived
by passing the Nonces to a pseudo-random function (PRF) which produces a sequence of bytes
from a set of inputs. A pseudo-random function is represented by the following function
declaration:

Byte[] PRF(

Byte[] secret,

Byte[] seed,

Int32 length,

Int32 offset)

Where length is the number of bytes to return and offset is a number of bytes from the beginning
of the sequence.

The lengths of the keys that need to be generated depend on the SecurityPolicy used for the
channel. The following information is specified by the SecurityPolicy:

a) SigningKeyLength (from the DerivedSignatureKeyLength);

b) EncryptingKeyLength (implied by the SymmetricEncryptionAlgorithm);

c) IntializationVectorLength (from by the IntializationVectorLength).

The pseudo random function requires a secret and a seed. These values are derived from the
Nonces exchanged in the OpenSecureChannel request and response. Table 51 specifies how
to derive the secrets and seeds when using RSA based SecurityPolicies.

1.05.00 55 OPC 10000-6: Mappings

Table 51 – PRF inputs for RSA based SecurityPolicies

Name Derivation

ClientSecret The value of the ClientNonce provided in the OpenSecureChannel request.

ClientSeed The value of the ClientNonce provided in the OpenSecureChannel request.

ServerSecret The value of the ServerNonce provided in the OpenSecureChannel response.

ServerSeed The value of the ServerNonce provided in the OpenSecureChannel response.

The parameters passed to the pseudo random function are specified in Table 52.

Table 52 – Cryptography key generation parameters

Key Secret Seed Length Offset

ClientSigningKey ServerSecret ClientSeed SigningKeyLength 0

ClientEncryptingKey ServerSecret ClientSeed EncryptingKeyLength SigningKeyLength

ClientInitializationVector ServerSecret ClientSeed IntializationVectorLength SigningKeyLength+EncryptingKeyLength

ServerSigningKey ClientSecret ServerSeed SigningKeyLength 0

ServerEncryptingKey ClientSecret ServerSeed EncryptingKeyLength SigningKeyLength

ServerInitializationVector ClientSecret ServerSeed IntializationVectorLength SigningKeyLength+EncryptingKeyLength

The Client keys are used to secure Messages sent by the Client. The Server keys are used to
secure Messages sent by the Server.

The SSL/TLS specification defines a pseudo random function called P_HASH which is used for
this purpose. The function is iterated until it produces enough data for all of the required keys.
The Offset in Table 52 references to the offset from the start of the generated data.

The P_ hash algorithm is defined as follows:

P_HASH(secret, seed) = HMAC_HASH(secret, A(1) + seed) +

 HMAC_HASH(secret, A(2) + seed) +

 HMAC_HASH(secret, A(3) + seed) + ...

Where A(n) is defined as:

 A(0) = seed

 A(n) = HMAC_HASH(secret, A(n-1))

+ indicates that the results are appended to previous results.

Where ‘HASH’ is a hash function such as SHA256. The hash function to use depends on the
SecurityPolicyUri.

6.7.6 Verifying Message Security

The contents of the MessageChunk shall not be interpreted until the Message is decrypted and
the signature and sequence number verified.

If an error occurs during Message verification the receiver shall close the communication
channel. If the receiver is the Server, it shall also send a transport error Message before closing
the channel. Once the channel is closed the Client shall attempt to re-open the channel and
request a new SecurityToken by sending an OpenSecureChannel request. The mechanism for
sending transport errors to the Client depends on the communication channel.

The receiver shall first check the SecureChannelId. This value may be 0 if the Message is an
OpenSecureChannel request. For other Messages, it shall report a
Bad_SecureChannelUnknown error if the SecureChannelId is not recognized. If the Message
is an OpenSecureChannel request and the SecureChannelId is not 0 then the SenderCertificate
shall be the same as the SenderCertificate used to create the channel.

If the Message is secured with asymmetric algorithms, then the receiver shall verify that it
supports the requested SecurityPolicy. If the Message is the response sent to the Client, then
the SecurityPolicy shall be the same as the one specified in the request. In the Server, the
SecurityPolicy shall be the same as the one used to originally create the SecureChannel.

The receiver shall verify the ReceiverCertificateThumbprint and report a Bad_CertificateInvalid
error if it does not recognize it.

OPC 10000-6: Mappings 56 1.05.00

The receiver shall check that the Certificate is trusted first and return
Bad_SecurityChecksFailed on error. The receiver shall then verify the SenderCertificate using
the rules defined in OPC 10000-4. The receiver shall report the appropriate error if Certificate
validation fails.

If the Message is secured with symmetric algorithms, then a Bad_SecureChannel
TokenUnknown error shall be reported if the TokenId refers to a SecurityToken that has expired
or is not recognized.

If decryption or signature validation fails, then a Bad_SecurityChecksFailed error is reported. If
an implementation allows multiple SecurityModes to be used the receiver shall also verify that
the Message was secured properly as required by the SecurityMode specified in the
OpenSecureChannel request.

After the security validation is complete the receiver shall verify the RequestId and the
SequenceNumber. If these checks fail a Bad_SecurityChecksFailed error is reported. The
RequestId only needs to be verified by the Client since only the Client knows if it is valid or not.
If the SequenceNumber is not valid, the receiver shall log a Bad_SequenceNumberInvalid error.

At this point the SecureChannel knows it is dealing with an authenticated Message that was not
tampered with or resent. This means the SecureChannel can return secured error responses if
any further problems are encountered.

Stacks that implement UASC shall have a mechanism to log errors when invalid Messages are
discarded. This mechanism is intended for developers, systems integrators and administrators
to debug network system configuration issues and to detect attacks on the network.

6.8 Elliptic Curve Cryptography (ECC)

6.8.2 Secure Channel Handshake

The OPC UA Secure Conversation (UASC) mechanism described 6.7 is designed for use with
asymmetric cryptography algorithms, such as RSA, that allow Public Keys to be used for
encryption and for digital signatures. ECC is an asymmetric cryptography algorithm that only
supports digital signatures. To accommodate algorithms like ECC, the UASC handshake needs
to be modified to allow negotiation of inputs used for key derivation in 6.7.5 without making the
keys available to eavesdroppers. This negotiation uses a Diffie Hellman algorithm defined in
RFC 8422 and is shown in Figure 13.

Public Key (GC)

Private Key (HC)

Client

Application Certificate

Public Key (GS)

Private Key (HS)

Server

Application Certificate

OpenSecureChannel

Request

Client Ephemeral

Public Key (JC)

Signature

(Created with HC)

Client

Ephemeral Key

Public Key (JC)

Private Key (KC)

Server

Ephemeral Key

Public Key (JS)

Private Key (KS)

OpenSecureChannel

Response

Server Ephemeral

Public Key (JS)

Signature

(Created with HS)

Client Application

Certificate (GC)

Server Application

Certificate (GS)

Server

Client

Figure 13 – ECC Key Negotiation

ApplicationInstance Certificates for ECC have a public-private key pair that are used to create
and verify a digital signature. To negotiate the keys needed for the SecureChannel the Client
generates a new key pair (JC, KC) and passes the Public Key (JC) in the request. After verifying
the signature on the request, the Server generates a new key pair (JS, KS) and returns the Public
Key (JS) in the response. The new key pairs are used each time a SecureChannel is negotiated
and they are called EphemeralKeys.

1.05.00 57 OPC 10000-6: Mappings

ECC public-private key pairs are always based on a specific elliptic curve function which is used
for the ECC calculations. Many curves exist, however, ECC cryptography libraries support a
finite set of “named curves” to allow for better interoperability. Each OPC UA SecurityPolicy
defined in OPC 10000-7 specifies exactly one named curve which is used for the
EphemeralKeys.

Each ECC ApplicationInstance Certificate is also based on a named curve. Each SecurityPolicy
specifies a list of named curves which are permitted for use in the ApplicationInstance
Certificate. This list always includes the named curved used for the EphemeralKey, however, it
may allow other named curves. OPC UA applications that support ECC SecurityPolicies will
need to support multiple ApplicationInstance Certificates.

ECC Public Keys and digital signatures are the output of an ECC operation. The encoding of
these outputs depends on the ECC curve and are described by the SecurityPolicy in OPC
10000-7.

Clause 6.7.4 specifies the contents of the OpenSecureChannel request and response
messages. When using an ECC SecurityPolicy the ClientNonce is the Public Key for the Client’s
EphemeralKey encoded using the Public Key encoding for the curve. Similarly, the ServerNonce
is the Public Key for the Server’s EphemeralKey.

The EphemeralKeys are used to calculate a shared secret by using the Private Key of an
EphemeralKey and the Public Key of the peer’s EphemeralKey. The exact algorithm to calculate
the shared secret depends on the ECC curve and is defined by the SecurityPolicy. This shared
secret is then used to derive key data using the following algorithm from RFC 5869. Note that
the algorithm is repeated here for clarity, however, the RFC is the normative source.

Step 1: Calculate Salts

 ServerSalt = L | UTF8(opcua-server) | ServerNonce | ClientNonce

 ClientSalt = L | UTF8(opcua-client) | ClientNonce | ServerNonce

Where

• L is the length of derived key material needed encoded as a 16-bit little endian integer;

• UTF8(label) is the UTF8 encoding of the string literal ‘label’;

• ServerNonce is the Server EphemeralKey from the OpenSecureChannel response;

• ClientNonce is the Client EphemeralKey from the OpenSecureChannel request;

• | concatenates sequences of bytes;

• Salt is a sequence of bytes.

Step 2: Extract

 PRK = HMAC-Hash(Salt, IKM)

Where

• HMAC uses a Hash function specified by the KeyDerivationAlgorithm;

• IKM is the x-coordinate of the shared secret;

• Salt is calculated in Step 1;

• PRK is a pseudorandom output with length equal to the Hash size.

Step 3: Expand

 N = ceil(L/HashLen)

 T = T(1) | T(2) | T(3) | ... | T(N)

 OKM = first L octets of T

 where:

 T(0) = empty string (zero length)

 T(1) = HMAC-Hash(PRK, T(0) | Info | 0x01)

 T(2) = HMAC-Hash(PRK, T(1) | Info | 0x02)

 T(3) = HMAC-Hash(PRK, T(2) | Info | 0x03)

 ...

OPC 10000-6: Mappings 58 1.05.00

Where

• HMAC uses a Hash function specified by the KeyDerivationAlgorithm;

• PRK is the output from Step 1;

• Info is a sequence of bytes;

• L is the length of keying material needed;

• 0x01 is the number 1 encoded as a byte.

• OKM is the output with length equal to L bytes.

The client keys are extracted from the keying material created with IKM=shared secret,
Salt=ClientSalt and Info=ClientSalt as shown in Table 53.

Table 53 – Deriving Client Keys from Keying Material

Name Offset Length

ClientSigningKey 0 DerivedSignatureKeyLength

ClientEncryptingKey DerivedSignatureKeyLength EncryptionKeyLength

ClientInitializationVector DerivedSignatureKeyLength +
EncryptionKeyLength

C – CounterLength

The server keys are extracted from the keying material created with IKM=shared secret, Salt=
ServerSalt and Info=ServerSalt as shown in Table 54.

Table 54 – Deriving Server Keys from Keying Material

Name Offset Length

ServerSigningKey 0 DerivedSignatureKeyLength

ServerEncryptingKey DerivedSignatureKeyLength EncryptionKeyLength

ServerInitializationVector DerivedSignatureKeyLength + EncryptionKeyLength InitializationVectorLength –
CounterLength

The SymmetricEncryptionAlgorithm for the SecurityPolicy sets the EncryptionKeyLength and
EncryptionBlockSize.

When using Authenticated Encryption, the SigningKey and EncryptingKey are always
calculated, however, only one will be used. If the mode is SignAndEncrypt then the
EncryptingKey is used. If the mode is SignOnly then the SigningKey is used.

In addition, a unique InitializationVector is needed for each Message. This value contructed
from the ClientInitializationVector or ServerInitializationVector where the first 8 bytes are
replaced by the values in Table 55 encoded as described in 5.2.2.2.

Table 55 – Creating a Mask for the Initialization Vector

Name Bytes Length

TokenId 4 The TokenId specified in the SecurityHeader of MessageChunk being processed.

It is encoded as a UInt32 as described in 5.2.2.2.

LastSequenceNumber 4 The SequenceNumber specified in the SequenceHeader of last MessageChunk
sent in the same direction on the SecureChannel.

This number is 0 for the first message.

It is encoded as a UInt32 as described in 5.2.2.2.

The ClientInitializationVector is used when the Client encrypts or signs and the
ServerInitializationVector is used when the Server encrypts or signs.

The LastSequenceNumber is the SequenceNumber from the previously sent Message which
normally requires the previous Message to be decrypted. If the receiver processes incoming
Messages in parallel it can calculate the expected SequenceNumber based on the order in
which the encrypted Messages are received.

When using SignOnly mode it is necessary to have a SigningKey that is unique and
unpredictable for each message. The transformation defined for the InitializationVector is
applied to the ClientSigningKey (when the Client signs) or the ServerSigningKey (when the

1.05.00 59 OPC 10000-6: Mappings

Server signs). After applying the transformation, a hash is computed using the Hash function
specified by the KeyDerivationAlgorithm. If the hash length is greater than or equal to the
SigningKey length then the first SigningKey length bytes from the hash are used. If the hash
length is less than the SigningKey length then the first hash length bytes of the SigningKey are
replaced with the hash.

Once the keys are derived ECC SecureChannels behave the same as RSA SecureChannels.

6.8.3 UserIdentityToken Encryption

ActivateSession allows a Client to provide an encrypted UserIdentityToken using a
SecurityPolicy specified by a UserTokenPolicy supported by the current Endpoint. With ECC,
encryption requires that the Client and Server exchange EphemeralKeys and there is no
mechanism in the current CreateSession/ActivateSession handshake to do this. For that
reason, EphemeralKeys are returned in the AdditionalHeader field of the ResponseHeader of
the CreateSession and ActivateSession responses. An overview of the handshake is shown in
Figure 14.

Client Server

GetEndpoints Request

EndpointDescription (UserTokenPolicy.PolicyId=P1,P2)

CreateSession Request (ECDHProfileUri=Aes128-Sha256-nistP256)

CreateSession Response (ECDHKey=EphemeralKeyType:EK1)

ActivateSession (UserIdentityToken=P1:EccEncryptedSecret)

ActivateSession Response (ECDHKey=EphemeralKeyType:EK2)

Figure 14 – ECC CreateSession/ActivateSession Handshake

The UserTokenPolicies are returned in the GetEndpoints response. A UserTokenPolicy may
specify a SecurityPolicyUri that is different than the SecureChannel, however, all
UserTokenPolicies in an EndpointDescription shall specify a SecurityPolicyUri that is valid for
all Certificates that are valid for SecurityPolicyUri specified in the EndpointDescription. For
example, an EndpointDescription providing an ECC SecurityPolicyUri shall not specify RSA
SecurityPolicyUris in the UserTokenPolicies.

When a Client calls CreateSession via a SecureChannel based on an ECC SecurityPolicy the
Client specifies the SecurityPolicyUri it plans to use for the UserIdentityToken in the
RequestHeader. Server returns an EphemeralKey in the ResponseHeader that can be used for
the SecurityPolicyUri specified by the Client. If the SecurityPolicyUri is not valid the Server
returns a StatusCode in the ResponseHeader instead of an EphemeralKey.

When the Client calls ActivateSession it creates an EccEncryptedSecret (see OPC 10000-4)
using the EphemeralKey provided in CreateSession response. The Server always returns a new
EphemeralKey in the ResponseHeader which the Client saves for when it calls ActivateSession
again. The SecurityPolicyUri passed in CreateSession is used to determine what type of
EphemeralKey to return.

The EphemeralKeys may be used for exactly one key negotiation. After that they are discarded.
Each time ActivateSession is called the UserIdentityToken is encrypted using the last
EphemeralKey returned by the Server. The EphemeralKey is changed even if the Client did not
provide an encrypted UserIdentityToken.

OPC 10000-6: Mappings 60 1.05.00

If the Client does not provide SecurityPolicyUri in the call to CreateSession it will not be able to
use any UserIdentityTokens that require encryption with ECC SecurityProfiles.

OPC 10000-4 defines AdditionalParametersType which is a list of name-value pairs. An
instance of this type is passed in the AdditionalHeader field. Instances of the
EphemeralKeyType defined in OPC 10000-4 are passed as values in the name-value pair list
in the response messages. The names used for the parameters defined for the
CreateSession/ActivateSession exchange are defined in Table 56.

Table 56 – Additional Header Key Names

Name DataType Description

ECDHPolicyUri String Specifies the SecurityPolicyUri used for the EphemeralKeys.

ECDHKey EphemeralKeyType Specifies an EphemeralKey.

If the EphemeralKey could not be created a StatusCode indicating the
reason for the error is used instead of an instance of EphemeralKeyType.

6.8.4 ECC Encrypted Secret

OPC 10000-4 defines the layout of EccEncryptedSecret structure which is used to protect
secrets with ECC SecurityPolicies. Applying security with ECC requires two EphemeralKeys
generated by the sender and the receiver which are used create the symmetric keys need for
encryption.

6.8.2 defines a mechanism to allows the sender to acquire the receiver EphemeralKey when
using a Session. Using the EccEncryptedSecret in other contexts requires a different
mechanism.

Once the sender has the receiver EphemeralKey, it creates its own EphemeralKey. The ECC
curve and key length for the EphemeralKeys are specified by the SecurityPolicyUri.

The encryption uses the symmetric encryption algorithm specified by the SecurityPolicyUri. The
encrypting key and initialization vector are generated by using the EphemeralKeys to create the
shared secret and then derive keys using the algorithm defined in 6.8.2. Step 1 is slightly
different and defined as follows:

Step 1: Calculate Salt

 SecretSalt = L | UTF8(opcua-secret) | SenderPublicKey | ReceiverPublicKey

Where

• L is the length of derived key material needed encoded as a 16-bit little endian integer;

• UTF8(opcua-secret) is the UTF8 encoding of the string literal ‘opcua-secret’;

• SenderPublicKey and ReceiverPublicKey are from the PolicyHeader;

• | concatenates sequences of bytes;

Salt is a sequence of bytes.

The encryption keys are extracted from the keying material created with IKM=shared secret,
Salt=SecretSalt and Info=SecretSalt as shown in Table 57.

Table 57 – Deriving Keys from Keying Material

Name Offset Length

EncryptingKey 0 EncryptionKeyLength

InitializationVector EncryptionKeyLength InitializationVectorLength

The EncryptionKeyLength and EncryptionBlockSize are specified by the Symmetric Encryption
Algorithm for the SecurityPolicy. The Signature is created with the SigningCertificate and is
calculated after encryption. Receivers shall validate the SigningCertificate and signature before
decrypting the Secret.

1.05.00 61 OPC 10000-6: Mappings

7 TransportProtocols

7.1 OPC UA Connection Protocol

7.1.1 Overview

OPC UA Connection Protocol (UACP) is an abstract protocol that establishes a full duplex
channel between a Client and Server. Concrete implementations of the UACP can be built with
any middleware that supports full-duplex exchange of messages including TCP/IP and
WebSockets. The term “TransportConnection” describes the specific connection used to
exchange messages. For example, a socket is the TransportConnection for TCP/IP.
TransportConnections allow responses to be returned in any order and allow responses to be
returned on a different physical TransportConnection if communication failures cause temporary
interruptions.

The OPC UA Connection Protocol is designed to work with the SecureChannel implemented by
a layer higher in the stack. For this reason, the OPC UA Connection Protocol defines its
interactions with the SecureChannel in addition to the wire protocol.

7.1.2 Message structure

7.1.2.1 Overview

Figure 15 illustrates the structure of a Message placed on the wire. This also illustrates how the
Message elements defined by the OPC UA Binary Encoding mapping (see 5.2) and the OPC
UA Secure Conversation mapping (see 6.7) relate to the OPC UA Connection Protocol
Messages.

Chunk 1 Chunk 2 Chunk 3

ExtensionObject Prefix

Message Header (Intermediate Chunk)

Message Header (Final Chunk)

Security Header

Message Signature

Padding

Encrypted Data

Signed Data

Chunk 1

Chunk 2

Chunk 3

Message

Sequence Header

Figure 15 – OPC UA Connection Protocol Message structure

7.1.2.2 Message Header

Every OPC UA Connection Protocol Message has a header with the fields defined in Table 58.

OPC 10000-6: Mappings 62 1.05.00

Table 58 – OPC UA Connection Protocol Message header

Name Type Description

MessageType Byte [3] A three byte ASCII code that identifies the Message type.

The following values are defined at this time:

 HEL a Hello Message.

 ACK an Acknowledge Message.

 ERR an Error Message.

 RHE a ReverseHello Message.

The SecureChannel layer defines additional values which the OPC UA Connection
Protocol layer shall accept.

Reserved Byte [1] Ignored. shall be set to the ASCII codes for ‘F’ if the MessageType is one of the values
supported by the OPC UA Connection Protocol.

MessageSize UInt32 The length of the Message, in bytes. This value includes the 8 bytes for the Message
header.

The layout of the OPC UA Connection Protocol Message header is intentionally identical to the
first 8 bytes of the OPC UA Secure Conversation Message header defined in Table 43. This
allows the OPC UA Connection Protocol layer to extract the SecureChannel Messages from the
incoming stream even if it does not understand their contents.

The OPC UA Connection Protocol layer shall verify the MessageType and make sure the
MessageSize is less than the negotiated ReceiveBufferSize before passing any Message onto
the SecureChannel layer.

7.1.2.3 Hello Message

The Hello Message has the additional fields shown in Table 59.

Table 59 – OPC UA Connection Protocol Hello Message

Name Data Type Description

ProtocolVersion UInt32 The version of the UACP protocol requested by the Client.

If Server does not support the requested version or any lower version it rejects the
Client by returning Bad_ProtocolVersionUnsupported.

If the Server supports the requested version or a lower version it shall return the
version it will use in the Acknowledge Message.

The ProtocolVersion for this version of the standard is 0.

ReceiveBufferSize UInt32 The largest MessageChunk that the sender can receive.

Shall be at least 1 024 bytes if the sender intends to use an ECC SecurityPolicy.

Shall be at least 8 192 bytes otherwise.

SendBufferSize UInt32 The largest MessageChunk that the sender will send.

Shall be at least 1 024 bytes if the sender intends to use an ECC SecurityPolicy.

Shall be at least 8 192 bytes otherwise.

MaxMessageSize UInt32 The maximum size for any response Message.

If MessageChunks have not been sent, the Server shall return an Error Message with
a Bad_ResponseTooLarge error if a response Message exceeds this value.

If MessageChunks have already been sent the Server shall abort the Message as
described in 6.7.3.

The Message size is calculated using the unencrypted Message body.

A value of zero indicates that the Client has no limit.

MaxChunkCount UInt32 The maximum number of chunks in any response Message.

The Server shall abort the Message with a Bad_ResponseTooLarge Error Message if
a response Message exceeds this value.

The mechanism for aborting Messages is described fully in 6.7.3.

A value of zero indicates that the Client has no limit.

EndpointUrl String The URL of the Endpoint which the Client wished to connect to.

The encoded value shall be less than 4 096 bytes.

Servers shall return a Bad_TcpEndpointUrlInvalid Error Message and close the
connection if the length exceeds 4 096 or if it does not recognize the resource
identified by the URL.

The EndpointUrl parameter is used to allow multiple Servers to share the same endpoint on a
machine. The process listening (also known as the proxy) on the endpoint would connect to the
Server identified by the EndpointUrl and would forward all Messages to the Server via this
socket. If one socket closes, then the proxy shall close the other socket.

1.05.00 63 OPC 10000-6: Mappings

If the Server does not have sufficient resources to allow the establishment of a new
SecureChannel it shall immediately return a Bad_TcpNotEnoughResources Error Message and
gracefully close the socket. Client should not overload Servers that return this error by
immediately trying to create a new SecureChannel.

7.1.2.4 Acknowledge Message

The Acknowledge Message has the additional fields shown in Table 60.

Table 60 – OPC UA Connection Protocol Acknowledge Message

Name Type Description

ProtocolVersion UInt32 A protocol version supported by the Server that is less than or equal to the protocol
version requested in the Hello Message.

If the Client accepts the protocol version it shall ensure that it sends Messages that
conform to this version.

The ProtocolVersion for this version of the standard is 0.

ReceiveBufferSize UInt32 The largest MessageChunk that the sender can receive.

This value shall not be larger than the SendBufferSize requested in the Hello Message.

Shall be at least 8 192 bytes if the SendBufferSize requested in the Hello Message is >=
8 192 bytes. Shall be at least 1 024 bytes otherwise.

SendBufferSize UInt32 The largest MessageChunk that the sender will send.

This value shall not be larger than the ReceiveBufferSize requested in the Hello
Message.

Shall be at least 8 192 bytes if the ReceiveBufferSize requested in the Hello Message is
>= 8 192 bytes. Shall be at least 1 024 bytes otherwise.

MaxMessageSize UInt32 The maximum size for any request Message.

If a request Message exceeds this value the Client shall report a
Bad_ResponseTooLarge error to the application. If MessageChunks have already been
sent the Client shall also abort the Message as described in 6.7.3.

The Message size is calculated using the unencrypted Message body.

A value of zero indicates that the Server has no limit.

MaxChunkCount UInt32 The maximum number of chunks in any request Message.

The Client shall abort the Message with a Bad_RequestTooLarge StatusCode if a
request Message exceeds this value.

The mechanism for aborting Messages is described fully in 6.7.3.

A value of zero indicates that the Server has no limit.

7.1.2.5 Error Message

The Error Message has the additional fields shown in Table 61.

Table 61 – OPC UA Connection Protocol Error Message

Name Type Description

Error UInt32 The numeric code for the error.

Possible values are listed in Table 63.

Reason String A more verbose description of the error.

This string shall not be more than 4 096 bytes.

A Client shall ignore strings that are longer than this.

The socket is always closed gracefully by the Client after it receives an Error Message.

7.1.2.6 ReverseHello Message

The ReverseHello Message has the additional fields shown in Table 62.

OPC 10000-6: Mappings 64 1.05.00

Table 62 – OPC UA Connection Protocol ReverseHello Message

Name Data Type Description

ServerUri String The ApplicationUri of the Server which sent the Message.

The encoded value shall be less than 4 096 bytes.

Client shall return a Bad_TcpEndpointUrlInvalid error and close the connection if the
length exceeds 4 096 or if it does not recognize the Server identified by the URI.

EndpointUrl String The URL of the Endpoint which the Client uses when establishing the SecureChannel.

This value shall be passed back to the Server in the Hello Message.

The encoded value shall be less than 4 096 bytes.

Clients shall return a Bad_TcpEndpointUrlInvalid error and close the connection if the
length exceeds 4 096 or if it does not recognize the resource identified by the URL.

This value is a unique identifier for the Server which the Client may use to look up
configuration information. It should be one of the URLs returned by the GetEndpoints
Service.

For connection-based protocols, such as TCP, the ReverseHello Message allows Servers
behind firewalls with no open ports to connect to a Client and request that the Client establish
a SecureChannel using the socket created by the Server.

For message-based protocols the ReverseHello Message allows Servers to announce their
presence to a Client. In this scenario, the EndpointUrl specifies the Server’s specific address
and any tokens required to access it.

7.1.3 Establishing a connection

Connections may be initiated by the Client or by the Server when they create a
TransportConnection and establish a communication with their peer. If the Client creates the
TransportConnection, the first Message sent shall be a Hello which specifies the buffer sizes
that the Client supports. The Server shall respond with an Acknowledge Message which
completes the buffer negotiation. The negotiated buffer size shall be reported to the
SecureChannel layer. The negotiated SendBufferSize specifies the size of the MessageChunks
to use for Messages sent over the connection.

If the Server creates the TransportConnection the first Message shall be a ReverseHello sent
to the Client. If the Client accepts the connection, it sends a Hello message back to the Server
which starts the buffer negotiation described for the Client initiated connection.

The Hello/Acknowledge Messages may only be sent once. If they are received again the
receiver shall report an error and close the TransportConnection. Applications accepting
incoming connections shall close any TransportConnection after a period of time if it does not
receive a Hello or ReverseHello Message. This period of time shall be configurable and have a
default value which does not exceed two minutes.

The Client sends the OpenSecureChannel request once it receives the Acknowledge back from
the Server. If the Server accepts the new channel it shall associate the TransportConnection
with the SecureChannelId. The Server uses this association to determine which
TransportConnection to use when it has to send a response to the Client. The Client does the
same when it receives the OpenSecureChannel response.

The sequence of Messages when establishing a Client initiated OPC UA Connection Protocol
connection is shown in Figure 16.

1.05.00 65 OPC 10000-6: Mappings

Hello

Open Secure Channel Request

Create Session

Client
Secure

Channel
Transport

Connection Server

Acknowledge

Open Secure Channel Response

Open Connection

Secure

Channel

Transport

Connection

Figure 16 – Client initiated OPC UA Connection Protocol connection

The sequence of Messages when establishing a Server initiated OPC UA Connection Protocol
connection is shown in Figure 17.

Open Connection

Hello

Open Secure Channel Request

Create Session

Acknowledge

Open Secure Channel Response

Reverse Hello

Client
Secure

Channel
Transport

Connection Server
Secure

Channel

Transport

Connection

Figure 17 – Server initiated OPC UA Connection Protocol connection

The Server application does not do any processing while the SecureChannel is negotiated;
however, the Server application shall to provide the Stack with the list of trusted Certificates.
The Stack shall provide notifications to the Server application whenever it receives an
OpenSecureChannel request. These notifications shall include the OpenSecureChannel or
Error response returned to the Client.

The Server needs to be configured and enabled by an administrator to connect to one or more
Clients. For each Client, the administrator shall provide an ApplicationUri and an EndpointUrl
for the Client. If the Client EndpointUrl is not known, the administrator may provide the
EndpointUrl for a GDS (see OPC 10000-12) which knows about the Client. The Server should
expect that it will take some time for a Client to respond to a ReverseHello. Once a Client closes
a SecureChannel or if the socket is closed without establishing a SecureChannel the Server
shall create a new socket and send a new ReverseHello message. When a SecureChannel is
established, the Server shall immediately create a new socket and sends a new ReverseHello
to ensure the Client is able to create another SecureChannel if it is needed. Administrators may
limit the number of simultaneous sockets that a Server will create.

7.1.4 Closing a connection

The Client closes the connection by sending a CloseSecureChannel request and closing the
socket gracefully. When the Server receives this Message, it shall release all resources
allocated for the channel. The body of the CloseSecureChannel request is empty. The Server
does not send a CloseSecureChannel response.

OPC 10000-6: Mappings 66 1.05.00

If security verification fails for the CloseSecureChannel Message, then the Server shall report
the error and close the socket.

The sequence of Messages when closing an OPC UA Connection Protocol connection is shown
in Figure 18.

Close Secure Channel Request

Close Socket

Client
Secure

Channel
Transport

Connection Server
Secure

Channel

Transport

Connection

Figure 18 – Closing a OPC UA Connection Protocol connection

The Server application does not do any processing when the SecureChannel is closed;
however, the Stack shall provide notifications to the Server application whenever a
CloseSecureChannel request is received or when the Stack cleans up an abandoned
SecureChannel.

7.1.5 Error handling

When a fatal error occurs, the Server shall send an Error Message to the Client and closes the
TransportConnection gracefully. When the Client receives an Error Message it reports the error
to the application and closes the TransportConnection gracefully. If a Client encounters a fatal
error, it shall report the error to the application and send a CloseSecureChannel Message. The
Server shall close the TransportConnection gracefully when it receives the
CloseSecureChannel Message

The possible OPC UA Connection Protocol errors are defined in Table 63.

1.05.00 67 OPC 10000-6: Mappings

Table 63 – OPC UA Connection Protocol error codes

Name Description

Bad_TcpServerTooBusy The Server cannot process the request because it is too busy.

It is up to the Server to determine when it needs to return this Message.

A Server can control the how frequently a Client reconnects by waiting to return
this error.

Bad_TcpMessageTypeInvalid The type of the Message specified in the header invalid.

Each Message starts with a 4-byte sequence of ASCII values that identifies the
Message type.

The Server returns this error if the Message type is not accepted.

Some of the Message types are defined by the SecureChannel layer.

Bad_TcpSecureChannelUnknown The SecureChannelId and/or TokenId are not currently in use.

This error is reported by the SecureChannel layer.

Bad_TcpMessageTooLarge The size of the MessageChunk specified in the header is too large.

The Server returns this error if the MessageChunk size exceeds its maximum
buffer size or the receive buffer size negotiated during the Hello/Acknowledge
exchange.

Bad_Timeout A timeout occurred while accessing a resource.

It is up to the Server to determine when a timeout occurs.

Bad_TcpNotEnoughResources There are not enough resources to process the request.

The Server returns this error when it runs out of memory or encounters similar
resource problems.

A Server can control the how frequently a Client reconnects by waiting to return
this error.

Bad_TcpInternalError An internal error occurred.

This should only be returned if an unexpected configuration or programming
error occurs.

Bad_TcpEndpointUrlInvalid The Server does not recognize the EndpointUrl specified.

Bad_SecurityChecksFailed The Message was rejected because it could not be verified.

Bad_RequestInterrupted The request could not be sent because of a network interruption.

Bad_RequestTimeout Timeout occurred while processing the request.

Bad_SecureChannelClosed The secure channel has been closed.

Bad_SecureChannelTokenUnknown The SecurityToken has expired or is not recognized.

Bad_CertificateUntrusted The sender Certificate is not trusted by the receiver.

Bad_CertificateTimeInvalid The sender Certificate has expired or is not yet valid.

Bad_CertificateIssuerTimeInvalid The issuer for the sender Certificate has expired or is not yet valid.

Bad_CertificateUseNotAllowed The sender’s Certificate may not be used for establishing a secure channel.

Bad_CertificateIssuerUseNotAllowed The issuer Certificate may not be used as a Certificate Authority.

Bad_CertificateRevocationUnknown Could not verify the revocation status of the sender’s Certificate.

Bad_CertificateIssuerRevocationUnknown Could not verify the revocation status of the issuer Certificate.

Bad_CertificateRevoked The sender Certificate has been revoked by the issuer.

Bad_IssuerCertificateRevoked The issuer Certificate has been revoked by its issuer.

Bad_SequenceNumberInvalid The sequence number on the message was not valid.

The numeric values for these error codes are defined in A.2.

NOTE: The ‘Tcp’ prefix for some of the error codes in Table 63 was chosen when TCP/IP was the only implementation
of the OPC UA Connection Protocol. These codes are used with any implementation of the OPC UA Connection
Protocol.

7.2 OPC UA TCP

TCP/IP is a ubiquitous protocol that provides full -duplex communication between two
applications. A socket is the TransportConnection in the TCP/IP implementation of the OPC UA
Connection Protocol.

The URL scheme for endpoints using OPC UA TCP is ‘opc.tcp’.

The TransportProfileUri shall be a URI for the TCP transport defined in OPC 10000-7.

7.3 SOAP/HTTP

Note: Deprecated in Version 1.03 because WS-SecureConversation has not been widely adopted by industry.

OPC 10000-6: Mappings 68 1.05.00

7.4 OPC UA HTTPS

7.4.1 Overview

HTTPS refers HTTP Messages exchanged over a SSL/TLS connection (see HTTPS). The
syntax of the HTTP Messages does not change and the only difference is a TLS connection is
created instead of a TCP/IP connection. This implies that profiles which use this transport can
also be used with HTTP when security is not a concern.

HTTPS is a protocol that provides transport security. This means all bytes are secured as they
are sent without considering the Message boundaries. Transport security can only work for
point to point communication and does not allow untrusted intermediaries or proxy servers to
handle traffic.

The SecurityPolicy shall be specified, however, it only affects the algorithms used for signing
the Nonces during the CreateSession/ActivateSession handshake. A SecurityPolicy of None
indicates that the Nonces do not need to be signed. The SecurityMode is set to Sign unless the
SecurityPolicy is None; in this case the SecurityMode shall be set to None. If a
UserIdentityToken is to be encrypted, it shall be explicitly specified in the UserTokenPolicy.

An HTTP Header called ‘OPCUA-SecurityPolicy’ is used by the Client to tell the Server what
SecurityPolicy it is using if there are multiple choices available. The value of the header is the
URI for the SecurityPolicy. If the Client omits the header, then the Server shall assume a
SecurityPolicy of None.

All HTTPS communications via a URL shall be treated as a single SecureChannel that is shared
by multiple Clients. Stacks shall provide a unique identifier for the SecureChannel which allows
applications correlate a request with a SecureChannel. This means that Sessions can only be
considered secure if the AuthenticationToken (see OPC 10000-4) is long (>20 bytes) and
HTTPS encryption is enabled.

The cryptography algorithms used by HTTPS have no relationship to the EndpointDescription
SecurityPolicy and are determined by the policies set for HTTPS and are outside the scope of
OPC UA.

Figure 19 illustrates a few scenarios where the HTTPS transport could be used.

Web
Server

UA Client UA Server

Direct Connection

Web
Browser

Proxy
Server

UA Server

HTTPS

UA TCPHTTPS

Browser Based Client (e.g. Silverlight) via Web Server Proxy

UA ServerUA Client

Normal Client via HTTPS Proxy Server

HTTPSHTTPS

Figure 19 – Scenarios for the HTTPS Transport

In some scenarios, HTTPS communication will rely on an intermediary which is not trusted by
the applications. If this is the case, then the HTTPS transport cannot be used to ensure security
and the applications will have to establish a secure tunnel like a VPN before attempting any
OPC UA related communication.

Applications which support the HTTPS transport shall support HTTP and SSL/TLS.

1.05.00 69 OPC 10000-6: Mappings

Some HTTPS implementations require that all Servers have a Certificate with a Common Name
(CN) that matches the DNS name of the Server machine. This means that a Server with multiple
DNS names will need multiple HTTPS certificates. If multiple Servers are on the same machine
they may share HTTPS certificates. This means that ApplicationCertificates are not the same
as HTTPS Certificates. Applications which use the HTTPS transport and require application
authentication shall check application Certificates during the CreateSession/ActivateSession
handshake.

HTTPS Certificates can be automatically generated; however, this will cause problems for
Clients operating inside a restricted environment such as a web browser. Therefore, HTTPS
certificates should be issued by an authority which is accepted by all web browsers which need
to access the Server. The set of Certificate authorities accepted by the web browsers is
determined by the organization that manages the Client machines. Client applications that are
not running inside a web may use the trust list that is used for application Certificates.

HTTPS connections have an unpredictable lifetime. Therefore, Servers must rely on the
AuthenticationToken passed in the RequestHeader to determine the identity of the Client. This
means the AuthenticationToken shall be a randomly generated value with at least 32 bytes of
data and HTTPS with signing and encryption shall always be used.

HTTPS allows Clients to have certificates; however, they are not required by the HTTPS
transport. A Server shall allow Clients to connect without providing a Certificate during
negotiation of the HTTPS connection.

HTTP 1.1 supports Message chunking where the Content-Length header in the request
response is set to “chunked” and each chunk is prefixed by its size in by tes. All applications
that support the HTTPS transport shall support HTTP chunking.

The URL scheme for endpoints using the HTTPS transport is ‘opc.https’. Note that ‘https’ is the
generic URL scheme for the underlying transport. The opc prefix specifies that the endpoint
accepts OPC UA messages as defined in this document.

7.4.2 Session-less Services

Session-less Services (see OPC 10000-4) may be invoked via HTTPS POST. The HTTP
Authorization header in the Request shall have a Bearer token which is an Access Token
provided by the Authorization Service. The Content-type of the HTTP request shall specify the
encoding of the body. If the Content-type is application/opcua+uabinary then the body is
encoded using the OPC UA Binary encoding (see 7.4.4). If the Content-type is
application/opcua+uajson then body is encoded using the reversible form of the JSON encoding
(see 7.4.5).

Note that the Content-type for OPC UA Binary encoded bodies for Session-less Services is
different from the Content-type for Session-based Services specified in 7.4.4.

7.4.3 XML Encoding

This TransportProtocol implements the OPC UA Services using a SOAP request-response
message pattern over an HTTPS connection.

The body of the HTTP Messages shall be a SOAP 1.2 Message (see SOAP Part 1). WS-
Addressing headers are optional.

The OPC UA XML Encoding specifies a way to represent an OPC UA Message as an XML
element. This element is added to the SOAP Message as the only child of the SOAP body
element. If an error occurs in the Server while parsing the request body, the Server may return
a SOAP fault or it may return an OPC UA error response.

The SOAP Action associated with an XML encoded request Message always has the form:

http://opcfoundation.org/UA/2008/02/Services.wsdl/<service name>

Where <service name> is the name of the OPC UA Service being invoked.

The SOAP Action associated with an XML encoded response Message always has the form:

OPC 10000-6: Mappings 70 1.05.00

http://opcfoundation.org/UA/2008/02/Services.wsdl/<service name>Response

All requests shall be HTTP POST requests. The Content-type shall be "application/soap+xml"
and the charset and action parameters shall be specified. The charset parameter shall be "utf -
8" and the action parameter shall be the URI for the SOAP action.

An example HTTP request header is:

POST /UA/SampleServer HTTP/1.1

Content-Type: application/soap+xml; charset="utf-8";

 action="http://opcfoundation.org/UA/2008/02/Services.wsdl/Read"

Content-Length: nnnn

The action parameter appears on the same line as the Content -Type declaration.

An example request Message:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Body>

 <ReadRequest xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">

 …

 </ReadRequest>

 </s:Body>

</s:Envelope>

An example HTTP response header is:

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset="utf-8";

 action="http://opcfoundation.org/UA/2008/02/Services.wsdl/ReadResponse"

Content-Length: nnnn

The action parameter appears on the same line as the Content -Type declaration.

An example response Message:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Body>

 <ReadResponse xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">

 …

 </ReadResponse>

 </s:Body>

</s:Envelope>

7.4.4 OPC UA Binary Encoding

This TransportProtocol implements the OPC UA Services using an OPC UA Binary Encoded
Messages exchanged over an HTTPS connection.

Applications which support the HTTPS Profile shall support HTTP 1.1.

The body of the HTTP Messages shall be OPC UA Binary encoded blob. The Content-type shall
be "application/octet-stream".

An example HTTP request header is:

POST /UA/SampleServer HTTP/1.1

Content-Type: application/octet-stream;

Content-Length: nnnn

An example HTTP response header is:

HTTP/1.1 200 OK

Content-Type: application/octet-stream;

Content-Length: nnnn

The Message body is the request or response structure encoded as an ExtensionObject in OPC
UA Binary. The Authorization header is only used for Session-less Service calls (see 7.4.2).

If the OPC UA Binary Encoding is used for a Session-less Service the HTTP request header is:

1.05.00 71 OPC 10000-6: Mappings

POST /UA/SampleServer HTTP/1.1

Authorization : Bearer <base64-encoded-token-data>

Content-Type: application/opcua+uabinary;

Content-Length: nnnn

7.4.5 JSON Encoding

This TransportProtocol implements the OPC UA Services using JSON encoded Messages
exchanged over an HTTPS connection.

Applications which support the HTTPS Profile shall support HTTP 1.1.

The body of the HTTP Messages shall be OPC UA JSON Encoded. The Content-type shall be
"application/opcua+uajson".

An example HTTP request header is:

POST /UA/SampleServer HTTP/1.1

Authorization : Bearer <base64-encoded-token-data>

Content-Type: application/opcua+uajson;

Content-Length: nnnn

An example HTTP response header is:

HTTP/1.1 200 OK

Content-Type: application/opcua+uajson;

Content-Length: nnnn

7.5 WebSockets

7.5.1 Overview

This TransportProtocol sends OPC UA Connection Protocol messages over WebSockets.

WebSockets is a bi-directional protocol for communication via a web server which is commonly
used by browser based applications to allow the web server to asynchronously send information
to the client. WebSockets uses the same default port as HTTP or HTTPS and initiates
communication with an HTTP request. This makes it very useful in environments where firewalls
limit traffic to the ports used by HTTP or HTTPS.

WebSockets use HTTP, however, in practice a WebSocket connection is only initiated with a
HTTP GET request and the web server provides an HTTP response. After that exchange , all
traffic uses the binary framing protocol defined by RFC 6455.

A Server that supports the WebSockets transport shall publish one or more Endpoints with the
scheme ‘opc.wss’. The TransportProfileUri shall be one of the URIs for WebSockets transports
defined in OPC 10000-7. The TransportProfileUri specifies the encoding and security protocol
used to construct the OPC UA messages sent via the WebSocket.

The SecurityMode and SecurityPolicyUri of the Endpoint control the security applied to the
messages sent via the WebSocket. This allows the messages to be secure even if the
WebSocket connection is established via untrusted HTTPS proxies.

Figure 20 summarizes the complete process for establishing communication over a WebSocket.

OPC 10000-6: Mappings 72 1.05.00

ClientClient ServerServer

HTTP Upgrade Request

HTTP Upgrade Response

TLS Upgrade Request

TLS Upgrade Response

Create Socket

OPC UA Connection Protocol Hello

OPC UA Connection Protocol Acknowledge

OPC UA Secure Conversation Open Secure Channel Request

OPC UA Secure Conversation Open Secure Channel Reponse

RFC 5246

RFC 6455

OPC UA
Inside

RFC 6455
Frames

Figure 20 – Setting up Communication over a WebSocket

Figure 20 assumes the opcua+uacp protocol mapping (see 7.5.2).

7.5.2 Protocol Mapping

The WebSocket protocol allows clients to request that servers use specific sub-protocols with
the “Sec-WebSocket-Protocol” header in the WebSocket handshake defined in RFC 6455. The
protocols defined by this document are shown in Table 64.

Table 64 – WebSocket Protocols Mappings

Protocol Description

opcua+uacp Each WebSocket frame is a MessageChunk as defined in 6.7.2. After the WebSocket is created,
the handshake described in 7.1.3 is used to negotiate the maximum size of the MessageChunk.
The maximum size for a buffer needed to receive a WebSocket frame is the maximum length of a
MessageChunk plus the maximum size for the WebSocket frame header.

When using this protocol the payload in each frame is binary (OpCode 0x2 in RFC 6455).

opcua+uajson Each WebSocket frame is a Message encoded using the JSON encoding described in 5.4.9.
There is no mechanism to negotiate the maximum frame size. If the receiver encounters a frame
that exceeds its internal limits it shall close the WebSocket connection and provide a 1009 status
code as described in RFC 6455.

When using this protocol the payload in each frame is text (OpCode 0x1 in RFC 6455).

Each WebSocket protocol mapping defined has a TransportProfileUri defined in OPC 10000-7.

The Client shall request a protocol. If the Server does not support the protocol requested by
the Client, the Client shall close the connection and report an error.

7.5.3 Security

WebSockets requires that the Server have a Certificate, however, the Client may have a
Certificate. The Server Certificate should have the domain name as the common name
component of the subject name however, Clients that are able to override the Certificate
validation procedure can choose to accept Certificates with a domain mismatch.

When using the WebSockets transport from a web browser the browser environment may
impose additional restrictions. For example, the web browser may require the Server have a
valid TLS Certificate that is issued by CA that is installed in the Trust List for the web browser.
To support these Clients, a Server may use a TLS Certificate that does not conform to the
requirements for an ApplicationInstance Certificate. In these cases, the TLS Certificate is only
used for TLS negotiation and the Server shall use a valid ApplicationInstance Certificate for

1.05.00 73 OPC 10000-6: Mappings

other interactions that require one. Servers shall allow adminstrators to specify a Certificate for
use with TLS that is different from the ApplicationInstance Certificate.

Clients running in a browser environment specify the ‘Origin’ HTTP header during the
WebSocket upgrade handshake. Servers should return the ‘Access-Control-Allow-Origin’ to
indicate that the connection is allowed.

Any Client that does not run in a web browser environment and supports the WebSockets
transport shall accept OPC UA Application Instance Certificate as the TLS Certificate provided
the correct domain is specified in the subjectAltName field.

A Client may use its Application Instance Certificate as the TLS Certificate and Servers shall
accept those Certificates if they are valid according to the OPC UA Certificate validation rules.

Some operating systems will not give the application any control over the set of algorithms that
TLS will negotiate. In some cases, this set will be based on the needs of web browsers and will
not be appropriate for the needs of an OPC UA Application. If this is a concern, applications
should use OPC UA Secure Conversation in addition to TLS.

Clients that support the WebSocket transport shall support explicit configuration of an HTTPS
proxy. When using an HTTPS proxy the Client shall first send an HTTP CONNECT message
(see HTTP) before starting the WebSocket protocol handshake. Note that explicit HTTPS
proxies allow for man-in-the-middle attacks. This threat may be mitigated by using OPC UA
Secure Conversation in addition to TLS.

7.6 Well known addresses

The Local Discovery Server (LDS) is an OPC UA Server that implements the Discovery Service
Set defined in OPC 10000-4. If an LDS is installed on a machine it shall use one or more of the
well-known addresses defined in Table 65.

Table 65 – Well known addresses for Local Discovery Servers

Transport Mapping URL Notes

OPC UA TCP opc.tcp://localhost:4840/UADiscovery

OPC UA WebSockets opc.wss://localhost:443/UADiscovery

OPC UA HTTPS opc.https://localhost:443/UADiscovery

OPC UA applications that make use of the LDS shall allow administrators to change the well-
known addresses used within a system.

The Endpoint used by Servers to register with the LDS shall be the base address with the path
“/registration” appended to it (e.g. http://localhost/UADiscovery/registration). OPC UA Servers
shall allow administrators to configure the address to use for registration.

Each OPC UA Server application implements the Discovery Service Set. If the OPC UA Server
requires a different address for this Endpoint, it shall create the address by appending the path
“/discovery” to its base address.

8 Normative Contracts

8.1 OPC Binary Schema

The normative contract for the OPC UA Binary Encoded Messages is an OPC Binary Schema.
This file defines the structure of all types and Messages. The syntax for an OPC Binary Type
Schema is described in OPC 10000-3. This schema captures normative names for types and
their fields as well the order the fields appear when encoded. The data type of each field is also
captured.

8.2 XML Schema and WSDL

The normative contract for the OPC UA XML encoded Messages is an XML Schema. This file
defines the structure of all types and Messages. This schema captures normative names for

http://localhost/UADiscovery/registration

OPC 10000-6: Mappings 74 1.05.00

types and their fields as well the order the fields appear when encoded. The data type of each
field is also captured.

The normative contract for Message sent via the SOAP/HTTP TransportProtocol is a WSDL that
includes XML Schema for the OPC UA XML encoded Messages. It also defines the port types
for OPC UA Servers and DiscoveryServers.

Links to the WSDL and XML Schema files can be found in Annex D.

8.3 Information Model Schema

Annex F defines the schema to be used for Information Models.

8.4 Formal definition of UA Information Model

Annex B defines the OPC UA NodeSet

8.5 Constants

Annex A defines constants for Attribute Ids, Status Codes and numeric NodeIds

8.6 DataType encoding

Annex C defines the binary encoding for all DataTypes and Messages

8.7 Security configuration

Annex E defines a schema for security settings

1.05.00 75 OPC 10000-6: Mappings

Annex A
(normative)

Constants

A.1 Attribute Ids

Table A.1 shows Identifiers assigned to Attributes

Table A.1 – Identifiers assigned to Attributes

Attribute Identifier

NodeId 1

NodeClass 2

BrowseName 3

DisplayName 4

Description 5

WriteMask 6

UserWriteMask 7

IsAbstract 8

Symmetric 9

InverseName 10

ContainsNoLoops 11

EventNotifier 12

Value 13

DataType 14

ValueRank 15

ArrayDimensions 16

AccessLevel 17

UserAccessLevel 18

MinimumSamplingInterval 19

Historizing 20

Executable 21

UserExecutable 22

DataTypeDefinition 23

RolePermissions 24

UserRolePermissions 25

AccessRestrictions 26

AccessLevelEx 27

A.2 Status Codes

Clause A.2 defines the numeric identifiers for all of the StatusCodes defined by the OPC UA
Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Code>, <Description>

Where the SymbolName is the literal name for the error code that appears in the specification
and the Code is the hexadecimal value for the StatusCode (see OPC 10000-4). The severity
associated with a particular code is specified by the prefix (Good, Uncertain or Bad).

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/StatusCode.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv

A.3 Numeric Node Ids

Clause A.3 defines the numeric identifiers for all of the numeric NodeIds defined by the OPC
UA Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

http://www.opcfoundation.org/UA/schemas/1.05/StatusCode.csv
http://www.opcfoundation.org/UA/schemas/StatusCode.csv

OPC 10000-6: Mappings 76 1.05.00

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an
Instance Node that appears in the specification and the Identifier is numeric value for the
NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the
instance Node to BrowseName for the containing instance or type. A ‘_’ character is used to
separate each BrowseName in the path. For example, OPC 10000-5 defines the ServerType
ObjectType Node which has the NamespaceArray Property. The SymbolName for the
NamespaceArray InstanceDeclaration within the ServerType declaration is:
ServerType_NamespaceArray. OPC 10000-5 also defines a standard instance of the
ServerType ObjectType with the BrowseName ‘Server’. The BrowseName for the
NamespaceArray Property of the standard Server Object is: Server_NamespaceArray.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/NodeIds.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/NodeIds.csv

http://opcfoundation.org/UA/
http://www.opcfoundation.org/UA/schemas/1.05/NodeIds.csv
http://www.opcfoundation.org/UA/schemas/NodeIds.csv

1.05.00 77 OPC 10000-6: Mappings

Annex B
(normative)

OPC UA NodeSet

The OPC UA NodeSet includes the complete Information Model defined in this document. It
follows the XML Information Model schema syntax defined in Annex F and can thus be read
and processed by a computer program.

The complete Information Model Schema for this version of this document (including any
amendments and errata) can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.NodeSet2.Services.xml

NOTE The latest Information Model schema that is compatible with this version of this document can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.NodeSet2.Services.xml

The complete Information Model Schema includes many types which are only used in Service
Requests and Responses and should not be used by Servers to populate their Address Space.

The subset of the Information Model Schema for this version of this document (including any
amendments and errata) that is used for creating Address Spaces can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of th is document can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.NodeSet2.xml

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.NodeSet2.Services.xml
http://www.opcfoundation.org/UA/schemas/Opc.Ua.NodeSet2.Services.xml
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/Opc.Ua.NodeSet2.xml

OPC 10000-6: Mappings 78 1.05.00

Annex C
(normative)

Type declarations for the OPC UA native Mapping

Note: Deprecated in Version 1.05.

1.05.00 79 OPC 10000-6: Mappings

Annex D
(normative)

WSDL for the XML Mapping

D.1 XML Schema

Clause D.1 defines the XML Schema for all DataTypes and Messages defined in the OPC UA
namespace

The XML Schema released with this version of th is document can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Types.xsd

NOTE The latest file that is compatible with this version of this document can be found here:

http://www.opcfoundation.org/UA/2008/02/Types.xsd

D.2 WDSL Port Types

Clause D.2 defines the WSDL Operations and Port Types for all Services defined in OPC 10000-
4.

The WSDL released with this version of this document can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Services.wsdl

NOTE The latest file that is compatible with this version of th is document can be found here:

http://opcfoundation.org/UA/2008/02/Services.wsdl

This WSDL imports the XML Schema defined in D.1.

D.3 WSDL Bindings

Clause D.3 defines the WSDL Bindings for all Services defined in OPC 10000-4.

The WSDL released with this version of this document can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Endpoints.wsdl

NOTE The latest file that is compatible with this version of this document can be found here:

http://opcfoundation.org/UA/2008/02/Endpoints.wsdl

This WSDL imports the WSDL defined in D.2.

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Types.xsd
http://www.opcfoundation.org/UA/2008/02/Types.xsd
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Services.wsdl
http://opcfoundation.org/UA/2008/02/Services.wsdl
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Endpoints.wsdl
http://opcfoundation.org/UA/2008/02/Endpoints.wsdl

OPC 10000-6: Mappings 80 1.05.00

Annex E
(normative)

Security settings management

E.1 Overview

All OPC UA applications shall support security; however, this requirement means that
Administrators need to configure the security settings for the OPC UA application. Clause E.1
describes an XML Schema which can be used to read and update the security settings for an
OPC UA application. All OPC UA applications may support configuration by importing/exporting
documents that conform to the schema (called the SecuredApplication schema) defined in
Clause E.1.

The XML Schema released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/SecuredApplication.xsd

NOTE The latest file that is compatible with this version of this specification can be found here:

http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd

The SecuredApplication schema can be supported in two ways:

1) Providing an XML configuration file that can be edited directly;

2) Providing an import/export utility that can be run as required;

If the application supports direct editing of an XML configuration file, then that file shall have
exactly one element with the local name ‘SecuredApplication’ and URI equal to the
SecuredApplication schema URI. A third party configuration utility shall be able to parse the
XML file, read and update the ‘SecuredApplication’ element. The administrator shall ensure that
only authorized administrators can update this file. The following is an example of a
configuration that can be directly edited:

<s1:SampleConfiguration xmlns:s1="http://acme.com/UA/Sample/Configuration.xsd">

 <ApplicationName>ACME UA Server</ApplicationName>

 <ApplicationUri>urn:myfactory.com:Machine54:ACME UA Server</ApplicationUri>

 <!-- any number of application specific elements -->

 <SecuredApplication xmlns="http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd">

 <ApplicationName>ACME UA Server</ApplicationName>

 <ApplicationUri>urn:myfactory.com:Machine54:ACME UA Server</ApplicationUri>

 <ApplicationType>Server_0</ApplicationType>

 <ApplicationCertificate>

 <StoreType>Windows</StoreType>

 <StorePath>LocalMachine\My</StorePath>

 <SubjectName>ACME UA Server</SubjectName>

 </ApplicationCertificate>

 </SecuredApplication>

 <!-- any number of application specific elements -->

 <DisableHiResClock>true</DisableHiResClock>

</s1:SampleConfiguration>

If an application provides an import/export utility, then the import/export file shall be a document
that conforms to the SecuredApplication schema. The administrator shall ensure that only
authorized administrators can run the utility. The following is an example of a file used by an
import/export utility:

<?xml version="1.0" encoding="utf-8" ?>

<SecuredApplication xmlns="http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd">

 <ApplicationName>ACME UA Server</ApplicationName>

 <ApplicationUri>urn:myfactory.com:Machine54:ACME UA Server</ApplicationUri>

 <ApplicationType>Server_0</ApplicationType>

 <ConfigurationMode>urn:acme.com:ACME Configuration Tool</ConfigurationMode>

http://www.opcfoundation.org/UA/schemas/1.05/SecuredApplication.xsd
http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd

1.05.00 81 OPC 10000-6: Mappings

 <LastExportTime>2011-03-04T13:34:12Z</LastExportTime>

 <ExecutableFile>%ProgramFiles%\ACME\Bin\ACME UA Server.exe</ExecutableFile>

 <ApplicationCertificate>

 <StoreType>Windows</StoreType>

 <StorePath>LocalMachine\My</StorePath>

 <SubjectName>ACME UA Server</SubjectName>

 </ApplicationCertificate>

 <TrustedCertificateStore>

 <StoreType>Windows</StoreType>

 <StorePath>LocalMachine\UA applications</StorePath>

 <!-- Offline CRL Checks by Default -->

 <ValidationOptions>16</ValidationOptions>

 </TrustedCertificateStore>

 <TrustedCertificates>

 <Certificates>

 <CertificateIdentifier>

 <SubjectName>CN=MyFactory CA</SubjectName>

 <!-- Online CRL Check for this CA -->

 <ValidationOptions>32</ValidationOptions>

 </CertificateIdentifier>

 </Certificates>

 </TrustedCertificates>

 <RejectedCertificatesStore>

 <StoreType>Directory</StoreType>

 <StorePath>%CommonApplicationData%\OPC Foundation\RejectedCertificates</StorePath>

 </RejectedCertificatesStore>

</SecuredApplication>

E.2 SecuredApplication

The SecuredApplication element specifies the security settings for an application. The elements
contained in a SecuredApplication are described in Table E.1.

When an instance of a SecuredApplication is imported into an application the application
updates its configuration based on the information contained within it. If unrecoverable errors
occur during import an application shall not make any changes to its configuration and report
the reason for the error.

The mechanism used to import or export the configuration depends on the application.
Applications shall ensure that only authorized users are able to access this feature.

The SecuredApplication element may reference X.509 v3 Certificates which are contained in
physical stores. Each application needs to decide whether it uses shared physical stores which
the administrator can control directly by changing the location or private stores that can only be
accessed via the import/export utility. If the application uses private stores, then the contents
of these private stores shall be copied to the export file during export . If the import file
references shared physical stores, then the import/export utility shall copy the contents of those
stores to the private stores.

The import/export utility shall not export private keys. If the administrator wishes to assign a
new public-private key to the application the administrator shall place the private in a store
where it can be accessed by the import/export utility. The import/export utility is then
responsible for ensuring it is securely moved to a location where the application can access it.

OPC 10000-6: Mappings 82 1.05.00

Table E.1 – SecuredApplication

1.05.00 83 OPC 10000-6: Mappings

Element Type Description

ApplicationName String A human readable name for the application.

Applications shall allow this value to be read or changed.

ApplicationUri String A globally unique identifier for the instance of the application.

Applications shall allow this value to be read or changed.

ApplicationType ApplicationType The type of application.

May be one of

• Server_0;

• Client_1;

• ClientAndServer_2;

• DiscoveryServer_3;

Application shall provide this value.

Applications do not allow this value to be changed.

ProductName String A name for the product.

Application shall provide this value.

Applications do not allow this value to be changed.

ConfigurationMode String Indicates how the application should be configured.

An empty or missing value indicates that the configuration file can
be edited directly. The location of the configuration file shall be
provided in this case.

Any other value is a URI that identifies the configuration utility. The
vendor documentation shall explain how to use this utility.

Application shall provide this value.

Applications do not allow this value to be changed.

LastExportTime UtcTime When the configuration was exported by the import/export utility.

It may be omitted if applications allow direct editing of the security
configuration.

ConfigurationFile String The full path to a configuration file used by the application.

applications do not provide this value if an import/export utility is
used.

Applications do not allow this value to be changed.

Permissions set on this file shall control who has rights to change
the configuration of the application.

ExecutableFile String The full path to an executable file for the application.

Applications may not provide this value.

Applications do not allow this value to be changed.

Permissions set on this file shall control who has rights to launch the
application.

ApplicationCertificate CertificateIdentifier The identifier for the Application Instance Certificate.

Applications shall allow this value to be read or changed.

This identifier may reference a Certificate store that contains the
private key. If the private key is not accessible to outside
applications this value shall contain the X.509 v3 Certificate for the
application.

If the configuration utility assigns a new private key this value shall
reference the store where the private key is placed. The
import/export utility may delete this private key if it moves it to a
secure location accessible to the application.

Applications shall allow Administrators to enter the password
required to access the private key during the import operation. The
exact mechanism depends on the application.

Applications shall report an error if the ApplicationCertificate is not
valid.

OPC 10000-6: Mappings 84 1.05.00

Element Type Description

TrustedCertificateStore CertificateStore
Identifier

The location of the CertificateStore containing the Certificates of
applications or Certificate Authorities (CAs) which can be trusted.

applications shall allow this value to be read or changed.

This value shall be a reference to a physical store which can be
managed separately from the application. applications that support
shared physical stores shall check this store for changes whenever
they validate a Certificate.

The Administrator is responsible for verifying the signature on all
Certificates placed in this store. This means the application may
trust Certificates in this store even if they cannot be verified back to
a trusted root.

Administrators shall place any CA certificates used to verify the
signature in the IssuerStore or the IssuerList. This will allow
applications to properly verify the signatures.

The application shall check the revocation status of the Certificates
in this store if the Certificate was issued by a CA. The application
shall look for the offline Certificate Revocation List (CRL) for a CA in
the store where it found the CA Certificate.

The location of an online CRL for CA shall be specified with the
CRLDistributionPoints (OID= 2.5.29.31) X.509 v3 Certificate
extension.

The ValidationOptions parameter is used to specify which
revocation list should be used for CAs in this store.

TrustedCertificates CertificateList A list of Certificates for applications for CAs that can be trusted.

Applications shall allow this value to be read or changed.

The value is an explicit list of Certificates which is private to the
application. It is used when the application does not support shared
physical Certificate stores or when Administrators need to specify
ValidationOptions for individual Certificates.

If the TrustedCertificateStore and the TrustedCertificates
parameters are both specified, then the application shall use the
TrustedCertificateStore for checking trust relationships. The
TrustedCertificates parameter is only used to lookup
ValidationOptions for individual Certificates. It may also be used to
provide CRLs for CA certificates.

If the TrustedCertificateStore is not specified, then
TrustedCertificates parameter shall contain the complete X.509 v3
Certificate for each entry.

IssuerStore CertificateStore
Identifier

The location of the CertificateStore containing CA Certificates which
are not trusted but are needed to check signatures on Certificates.

Applications shall allow this value to be read or changed.

This value shall be a reference to a physical store which can be
managed separately from the application. Applications that support
shared physical stores shall check this store for changes whenever
they validate a Certificate.

This store may also contain CRLs for the CAs.

IssuerCertificates CertificateList A list of Certificates for CAs which are not trusted but are needed to
check signatures on Certificates.

Applications shall allow this value to be read or changed.

The value is an explicit list of Certificates which is private to the
application. It is used when the application does not support shared
physical Certificate stores or when Administrators need to specify
ValidationOptions for individual Certificates.

If the IssuerStore and the IssuerCertificates parameters are both
specified, then the application shall use the IssuerStore for checking
signatures. The IssuerCertificates parameter is only used to lookup
ValidationOptions for individual Certificates. It may also be used to
provide CRLs for CA certificates.

RejectedCertificatesStore CertificateStore
Identifier

The location of the shared CertificateStore containing the
Certificates of applications which were rejected.

Applications shall allow this value to be read or changed.

Applications shall add the DER encoded Certificate into this store
whenever it rejects a Certificate because it is untrusted or if it failed
one of the validation rules which can be suppressed (see Clause
E.6).

Applications shall not add a Certificate to this store if it was rejected
for a reason that cannot be suppressed (e.g. Certificate revoked).

1.05.00 85 OPC 10000-6: Mappings

Element Type Description

BaseAddresses String [] A list of URLs for the Endpoints supported by a Server.

Applications shall allow these values to be read or changed.

If a Server does not support the scheme for a URL it shall ignore it.

This list can have multiple entries for the same URL scheme. The
first entry for a scheme is the base URL. The rest are assumed to
be DNS aliases that point to the first URL.

It is the responsibility of the Administrator to configure the network
to route these aliases correctly.

SecurityProfileUris SecurityProfile []

A list of SecurityPolicyUris supported by a Server. The URIs are
defined as security Profiles in OPC 10000-7.

Applications shall allow these values to be read or changed.

Applications shall allow the Enabled flag to be changed for each
SecurityProfile that it supports.

If the Enabled flag is false, the Server shall not allow connections
using the SecurityProfile.

If a Server does not support a SecurityProfile it shall ignore it.

Extensions xs:any [] A list of vendor defined Extensions attached to the security settings.

Applications shall ignore Extensions that they do not recognize.

Applications that update a file containing Extensions shall not delete
or modify extensions that they do not recognize.

E.3 CertificateIdentifier

The CertificateIdentifier element describes an X.509 v3 Certificate. The Certificate can be
provided explicitly within the element or the element can specify the location of the
CertificateStore that contains the Certificate. The elements contained in a CertificateIdentifier
are described in Table E.2.

Table E.2 – CertificateIdentifier

Element Type Description

StoreType String The type of CertificateStore that contains the Certificate.

Predefined values are "Windows" and "Directory".

If not specified, the RawData element shall be specified.

StorePath String The path to the CertificateStore.

The syntax depends on the StoreType.

If not specified, the RawData element shall be specified.

SubjectName String The SubjectName for the Certificate.

The Common Name (CN) component of the SubjectName.

The SubjectName represented as a string that complies with Section 3 of
RFC 4514.

Values that do not contain '=' characters are presumed to be the Common
Name component.

Thumbprint String The CertificateDigest for the Certificate formatted as a hexadecimal string.

Case is not significant.

RawData ByteString The DER encoded Certificate.

The CertificateIdentifier is invalid if the information in the DER Certificate
conflicts with the information specified in other fields. Import utilities shall
reject configurations containing invalid Certificates.

This field shall not be specified if the StoreType and StorePath are specified.

ValidationOptions Int32 The options to use when validating the Certificate. The possible options are
described in E.6.

OfflineRevocationList ByteString A Certificate Revocation List (CRL) associated with an Issuer Certificate.

The format of a CRL is defined by RFC 5280.

This field is only meaningful for Issuer Certificates.

OnlineRevocationList String A URL for an Online Revocation List associated with an Issuer Certificate.

This field is only meaningful for Issuer Certificates.

A "Windows" StoreType specifies a Windows Certificate store.

OPC 10000-6: Mappings 86 1.05.00

The syntax of the StorePath has the form:

 [\\HostName\]StoreLocation[\(ServiceName | UserSid)]\StoreName

where:

 HostName – the name of the machine where the store resides.

 StoreLocation – one of LocalMachine, CurrentUser, User or Service

 ServiceName – the name of a Windows Service.

 UserSid – the SID for a Windows user account.

 StoreName – the name of the store (e.g. My, Root, Trust, CA, etc.).

Examples of Windows StorePaths are:

 \\MYPC\LocalMachine\My

 \CurrentUser\Trust

 \\MYPC\Service\My UA Server\UA applications

 \User\S-1-5-25\Root

A "Directory" StoreType specifies a directory on disk which contains files with DER encoded
Certificates. The name of the file is the CertificateDigest for the Certificate. Only public keys
may be placed in a "Directory" Store. The StorePath is an absolute file system path with a
syntax that depends on the operating system.

If a "Directory" store contains a ‘certs’ subdirectory, then it is presumed to be a structured
store with the subdirectories described in Table E.3.

Table E.3 – Structured directory store

Subdirectory Description

certs Contains the DER encoded X.509 v3 Certificates.

The files shall have a .der file extension.

private Contains the private keys.

The format of the file may be application specific.

PEM encoded files should have a .pem extension.

PKCS#12 encoded files should have a .pfx extension.

The root file name shall be the same as the corresponding public key file in the certs
directory.

crl Contains the DER encoded CRL for any CA Certificates found in the certs or ca directories.

The files shall have a .crl file extension.

Each Certificate is uniquely identified by its Thumbprint. The SubjectName or the distinguished
SubjectName may be used to identify a Certificate to a human; however, they are not unique.
The SubjectName may be specified in conjunction with the Thumbprint or the RawData. If there
is an inconsistency between the information provided, then the CertificateIdentifier is invalid.
Invalid CertificateIdentifiers are handled differently depending on where they are used.

It is recommended that the SubjectName always be specified.

A Certificate revocation list (CRL) contains a list of certificates issued by a CA that are no longer
trusted. These lists should be checked before an application can trust a Certificate issued by a
trusted CA. The format of a CRL is defined by RFC 5280.

Offline CRLs are placed in a local Certificate store with the Issuer Certificate. Online CRLs may
exist but the protocol depends on the system. An online CRL is identified by a URL.

E.4 CertificateStoreIdentifier

The CertificateStoreIdentifier element describes a physical store containing X.509 v3
Certificates. The elements contained in a CertificateStoreIdentifier are described in Table E.4.

1.05.00 87 OPC 10000-6: Mappings

Table E.4 – CertificateStoreIdentifier

Element Type Description

StoreType String The type of CertificateStore that contains the Certificate.

Predefined values are "Windows" and "Directory".

StorePath String The path to the CertificateStore.

The syntax depends on the StoreType.

See E.3 for a description of the syntax for different StoreTypes.

ValidationOptions CertificateValidationOptions The options to use when validating the Certificates contained in
the store.

The possible options are described in E.6.

All Certificates are placed in a physical store which can be protected from unauthorized access.
The implementation of a store can vary and will depend on the application, development tool or
operating system. A Certificate store may be shared by many applications on the same machine.

Each Certificate store is identified by a StoreType and a StorePath. The same path on different
machines identifies a different store.

E.5 CertificateList

The CertificateList element is a list of Certificates. The elements contained in a CertificateList
are described in Table E.5.

Table E.5 – CertificateList

Element Type Description

Certificates CertificateIdentifier [] The list of Certificates contained in the Trust List

ValidationOptions CertificateValidation
Options

The options to use when validating the Certificates contained in the store.

These options only apply to Certificates that have ValidationOptions with
the UseDefaultOptions bit set. The possible options are described in E.6.

E.6 CertificateValidationOptions

The CertificateValidationOptions control the process used to validate a Certificate. Any
Certificate can have validation options associated. If none are specified, the ValidationOptions
for the store or list containing the Certificate are used. The possible options are shown in Table
E.6. Note that suppressing any validation step can create security risks which are discussed in
more detail in OPC 10000-2. An audit log entry shall be created if any error is ignored because
a validation option is suppressed.

OPC 10000-6: Mappings 88 1.05.00

Table E.6 – CertificateValidationOptions

Field Bit Description

SuppressCertificateExpired 0 Ignore errors related to the validity time of the Certificate or its issuers.

SuppressHostNameInvalid 1 Ignore mismatches between the host name or ApplicationUri.

SuppressRevocationStatusUnknown 2 Ignore errors if the issuer’s revocation list cannot be found.

CheckRevocationStatusOnline 3 Check the revocation status online.

If set, the validator will look for the authorityInformationAccess
extension to find an OCSP (RFC 6960) endpoint which can be used to
determine if the Certificate has been revoked.

If the OCSP endpoint is not reachable then the validator will look for
offline CRLs if the CheckRevocationStatusOffine bit is set. Otherwise,
validation fails.

This option is specified for Issuer Certificates and used when
validating Certificates issued by that Issuer.

CheckRevocationStatusOffline 4 Check the revocation status offline.

If set the validator will look a CRL in the Certificate Store where the CA
Certificate was found.

Validation fails if a CRL is not found.

This option is specified for Issuer Certificates and used when
validating Certificates issued by that Issuer.

UseDefaultOptions 5 If set the CertificateValidationOptions from the CertificateList shall be
used.

If a Certificate does not belong to a CertificateList then the default is 0
for all bits.

1.05.00 89 OPC 10000-6: Mappings

Annex F
(normative)

Information Model XML Schema

F.1 Overview

Information Model developers define standard AddressSpaces which are implemented by many
Servers. There is a need for a standard syntax that Information Model developers can use to
formally define their models in a form that can be read by a computer program. Annex F defines
an XML-based schema for this purpose.

The XML Schema released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/UANodeSet.xsd

NOTE The latest file that is compatible with this version of the standards can be found here:

http://opcfoundation.org/UA/2011/03/UANodeSet.xsd

The schema document is the formal definition. The description in Annex F only discusses details
of the semantics that cannot be captured in the schema document. Types which are self -
describing are not discussed.

This schema can also be used to serialize (i.e. import or export) an arbitrary set of Nodes in the
Server Address Space. This serialized form can be used to save Server state for use by the
Server later or to exchange with other applications (e.g. to support offline configuration by a
Client).

This schema only defines a way to represent the structure of Nodes. It is not intended to
represent the numerous semantic rules which are defined in other parts of this the OPC UA
specification. Consumers of data serialized with this schema need to handle inputs that conform
to the schema, however, do not conform to the OPC UA specification because of one or more
semantic rule violations.

There are cases where an Information Model defines Nodes such as standard Properties which
can be attached to many different Nodes. These Nodes are represented in the UANodeSet as
Nodes which are not a target of any reference that would make them visible in an
AddressSpace.

The tables defining the DataTypes in the specification have field names starting with a
lowercase letter. The first letter shall be converted to upper case when the field names are
formally defined in a UANodeSet.

Every UANodeSet that defines DataTypes has associated schema files that define how to
serialize the DataTypes using the UA Binary Encoding (5.2) and the UA XML Encoding (5.3).
The XML schema file may be referenced by the UANodeSet if it includes Variable Values (F.8)
for one or more of the DataTypes defined in the UANodeSet. The namespace URI assigned to
the XML schema is set by the authority that created it. The URI for the XML schema for OPC
UA DataTypes is http://opcfoundation.org/UA/2008/02/Types.xsd.

F.2 UANodeSet

The UANodeSet is the root of the document. It defines a set of Nodes, their Attributes and
References. References to Nodes outside of the document are allowed.

The structure of a UANodeSet is shown in Table F.1.

http://www.opcfoundation.org/UA/schemas/1.05/UANodeSet.xsd
http://opcfoundation.org/UA/2011/03/UANodeSet.xsd
http://opcfoundation.org/UA/2008/02/Types.xsd

OPC 10000-6: Mappings 90 1.05.00

Table F.1 – UANodeSet

Element Type Description

NamespaceUris UriTable A list of NamespaceUris used in the UANodeSet.

ServerUris UriTable A list of ServerUris used in the UANodeSet.

Models ModelTableEntry [] A list of Models that are defined in the UANodeSet along with any
dependencies these models have.

 ModelUri String The URI for the model.

This URI should be one of the entries in the NamespaceUris table.

 XmlSchemaUri String The URI for the XML schema used to serialize values of the
DataTypes defined by the Model.

The field may be omitted if no values of DataTypes defined in the
Model are contained in the UANodeSet.

The UA XML Encoding (5.3) rules implicitly define the XML schema
for any DataType described by a DataTypeDefinition (F.12).

 Version String The version of the model defined in the UANodeSet.

This is a human readable string and not intended for programmatic
comparisons.

 PublicationDate DateTime When the model was published.

This value is used for comparisons if the Model is defined in
multiple UANodeSet files.

 RolePermissions RolePermission [] The list of default RolePermissions for all Nodes in the model.

 AccessRestrictions AccessRestriction The default AccessRestrictions that apply to all Nodes in the model.

 RequiredModels ModelTableEntry [] A list of dependencies for the model.

If the model requires a minimum version the PublicationDate shall
be specified. Tools which attempt to resolve these dependencies
may accept any PublicationDate after this date.

Aliases AliasTable A list of Aliases used in the UANodeSet.

Extensions xs:any [] An element containing a list of vendor defined extensions to the
UANodeSet.

LastModified DateTime The last time a document was modified.

<choice> UAObject

UAVariable

UAMethod

UAView

UAObjectType

UAVariableType

UADataType

UAReferenceType

The Nodes in the UANodeSet.

The NamespaceUris is a list of URIs for namespaces used in the UANodeSet. The
NamespaceIndexes used in NodeId, ExpandedNodeIds and QualifiedNames identify an
element in this list. The first index is always 1 (0 is always the OPC UA namespace).

The ServerUris is a list of URIs for Servers referenced in the UANodeSet. The ServerIndex in
ExpandedNodeIds identifies an element in this list. The first index is always 1 (0 is always the
current Server).

The Models element specifies the Models which are formally defined by the UANodeSet. It
includes version information as well as information about any dependencies which the model
may have. If a Model is defined in the UANodeSet then the file shall also define an instance of
the NamespaceMetadataType ObjectType. See OPC 10000-5 for more information. Following
the references in the RequiredModels field shall not result in circular dependencies.

When NodeSets are normative documents for a specification, they can include Nodes, such as
unattached Properties, that exist only to formally define elements of the specification. For
example, the base NodeSet for this specification includes an unattached Property Node called
“NodeVersion” which can be added to any Node. The Node in the NodeSet defines the
BrowseName, DataType and ValueRank.

1.05.00 91 OPC 10000-6: Mappings

The Aliases are a list of string substitutions for NodeIds. Aliases can be used to make the file
more readable by allowing a string like ‘HasProperty’ in place of a numeric NodeId (i=46).
Aliases are optional.

The Extensions are free form XML data that can be used to attach vendor defined data to the
UANodeSet.

F.3 UANode

A UANode is an abstract base type for all Nodes. It defines the base set of Attributes and the
References. There are subtypes for each NodeClass defined in OPC 10000-4. Each of these
subtypes defines XML elements and attributes for the OPC UA Attributes specific to the
NodeClass. The fields in the UANode type are defined in Table F.2.

Table F.2 – UANode

Element Type Description

NodeId NodeId A NodeId serialized as a String.

The syntax of the serialized String is defined in 5.3.1.10.

BrowseName QualifiedName A QualifiedName serialized as a String with the form:

<namespace index>:<name>

Where the NamespaceIndex refers to the NamespaceUris table.

SymbolicName String A symbolic name for the Node that can be used as a class/field name in
auto generated code. It should only be specified if the BrowseName cannot
be used for this purpose.

This field does not appear in the AddressSpace and is intended for use by
design tools. Only letters, digits or the underscore (‘_’) are permitted and the
first character shall be a letter.

WriteMask WriteMask The value of the WriteMask Attribute.

UserWriteMask WriteMask Not used. Kept in schema for backward compatibility.

AccessRestrictions AccessRestriction The AccessRestrictions that apply to the Node.

DisplayName LocalizedText [] A list of DisplayNames for the Node in different locales.

There shall be only one entry per locale.

Description LocalizedText [] The list of the Descriptions for the Node in different locales.

There shall be only one entry per locale.

Category String [] A list of identifiers used to group related UANodes together for use by tools
that create/edit UANodeSet files.

Documentation String Additional non-localized documentation for use by tools that create/edit
UANodeSet files.

ReleaseStatus ReleaseStatus An enumeration specifying the release status for the UANode.

Valid values are:

 Released: The type is released. Changes require errata;

 Draft: The type is draft and subject to change;

 Deprecated: The type should not be used;

This field is for use on UATypes and static UAInstances. The field shall not
be specified for UAInstances that are InstanceDeclarations.

References Reference [] The list of References for the Node.

RolePermissions RolePermission [] The list of RolePermissions for the Node.

Extensions xs:any [] An element containing a list of vendor defined extensions to the UANode.

The Extensions are free form XML data that can be used to attach vendor defined data to the
UANode.

Array values are denoted with [], however, in the XML Schema arrays are mapped to a complex
type starting with the ‘ListOf’ prefix.

A UANodeSet is expected to contain many UANodes which reference each other. Tools that
create UANodeSets should not add Reference elements for both directions in order to minimize
the size of the XML file. Tools that read the UANodeSets shall automatically add reverse
references unless reverse references are not appropriate given the ReferenceType semantics.
HasTypeDefinition and HasModellingRule are two examples where it is not appropriate to add
reverse references.

OPC 10000-6: Mappings 92 1.05.00

Note that a UANodeSet represents a collection of Nodes in an address space. This implies that
any instances shall include the fully inherited InstanceDeclarationHierarchy as defined in OPC
10000-3.

F.4 Reference

The Reference type specifies a Reference for a Node. The Reference can be forward or inverse.
Only one direction for each Reference needs to be in a UANodeSet. The other direction shall
be added automatically during any import operation. The fields in the Reference type are
defined in Table F.3.

Table F.3 – Reference

Element Type Description

NodeId NodeId The NodeId of the target of the Reference serialized as a String.

The syntax of the serialized String is defined in 5.3.1.11 (ExpandedNodeId).

This value can be replaced by an Alias.

ReferenceType NodeId The NodeId of the ReferenceType serialized as a String.

The syntax of the serialized String is defined in 5.3.1.10 (NodeId).

This value can be replaced by an Alias.

IsForward Boolean If TRUE, the Reference is a forward reference.

F.5 RolePermission

The RolePermission type specifies the Permissions granted to Role for a Node. The fields in
the RolePermission type are defined in Table F.4.

Table F.4 – RolePermission

Element Type Description

NodeId NodeId The NodeId of the Role which has the Permissions.

Permissions UInt32 A bitmask specifying the Permissions granted to the Role.

The bitmask values the Permissions bits defined in OPC 10000-3.

F.6 UAType

A UAType is a subtype of the UANode defined in F.3. It is the base type for the types defined
in Table F.5.

Table F.5 – UANodeSet Type Nodes

Subtype Description

UAObjectType Defines an ObjectType Node as described in OPC 10000-3.

UAVariableType Defines a VariableType Node as described in OPC 10000-3.

UADataType Defines a DataType Node as described in OPC 10000-3.

UAReferenceType Defines a ReferenceType Node as described in OPC 10000-3.

F.7 UAInstance

A UAInstance is a subtype of the UANode defined in F.3. It is the base type for the types defined
in Table F.6. The fields in the UAInstance type are defined in Table F.7. Subtypes of UAInstance
which have fields in addition to those defined in OPC 10000-3 are described in detail below.

1.05.00 93 OPC 10000-6: Mappings

Table F.6 – UANodeSet Instance Nodes

Subtype Description

UAObject Defines an Object Node as described in OPC 10000-3.

UAVariable Defines a Variable Node as described in OPC 10000-3.

UAMethod Defines a Method Node as described in OPC 10000-3.

UAView Defines a View Node as described in OPC 10000-3.

Table F.7 – UAInstance

Element Type Description

All of the fields from the UANode type described in F.3.

ParentNodeId NodeId The NodeId of the Node that is the parent of the Node within the information
model. This field is used to indicate that a tight coupling exists between the
Node and its parent (e.g. when the parent is deleted the child is deleted as
well). This information does not appear in the AddressSpace and is intended
for use by design tools.

F.8 UAVariable

A UAVariable is a subtype of the UAInstance defined in. It represents a Variable Node. The
fields in the UAVariable type are defined in Table F.8.

Table F.8 – UAVariable

Element Type Description

All of the fields from the UAInstance type described in F.7.

Value Variant The Value of the Node encoding using the UA XML wire encoding
defined in 5.3.

Translation TranslationType [] A list of translations for the Value if the Value is a LocalizedText or
a structure containing LocalizedTexts.

This field may be omitted.

If the Value is an array the number of elements in this array shall
match the number of elements in the Value. Extra elements are
ignored.

If the Value is a scalar, then there is one element in this array.

If the Value is a structure, then each element contains translations
for one or more fields identified by a name. See the
TranslationType for more information.

DataType NodeId The data type of the value.

ValueRank ValueRank The value rank.

If not specified, the default value is -1 (Scalar).

ArrayDimensions ArrayDimensions The number of dimensions in an array value.

AccessLevel AccessLevel The access level.

This value is a UInt32 that includes all of the bits exposed by the
AccessLevelEx. Servers which do not support the additional bits
in AccessLevelEx should ignore them.

UserAccessLevel AccessLevel Not used. Kept in schema for backward compatibility.

MinimumSamplingInterval Duration The minimum sampling interval.

Historizing Boolean Whether history is being archived.

F.9 UAMethod

A UAMethod is a subtype of the UAInstance defined in F.7. It represents a Method Node. The
fields in the UAMethod type are defined in Table F.9.

OPC 10000-6: Mappings 94 1.05.00

Table F.9 – UAMethod

Element Type Description

All of the fields from the UAInstance type described in F.7.

MethodDeclarationId NodeId May be specified for Method Nodes that are a target of a
HasComponent reference from a single Object Node. It is the
NodeId of the UAMethod with the same BrowseName contained in
the TypeDefinition associated with the Object Node.

If the TypeDefinition overrides a Method inherited from a base
ObjectType then this attribute shall reference the Method Node in
the subtype.

Executable Boolean Not used. Kept in schema for backward compatibility.

UserExecutable Boolean Not used. Kept in schema for backward compatibility.

ArgumentDescription UAMethodArgument [] A list of Descriptions for the Method Node Arguments.

Each entry has a Name which uniquely identifies the Argument that
the Descriptions apply to. There shall only be one entry per Name.

Each entry also has a list of Descriptions for the Argument in
different locales. There shall be only one entry per locale per
Argument.

F.10 TranslationType

A TranslationType contains additional translations for LocalizedTexts used in the Value of a
Variable. The fields in the TranslationType are defined in Table F.10. If multiple Arguments
existed there would be a Translation element for each Argument.

The type can have two forms depending on whether the Value is a LocalizedText or a Structure
containing LocalizedTexts. If it is a LocalizedText is contains a simple list of translations. If it is
a Structure, it contains a list of fields which each contain a list of translations. Each field is
identified by a Name which is unique within the structure. The mapping between the Name and
the Structure requires an understanding of the Structure encoding. If the Structure field is
encoded as a LocalizedText with UA XML, then the name is the unqualified path to the XML
element where names in the path are separated by ‘ /’. For example, a structure with a nested
structure containing a LocalizedText could have a path like “Server/ApplicationName”.

The following example illustrates how translations for the Description field in the Argument
Structure are represented in XML:

<Value>

 <ListOfExtensionObject xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">

 <ExtensionObject>

 <TypeId>

 <Identifier>i=297</Identifier>

 </TypeId>

 <Body>

 <Argument>

 <Name>ConfigData</Name>

 <DataType>

 <Identifier>i=15</Identifier>

 </DataType>

 <ValueRank>-1</ValueRank>

 <ArrayDimensions />

 <Description>

 <Text>[English Translation for Description]</Text>

 </Description>

 </Argument>

 </Body>

 </ExtensionObject>

 </ListOfExtensionObject>

</Value>

<Translation>

 <Field Name="Description">

 <Text Locale="de-DE">[German Translation for Description]</Text>

 <Text Locale="fr-FR">[French Translation for Description]</Text>

 </Field>

</Translation>

1.05.00 95 OPC 10000-6: Mappings

If multiple Arguments existed there would be a Translation element for each Argument.

Table F.10 – TranslationType

Element Type Description

Text LocalizedText [] An array of translations for the Value.

It only appears if the Value is a LocalizedText or an array of
LocalizedText.

Field StructureTranslationType [] An array of structure fields which have translations.

It only appears if the Value is a Structure or an array of Structures.

 Name String The name of the field.

This uniquely identifies the field within the structure.

The exact mapping depends on the encoding of the structure.

 Text LocalizedText [] An array of translations for the structure field.

F.11 UADataType

A UADataType is a subtype of the UAType defined in Table F.5. It defines a DataType Node.
The fields in the UADataType type are defined in Table F.11.

Table F.11 – UADataType

Element Type Description

All of the fields from the UANode type described in F.3.

Definition DataTypeDefinition An abstract definition of the data type that can be used by design tools to create
code that can serialize the data type in XML and/or Binary forms. This is only
used to define subtypes of the Structure, Enumeration or UInteger DataTypes.
UInteger DataTypes only have this field if they represent an OptionSet.

F.12 DataTypeDefinition

A DataTypeDefinition defines an abstract representation of a UADataType that can be used by
design tools to automatically create serialization code. The fields in the DataTypeDefinition type
are defined in Table F.12.

This field may not be present for DataTypes that have no fields. Code generators may choose
to create a base class with no fields if the programming environment supports the concept.

OPC 10000-6: Mappings 96 1.05.00

Table F.12 – DataTypeDefinition

Element Type Description

Name QualifiedName A unique name for the data type.

This name should be the same as the BrowseName for the containing
DataType.

SymbolicName String A symbolic name for the data type that can be used as a class/structure name
in autogenerated code. It should only be specified if the Name cannot be used
for this purpose.

Only letters, digits or the underscore (‘_’) are permitted and the first character
shall be a letter.

This field is only specified for nested DataTypeDefinitions.

The SymbolicName of the DataType Node is used otherwise.

BaseType QualifiedName Not used. Kept in schema for backward compatibility.

IsUnion Boolean This flag indicates if the data type represents a union.

Only one of the Fields defined for the data type is encoded into a value.

This field is optional. The default value is false.

If this value is true, the first field is the switch value.

IsOptionSet Boolean This flag indicates that the data type defines the OptionSetValues Property.

This field is optional. The default value is false.

Fields DataTypeField [] The list of fields that make up the data type.

This definition assumes the structure has a sequential layout.

For enumerations, the fields are simply a list of values.

This list does not include fields inherited from a base DataType.

When Applications ingest a UANodeSet they need to follow the HasSubtype
References between DataType Nodes to collect all of the fields needed to fill in
the DataTypeDefinition Attribute.

F.13 DataTypeField

A DataTypeField defines an abstract representation of a field within a UADataType that can be
used by design tools to automatically create serialization code. The fields in the DataTypeField
type are defined in Table F.13.

1.05.00 97 OPC 10000-6: Mappings

Table F.13 – DataTypeField

Element Type Description

Name String A name for the field that is unique within the DataTypeDefinition.

SymbolicName String A symbolic name for the field that can be used in autogenerated
code.

It should only be specified if the Name cannot be used for this
purpose.

Only letters, digits or the underscore (‘_’) are permitted.

DisplayName LocalizedText [] A display name for the field in multiple locales.

DataType NodeId The NodeId of the DataType for the field.

This NodeId can refer to another Node with its own
DataTypeDefinition.

This field is not specified for Enumeration or OptionSet
DataTypes.

ValueRank Int32 The value rank for the field.

It shall be Scalar (-1) or a fixed rank Array (>=1).

This field is not specified for Enumeration or OptionSet
DataTypes.

ArrayDimensions String The maximum length of an array.

This field is a comma separated list of unsigned integer values.
The list has a number of elements equal to the ValueRank.

The value is 0 if the maximum is not known for a dimension.

This field is not specified if the ValueRank <= 0.

This field is not specified for Enumeration or OptionSet
DataTypes.

MaxStringLength UInt32 The maximum length of a String or ByteString value.

If not known the value is 0.

The value is 0 if the DataType is not String or ByteString.

If the ValueRank > 0 the maximum applies to each element in the
array.

This field is not specified for Enumeration or OptionSet
DataTypes.

Description LocalizedText [] A description for the field in multiple locales.

Value Int32 The value associated with the field.

This field is only specified for Enumeration or OptionSet
DataTypes.

IsOptional Boolean The field indicates if a data type field in a structure is optional.

The default value is false.

This field is not specified for Enumeration, Union or OptionSet
DataTypes.

AllowSubTypes Boolean This field is ignored if the DataType is BaseDataType, Structure
or if the DataType has a fixed encoding such as a String or Int32.

This field only applies to fields with a DataType which could have
subtypes that have different encodings.

This field shall be TRUE for all abstract DataTypes where the
possible subtypes have different encodings.

When TRUE, the field’s value is allowed to contain subtypes of
the DataType. All subtypes of Structure are encoded as an
ExtensionObject (see 5.1.6). All DataTypes that are not subtypes
of Structure are encoded as a Variant (see 5.1.7).

The default value is false.

This field is not specified for Enumeration or OptionSet
DataTypes.

F.14 Variant

The Variant type specifies the value for a Variable or VariableType Node. This type is the same
as the type defined in 5.3.1.17. As a result, the functions used to serialize Variants during
Service calls can be used to serialize Variant in this file syntax.

OPC 10000-6: Mappings 98 1.05.00

Variants can contain NodeIds, ExpandedNodeIds and QualifiedNames which must be modified
so the NamespaceIndexes and ServerIndexes reference the NamespaceUri and ServerUri
tables in the UANodeSet.

Variants can also contain ExtensionObjects which contain an EncodingId and a Structure with
fields which with any DataType including NodeIds, ExpandedNodeIds or QualifiedNames. The
NamespaceIndexes and ServerIndexes in these fields shall also reference the tables in the
UANodeSet.

F.15 Example

An example of the UANodeSet can be found below.

This example defines the Nodes for an InformationModel with the URI of
“http://sample.com/Instances”. This example references Nodes defined in the base OPC UA
InformationModel and an InformationModel with the URI “http://sample.com/Types”.

The XML namespaces declared at the top include the URIs for the Namespaces referenced in
the document because the document includes Complex Data. Documents without Complex Data
would not have these declarations.

<UANodeSet

xmlns:s1="http://sample.com/Instances"

xmlns:s0="http://sample.com/Types"

xmlns:uax="http://opcfoundation.org/UA/2008/02/Types.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://opcfoundation.org/UA/2011/03/UANodeSet.xsd">

The NamespaceUris table includes all Namespaces referenced in the document except for the
base OPC UA InformationModel. A NamespaceIndex of 1 refers to the URI
“http://sample.com/Instances”.

 <NamespaceUris>

 <Uri>http://sample.com/Instances</Uri>

 <Uri>http://sample.com/Types</Uri>

 </NamespaceUris>

The Aliases table is provided to enhance readability. There are no rules for what is included. A
useful guideline would include standard ReferenceTypes and DataTypes if they are referenced
in the document. An Alias may be used for any NodeId value in the document except for NodeIds
that appear in Values of Variables or VariableTypes.

 <Aliases>

 <Alias Alias="HasComponent">i=47</Alias>

 <Alias Alias="HasProperty">i=46</Alias>

 <Alias Alias="HasSubtype">i=45</Alias>

 <Alias Alias="HasTypeDefinition">i=40</Alias>

 </Aliases>

The BicycleType is a DataType Node that inherits from a DataType defined in another
InformationModel (ns=2;i=314). It is assumed that any application importing this file will already
know about the referenced InformationModel. A Server could map the references onto another
OPC UA Server by adding a ServerIndex to TargetNode NodeIds. The structure of the DataType
is defined by the Definition element. This information can be used by code generators to
automatically create serializers for the DataType.

<UADataType NodeId="ns=1;i=365" BrowseName="1:BicycleType">

 <DisplayName>BicycleType</DisplayName>

 <References>

 <Reference ReferenceType="HasSubtype" IsForward="false">ns=2;i=314</Reference>

 </References>

 <Definition Name="BicycleType">

 <Field Name="NoOfGears" DataType="UInt32" />

1.05.00 99 OPC 10000-6: Mappings

 <Field Name="ManufacturerName" DataType="String" />

 </Definition>

</UADataType>

This Node is an instance of an Object TypeDefinition Node defined in another InformationModel
(ns=2;i=341). It has a single Property which is declared later in the document.

<UAObject NodeId="ns=1;i=375" BrowseName="1:DriverOfTheMonth" ParentNodeId="ns=1;i=281">

 <DisplayName>DriverOfTheMonth</DisplayName>

 <References>

 <Reference ReferenceType="HasProperty">ns=1;i=376</Reference>

 <Reference ReferenceType="HasTypeDefinition">ns=2;i=341</Reference>

 <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=281</Reference>

 </References>

</UAObject>

This Node is an instance of a Variable TypeDefinition Node defined in base OPC UA
InformationModel (i=68). The DataType is the base type for the BicycleType DataType. The
AccessLevels declare the Variable as Readable and Writeable. The ParentNodeId indicates
that this Node is tightly coupled with the Parent (DriverOfTheMonth) and will be deleted if the
Parent is deleted.

<UAVariable NodeId="ns=1;i=376" BrowseName="2:PrimaryVehicle"

 ParentNodeId="ns=1;i=375" DataType="ns=2;i=314" AccessLevel="3">

 <DisplayName>PrimaryVehicle</DisplayName>

 <References>

 <Reference ReferenceType="HasTypeDefinition">i=68</Reference>

 <Reference ReferenceType="HasProperty" IsForward="false">ns=1;i=375</Reference>

 </References>

This Value is an instance of a BicycleType DataType. It is wrapped in an ExtensionObject which
declares that the value is serialized using the Default XML DataTypeEncoding for the DataType.
The Value could be serialized using the Default Binary DataTypeEncoding but that would result
in a document that cannot be edited by hand. No matter which DataTypeEncoding is used, the
NamespaceIndex used in the ManufactureName field refers to the NamespaceUris table in this
document. The application is responsible for changing whatever value it needs to be when the
document is loaded by an application.

 <Value>

 <ExtensionObject xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">

 <TypeId>

 <Identifier>ns=1;i=366</Identifier>

 </TypeId>

 <Body>

 <s1:BicycleType>

 <s0:Make>Trek</s0:Make>

 <s0:Model>Compact</s0:Model>

 <s1:NoOfGears>10</s1:NoOfGears>

 <s1:ManufactureName>

 <uax:NamespaceIndex>1</uax:NamespaceIndex>

 <uax:Name>Hello</uax:Name>

 </s1:ManufactureName>

 </s1:BicycleType>

 </Body>

 </ExtensionObject>

 </Value>

 </UAVariable>

These are the DataTypeEncoding Nodes for the BicycleType DataType.

 <UAObject NodeId="ns=1;i=366" BrowseName="Default XML">

 <DisplayName>Default XML</DisplayName>

 <References>

 <Reference ReferenceType="HasEncoding" IsForward="false">ns=1;i=365</Reference>

 <Reference ReferenceType="HasTypeDefinition">i=76</Reference>

 </References>

 </UAObject>

 <UAObject NodeId="ns=1;i=370" BrowseName="Default Binary">

 <DisplayName>Default Binary</DisplayName>

 <References>

 <Reference ReferenceType="HasEncoding" IsForward="false">ns=1;i=365</Reference>

OPC 10000-6: Mappings 100 1.05.00

 <Reference ReferenceType="HasTypeDefinition">i=76</Reference>

 </References>

 </UAObject>

F.16 UANodeSetChanges

The UANodeSetChanges is the root of a document that contains a set of changes to an
AddressSpace. It is expected that a single file will contain either a UANodeSet or a
UANodeSetChanges element at the root. It provides a list of Nodes/References to add and/or
a list Nodes/References to delete. The UANodeSetChangesStatus structure defined in F.22 is
produced when a UANodeSetChanges document is applied to an AddressSpace.

The elements of the type are defined in Table F.14.

Table F.14 – UANodeSetChanges

Element Type Description

NamespaceUris UriTable Same as described in Table F.1.

ServerUris UriTable Same as described in Table F.1.

Models ModelTableEntry [] Same as described in Table F.1.

Aliases AliasTable Same as described in Table F.1.

Extensions xs:any [] Same as described in Table F.1.

LastModified DateTime Same as described in Table F.1.

NodesToAdd NodesToAdd A list of new Nodes to add to the AddressSpace.

ReferencesToAdd ReferencesToChange A list of new References to add to the AddressSpace.

NodesToDelete NodesToDelete A list of Nodes to delete from the AddressSpace.

ReferencesToDelete ReferencesToChange A list of References to delete from the AddressSpace.

The Models element specifies the version of one or more Models which the UANodeSetChanges
file will create when it is applied to an existing Address Space. The UANodeSetChanges cannot
be applied if the current version of the Model in the Address Space is higher. The
RequiredModels sub-element (see Table F.1) specifies the versions Models which must already
exist before the UANodeSetChanges file can be applied. When checking dependencies, the
version of the Model in the existing Address Space must exactly match the required version.

If a UANodeSetChanges file modifies types and there are existing instances of the types in the
AddressSpace, then the Server shall automatically modify the instances to conform to the new
type or generate an error.

A UANodeSetChanges file is processed as a single operation. This allows mandatory Nodes or
References to be replaced by specifying a Node/Reference to delete and a Node/Reference to
add.

F.17 NodesToAdd

The NodesToAdd type specifies a list of Nodes to add to an AddressSpace. The structure of
these Nodes is defined by the UANodeSet type in Table F.1.

The elements of the type are defined in Table F.15.

1.05.00 101 OPC 10000-6: Mappings

Table F.15 – NodesToAdd

Element Type Description

<choice> UAObject

UAVariable

UAMethod

UAView

UAObjectType

UAVariableType

UADataType

UAReferenceType

The Nodes to add to the AddressSpace.

When adding Nodes, References can be specified as part of the Node definition or as a separate
ReferencesToAdd.

Note that References to Nodes that could exist are always allowed. In other words, a Node is
never rejected simply because it has a reference to an unknown Node.

Reverse References are added automatically when deemed practical by the processor.

F.18 ReferencesToChange

The ReferencesToChange type specifies a list of References to add to or remove from an
AddressSpace.

The elements of the type are defined in Table F.16.

Table F.16 – ReferencesToChange

Element Type Description

Reference ReferenceToChange A Reference to add to the AddressSpace.

F.19 ReferenceToChange

The ReferenceToChange type specifies a single Reference to add to or remove from an
AddressSpace.

The elements of the type are defined in Table F.17.

Table F.17 – ReferencesToChange

Element Type Description

Source NodeId The identifier for the source Node of the Reference.

ReferenceType NodeId The identifier for the type of the Reference.

IsForward Boolean TRUE if the Reference is a forward reference.

Target NodeId The identifier for the target Node of the Reference.

References to Nodes that could exist are always allowed. In other words, a Reference is never
rejected simply because the target is unknown Node.

The source of the Reference must exist in the AddressSpace or in UANodeSetChanges
document being processed.

Reverse References are added when deemed practical by the processor.

F.20 NodesToDelete

The NodesToDelete type specifies a list of Nodes to remove from an AddressSpace.

The elements of the type are defined in Table F.18.

OPC 10000-6: Mappings 102 1.05.00

Table F.18 – NodesToDelete

Element Type Description

Node NodeToDelete A Node to delete from the AddressSpace.

F.21 NodeToDelete

The NodeToDelete type specifies a Node to remove from an AddressSpace.

The elements of the type are defined in Table F.19.

Table F.19 – ReferencesToChange

Element Type Description

Node NodeId The identifier for the Node to delete.

DeleteReverseReferences Boolean If TRUE, then References to the Node are deleted as well.

F.22 UANodeSetChangesStatus

The UANodeSetChangesStatus is the root of a document that is produced when a
UANodeSetChanges document is processed.

The elements of the type are defined in Table F.20.

Table F.20 – UANodeSetChangesStatus

Element Type Description

NamespaceUris UriTable Same as described in Table F.1.

ServerUris UriTable Same as described in Table F.1.

Aliases AliasTable Same as described in Table F.1.

Extensions xs:any [] Same as described in Table F.1.

Version String Same as described in Table F.1.

LastModified DateTime Same as described in Table F.1.

TransactionId String A globally unique identifier from the original UANodeSetChanges document.

NodesToAdd NodeSetStatusList A list of results for the NodesToAdd specified in the original document.

The list is empty if all elements were processed successfully.

ReferencesToAdd NodeSetStatusList A list of results for the ReferencesToAdd specified in the original document.

The list is empty if all elements were processed successfully.

NodesToDelete NodeSetStatusList A list of results for the NodesToDelete specified in the original document.

The list is empty if all elements were processed successfully.

ReferencesToDelete NodeSetStatusList A list of results for the ReferencesToDelete specified in the original document.

The list is empty if all elements were processed successfully.

F.23 NodeSetStatusList

The NodeSetStatusList type specifies a list of results produced when applying a
UANodeSetChanges document to an AddressSpace.

If no errors occurred this list is empty.

If one or more errors occur, then this list contains one element for each operation specified in
the original document.

The elements of the type are defined in Table F.21.

1.05.00 103 OPC 10000-6: Mappings

Table F.21 – NodeSetStatusList

Element Type Description

Result NodeSetStatus The result of a single operation.

F.24 NodeSetStatus

The NodeSetStatus type specifies a single result produced when applying an operation
specified in a UANodeSetChanges document to an AddressSpace.

The elements of the type are defined in Table F.22.

Table F.22 – NodeSetStatus

Element Type Description

Code StatusCode The result of the operation.

The possible StatusCodes are defined in OPC 10000-4.

Details String A string providing information that is not conveyed by the StatusCode.

This is not a human readable string for the StatusCode.

	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Overview
	5 Data encoding
	5.1 General
	5.1.1 Overview
	5.1.2 Built-in Types
	5.1.3 Guid
	5.1.4 DateTime
	5.1.5 ByteString
	5.1.6 ExtensionObject
	5.1.7 Variant
	5.1.8 Decimal
	5.1.9 Null, Empty and Zero-Length Arrays

	5.2 OPC UA Binary
	5.2.1 General
	5.2.2 Built-in Types
	5.2.2.1 Boolean
	5.2.2.2 Integer
	5.2.2.3 Floating Point
	5.2.2.4 String
	5.2.2.5 DateTime
	5.2.2.6 Guid
	5.2.2.7 ByteString
	5.2.2.8 XmlElement
	5.2.2.9 NodeId
	5.2.2.10 ExpandedNodeId
	5.2.2.11 StatusCode
	5.2.2.12 DiagnosticInfo
	5.2.2.13 QualifiedName
	5.2.2.14 LocalizedText
	5.2.2.15 ExtensionObject
	5.2.2.16 Variant
	5.2.2.17 DataValue

	5.2.3 Decimal
	5.2.4 Enumerations
	5.2.5 Arrays
	5.2.6 Structures
	5.2.7 Structures with optional fields
	5.2.8 Unions
	5.2.9 Messages

	5.3 OPC UA XML
	5.3.1 Built-in Types
	5.3.1.1 General
	5.3.1.2 Boolean
	5.3.1.3 Integer
	5.3.1.4 Floating Point
	5.3.1.5 String
	5.3.1.6 DateTime
	5.3.1.7 Guid
	5.3.1.8 ByteString
	5.3.1.9 XmlElement
	5.3.1.10 NodeId
	5.3.1.11 ExpandedNodeId
	5.3.1.12 StatusCode
	5.3.1.13 DiagnosticInfo
	5.3.1.14 QualifiedName
	5.3.1.15 LocalizedText
	5.3.1.16 ExtensionObject
	5.3.1.17 Variant
	5.3.1.18 DataValue

	5.3.2 Decimal
	5.3.3 Enumerations
	5.3.4 Arrays
	5.3.5 Structures
	5.3.6 Structures with optional fields
	5.3.7 Unions
	5.3.8 Messages

	5.4 OPC UA JSON
	5.4.1 General
	5.4.2 Built-in Types
	5.4.2.1 General
	5.4.2.2 Boolean
	5.4.2.3 Integer
	5.4.2.4 Floating point
	5.4.2.5 String
	5.4.2.6 DateTime
	5.4.2.7 Guid
	5.4.2.8 ByteString
	5.4.2.9 XmlElement
	5.4.2.10 NodeId
	5.4.2.11 ExpandedNodeId
	5.4.2.12 StatusCode
	5.4.2.13 DiagnosticInfo
	5.4.2.14 QualifiedName
	5.4.2.15 LocalizedText
	5.4.2.16 ExtensionObject
	5.4.2.17 Variant
	5.4.2.18 DataValue

	5.4.3 Decimal
	5.4.4 Enumerations
	5.4.5 Arrays
	5.4.6 Structures
	5.4.7 Structures with optional fields
	5.4.8 Unions
	5.4.9 Messages

	6 Message SecurityProtocols
	6.1 Security handshake
	6.2 Certificates
	6.2.1 General
	6.2.2 Application Instance Certificate
	6.2.3 Certificate Revocation List (CRL)
	6.2.4 Certificate Chains

	6.3 Time synchronization
	6.4 UTC and International Atomic Time (TAI)
	6.5 Issued User Identity Tokens
	6.5.1 Kerberos
	6.5.2 JSON Web Token (JWT)
	6.5.3 OAuth2
	6.5.3.1 General
	6.5.3.2 Access Tokens
	6.5.3.3 Authorization Code
	6.5.3.4 Refresh Token
	6.5.3.5 Client Credentials

	6.6 WS Secure Conversation
	6.7 OPC UA Secure Conversation
	6.7.1 Overview
	6.7.2 MessageChunk structure
	6.7.2.1 Overview
	6.7.2.2 Message Header
	6.7.2.3 Security Header
	6.7.2.4 Sequence Header
	6.7.2.5 Message Footer
	6.7.2.5.1 Unauthenticated Encryption Algorithms
	6.7.2.5.2 Authenticated Encryption Algorithms

	6.7.3 MessageChunks and error handling
	6.7.4 Establishing a SecureChannel
	6.7.5 Deriving keys
	6.7.6 Verifying Message Security

	6.8 Elliptic Curve Cryptography (ECC)
	6.8.2 Secure Channel Handshake
	6.8.3 UserIdentityToken Encryption
	6.8.4 ECC Encrypted Secret

	7 TransportProtocols
	7.1 OPC UA Connection Protocol
	7.1.1 Overview
	7.1.2 Message structure
	7.1.2.1 Overview
	7.1.2.2 Message Header
	7.1.2.3 Hello Message
	7.1.2.4 Acknowledge Message
	7.1.2.5 Error Message
	7.1.2.6 ReverseHello Message

	7.1.3 Establishing a connection
	7.1.4 Closing a connection
	7.1.5 Error handling

	7.2 OPC UA TCP
	7.3 SOAP/HTTP
	7.4 OPC UA HTTPS
	7.4.1 Overview
	7.4.2 Session-less Services
	7.4.3 XML Encoding
	7.4.4 OPC UA Binary Encoding
	7.4.5 JSON Encoding

	7.5 WebSockets
	7.5.1 Overview
	7.5.2 Protocol Mapping
	7.5.3 Security

	7.6 Well known addresses

	8 Normative Contracts
	8.1 OPC Binary Schema
	8.2 XML Schema and WSDL
	8.3 Information Model Schema
	8.4 Formal definition of UA Information Model
	8.5 Constants
	8.6 DataType encoding
	8.7 Security configuration

	Annex A (normative) Constants
	A.1 Attribute Ids
	A.2 Status Codes
	A.3 Numeric Node Ids

	Annex B (normative) OPC UA NodeSet
	Annex C (normative) Type declarations for the OPC UA native Mapping
	Annex D (normative) WSDL for the XML Mapping
	D.1 XML Schema
	D.2 WDSL Port Types
	D.3 WSDL Bindings

	Annex E (normative) Security settings management
	E.1 Overview
	E.2 SecuredApplication
	E.3 CertificateIdentifier
	E.4 CertificateStoreIdentifier
	E.5 CertificateList
	E.6 CertificateValidationOptions

	Annex F (normative) Information Model XML Schema
	F.1 Overview
	F.2 UANodeSet
	F.3 UANode
	F.4 Reference
	F.5 RolePermission
	F.6 UAType
	F.7 UAInstance
	F.8 UAVariable
	F.9 UAMethod
	F.10 TranslationType
	F.11 UADataType
	F.12 DataTypeDefinition
	F.13 DataTypeField
	F.14 Variant
	F.15 Example
	F.16 UANodeSetChanges
	F.17 NodesToAdd
	F.18 ReferencesToChange
	F.19 ReferenceToChange
	F.20 NodesToDelete
	F.21 NodeToDelete
	F.22 UANodeSetChangesStatus
	F.23 NodeSetStatusList
	F.24 NodeSetStatus

