

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-8

OPC Unified Architecture

Part 8: Data Access

Release 1.05.00

2021-10-12

Specification
Type:

Industry Standard
Specification

Comments:

Document
Number

OPC 10000-8

Title: OPC Unified
Architecture

Part 8 :Data Access

Date: 2021-10-12

Version: Release 1.05.00 Software: MS-Word

 Source: OPC 10000-8 - UA Specification
Part 8 - DataAccess 1.05.00.docx

Author: OPC Foundation Status: Release

1.05.00 iii OPC 10000-8: Data Access

CONTENTS

1 Scope ... 1

2 Normative references .. 1

3 Terms, definitions and abbreviated terms .. 1

3.1 Terms and definitions ... 1

3.2 Abbreviated terms .. 2

4 Concepts .. 2

5 Model .. 4

5.1 General .. 4

5.2 SemanticsChanged .. 4

5.3 Variable Types ... 4

5.3.1 DataItemType ... 4

5.3.2 AnalogItem VariableTypes .. 5

5.3.3 DiscreteItemType .. 8

5.3.4 ArrayItemType .. 10

5.4 Address Space model .. 15

5.5 Attributes of DataItems ... 16

5.6 DataTypes .. 17

5.6.1 Overview ... 17

5.6.2 Range ... 17

5.6.3 EUInformation ... 17

5.6.4 ComplexNumberType .. 19

5.6.5 DoubleComplexNumberType ... 19

5.6.6 AxisInformation ... 19

5.6.7 AxisScaleEnumeration .. 20

5.6.8 XVType ... 21

6 Data Access specific usage of Services .. 21

6.1 General .. 21

6.2 PercentDeadband... 21

6.3 Data Access status codes .. 22

6.3.1 Overview ... 22

6.3.2 Operation level result codes .. 22

6.3.3 LimitBits .. 24

Annex A OPC COM DA to UA mapping .. 25

A.1 Introduction .. 25

A.2 Security considerations .. 25

A.3 COM UA wrapper for OPC DA Server ... 26

A.3.1 Information Model mapping ... 26

A.3.2 Data and error mapping .. 29

A.3.3 Read data ... 32

A.3.4 Write Data ... 33

A.3.5 Subscriptions .. 33

A.4 COM UA proxy for DA Client .. 34

A.4.1 Guidelines ... 34

A.4.2 Information Model and Address Space mapping .. 34

A.4.3 Data and error mapping .. 38

A.4.4 Read data ... 40

OPC 10000-8: Data Access iv 1.05.00

A.4.5 Write data ... 41

A.4.6 Subscriptions .. 41

1.05.00 v OPC 10000-8: Data Access

FIGURES

Figure 1 – OPC DataItems are linked to automation data ... 3

Figure 2 – DataItem VariableType hierarchy ... 4

Figure 3 – Graphical view of a YArrayItem ... 12

Figure 4 – Representation of DataItems in the AddressSpace .. 16

Figure A.1 – Sample OPC UA Information Model for OPC DA .. 26

Figure A.2 – OPC COM DA to OPC UA data and error mapping ... 30

Figure A.3 – Status Code mapping ... 31

Figure A.4 – Sample OPC DA mapping of OPC UA Information Model and Address Space .. 35

Figure A.5 – OPC UA to OPC DA data & error mapping ... 38

Figure A.6 – OPC UA Status Code to OPC DA quality mapping .. 40

OPC 10000-8: Data Access vi 1.05.00

TABLES

Table 1 – DataItemType definition .. 5

Table 2 – BaseAnalogType definition ... 6

Table 3 – AnalogItemType definition .. 7

Table 4 – AnalogUnitType definition ... 7

Table 5 – AnalogUnitRangeType definition ... 8

Table 6 – DiscreteItemType definition .. 8

Table 7 – TwoStateDiscreteType definition ... 8

Table 8 – MultiStateDiscreteType definition .. 9

Table 9 – MultiStateValueDiscreteType definition ... 10

Table 10 – ArrayItemType definition ... 11

Table 11 – YArrayItemType definition ... 11

Table 12 – YArrayItem item description .. 12

Table 13 – XYArrayItemType definition .. 13

Table 14 – ImageItemType definition .. 14

Table 15 – CubeItemType definition ... 14

Table 16 – NDimensionArrayItemType definition .. 15

Table 17 – Range DataType structure .. 17

Table 18 – Range definition .. 17

Table 16 – EUInformation DataType structure .. 18

Table 17 – EUInformation definition ... 18

Table 18 – Examples from the UNECE Recommendation ... 18

Table 19 – ComplexNumberType DataType structure ... 19

Table 20 – ComplexNumberType definition .. 19

Table 21 – DoubleComplexNumberType DataType structure .. 19

Table 22 – DoubleComplexNumberType definition ... 19

Table 23 – AxisInformation DataType structure .. 20

Table 24 – AxisInformation definition .. 20

Table 25 – AxisScaleEnumeration values ... 20

Table 26 – AxisScaleEnumeration definition ... 20

Table 27 – XVType DataType structure .. 21

Table 28 – XVType definition ... 21

Table 29 – Operation level result codes for BAD data quality ... 23

Table 30 – Operation level result codes for UNCERTAIN data quality 23

Table 31 – Operation level result codes for GOOD data quality .. 23

Table A.1 – OPC COM DA to OPC UA Properties mapping .. 28

Table A.2 – DataTypes and mapping .. 31

Table A.3 – Quality mapping .. 32

Table A.4 – OPC DA Read error mapping... 33

Table A.5 – OPC DA Write error code mapping .. 33

Table A.6 – DataTypes and Mapping .. 39

Table A.7 – Quality mapping .. 40

1.05.00 vii OPC 10000-8: Data Access

Table A.8 – OPC UA Read error mapping... 41

Table A.9 – OPC UA Write error code mapping .. 41

OPC 10000-8: Data Access viii 1.05.00

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2021, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specificat ions may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those pa tents that are
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERS HIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sel lers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials .
Products developed using this specification may claim compliance or conformance with this specification if and o nly if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

1.05.00 ix OPC 10000-8: Data Access

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications; hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

OPC 10000-8: Data Access x 1.05.00

Revision 1.05.00 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

4195 Inconsistency in DataTypes of
EnumValues and
MultiStateValueDiscreteType

Clarified that not all Number types work. Delineated the
allowed Number types.

4229 Limitations in Range for (U)Int64 Clarified behaviour for values that can’t be covered.

4230 Need VariableType with mandatory
EngineeringUnits

Created AnalogBaseType and proper sub-types.

4426 ValuePrecision for Duration is not defined Added a clause that ValuePrecision can also be used for
other subtypes.

5400 Fix format of Enum definition Separated name and value for AxisScaleEnumeration.

4275 ValuePrecision for Decimal is not defined Added Decimal to the definition for Float and Double.

5807 Missing relation of types to conformance
units

Added proper conformance unit to the type tables.

6332 Missing SemanticsChanged requirements Added requirement to MultiStateValueDiscreteType.

6385 Additional Fieldbus StatusCodes Added a subset of the status codes as layed out in the
Mantis issue.

7206 The description does not specify the
behaviour when ValuePrecision has a
negative value.

Added additional rules for negative values.

Also added a proposed algorthm for “rounding”.

https://apps.opcfoundation.org/mantis/view.php?id=4195
https://apps.opcfoundation.org/mantis/view.php?id=4229
https://apps.opcfoundation.org/mantis/view.php?id=4230
http://www.opcfoundation.org/mantis/view.php?id=4426
https://apps.opcfoundation.org/mantis/view.php?id=5400
http://www.opcfoundation.org/mantis/view.php?id=4275
https://apps.opcfoundation.org/mantis/view.php?id=5807
https://apps.opcfoundation.org/mantis/view.php?id=6332
https://apps.opcfoundation.org/mantis/view.php?id=6385
https://apps.opcfoundation.org/mantis/view.php?id=7206

1.05.00 1 OPC 10000-8: Data Access

OPC UNIFIED ARCHITECTURE –

Part 8: Data Access

1 Scope

This part of OPC 10000 is part of the overall OPC Unified Architecture (OPC UA) standard
series and defines the information model associated with Data Access (DA). It particularly
includes additional VariableTypes and complementary descriptions of the NodeClasses and
Attributes needed for Data Access, additional Properties, and other information and behaviour.

The complete address space model, including all NodeClasses and Attributes is specified in
OPC 10000-3. The services to detect and access data are specified in OPC 10000-4.

Annex A specifies the recommended way how the information received from OPC COM Data
Access (DA) Servers shall be mapped to the model in this document.

2 Normative references

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

UN/CEFACT: UNECE Recommendation N° 20, Codes for Units of Measure Used in
International Trade

https://www.unece.org/cefact/codesfortrade/codes_index.html

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in The following referenced
documents are indispensable for the application of this document. For dated references, only
the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments and errata) applies.

OPC 10000-1, OPC 10000-3, and OPC 10000-4 and the following apply.

3.1.1
DataItem
link to arbitrary, live automation data, that is, data that represents currently valid information

Note 1 to entry: Examples of such data are

• device data (such as temperature sensors),

• calculated data,

• status information (open/closed, moving),

• dynamically-changing system data (such as stock quotes),

• diagnostic data.

https://www.unece.org/cefact/codesfortrade/codes_index.html

OPC 10000-8: Data Access 2 1.05.00

3.1.2
AnalogItem
DataItem that represents continuously-variable physical quantities (e.g., length, temperature),
in contrast to the digital representation of data in discrete items

Note 1 to entry: Typical examples are the values provided by temperature sensors or pressure sensors. OPC UA
defines specific VariableTypes to identify an AnalogItem. Properties describe the possible ranges of AnalogItems.

3.1.3
DiscreteItem
DataItem that represents data that may take on only a certain number of possible values (e.g.,
OPENING, OPEN, CLOSING, CLOSED)

Note 1 to entry: Specific VariableTypes are used to identify DiscreteItems with two states or with multiple states.
Properties specify the string values for these states.

3.1.4
ArrayItem
DataItem that represents continuously-variable physical quantities and where each individual
data point consists of multiple values represented by an array (e.g., the spectral response of a
digital filter)

Note 1 to entry: Typical examples are the data provided by analyser devices. Specific VariableTypes are used to
identify ArrayItem variants.

3.1.5
EngineeringUnits
units of measurement for AnalogItems that represent continuously-variable physical quantities
(e.g., length, mass, time, temperature)

Note 1 to entry: This standard defines Properties to inform about the unit used for the DataItem value and about
the highest and lowest value likely to be obtained in normal operation.

3.2 Abbreviated terms

DA Data Access
EU Engineering Unit
NaN „Not a Number“ defined in IEEE 754
UA Unified Architecture

4 Concepts

Data Access deals with the representation and use of automation data in Servers.

Automation data can be located inside the Server or on I/O cards directly connected to the
Server. It can also be located in sub-servers or on other devices such as controllers and
input/output modules, connected by serial links via field buses or other communication links.
OPC UA Data Access Servers provide one or more OPC UA Data Access Clients with
transparent access to their automation data.

The links to automation data instances are called DataItems. Which categories of automation
data are provided is completely vendor-specific. Figure 1 illustrates how the AddressSpace of
a Server might consist of a broad range of different DataItems.

1.05.00 3 OPC 10000-8: Data Access

OPC UA Server

 AddressSpace
with data items

Root

Figure 1 – OPC DataItems are linked to automation data

Clients may read or write DataItems, or monitor them for value changes. The Services needed
for these operations are specified in OPC 10000-4. Changes are defined as a change in status
(quality) or a change in value that exceeds a client -defined range called a Deadband. To detect
the value change, the difference between the current value and the last reported value is
compared to the Deadband.

OPC 10000-8: Data Access 4 1.05.00

5 Model

5.1 General

The DataAccess model extends the variable model by defining VariableTypes. The
DataItemType is the base type. ArrayItemType, BaseAnalogType and DiscreteItemType are
specializations. See Figure 2. Each of these VariableTypes can be further extended to form
domain or server specific DataItems.

DataItemType

DiscreteItemType

TwoStateDiscreteType

MultiState
DiscreteType

BaseDataVariableType Defined in

[UA Part 5]

MultiStateValue
DiscreteType

<other>Type

ArrayItemType BaseAnalogType

AnalogItemType

AnalogUnitRange
Type

AnalogUnitType

Figure 2 – DataItem VariableType hierarchy

5.2 SemanticsChanged

The StatusCode also contains an informational bit called SemanticsChanged.

Servers that implement Data Access shall set this Bit in notifications if certain Property values
defined in this standard change. The corresponding Properties are specified individually for
each VariableType.

Clients that use any of these Properties should re-read them before they process the data value.

5.3 Variable Types

5.3.1 DataItemType

This VariableType defines the general characteristics of a DataItem. All other DataItem Types
derive from it. The DataItemType derives from the BaseDataVariableType and therefore shares
the variable model as described in OPC 10000-3 and OPC 10000-5. It is formally defined in
Table 1.

1.05.00 5 OPC 10000-8: Data Access

Table 1 – DataItemType definition

Attribute Value

BrowseName DataItemType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseDataVariableType defined in OPC 10000-5; i.e the Properties of that type are inherited.

HasSubtype VariableType BaseAnalogType Defined in 5.3.2.2

HasSubtype VariableType DiscreteItemType Defined in 5.3.3

HasSubtype VariableType ArrayItemType Defined in 5.3.4

HasProperty Variable Definition String PropertyType Optional

HasProperty Variable ValuePrecision Double PropertyType Optional

Conformance Units

Data Access DataItems

Definition is a vendor-specific, human readable string that specifies how the value of this
DataItem is calculated. Definition is non-localized and will often contain an equation that can
be parsed by certain clients .

Example: Definition::= “(TempA – 25) + TempB”

ValuePrecision specifies the maximum precision that the Server can maintain for the item based
on restrictions in the target environment.

ValuePrecision can be used for the following DataTypes:

• For Float, Double, and Decimal values it specifies the number of digits after the decimal
place when it is a positive number. When it is a negative number, it specifies the number
of insignificant digits to the left of the decimal place.
For example a ValuePrecision of -2 specifies that the precision of the Value is to the
nearest 100. The ValuePrecision should always be a whole number and it shall always
be interpreted as a whole number by rounding it to the nearest whole number.

• For DateTime values it shall always be a positive number which indicates the minimum
time difference in nanoseconds. For example, a ValuePrecision of 20 000 000 defines
a precision of 20 ms. The ValuePrecision should always be a whole number and it shall
always be interpreted as a whole number by rounding it to the neares t whole number.

• ValuePrecision can also be used for other subtypes of Double (like Duration) and other
Number subtypes that can be represented by a Double.

The ValuePrecision Property is an approximation that is intended to provide guidance to a
Client. A Server is expected to silently round any value with more precision that it supports.
This implies that a Client may encounter cases where the value read back from a Server differs
from the value that it wrote to the Server. This difference shall be no more than the difference
suggested by this Property.

The algorithm for rounding should follow the so-called “Banker’s rounding” (aka Round half to
even), in which numbers which are equidistant from the two nearest integers are rounded to the
nearest even integer. Thus, 0.5 rounds down to 0; 1.5 rounds up to 2.

Other decimal fractions round as you would expect--0.4 to 0, 0.6 to 1, 1.4 to 1, 1.6 to 2, etc.
Only x.5 numbers get the "special" treatment.

5.3.2 AnalogItem VariableTypes

5.3.2.1 General

The VariableTypes in this subclause define the characteristics of AnalogItems. The types have
identical semantics and Properties but with diverging ModellingRules for individual Properties.

The Properties are only described once - in 5.3.2.2. The descriptions apply to the Properties
for the other VariableTypes as well.

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even

OPC 10000-8: Data Access 6 1.05.00

5.3.2.2 BaseAnalogType

This VariableType is the base type for analog items. All Properties are optional. Subtypes of
this base type will mandate some of the Properties. The BaseAnalogType derives from the
DataItemType. It is formally defined in Table 2.

Table 2 – BaseAnalogType definition

Attribute Value

BrowseName BaseAnalogType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType Number

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DataItemType defined in 5.3.1; i.e. the Properties of that type are inherited.

HasSubtype VariableType AnalogItemType Defined in 5.3.2.3

HasSubtype VariableType AnalogUnitType Defined in 5.3.2.4

HasProperty Variable InstrumentRange Range PropertyType Optional

HasProperty Variable EURange Range PropertyType Optional

HasProperty Variable EngineeringUnits EUInformation PropertyType Optional

Conformance Units

Data Access BaseAnalogType

The following paragraphs describe the Properties of this VariableType. If the analog item’s
Value contains an array, the Properties shall apply to all elements in the array.

InstrumentRange defines the value range that can be returned by the instrument.

Example: InstrumentRange::= {-9999.9, 9999.9}

Although defined as optional, it is strongly recommended for Servers to support this Property.
Without an InstrumentRange being provided, Clients will commonly assume the full range
according to the DataType.

The InstrumentRange Property may also be used to restrict a Built-in DataType such as Byte
or Int16) to a smaller range of values.

Examples:
UInt4: InstrumentRange::= {0, 15}
Int6: InstrumentRange::= {-32, 31}

The Range Data Type is specified in 5.6.2.

EURange defines the value range likely to be obtained in normal operation. It is intended for
such use as automatically scaling a bar graph display.

Sensor or instrument failure or deactivation can result in a returned item value which is actually
outside of this range. Client software must be prepared to deal with this possibility. Similarly a
Client may attempt to write a value that is outside of this range back to the server. The exact
behaviour (accept, reject, clamp, etc.) in this case is Server-dependent. However, in general
Servers shall be prepared to handle this.

Example: EURange::= {-200.0,1400.0}

See also 6.2 for a special monitoring filter (PercentDeadband) which is based on the
engineering unit range.

NOTE If EURange is not provided on an instance, the PercentDeadband filter cannot be used for that instance (see
clause 6.2).

EngineeringUnits specifies the units for the DataItem’s value (e.g., DEGC, hertz, seconds). The
EUInformation type is specified in 5.6.3.

It is important to note that understanding the units of a measurement value is essential for a
uniform system. In an open system in particular where Servers from different cultures might be
used, it is essential to know what the units of measurement are. Based on such knowledge,
values can be converted if necessary before being used. Therefore, although defined as
optional, support of the EngineeringUnits Property is strongly advised.

1.05.00 7 OPC 10000-8: Data Access

OPC UA recommends using the “Codes for Units of Measurement” (see UN/CEFACT: UNECE
Recommendation N° 20). The mapping to the EngineeringUnits Property is specified in 5.6.3.

Examples for unit mixup: In 1999, the Mars Climate Orbiter crashed into the surface of Mars. The main reason was
a discrepancy over the units used. The navigation software expected data in newton second; the company who built
the orbiter provided data in pound-force seconds. Another, less expensive, disappointment occurs when people used
to British pints order a pint in the USA, only to be served what they consider a short measure.

The StatusCode SemanticsChanged bit shall be set if any of the EURange (could change the
behaviour of a Subscription if a PercentDeadband filter is used) or EngineeringUnits (could
create problems if the Client uses the value to perform calculations) Properties are changed
(see clause 5.2 for additional information).

5.3.2.3 AnalogItemType

This VariableType requires the EURange Property. The AnalogItemType derives from the
BaseAnalogType. It is formally defined in Table 3.

Table 3 – AnalogItemType definition

Attribute Value

BrowseName AnalogItemType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType Number

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseAnalogType defined in 5.3.2.2; i.e. the Properties of that type are inherited.

HasSubtype VariableType AnalogUnitRangeType Defined in 5.3.2.5

HasProperty Variable EURange Range PropertyType Mandatory

Conformance Units

Data Access AnalogItemType

5.3.2.4 AnalogUnitType

This VariableType requires the EngineeringUnits Property. The AnalogUnitType derives from
the BaseAnalogType. It is formally defined in Table 4.

Table 4 – AnalogUnitType definition

Attribute Value

BrowseName AnalogUnitType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType Number

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseAnalogType defined in 5.3.2.2; i.e. the Properties of that type are inherited.

HasProperty Variable EngineeringUnits EUInformation PropertyType Mandatory

Conformance Units

Data Access AnalogUnitType

OPC 10000-8: Data Access 8 1.05.00

5.3.2.5 AnalogUnitRangeType

The AnalogUnitRangeType derives from the AnalogItemType and additionaly requires the
EngineeringUnits Property. It is formally defined in Table 5.

Table 5 – AnalogUnitRangeType definition

Attribute Value

BrowseName AnalogUnitRangeType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType Number

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AnalogItemType defined in 5.3.2.3; i.e. the Properties of that type are inherited.

HasProperty Variable EngineeringUnits EUInformation PropertyType Mandatory

Conformance Units

Data Access AnalogUnitRangeType

5.3.3 DiscreteItemType

5.3.3.1 General

This VariableType is an abstract type. That is, no instances of this type can exist. However, it
might be used in a filter when browsing or querying. The DiscreteItemType derives from the
DataItemType and therefore shares all of its characteristics. It is formally defined in Table 6.

Table 6 – DiscreteItemType definition

Attribute Value

BrowseName DiscreteItemType

IsAbstract True

ValueRank −2 (−2 = ‘Any’)

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DataItemType defined in 5.2; i.e. the Properties of that type are inherited.

HasSubtype VariableType TwoStateDiscreteType Defined in 5.3.3.2

HasSubtype VariableType MultiStateDiscreteType Defined in 5.3.3.3

HasSubtype VariableType MultiStateValueDiscreteType Defined in 5.3.3.4

Conformance Units

Data Access DiscreteItemType

5.3.3.2 TwoStateDiscreteType

This VariableType defines the general characteristics of a DiscreteItem that can have two
states. The TwoStateDiscreteType derives from the DiscreteItemType. It is formally defined in
Table 7.

Table 7 – TwoStateDiscreteType definition

Attribute Value

BrowseName TwoStateDiscreteType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType Boolean

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DiscreteItemType defined in 5.3.3; i.e. the Properties of that type are inherited.

HasProperty Variable TrueState LocalizedText PropertyType Mandatory

HasProperty Variable FalseState LocalizedText PropertyType Mandatory

Conformance Units

Data Access TwoState

TrueState contains a string to be associated with this DataItem when it is TRUE. This is typically
used for a contact when it is in the closed (non-zero) state.

 for example: "RUN", "CLOSE", "ENABLE", "SAFE", etc.

1.05.00 9 OPC 10000-8: Data Access

FalseState contains a string to be associated with this DataItem when it is FALSE. This is
typically used for a contact when it is in the open (zero) state.

 for example: "STOP", "OPEN", "DISABLE", "UNSAFE", etc.

If the item contains an array, then the Properties will apply to all elements in the array.

The StatusCode SemanticsChanged bit shall be set if any of the FalseState or TrueState
Properties are changed (see 5.2 for additional information).

5.3.3.3 MultiStateDiscreteType

This VariableType defines the general characteristics of a DiscreteItem that can have more than
two states. The MultiStateDiscreteType derives from the DiscreteItemType. It is formally
defined in Table 8.

Table 8 – MultiStateDiscreteType definition

Attribute Value

BrowseName MultiStateDiscreteType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType UInteger

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DiscreteItemType defined in 5.3.3; i.e. the Properties of that type are inherited.

HasProperty Variable EnumStrings LocalizedText[] PropertyType Mandatory

Conformance Units

Data Access MultiState

EnumStrings is a string lookup table corresponding to sequential numeric values (0, 1, 2, etc.)

Example:

 "OPEN"

 "CLOSE"

 "IN TRANSIT" etc.

Here the string "OPEN" corresponds to 0, "CLOSE" to 1 and "IN TRANSIT" to 2.

Clients should be prepared to handle item values outside of the range of the list; and robust
servers should be prepared to handle writes of illegal values.

If the item contains an array then this lookup table shall apply to all elements in the array.

NOTE The EnumStrings property is also used for Enumeration DataTypes (for the specification of this DataType,
see OPC 10000-3).

The StatusCode SemanticsChanged bit shall be set if the EnumStrings Property is changed
(see 5.2 for additional information).

5.3.3.4 MultiStateValueDiscreteType

This VariableType defines the general characteristics of a DiscreteItem that can have more than
two states and where the state values (the enumeration) does not consist of consecutive
numeric values (may have gaps) or where the enumeration is not zero -based. The
MultiStateValueDiscreteType derives from the DiscreteItemType. It is formally defined in Table
9.

OPC 10000-8: Data Access 10 1.05.00

Table 9 – MultiStateValueDiscreteType definition

Attribute Value

BrowseName MultiStateValueDiscreteType

IsAbstract False

ValueRank −2 (−2 = ‘Any’)

DataType Number

References NodeClass BrowseName DataType

TypeDefinition

ModellingRule

Subtype of the DiscreteItemType defined in 5.3.3; i.e. the Properties of that type are inherited.

HasProperty Variable EnumValues EnumValueType[]
PropertyType

Mandatory

HasProperty Variable ValueAsText LocalizedText
PropertyType

Mandatory

Conformance Units

Data Access MultiStateValueDiscrete

EnumValues is an array of EnumValueType. Each entry of the array represents one
enumeration value with its integer notation, a human-readable representation, and help
information. This represents enumerations with integers that are not zero-based or have gaps
(e.g. 1, 2, 4, 8, 16). See OPC 10000-3 for the definition of this type. MultiStateValueDiscrete
Variables expose the current integer notation in their Value Attribute. Clients will often read the
EnumValues Property in advance and cache it to lookup a name or help whenever they receive
the numeric representation.

Only DataTypes that can be represented with EnumValues are allowed for Variables of
MultiStateValueDiscreteType. These are Integers up to 64 Bits (signed and unsigned).:

The numeric representation of the current enumeration value is provided via the Value Attribute
of the MultiStateValueDiscrete Variable . The ValueAsText Property provides the localized text
representation of the enumeration value. It can be used by Clients only interested in displaying
the text to subscribe to the Property instead of the Value Attribute.

The StatusCode SemanticsChanged bit shall be set if the EnumValues Property value is
changed (see clause 5.2 for additional information).

5.3.4 ArrayItemType

5.3.4.1 General

This abstract VariableType defines the general characteristics of an ArrayItem. Values are
exposed in an array but the content of the array represents a single entity like an image. Other
DataItems might contain arrays that represent for example several values of several
temperature sensors of a boiler.

ArrayItemType or its subtype shall only be used when the Title and AxisScaleType Properties
can be filled with reasonable values. If this is not the case DataItemType and subtypes like
AnalogItemType, which also support arrays, shall be used. The ArrayItemType is formally
defined in Table 10.

1.05.00 11 OPC 10000-8: Data Access

Table 10 – ArrayItemType definition

Attribute Value

BrowseName ArrayItemType

IsAbstract True

ValueRank 0 (0 = OneOrMoreDimensions)

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DataItemType defined in 5.3.1; i.e. the Properties of that type are inherited.

HasSubtype VariableType YArrayItemType Defined in 5.3.4.2

HasSubtype VariableType XYArrayItemType Defined in 5.3.4.3

HasSubtype VariableType ImageItemType Defined in 5.3.4.4

HasSubtype VariableType CubeItemType Defined in 5.3.4.5

HasSubtype VariableType NDimensionArrayIt
emType

Defined in 5.3.4.6

HasProperty Variable InstrumentRange Range PropertyType Optional

HasProperty Variable EURange Range PropertyType Mandatory

HasProperty Variable EngineeringUnits EUInformation PropertyType Mandatory

HasProperty Variable Title LocalizedText PropertyType Mandatory

HasProperty Variable AxisScaleType AxisScaleEnumeration PropertyType Mandatory

Conformance Units

Data Access ArrayItem2Type

InstrumentRange defines the range of the Value of the ArrayItem.

EURange defines the value range of the ArrayItem likely to be obtained in normal operation. It
is intended for such use as automatical ly scaling a bar graph display.

EngineeringUnits holds the information about the engineering units of the Value of the
ArrayItem.

For additional information about InstrumentRange, EURange, and EngineeringUnits see the
description of BaseAnalogType in 5.3.2.2.

Title holds the user readable title of the Value of the ArrayItem.

AxisScaleType defines the scale to be used for the axis where the Value of the ArrayItem shall
be displayed.

The StatusCode SemanticsChanged bit shall be set if any of the InstrumentRange, EURange,
EngineeringUnits or Title Properties are changed (see 5.2 for additional information).

5.3.4.2 YArrayItemType

YArrayItemType represents a single-dimensional array of numerical values used to represent
spectra or distributions where the x axis intervals are constant. YArrayItemType is formally
defined in Table 11.

Table 11 – YArrayItemType definition

Attribute Value

BrowseName YArrayItemType

IsAbstract False

ValueRank 1

DataType BaseDataType

ArrayDimensions {0} (0 = UnknownSize)

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ArrayItemType defined in 5.3.4.1

HasProperty Variable XAxisDefinition AxisInformation PropertyType Mandatory

Conformance Units

Data Access YArrayItemType

OPC 10000-8: Data Access 12 1.05.00

The Value of the YArrayItem contains the numerical values for the Y-Axis. Engineering Units
and Range for the Value are defined by corresponding Properties inherited from the
ArrayItemType.

The DataType of this VariableType is restricted to SByte, Int16, Int32, Int64, Float, Double,
ComplexNumberType and DoubleComplexNumberType.

The XAxisDefinition Property holds the information about the Engineering Units and Range for
the X-Axis.

The StatusCode SemanticsChanged bit shall be set if any of the following five Properties are
changed: InstrumentRange, EURange, EngineeringUnits, Title or XAxisDefinition (see 5.2 for
additional information).

Figure 3 shows an example of how Attributes and Properties may be used in a graphical
interface.

Figure 3 – Graphical view of a YArrayItem

Table 12 describes the values of each element presented in Figure 3.

Table 12 – YArrayItem item description

Attribute / Property Item value

Description Magnitude Response (dB)

axisScaleType AxisScaleEnumeration.LINEAR

InstrumentRange.low -90

InstrumentRange.high 5

EURange.low -90

EURange.high 2

EngineeringUnits.namespaceUrl http://www.opcfoundation.org/UA/units/un/cefact

EngineeringUnits.unitId 2N

EngineeringUnits.displayName “en-us”, “dB”

1.05.00 13 OPC 10000-8: Data Access

Attribute / Property Item value

EngineeringUnits.description “en-us”, “decibel”

Title Magnitude

XAxisDefinition.EngineeringUnits.namespaceUrl http://www.opcfoundation.org/UA/units/un/cefact

XAxisDefinition.EngineeringUnits.unitId kHz

XAxisDefinition.EngineeringUnits.displayName “en-us”, “kHz”

XAxisDefinition.EngineeringUnits.description “en-us”, “kilohertz”

XAxisDefinition.Range.low 0

XAxisDefinition.Range.high 25

XAxisDefinition.title “en-us”, “Frequency”

XAxisDefinition.axisScaleType AxisScaleEnumeration.LINEAR

XAxisDefinition.axisSteps null

Interpretation notes:

• Not all elements of this table are used in the graphic.

• The X axis is displayed in reverse order, however, the XAxisDefinition.Range.low shall be lower than
XAxisDefinition.Range.high. It is only a graphical representation that reverses the display order.

• There is a constant X axis

5.3.4.3 XYArrayItemType

XYArrayItemType represents a vector of XVType values like a list of peaks, where XVType.x is
the position of the peak and XVType.value is its intensity. XYArrayItemType is formally defined
in Table 13.

Table 13 – XYArrayItemType definition

Attribute Value

BrowseName XYArrayItemType

IsAbstract False

ValueRank 1

DataType XVType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ArrayItemType defined in 5.3.4.1

HasProperty Variable XAxisDefinition AxisInformation PropertyType Mandatory

Conformance Units

Data Access XYArrayItemType

The Value of the XYArrayItem contains an array of structures (XVType) where each structure
specifies the position for the X-Axis (XVType.x) and the value itself (XVType.value), used for
the Y-Axis. Engineering units and range for the Value are defined by corresponding Properties
inherited from the ArrayItemType.

XAxisDefinition Property holds the information about the Engineering Units and Range for the
X-Axis.

The axisSteps of XAxisDefinition shall be set to NULL because it is not used.

The StatusCode SemanticsChanged bit shall be set if any of the InstrumentRange, EURange,
EngineeringUnits, Title or XAxisDefinition Properties are changed (see 5.2 for additional
information).

5.3.4.4 ImageItemType

ImageItemType defines the general characteristics of an ImageItem which represents a matrix
of values like an image, where the pixel position is given by X which is the column and Y the
row. The value is the pixel intensity.

ImageItemType is formally defined in Table 14.

OPC 10000-8: Data Access 14 1.05.00

Table 14 – ImageItemType definition

Attribute Value

BrowseName ImageItemType

IsAbstract False

ValueRank 2 (2 = two dimensional array)

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ArrayItemType defined in 5.3.4.1

HasProperty Variable XAxisDefinition AxisInformation PropertyType Mandatory

HasProperty Variable YAxisDefinition AxisInformation PropertyType Mandatory

Conformance Units

Data Access ImageItemType

Engineering units and range for the Value are defined by corresponding Properties inherited
from the ArrayItemType.

The DataType of this VariableType is restricted to SByte, Int16, Int32, Int64, Float, Double,
ComplexNumberType and DoubleComplexNumberType.

The ArrayDimensions Attribute for Variables of this type or subtypes shall use the first entry in
the array ([0]) to define the number of columns and the second entry ([1]) to define the number
of rows, assuming the size of the matrix is not dynamic.

XAxisDefinition Property holds the information about the engineering units and range for the X-
Axis.

YAxisDefinition Property holds the information about the engineering units and range for the Y-
Axis.

The StatusCode.SemanticsChanged bit shall be set if any of the InstrumentRange, EURange,
EngineeringUnits, Title, XAxisDefinition or YAxisDefinition Properties are changed.

5.3.4.5 CubeItemType

CubeItemType represents a cube of values like a spatial particle distribution, where the particle
position is given by X which is the column, Y the row and Z the depth. In the example of a
spatial partical distribution, the value is the particle size. CubeItemType is formally defined in
Table 15.

Table 15 – CubeItemType definition

Attribute Value

BrowseName CubeItemType

IsAbstract False

ValueRank 3 (3 = three dimensional array)

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ArrayItemType defined in 5.3.4.1

HasProperty Variable XAxisDefinition AxisInformation PropertyType Mandatory

HasProperty Variable YAxisDefinition AxisInformation PropertyType Mandatory

HasProperty Variable ZAxisDefinition AxisInformation PropertyType Mandatory

Conformance Units

Data Access CubeItemType

Engineering units and range for the Value are defined by corresponding Properties inherited
from the ArrayItemType.

The DataType of this VariableType is restricted to SByte, Int16, Int32, Int64, Float, Double,
ComplexNumberType and DoubleComplexNumberType.

The ArrayDimensions Attribute for Variables of this type or subtypes should use the first entry
in the array ([0]) to define the number of columns, the second entry ([1]) to define the number

1.05.00 15 OPC 10000-8: Data Access

of rows, and the third entry ([2]) define the number of steps in the Z axis, assuming the size of
the matrix is not dynamic.

XAxisDefinition Property holds the information about the engineering units and range for the X-
Axis.

YAxisDefinition Property holds the information about the engineering units and range for the Y-
Axis.

ZAxisDefinition Property holds the information about the engineering units and range for the Z -
Axis.

The StatusCode SemanticsChanged bit shall be set if any of the InstrumentRange, EURange,
EngineeringUnits, Title, XAxisDefinition, YAxisDefinition or ZAxisDefinition Properties are
changed (see 5.2 for additional information).

5.3.4.6 NDimensionArrayItemType

This VariableType defines a generic multi-dimensional ArrayItem.

This approach minimizes the number of types however it may be proved more difficult to utilize
for control system interactions.

NDimensionArrayItemType is formally defined in Table 16.

Table 16 – NDimensionArrayItemType definition

Attribute Value

BrowseName NDimensionArrayItemType

IsAbstract False

ValueRank 0 (0 = OneOrMoreDimensions)

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ArrayItemType defined in 5.3.4.1

HasProperty Variable AxisDefinition AxisInformation [] PropertyType Mandatory

Conformance Units

Data Access NDimensionArrayItemType

The DataType of this VariableType is restricted to SByte, Int16, Int32, Int64, Float, Double,
ComplexNumberType and DoubleComplexNumberType.

AxisDefinition Property holds the information about the Engineering Units and Range for all
axis.

The StatusCode SemanticsChanged bit shall be set if any of the InstrumentRange, EURange,
EngineeringUnits, Title or AxisDefinition Properties are changed (see 5.2 for additional
information).

5.4 Address Space model

DataItems are always defined as data components of other Nodes in the AddressSpace. They
are never defined by themselves. A simple example of a container for DataItems would be a
“Folder Object” but it can be an Object of any other type.

Figure 4 illustrates the basic AddressSpace model of a DataItem, in this case an AnalogItem.

OPC 10000-8: Data Access 16 1.05.00

Definition

InstrumentRange

EURange

EngineeringUnits

DataItemType

AnalogItemType

Definition

InstrumentRange

EURange

EngineeringUnits

PropertyType

Pressure (Variable)

Attribute

Value

DataType

AccessLevel

MinimumSamplingInterval

Boiler_01 (Object)

Figure 4 – Representation of DataItems in the AddressSpace

Each DataItem is represented by a DataVariable with a specific set of Attributes. The
TypeDefinition reference indicates the type of the DataItem (in this case the AnalogItemType).
Additional characteristics of DataItems are defined using Properties. The VariableTypes in 5.2
specify which properties may exist. These Properties have been found to be useful for a wide
range of Data Access clients. Servers that want to disclose similar information should use the
OPC-defined Property rather than one that is vendor-specific.

The above figure shows only a subset of Attributes and Properties. Other Attributes that are
defined for Variables in OPC 10000-3 (e.g., Description) may also be available.

5.5 Attributes of DataItems

This subclause lists the Attributes of Variables that have particular importance for Data Access.
They are specified in detail in OPC 10000-3. The following Attributes are particularly important
for Data Access:

• Value

• DataType

• AccessLevel

• MinimumSamplingInterval

Value is the most recent value of the Variable that the Server has. Its data type is defined by
the DataType Attribute. The AccessLevel Attribute defines the Server’s basic ability to access
current data and MinimumSamplingInterval defines how current the data is.

When a client requests the Value Attribute for reading or monitoring, the Server will always
return a StatusCode (the quality and the Server’s ability to access/provide the value) and,
optionally, a ServerTimestamp and/or a SourceTimestamp – based on the Client’s request. See
OPC 10000-4 for details on StatusCode and the meaning of the two timestamps. Specific status
codes for Data Access are defined in 6.3.

1.05.00 17 OPC 10000-8: Data Access

5.6 DataTypes

5.6.1 Overview

Following is a description of the DataTypes defined in this specification.

DataTypes like String, Boolean, Double or LocalizedText are defined in OPC 10000-3. Their
representation is specified in OPC 10000-5.

5.6.2 Range

This structure defines the Range for a value. Its elements are defined in Table 17.

Table 17 – Range DataType structure

Name Type Description

Range structure

 low Double Lowest value in the range.

 high Double Highest value in the range.

NOTE For some DataTypes, e.g. Int64, UInt64, or Decimal, there may be a loss in precision in the representation of
the range with a Double.

If a limit is not known a NaN shall be used.

Its representation in the AddressSpace is defined in Table 18

Table 18 – Range definition

Attribute Value

BrowseName Range

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Base Info Range DataType

5.6.3 EUInformation

5.6.3.1 General

EUInformation contains information about the EngineeringUnits.

The intention of the OPC UA standard is not to define a set of units but a way to expose units
based on existing systems. Since there is not a single worldwide set of units used in all
industries, the EUInformation structure includes a separate field (the namespaceUri) to identify
the system on which the exposed unit is based.

The default OPC UA mapping is based on UN/CEFACT as defined in clause 5.6.3.3, because
it can be programmatically interpreted by generic OPC UA Clients. However, the EUInformation
structure has been defined such that other standards bodies can incorporate their engineering
unit definitions into OPC UA. If Servers use such an approach then they shall identify this
standards body by using a proper URI in EUInformation.namespaceUri.

5.6.3.2 Definition of EUInformation

The EUInformation elements are defined in Table 16.

OPC 10000-8: Data Access 18 1.05.00

Table 16 – EUInformation DataType structure

Name Type Description

EUInformation structure

 namespaceUri String Identifies the organization (company, standards organization) that defines the
EUInformation.

 unitId Int32 Identifier for programmatic evaluation.

−1 is used if a unitId is not available.

 displayName LocalizedText The displayName of the engineering unit is typically the abbreviation of the
engineering unit, for example "h" for hour or "m/s" for meter per second.

 description LocalizedText Contains the full name of the engineering unit such as "hour" or "meter per second".

Its representation in the AddressSpace is defined in Table 17.

Table 17 – EUInformation definition

Attribute Value

BrowseName EUInformation

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Base Info EUInformation

5.6.3.3 Mapping of UN/CEFACT to EUInformation

This clause specifies how to apply the “Codes for Units of Measurement” published by the
“United Nations Centre for Trade Facilitation and Electronic Business” (see
https://www.unece.org/cefact/codesfortrade/codes_index.html). This recommendation
establishes a single list of code elements to represent units of the International System of Units
(SI Units) like units of measure for length, mass (weight), volume and other quantities and in
addition covers administration, commerce, transport, science, technology, industry etc. It
provides a fixed code that can be used for automated evaluation.

Table 18 contains a small excerpt of the relevant columns in the UNECE recommendation:

Table 18 – Examples from the UNECE Recommendation

Excerpt from Recommendation N°. 20, Annex 1

Common Code Name Symbol

C81 radian rad

C25 milliradian mrad

MMT millimetre mm

HMT hectometre hm

KMT kilometre km

KMQ kilogram per cubic metre kg/m3

FAH degree Fahrenheit °F

The mapping of the UNECE common codes to EUInformation.unitId,
EUInformation.displayName, and EUInformation.description is available here:
http://www.opcfoundation.org/UA/EngineeringUnits/UNECE/UNECE_to_OPCUA.csv

This mapping has been generated as follows:

• The namespaceUri shall be http://www.opcfoundation.org/UA/units/un/cefact

• The Common Code (represented as an alphanumeric variable length of 3 characters)
has been converted into an 32 Bit Integer and is used for the unitId. The following
pseudo code specifies the conversion algorithm:

 Int32 unitId = 0;

 Int32 c;

http://www.opcfoundation.org/UA/EngineeringUnits/UNECE/UNECE_to_OPCUA.csv
http://www.opcfoundation.org/UA/units/un/cefact

1.05.00 19 OPC 10000-8: Data Access

 for (i=0; i<=3;i++)
 {

 c = CommonCode[i];

 if (c == 0) break; // end of Common Code

 unitId = unitId << 8;

 unitId = unitId | c;

}

• The Symbol field is used for displayName. The localeId field of
EUInformation.displayName shall be an empty string.

• The Name field is used for description. If the name is copied, then the localeId field of
EUInformation.description shall be an empty string. If the name is localized then the
localeId field shall specify the correct locale.

5.6.4 ComplexNumberType

This structure defines float IEEE 32 bits complex value. Its elements are defined in Table 19.

Table 19 – ComplexNumberType DataType structure

Name Type Description

ComplexNumberType structure

 real Float Value real part

 imaginary Float Value imaginary part

Its representation in the AddressSpace is defined in Table 20

Table 20 – ComplexNumberType definition

Attribute Value

BrowseName ComplexNumberType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Data Access Complex Number

5.6.5 DoubleComplexNumberType

This structure defines double IEEE 64 bits complex value. Its elements are defined in Table 21.

Table 21 – DoubleComplexNumberType DataType structure

Name Type Description

DoubleComplexNumberType structure

 real Double Value real part

 imaginary Double Value imaginary part

Its representation in the AddressSpace is defined in Table 22.

Table 22 – DoubleComplexNumberType definition

Attribute Value

BrowseName DoubleComplexNumberType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Data Access DoubleComplex Number

5.6.6 AxisInformation

This structure defines the information for auxiliary axis for ArrayItemType Variables.

OPC 10000-8: Data Access 20 1.05.00

There are three typical uses of this structure:

a) The step between points is constant and can be predicted using the range information and
the number of points. In this case, axisSteps can be set to NULL.

b) The step between points is not constant, but remains the same for a long period of time
(from acquisition to acquisition for example). In this case, axisSteps contains the value of
each step on the axis.

c) The step between points is not constant and changes at every update. In this case, a type
like XYArrayType shall be used and axisSteps is set to NULL.

Its elements are defined in Table 23.

Table 23 – AxisInformation DataType structure

Name Type Description

AxisInformation structure

 engineeringUnits EUInformation Holds the information about the engineering units for a given axis.

 eURange Range Limits of the range of the axis

 title LocalizedText User readable axis title, useful when the units are %, the Title may be
“Particle size distribution”

 axisScaleType AxisScaleEnumeration LINEAR, LOG, LN, defined by AxisSteps

 axisSteps Double[] Specific value of each axis steps, may be set to “Null” if not used

Its representation in the AddressSpace is defined in Table 24.

Table 24 – AxisInformation definition

Attribute Value

BrowseName AxisInformation

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Data Access AxisInformationType

When the steps in the axis are constant, axisSteps may be set to “Null” and in this case, the
Range limits are used to compute the steps. The number of steps in the axis comes from the
parent ArrayItem.ArrayDimensions .

5.6.7 AxisScaleEnumeration

This enumeration identifies on which type of axis the data shall be displayed. Its values are
defined in Table 25.

Table 25 – AxisScaleEnumeration values

Name Value Description

LINEAR 0 Linear scale

LOG 1 Log base 10 scale

LN 2 Log base e scale

Its representation in the AddressSpace is defined in Table 26.

Table 26 – AxisScaleEnumeration definition

Attribute Value

BrowseName AxisScaleEnumeration

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Enumeration type defined in OPC 10000-5

HasProperty Variable EnumStrings LocalizedText[] PropertyType

Conformance Units

Data Access ArrayItem2Type

1.05.00 21 OPC 10000-8: Data Access

5.6.8 XVType

This structure defines a physical value relative to a X axis and it is used as the DataType of the
Value of XYArrayItemType. For details see 5.3.4.3.

Many devices can produce values that can perfectly be represented with a float IEEE 32 bits
but, they can position them on the X axis with an accuracy that requires double IEEE 64 bits.
For example, the peak value in an absorbance spectrum where the amplitude of the pea k can
be represented by a float IEEE 32 bits, but its frequency position required 10 digits which implies
the use of a double IEEE 64 bits.

Its elements are defined in Table 27.

Table 27 – XVType DataType structure

Name Type Description

XVType structure

 x Double Position on the X axis of this value

 value Float The value itself

Its representation in the AddressSpace is defined in Table 28.

Table 28 – XVType definition

Attribute Value

BrowseName XVType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of Structure defined in OPC 10000-5.

Conformance Units

Data Access XYArrayItemType

6 Data Access specific usage of Services

6.1 General

OPC 10000-4 specifies the complete set of services. The services needed for the purpose of
DataAccess are:

• The View service set and Query service set to detect DataItems, and their Properties.

• The Attribute service set to read or write Attributes and in particular the value Attribute.

• The MonitoredItem and Subscription service set to set up monitoring of DataItems and to
receive data change notifications.

6.2 PercentDeadband

The DataChangeFilter in OPC 10000-4 defines the conditions under which a data change
notification shall be reported. This filter contains a deadbandValue which can be of type
AbsoluteDeadband or PercentDeadband. OPC 10000-4 already specifies the behaviour of the
AbsoluteDeadband. This sub-clause specifies the behaviour of the PercentDeadband type.

DeadbandType = PercentDeadband

For this type of deadband the deadbandValue is defined as the percentage of the EURange.
That is, it applies only to AnalogItems with an EURange Property that defines the typical value
range for the item. This range shall be multiplied with the deadbandValue and then compared
to the actual value change to determine the need for a data change notification . The following
pseudo code shows how the deadband is calculated:

DataChange if (absolute value of (last cached value - current value) >

 (deadbandValue/100.0) * ((high–low) of EURange)))

The range of the deadbandValue is from 0,0 to 100,0 per cent. Specifying a deadbandValue
outside of this range will be rejected and reported with the StatusCode
Bad_DeadbandFilterInvalid (see Table 29).

OPC 10000-8: Data Access 22 1.05.00

If the Value of the MonitoredItem is an array, then the deadband calculation logic shall be
applied to each element of the array. If an element that requires a DataChange is found, then
no further deadband checking is necessary and the entire array shall be returned.

6.3 Data Access status codes

6.3.1 Overview

This subclause defines additional codes and rules that apply to the StatusCode when used for
Data Access values.

The general structure of the StatusCode is specified in OPC 10000-4 and includes a set of
common operational result codes that also apply to Data Access.

6.3.2 Operation level result codes

Certain conditions under which a Variable value was generated are only valid for automation
data and in particular for device data; they are similar, but are slightly more generic than the
description of data quality in the various fieldbus specifications.

Table 29 contains codes with BAD severity which indicates a failure.

Table 30 contains codes with UNCERTAIN severity which indicates that the value has been
generated under sub-normal conditions.

Table 31 contains GOOD (success) codes.

Note again, that these are the codes that are specific for Data Access and supplement the
codes that apply to all types of data which are defined in OPC 10000-4.

1.05.00 23 OPC 10000-8: Data Access

Table 29 – Operation level result codes for BAD data quality

Symbolic Id Description

Note - Bad is defined in OPC 10000-4. It shall be used when there is no special reason why the Value is bad.

Bad_ConfigurationError There is a problem with the configuration that affects the usefulness of the value.

Bad_NotConnected The variable should receive its value from some data source, but has never been configured to do
so.

Bad_DeviceFailure There has been a failure in the device/data source that generates the value that has affected the
value.

Bad_SensorFailure There has been a failure in the sensor from which the value is derived by the device/data source.
The limits bits are used to define if the limits of the value have been reached.

NOTE - Bad_NoCommunication is defined in OPC 10000-4. It shall be used when communications to the data source
is defined, but not established, and there is no last known value available.

Bad_OutOfService The source of the data is not operational.

Bad_LastKnown OPC UA requires that the Server shall return a Null value when the Severity is Bad. Therefore, the
Fieldbus code “Bad_LastKnown” shall be mapped to Uncertain_NoCommunicationLastUsable.

Bad_DeadbandFilterInvalid The specified PercentDeadband is not between 0.0 and 100.0 or a PercentDeadband is not
supported, since an EURange is not configured.

NOTE - Bad_WaitingForInitialData is defined in OPC 10000-4.

Table 30 – Operation level result codes for UNCERTAIN data quality

Symbolic Id Description

Note - Uncertain is defined in OPC 10000-4. It shall be used when there is no special reason why the Value
is uncertain.

Uncertain_
NoCommunicationLastUsa
ble

Communication to the data source has failed. The variable value is the last value that had a good
quality and it is uncertain whether this value is still current.

The server timestamp in this case is the last time that the communication status was checked. The
time at which the value was last verified to be true is no longer available.

Uncertain_
LastUsableValue

Whatever was updating this value has stopped doing so. This happens when an input variable is
configured to receive its value from another variable and this configuration is cleared after one or
more values have been received.

This status/substatus is not used to indicate that a value is stale. Stale data can be detected by the
client looking at the timestamps.

Uncertain_SubstituteValue The value is an operational value that was manually overwritten.

Uncertain_InitialValue The value is an initial value for a variable that normally receives its value from another variable. This
status/substatus is set only during configuration while the variable is not operational (while it is out-
of-service).

Uncertain_
SensorNotAccurate

The value is at one of the sensor limits. The Limits bits define which limit has been reached. Also
set if the device can determine that the sensor has reduced accuracy (e.g. degraded analyzer), in
which case the Limits bits indicate that the value is not limited.

Uncertain_
EngineeringUnitsExceeded

The value is outside of the range of values defined for this parameter. The Limits bits indicate which
limit has been reached or exceeded.

Uncertain_SubNormal The value is derived from multiple sources and has less than the required number of Good sources.

Uncertain_SimulatedValue The value is simulated.

Uncertain_
SensorCalibration

The value may not be accurate due to a sensor calibration fault.

Uncertain_
ConfigurationError

The value may not be accurate due to a configuration issue.

Table 31 – Operation level result codes for GOOD data quality

Symbolic Id Description

NOTE Good is defined in OPC 10000-4. It shall be used when there are no special conditions.

Good_LocalOverride The value has been Overridden. Typically this is means the input has been disconnected and a
manually-entered value has been "forced".

OPC 10000-8: Data Access 24 1.05.00

6.3.3 LimitBits

The bottom 16 bits of the StatusCode are bit flags that contain additional information, but do
not affect the meaning of the StatusCode. Of particular interest for DataItems is the LimitBits
field. In some cases, such as sensor failure it can provide useful diagnostic information.

Servers that do not support Limit have to set this field to 0.

1.05.00 25 OPC 10000-8: Data Access

Annex A OPC COM DA to UA mapping

A.1 Introduction

This Annex provides details on mapping OPC COM Data Access (DA) information to OPC UA
to help vendors migrate to OPC UA based systems while still being able to access information
from existing OPC COM DA systems.

The OPC Foundation provides COM UA Wrapper and Proxy samples that act as a bridge
between the OPC DA and the OPC UA systems.

The COM UA Wrapper is an OPC UA Server that wraps an OPC DA Server and with that enables
an OPC UA Client to access information from the DA Server. The COM UA Proxy enables an
OPC DA Client to access information from an OPC UA Server.

The mappings describe generic DA interoperability components. It is recommended that
vendors use this mapping if they develop their own components, however, some applications
may benefit from vendor specific mappings.

A.2 Security considerations

COM DA relies on the Microsoft COM security infrastructure and does not specify any security
parameters such as user identity. The developer of UA Wrapper and Proxy therefore has to
consider the mapping of security aspects.

The COM UA Wrapper for instance may accept any Username/password and then try to
impersonate this user by calling proper Windows services before connecting to the COM DA
Server.

OPC 10000-8: Data Access 26 1.05.00

A.3 COM UA wrapper for OPC DA Server

A.3.1 Information Model mapping

A.3.1.1 General

OPC DA defines 3 elements in the address space: Branch, Item and Property. The COM UA
Wrapper maps these types to the OPC UA types as described in Subclauses A.3.1.2 to A.3.1.4.

Branch1
[Object]

FolderType

Root(ServerName)

AnalogItemType

●

●●

Branch2
[Object]

Property1

[Property]

PropertyType

HasProperty

●

●

●

EURange

[Property]

HasProperty

EngineeringUnits

[Property]

InstrumentRange

[Property]

●

●

●

Item1

[DataVariable]

TrueState

[Property]

HasProperty

FalseState

[Property]

Property1

[Property]

●

●

●

Item2

[DataVariable]
TwoStateDiscreteType

Organizes

EnumStrings

[Property]

HasProperty

Property1

[Property]

●

●

●

Item3

[DataVariable]
MultiStateDiscreteType

Organizes

Property1

[Property]

HasProperty

●

●

●

Item4

[DataVariable]
DataItemType

Defined by OPC UA

Defined by OPC COM
DA server

Property1

[Property]

Figure A.1 – Sample OPC UA Information Model for OPC DA

1.05.00 27 OPC 10000-8: Data Access

A.3.1.2 Branch

DA Branches are represented in the COM UA Wrapper as Objects of FolderType.

The top-level branch (the root) should be represented by an Object where the BrowseName is
the Server ProgId.

The OPC DA Address space hierarchy is discovered using the ChangeBrowsePosition from the
Root and BrowseOPCItemIds to get the Branches, Items and Properties.

The name returned from the BrowseOPCItemIds enumString is used as the BrowseName and
the DisplayName for each Branch. See also clause A.3.1.5.

The ItemId obtained using the GetItemID is used as a part of the NodeId for each Branch. See
also clause A.3.1.5.

An OPC UA Folder representing a DA Branch uses the Organizes References to reference child
DA Branches and uses HasComponent References for DA Leafs (Items). It is acceptable for
customized wrappers to use a sub-type of these ReferenceTypes.

A.3.1.3 Item

DA items (leafs) are represented in the COM UA Wrapper as Variables. The VariableType
depends on the existance of special DA properties as follows :

• AnalogItemType: An item in the DA server that has High EU and Low EU properties or
its EU Type property is Analog is represented as Variable of AnalogItemType in the
COM UA Wrapper. The AnalogItemType has the following Properties:

o EURange: The values of the High EU and Low EU properties of the DA Item are
assigned to the EURange Property

o EngineeringUnits: The value of the Engineering Unit property of the DA Item are
assigned to the EngineeringUnits Property.

o InstrumentRange: The values of the High IR and Low IR properties of the DA Item
are assigned to the InstrumentRange Property

• TwoStateDiscreteType: An item in DA server that has Open Label and Close Label
properties is represented as Variable of TwoStateDiscreteType in the COM UA Wrapper.
The TwoStateDiscreteType has the following Properties

o TrueState: The value of the Close Label property of the DA item is assigned to the
TrueState Property.

o FalseState: The value of the Open Label property of the DA item is assigned to the
FalseState Property.

• MultiStateDiscreteType: An item in the DA server that has its EU Type property as
enumerated is represented as Variable of MultiStateDiscreteType in the COM UA
Wrapper. The MultiStateDiscreteType has the following Property:

o EnumStrings: The enumerated values of the EUInfo Property of the DA item are
assigned to the EnumStrings Property.

• DataItemType: An item in the DA Server that is not any of the above types is represented
as Variable of DataItemType in the COM UA Wrapper.

Below are mappings that are common for all item types

• The name of the item in the DA Server is used as the BrowseName and the DisplayName
for the Node in the COM UA Wrapper. See also clause A.3.1.5.

• The ItemId in the DA server is used as a part of the NodeId for the Node. See also clause
A.3.1.5.

• TimeZone property in the DA server is represented by a TimeZone Property.

• The Description property value in the DA server is assigned to the Description Attribute.

OPC 10000-8: Data Access 28 1.05.00

• The DataType property value in the DA server is assigned to the DataType Attribute.

• If the item in the DA server is an array, the ValueRank Attribute is set as
OneOrMoreDimensions. If not, it is set to Scalar.

• The AccessLevel Attribute is set with the AccessRights value in the DA server:

o OPC_READABLE -> Readable

o OPC_WRITABLE -> Writable

Note that the same values are also set for the UserAccessLevel in the COM UA Wrapper.

• The ScanRate property value in the DA server is assigned to the
MinimumSamplingInterval Attribute.

Any Properties added to a Node in the COM UA Wrapper are referenced us ing the HasProperty
ReferenceType.

A.3.1.4 Property

A property in the DA server is represented in the COM UA Wrapper as a Variable with
TypeDefinition as PropertyType.

The properties for an item are retrieved using the QueryAvailableProperties call in the DA
server.

Below are mappings of the property details to the OPC UA Property:

• The description of a property in the DA server is used as the BrowseName and the
DisplayName of the Node in the COM UA Wrapper.

• The PropertyID and ItemID (if they exist for the property) in the DA server are used as
a part of the NodeID for the node in the COM UA Wrapper.

• The DataType value in the DA server is used as value for the DataType Attribute of the
Property in the COM UA Wrapper.

• If the property value in the DA server is an array, the ValueRank Attribute of the Property
is set to OneOrMoreDimensions. Otherwise it is set to Scalar.

• If the property has an ItemID in the DA server, then the AccessLevel attribute for the
Node is set to ReadableOrWriteable. If not, it is set to Readable.

Table A.1 shows the mapping between the common OPC COM DA properties to the OPC UA
Node attributes/properties.

Table A.1 – OPC COM DA to OPC UA Properties mapping

Property Name (PropertyID) of OPC COM DA OPC UA Information Model OPC UA DataType

Access Rights (5) AccessLevel Attribute Int32

EU Units (100) EngineeringUnits Property String

Item Description (101) Description Attribute String

High EU (102) EURange Property Double

Low EU (103) EURange Property Double

High Instrument Range (104) InstrumentRange Property Double

Low Instrument Range (105) InstrumentRange Property Double

Close Label (106) TrueState Property String

Open Label (107) FalseState Property String

Other Properties (include Vendor specific
Properties)

PropertyType Based on the
DataType of the
Property

1.05.00 29 OPC 10000-8: Data Access

A.3.1.5 BrowseName and DisplayName Mapping

As described above, both the OPC UA Browsename and Displayname for Nodes representing
COM DA Branches and Leafs are derived from the name of the corresponding item in the COM
DA Server.

This name can only be acquired by using the COM DA Browse Services. In OPC UA, however,
the BrowseName and DisplayName are Attributes that Clients can ask for at any time. There
are several options to support this in a Wrapper but all of them have pros and cons. Here are
some popular implementation options:

a. Allow browsing the complete COM DA Address Space and then build and persist an
offline copy of it. Resolve the BrowseName by scanning this offline copy.

o Pro: The ItemID can be used as is for the OPC UA NodeId.

o Con: The initial browse can take a while and may have to be repeated for COM
DA Servers with a dynamic Address Space.

b. Create OPC UA NodeId values that include both the COM DA ItemID and the Item name.
When the OPC UA Client passes such a NodeId to read the BrowseName or
DisplayName Attribute, the wrapper can easily extract the name from the NodeId value.

o Pro: Efficient and reliable.

o Con: The NodeId will not represent the ItemId. It becomes difficult for human
users to match the two IDs.

c. A number of COM DA Servers use ItemIDs that consist of a path where the path
elements are separated with a delimiter and the last element is the item name. Wrappers
may provide ways to configure the delimiter so that they can easily extract the item
name.

o Pro: Efficient and reliable. The ItemID can be used as is for the OPC UA NodeId.

o Con: Not a generic solution. Only works for specific COM-DA Servers.

For wrappers that are custom to a specific Server, knowledge of the COM DA server address
space can result in other optimizations or short cuts (i.e. the server will always have a certain
schema / naming sequence etc.).

A.3.2 Data and error mapping

A.3.2.1 General

In a DA server, Automation Data is represented by Value, Quality and Time Stamp for a Tag.

The COM UA Wrapper maps the VQT data to the Data Value and Diagnostic Info structures.

The Error codes returned by the DA server are based on the HRESULT type. The COM UA
Wrapper maps this error code to an OPC UA Status Code. Figure A.2 illustrates this mapping.

OPC 10000-8: Data Access 30 1.05.00

DataValue

Value

StatusCode

Source Time Stamp

Server Time Stamp

Diagnostic Info

InnerStatusCode

LocalizedText

SymbolicID

InnerDiagnosticInfo

Severity

Subcode

Limit Bits

Locale

SymbolicID

LocalizedText

Locale

OPC UA Information OPC DA Information

OPCDataValue(OPCITEMSTATE)

Value

Quality

QQ

SSSS

LL

TimeStamp

OPC UA Wrapper
 Vendor Specific Information

Server Time Stamp

Vendor
Quality

Error Code (HRESULT)

LocaleID

Error String

Server Error Code

Server Locale

Server Error String

{}

{}

{}

If any error occurs it is reflected in the StatusCode
Additional detail maybe reflected in DiagnosticsInfo

Figure A.2 – OPC COM DA to OPC UA data and error mapping

1.05.00 31 OPC 10000-8: Data Access

A.3.2.2 Value

The data values in the DA server are represented as Variant Data type. The COM UA Wrapper
converts them to the corresponding OPC UA data type. The mapping is shown in Table A.2:

Table A.2 – DataTypes and mapping

Variant Data

Type (In DA server)

OPC UA

Data type Mapping in COM UA
Server (DataValue structure)

VT_I2 Int16

VT_I4 Int32

VT_R4 Float

VT_R8 Double

VT_BSTR String

VT_BOOL Boolean

VT_UI1 Byte

VT_I1 SByte

VT_UI2 UInt16

VT_UI4 UInt32

VT_I8 Int64

VT_UI8 UInt64

VT_DATE Double

VT_DECIMAL Decimal

VT_ARRAY Array of OPC UA types

.

A.3.2.3 Quality

The Quality of a Data Value in the DA server is represented as a 16 bit value where the lower
8 bits is of the form QQSSSSLL (Q: Main Quality, S: Sub Status, L: Limit) and higher 8 bits is
vendor specific.

The COM UA Wrapper maps the DA server to the OPC UA Status code as shown Figure A.3:

DataValue

StatusCode

Severity

Subcode

Limit Bits

OPCDataValue(OPCITEMSTATE)

Quality

QQ

SSSS

LL

Vendor
Quality

{}

Figure A.3 – Status Code mapping

The primary quality is mapped to the Severity field of the Status code. The Sub Status is mapped
to the SubCode and the Limit is mapped to the Limit Bits of the Status Code.

Please note that the Vendor quality is currently discarded.

OPC 10000-8: Data Access 32 1.05.00

Table A.3 shows a mapping of the OPC COM DA primary quality mapping to OPC UA status
code

Table A.3 – Quality mapping

OPC DA Primary Quality (Quality & Sub status
QQSSSS)

OPC UA Status Code

GOOD Good

LOCAL_OVERRIDE Good_LocalOverride

UNCERTAIN Uncertain

SUB_NORMAL Uncertain_SubNormal

SENSOR_CAL Uncertain_SensorNotAccurate

EGU_EXCEEDED Uncertain_EngineeringUnitsExceeded

LAST_USABLE Uncertain_LastUsableValue

BAD Bad

CONFIG_ERROR Bad_ConfigurationError

NOT_CONNECTED Bad_NotConnected

COMM_FAILURE Bad_NoCommunication

DEVICE_FAILURE Bad_DeviceFailure

SENSOR_FAILURE Bad_SensorFailure

LAST_KNOWN Bad_OutOfService

OUT_OF_SERVICE Bad_OutOfService

WAITING_FOR_INITIAL_DATA Bad_WaitingForInitialData

A.3.2.4 Timestamp

The Timestamp provided for a value in the DA server is assigned to the SourceTimeStamp of
the DataValue in the COM UA Wrapper.

The ServerTimeStamp in the DataValue is set to the current time by the COM UA Wrapper at
the start of the Read Operation.

A.3.3 Read data

The COM UA Wrapper supports performing Read operations to DA servers of versions 2.05a
and 3.

For version 2.05a, the COM UA wrapper creates a Group using the IOPCServer::AddGroup
method and adds the items whose data is to be read to the Group using
IOPCItemMgmt::AddItems method. The Data is retrieved for the items using the
IOPCSyncIO::Read method. The VQT for each item is mapped to the DataValue structure as
shown in Figure A.2. Please note that only Read from Device is supported for this version. The
“maxAge” parameter is ignored.

For version 3, the COM UA Wrapper uses the IOPCItemIO::Read to retrieve the data. The VQT
for each item is mapped to the DataValue structure as shown in Figure A.2. The Read supports
both the Read from Device and Cache and uses the “maxAge” parameter.

If there are errors for the items in the Read from the DA server, then these are mapped to the
StatusCode of the DataValue in the COM UA Wrapper.

1.05.00 33 OPC 10000-8: Data Access

The mapping of the OPC COM DA Read Errors code to OPC UA Status code (in the COM UA
Wrapper) is shown in Table A.4:

Table A.4 – OPC DA Read error mapping

OPC DA Error ID OPC UA Status Code

OPC_E_BADRIGHTS Bad_NotReadable

E_OUTOFMEMORY Bad_OutOfMemory

OPC_E_INVALIDHANDLE Bad_NodeIdUnknown

OPC_E_UNKNOWNITEMID Bad_NodeIdUnknown

E_INVALIDITEMID Bad_NodeIdInvalid

E_INVALID_PID Bad_AttributeIdInvalid

E_ACCESSDENIED Bad_OutOfService

Others Bad_UnexpectedError

A.3.4 Write Data

The COM UA Wrapper supports performing Write operations to DA servers of versions 2.05a
and 3.

For version 2.05a, the COM UA wrapper creates a Group using the IOPCServer::AddGroup
method and adds the items whose data is to be written using IOPCItemMgmt::AddItems method.
The value is written for the items using the IOPCSyncIO::Write method. Note that if the
StatusCode or TimeStamps (Source or Server) is specified to be written for the item then the
COM UA Wrapper returns a BadWriteNotSupported Status code for the item.

For version 3, the COM UA Wrapper uses the IOPCItemIO::WriteVQT data including
StatusCode and TimeStamp. If a SourceTimeStamp is provided, this timestamp is used for the
Write else the ServerTimeStamp is used.

If there are errors for the items in the Write from the DA server, then these are mapped to the
StatusCode for the corresponding item.

The mapping of the OPC COM DA Write Errors code to OPC UA Status code (in the COM UA
Wrapper) is shown in Table A.5:

Table A.5 – OPC DA Write error code mapping

OPC DA Error ID OPC UA Status Code

E_BADRIGHTS Bad_NotWritable

DISP_E_TYPEMISMATCH Bad_TypeMismatch

E_BADTYPE Bad_TypeMismatch

E_RANGE Bad_OutOfRange

DISP_E_OVERFLOW Bad_OutOfRange

E_OUTOFMEMORY Bad_OutOfMemory

E_INVALIDHANDLE Bad_NodeIdUnknown

E_UNKNOWNITEMID Bad_NodeIdUnknown

E_INVALIDITEMID Bad_NodeIdInvalid

E_INVALID_PID Bad_NodeIdInvalid

E_NOTSUPPORTED Bad_WriteNotSupported

S_CLAMP Good_Clamped

Others Bad_UnexpectedError

A.3.5 Subscriptions

A subscription is created in the DA server when a MonitoredItem is created in the COM UA
Wrapper.

OPC 10000-8: Data Access 34 1.05.00

The SamplingInterval and the Deadband value are used for the subscription to setup a periodic
data change call back on the COM UA Wrapper. Note that only the PercentDeadbandType is
supported by the COM UA Wrapper.

The VQT for each item is mapped to the DataValue structure as shown in Figure A.2 and
published to the client by the COM UA Wrapper periodically.

The mapping of the OPC COM DA Read Errors code to OPC UA Status code (in the COM UA
Wrapper) is the same as the Read mapping in Figure A.2.

A.4 COM UA proxy for DA Client

A.4.1 Guidelines

The Data Access COM UA Proxy is a COM Server combined with a UA Client. It maps the Data
Access address space of UA Data Access Server into the appropriate COM Data Access
objects.

Clauses A.4.1 through A.4.6 identify the design guidelines and constraints used to develop the
Data Access COM UA Proxy provided by the OPC Foundation. In order to maintain a high
degree of consistency and interoperability, it is strongly recommended that vendors, who
choose to implement their own version of the Data Access COM UA Proxy, follow these same
guidelines and constraints.

The Data Access COM Client simply needs to address how to connect to the UA Data Access
Server. Connectivity approaches include the one where Data Access COM Clients connect to a
UA Data Access Server with a CLSID just as if the target Server were a Data Access COM
Server. However, the CLSID can be considered virtual since it is defined to connect to
intermediary components that ultimately connect to the UA Data Access Server. Using this
approach, the Data Access COM Client calls co-create instance with a virtual CLSID as
described above. This connects to the Data Access COM UA Proxy components. The Data
Access COM UA Proxy then establishes a secure channel and session with the UA Data Access
Server. As a result, the Data Access COM Client gets a COM Data Access Server interface
pointer.

A.4.2 Information Model and Address Space mapping

A.4.2.1 General

OPC UA defines 8 Node Class types in the address space Object, Variable, Method,
ObjectType, VariableType, ReferenceType, DataType, View. The COM UA Proxy maps only the
nodes of Node Class types Object, Variable to the OPC DA types as shown in the figure below.
Only the nodes under the Objects node are considered for the COM UA Proxy address space
and others such as Types, Views are not mapped.

Figure A.4 shows an example mapping of OPC DA to OPC UA information.

1.05.00 35 OPC 10000-8: Data Access

Objects
[Object]

Root

Server
[Object]

ServerStatus
[Variable]

Organizes

Organizes

HasComponent

ServerCapabilities
[Object]

HasComponent

ServerArray
[Variable]

HasProperty

Organizes

Organizes

…….

…….

GetMonitoredItems
[Method]

Types
[Object]

Views
[Object]

Root

Server
[Branch]

ServerStatus
[Item]

ServerCapabilities
[Branch]

ServerArray
[Item]

…….

OPC UA Address Space
COM UA Proxy Address

Space (OPC DA)

Data
[Object]

Boiler
[Object]

Data
[Branch]

Boiler
[Branch]

UA Browse Name (613)
[Property]

New Properties

Not
Mapped

Not
Mapped

Not
Mapped

Item Description(101)
[Property]

UA Description (614)
[Property]

Figure A.4 – Sample OPC DA mapping of OPC UA Information Model and Address Space

A.4.2.2 Object Nodes

A node of Object Node class in the OPC UA server is represented in the Data Access COM UA
Proxy as a Branch.

The root of the Data Access COM UA Proxy is the Objects folder of the OPC UA Server.

The OPC UA Address space hierarchy is discovered using the Browse Service for the Objects
Node using the following filters:

OPC 10000-8: Data Access 36 1.05.00

• BrowseDirection as Forward

• ReferenceTypeId as Organizes and HasChild.

• IncludeSubtypes as True

• NodeClassMask as Object and Variable

The DisplayName of the OPC UA node is used as the Name for each Branch in the Data Access
COM UA Proxy

Each Branch in the Data Access COM UA Proxy is assigned 3 properties:

• UA Browse Name (Property ID: 613): The value of the BrowseName attribute of the node
in the OPC UA Server is assigned to this property.

• UA Description (Property ID: 614): The value of the Description attribute of the node in
the OPC UA Server is assigned to this property, if a Description attribute is provided.

• Item Description (Property ID: 101): The value of the DisplayName attribute of the node
in the OPC UA Server is assigned to this property.

NOTE COM DA Clients typically display the ItemID and the Item Description. Since the ItemID generated by
the UA Proxy may be particularly difficult to read and understand, proxies may use the DisplayName as
value for the Item Description Property as it will be easier to understand by a human user.

A.4.2.3 Variable Nodes

A node of Variable Node class in the OPC UA server is represented in the Data Access COM
UA Proxy as an Item.

The DisplayName of the OPC UA node is used as the Name for each Item in the Data Access
COM UA Proxy.

The NodeId of the OPC UA node is used as the ItemId for each Item in the Data Access COM
UA Proxy. But the ‘=’ character is replaced with ‘-’ in the string. E.g. NodeId: ns=4,i=10, ItemID
= “ns-4;i-10” or NodeId: ns=4,s=FL102, ItemID = “ns-4,s-FL102”

Each Item in the Data Access COM UA Proxy is assigned the following properties based on the
node attributes or its references:

Standard Properties:

• Item Canonical Data Type (Property ID: 1): The combined value of the DataType
attribute and the ValueRank attribute of the node in the OPC UA Server is assigned to
this property (see A.4.3.2).

• Item Value (Property ID: 2): The value of the Value attribute of the node in the OPC UA
Server is assigned to this property. Details on Value mapping are in A.4.3.2

• Item Quality (Property ID: 3): The StatusCode of the Value obtained for the node in the
OPC UA Server is assigned to this property. Details on Quality mapping are in A.4.3.3

• Item Timestamp (Property ID: 4): The SourceTimestamp or ServerTimestamp of the
Value obtained for the node in the OPC UA Server is assigned to this property. Details
on Timestamp mapping are in A.4.3.4

• Item Access Rights (Property ID: 5): The value of the AccessLevel attribute of the node
in the OPC UA Server is assigned to this property based on the following mapping:

o CurrentRead -> OPC_READABLE

o CurrentWrite -> OPC_WRITABLE

The other AccessLevel provided by OPC are ignored

• Server Scan Rate (Property ID: 6): The value of the MinimumSamplingInterval attribute
of the node in the OPC UA Server is assigned to this property.

• Item EU Type (Property ID: 7): The EU Type value is assigned based on the references
of the node in the OPC UA Server:

1.05.00 37 OPC 10000-8: Data Access

• Analog(1) : if the node in the OPC UA Server references a EURange property node, then
it is assigned the Analog EU Type.

• Enumerated(2): if the node in the OPC UA Server references a EnumStrings property
node, then it is assigned the Enumerated EU Type.

• Empty(0): For a node in the OPC UA Server that does not meet above criteria, the type
is set as 0 (Empty)

• EU Info (Property ID: 8): if the node in the OPC UA Server references an EnumStrings
property node, then the enumerated values of the property node is assigned to this
property.

• EU Units (Property ID: 100): if the node in the OPC UA Server references a
EngineeringUnits property node, then the value of the EngineeringUnits property node
is assigned the EU Units property.

• Item Description (Property ID: 101): The value of the DisplayName attribute of the node
in the OPC UA Server is assigned to this property.

• High EU (Property ID: 102): if the node in the OPC UA Server references a EURange
property node, then the ‘High’ value of the property node is assigned to this property .

• Low EU (Property ID: 103): if the node in the OPC UA Server references a EURange
property node, then the ‘Low’ value of the property node is assigned to this property .

• High Instrument Range (Property ID: 104): if the node in the OPC UA Server references
an InstrumentRange property node, then the ‘High’ value of the property node is
assigned to this property .

• Low Instrument Range (Property ID: 105): if the node in the OPC UA Server references
an InstrumentRange property node, then the ‘Low’ value of the property node is assigned
to this property.

• Contact Close Label (Property ID: 106): if the node in the OPC UA Server references a
FalseState property node, then the value of the property node is assigned to this
property.

• Contact Open Label (Property ID: 107): if the node in the OPC UA Server references a
TrueState property node, then the value of the property node is assigned to this property .

• Item Time Zone (Property ID: 108): if the node in the OPC UA Server references a
TimeZone property node, then the ‘Offset’ value of the property node is assigned to this
property.

New Properties:

• UA BuiltIn Type (Property ID: 610): The identifier value of the DataType node associated
with the DataType attribute of the node in the OPC UA Server is assigned to this
property.

• UA Data Type Id (Property ID: 611): The complete NodeId value (namespace and
identifier) of the DataType node associated with the DataType attribute of the node in
the OPC UA Server is assigned to this property.

• UA Value Rank (Property ID: 612): The value of the ValueRank attribute of the node in
the OPC UA Server is assigned to this property.

• UA Browse Name (Property ID: 613): The value of the BrowseName attribute of the node
in the OPC UA Server is assigned to this property.

• UA Description (Property ID: 614): The value of the Description attribute of the node in
the OPC UA Server is assigned to this property.

A.4.2.4 Namespace Indices

For generating ItemIDs, the Proxy uses Namespace Indices. To assure that Clients can persist
these ItemIDs, the Namespace Indices must never change. To accomplish this the Proxy has
to persist its Namespace Table and only append entries but never change existing ones.

OPC 10000-8: Data Access 38 1.05.00

The Proxy also has to provide a translation from the current Namespace Table in the Server to
the persisted Namespace Table.

If you move or copy the Proxy to another machine, the Namespace Table has to be copied to
this machine as well.

A.4.3 Data and error mapping

A.4.3.1 General

In an OPC UA Server, Automation Data is represented as a Data Value and and status, in
addition additional error data can be provided via Diagnostic Info for a tag

The COM UA Proxy maps the Data Value structure into VQT data and error code.

For successful operations(StatusCode of Good and Uncertain), the COM UA Proxy maps the
Status Code of the DataValue to the OPC DA Quality But in case of error(StatusCode of Bad),
the Status Code is mapped to the OPC DA Error code.

The StatusCode in the Diagnostic Info returned by the OPC UA Server are mapped to OPC DA
Error codes. Figure A.5 illustrates this mapping.

DataValue

Value

StatusCode

Source Time Stamp

Server Time Stamp

Severity

Subcode

Limit Bits

OPC UA Information OPC DA Information

OPCDataValue(OPCITEMSTATE)

Value

Quality

QQ

SSSS

LL

TimeStamp

Vendor
Quality

Error Code (HRESULT)

{}

Figure A.5 – OPC UA to OPC DA data & error mapping

1.05.00 39 OPC 10000-8: Data Access

A.4.3.2 Value

The COM UA Proxy converts the OPC UA Data Value to the corresponding OPC DA Variant
type. The mapping is shown in Table A.6. For DataTypes that are subtypes of an existing base
DataType the conversion for the Base DataType is used.

Table A.6 – DataTypes and Mapping

OPC UA

Data type (Bin UA Server)

Variant Data

Type (In DA server)

Int16 VT_I2

Int32 VT_I4

Float VT_R4

Double VT_R8

Decimal VT_DECIMAL

String VT_BSTR

Boolean VT_BOOL

Byte VT_UI1

SByte VT_I1

UInt16 VT_UI2

UInt32 VT_UI4

Int64 VT_I8

UInt64 VT_UI8

Guid VT_BSTR

DateTime VT_DATE

NodeId VT_BSTR

XmlElement VT_BSTR

ExpandedNodeId VT_BSTR

QualifiedName VT_BSTR

LocalizedText VT_BSTR

StatusCode VT_UI4

ExtensionObject Array of VT_UI1

Array of above OPC UA types Array of corresponding Variant
type

A.4.3.3 Quality

The Quality of a Data Value in the OPC UA Server is represented as a StatusCode.

OPC 10000-8: Data Access 40 1.05.00

The COM UA Proxy maps the Severity, Subcode and the limit bits of the OPC UA Status code
to the lower 8 bits of the OPC DA Quality structure (of the form QQSSSSLL). Figure A.6
illustrates this mapping.

DataValue

StatusCode

Severity

Subcode

Limit Bits

OPCDataValue(OPCITEMSTATE)

Quality

QQ

SSSS

LL

Vendor
Quality

{}

Figure A.6 – OPC UA Status Code to OPC DA quality mapping

The Severity field of the Status code is mapped to the primary quality. The SubCode is mapped
to the Sub Status and the Limit Bits are mapped to the Limit field.

Table A.7 shows a mapping of the OPC UA status code to OPC DA primary quality

Table A.7 – Quality mapping

OPC UA Status Code OPC DA Primary Quality (Quality & Sub status
QQSSSS)

Good GOOD

Good_LocalOverride LOCAL_OVERRIDE

Uncertain UNCERTAIN

Uncertain_SubNormal SUB_NORMAL

Uncertain_SensorNotAccurate SENSOR_CAL

Uncertain_EngineeringUnitsExceeded EGU_EXCEEDED

Uncertain_LastUsableValue LAST_USABLE

Bad BAD

Bad_ConfigurationError CONFIG_ERROR

Bad_NotConnected NOT_CONNECTED

Bad_NoCommunication COMM_FAILURE

Bad_OutOfService OUT_OF_SERVICE

Bad_DeviceFailure DEVICE_FAILURE

Bad_SensorFailure SENSOR_FAILURE

Bad_WaitingForInitialData WAITING_FOR_INITIAL_DATA

A.4.3.4 Timestamp

If available, the SourceTimestamp of the DataValue in the OPC UA Server is assigned to the
Timestamp for the value in the COM UA Proxy. If SourceTimestamp is not available, then the
ServerTimestamp is used.

A.4.4 Read data

The COM UA Proxy converts all the ItemIds in the Read into valid NodeIds by replacing the ‘-’
with ‘=’ and calls the OPC UA Read Service for the Value Attribute.

If the Read Service call is successful then DataValue for each node is mapped to the VQT for
each item as shown in Figure A.5.

If the Read Service call fails or If there are errors for some of the Nodes, then the StatusCodes
of these Nodes are mapped to the error code by the COM UA Proxy.

1.05.00 41 OPC 10000-8: Data Access

The mapping of the OPC UA Status code to OPC DA Read Error code (in the COM UA Proxy)
is shown in Table A.8:

Table A.8 – OPC UA Read error mapping

OPC UA Status Code OPC DA Error ID

Bad_OutOfMemory E_OUTOFMEMORY

Bad_NodeIdInvalid E_INVALIDITEMID

Bad_NodeIdUnknown E_UNKNOWNITEMID

Bad_NotReadable E_BADRIGHTS

Bad_UserAccessDenied E_ACCESSDENIED

Bad_AttributeIdInvalid E_INVALIDITEMID

Bad_UnexpectedError E_FAIL

Bad_InternalError E_FAIL

Bad_SessionClosed E_FAIL

Bad_TypeMismatch E_BADTYPE

A.4.5 Write data

The COM UA Proxy converts all the ItemIds in the Write into valid NodeIds by replacing the ‘-’
with ‘=’. It converts the Value, Quality and Timestamp (VQT) to a DataValue structure as per
the mapping in Figure A.5. and calls the OPC UA Write Service for the Value Attribute.

If the Write Service call fails or if there are errors for some of the Nodes, then the StatusCodes
of these Nodes are mapped to the error code by the COM UA Proxy.

The mapping of the OPC UA Status code to OPC DA Write Error code (in the COM UA Proxy)
is shown in Table A.9:

Table A.9 – OPC UA Write error code mapping

OPC UA Status Code OPC DA Error ID

Bad_TypeMismatch E_BADTYPE

Bad_OutOfMemory E_OUTOFMEMORY

Bad_NodeIdInvalid E_INVALIDITEMID

Bad_NodeIdUnknown E_UNKNOWNITEMID

Bad_NotWritable E_BADRIGHTS

Bad_UserAccessDenied E_ACCESSDENIED

Bad_AttributeIdInvalid E_UNKNOWNITEMID

Bad_WriteNotSupported E_NOTSUPPORTED

Bad_OutOfRange E_RANGE

A.4.6 Subscriptions

The COM UA Proxy creates a Subscription in the OPC UA Server when a Group is created. The
Name, Active flag, UpdateRate parameters of the Group are used while creating the
subscription.

The COM UA Proxy Creates Monitored Items in the OPC UA Server when items are added to
the Group.

Following parameters and filters are used for creating the monitored items:

• The ItemIds are converted to valid NodeIds by replacing the ‘-’ with ‘=’.

• Data Change Filter is used for Items with EU type as Analog:

• Trigger = STATUS_VALUE_1

OPC 10000-8: Data Access 42 1.05.00

• If DeadBand value is specified for the Group, the;

o DeadbandType = Percent_2

o DeadbandValue = deadband specified for the group.

The COM UA Proxy calls the Publish Service of the OPC UA Server periodically and sends any
data changes to the client.

	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Concepts
	5 Model
	5.1 General
	5.2 SemanticsChanged
	5.3 Variable Types
	5.3.1 DataItemType
	5.3.2 AnalogItem VariableTypes
	5.3.2.1 General
	5.3.2.2 BaseAnalogType
	5.3.2.3 AnalogItemType
	5.3.2.4 AnalogUnitType
	5.3.2.5 AnalogUnitRangeType

	5.3.3 DiscreteItemType
	5.3.3.1 General
	5.3.3.2 TwoStateDiscreteType
	5.3.3.3 MultiStateDiscreteType
	5.3.3.4 MultiStateValueDiscreteType

	5.3.4 ArrayItemType
	5.3.4.1 General
	5.3.4.2 YArrayItemType
	5.3.4.3 XYArrayItemType
	5.3.4.4 ImageItemType
	5.3.4.5 CubeItemType
	5.3.4.6 NDimensionArrayItemType

	5.4 Address Space model
	5.5 Attributes of DataItems
	5.6 DataTypes
	5.6.1 Overview
	5.6.2 Range
	5.6.3 EUInformation
	5.6.3.1 General
	5.6.3.2 Definition of EUInformation
	5.6.3.3 Mapping of UN/CEFACT to EUInformation

	5.6.4 ComplexNumberType
	5.6.5 DoubleComplexNumberType
	5.6.6 AxisInformation
	5.6.7 AxisScaleEnumeration
	5.6.8 XVType

	6 Data Access specific usage of Services
	6.1 General
	6.2 PercentDeadband
	6.3 Data Access status codes
	6.3.1 Overview
	6.3.2 Operation level result codes
	6.3.3 LimitBits

	Annex A OPC COM DA to UA mapping
	A.1 Introduction
	A.2 Security considerations
	A.3 COM UA wrapper for OPC DA Server
	A.3.1 Information Model mapping
	A.3.1.1 General
	A.3.1.2 Branch
	A.3.1.3 Item
	A.3.1.4 Property
	A.3.1.5 BrowseName and DisplayName Mapping

	A.3.2 Data and error mapping
	A.3.2.1 General
	A.3.2.2 Value
	A.3.2.3 Quality
	A.3.2.4 Timestamp

	A.3.3 Read data
	A.3.4 Write Data
	A.3.5 Subscriptions

	A.4 COM UA proxy for DA Client
	A.4.1 Guidelines
	A.4.2 Information Model and Address Space mapping
	A.4.2.1 General
	A.4.2.2 Object Nodes
	A.4.2.3 Variable Nodes
	A.4.2.4 Namespace Indices

	A.4.3 Data and error mapping
	A.4.3.1 General
	A.4.3.2 Value
	A.4.3.3 Quality
	A.4.3.4 Timestamp

	A.4.4 Read data
	A.4.5 Write data
	A.4.6 Subscriptions

