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Foreword by Tom Burke 
 
 
 

are the architectural and development leaders who have enabled OPC to be so 

The OPC Unified Architecture was developed by over 30 companies over  
approximately 5 years. Complete reference implementations and technology were 
developed to validate the specifications and prove the technical feasibility. The 
purpose of the OPC Unified Architecture was to enable a platform-independent  
interoperability standard for moving data/information between the factory floor 
and the enterprise. During the course of the development it was obvious that the 
OPC Unified Architecture was well positioned to expand beyond industrial auto-
mation. OPC has expanded into areas of building automation, security, home 
automation, power generation, packaging, and petrochemicals. Because of the 
highly scalable architecture of OPC UA, it is also well-positioned for deployment 
in intelligent embedded devices. 

OPC UA is a collaborative effort with other standards organizations as well. 
OPC UA is also built on the premise of do not reinvent technology that already 
exists. OPC pulls all the pieces together as necessary for true secure reliable inter-
operability. 

This book provides you a solid foundation to learn everything you could ever 
want to know about developing world-class products for multi-vendor interopera-
bility based on OPC UA.  

The OPC Foundation is proud to recognize the achievements and quality work 
that the authors have put together in developing and assembling this book. I  
encourage you to read this book multiple times and use it as a constant preference 
as you develop or use OPC-based products in your respective domain. You as a 
reader are very fortunate to have obtained this book. 

I encourage you to constantly refer and take advantage of this book for all your 
OPC needs. 
 

 
Tom Burke  

President and Executive Director OPC Foundation 

The OPC Foundation is very honored to endorse this superior book and the excellent

The authors of this book, I have been pleased to know for many years, clearly 

work that the authors have put together. This book provides a solid framework 

widely successful. The readers of this book are fortunate to be able to learn from 

specifications and technology. 

operability standard, that being the OPC Unified Architecture. 

the experts who actually developed the OPC Foundation Unified Architecture 

the beginning of OPC up through and including the most important OPC inter-
of understanding about the OPC Foundation specifications and technology from 
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Foreword by Jim Luth 
 
 
 

with others. A group of dedicated volunteer members of the OPC Foundation con-
tributed countless hours to complete this ambitious endeavor. By combining the 
tried and true functionality of the previous generation of OPC Interfaces along 

Service Oriented Architecture, the Semantic Web, Network Model Databases), 

metadata of any complexity. 
 
fication for Data Access (DA) that specified how a server would expose a simple 
hierarchical organization of items (tags) that could be read, written, and sub-
scribed to by conformant clients. The Foundation quickly followed up with addi-
tional popular specifications for different types of data, in particular, Alarms & 

platform independent Web Service interface for Data Access with similar func-
tionality as the original COM version. Unfortunately, the performance of the Web 

DA could not be viewed as a newer and better replacement for the platform spe-

goals of OPC UA: 

mentable specifications, communication stacks, and SDKs in multiple programming 

revolutionary step forward for vendors wishing to write software that interoperates 

create a true replacement for all of the existing COM-based specifications without 

In the mid-nineties, the OPC Foundation published its first Microsoft COM speci-

Events and Historical Data. With the invention of XML Web Services and the 
promise of vendor neutral communication, the Foundation created XML-DA, a 

(MES, ERP, Asset Management…). 
• Allow Data Access, Alarms & Events, and Historical data to be exposed using 

cific COM version. The OPC Unified Architecture was born out of the desire to 

a single set of generic, data-agnostic Services. 
• Allow the nodes in the address space to be connected in hierarchies and non- 

hierarchical “meshes.” 

losing any features (or performance) in the process. Here are some of the design 

• Future-proof the specifications by making them abstract and not dependent on
existing communication technologies. 

• Specify concrete data serializations and protocol mappings using accepted internet  

• Support a wider range of applications that use complex instead of simple data 

standards (Web Services, XML, HTTP, TCP …) 
• Allow rich metadata to be exposed (the same way the data itself is), so that 

generic clients can interpret data without a priori knowledge. 

All these goals and more have been realized in OPC UA. We now have imple-

Service version was orders of magnitude slower than the COM version, so XML-

OPC UA represents a generic framework for exposing and consuming data and 

More than 5 years in the making, OPC Unified Architecture represents a 

with the latest advances in computer science (e.g., Object Oriented Programming, 
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skilled at developing SQL applications, yet most have never read the SQL specifi-

specification and coding effort, represents the best way to learn and use OPC UA 
in your programming and design tasks. 
 
 

Jim Luth  
Technical Director OPC Foundation 

 
 
 

Foreword by Jim Luth    

UA. I like to use the corollary to SQL. There are thousands of software developers 

With the reach-for-the-stars design goals and the huge scope of OPC UA, the 
specifications, currently comprised of 13 Parts and climbing, while terse, dense, 
and exact, are not the easiest way for developers and architects to approach OPC 

languages and higher level third-party toolkits. We now invite the rest of the world 

cations. They learned SQL by reading books, studying vendor documentation, tak-
ing classes, etc. This book, written by key authors and contributors to the OPC UA 

to go forth and create software applications that interoperate at the highest possi-
ble semantic levels using OPC UA. 

     viii



Preface 

Motivation for This Book 

The OPC Foundation provides specifications for data exchange in industrial auto-
mation. There is a long history of COM/DCOM-based specifications, most promi-
nent OPC Data Access (DA), OPC Alarms and Events (A&E), and OPC Historical 
Data Access (HDA), which are widely accepted in the industry and implemented 
by almost every system targeting industrial automation. 

Now the OPC Foundation has released a new generation of OPC specifications 
called OPC Unified Architecture (OPC UA). With OPC UA, the OPC Foundation 
fulfills a technology shift from the retiring COM/DCOM technology to a service-
oriented architecture providing data in a platform-independent manner via Web 
Services or its own optimized TCP-based protocol. OPC UA unifies the previous 
specifications into one single address space capable of dealing with current data, 
alarms and events and the history of current data as well as the event history. A 
remarkable enhancement of OPC UA is the Address Space Model by which ven-
dors can expose a rich and extensible information model using object-oriented 
techniques. OPC UA scales well from intelligent devices, controllers, DCS, and 
SCADA systems up to MES and ERP systems. It also scales well in its ability to 
provide information; on the lower end, a model similar to Classic OPC can be 
used, providing only base information, while at the upper end, highly sophisticated 
models can be described, providing a large amount of metadata including complex 
type hierarchies. 

There is a high interest in the advanced modeling capabilities in many domains 
and there are already initiatives to standardize information models based on OPC 
UA. Examples of these activities are FDI where a common field device descrip-
tion is targeted and common activities with MIMOSA (Maintenance Information – 
ERP and above), S95 (Production Information – MES), and PLCopen (Industrial 
Control). 

The OPC UA specification currently consists of 13 parts and therefore 13 
documents, some specifying the base technology and others defining specific in-
formation models. An example is a model describing how to provide process 
automation-specific alarm information. All in all, there are over 700 pages of 
specification, written to be accurate and complete. The specification primarily de-
fines how to do things and to a lesser extent explains why it was designed that 
way. This is the way specifications have to be written to be widely applied by 
many developers and to guarantee interoperability between different applications. 
As a result, the OPC UA specification is hard to read for someone new to OPC 
UA. This is also true of other specifications such as SQL or UML.  

With this book, we want to fill this gap and provide an easy to understand intro-
duction to OPC UA. We will not provide the same level of detail as the specifica-
tion, but rather introduce and explain the main concepts of OPC UA. We will give 
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guidelines that help you in determining the best alternative among different concepts 
for your use cases and requirements. We will also target relevant topics that are 
not directly addressed in the specification but are needed to apply OPC UA. 

Who Should Read This Book? 

If you are interested in the OPC Unified Architecture – and that is probably the 
reason why you are reading this text – you should read this book. It is written by 
the editors of the key parts of the OPC UA specification, and they will explain to 
you what is behind the acronym OPC UA. 

We had a broad audience in mind when writing this book, including people 
with the following tasks: 

makers) 
• Applying OPC UA in their client or server applications (software architects, 

engineers, and developers) 
• Using applications based on OPC UA (administrators and engineers, e.g., re-

sponsible for configuring a process control system; not end users such as opera-

of OPC UA. It will explain how to define your model and how to access the data. 
You will learn how redundancy, security, and more are addressed in OPC UA and 
how well it performs compared to Classic OPC. However, you will not find any 
code examples. When you implement your OPC UA application, it is expected 
that you will use an SDK and you should look into the documentation of such an 
SDK for coding examples. This book explains how the mechanisms behind any 
OPC UA SDK – the OPC UA Services – work and how to model your informa-
tion in OPC UA. It also explains the information you can expect when accessing 
an OPC UA server. 

You do not have to be familiar with Classic OPC to read this book. You should 
have a basic understanding of object-oriented concepts in order to understand the 
information modeling. Some basic knowledge of software architecture is needed 
to understand the underlying architecture of OPC UA. 

Outline 

Chapter 1 gives a short introduction into Classic OPC before starting with the  
motivation for OPC UA and giving a short overview of OPC UA. 

Preface 

tors of a process control system). 

This book will introduce the communication and information modeling concepts 

• Judging whether OPC UA should be applied in their applications (decision 
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The next three chapters focus on information modeling, that is, how data can be 
represented using OPC UA. Chapter 2 introduces the modeling concepts. We start 
with the fundamental concepts to provide data, and later introduce more sophisti-
cated constructs such as type hierarchies. Chapter 3 introduces a real-life example 
of how to model information in OPC UA and then generalizes modeling by ex-
plaining some best practices. Standard information models are introduced in 
Chap. 4. Starting by explaining what an information model is and how it can be 
specified as well as how OPC UA deals with information models. Continuing, the 
base OPC UA information model is introduced followed by more specialized in-
formation model extensions of the OPC UA specification. Finally, we will look at 
the current state of additional information model standards provided by other or-
ganizations. 

The next two chapters focus on the way how to access the information modeled 
in OPC UA. In Chap. 5, the abstract Services are described, which are used to ac-
cess or manipulate data. In Chap. 6, the mapping of those Services to concrete 
technology is introduced. It is described how data is serialized, how messages are 
secured, and what transport protocol is used. 

In Chap. 7, the security considerations of OPC UA are discussed. This includes 
the theoretical thoughts behind the security model of OPC UA as well as the prac-
tical implications for developers and administrators of OPC UA applications.  

Chapter 8 explains the application architecture of OPC UA. Here, the different 
components needed to implement OPC UA are introduced. 

In Chap. 9, the system architecture of OPC UA is described. Included are de-
scriptions of how you can deploy and configure OPC UA applications in your sys-
tems, and how to handle redundancy, aggregation of servers, etc. 

In the next chapters, we focus on migration of existing applications to OPC 
UA. In Chap. 10 we explain how concepts of Classic OPC map to the concepts of 
OPC UA. This chapter is especially useful for readers having a deep knowledge of 
Classic OPC. Chapter 11 provides strategies of how to migrate your Classic OPC 
applications to OPC UA and how components, provided by the OPC Foundation, 
can help you in this effort. 

OPC UA specifies a large number of features, but not every application will 
make use of all of them. OPC UA provides profiles to deal with this fact. Profiles 
specify a subset of features a product ensures to support. Applications exchange 
these profiles to know what they can expect from the other application. Details on 
profiles and how they are organized are described in Chap. 12. 

Performance is a critical factor in the scenarios where Classic OPC is typically 
used today. In Chap. 13, performance considerations of OPC UA are given. This 
includes a comparison of OPC UA performance to Classic OPC. 

We close with Chap. 14 where we summarize OPC UA and discuss the com-
plexity of OPC UA, pointing out that it is simple in most cases and explain why 
some parts must have some complexity. We also provide an outlook of what we 
expect to happen in the near future regarding OPC UA. 

In addition, some Appendices provide a quick reference when you need to find 
some details of OPC UA. 
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1 Introduction 

1.1 OPC Foundation  

The use of PC- and software-based automation systems in industrial automation 
rapidly increased since the early nineties. Especially, Windows-based PCs are used 
for visualization and control purposes. One of the major efforts for the development 
of standardized automation software in the past years was the access to automation 
data in devices where an uncountable number of different bus systems, protocols, 
and interfaces are used. 

A similar problem for software applications did exist for the access to printers, 

for all supported printers. Windows solved the printer driver problem by incorpo-
rating printer support into the operating system. This one printer driver interface 
served all applications that needed printer access. And these printer drivers are 
provided by the printer manufacturer and not by the application developers. 

Since vendors of Human Machine Interface (HMI) and Supervisory Control 
and Data Acquisition (SCADA) software had similar problems, a task force initiated 

and Intuitive Technology was founded in 1995. The goal of the task force was to 
define a Plug&Play standard for device drivers providing a standardized access to 
automation data on Windows-based systems. 

The result was the OPC Data Access specification released after short time in 
August 1996. The nonprofit organization that is maintaining this standard is the 
OPC Foundation. Nearly all vendors providing systems for industrial automation 
became member of the OPC Foundation. The OPC Foundation was able to define 
and adopt praxis relevant standards much quicker than other organizations. One of 
the reasons for this success was the reduction to main features and the restriction 
to the definition of APIs using the Microsoft Windows technologies Component 
Object Model (COM) and Distributed COM (DCOM). The focus on important 

the standard for the addressed use case. 
As a result of the experience from product developments, multi-vendor demon-

strations, and interoperability workshops, version two of the OPC Data Access 
specification was introduced in 1998. Based on this version, a large number of 
products implemented the standard. OPC Data Access version two is still the most 
important interface for OPC products. 

SCADA and HMI systems, process management and Distributed Control 

(MES) must support OPC interfaces today. OPC is the one – universally accepted – 
standard delivering the ability to exchange data between different industrial auto-
mation system in manufacturing and process industry. 

Systems (DCS), PC-based control systems, and Manufacturing Execution Systems 
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features and the use of base Windows technologies allowed a quick adoption of 
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After 12 years, the OPC Foundation has over 450 members including all relevant 
automation system suppliers around the world. Figure 1.1 shows the OPC Founda-
tion member demography classified with membership classes and region. The 
membership class is based on sales number for corporate members and the classes 

OPC Foundation is governed by a Board of Directors elected by the membership. 
The Board, in turn, appoints the Foundation’s Officers and the OPC Chief Architect. 

Fig. 1.1 OPC Foundation member demography 

The OPC Foundation has listed over 1,500 OPC-based products in its product 
catalog containing only products from OPC members. The total OPC market has 
over 2,500 vendors providing over 15,000 OPC-enabled products.  

This great success requires verification mechanisms to make sure that all OPC 
products interoperate with each other and to ensure a certain level of quality. For 
this reason the OPC Compliance Program is, beside the development of new stan-
dards, the main focus of the OPC Foundation working groups. 

The OPC Compliance Program defines two certification levels. The first level 

offers Compliance Test Tools for all relevant OPC standards. These tools are used 
for testing and the encrypted results are sent to the OPC Foundation. These test 
tools cover the functional tests on the interface level. Interoperability workshops 
are yearly events in Europe, North America, and Japan, where different vendors 
can test the interoperability of their OPC products against each other. Products 
passing self-certification can use the Self-Tested logo to indicate a basic level of 
OPC Compliance. 

The second level is the product certification in independent Certification Test 
Labs. Accredited third party test labs are verifying OPC products with broader test 
coverage. In addition to the basic functional tests executed by the Compliance 
Test Tools, the test labs are running behavior tests, load and stress tests, inter-
operability tests as well as environment and usability tests. For products passing 
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for end user and non-voting members like universities or other organizations. The 

A Marketing Committee, a Technical Advisory Council, and various working groups 
have been established. 

third party certification, the OPC Certified logo indicates a high level of quality 

combines self certification and interoperability workshops. The OPC Foundation 

and OPC Compliance. 



 

End users are encouraged to buy only OPC Compliance tested products to  
reduce interoperability problems and to ensure reliability and performance of their 
OPC-based solution. 

1.2 Classic OPC  

In recent years, the OPC Foundation has defined a number of software interfaces 
to standardize the information flow from the process level to the management 
level. The main use cases are interfaces for industrial automation applications like 
HMIs and SCADA systems to consume current data from devices and to provide 
current and historical data and events for management applications. 

According to the different requirements within industrial applications, three 
major OPC specifications have been developed: Data Access (DA), Alarm & 
Events (A&E), and Historical Data Access (HDA). Access to current process data 
is described in the DA specification, A&E describes an interface for event-based 
information, including acknowledgement of process alarms, and HDA describes 
functions to access archived data. All interfaces offer a way to navigate through 
the address space and to provide information about the available data. 

OPC uses a client–server approach for the information exchange. An OPC 
server encapsulates the source of process information like a device and makes the 
information available via its interface. An OPC client connects to the OPC server 
and can access and consume the offered data. Applications consuming and provid-
ing data can be both client and server. Figure 1.2 shows a typical use case of OPC 
clients and servers. 

Fig. 1.2 Typical use case of OPC clients and servers 
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Classic OPC interfaces are based on the COM and DCOM technology from 
Microsoft.  

The advantage of this approach was the reduction of the specification work  
to the definition of different APIs for different specialized needs without the  
requirement to define a network protocol or a mechanism for interprocess commu-
nication. COM and DCOM provide a transparent mechanism for a client to call 
methods on a COM-object in a server running in the same process, in another 
process, or on another network node. Using this technology available on all PC-
based Windows operating systems reduced the development time of the specifica-
tions and products and the time-to-market for OPC. This advantage was important 
for the success of OPC. 

The two main disadvantages are the Windows-platform-dependency of OPC 
and the DCOM issues when using remote communication with OPC. DCOM is 
difficult to configure, has very long and non-configurable timeouts, and cannot be 
used for internet communication. 

The OPC Data Access interface enables reading, writing, and monitoring of vari-
ables containing current process data. The main use case is to move real-time data 
from PLCs, DCSs, and other control devices to HMIs and other display clients. 
OPC DA is the most important OPC interface. It is implemented in 99% of the 

mented in addition to DA. 
OPC DA clients explicitly select the variables (OPC items) they want to read, 

write, or monitor in the server. The OPC client establishes a connection to the 
server by creating an OPCServer object. The server object offers methods to navi-
gate through the address space hierarchy to find items and their properties like 
data type and access rights. 

For accessing the data, the client groups the OPC items with identical settings 
such as update time in an OPCGroup object. Figure 1.3 shows the different objects 
the OPC client creates in the server. 

Fig. 1.3 Objects created by an OPC client to access data 
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products using OPC technology today. Other OPC interfaces are mostly imple-

1.2.1  OPC Data Access 



 

When added to a group, items can be read or written by the client. However, 
the preferred way for the cyclic reading of data by the client is monitoring the 
value changes in the server. The client defines an update rate on the group con-
taining the items of interest. The update rate is used in the server to cyclic check 
the values for changes. After each cycle, the server sends only the changed values 
to the client. 

OPC provides real-time data that may not permanently be accessible, for exam-
ple, when the communication to a device gets temporarily interrupted. The Classic 
OPC technology handles this issue by providing timestamp and quality for the  
delivered data. The quality specifies if the data is accurate (good), not available 
(bad), or unknown (uncertain). 

The OPC A&E interface enables the reception of event notifications and alarm 
notifications. Events are single notifications informing the client about the occur-
rence of an event. Alarms are notifications that inform the client about the change 
of a condition in the process. Such a condition can be the level of a tank. In this 
example, a condition change can occur when a maximum level is exceeded or is 
fallen below a minimum level. Many alarms include the requirement that the 
alarm has to be acknowledged. This acknowledgement is also possible via the 
OPC A&E interface. 

OPC A&E thus provides a flexible interface for transmitting process alarms 
and events from different event sources. 

To receive notifications, the OPC A&E client connects to the server, subscribes 
for notifications, and than receives all notifications triggered in the server. To limit 
the number of notifications, the OPC client can specify certain filter criteria. 

The OPC client connects by creating an OPCEventServer object in the A&E 
server in the first step and by generating an OPCEventSubscription used to receive 
the event messages in the second step. Filters for these event messages can be con-
figured separately for each subscription. Figure 1.4 shows the different objects the 
OPC client creates in the server. 

Fig. 1.4 Objects created by an OPC client to receive events 
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1.2.2  OPC Alarm & Events 



In contrast to OPC DA, there is no explicit request for specific information like 
reading values; however, all process events are supplied and the client can limit 
the quantity of the events by setting certain filter criteria, for example, filter by 

Where OPC Data Access gives access to real-time, continually changing data, 
OPC Historical Data Access provides access to data already stored. From a simple 
serial data logging system to a complex SCADA system, historical archives can be 
retrieved in a uniform manner. 

The OPC client connects by creating an OPCHDAServer object in the HDA 
server. This object offers all interfaces and methods to read and update historical 
data. A second object OPCHDABrowser is defined for browsing the address space 
of the HDA server. 

The main functionality is the reading of historical data in three different ways. 
The first mechanism reads raw data from the archive, where the client defines one 
or more variables and the time domain he wants to read. The server returns all 
values archived for the specified time range up to the maximum number of values 
defined by the client. The second mechanism reads values of one or more vari-
ables for specified timestamps. The third read mechanism computes aggregate 
values from data in the history database for the specified time domain for one or 
more variables. Values include always the associated quality and timestamp. 

 In addition to the read methods, OPC HAD also defines methods for inserting, 
replacing, and deleting data in the history database. 

OPC specified several additional standards as base specifications or for specialized 
needs. Base specifications are OPC Overview and OPC Common defining interfaces 
and behavior that is common to all COM-based OPC specifications. Figure 1.5 
gives an overview for all Classic OPC specifications. 

OPC Security specifies how to control client access to servers to protect sensi-

meters. 
OPC Complex Data, OPC Batch, and OPC Data eXchange (DX) are extensions 

to OPC DA. Complex Data defines how to describe and transport values with 
complex structured data types. OPC DX specifies the data exchange between Data 
Access servers by defining the client behavior and the configuration interfaces for 
the client inside a server. OPC Batch extends DA for the specialized needs of 
batch processes. It provides interfaces for the exchange of equipment capabilities  

tive information and to guard against unauthorized modification of process para-
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1.2.3  OPC Historical Data Access 

1.2.4  Other OPC Interface Standards 

event types, by priority, or by event source. 



 

Fig. 1.5 Classic OPC interface standards 

corresponding to the S88.01 Physical Model [ISA88] and current operating condi-
tions. 

OPC Commands defines mechanisms to call methods or to execute programs 
via OPC. This specification was never released since it was finished after OPC UA 
was started. But its content and functionality is completely incorporated into UA. 

OPC XML-DA was the first platform-independent OPC specification replacing 
COM/DCOM with HTTP/SOAP and Web Service technologies. Thus a vendor- 
and platform-neutral communication infrastructure was introduced and widely  
accepted functionality of OPC Data Access was retained. 

Since typical Web Services are stateless, the functionality was reduced to the 
minimum set of methods to exchange OPC Data Access information, without the 
need for methods to create and modify a context for communication. Only eight 
methods were needed to cover the key features of OPC Data Access. 

The eight services are the following:  
• GetStatus to verify the server status 
• Read to read one or more item values 
• Write to write one or more item values 
• Browse and GetProperties to get information about the available items 
• Subscribe to create a subscription for a list of items 
• SubscriptionPolledRefresh for the exchange of changed values of a 

subscription 
• 

OPC XML-DA was designed for internet access and enterprise integration. 
But based on its platform-independence, it was mainly implemented in embedded 
systems and on non-Microsoft platforms. But due to its high resource consumption 
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1.2.5  OPC XML-DA 

SubscriptionCancel to delete the subscription. 



and limited performance, it was not as successful as expected for this type of 
applications. 

1.3 Motivation for OPC UA 

The first and still most successful Classic OPC standard – OPC Data Access – was 
designed as interface to communication drivers, allowing a standardized read and 
write access to current data in automation devices. The major use case was HMI 
and SCADA systems accessing data from different types of automation hardware 
and devices from different vendors using one defined software interface supplied 
by the hardware vendor. Standards following later like OPC Alarm & Events and 
OPC Historical Data Access were also designed to access information provided by 
SCADA systems. 

With the successful adoption of OPC in thousands of products, OPC is used 
today as standardized interface between automation systems in different levels of 
the automation pyramid. It is even used in a lot of areas where it was not designed 
for, and there are many more areas where manufacturers want to use a standard 
like OPC but are not able to use it because of the COM dependency of OPC or 
because of the limitations for remote access using DCOM. 

OPC XML-DA was the first approach of the OPC Foundation to maintain suc-
cessful features of OPC but to use a vendor and platform neutral communication 
infrastructure. There are several reasons why just creating Web Service versions 
of the successful OPC specification did not cover the requirements for a new OPC 
generation. One reason was the poor performance of XML Web Service compared 
with original COM version. Furthermore, using different XML Web Service stacks 
caused interoperability problems.  

But besides the issue of platform independence, the OPC member companies 
brought forward the requirement to expose complex data and complex systems, 
removing the limitations of Classic OPC. 

The OPC Unified Architecture was born out of the desire to create a true replace-
ment for all existing COM-based specifications without losing any features or per-
formance. Additionally it must cover all requirements for platform-independent 
system interfaces with rich and extensible modeling capabilities being able to des-
cribe also complex systems. The wide range of applications where OPC is used 
requires scalability from embedded systems across SCADA and DCS up to MES 
and ERP systems. The most important requirements for OPC UA are listed in 
Table 1.1. 

The requirements can be grouped into the ones for the communication between 
distributed systems being able to exchange information and the requirements for 
modeling of data describing a system and the available information. 

Classic OPC was designed as device driver interface. OPC is used as system 
interface today; therefore, the reliability for the communication between distri-
buted systems is very important. Since network communication is not reliable by  
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definition, robustness and fault-tolerance are the important requirement, including 
redundancy for high availability. Platform-independence and scalability is necessary 
to be able to integrate OPC interfaces directly into the systems running on many 
different platforms. To replace proprietary communication, an important require-
ment is always high-performance in intranet environments. But also internet com-
munication through firewalls must be possible out of the box, which makes security 
and access control another important requirement. And first and foremost the  
interoperability between systems from different vendors is still the most important 
requirement. 

Table 1.1 Requirements for OPC UA 

• Reliability by 
• Robustness and fault tolerance 
• Redundancy 

• Platform-independence 
• Scalability  
• High performance 
• Internet and firewalls 
• Security and access control 
• Interoperability 

• Common model for all OPC data 
• Object-oriented 
• Extensible type system  
• Meta information 
• Complex data and methods 
• Scalability from simple to complex 

models  
• Abstract base model 
• Base for other standard data models 

Modeling of data was very limited in Classic OPC and needed to be enhanced 
by providing a common, object-oriented model for all OPC data. This model must 
include an extensible type system to be able to offer meta information and to des-
cribe also complex systems. The availability of methods provided and described 
by servers and callable by clients is a powerful feature needed to make OPC flexible 
and extensible. Complex data is required to support the description and consistent 
transport of complex data structures. It was an important requirement to enhance 
the modeling capabilities, but it was equally important to support simple models 
with simple concepts. For this reason it is required to have a simple and abstract 
but extensible base model to be able to scale from simple to complex models.  

In addition to the functional requirements for a new OPC generation, the initial 
group of over 40 representatives defining the requirements and use cases for OPC 
Unified Architecture was not only composed of OPC members. Other standardiza-
tion organizations like IEC and ISA interested in using OPC as transport mecha-
nism for their information were involved in the early design process. In this group 
the OPC Foundation defines HOW to describe and transport data, and the colla-
borating organizations define WHAT data they want to describe and transport 
depending on their information model. 

Another important design goal was to allow an easy migration to OPC Unified 
Architecture to protect the investment in the very successful Classic OPC stan-
dards and to build upon the large installed base of OPC. 

91.3 Motivation for OPC UA

Communication between  
distributed systems 

Modeling Data 



To reach the defined goals, the OPC Unified Architecture builds on different layers 
shown in Fig. 1.6. 

Fig. 1.6 The foundation of OPC UA 

The fundamental components of OPC Unified Architecture are transport mecha-
nisms and data modeling. 

The transport defines different mechanisms optimized for different use cases. 
The first version of OPC UA is defining an optimized binary TCP protocol for 
high performance intranet communication as well as a mapping to accepted inter-
net standards like Web Services, XML, and HTTP for firewall-friendly internet 
communication. Both transports are using the same message-based security model 
known from Web Services. The abstract communication model does not depend 

transport mechanisms are described more detailed in Chap. 6. 
The data modeling defines the rules and base building blocks necessary to 

expose an information model with OPC UA. It defines also the entry points into 
the address space and base types used to build a type hierarchy. This base can be 
extended by information models building on top of the abstract modeling concepts. 
In addition, it defines some enhanced concepts like describing state machines used 

in Chap. 2 and an example and best practices are introduced in Chap. 3. 
The UA Services are the interface between servers as supplier of an infor-

mation model and clients as consumers of that information model. The Services 
are defined in an abstract manner. They are using the transport mechanisms to 
exchange the data between client and server. 

This basic concept of OPC UA enables an OPC UA client to access the smallest 
pieces of data without the need to understand the whole model exposed by com-

on a specific protocol mapping and allows adding new protocols in the future. The 

plex systems. OPC UA clients also understanding specific models can use more 

in different information models. The basics of information modeling are described 
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Fig. 1.7 OPC UA layered architecture 

enhanced features defined for special domains and use cases. Figure 1.7 shows the 
different layers of information models defined by OPC, by other organizations, or 
by vendors. 

To cover all successful features known from Classic OPC, information models 
for the domain of process information are defined by OPC UA on top of the base 
specifications. DA defines automation-data-specific extensions such as the model-
ing of analog or discrete data and how to expose quality of service. All other DA 
features are already covered by the base. Alarm & Conditions (AC) specifies an 
advanced model for process alarm management and condition monitoring. Historical 
Access (HA) defines the mechanisms to access historical data and historical events. 
Programs (Prog) specifies a mechanism to start, manipulate, and monitor the exe-
cution of programs. 

Other organizations can built their models on top of the UA base or on top of 
the OPC information model, exposing their specific information via OPC UA. 
Examples for standards already working on mappings to OPC UA are Field Device 
Integration (FDI) combining Electronic Device Description Language (EDDL), and 
Field Device Tool (FDT) both used to describe, to configure, and to monitor devices 
and PLCopen, a standard for PLC programming languages. 

Additional vendor-specific information models will be defined using directly 
the UA base, the OPC models, or other OPC-UA-based information models. 

1.5 OPC UA Specifications 

The OPC UA specifications are partitioned in different parts also required for IEC 
standardization. OPC UA will be known as IEC 62541 standards. Figure 1.8 shows 
an overview of all specification parts split into the core specifications defining the 
base for OPC UA and the access type specific parts mainly specifying the OPC 
UA information models. 

111.5 OPC UA Specifications



 
Fig. 1.8 OPC UA specifications 

The first two parts are not normative. The concepts part [UA Part 1] gives an 
overview about OPC UA and [UA Part 2] describes the security requirements and 
the security model for OPC UA. 

Most important to understand how to model and access information are part 3 

The Address Space Model [UA Part 3] specifies the building blocks to expose 
instance and type information and thus the OPC UA meta model used to describe 
and expose information models and to build an OPC UA server address space. 

The abstract UA Services defined in [UA Part 4] represent the possible inter-
actions between UA client and UA server applications. The client uses the Services 

but not the concrete representation on the wire and also not the concrete represen-
tation in an API used by the applications. Figure 1.9 shows the layered communi-
cation architecture of OPC UA. 

 
Fig. 1.9 Layered OPC UA communication architecture 
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to find and access information provided by the server. The Services are abstract 

lopment of OPC UA applications. 

because they are defining the information to be exchanged between UA applications 

and 4. These two specifications are the key documents for the design and deve-



 

The mapping of the UA Services to messages, the security mechanisms applied 
to the messages, and the concrete wire transport of the messages are defined in 
[UA Part 6]. Only implementers of UA stacks need to completely understand this 
specification. Since the OPC Foundation supplies proper UA stacks, typical UA 
application architects and programmers do not need to read this specification. 

The base information model specified in [UA Part 5] provides the framework 
for all information models using OPC UA. It defines the following: 

• 

• The base types building the root for the different type hierarchies 
• The built-in but extensible types like object types and data types 
• The Server Object providing capability and diagnostic information. 

The profiles are defining useful subsets of OPC UA features in [UA Part 7]. 
Such a subset must be implemented completely by an UA application to ensure  
interoperability for the defined subset. The specification defines the subsets on two 
levels. The first level are Conformance Units defining a small set of functionality 
that is always used together and can be tested with Compliance Test Tools and 
verified as unit. The second level are Profiles composed of a list of conformance 
units. A profile must be implemented completely and will be verified as complete 
set during the certification of OPC UA products. The list of supported and used 
Profiles is exchanged during the connection establishment between client and server 
and allows the applications to determine if the needed features are supported by 
the communication partner. 

The DA information model defines how to represent and use automation data 

The AC information model specifies process alarm and condition monitoring 
specific state machines and types of events in [UA Part 9].  

The Programs information model defines a base state machine for the execu-
tion, manipulation, and monitoring of programs in [UA Part 10].  

The HA information model in [UA Part 11] specifies the use of the history 
access Services and how to present information about the configuration of data 
and event history.  

The aggregates used to compute aggregated values from raw data samples are 
specified in [UA Part 13]. The aggregates are used for historical access as well as 
the monitoring of current values. 

[UA Part 12] defines how to find servers in the network and how a client can 
get the necessary information to be able to establish a connection to a certain 
server. 

1.6 OPC UA Software Layers 

OPC UA uses a similar client–server concept like Classic OPC. An application 
that wants to expose its own information to other applications is called UA server 
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The entry points into the address space used by clients to navigate through 

and specific characteristics like engineering units in [UA Part 8].  

the instances and types of an OPC UA server 



and an application that wants to consume information from other applications is 
called UA client. But it is expected that much more applications will be both UA 
server and UA client in one application than in Classic OPC. One reason is that 
more UA servers will be integrated directly in devices. Implementing also a UA 
client enables device to device communication. Another reason is the use of OPC 
UA as configuration interface, where UA clients are also UA servers to be config-
ured via OPC UA. 

A typical OPC UA application is composed of three software layers shown in 
Fig. 1.10. The complete software stack can be implemented with C/C++, .NET, or 
JAVA. OPC UA is not limited to these programming languages and development 
platforms, but only these environments are currently used for implementing the 
OPC Foundation UA Stack deliverables. 

 
Fig. 1.10 OPC UA software layers 

An OPC UA Application is a system that wants to expose or to consume data 
via OPC UA. It contains the specific functionality for the application and the 
mapping of this functionality to OPC UA by using an OPC UA Stack and an OPC 
UA Software Development Kit (SDK). 

An OPC UA client or server SDK implements common OPC UA functionality 
that is part of the application layer, since the UA Stacks implement only the com-
munication channels. An OPC UA SDK reduces the development effort and facili-
tates faster interoperability for an OPC UA application. 

An OPC UA Stack implements the different OPC UA transport mappings  
defined in [UA Part 6]. The Stack is used to invoke UA Services across process or 
network boundaries. OPC UA defines three Stack layers and different profiles for 
each layer. The message encoding layer defines the serialization of Service para-
meters in a binary and a XML format. The message security layer specifies how 
the messages must be secured by using the Web Service security standards or a 
UA binary version of the Web Service standards. The message transport layer 
defines the used network protocol, which could be UA TCP or HTTP and SOAP 
for Web Services. Figure 1.11 illustrates the different UA communication stack 
layers. The implementation of the layers in a UA Stack and the resulting API for 
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the applications is not part of the OPC UA specification. The UA Stacks provide 
language-dependent APIs for UA client and UA server applications, but the Ser-
vices and their parameters are similar and based on the abstract Service definition 
in [UA Part 4]. 

 
Fig. 1.11 UA communication stack layers defined in UA Part 6 

With implementations in ANSI C/C++, .NET, and JAVA, the main development 
environments and programming languages are covered by UA Stacks developed 
and maintained by the OPC Foundation.  

1.7 Evolution Not Revolution 

OPC UA is much more flexible and has much more features than all Classic OPC 
specifications together, but it incorporates all successful concepts of existing OPC 
specification, fixes known issues in existing standards, and adds standardization 
for a lot of additional use cases. 

It was an important design goal to allow an easy migration from Classic OPC 
to OPC UA. For this reason most features known from Classic OPC can be found 
in OPC UA using sometimes slightly different terminology. It is not possible to 
expose all UA features with Classic OPC interfaces, but it is no problem to map 
Classic OPC features to OPC UA. 

OPC UA allows a simple mapping and offers migration strategies to integrate 
OPC products based on previous OPC standards. One part of the migration strat-
egy does not even require a change in existing products. Wrappers and proxies 
provided by the OPC Foundation are able to translate the different Classic OPC 
interfaces into OPC UA and vice-versa. This first level in the migration strategy 
can be used by vendors to support OPC UA for legacy products. 

The second level of migration to OPC UA is the integration of OPC UA  
directly into existing products without adding OPC UA specific features. This step 
does not require changes in interfaces used between systems and their OPC com-
munication components today. It is much easier to integrate new components if 
the existing interfaces of a system do not have to be changed. The advantage over 
the use of wrappers or proxies is a better performance and less configuration and 
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engineering efforts by removing an additional software layer. The direct integration 
will make it easier to remove potential limitations of wrappers and proxies and  
allows an iterative development approach by adding OPC UA features step by step. 

The third level may require changing internal interfaces of the product to  
support all features of OPC UA that are of interest for the product. OPC UA will 
allow systems to make product features available in a standard way, which they 
can not expose today without the new options provided by OPC UA. 

For end users, it is important to have the wrappers and proxies available to  

can install wrappers and proxies for tunneling Classic OPC through firewalls, 
including secure transmission over the internet and authenticated access, so they 
simply add value to existing industry proven solutions. 

These components are only a first step. For vendors it is much more important 
that OPC UA offers abstract, modular, and simple base concepts in all areas of the 

The very powerful concepts for extending this base enable vendors to expose more 

1.8 Summary 

The OPC Foundation provides standards for data exchange in industrial automa-
tion. This includes the very successful OPC DA specification for current data, as 
well as OPC A&E for alarms and events and OPC HDA for historical data. All 

moving forward to state-of-the-art technologies was OPC XML-DA, which used 

requirements of typical OPC applications. 
With the lessons learned from OPC XML-DA the OPC Foundation created a 

new standard called Unified Architecture. Here, the transport can be done either 
using firewall-friendly Web Services by standards like SOAP and HTTP or an 
optimized binary TCP protocol for high performance communication. OPC UA 
provides interoperable and platform-independent, high-performing, scalable, secure, 
and reliable communication between applications. The technology switch from 
Microsoft’s COM/DCOM to state-of-the-art and platform-independent transport 
protocols allows OPC UA applications to run on intelligent devices and control-
lers as well as in DCS and SCADA systems and up to the enterprise level with 
MES and ERP systems. This immensely increases the range of use compared to 
Classic OPC application 
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those specifications are based on the retiring COM/DCOM technology. A first step 

1.8.1 

only XML as data transport format and therefore did not meet the performance 

Key Messages 

lopment and improvement process. 

migrate the large installed base of Classic OPC products to OPC UA. End users 

and more of their system features via OPC UA. This leads to an iterative deve-

standard, allowing an easy migration of existing OPC functionality to OPC UA. 



 

Besides the transport, the second big achievement of OPC UA is information 
modeling. OPC UA unifies the functionality of the different Classic OPC specifi-
cations by exposing current data, event notifications, and the history of both in one 
address space. It additionally provides a rich and extensible information model  
using object-oriented concepts, allowing meta data as well as complex data of 
your applications to be exposed. The extensible mechanisms allow defining stan-
dard information models by other organizations that can make use of the OPC 
UA communication infrastructure and focus on standardizing the information to 
be exposed. There are already initiatives going on defining standard information 
models, for example, FDI for device descriptions by mapping EDDL and FDT to 

capabilities the modeling capabilities of OPC UA scale well. You can keep the 
offered information simple, similar to Classic OPC, but you can also enrich the  
information with a type system and thus providing more information useful in 
many application scenarios. 

Information about Classic OPC can be found at the OPC Foundation web site 
(www.opcfoundation.org). There is also a book on Classic OPC [IL06]. Several 
vendors provide Classic OPC products and toolkits. A list can be found at 
www.opcconnect.com; here you will find overview information about OPC, includ-

General information about OPC UA can be found at the OPC Foundation web 
site, including a special section on OPC UA (www.opcfoundation.org/ua). The 
web site also offers access to the OPC UA specifications where [UA Part 4] and 
[UA Part 6] focus on the data transport and [UA Part 3] and [UA Part 5] focus on 
modeling information. 

In the next three chapters, we will focus on how to provide information using 
OPC UA before we go into details on how to access those data (starting with 
Chap. 5). 

In Chaps. 2 and 3, we introduce the base modeling concepts and give examples 
and best practice for these concepts. Standard information models are described in 
Chap. 4. This includes an introduction on how to create models: the description of 
the OPC defined models and an overview of standard information models defined 
by other organizations. 

In Chap. 5 we will introduce the abstract Services of OPC UA, and Chap. 6 des-
cribes the mapping of those Services to concrete technologies like Web Services. 

171.8 Summary

1.8.2 Where to Find More Information? 

1.8.3 

OPC UA or for PLC programming languages by PLCopen. Like the transport 

What’s Next? 

ing OPC UA. Additional links and information can be found on the book website 
 www.opcuabook.com.



2 Information Modeling: Concepts 

2.1  Why Information Modeling? 

The fundaments of OPC UA are data transport and information modeling. Compared 
to Classic OPC, the data transport was changed to state-of-the-art, platform-
independent, secure, and reliable technologies and the capabilities to model infor-
mation are highly improved. In Classic OPC, only “pure” data is provided, for 
example, the temperature measured by a temperature sensor. The only information 
available to understand the semantic of the provided data is the tag name and some 
rudimentary information like the engineering unit of the measured value. OPC UA 
provides more powerful possibilities exposing the semantic of the provided data. 
In addition to the data provided by Classic OPC, it allows exposing information 
like that the measured temperature is provided by a specific type of sensor device 
and allows to expose in a type hierarchy what kind of devices are supported. 
Thereby, OPC UA clients can get the information that they are dealing with the 
same kind of device at different places. By exposing much more semantics, OPC 
UA servers allow clients to process highly sophisticated tasks by interpreting the 
semantic of the provided data. That includes the automated integration of data 
provided by an OPC UA server as well as engineering an OPC UA server from a 
generic OPC UA client. 

The base OPC UA specifications provide only the infrastructure to model  

lead to different ways how to model similar information and thus makes the life 
hard for OPC UA clients. To avoid that situation, the OPC UA specification pro-

The OPC Foundation already started activities to generate these specifications. For 
example, there are efforts to define a base model exposing device information and 

device information provided by different, vendor-specific OPC UA servers in the 
same manner, since they are exposed in a similar way using the same base model. 
In addition, a vendor may integrate third-party devices exposing their data via 
OPC UA into its OPC UA server easily and seamlessly since both use the same 
base model. This of course does not only apply for device models, but for other 
scenarios as well, for example, providing data to MES or ERP systems by expos-

The base principles of information modeling in OPC UA are the following: 

• Using object-oriented techniques including type hierarchies and inheritance. 
Typed instances allow clients to handle all instances of the same type in the 
same way. Type hierarchies allow clients to work with base types and to ignore 
more specialized information. 
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information. The information can be modeled by vendors - which of course would 

device types in OPC UA [UA Devices]. A vendor will use this base model and  

vides possibilities to define Information Model specifications based on OPC UA. 

extend it with vendor-specific information about its devices. Clients can access 

ing the ISA 95 model [ISA95] in OPC UA. 



• Type information is exposed and can be accessed the same way as instances. The 
type information is provided by the OPC UA server and can be accessed with 
the same mechanisms used to access instances. This is similar to the informa-
tion schema of relational database systems, where information about the data-
base tables is managed in database tables and accessible with normal SQL 
statements [ISO08b]. 

• Full meshed network of nodes allowing information to be connected in various 
ways. OPC UA allows supporting several hierarchies exposing different seman-
tics and references between nodes of those hierarchies. Thus the same informa-
tion can be exposed in different ways, providing different paths and ways to 
organize the information in the same server depending on the use case. 

• Extensibility regarding the type hierarchies as well as the types of references 
between nodes. OPC UA is extensible in several ways regarding the modeling 
of information. Beside the definition of subtypes, it allows, for example, to 

methods extending the functionality of OPC UA. 
• No limitations on how to model information in order to allow an appropriate 

UA instead of mapping the model to a different model. 
• OPC UA information modeling is always done on server-side. OPC UA infor-

mation models always exist on OPC UA servers, not on client-side. They can 
be accessed and modified from OPC UA clients and OPC UA servers can also 
have a client-part accessing other OPC UA servers. But in general, an OPC UA 

does not have to provide such information to an OPC UA server. 

some configuration parameters and some measurement values that may differ  
depending on the configuration. It provides that information in an OPC UA server 
using the base device model mentioned earlier. 

Fig. 2.1 Temperature sensor and provided data in OPC UA 
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model for the provided data. OPC UA servers targeting a system that already 
contains a rich information model can expose that model “natively” in OPC 

A device vendor provides a temperature sensor as shown in Fig. 2.1. The device has 

specify additional types of references defining relations between nodes and 

Let us examine the modeling capabilities of OPC UA by looking at an example.  

Device A

Configuration

TemperatureSensorType

EngineeringUnit

Measurement

Temperature

Tolerance

OPC UA Server

Address Space

Configuration:
- Engineering Unit, etc.
Measurement data:
- Temperature, etc. 
Device Type Information:
- Tolerance, etc. 

client is not required having an integrated OPC UA information model and it 



server is running and what additional information is provided by it. In the simplest 

a temperature sensor it is more likely that the OPC UA server would run on the 

priate user interface exposing the measured values of the device as well as config-
uring the device by using the device model provided by the server. The model can 

based on the type information. They have to be implemented or configured only 

types. Thus such a user interface can be defined for the base types of the device 
model without exposing any vendor-specific extensions. It can also be defined for 
a vendor-specific type tailored to the vendor-specific device and its extensions. 
The most common use-case of integrating device data is aggregating them in a 

data. Any OPC UA client could access the device data through the DCS without 
loosing any functionality. The scenario in which the server contains the informa-

of the type information. For example, the same graphical element can be used several 

afore mentioned use cases for OPC UA clients. 

Fig. 2.2 Different scenarios how to access device data with OPC UA 
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include events and historical data. The client can use a generic user interface (show-

controller or a PC on top of the controller. Any OPC UA client can provide an appro-

once for a type and can be used for each instance of the type or instances of sub-

ing lists of parameters) or a specialized one showing a graphical representation of

case, the OPC UA server would directly run on the device; for a simple device like 

as an OPC UA client to receive the data and as an OPC UA server to expose the 

the device and the main parameters. Those specific user interfaces can be created 

To understand the example, it is not important to know where the OPC UA 

tion of several devices demonstrates the power of programming with knowledge 

times in one graphic, showing a process in the factory. Figure 2.2 outlines the 

DCS and providing them via the DCS to the client. In that case, a DCS should act 
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This chapter gives an overview of how information is modeled in OPC UA. 
The following sections describe the concepts of OPC UA used for modeling, start-
ing from the base concepts of nodes and references between them, explaining the 
Object Model of OPC UA containing typed objects with variables, methods and 
events, and finishes with describing the differences between the OPC UA Address 
Space Model as the meta model of OPC UA and Information Models tailored to 
certain domains. In the next chapter, a detailed example on how to model informa-
tion in OPC UA is given and some best practices are provided. 

2.2 Nodes and References 

The base modeling concepts of OPC UA are Nodes and References between 
Nodes. Nodes can be of different NodeClasses, depending on the purpose of a 
Node. There are Nodes representing instances, others representing types, etc. Attrib-
utes are used to describe Nodes, and depending on the NodeClass a Node can have 
a different set of Attributes. In Fig. 2.3, an example is given. Node1, Node2, and 
Node3, all containing Attributes, are connected with several References (Refer-
ence 1–6).  

Reference 1Node 1 

Attributes 

Node 2 

Attributes 

Node 3 

Attributes 

Reference 2
Reference 3

Reference 4 Reference 5

Reference 6

 

Fig. 2.3 Nodes and References between Nodes 

The Attributes of a Node depend on its NodeClass. However, there are some Attri-
butes common to every Node. In Table 2.1, those Attributes are summarized. 

The NodeId uniquely identifies a Node in the server. The NodeId is the most 
important concept addressing information and exchanged in the Services to refer-
ence Nodes. The server returns NodeIds when browsing or querying the Address 
Space and clients use the NodeId to address Nodes in the Service calls. A Node 
can have several alternative NodeIds that can be used to address the Node. The 
canonical NodeId can be gained by reading the NodeId Attribute, even if the Node 
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The different NodeClasses of OPC UA are introduced in the following sections. 

was accessed by an alternative NodeId. NodeIds contain a Namespace, allowing 



Table 2.1 Common Attributes 

Attribute DataType Description 
NodeId NodeId Uniquely identifies a Node in an OPC UA 

server and is used to address the Node in 
the OPC UA Services 

NodeClass NodeClass An enumeration identifying the NodeClass 
of a Node such as Object or Method  

BrowseName QualifiedName Identifies the Node when browsing the 
OPC UA server. It is not localized 

DisplayName LocalizedText Contains the Name of the Node that should 
be used to display the name in a user inter-
face. Therefore, it is localized 

Description LocalizedText This optional Attribute contains a localized 
textual description of the Node 

WriteMask UInt32 Is optional and specifies which Attributes 
of the Node are writable, i.e., can be modi-
fied by an OPC UA client 

UserWriteMask UInt32 Is optional and specifies which Attributes 
of the Node can be modified by the user 
currently connected to the server  

different naming authorities to uniquely define NodeIds. Naming authorities can 
be organizations, vendors, or systems. Details about the NodeId and its data type 
are described in Sect. 2.8.5.  

The BrowseName is used only for browsing purposes and should not be used 
for displaying the name of a Node. BrowseNames have a special meaning for 
Properties (see Sect. 2.6) and for programming with the knowledge of type infor-
mation (see Sect. 2.5.4). Like the NodeId, the BrowseName is a structure containing 
a Namespace and a nonlocalized string as described in Sect. 2.8.5. 

The DisplayName and Description are localized. Section 2.8.5 describes details 
about localization and the data type LocalizedText. 

In theory, a Reference describes the relation between exactly two Nodes. 
Therefore, a Reference is uniquely identified by the source Node of the Reference, 
the target Node, the semantic of the Reference (the ReferenceType, see Sect. 2.3), 
and the direction of the Reference.  

In practice, a server may expose a Reference only in one direction and the Ref-
erence may point to a Node in another OPC UA server or a nonexisting Node. 
Therefore, it makes sense to think about a Reference as a pointer living in a Node 
and pointing to another Node by storing the NodeId of the other Node. In Fig. 2.4, 
this view on References is shown. 

Such a Reference pointer contains the NodeId of the referenced Node, the OPC 
UA server where the referenced Node is managed, the type of Reference defining 
the semantic of the Reference (see Sect. 2.3), and the direction of the Reference. 
References are distinguished between symmetric and nonsymmetric References.  
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A nonsymmetric Reference is, for example, “has-parent” in one direction and 
“is-child-of” in the other direction, whereas a symmetric Reference has the same 
semantic in both directions like “is-sibling-of.” In the first case, the direction of 
the Reference is important, whereas in the second case it does not matter. 

Looking at References as pointers to other Nodes helps understanding the con-
straints or missing constraints defined for References in OPC UA. Although Ref-
erences connect two Nodes OPC UA servers may expose only one direction of the 
Reference, for example, only the pointer from Node 1 to Node 2 in Fig. 2.4, not 
the inverse direction. If only one direction is exposed, the Reference is called uni-
directional, otherwise bidirectional. The pointers may refer to Nodes that do not 
exist (anymore) in the server or to Nodes in other servers that may not be available 
at a specific point in time or maybe not at all anymore. Clients must expect that 
they may be able to browse a Reference in one direction but not in the inverse  
direction or that the referenced Node does not exist. 

 
Node 1 

Attributes 
NodeId: „1“ 

References 
 
Ref1: 
- NodeId: „2“ 
- ServerUri: NULL 
- Type: „has-parent“ 
- Direction: forward 

Node 1 
Attributes 
NodeId: „2“ 

References 
 
Ref1: 
- NodeId: „1“ 
- ServerUri: NULL 
- Type: „has-parent“ 
- Direction: inverse 

 
Fig. 2.4 References as pointers to Nodes 

References are not ordered, that is, asking a Node for its References two times 
may lead to differently ordered sets of References. However, there are types of 
References that define an order for References of that type, like HasOrderedCom-
ponent [UA Part 3]. The server has always to return those References in the same 
order. 

What’s allowed and what’s not? 
The set of Attributes of a Node is defined by the OPC UA specifications and 
cannot be extended. If additional information describing a Node is needed, 
Properties (see Sect. 2.6) have to be used instead. 
The set of writable Attributes indicated by the WriteMask must be the same 
or a superset of the writable Attributes indicated by the UserWriteMask, 
since the WriteMask defines which Attributes may be modified by any user. 
In general, the requirements on the integrity of References are very low. 
References may point to none-existing Nodes in the same server or to other 
servers that are not accessible for the client. References may be exposed in 
only one direction, and References may lead to loops. Clients must be able 
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to deal with those inaccurate data. Specific References may restrict this and 
define much higher constrains on References (see the next section). 
References do not contain any Attributes or Properties. In the case that some 
additional information should be added to the relation of two Nodes, a 
Proxy-Node must be added and connected by both Nodes instead of using a 
single Reference (see Sect. 3.3.8 for details on how to use a Proxy-Node). 

2.3 ReferenceTypes 

A Reference is a connection between two Nodes. A Reference cannot directly be 
accessed, only indirectly by browsing a Node and thus following References. Ref-
erences are not represented as Nodes and cannot contain any Attributes or Pro-
perties. However, References are used to expose different semantics on how the 
Nodes are connected. To expose the semantic of References OPC UA uses Refer-
enceTypes. A ReferenceType defines the semantic of a Reference and every Ref-
erence is typed and therefore has a defined semantic. The OPC UA specification 
defines a set of ReferenceTypes. Some of them are used in very fundamental 
places, for example, to expose a type hierarchy. But the concept of Reference-
Types is an extensible concept, that is, an OPC UA server can define its own 
ReferenceTypes exposing a specific semantic for References. To organize Refer-
enceTypes they are managed in a type hierarchy. 

Although References are no Nodes and have no Attributes, the ReferenceTypes 
are exposed as Nodes in the Address Space. That allows clients to gain the infor-
mation about the References used by an OPC UA server by accessing Nodes in the 
Address Space of the OPC UA server. In Table 2.2, the Attributes used to describe 
a ReferenceType are summarized.  

Table 2.2 Additional Attributes for ReferenceTypes 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
IsAbstract Boolean Specifies if the ReferenceType can be used for 

References or is only used for organizational 
purposes in the ReferenceType hierarchy 

Symmetric Boolean Indicates whether the Reference is symmetric, 
i.e., whether the meaning is the same in  
forward and inverse direction 

InverseName LocalizedText This optional Attribute specifies the semantic 
of the Reference in inverse direction. It can 
only be applied for nonsymmetric References 
and must be provided if such a ReferenceType 
is not abstract 
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In addition to those Attributes, the common Attributes used for all Nodes  
described in Table 2.1 are valid for ReferenceTypes as well. Some of those  
Attributes have some additional constraints when used for ReferenceTypes. The 
BrowseName of a ReferenceType must be unique in an OPC UA server in order 
to avoid confusion having several ReferenceTypes with different semantic but 
the same name. The DisplayName must contain a localized representation of the 
BrowseName. The BrowseName, and thus the DisplayName as well, defines the 
semantic of the ReferenceType in forward direction, like the InverseName defines 
the semantic in inverse direction. 

References are managed in a ReferenceType hierarchy. This allows specializ-
ing existing ReferenceTypes with more specialized types. In Fig. 2.5, the base 
ReferenceType hierarchy defined by the OPC UA specification is shown. It uses 
the OPC UA notation to visualize OPC UA related information as described in 
Appendix A. In Appendix C the complete hierarchy of ReferenceTypes defined by 
the base OPC UA specifications is shown. 

Fig. 2.5 Base ReferenceType hierarchy 

The ReferenceTypes using italic letters are abstract and only used for organiza-
tional purposes and for filtering. Chapter 5 describes where you can apply filtering. 
The “References” ReferenceType is used if all References should be considered in 
a filter. It has two subtypes distinguishing References in hierarchical References 
and non-hierarchical References. Hierarchical References should be used when a 
hierarchy should be modeled, non-hierarchical for other purposes like exposing 
relationships between different hierarchies. For example, the non-hierarchical 
HasTypeDefinition references from an instance to its type in the type hierarchy.  
Clients are expected to use References according to that, for example, displaying 
hierarchical References in a tree control and filtering out the non-hierarchical 
References. 
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To simplify the filtering on ReferenceTypes, the ReferenceType hierarchy 
supports only single-inheritance, that is, each ReferenceType has exactly one  
supertype.1 This guarantees, for example, that each ReferenceType 2 is either a hier-
archical ReferenceType or a non-hierarchical ReferenceType and never both  
of them. 

In Fig. 2.5, some subtypes of hierarchical References are shown. The Organizes 
ReferenceType is used when two Nodes should be connected in a hierarchical way, 
without defining any additional semantic. An example using this ReferenceType is 
when a file system is mapped to OPC UA. Folders could be exposed as Nodes  

 

 
Fig. 2.6 Example of a loops in hierarchies 

 
 

                                                           
1 Of course the base “References” ReferenceType does not have a supertype, since it is the root 
of the hierarchy. 
2 Another requirement to fulfill this constraint is that only HierarchicalReferences and NonHier-
archicalReferences are allowed to directly inherit from References. 
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Reference or any hierarchical Reference does not guarantee that there is no loop 
when following those References.3 In Fig. 2.6, such an example is given. In the 
example, two hierarchies exist. One is organizing devices and one contains configu-
ration information. The devices reference some configuration objects containing 
their configuration, but several devices can use the same configuration like  
Device1 and Device2, both using the configuration Config1. In the configuration 
hierarchy, several configurations are organized having the devices beneath them 
that are using the configuration. If you look at those hierarchies in a combined 
view, you can see that there are loops in that hierarchy. Looking at that example 
also shows that Organizes is not always the best choice for referencing Nodes in a  
hierarchical way. In the example, some more specific ReferenceTypes could have 
been applied. We will take another look at the example after introducing some 
more ReferenceTypes. 

The abstract HasChild Reference disallows any loop following only subtypes of 
it. Thus, the HasChild ReferenceType defines a nonlooping Hierarchy. The Nodes 
can be organized in another hierarchy as well and thus following hierarchical Refer-
ences may lead to Nodes as shown in Fig. 2.7. In that case, the HasComponent 
ReferenceType is used, exposing the configuration of a device as a component of 
the device. As a concrete subtype of the abstract Aggregates ReferenceType, it 
inherits the “is-part-of” semantic. The nature of an is-part-of relation is that it is 
not looped, that is, that a part of “A” cannot have “A” as a subpart. Please note 
that not allowing loops does not mean that a Node cannot have two parents, like 
Config1 is a component of Device1 and Device2 and thus having two parents in 
the hierarchy.  

Combined with the configuration hierarchy, loops are still possible. The con-
figuration hierarchy cannot use HasComponent References; otherwise, the nonloop-
ing constraint on the inherited HasChild ReferenceType would be broken. Since 
configurations logically do not have the devices they configure as part of them, it 
makes no sense to use the HasComponent ReferenceType. 

Another example of a HasChild Reference is the HasSubtype ReferenceType 
exposing type hierarchies (used, e.g., in the ReferenceType hierarchy in Fig. 2.5). 
Loops do not make any sense in this case since types cannot be (indirect) subtypes 
of themselves. 

The Reason to allow loops in hierarchical References is that a server may  
expose the same Nodes in different Hierarchies as already shown in Fig. 2.7. 
Servers may define their own ReferenceTypes under HierarchicalReferences used 
to expose additional Hierarchies. They can choose to make those hierarchies 
nonlooping as well, but loops are possible in combination with other hierarchies, 
for example, the hierarchy using HasChild References. When no additional hier-
archy needs to be defined, but only a more specific semantic of the References 
should be specified, the additional ReferenceTypes should become subtypes of 
the HasChild ReferenceType. 

 
                                                           
3 However, it is not allowed that a Node references itself directly with a hierarchical Reference. 
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Fig. 2.7 Example of nonlooping and looping hierarchies 

What’s allowed and what’s not? 
References between Nodes are restricted. It is not allowed to provide a Ref-
erence of the same type in the same direction between the same Nodes 
twice. This includes subtypes of the ReferenceType, but not supertypes. For 
example, it is allowed having References of different types of hierarchical 
References, but not using HasComponent and a subtype of HasComponent. 
The restriction regarding the same type is inherent by the model, since 
References are defined by the source and target Node and the Refer-
enceType. To avoid that servers provide a Reference of type “A” as well as 
the more specialized subtype of “A” called “B” it is not allowed to provide 
both References. Only the most appropriated ReferenceType should be used. 
Using the subtype always implies that the supertype is valid as well. Clients 
must consider this when browsing or querying the Address Space using fil-
ters on References. 
Specific ReferenceTypes further restrict the use of the ReferenceType. That 
may include the allowed source Node and the target Node (e.g., restricting 
the NodeClass or a concrete type), the number of times a Reference is used 
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on the same Node (e.g., each ReferenceType can only be the target of one 
HasSubtype Reference4), whether loops are allowed or not like specified by 
the HasChild ReferenceType, etc. Subtypes can only further restrict the use 
of the References; the constraints on the supertype are still valid for the sub-
type.  
There is no standardized way to expose constraints on ReferenceTypes in 
the Address Space. However, the Description Attribute is in general a good 
place to put a textual description of the constraints. 

2.4  Objects, Variables, and Methods 

The most important NodeClasses in OPC UA are Object, Variable, and Method. 
These concepts are also known from object-oriented programming. Objects have 
variables and methods and can fire events. 

Nodes of the NodeClass Variable represent a value. The data type of the value 
depends on the Variable. Clients can read the value, subscribe to changes of the 
value, and write the value. A Variable is used, for example, to represent the tem-
perature measured by a temperature sensor or a setpoint to manage some control 
applications, but in general to expose any data in the Address Space that is not 
captured by References or the Attributes of the Nodes. This includes configuration 
data or additional metadata describing a Node. 

Nodes of the NodeClass Method represent a method, that is, something that is 
called by a client and returns a result. Each Method specifies the input arguments 
a client shall use and the output arguments a client shall expect as a result. The  
intention of a Method is that it executes relatively fast. The client uses the Call Ser-
vice to invoke the Method (see Chap. 5) and the response of this Service call al-
ready contains the result. When servers need to expose long running processes that 
are started and controlled by the client, they should use Programs (see Sect. 4.8). 
Examples are Methods to open a valve or starting a motor, as well as more complex 
tasks like calculating some simulation results based on provided input values. In 
general, using a Method makes sense when a set of arguments is used as input  
or output or both or a special action should be triggered in a defined way in the 
server. A Method in OPC UA does only provide the signature of a Method. There 
is no standardized way to get or set the implementation of a Method of an OPC 
UA server. 

Nodes of the NodeClass Object are used to structure the Address Space. Objects 
do not contain data other than describing the Node with Attributes like Display-
Name and Description. Values of Objects are exposed using Variables. Objects 

                                                           
4 Please be aware that the HasSubtype Reference is modeled pointing from the supertype to the 
subtype. It is a hierarchical Reference and therefore it makes sense to expose a type hierarchy  
in that direction. However, typically in modeling languages like UML the subtype points to its 
supertype. 
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contain no Value Attribute like Variables. Objects can be used to group Variables, 
Methods, or other Objects. Although OPC UA does not define a clear concept of 
ownership, Methods and Variables always belong to an Object (or ObjectType, 
see Sect. 2.5). Methods are always called in the context of an Object. In addition 
to the contained Methods and the Variables, an Object can be an EventNotifier. 
Clients can subscribe to an EventNotifier to receive Events (see Sect. 2.10). 

In Fig. 2.8, the concept of an Object containing Objects, Variables, and Methods 
and generating Events is summarized. The Object Motor contains a Variable Status 
identifying if the motor is running or not. Clients can subscribe to this Variable 
and thus always get Notifications when the status of the motor changes. In addi-
tion, the Motor has some configuration Variables, grouped under another Object 
called Configuration. A client can read or subscribe to those Variables, but also 
change the configuration by writing the Variables. The Methods Start and Stop 

scribe to Events of the Motor. The motor can, for example, generate Events when 
it goes into a maintenance state and is not working properly anymore. The Motor 

 

 

Fig. 2.8 Overview of Objects, Variables, and Methods 

 

Object can be connected to other Objects using specific ReferenceTypes, in  

can be invoked by the client to start or stop the motor. In addition, clients can sub-
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the example it just references another Object Object1 with a Reference of 
MyReferenceType. In that case, the referenced Object is not considered to be part 
of the motor. 

The only additional Attribute of the Object NodeClass is used to identify if an 
Object can be used as EventNotifier, that is, whether clients can subscribe to the 
Object to receive Events or to read or update the history of Events. This is cap-
tured in Table 2.3. 

Table 2.3 Additional Attributes for Objects 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
EventNotifier Byte This Attribute represents a bit mask that identi-

fies whether the Object can be used to sub-
scribe to Events and whether the history of 
Events is accessible and changeable 

higher. These Attributes are summarized in Table 2.4. 

Table 2.4 Additional Attributes for Variables 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
Value 

 
Is not fix; 
specified 
by other 
Attributes 

The actual value of the Variable. The data 
type of the value is specified by the 
DataType, ValueRank, and ArrayDimen-
sions Attributes 

DataType NodeId DataTypes are represented as Nodes in the 
Address Space. This Attribute contains a 
NodeId of such a Node and thus defines 
the DataType of the Value Attribute 

ValueRank Int32 Identifies if the value is an array and when 
it is an array it allows specifying the  
dimensions of the array 

ArrayDimensions UInt32[] This optional Attribute allows specifying 
the size of an array and can only be used if 
the value is an array. For each dimension 
of the array a corresponding entry defines 
the length of the dimension 

AccessLevel Byte A bit mask indicating whether the current 
value of the Value Attribute is readable 
and writable as well as whether the history 
of the value is readable and changeable 

  (Continued) 
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UserAccessLevel Byte Contains the same information as the  
AccessLevel but takes user access rights 
into account 

MinimumSampling-
Interval 

Duration This optional Attribute provides the infor-
mation how fast the OPC UA server can 
detect changes of the Value Attribute. For 
Values not directly managed by the server, 
e.g., the temperature of a temperature  
sensor, the server may need to scan the  
device for changes (polling) and thus is not 
able to detect changes faster than this 
minimum interval 

Historizing Boolean Indicates whether the server currently  
collects history for the Value. The  
AccessLevel Attribute does not provide 
that information, it only specifies whether 
some history is available 

the ArrayDimensions Attribute. The reason having three Attributes is that the sup-
port of multidimensional arrays is built into OPC UA. Clients can read or write 
only parts of an array or subscribe to parts of an array. Thus the DataType speci-
fies only the base type and the other Attributes define whether an array or a matrix 
of the DataType is used and optionally the size of the array or matrix. More details 
about DataTypes are described in Sect. 2.8. The reason for not using References to 
indicate a DataType is that some Variables may often change the DataType and 
thus clients may want to subscribe to them. Tracking changes on References is 
much harder in OPC UA, as described in Sect. 2.11.3. 

To avoid confusion regarding the Attributes defining the data type of the Value, 
we provide examples of how to use those Attributes showing allowed Values in 
Table 2.5. 

Table 2.5 Examples of how to use the Attributes of a Variable defining the type of the Value 

Possible Values DataType ValueRank ArrayDimensions 
“Just a String” String –1 (Scalar) – 
{1,2,3} 
{4,7,9,12} 

Int16 1 (OneDimension) – 

{1,2,3} 
{3,4,8} 

UInt16 1 (OneDimension) {3} 

1 
{1,4,9} 
{1,2}{1,5} 

UInt32 –2 (Any) – 

{3,4}{1,2}{3,4} Int32 2 (two dimensions) {2, 3} 
{123,123} 
{1,2}{1,1}{2,4} 

UInt64 0 (OneOrMoreDimensions) – 

332.4 Objects, Variables, and Methods

The data type of the Value Attribute is defined by the DataType, ValueRank, and 



The main difference between the WriteMask and the AccessLevel, respectively, 
UserWriteMask and UserAccessLevel is that the AccessLevel is only related to 
the Value Attribute. In addition to the write access indicated by the WriteMask, it 
captures the read access of current data as well as the read and write access to his-
torical data. Thus the optional WriteMask Attribute excludes the Value Attribute 
of Variables, which means the information is not duplicated and clients must always 
access the mandatory AccessLevel Attribute to receive that information. 

The additional Attributes of a Method are summarized in Table 2.6. For the 
Method NodeClass, a concept introduced in the Address Space Model is already 
used to form the Address Space Model. The input- and output-arguments of a 
Method are not described in Attributes but in OPC UA Variables belonging to the 
Method. That allows keeping all Attribute data types simple except for the Value 
Attribute, since the complex argument structure defining Method arguments is 
provided in the Value Attribute of a Variable. Since those Variables are needed for 
most Methods, Table 2.6 does not only contain the Attributes of the Method 
NodeClass but also the standard Variables used to define the arguments of the 
Method (or more precise standard Properties which are special Variables des-
cribed in Sect. 2.6). 

Table 2.6 Additional Attributes and standard Properties for Methods 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
Executable Boolean A flag indicating if the Method can be in-

voked at the moment 
UserExecutable Boolean Same as the Executable Attribute taking 

user access rights into account 
Property  
InputArguments Argument[] This optional Property defines an array of 

input arguments for the method. The order 
of the array defines the order of the argu-
ments. If the Property is not provided the 
Method has no input argument 

OutputArguments Argument[] Same as InputArguments for the output of 
a Method  

The structure of the data type Argument is summarized in Table 2.7. The des-
cription of each argument of a Method contains a name, a textual description, and 
the definition of the data type. Here, the same mechanisms are used as in the Vari-
able NodeClass.  

Let us take a look on how a method in an object-oriented programming lan-
guage is mapped to the Method NodeClass. At the moment we do not consider 
how the Method is bound to an Object, and this will be done in Sect. 2.5 when  
ObjectTypes are introduced. In Fig. 2.9, a method signature is shown using pseudo 
code. This method, called Encrypt, takes a key and some data as input and returns 
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the encrypted data and the length of the encrypted data. The mapping to OPC UA 
is shown in Fig. 2.9 as well. In OPC UA, a Method is created called Encrypt having 

The return value of the method and the out parameter called length are both pro-
vided by the Value of the OutputArguments Variable. Since the return value of a 

ple, all Arguments have no description. Of course it is reasonable to put in a des-
cription if available, for example, from the comments of the method. 

Table 2.7 Structure of the Argument DataType 

Name DataType Description 
Name String Name of the Argument 
DataType NodeId NodeId of a DataType Node 
ValueRank Int32 Indicates if the argument is a scalar 

value, an array, or a matrix 
ArrayDimensions UInt32[] Optionally defines the size of the array 

or matrix 
Description LocalizedText Description of the argument 

 
Fig. 2.9 Mapping of a method in pseudo code to OPC UA 

method is not named, a name has to be generated for that Argument. In the exam-

Variables for input- and output-arguments. The description of the input arguments 
of the Method is provided by the Value Attribute of the InputArguments Variable. 

and Variables. By using OPC UA Methods, you can avoid workarounds having 
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items as output parameters. 

What’s allowed and what’s not? 
Variables must always belong to another Node. Therefore, they must be ref-
erenced by at least one HasComponent or HasProperty Reference from  
another Node. In Sect. 2.6, details are described for the different kinds of 
Variables, called Data Variables and Properties. 
Methods must belong to an Object (or ObjectType) and therefore referenced 
from one of those with at least one HasComponent Reference. Methods can 
only be invoked on Objects (or ObjectTypes) referencing the Method with a 
HasComponent Reference.  
Each Object and each Variable must be typed, that is, pointing with exactly 
one HasTypeDefinition Reference to an ObjectType, respectively, Vari-
ableType (details can be found in Sect. 2.5). However, this requirement can 
be fulfilled very easily. If no real type information is available or shall not 
be exposed for some reasons, the base types defined by OPC UA can be 
used. 

2.5  Types for Objects and Variables 

A main feature of OPC UA is providing type information not only on data type 
level (knowing that a Value is an Int32 or a String) but on object level as well. 
This allows, for example, exposing the information that a specific type of device 
provides a measured temperature. In Classic OPC, there was no other possibility 
then using product- or domain-specific naming conventions. In OPC UA you can 

ing objects of that type. Standard types can be defined and by using inheritance 

programmed with the knowledge of specific types, for example, by defining a 
graphical element like a faceplate tailored to a specific type and to use it for sev-
eral instances of the type. 

OPC UA provides a rich type model, but it does not force servers to really use 
it. For example, the wrapper of the OPC Foundation generically maps Classic 
OPC DA data to OPC UA and does not have any real type information available 
and thus cannot provide a real type system. In that case, only some base types are 
used. Thus, the type model introduced in the following is a powerful concept, but 
if no type information is available it is not an obstacle to use OPC UA. 

The OPC UA Address Space defines the NodeClass ObjectType for type defi-
nitions of Objects and VariableType for type definitions of Variables. There are no 
type definitions available for Methods. Methods can be bound to an ObjectType and 

express this information by defining a type for temperature sensors and by creat-

write-only items to specify input arguments and to start a method and using read-only 

the standard type with vendor-specific characteristics. This allows clients to be 
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are thus available on Objects, but they are defined by their BrowseName and its 
arguments and thus no type is needed.  

If we are generalizing ObjectTypes and VariableTypes to explain common 
characteristics, we will call them TypeDefinition.  

ObjectTypes can be simple or complex. Complex types expose some structure of 
Nodes beneath them that are present on each instance of the type, whereas simple 
types define only some semantic for the Object. An example of a simple type is 
the FolderType defined by OPC UA [UA Part 3]. Here the semantic is defined that 
the purpose of a folder is to organize other Nodes in the Address Space. No addi-
tional structure is defined beneath the FolderType. 

The Attributes of an ObjectType are summarized in Table 2.8. The only addi-
tional Attribute specifies if the type is abstract. An abstract type cannot be refer-
enced as type definition by an Object and is only used to organize the types in the 
type hierarchy. 

Table 2.8 Additional Attributes for ObjectTypes 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
IsAbstract Boolean This Attribute indicates whether the Ob-

jectType is concrete or abstract and therefore 
cannot directly be used as type definition 

Let us examine how the type system for Objects works. In Fig. 2.10, you can 
see the simple ObjectType FolderType defined by OPC UA and some Objects  
using the type. An Object references its type using the HasTypeDefinition Refer-
enceType. Each Object is typed and has exactly one type, thus each Object is the 
source of exactly one HasTypeDefinition Reference. In Fig. 2.10, the Objects 
“Root” and “Objects” references the FolderType using a HasTypeDefinition Ref-
erence and therefore are of type FolderType. Both Nodes are actually standard  
entry points into the Address Space and defined in [UA Part 5]. 

When the NodeManagement Services (see Chap. 5) are used to create a new 
Object, the type definition has to be provided. Some Attributes for the new Object 
do not have to be specified but can be filled with default values of the ObjectType. 
For Objects only5 the Description and the DisplayName Attributes are by default  

                                                           
5 The WriteMask and UserWriteMask can be used as well; however, here something may need to 
be changed by some server-internal logic since Objects and ObjectTypes have different Attri-
butes. 
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Fig. 2.10 Example of a simple ObjectType 

filled with default values from the ObjectType. This is exemplified on the Root 
Object where the Description of the FolderType is used. 

Other than providing the semantic, the FolderType does not restrict the usage 
of its instances. In theory, all Attributes of the Node can be changed (which typi-
cally does not make sense for some Attributes like the NodeClass). New Refer-
ences can be added to the Node (like Root is now referencing Objects in Fig. 2.10) 
and later on they can be removed from the Object. However, this may not be true 
for all kinds of References. Even if the FolderType does not restrict the usage of 
References, there may be a ReferenceType that restricts its usage to certain 
ObjectTypes or NodeClasses. In addition, other ObjectTypes may restrict how in-
stances of it are referenced as we will see when we talk about complex Ob-
jectTypes. 

ObjectTypes support inheritance and thus there is a type hierarchy of Object-
Types. In Fig. 2.11, you can see an excerpt of a type hierarchy where the simple 
type BranchType is derived from FolderType. This type could be used by a wrapper 
of OPC DA servers to represent OPC DA branches.6 They have the same purpose 
then Objects of FolderType, that is, they are just organizing the Address Space. 
However, making a subtype makes sense, so clients know that they are accessing 
wrapped Classic OPC DA data. Clients can ignore the subtype and based on the 
knowledge that it is a subtype of FolderType handle every Object of type Branch-
Type like an Object of type FolderType. 

                                                           
6 Please be aware that the actual OPC DA Wrapper implementation of the OPC Foundation does 
not use a subtype but directly uses the FolderType for DA branches. 
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Root

Organizes Object
HasTypeDefinition

Organizes
ObjectType

FolderType

Attributes
DisplayName = „FolderType“ 
BrowseName = (0, FolderType)
NodeId = …  
NodeClass = ObjectType  
Description  = 
  „Organizes the Address Space“
IsAbstract = False   

Attributes
DisplayName = „FolderType“  
BrowseName = (0, FolderType )  
NodeId = …  
NodeClass = ObjectType  
Description  = 
  „Organizes the Address Space“
EventNotifier = NoAccess   

Objects

Attributes
DisplayName = „FolderType“  
BrowseName = (0, FolderType)   
NodeId = …  
NodeClass = ObjectType  
Description  = 
  „Entry point to Objects“
EventNotifier = NoAccess   

Organizes



Fig. 2.11 Inheritance of a simple ObjectType 

Like ObjectTypes, VariableTypes can be simple or complex as well. The complex 
type exposes a structure of Nodes beneath it that is available at the instances, 
whereas the simple VariableType defines only the semantic of a Variable or res-
tricts the usage of the data type of the Value Attribute on the instances. For example, 
the OPC UA specification defines a base type for Variables called BaseDataVari-
ableType not restricting the usage of the data type [UA Part 5]. A subtype could 
define a Counter Variable having a typical counter semantic and restricting the 
usage of the data type to a scalar integer value. 

VariableType NodeClass in Table 2.9. 
The Attributes of the VariableType NodeClass are very similar to the Variable 

NodeClass. It contains the Value Attribute and the definition of the data type for 
the Value Attribute. It does not contain those Attributes providing information 
about the runtime behavior of the Value (is it currently historized, is it readable, 
what is the minimum sampling rate, etc.), but it contains the IsAbstract Attribute 
identifying if the VariableType can directly be used by instances or is only used to 
organize the VariableType hierarchy. Unlike for Variables, the Value Attribute is 
only optional since it has no real use for VariableTypes since it is expected that 

providing the Value is to define a default value for instances of the VariableType. 
Thus providing the data type information for the value on the VariableType is 
used mainly to define the data type for instances of the VariableType. 

ableType may use only some base types of that hierarchy and instances of the 
VariableType may offer more concrete types. Let us examine a concrete example. 
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BranchType

Branch1

Organizes Object
HasTypeDefinition

Organizes
ObjectType

FolderType

Attributes
DisplayName = „FolderType“  
BrowseName = (0, FolderType)  
NodeId = …  
NodeClass = ObjectType  
Description  = 
  „Organizes the Address Space“
IsAbstract = False

Attributes

  „Branch of OPC DA Server“
EventNotifier = NoAccess   

Objects

Organizes

Attributes
DisplayName = „FolderType“  
BrowseName = (0, BranchType)
NodeId = …  
NodeClass = ObjectType  
Description = 
  „Branch of OPC DA Server“
IsAbstract = False  

HasSubtype

OPC DA Server

Organizes

DisplayName = „Branch 1“  
BrowseName = (1, Branch 1 )  
NodeId = …  
NodeClass = ObjectType  
Description  = 

Before we go into the details of the example, let us examine the Attributes of the 

In Sect. 2.8, you will learn that there is also a hierarchy of DataTypes. A Vari-

the Value will have no real meaning on the VariableType. The only reason for 



Table 2.9 Additional Attributes for VariableTypes 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
Value Is not fix; 

specified 
by other 
Attributes 

This optional Attribute defines a default 
value for instances of this VariableType. 

the DataType, ValueRank, and ArrayDi-

DataType NodeId Defines the DataType of the Value Attrib-
ute for instances of this type as well as for 
the Value Attribute of the VariableType if 

ValueRank Int32 Identifies if the value of instances of this 
type is a scalar value, an array, or a multi-

ArrayDimensions UInt32[] This optional Attribute allows specifying 
the size of an array or a matrix and can 
only be used if the value is an array. For 
each dimension of the array the corre-
sponding entry into this array defines the 

IsAbstract Boolean This Attribute indicates if the VariableType 
is abstract and therefore cannot directly be 

In Fig. 2.12, you can see the BaseDataVariableType. It uses the BaseDataType 
(the root of the DataType hierarchy) and does not restrict the usage of arrays. Thus 
instances of this VariableType can restrict their data type to their needs (like Vari-
able1 uses a scalar Int32). 

But the restriction of the data type does not have to be made on instances. It is 
also valid that Variables use only abstract base data types. In that case, the client 
must expect that any subtype of that data type is returned. For example, Variable2 
only restricts the data type to be a scalar, thus valid retuned values are a String 
“Test1,” the Int32 “123,” etc. The data type can change every time the value 
changes and clients must be able to handle this behavior. In Sect. 2.8, you will see 
that there are more abstract DataTypes. This allows, for example, to expose that a 
number is provided as value without specifying the concrete type of number. 

For subtyping simple VariableTypes, the same rules apply as for instantiating  
a VariableType. The data type can be made more concrete, but of course not be  
expanded. In Fig. 2.13, you can see an example of subtyping the BaseDataVari-
ableType. The subtype Counter of the BaseDataVariableType restricts the usage 
of the data type (only scalar integers are allowed) and also defines the semantic for 
instances of that VariableType. It uses the name (Counter) and the Description  
Attribute to define the semantic. 
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Fig. 2.12 Example of a simple VariableType 

Fig. 2.13 Inheritance of a simple VariableType 
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BaseDataVariableType

HasSubtype

Attributes
DisplayName = „BaseDataVariableType“
BrowseName = (0, BaseDataVariableType)
NodeId = …
NodeClass = VariableType
Description = „Base Type of DataVariables“
Value
DataType = BaseDataType
ValueRank = Any
ArrayDimensions
IsAbstract = False 

VariableType

CounterType

Attributes
DisplayName = „CounterType“
BrowseName = (0, CounterType)
NodeId = …
NodeClass = VariableType
Description = 
„A counter always increasing ist value by 
one until max . value is reached . Then it rolls 
over to 0.“
Value
DataType = Integer
ValueRank = Scalar
ArrayDimensions
IsAbstract = False 

Variable1

BaseDataVariableType

HasTypeDefinition

Attributes
DisplayName = „BaseDataVariableType“
BrowseName = (0, BaseDataVariableType)
NodeId = …
NodeClass = VariableType
Description  = „Base Type of DataVariables“ 
Value
DataType = BaseDataType
ValueRank = Any
ArrayDimensions
IsAbstract = False 

Attributes
DisplayName = „Variable1“
BrowseName = (1, Variable1)
NodeId = …
NodeClass = Variable
Description  = „A simple test variable“
Value = 1
DataType = Int32
ValueRank = Scalar
ArrayDimensions
AccessLevel = Readable | Writeable
UserAccessLevel = Readable
Historizing = False
MinSamplingInterval =  0

VariableType Variable

Variable2

Attributes
DisplayName = „Variable2“
BrowseName = (1, Variable2)
NodeId = …
NodeClass = Variable
Description  = „A simple test variable“
Value = „Some Value“
DataType = BaseDataType
ValueRank = Scalar
ArrayDimensions
AccessLevel = Readable | Writeable
UserAccessLevel = Readable
Historizing = False
MinSamplingInterval =  0

An outlined Attribute
indicates that the Attribute
is not provided



What’s allowed and what’s not? 
The following rules apply not only for simple types but also for complex 
types. 
There are no rules keeping the names of Object- or VariableTypes unique.  
A server can provide several types with the same name. Only the NodeId 
makes a type unique. However, it is not recommended using the same 
BrowseName twice. 
It is not forbidden that Object- or VariableTypes have multiple supertypes; 
however, it is not recommended. Each Object- and each VariableType must 
have at least one supertype, except for the BaseObjectType and the Base-
VariableType. Thus each ObjectType must be a subtype of BaseObjectType 
and each VariableType must be a subtype of BaseVariableType. 
Instances and subtypes of VariableTypes can further restrict the data type, 
but they cannot leverage it. That means that they can use a subtype of the 
DataType but not use a supertype or any other DataType that is not the same 
DataType or a subtype. If the ValueRank does not specify the concrete char-
acteristic, it can be specified in the instance or subtype. If the VariableType 
specifies, for example, “Any” in the ValueRank, the subtype or instance can 
choose “Scalar” or any other choice. If the VariableType specifies OneOr-
MoreDimensions the instance or subtype can specify a concrete dimension 
(e.g., OneDimension); however, it cannot specify “Any” or “Scalar.” 
Any semantic defined by a supertype still has to be applicable for the sub-
types. VariableType CounterType used in the example may be subtyped but 
the semantic defined for the CounterType must still be valid for the subtype. 

Complex ObjectTypes define a structure of Nodes beneath them that is available 
on each instance of the ObjectType as well. In Fig. 2.14, an example of a complex 
ObjectType is given. MotorType has the Methods Start and Stop, a Status Vari-

that Instances of the MotorType like Motor1 have the same structure beneath them. 
Before we go into more details of how complex ObjectTypes work, let us 

debate why we may need complex ObjectTypes at all. A server exposing complex 
ObjectTypes and instances of that type gives clients the possibility program their 
application with knowledge of the type information and use this on all instances. 
A client can, for example, have a specific part of a user interface tailored to the 
ObjectType and displays this for each instance of the type. In Fig. 2.15, this scenario 
is summarized.  
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2.5.3  Complex ObjectTypes 

able, and an Object called Configuration having two Variables. Figure 2.14 shows 



Fig. 2.14 Example of a complex ObjectType 

The graphical element of the client is programmed with knowledge of the  
MotorType. In the user interface of the client, this graphical element is used two 
times representing the two instances of the MotorType, called Motor1 and  
Motor2. The knowledge about the type is used to access and display the informa-
tion provided by the instances. Using the knowledge about the type is not res-
tricted to complex ObjectTypes. For example, a client can implement a special 
handling for the FolderType by using a specific icon for it in a tree control. Never-
theless, the real power comes into play when programming with knowledge of 
complex types considering the structure of Nodes beneath the types. 

Another advantage of having complex ObjectTypes is that they are defined 
once and can be used in several places. When a server creates a new instance of 
the ObjectType, it is guaranteed that it has the structure defined by the ObjectType. An 
ObjectType can be defined in a project where it is used several times, in a vendor-
specific library, or even in a standard Information Model. Several instances of the 
ObjectType can be instantiated, using the AddNodes Service (see Chap. 5). Only 
the ObjectType and the base Attributes of the instance have to be specified. This 
scenario is shown in Fig. 2.16. The client calls the AddNodes Service to create a 
new Object Motor1. All newly created Nodes and References based on this call 
are exposed in a bold line style. In the AddNodes Service, the client has to specify 
the ReferenceType and Node to which the new Node should be connected. In our 
example the Area1 Object is chosen and Organizes ReferenceType. In addition, 
it specifies the Attributes for the new Node like the DisplayName Motor1 and  
it specifies the ObjectType. Based on the specified ObjectType, the HasType-
Definition Reference to the ObjectType is created and the structure defined by 
the ObjectType is automatically created beneath the new Object. 
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Object

Configuration

HasComponent

Status

Start

Stop

Emergency Start

Method

Variable

Reversing 
Lock - out Time

Motor Type

Configuration

Status

Start

Stop

Emergency S tart

Reversing 
Lock - out Time

ObjectType

HasTypeDefinition

Same Structure

Motor1



Fig. 2.15 Programming against complex ObjectType 

Fig. 2.16 Creating Instances based on complex ObjectTypes 
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Reversing 
Lock-out Time

MotorType

Configuration

Status

Start

Stop

Emergency Start

Reversing 
Lock - out Time

Motor1

Configuration

Status

Start

Stop

Emergency Start

Reversing 
Lock - out Time

Motor2

OPC UA Server

Complex Type Instances

OPC UA Client

.Status

Graphical Element

Status:
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Start Stop
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against

ObjectType  

Running
against

Instances

User Interface

.DisplayName

Running

Start Stop
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Status:
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Start Stop
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Status:

Configuration

Other Graphic Element

Reset

Load
applied

Configuration

Status
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Reversing 
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MotorType

Configuration

Status

Start

Stop

Emergency Start

Reversing 
Lock-out Time

Motor1

OPC UA Client

Objects

Area1Organizes

Organizes

Calls
AddNodes

Service

In AddNodes the client 
specifies the type definition 
(for Objects and Variables)

In AddNodes the client 
specifies the base 
Attributes of the new Object 
(like the DisplayName)

All the structure beneath 
the new Object is 
automatically created based 
on the ObjectType, 
including the values for 
Attributes like DisplayName

OPC UA Server
In AddNodes the client
specifies the target Node
and ReferenceType where
the new Node should be in
the AddressSpace    



After explaining why complex ObjectTypes can be a very useful feature, let us  
examine them a little closer. As you can see in Fig. 2.14, the ObjectType Motor-
Type uses the NodeClass ObjectType. All Nodes beneath it are of the Node-
Classes Object, Variable, or Method and thus instances and not types. However, 
they are typically no real instances having real values behind them and thus they 
are called InstanceDeclarations. An InstanceDeclaration is a named entity used to 
define a complex ObjectType. The InstanceDeclarations are defined as Variables, 
Objects, and Methods exposed beneath the ObjectType. Since beneath something 
is not that obvious in a full-meshed network of Nodes exposing several hierar-
chies, the more precise definition is InstanceDeclarations are referenced from the 
ObjectType by a hierarchical Reference in forward direction, either directly or  
indirectly by another InstanceDeclaration. In addition, the InstanceDeclaration 

A key feature of InstanceDeclarations is that they can be uniquely identified 
relative to the ObjectType. The same relative identifier applies for instances of the 
ObjectType and the counterpart of the InstanceDeclaration. This allows program-
ming using the knowledge of the ObjectType. NodeIds cannot be used for that 
purpose since the InstanceDeclaration is typically a different Node than its coun-
terpart on the instance and thus must have a different NodeId. Instead the Browse-
Name is used, or for indirectly referenced InstanceDeclarations the BrowsePath 
which is a list of BrowseNames. This requires that an InstanceDeclaration must 
have a unique BrowsePath starting from the ObjectType. The path must be unique 
independent of the NodeClass, which means that an ObjectType cannot have  
an Object and a Variable with the same BrowseName directly referenced as  
InstanceDeclaration. The BrowsePath is exemplified in Fig. 2.17. 

Fig. 2.17 Unique BrowsePaths for InstanceDeclarations 
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2.5.4  InstanceDeclarations 

Motor01

Configuration 01

Emergency Start

Attribute
DisplayName = “Emergency Start“
BrowseName = “ES“

Attribute
DisplayName = “Configuration“
BrowseName = “Configuration“

MotorType

Configuration

Attribute
DisplayName = “Configuration01“
BrowseName = “Configuration“

EmergencyStart 01

Attribute
DisplayName = “EmergencyStart01“
BrowseName = “ES“

BrowsePath: /Configuration/ES

BrowsePath: /Configuration/ES

Same 
BrowsePath 

on 
ObjectType 

and  
Instance

DisplayName and 
BrowseName may be 
different in 
InstanceDeclarations

DisplayName can change in 
instance based on 
InstanceDeclaration, the 
BrowseName must stay the same

must have a ModellingRule (see Sect. 2.5.6). 



Clients can detect the BrowsePath of an InstanceDeclaration starting at the  
ObjectType and following hierarchical References in forward direction. They have 
to add the BrowseName of each Node before they reach the target InstanceDeclara-
tion. Clients can store that information and when they use their display or other 
application to access a concrete instance of the ObjectType, they can call a special  
Service called TranslateBrowsePathsToNodeIds (see Chap. 5 for details). This 
Service takes the NodeId of the instance and the BrowsePath as input and returns 
the NodeId of the counterpart of the InstanceDeclaration. By using this NodeId, 
clients can do the appropriate action with the Node, like subscribing to the data or 
writing them. 

Please be aware that the constraint on unique BrowseNames only applies for 
InstanceDeclarations, not for instances. In Fig. 2.18 you can see that MotorX ref-
erences another Configuration Object containing the default Configuration settings 
having the same BrowseName as the Configuration Object based on the Motor-
Type. In that case, the TranslateBrowsePathsToNodeIds Service will return an  
array of NodeIds, having the NodeId of the Node based on the TypeDefinition as 
first entry. 

Fig. 2.18 Nonunique BrowsePaths for Instances 

A complex ObjectType having InstanceDeclarations is very similar to a class in 
object-oriented programming languages having variables. In a class, a variable is a 
named entity that is addressed by the name. Let us look at a sample object-
oriented class and how this can easily be mapped to a complex ObjectType. In 
Fig. 2.19, the class Employee is shown in pseudo-code. The class has the public 
variables Name, Salary, and Address. For simplicity the name is just a String, the 
Salary an Integer, but the address uses another class Address having the public 
variables Street and City. In addition, the Employee has two methods, Increase-
Salary() and SalaryAfterTax(). The first one takes a percentage and increases the 
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MotorX

Configuration 01

Emergency Start

Attribute
DisplayName = “Emergency Start“
BrowseName = “ES“

Attribute
DisplayName = “Configuration“
BrowseName = “Configuration“

MotorType

Configuration

Attribute
DisplayName = “Configuration01“
BrowseName = “Configuration“ EmergencyStart 01

Attribute
DisplayName = “EmergencyStart01“
BrowseName = “ES“

BrowsePath: /Configuration/ES

BrowsePath: /Configuration/ES

DefaultConfig

Attribute
DisplayName = “DefaultConfig“
BrowseName = “Configuration“ EmergencyStart

Attribute
DisplayName = “EmergencyStart“
BrowseName = “ES“

BrowsePath: /Configuration/ES

MotorX has the same 
BrowsePath two 
times. 
TranslateBrowsePaths
ToNodeIds will return 
the one based on the 
TypeDefinition first

Based on TypeDefintion

Added later to MotorX



7

ments and the other having only output arguments. 

Fig. 2.19 Mapping an object-oriented class to an ObjectType 

Of course, there are also differences between classes of typical object-oriented 
programming languages and ObjectTypes. One difference is that there is no stan-
dard way to expose the implementation of a Method. On the other hand, OPC UA 
is more flexible. It is allowed to add components to an instance independent of the 
type definition. For example, an instance of Employee could have a Variable 
called Award storing information about an award received by the employee, with-
out altering the ObjectType or creating a subtype of it. That is also allowed on  
InstanceDeclarations, thus the EmployeeType could add a Variable ZipCode  
beneath the Address Object. In an object-oriented programming language, you 
would typically have to subtype Address to add information in that place. 

                                                           
7 Please note that all Objects and Variables used as InstanceDeclarations are typed, although the 
type is not exposed in most of the examples shown so far. All constraints valid for Objects and 
Variables used as instances are valid for Objects and Variables used as InstanceDeclarations as 
well. 

472.5 Types for Objects and Variables

The mapping to ObjectTypes is straight forward. The Address class is mapped to 

to the ObjectType EmployeeType having two Variables for Salary and Name and 

salary of the employee; the second returns the salary of the employee after taxes. 

an instance of AddressType to represent the Address.  In addition, there are two  

EmployeeType

Address

class Address
{
public: 

std::string Street ;
std::string City;

};

class Employee
{
public:

std::string Name;
int Salary;
Address Address;

void IncreaseSalary (int percentage) 
{ 

Salary = 
Salary + ((Salary * percentage)/100);

};
int SalleryAfterTax () 
{

return (Salary - Salary * 0.4);
};

};

AddressType

Street

City

Street

City

Name

Salary

IncreaseSalary

InputArguments

SalaryAfterTax

OutputArguments

Methods IncreaseSalary and SalaryAfterTax, one having only input arguments and

an ObjectType AddressType having two Variables. The class Employee is mapped 



Before we consider ModellingRules and how subtyping works, let us take a look 
at complex VariableTypes. They are very similar to complex ObjectTypes. The 
main difference is that they can only use Variables as InstanceDeclarations and 
not Objects or Methods. Methods are defined for Objects; thus it is obvious that 
they do not fit to a VariableType. Variables are always parts of Objects or other 
Nodes and thus it makes no sense that a VariableType contains an Object as part 
of it. VariableTypes can only expose additional Variables, either describing the 
Variable (like providing the engineering unit of the value provided by the Vari-
able) or exposing parts of the structure of the value. For example, the Variable 
could provide a complex data type having several fields and sub-variables would 
expose each of the fields. But it is also possible that a Variable provides an aver-
age of measured values provided by three other Variables and thus those Variables 
become sub-variables of it. By providing those sub-variables as InstanceDeclara-
tions, the VariableType formalizes this information so clients will know that each 
instance of the VariableType will have that information.  

The rules defined for InstanceDeclarations in the section above also apply for 
VariableTypes, considering that only Variables can be used as InstanceDeclara-
tions. 

Each instance referenced by a TypeDefinition (i.e., ObjectType or VariableType) 
becomes an InstanceDeclaration if it has a ModellingRule. A ModellingRule 
specifies what happens to the InstanceDeclaration with respect to instances of the 
ObjectType. There are three fundamental choices, also called the NamingRule of 
the ModellingRule. 

1. The first choice is to make the InstanceDeclaration Mandatory, which means 
that each instance must have a counterpart of the InstanceDeclaration having 
the same BrowsePath and must be of the same type as the InstanceDeclaration 
(when it is an Object or Variable) or a subtype of that type.  

2. The second choice is to make it Optional, that is, each instance may have such 
a counterpart. But it is not required that each instance has such a counterpart. 

3. The third choice is to make it a Constraint, which means that the Instance-
Declaration defines a constraint for instances of the TypeDefinition. We will 
see later on more details on what constraints are possible. An example is a  
cardinality restriction specifying that an instance of the TypeDefinition shall 
reference a defined range of instances having the same type as the Instance-
Declaration. 
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2.5.5  Complex VariableTypes 

2.5.6  ModellingRules 



ModellingRules is an extensible concept in OPC UA, that is, servers or standard 
Information Models may define their own ModellingRules. However, they always 

2.5.6.1 ModellingRules in the Address Space 

ModellingRules are represented as Objects of the type ModellingRule. Each Mod-
ellingRule has a Variable (more precisely Property, see Sect. 2.6) called Naming-
Rule. It contains the NamingRule of the ModellingRule. InstanceDeclarations 
reference a ModellingRule Object with the ReferenceType HasModellingRule to 
specify their ModellingRule. Each Node can reference only one ModellingRule 
using the HasModellingRule Reference. How ModellingRules are used in the 
Address Space is shown in Fig. 2.20 on the left side. To simplify the figures, we 
use in this book the notation shown on the right side, where the ModellingRule is 
added to the Node as text in brackets. 

2.5.6.2 ModellingRules Mandatory and Optional 

There are two standard ModellingRules called Optional and Mandatory, named 
equally to their NamingRule. Let us take a look at an example how these two 
ModellingRules work. In Fig. 2.21, the AddressType has the InstanceDeclarations 
Street with the ModellingRule Optional and City with the ModellingRule Manda-

Fig. 2.21 you can see that Address1 has both. In that case, both instances have 
ModellingRules as well. As long as they are not referenced by a TypeDefinition, 
they are no InstanceDeclarations. In that case it is allowed that any ModellingRule 
is used for the instances. Typically, normal instances have no ModellingRules like 

tory. This means that each instance must have a City and may have a Street. In 
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EmployeeType

Address

HasComponent

HasProperty

Optional ::
ModellingRuleType

Mandatory ::
ModellingRuleType

Each ModellingRule only

several times  

Each 
InstanceDeclafration 
references exactly 
one ModellingRule

HasModellingRule

NamingRule

Name

Salary

Attribute
Value = „Optional“

NamingRule
Attribute
Value = „Mandatory“

HasModellingRule

HasModellingRule

ModellingRules in the Address Space Simplified Notation 

EmployeeType

Address
[Optional]

Name
[Mandatory ]

Salary
[Optional ]

have to specify one of the earlier mentioned NamingRules. 

exists once and is referenced

in Address2-4. Address2 omits the Street and only provides the City. In Address3 

Fig. 2.20 ModellingRules in the Address Space 



Fig. 2.21 Applying Optional and Mandatory ModellingRules 

and 4 you can see that both share the same City. The ModellingRules Optional 
and Mandatory do not specify how a server has to deal with InstanceDeclarations 
when a new instance of a TypeDefinition is created. It can create new Nodes  
for the InstanceDeclarations or it just references existing Nodes. Instances of  
a TypeDefinition just have to reference an instance with the same BrowsePath 
and the same type (or a subtype). A server can, for example, also reference the 
InstanceDeclaration Node and thus create something like a static class variable 
having the same value for all instances. During runtime, Nodes may change as 

each instance of the type. 

8 since it does not have a Node referencing it, 

                                                           
8

automatically by the server or by a client. However, if a client requests to delete only Address3, 
the server either has to delete the Street Node as well or reject the request. 

50 2 Information Modeling: Concepts

AddressType

Street
[Optional]

City
[Mandatory]

Address1

Street
[Optional]

City
[Mandatory]

Address2

Street

City

Address3

City

Address4

Street

After looking at simple ModellingRules, let us take a look at ownership of  
Variables and Methods. As mentioned earlier, a Method and a Variable must always  
be referenced by an Object or ObjectType using a HasComponent or HasProperty
Reference. But since Variables and Methods can be shared and belong to several 
Objects, they are not owned by one Object. Thus, if Address3 in Fig. 2.21 is deleted, 
the Street beneath it must be removed
but the City cannot be deleted since it is still used by Address4. 

long as there is always a Node with the correct BrowseName and type available on 

 There is no clear responsibility defined who has to delete the Node. It could be either done 

again. In Fig. 2.22, you can see that Address is used as an InstanceDeclaration. 

ModellingRules. The ModellingRules may change; however, the NamingRule must 

Instances of complex TypeDefinitions can be used as InstanceDeclarations, 

stay the same. The only exception is Optional, which can be replaced by Mandatory. 

Therefore, the instances based on the InstanceDeclarations City and Street become  

In general, ModellingRules may only be replaced if their contraints are tightened, 
not loosened. In Fig. 2.22, the ModellingRule of Street changed from Optional 

InstanceDeclarations as well. This means that there are rules regarding the  

to Mandatory. Thus, a valid instance is Employee1 having both. It would not be 



In Fig. 2.22, another rule regarding ModellingRules is exposed. The Address 

This means that when Address is not provided, Street and City do not have to be 
provided as well as you can see in the valid Employee3 Object. 

Fig. 2.22 Instances used as InstanceDeclarations and based on InstanceDeclarations 

tion to the InstanceDeclaration. In Fig. 2.23, an example is given. A Temperature-

Configuration and the Temperature Variable under Measurement. The Tempera-
ture Variable uses the EngineeringUnit Variable to expose its engineering unit. 

There are two special cases; first two different References are connecting the 
same source with the same target. In Fig. 2.23, you can see that Measurement  
references Temperature two times. In that case, on each instance the counterpart to 
Measurement must reference the same Node with those two References; it is not 
allowed to point to two different Nodes.  

The second case is that there are two different indirect paths. In Fig. 2.23, the 
EngineeringUnit is referenced by two different paths. In that case, it is allowed 
that an instance references one Node from Configuration and a different one from 
Temperature. In the example that probably does not make sense, but there are 
other use cases where this is a reasonable approach, for example, when shared 
(static) class variables are used.  
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EmployeeType

Address
[Optional]

AddressType

Street
[Optional ]

City
[Mandatory ]

Name
[Mandatory]

Salary
[Optional]

Street
[Mandatory]

City
[Mandatory]

Employee3

Name
[Mandatory]

Employee 1

Name
[Mandatory]

Address
[Optional]

Street
[Mandatory]

City
[Mandatory]

Employee2

Name
[Mandatory]

Address
[Optional]

City
[Mandatory]

Not allowed, for Employees: 
Street must be provided if 

Address is provided

Object has the ModellingRule Optional and is on the only path to Street and City. 

does not require it. 
allowed having an Employee2 not providing the Street, also the AddressType 

own ModellingRules, let us consider some more complex examples. First let us take 
Before we look at how to use the NamingRule Constraint and how to create our 

SensorType having the EngineeringUnit Variable organized under the Folder 

a look at what happens if there is more than one BrowsePath from the TypeDefini-



Fig. 2.23 Example of InstanceDeclarations referenced by several paths 

Now let us see what happens if we add non-hierarchical References between 
InstanceDeclarations. In Fig. 2.24. you can see a DeviceType having a non-
hierarchical Reference between two sub-devices. Instances may or may not provide 
this non-hierarchical Reference. This behavior is server-specific for the Modelling-
Rules defined by OPC UA. However, you may define your own ModellingRule 
that specifies how to deal with non-hierarchical References between Instance-
Declarations.  

Fig. 2.24 Non-hierarchical References between InstanceDeclarations 

2.5.6.3 ModellingRules as Constraints 

After looking at Mandatory and Optional InstanceDeclarations, let us take a look 

The ModellingRule is called ExposesItsArray and can be used for VariableTypes 

52 2 Information Modeling: Concepts

Configuration

Measurement

EngineeringUnitOrganizes

Organizes HasEventSource
HasComponent
HasProperty

Measuement references 

Organizes reference and in 
addition with a 
HasEventSource pointing 
out that it may expose 
events sourced by the 

The EnginneringUnit is used by Temperature 
and thus there are two paths to 
EngineeringUnit:
/Configuration/EngineeringUnit and
/Measurement/Temperature/EngineeringUnit

DeviceType
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Subdevice2

Non-hierarchical Reference: CommunicatesWith

HasComponent

CommunicatesWith
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Device1
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CommunicatesWith

Device2

Subdevice1

Subdevice2

Reference may be 
provided on instance ..

… but do not have to 
be provided

Temperature using a 

TemperatureSensorType

temperature

ModellingRule defined by the current OPC UA specification defining a constraint. 

at InstanceDeclarations used to define constraints, and thus having the Naming-
Rule Constraint in their ModellingRule. We will first take a look at the only 

having an array as data type. The semantic is that each entry of the array is also 

Temperature



exposed as a sub-variable. In Fig. 2.25, this is exemplified. The TeamType  
contains an array of Strings and a Constraint Variable using the ModellingRule 
ExposesItsArray. Instances of that type must have a sub-variable for each entry of 
the array as you can see in the UABookTeam Variable in Fig. 2.25. Exposing the 
sub-variables allows referencing single entries of the array since they are exposed 
as Nodes in the Address Space. Please be aware that it is not necessary to expose 
arrays to allow access to single entries of an array (subscribing to them, reading or 
writing them). This can be done with the OPC UA Services directly by addressing 
parts of the array (see Chap. 5). 

Fig. 2.25 Using the ExposesItsArray ModellingRule 

ExposesItsArray is just an example of Constraint ModellingRules. You can 
define your own ModellingRules needed to define constraints in your model. A 
typical constraint in modeling is a cardinality restriction. An instance of one type 
shall reference between n and m instances of another type. Such a constraint  
can be exposed by a Constraint ModellingRule. An InstanceDeclaration having 
such a ModellingRule can be used as a proxy Object (see Sect. 3.3.8) between 
two TypeDefinitions containing the min and max values and also reference the  
addressed ReferenceType. Such a ModellingRule will probably be integrated 
into version two of OPC UA. Therefore, we will not expose any details of such a 
ModellingRule, since we might model it slightly different then it will be in the 
specification. 

Finally let us discuss why the ModellingRules defined by OPC UA do not 
cover every facet like what happens with non-hierarchical References or how  
instances are created based on the InstanceDeclarations. The OPC UA working 
group started defining all those things. But it turned out that there are different 
ways of how to handle this and different use cases where either one or the other 
possibility was more appropriate. Specifying all those possibilities would lead to a 
relatively large amount of ModellingRules that would become hard to understand. 
In addition, it is questionable how useful this additional information would become. 
In the case of programming against types you just need to know the hierarchical 
path to the target Node and you have to know if the Node is optional or manda-
tory. This is all provided by the defined ModellingRules. When creating instances 
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based on types, the server is responsible that counterparts of all InstanceDeclarations 
exist based on the ModellingRules. Whether new Nodes are created or Nodes 
are shared is in the responsibility of the server and does not necessarily has to be 
exposed to the client. Thus the ModellingRules provided by OPC UA are a good 
foundation that can be extended with additional ModellingRules, especially with 
those that are constraint-related. 

Subtyping of simple types was already explained in Sect. 2.5.1 for ObjectTypes and 
Sect. 2.5.2 for VariableTypes. For VariableTypes, the usage of the data type can 
be restricted in the subtype, thus the subtype can only use the same data type as 
defined in the supertype or a sub(data)type of it, including restrictions on array-
size, etc. Thus clients know that they can work with a subtype the same way they 
can work with the supertype. 

The same guarantee has to be fulfilled regarding subtyping of complex types. 
When a complex type is subtyped, the base characteristics of the supertype still have 

instance of the subtype as well. Generally spoken, each constraint on the supertype 
has to be fulfilled on the subtype as well and can only be further restricted. This 
means that an optional InstanceDeclaration can be made mandatory on the sub-
type, but no mandatory InstanceDeclaration can be made optional.  

subtype, one solution is that each subtype copies all InstanceDeclarations of the 
supertype or references the same Nodes. The other solution is that they are not 
copied but clients need to request the InstanceDeclarations of the supertypes as 
well to get a full picture of the subtype. The second approach is typically being 
used in object-oriented programming languages where variables of the supertype 

having several levels. Thus InstanceDeclarations do not have to be duplicated on 
subtypes unless you want to override them. In Fig. 2.26, subtyping of a complex 

tional variable Country is added, the other variables are not specified but inherited 
by Address. The same is applied on the ObjectType InternationalAddressType. 
Only the InstanceDeclaration Country is added, the other InstanceDeclarations are 
inherited. To get the full picture of a TypeDefinition, you need to combine the 

the Address Space. Since each InstanceDeclaration of the supertype is valid on the 

oriented class Address is subtyped by InternationalAddress. Here, only an addi-
type is shown in comparison to subtyping an object-oriented class. The object-

to be fulfilled. Thus a mandatory InstanceDeclaration has to be available on each 

the second approach as well to avoid an explosion of Nodes in a type hierarchy 
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2.5.7  Subtyping of Complex Types 

InstanceDeclarations of the supertypes with the TypeDefinition. This combi-

There have been two possibilities how to expose subtypes of complex types in 

nation is called fully-inherited InstanceDeclarationHierarchy, and is shown for 

are inherited without the need to copy the code to the subtype. OPC UA has chosen 



Fig. 2.26 Subtyping object-oriented classes and complex types 

To use the fully-inherited InstanceDeclarationHierarchy, all InstanceDeclara-
tions must have unique BrowsePaths. Thus subtypes cannot use the same Browse-
Path for a different InstanceDeclaration. However, subtypes are able to override 

international address it may be required that a Street is provided. Therefore, the 

it is allowed to change Optional to Mandatory in an InstanceDeclaration. This is 
also true for subtyping. Thus a modified InternationalAddressType would create 
its own Street Variable defining it to be mandatory. Since the same BrowsePath is 
used then in the supertype, it is not an additional InstanceDeclaration, but the  
InstanceDeclaration of InternationalAddressType is overriding the one from 
AddressType. So the fully-inherited InstanceDeclarationHierarchy has still only 
one Street Variable, but this time the ModellingRule has changed since the over-
ridden InstanceDeclaration is used. In [UA Part 3], the detailed algorithm how to 
get the fully-inherited InstanceDeclarationHierarchy is defined, considering a chain 
of supertypes. 

Of course, when overriding InstanceDeclarations some rules have to be applied. 
In general, constraints can only be tightened, not loosened. This means that the 
same type or a subtype of the overridden InstanceDeclaration must be used, and 
that ModellingRules may only be further restricted. For example, if there was a 
constraining ModellingRule saying a Reference must exist 3–6 times, it is allowed 

ModellingRule Optional is not appropriated anymore. As we have learned earlier, 
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against the type or to get the knowledge what would be instantiated as a minimum. 

an existing InstanceDeclaration of the supertype (Fig. 2.27). For example, in an  
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Fig. 2.27 Overriding InstanceDeclarations when subtyping complex TypeDefinitions 

to increase the lower bound and decrease the upper bound, but not the other way 
around. So 4–5 is allowed, 2–5 or 4–8 are not allowed. 

Let us consider another example for subtyping and overriding with a more 
complex InstanceDeclarationHierarchy. In Fig. 2.28, there is the Temperature-
SensorType we have already introduced in Fig. 2.23. The EngineeringUnit Vari-
able is referenced by two BrowsePaths as well as by the Temperature Variable. 
The subtype MyTemperatureSensorType derives from the TemperatureSensorType. 
In this subtype, the optional EngineeringUnit of the Temperature has to be made 
mandatory. Since the EngineeringUnit Variable is not directly referenced by the 
ObjectType, it cannot directly be overridden. Instead the first InstanceDeclaration 
on the path to EngineeringUnit must be overridden and beneath that Node the full 
path to EngineeringUnit must be duplicated to be able to override Engineering-
Unit. In Fig. 2.28, you can see that the path starting from Measurement and in 
addition the Temperature Variable are overridden and beneath it the Engineering-
Unit, changing its ModellingRule to Mandatory. 

Let us see what that means for the fully-inherited InstanceDeclarationHierarchy. 
As you can see, only one Reference between the ObjectType and Measurement is 
provided in the subtype. However, since both References must always refer to the 
same Node, they reference one Node in the fully-inherited InstanceDeclaration-
Hierarchy. The EngineeringUnit is accessible by two paths in the supertype and 
only overridden in one path. In that case, the fully-inherited InstanceDeclaration-
Hierarchy has to duplicate the EngineeringUnit, for the overridden path providing 
the changed ModellingRule and the original ModellingRule for the not overridden 

chy references two different Nodes called EngineeringUnit, instances of MyTem-
peratureSensorType can reference the same Node in both paths. 

In OPC UA, each ObjectType must be a subtype of the BaseObjectType defined 
in [UA Part 5], thus there is only one type hierarchy. The specification does not 

path. Please be aware that although the fully-inherited InstanceDeclarationHierar-

restrict the type hierarchy to single inheritance. Thus multiple inheritance,  
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Fig. 2.28 Overriding InstanceDeclarations having multiple BrowsePaths 

that is, having several supertypes, is an option. However, the specification does 
only specify the rules for single inheritance (only needed for complex types).9 
Therefore, it is recommended to use single inheritance when possible. 
 

What’s allowed and what’s not? 
Complex TypeDefinitions have InstanceDeclarations with unique Browse-
Paths. The ModellingRules define what’s allowed on instances of the 
TypeDefinitions and what is not allowed.  
Instances can have the same BrowsePath pointing to different Nodes; the 
TranslateBrowsePathsToNodeIds Service can be used to gather the Nodes 
based on the TypeDefinition. 
OPC UA defines an open model. As long as it is not defined by some con-
straints on the TypeDefinition, it is possible to add References to instances 
of a TypeDefinition and thus adding Variables, Methods, etc. to those in-
stances. However, servers may always restrict those capabilities without 
making them explicit on the TypeDefinition. 

                                                           
9 Since there are different strategies how to deal with conflicts when using multiple inheritance, 
providing one specific semantic would exclude the simple mapping for models using a different 
semantic. 

572.5 Types for Objects and Variables

TemperatureSensorType

Configuration
[Mandatory]

Measurement
[Mandatory]

EngineeringUnit
[Optional]Organizes

Temperature
[Mandatory]Organizes

HasEventSource
HasComponent
HasProperty

In the generic
TemperatureSensorType
providing the EngineeringUnit is
optional   

MyTemperatureSensorType

Measurement
[Mandatory]

EngineeringUnit
[Mandatory]

Temperature
[Mandatory]Organizes

In order to change the
InstanceDeclaration to be
Mandatory its parent path of
InstanceDeclartions has to be
provided as well     

MyTemperatureSensorType

Configuration
[Mandatory]

Measurement
[Mandatory]

EngineeringUnit
[Optional]Organizes

Temperature
[Mandatory]Organizes

Fully-inherited
InstanceDeclarationHierarchy 

EngineeringUnit
[Mandatory] 



When subtyping TypeDefinitions, it must always be guaranteed that the 
constraints on the supertype are still fulfilled. That includes the semantic of 
ModellingRules, the data type of Variables, and any other constraint.  
InstanceDeclarations can be overridden by providing the same BrowsePath 
in the subtype. 

2.6  Data Variables and Properties 

OPC UA defines two kinds of Variables: Data Variables and Properties. The sepa-
ration between those two concepts is not always easy when data is modeled, that 
is, when you have to decide if you use a Data Variable or a Property to represent 
some data. This leads to the fact that it is also not always easy for a client to decide 
what to do with Properties and Data Variables. However, in the following we will 
try to explain the differences between those concepts and in Chap. 3 we give 
guidelines when to use what concept. 

Data Variables are used to represent the data of an Object, like the temperature 
of a temperature sensor or the flow of a flow transmitter. Data Variables can be 
complex, that is, they can have sub-variables containing parts of the data and 
Properties describing them (see later). An example of the usage of a complex Data 
Variable is when a Data Variable provides a complex type containing all data 
measured by a device and sub-variables only containing part of the measured 
data. The device could, for example, measure the temperature and the flow. Both 
values are captured in one Data Variable and are also exposed separately in sub-
variables. Another example is a temperature calculated by the average of measured 
values from three temperature sensors. The Variables representing the individual 
measured values can be exposed as sub-variables of the aggregated Variable. 

Properties are used to represent the characteristics of a Node, for example, con-
taining the engineering unit of a measured temperature, whether it is measured in 
°C, °K, or Fahrenheit. In general, Properties are used whenever some characteris-
tics of a Node should be described, which are not captured by the Attributes of a 
Node. InputArguments and OutputArguments of a Method are another example for 
Properties. Properties are simple. They cannot be complex exposing sub-variables 
and are always the leaf of each hierarchy, that is, cannot be the source of any hier-
archical Reference. 

This is the brief definition of Data Variables and Properties. Although this 
definition makes it very clear for some data to distinguish them between Data 
Variables and Properties, there is a large grey area in the middle where this is not 
clear. Is a writeable flag indicating whether a device generates real data or simu-
lates data a Data Variable or a Property? Is the address of a vendor stored in your 
OPC UA server a Data Variable or a Property?  

Another way to look at Data Variables and Properties is where the data is 
stored and how often it is changed. It is expected that Data Variables typically 
change their values often and are typically provided by underlying devices, 
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whereas the values of Properties do not change so often and are stored in some 
configuration database. However, this is not specified by the OPC UA standard, 
since it cannot be clearly specified what it means that data changes often or not. Is 
it once per millisecond, per second, or per day? And depending on the mode of the 
server this behavior may be very different. When engineering a system, the tempe-
rature of a temperature device may not change at all since the device is not con-
nected or activated. The engineering unit may change several times due to different 

data vs. configuration data may help you in your thinking. 
Beside those semantic considerations, there are also syntactic differences bet-

ween Data Variables and Properties.  
Each Node may have Properties. They are connected using the HasProperty 

Reference. A Property must belong to at least one Node by being the target of at 
least one HasProperty Reference. Properties are not typed or more precise all 
Properties point to the same VariableType called PropertyType. The semantic of 
the Property is defined by its BrowseName. Since the semantic is defined by the 
BrowseName, each Property of a Node must have a unique BrowseName. Properties 
cannot be the source of any hierarchical Reference, which implies that Properties 
cannot have Properties. 

Data Variables must belong to an Object or ObjectType. Therefore, they must 
be referenced by a HasComponent Reference coming from an Object, an Object-
Type, a Variable, or a VariableType. References from a Variable or VariableType 
are allowed because they are used to expose complex Data Variables, and the root 
of such a complex Data Variable is again part of an Object or ObjectType. Data 
Variables are typed. Each Data Variable is of the type BaseDataVariableType or a 
subtype. In turn, the BrowseName of Data Variables does not have to be unique 
since the semantic is defined by the type. 

Data Variables is the more powerful concept, whereas Properties are very simple 
to use. If you have to make the decision whether to use a Data Variable or a Pro-
perty and you cannot make the decision based on the semantic differences des-
cribed in this section, you should consider the syntax. If you need to use some  
features not provided by Properties directly or potentially in the future (e.g., exten-
sibility through subtyping), your choice has to be Data Variables. Otherwise, you 
should consider using Properties since they are simpler to handle. 

What’s allowed and what’s not? 
A Property cannot be a Data Variable and vice versa. This means that a 
Property cannot be referenced by a HasComponent Reference and must be 
of the type PropertyType, whereas a Data Variable cannot be referenced by 
a HasProperty Reference and must be of type BaseDataVariableType or a 
subtype. 
Properties cannot be the source of any hierarchical Reference. However, 
they can be the source of non-hierarchical References. Whenever you need 
to add information to a Property, you must use non-hierarchical References. 
This implies that when you need to add information the same way for Data 
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engineering tasks. During runtime, it is different. Nevertheless, thinking about online 



Variables and Properties you must use non-hierarchical References. This is 
used by the OPC UA specification, for example, when the historical con-
figuration of a Variable is referenced. 
Properties must have unique BrowseNames, that is, no Node may reference 
two Properties with the same BrowseName using the HasProperty Refer-
ence. 

2.7  ModelParent for Objects, Variables, and Methods 

ReferenceTypes like HasComponent give you a good indication that the refer-
enced component contains or describes some characteristics of its parent. How-
ever, when looking at a TypeDefinition and its instances, you can see that some 
Nodes may be shared by several Nodes, for example, a static class variable con-
taining the same value for all instances. As long as a client reads only the data of 

client intends to change the Node, it is desirable that the client knows in what 

may not be provided, which is expected when having a static class variable since 

having the Node referenced by several other Nodes does not provide you with in-
formation which Node was used to define the scope of it. 

For that purpose OPC UA introduced the concept called ModelParent. It is 
modeled by a HasModelParent Reference pointing from the contained Node to the 
parent Node defining the scope of the contained Node. In the example of the class 
variable it would be the TypeDefinition Node. Let us look at a concrete example. 
The DeviceType in Fig. 2.29 has a Property called Icon representing an Icon,10 for 
example used in a tree control exposing the type. Instances like Device1 share this 
Icon, that is, they are pointing to the same Node. If a client wants to change the 
Icon for a single instance Device1, it cannot just write a new Icon, since this 
would affect the TypeDefinition and all other instances like Device2 as well. The 
client could create a new Icon Node and let Device1 reference that Node. Thus the 
client can make a change in the scope of Device1 without changing the TypeDefi-
nition of other instances. If a client wants to change the Icon for the Type-
Definition, it can realize that the Icon is in the right scope by following the 
HasModelParent Reference. In that case the change of the Icon affects the instan-
ces as well, but that is the intended use when changing the Icon for the Type-
Definition. 

                                                           
10 By the way: Icon is an optional standard Property for Objects and ObjectTypes defined in 
[UA Part 3] 
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scope the Node is changed. Of course, the client can browse for inverse References 

that Node, it should not care whether the Node is shared or not. But as soon as the 

to figure out how often the Node is referenced. However, the inverse Reference 

you typically do not want to reference every single instance of a type. In addition, 



 
Fig. 2.29 Example of the usage of ModelParents 

What’s allowed and what’s not? 

standard ModellingRules Optional, Mandatory, and ExposesItsArray. It is 
allowed to provide the Reference for Objects, Variables, and Methods with 
other ModellingRules or without ModellingRules, but this is not required. 
Thus clients should make use of the feature if it is available, but they cannot 
expect the feature to be provided on Nodes using no ModellingRules or 
ModellingRules not defined by OPC UA. 

2.8  DataTypes 

All Attributes except for the Value Attribute of Variables and VariableTypes have 
a fixed data type. The DataType Attribute of Variable and VariableTypes is used 
together with the ValueRank and ArrayDimensions Attribute to define the data 
type of the Value Attribute of a specific Variable or VariableType. Variables are used 
to define Event fields and thus this also applies for Event fields. The same mecha-
nism is used to define the data type of Methods in the Argument DataType. The 
ValueRank and ArrayDimensions Attributes are used to define whether the data 
type is a scalar or an array. The DataType Attribute is used to define the type used as 
scalar or array. The Attribute contains a NodeId of a DataType Node. DataTypes 
are represented as Nodes in the Address Space. This allows servers to define their 
own DataTypes and clients to access the information about the DataTypes. OPC 
UA distinguishes four kinds of DataTypes: 

1. Built-in DataTypes are a fixed set of DataTypes defined by the OPC UA speci-
fication that cannot be extended by standardized or vendor-specific Information 
Models. They provide base types like Int32, Boolean, Double, and also OPC 
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HasModelParent References must be provided for all instances using the 



UA specific types like NodeId, LocalizedText, and QualifiedName. The  
complete list of built-in DataTypes can be found in [UA Part 6]. 

2. Simple DataTypes11 are subtypes of the Built-In DataTypes. They are handled 
on the wire exactly like their supertypes, that is, a concrete value of a simple 
DataType cannot be distinguished from the same value of its supertype when 
sent by the server and received by a client or vice versa. However, clients can 
access the DataType Attribute of a Variable to get information about the simple 
DataType. An example of a simple DataType is Duration as a subtype of Double 
defining an interval of time in milliseconds. Information Models can add their 
own simple DataTypes. 

3. Enumeration DataTypes represent a discrete set of named values. Enumera-
tions are always handled the same way as the built-in DataType Int32 on the 
wire. An example of an enumeration DataType is the NodeClass used in the 

DataTypes. 
4. Structured DataTypes represent structured data. They are the most powerful 

construct specifying user-defined, complex DataTypes. An example of a struc-
tured DataType is the Argument DataType used to define an argument of a 
Method. It contains the name, data type, and a description of the argument. Infor-
mation Models can add their own structured DataTypes. 

All DataTypes are represented as Nodes of the NodeClass DataType in the  
Address Space. The Attributes of this NodeClass are summarized in Table 2.10. 

Table 2.10 Additional Attributes for DataTypes 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
IsAbstract Boolean Indicates whether the DataType is abstract. An 

abstract DataType can be used in the DataType 
Attribute. However, concrete values must be of 

Depending on the characteristics of the DataType, additional information  
is provided. All DataTypes are managed in a DataType hierarchy. This hier- 
archy only supports single inheritance, that is, each DataType has exactly one 
supertype except for the BaseDataType used as root of each hierarchy.  

                                                           
11 In SQL [ISO08a] similar types are called distinct types. 
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2.8.1  DataType NodeClass 

NodeClass Attribute. Information Models can add their own enumeration 

a concrete DataType 

In addition to those DataTypes, there is a set of abstract DataTypes that do not 
fit into these categories and are only used to organize the DataType hierarchy. 



In Fig. 2.30, the DataType hierarchy for the built-in DataTypes and some simple 
DataTypes is shown. Since the handling of the built-in DataTypes is defined by 
the OPC UA specification, there is no need to add additional information about 
these DataTypes into the Address Space. The handling of the simple DataTypes is 
defined by their supertypes. In Sect. 2.8.5, we will describe the characteristics of 
some of the built-in DataTypes having a special handling, like NodeId and Local-
izedText. 

Fig. 2.30 DataType hierarchy for built-in and simple DataTypes 

Enumeration DataTypes are identified in the DataType hierarchy as subtypes of 
the abstract DataType Enumeration. Since enumeration DataTypes are always 
handled as Int32, the only additional information needed in the Address Space is 
the mapping of the discrete set of named values to the integer values. Therefore, a 
standard Property called EnumStrings is added to the DataType Node holding an 
array of LocalizedText. Each integer value can be mapped to an entry in the array. 
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2.8.2  Built-in and Simple DataTypes 
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In Fig. 2.31, this is exemplified by a user-defined enumeration DataType called 
MotorStatus. The DataType Node has a Property called EnumStrings containing 
an array of LocalizedText with the discrete set of named values. Variables using 
this DataType provide a zero-based Int32 value that points into the array, as, for 
example, the Variable Status of Motor1 in Fig. 2.31. 

Fig. 2.31 Example of an Enumeration DataType 

Structured DataTypes are the most powerful and also the most complicated 
DataTypes. They are always subtypes of the abstract DataType called Structure. 
DataTypes are encoded by the sender and decoded by the receiver. This is also 
done for built-in DataTypes, but here the encoding is well defined by the OPC UA 
specification. But for structured DataTypes, the handling on the wire is not  
defined. Thus for each structured DataType it has to be defined how they are  
encoded. Servers have to provide this information, so that clients can decode the 

write values to the server. Before we go into details, let us take a look on how this 
works. In Fig. 2.32, you can see OPC UA Client1 connected to an OPC UA server 
using OPC UA Binary as data encoding (see Sect. 6.2 for details). Client1 requests 
data (1.1). The server gets this data from its data source in an internal format and 
converts it to OPC UA Binary (1.2). Then it sends the encoded data to the Client1 
(1.3). Client1 has to decode the data into its internal format to make use of it (1.4). 

data encoding. Client2 requests the data (2.1) and the server uses its internal for-
mat and encodes the data (2.2). But in that case the data is encoded into OPC UA 

The handling is similar for Client2 connected to the OPC UA server using XML 

data when they receive this information and can encode the data if they want to 
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2.8.4  Structured DataTypes 
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Fig. 2.32 Encoding and decoding data 

XML format and sent that way to the client (2.3). Client2 must decode these data 
into its internal format (2.4). Thus you can see that there are two encodings used 
depending on the data encoding of the connection. 

The above described scenario is used for all built-in DataTypes and thus also 
for enumeration and simple DataTypes. The encoding of each built-in DataType is 
defined for binary and XML in [UA Part 6]. For structured DataTypes, the encod-
ing is not defined and thus has to be provided by the server providing those 
DataTypes. Looking at the above described scenario, it seems like the server has 
to provide an XML encoding and a binary encoding for each structured DataType. 
This is desirable but not required. It is also possible to send a XML encoded value 
via a binary encoded connection and vice versa. Thus a server only has to provide 
one encoding that can be used in both data encoding choices of connections. The 
possibility to use a different encoded value in connections allows another scenario. 
For specific clients and servers both using the same internal format for their data, 
it may be desirable to use that format on the wire as well in order to reduce the  
effort of encoding and decoding data. OPC UA offers this possibility by allowing 
servers to provide and clients to choose additional encodings. The scenario is out-
lined in Fig. 2.33. Here, the client requests the data (1.1) and the server can get its 
internal data without encoding them (1.2). When sending them (1.3) they are  
embedded in an encoded message and can directly be used by the client without  
decoding them (1.4). 

 
Fig. 2.33 User-defined encodings 
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Please be aware that it is not necessarily a good idea using a specific encoding. 
Independent of the interoperability problems, the performance may decrease when 
the amount of data sent becomes bigger than, for example, the same data encoded 
in OPC UA Binary. The performance gained by getting rid of the encoding and 
decoding may be lost two times in the transport of more data on the wire. Thus 
this is a very special use case that should be avoided. It is expected that specific 
standard Information Models may need this feature, although it turned out so far 
that is not used at the moment (to the best knowledge of the authors). 

After this long side-discussion how encoding works (there are more details in 
Sect. 6.2), let us see what this means for structured DataTypes. Structured Data-
Types can provide several encodings, and a concrete structured DataType must 
provide at least one encoding. The encoding must be provided by the server in the 
Address Space in order that clients can get the information about the encoding. 
Thus the DataType Node representing a structured DataType points to DataType-
Encoding Objects representing the encodings (see Fig. 2.34 for an example). The 
NodeId of such an Object is sent together with each value on the wire and so the 
receiver knows what encoding was used by the sender. Clients can choose what 
encoding they want to receive for a concrete value and can also leave this open to 
get the default encoding. Therefore, two BrowseNames are defined: “Default  
Binary” and “Default XML,” both with the NamespaceIndex 0 (see Sect. 2.8.5 for 
details on Namespaces). A concrete structured DataType must reference at least 
one of those. If both are provided, “Default XML” is used as default for a connec-
tion using XML data encoding and “Default Binary” for a connection using OPC 
UA Binary. If only one is provided, this is used as default in both cases. 

Of course, the client needs to get the information how the encoding is working. 
Therefore, the server provides a DataTypeDictionary Variable containing the  
information about the encoding of several DataTypes. This can become a large 
amount of data and typically a client should read a DataTypeDictionary once and 
cache it persistently. When reconnecting to a server, clients need only to check if 
the information has changed12 and only then need to update the cached informa-
tion. For each DataType stored in the DataTypeDictionary, a DataTypeDescrip-
tion Variable is exposed having a pointer into the DataTypeDictionary to the 
DataType. In Fig. 2.34, this is exemplified by MyTypeDictionary, containing the 
encoding information of MyType1 and MyType2. In addition to the pointer into a 
DataTypeDictionary, a DataTypeDescription can provide the optional Property 
DictionaryFragment directly containing the encoding information. This is useful 
when the DataTypeDictionary becomes large and some clients do not want to read 
the whole dictionary but only information about some DataTypes. In Fig. 2.34, 
you can see such a Property using OPC Binary to define the encoding of the 
DataType MyType1 having two integers. 

                                                           
12 There is a standard Property called DataTypeVersion, indicating if the information has 
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changed. While the Value of that Property has not changed, clients can use their cached version. 



Fig. 2.34 Example of a structured DataType 

Since a DataTypeEncoding represents a concrete encoding, it points to a Data-
TypeDescription Variable. This is an indirection; the pointer into the DataType-
Dictionary is not directly stored in the DataTypeEncoding. It is done since several 
DataTypeEncodings may choose the same DataTypeDescription as you can see in 
Fig. 2.34. You can think of the DataTypeEncoding Object as a proxy Object that 
is only used to put some information (in that case name and NodeId) into a Refer-
ence (see Sect. 3.3.8 for details on proxy Objects). 

Finally the server has to specify how the DataTypes are defined inside the 
DataTypeDictionary. The “how” is specified by the DataTypeSystem. The Data-
TypeSystems predefined by the OPC UA specification are OPC Binary defined as 
an Appendix in [UA Part 3] and W3C XML Schema defined in [W3C04a] and 
[W3C04b]. However, servers may use additional DataTypeSystems to define spe-
cific encodings for their DataTypes. When the server provides only those encod-
ings – also as the default encodings – they cannot expect that generic clients are 
able to interpret those data. The format of the pointer into the DataTypeDictionary 
used by the DataTypeDescription depends on the DataTypeSystem. For OPC  
Binary it is the name of the data type, for XML Schema it is an XPath expression 
pointing to a schema element. 
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be explained to understand the usage of them. 

mental DataType used in various places to address a Node. The NodeId is a built-
in DataType. However, there is a structure behind this DataType as described in 
Fig. 2.35. The first part of the NodeId is the NamespaceIndex, followed by an 

be a numeric value, a GUID, a string, or an opaque value (byte string). Together 
with the NamespaceIndex it uniquely identifies a Node in an OPC UA server.  
Obviously the length of a NodeId depends on the concrete value of the identifier 
and the IdentifierType. NodeIds that are used very often like DataType NodeIds 
and DataTypeEncoding NodeIds should use a small NodeId, preferable a numeric 
one. The Service RegisterNodes allows the server to translate a relatively long 
NodeId to a short NodeId that will be used by a client several times (see Chap. 5 
for details). 

 
Fig. 2.35 Structure of NodeId 

The NamespaceIndex of the NodeId (and also the QualifiedName) is intro-
duced for optimization purposes. The NamespaceIndex is used instead of a Name-
space URI like “http://opcfoundation.org/UA/,” the Namespace URI of OPC UA. 
The Namespace URI is used in combination with the identifier to create unique 
IDs in the Address Space of an OPC UA Server. The Namespace URI identifies 
the naming authority defining the identifiers. Naming authorities are the OPC 
Foundation, other organizations defining standard Information models, server 
vendors, or systems using an OPC UA server to expose their information. 

The NamespaceIndex is a pointer to the NamespaceArray provided by each 
OPC UA server. Thus a client only needs to read the NamespaceArray once and 
later on only uses small integer values instead of large string values in NodeIds. 
Using the Namespace URI instead of the NamespaceIndex in the NodeId would 
lead to a huge overhead. NodeIds are used very often in Service calls since they 
are used to address Nodes. In Fig. 2.36, an example is shown how the Name-
spaceIndex is used.  
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2.8.5  Specific Built-in DataTypes 

After going through different kinds of DataTypes where most can be used to create  

We will not go into details of how Int32, Boolean, or Double are represented. 
However, some built-in DataType use internally a specific structure that needs to 

enumeration defining the data type of the last part, the identifier. The identifier can 

user-defined DataTypes, let us take a shorter look at some built-in DataTypes. 

The first built-in DataType we are considering is the NodeId. It is a very funda-



 
Fig. 2.36 NamespaceArray and NamespaceIndex 

they are connected. However, new entries may be added and thus clients should 
subscribe to changes of the NamespaceArray. When a client disconnects from the 
server, it does not have any guarantees on the NamespaceArray. The Name-
spaceArray may have changed completely, including the order of the array. Thus a 
Namespace URI represented by index “3” could be represented by index “5” when 
the client reconnects. Therefore, clients shall not persist a NodeId or Qualified-
Name without storing the Namespace URI as well. There is one exception to that 
rule: the NamespaceIndex “0” is always reserved for the Namespace URI of  
OPC UA. 

Let us take a look at the built-in DataType ExpandedNodeId that uses a concept 
similar to the NamespaceIndex. The ExpandedNodeId is mainly used as Service 
parameter, but in some use cases it is also reasonable to use it as value of a Vari-
able, like for AuditEvents (see Sect. 9.5). An ExpandedNodeId allows referencing 
Nodes of another OPC UA server. An example is some vendor contact informa-
tion stored only in one company-wide OPC UA server but referenced from several 
other OPC UA servers. TypeDefinitions could also be managed in one server and 
referenced by several other servers using those types (i.e., having instances of 
those types). Therefore, the ExpandedNodeId has a similar structure as the NodeId 
with two additional fields (see Fig. 2.37). The NamespaceURI field allows storing 
the real Namespace URI if it is not in the NamespaceArray of the server providing 
the ExpandedNodeId. Second, the ServerIndex points to the server actually 
managing the Node. Like the NamespaceIndex, the ServerIndex points into the 
ServerArray. The same constraints as for the NamespaceArray apply. The Server-
Index 0 is reserved for the local server, that is, if the ServerIndex of an Expanded-
NodeId is 0 then a local Node is referenced. 

 
Fig. 2.37 Structure of ExpandedNodeId 
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Clients have the guarantee that no entry of the NamespaceArray is deleted while 



The QualifiedName DataType is used as BrowseName. Like the NodeId it has 
a NamespaceIndex following the same rules as in the NodeId. In addition, it con-
tains a String representing the name that is qualified with the Namespace. In Fig. 
2.38, this structure is summarized. 

 
Fig. 2.38 Structure of QualifiedName 

The LocalizedText DataType provides a localized text. The structure is exposed 
in Fig. 2.39. It contains the localized text as string and the identifier of the locale 
as second String following the RFC 3066 [Al01]. 

 
Fig. 2.39 Structure of LocalizedText 

Although the structure of LocalizedText is relatively simple, there are some 
thoughts to follow when dealing with LocalizedText. When a client connects to a 
server, it specifies a prioritized list of requested locales. The server returns all val-
ues of the type LocalizedText based on that list. It tries to return the value using 
the first locale in the list, if that is not available, the next, etc. If no locale specified 
by the client is available, the server will use the default locale that is available for 
a value. Thus a client should always check the returned locale of a value of the 
type LocalizedText. 

Writing a LocalizedText value is a bit more complicated. By writing a Local-
izedText the client only changes the value for the locale specified in the value to 
be written. This can lead to the situation that a value is changed in one locale but 
has still the old value in another locale. To avoid this situation, the following rules 
apply for writing LocalizedText. 

1. Writing a value with a concrete locale will either change an existing value, or 
the value with the locale is added when not available before. 

2. When a null text is written together with a concrete locale, the value for the  
locale is deleted. 

3. By writing a null value for text and locale, all entries for all locales are deleted. 

These rules allow clients who want to change the values for all locales first to 
delete all values by writing null values and afterwards adding the desired values 
for all desired locales (this can be done in one Write Service call, see Chap. 5). 
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The encoding for built-in, simple, and enumeration DataTypes is fixed and optimized 
in the OPC UA protocol. Applications should use those types when it is appropri-
ate. However, to support complex user-defined types structured DataTypes must 
be used. Structured DataTypes allow user-defined encodings. But they have a 
small overhead on the wire because the DataTypeEncoding NodeId is send with 
each value. Simple DataTypes are put on the wire like their built-in DataTypes and 
are thus optimized for transport. On the other hand, they are not type-save, that is, 
a client receiving that value cannot distinguish them from the built-in DataType. 
The DataType information can be gained from the DataType Attribute of the 
Variable, but in case the Variable only defines a supertype and values use sub-

DataType Money, where individual values would be of the subtypes US-Dollar, 

using the subtypes would not be recognized by the server. For those scenarios it is 
required to use structured DataTypes where the type information is sent with each 
value. 

What’s allowed and what’s not? 
Servers should expose the DataType Nodes in their Address Space, but that 
is not a requirement. Thus clients must be able to deal with the fact that not 
every server provides them.  
Variables may point to abstract DataTypes. Concrete values must always be 
of a concrete DataType. It is allowed that concrete values are of subtypes of 
the DataType specified by a Variable. Thus clients must deal with the fact 
that they receive not exactly the DataType specified by a Variable but a sub-
type of it. For built-in DataTypes this makes no difference, but for structured 
DataTypes the structure of subtypes can be different. 
Clients can choose what encoding they want to receive for structured 
DataTypes independent of the data encoding chosen when establishing a 
connection. 

2.9 Views 

We are finally coming to the last NodeClass of OPC UA, the View. A View is 
used to restrict the number of visible Nodes and References in a large Address 
Space. By using Views servers can organize their Address Space and provide 
views on it tailored to specific tasks or use cases. For example, the server can pro-
vide a View for maintaining the server. For that task, only Nodes containing main-
tenance information are important and other Nodes can be hidden.  
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2.8.6   Summary on DataTypes 

types, this information is lost. An example is a Variable providing the simple 

Euro, etc. The client would not be able to recognize the subtypes and sending values 



There are two ways to look at Views in OPC UA: 

1. A View is represented as a Node in the Address Space. This Node gives an  
entry point into the content of the View. All Nodes that are part of a View must 
be accessible starting from the View Node. However, they do not have to be  
directly referenced by the View Node; they can also be indirectly referenced by 
other Nodes that are connected to the View Node.  

2. The NodeId of the View Node can be used as filter parameter when browsing 
the Address Space. By using the View as filter, servers may restrict the Refer-
ences to other Nodes. Thus clients browsing the Address Space in the context 
of a View will only see an excerpt of the Address Space. Be aware that the View 
context is only used in the Services when browsing and querying the Address 
Space, not when reading or writing a concrete Node. 
By combining those two ways of how to look at Views, you get the full picture. 

When you want to access the content of a View you typically start at the View 
Node and then browse in the context of the View by using the View as a filter. Let 
us take a look at an example. In Fig. 2.40, you can see an Address Space with some 
devices containing maintenance information. A View called Maintenance refer-
ences all devices and when browsing in the context of the View only the Refer-
ences exposed in bold are returned. A user responsible for maintenance can start  

mation. It is not required that the user starts browsing on the View Node. He could 
also come to the device using a different starting Node (or has the NodeId of the 
device available) and thus starts browsing in the context of the View from the  
device Node. 

There are several different ways of how to use Views to organize the Address 

 

 
Fig. 2.40 Example of an View organizing the Address Space 

at the View Node and browse in the context of the View to get all relevant infor-

Space. The first approach was just shown in Fig. 2.40. Here, there is one organization 
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of Nodes and the View gives an additional entry point into those Nodes hiding some 
information. Another approach is that all Nodes are organized beneath View Nodes 
and thus clients always access the Address Space starting from a View Node. This 
is exemplified in Fig. 2.41, where the Views Engineering and Online are the only 
entry points into the Address Space. Not all clients may be capably of browsing in 
the context of a View. In that case they should treat View Nodes as Folder Objects 
to allow accessing those Address Spaces. 

Of course, it is possible to combine both approaches, as pointed out in Fig. 2.42. 
Here, the Engineering and Online Views are the entry points into Address Space and 
the Maintenance View is used as additional View pointing inside those other Views. 

 
Fig. 2.41 Example of Views as only entry points into the Address Space 

 
Fig. 2.42 Combined usage of Views in the Address Space 
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In Table 2.11, the additional Attributes of the View NodeClass are summarized. 
When the ContainsNoLoops Attribute is set, clients can use this information to opti-
mize their display since they know that no loop will occur. When the View is an 
EventNotifier, it is guaranteed that the Events of all EventNotifier Objects that are 
part of the View are also sent through the View Node. 

Table 2.11 Additional Attributes for DataTypes 

Attribute DataType Description 
Containing all the common Attributes defined in Table 2.1 
Con-
tainsNoLoops 

Boolean This Attributes indicates whether the Nodes 
contained in the View do span a nonlooping 
hierarchy when following hierarchical  

EventNotifier Byte This Attribute represents a bit mask that  
identifies whether the View can be used to 
subscribe to Events and whether the history  

Views can be used to track different versions of an Address Space. There is a 
ViewVersion Property that is updated whenever the content of the View changes. 
Content here means References and Nodes belonging to the View, not the Attri-
butes of those Nodes. Clients can access different Versions of the View. Details 
are defined in Sect. 2.11.3. 

What’s allowed and what’s not? 
In Version one of OPC UA Views are always server-defined, that is, there is 
no (standard) way for a client to define Views. Clients can only use the Views 
provided by the server. 
Views cannot be combined, that is, a client can only browse in the context of 
one View at the same time. However, internally servers can implement their 
logic that a View is based on another View. But this information cannot be 
exposed in a standard way to the client. 

2.10 Events 

Events are received via notifications when subscribing to an EventNotifier. They 
are typically not visible in the Address Space (exceptions are Alarms and Condi-
tions – see Sect. 4.9). Events are typed and based on the type an Event has differ-
ent fields. OPC UA defines a base hierarchy of EventTypes that can be extended. 
Therefore, it is required that a server exposes its EventType hierarchy in the  
Address Space so clients can retrieve this information. Using the information 
about the EventType hierarchy, clients can create filters on what Event fields they 
are interested in as well as what kind of Events they want to receive. This is illus-
trated in Fig. 2.43.  

74 2 Information Modeling: Concepts

References  

of Events is accessible and changeable 



Fig. 2.43 Subscribing to Events using the EventType hierarchy 

Types in the Address Space, no new NodeClass is introduced but the NodeClass 
ObjectType is used. This makes sense for several reasons.  

1. There is no additional information needed to expose EventTypes and thus  
ObjectTypes are a reasonable approach supporting inheritance and Variables 
used to expose the available fields of Events. 

2. No additional NodeClass has to be introduced and clients can use their mecha-

3. Some Events will be represented as Objects in the Address Space, and thus  
ObjectTypes have to be created for them anyhow. 

For normal EventTypes, that is, EventTypes of Events that are not visible as 
Nodes in the Address Space, abstract ObjectTypes are used. OPC UA defines the 

In Fig. 2.44, the BaseEventType is shown with its Variables and some example 
EventTypes as well to point out the possibilities of EventTypes. The BaseEvent-
Type uses Properties to expose its field directly beneath it. This is expected for 

expose complex Variables and to use Objects to group Variables as shown in the 
example EventType MaintenanceType. The type information of an Event defines 
categories of Events and can be used for filtering Events. EventTypes without  
additional InstanceDeclarations can be introduced for that purpose. A client may, 
for example, subscribe to all Events of type CriticalMaintenanceEventType. 

Another mechanism to group Events is by providing a hierarchy of EventNoti-
fiers. The ReferenceType HasNotifier is used for that purpose. When an EventNo-
tifier references another EventNotifier, it is guaranteed that all Events exposed by 
the referenced EventNotifier are exposed by the referencing EventNotifier as well. 

752.10 Events

Details on how Event filers work can be found in Chap. 5. To represent Event-

nisms they have to handle ObjectTypes to also handle EventTypes. 

most EventTypes. However, it is allowed to use Data Variables, for example, to 

BaseEventType; all other EventTypes must inherit directly or indirectly from it.  



Fig. 2.44 EventType hierarchy 

 
Fig. 2.45 Hierarchy of EventNotifiers 
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Events are exposed by EventNotifiers, but the source of the Event that actually 
generated the Event is not necessarily the EventNotifier. The source of an Event is 
exposed in fields of the Event. It is expected that the source is typically exposed as 
Node in the Address Space, although that is not required. If the source is exposed 
as a Node, EventNotifier can reference those Nodes using the HasEventSource 
Reference. This completes the EventNotifier hierarchy, as exemplified in Fig. 2.45. 
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There is one EventNotifier, which logically references all other EventNotifiers 
with a HasNotifier Reference, the Server Object. A client can subscribe to that 
Object to get all Events of the server (except for Events bound to Views like 
ModelChangeEvents, see Sect. 2.11.3). 

Finally, a TypeDefinition Node can already expose what types of Events may 
be generated by instances of it by referencing from the TypeDefinition Node  
to the EventType using a GeneratesEvent Reference. It is not guaranteed that  
instances will generate Events of the referenced EventType, but it is expected in 
most cases. For example, there may be a device that is intended to generate a 
Maintenance Event, but the concrete hardware is built in a way that this is not 
happening as long as the system is running. 

What’s allowed and what’s not? 
It is required to expose the EventType hierarchy. It is not required to expose 
an EventNotifier hierarchy or GeneratesEvent References in the TypeDefini-
tions. 
EventTypes are modeled as ObjectTypes and thus must follow the rules of 
ObjectTypes (like unique BrowsePath for InstanceDeclarations, or inheri-
tance of InstanceDeclarations). InstanceDeclarations of the NodeClass Vari-
able define the fields of the Event. Here, the same rules apply as for compo-
nents of an instance based on the ObjectType. If the whole BrowsePath has 
Mandatory InstanceDeclarations, the field must be provided in the Event. If 
it is Optional, it does not have to be provided. 

2.11 Historical Access 

There are three facets of dealing with history in OPC UA. First of all there is the 
history of current data. This answers questions like: What was the value of the 
temperature sensor in the last three days? This is similar to what was captured in 
OPC HDA. Second, there is the history of Events. It answers questions like: What 
have been the Events in the last hour? This was not captured in Classic OPC. The 
third facet is the history of the structure of the Address Space. This answers ques-
tions like: How has the structure of the Address Space changed the last two weeks? 
We will take a short look into those three facets in the following subsections. 

OPC UA allows accessing and changing the history of the Value Attribute of a 
Variable. Special Services are introduced for that purpose (and for accessing event-
related history as described in the next section). In Chap. 5, it is described how 
these Services are working. The OPC UA Address Space Model has three differ-
ent Attributes on Variable Nodes dealing with the history of the Value Attribute. 
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2.11.1 Historical Data 



The AccessLevel and the UserAccessLevel indicate whether the history is accessible 
and changeable, the first one in general and the second one taking the access rights 
of the current connected user into account. These Attributes indicate whether some 
history is available, but not if currently history is collected. Therefore, the Histor-
izing Attribute is used, indicating whether the history is currently collected. All 
three Attributes work on the granularity of a Variable. The model is summarized 
in Fig. 2.46. In addition to those Variables, there is the possibility to expose (and 
allow manipulations) of the configuration of how the data is historized. This is  
described in Sect. 4.6. 

OPC UA only allows historizing the Value Attributes of Variables. If a server 
collects the history of other Attributes and wants to expose that and makes it acces-
sible in the Address Space, the most appropriate way is to create a Property for 
each historized Attribute and add those historized Attributes to the Node. 

 

Fig. 2.46 Historical data in the Address Space 

The history of Events can be gained from EventNotifiers, that is, Objects and 

Device A
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Flow
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EventNotifier = „None“
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EventNotifier = „Readable | History“
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But it is not garanteed that the history 
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View1 since there is no general statement 
what history is provided by View1

 Fig. 2.47 Historical data in the Address Space 
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2.11.2 Historical Events 

Views. The EventNotifier Attribute indicates whether the history of Events can  



be accessed and manipulated. It is not standardized how to expose what Events are 
historized in an EventNotifier and thus there is also no Historizing Attribute like 
on Variables. However, there is the possibility to expose the configuration of how 
Events are historized and this can contain that information (see Sect. 4.6 for the 
configuration of Event history). In Fig. 2.47, the model of Historizing Events is 
shown. 

Besides dealing with the history of current data and events, the third facet is about 
dealing with changes in the Address Space. Nodes and References in the Address 
Space may be added or deleted over time. OPC UA allows clients to track those 
changes and to access different versions of the Address Space by referencing dif-
ferent points of time. Please note that this is an optional feature that many servers 
will not support. 

To track changes of the Address Space, OPC UA supports the NodeVersion 
Property and ModelChangeEvents. A server must always support either both, 
ModelChangeEvents and NodeVersion, or none of them for a Node. The NodeVer-
sion is a Property on a Node that is updated every time a Reference is added or 
deleted from the Node. Please be aware that the relation of a Variable or Vari-
ableType to its DataType is not modeled as a Reference but as an Attribute, which 
is considered as a Reference in this case. Thus changes on the DataType Attribute 
lead to a changed NodeVersion and to a ModelChangeEvent. The NodeVersion is 
provided per Node, that is, clients can cache the References of a Node and as long 
as the NodeVersion has not changed they do not need to re-browse the Node. 

The ModelChangeEvent is generated in the context of a View (or the Server 
Object for the whole Address Space) and allows the tracking of several changes in 
one ModelChangeEvent. Clients interested in changes in the Address Space in 
general should subscribe for ModelChangeEvents; clients interested in small  
excerpts may look at individual NodeVersion changes. In Fig. 2.48, the handling 
of NodeVersions and ModelChangeEvents is exemplified. On the left side, you 
can see an Address Space before some changes occur. Then, some References are 
added and deleted, and on the right side, you can see the new Address Space in-
cluding the updated NodeVersions and the generated ModelChangeEvent. OPC 
UA provides the BaseModelChangeEvent only indicating that something has 
changed and the GeneralModelChangeEvent containing the changes as well. In 
Fig. 2.48, the second type of Event is used indicating the changes as well. 

With NodeVersion and ModelChangeEvents it is relatively easy to track changes 
of the References. When this feature is not provided by a server, the only possibi-
lity for a client getting information about changes on the References is by periodi-
cally browsing or querying the Address Space. 

792.11 Historical Access

2.11.3  Historical Address Space 



 
Fig. 2.48 NodeVersion and ModelChangeEvent to track changes of the Address Space 

To access different versions of the Address Space, the browse and query Ser-
vices allow to specify a certain version or a certain point of time of the Address 
Space they want to access. This only affects querying and browsing, meaning that 
not the concrete Attribute values of a Node are managed in different versions of 
the Address Space, but the References and thereby indirectly whether specific 
Nodes where accessible in a concrete version of the Address Space. This implies 
that clients cannot make a direct connection between the different versions of the 
Address Space and the tracking of changes of the Address Space. When clients 
access an older version of the AddressSpace, they still only read the current value 
of the NodeVersion of a Node, not the value that was valid in the old version of the 
Address Space. In Fig. 2.49, different versions of an Address Space are exemplified. 
On the left side you can see the References you get when browsing the View in 
ViewVersion 1 and on the right side when browsing the ViewVersion 2. As soon 
as the content of a View changes, the ViewVersion has to be increased. But like 
the ModelChangeEvents, several changes can be captured by increasing the 
ViewVersion only once. The ViewVersion Property is different than the NodeVer-
sion Property. Here, also changes in the content of the View are tracked that do 
not affect References directly connected to the View Node. For example, when the 
Reference from the Maintenance Object to Var3 is deleted from the View, the 
ViewVersion must be increased although the NodeVersion Property of the View 
Node would not change. 
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Fig. 2.49 Different Versions of an Address Space 

What’s allowed and what’s not? 
Details on how to access and manipulate the history of current data and 
events can be found in Chap. 5. How the configuration can be accessed is 
described in Sect. 4.6. The rules how to deal with the Attributes described in 
this section have already been captured before. The UserAccessLevel must 
be a subset of AccessLevel, and Historizing can only be set if the Access-
Level defines access to history. Nodes can provide only the history without 
providing current data or current events. 
There are no standard ways defined what Events are provided in the Event 
history. It can be any subset of the Events accessible by an Event subscrip-
tion, and since the history of Events can be manipulated it can also provide 
additional Events. The rules defined for HasNotifier do not apply for the his-
tory of Events. 
If a NodeVersion is provided, the ModelChangeEvent must be generated 
and vice versa. Address Spaces may only provide NodeVersions for some 
Nodes in the Address Space and not for other Nodes. 

2.12  Address Space Model and Information Models 

The concepts introduced in this chapter build the foundation to model data in OPC 
UA. The different NodeClasses with their fixed set of Attributes define the meta 
model of OPC UA. In addition to the NodeClasses, some standard Nodes are used 
inside the meta model and thus can be seen as part of the meta model as well. In 
particular, these are base ReferenceTypes like HasSubtype and base TypeDefini-
tions like PropertyType, but also standard Properties like the Input- and Output-
Arguments of Methods. In terms of OPC UA, the meta model is called Address 
Space Model. 

812.12 Address Space Model and Information Models



Fig. 2.50 Address Space Model, Information Model, and Data 

An OPC UA Information Model uses the concepts of the Address Space Model 
to define its own, domain-specific types and constrains as well as well-defined  
instances. Finally, the concrete data of a server is created based on the Information 
Model as shown in Fig. 2.50. 

Typically, a server will support several Information Models where some may 
be based on other Information Models. The OPC UA specification already defines 
the base Information Model containing base types. Some of those are already part 
of the OPC UA meta model, whereas other parts are additional information, for 
example, used as entry points into the Address Space of the server or for exposing 
diagnostic information of the server. Based on the base Information Model, other 
Information Models can be derived for domain specific purposes. Finally the 

specific Information Model used by the specific data provided by the server. This 
server may extend those to define some server-specific types and thus a server-
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is exemplified in Fig. 2.51. The base Information Model is extended by a Topology
and a Device Information Model. The Device Information Model is extended by 
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Fig. 2.51 Address Space Model and several Information Models 

the vendor-specific Device Information Model containing vendor-specific types 
of devices. Finally, the server-specific Information Model extends Topology and 
vendor-specific Information Model and is used by the instances of the server. In 
the server-specific Information Model, some preconfigured Device Types and  
entry points into the Address Space are provided. In Chap. 4, details on standard 
Information Models and how to deal with them are given. 

2.13  Summary 

The OPC UA Address Space is composed of Nodes and References between 
them. Nodes are of different NodeClasses for different purposes. Each NodeClass 
has a fixed set of Attributes, whereas References do not have Attributes. 

832.13 Summary
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The base NodeClasses are Objects to structure the Address Space and to provide 
Events, Variables containing data in its Value Attribute, and Methods that can be 
executed in the server. Using these simple constructs, you can expose all data cur-
rently done with Classic OPC.  

Creating detailed TypeDefinitions for Objects and Variables allows provid- 
ing much more information in an OPC UA server. Using instances as Instance-
Declarations, complex TypeDefinition can be defined and OPC UA clients can be 
programmed with knowledge of those TypeDefinitions. ReferenceTypes allow 
specifying semantics for References between Nodes. User-defined DataTypes  
allow exchanging complex data in the needed format. 

Views can be used to organize an OPC UA Address Space for different tasks, 
providing only the needed information for the specific task. 

Events are seamlessly integrated into that model by making Objects EventNoti-
fier. The history of events and current data can be accessed on the same places 
where the actual data is provided. OPC UA allows tracking changes of the Address 
Space using the NodeVersion Property and ModelChangeEvents and it is possible 
to access different versions of the Address Space using the ViewVersion. 

The OPC UA Address Space defines the meta model of OPC UA. The base  
Information Model builds the foundation for creating standard or vendor-specific 
Information Models tailored for specific domains. 

With these capabilities, OPC UA allows providing simple Address Spaces as 
done in Classic OPC as well as Address Spaces with a rich type model exposing 
detailed semantics of the provided data. 

The Address Space Model is defined in [UA Part 3]; the base types used in the 
Address Space are defined in [UA Part 5]. In Appendix A of this book, you can 
find a description of the notation used in this chapter. In Appendix B, a summary 
of the NodeClasses and their Attributes is given. The base Information Model  
including ReferenceTypes that are part of the Address Space Model is provided in 
Appendix C. 

In the next chapter, we will look at an example how to use the modeling concepts 
you just learned in this chapter. Afterwards, we describe some best practice on 
how to use those modeling concepts. In Chap. 4, we will take a look at standard 
Information Models including the base Information Model and specific Informa-
tion Models for Data Access, Programs, Alarms and Conditions, etc. provided by 
the OPC UA Specification. After that chapter, you should know everything about 
modeling information in OPC UA and we will take a look at the Services of OPC 
UA to see how you can actually access and manipulate your OPC UA data. 
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2.13.2  Where to Find More Information? 

2.13.3  What’s Next? 



 

3 Information Modeling: Example and Best 
Practice 

3.1  Overview 

In Chap. 2 you learned the concepts of modeling information in OPC UA. In this 
chapter we will tighten your knowledge by looking at a concrete example showing 
how to apply the concepts. We will start with a simple scenario only exposing  
data similar to Classic OPC. Then we will go forward by adding type information,  
multiple references, etc. to demonstrate the full power of information modeling in 
OPC UA. This already shows a way of how to migrate existing Classic OPC  
applications to OPC UA with respect to the modeling. However, in Chap. 10, we 
talk about more details on how to migrate from Classic OPC to OPC UA. 

In the example, we target an application scenario typical for Classic OPC  
applications. However, in the second part of this chapter we will generalize the 
example by looking at some general best practices on how to model information in 
OPC UA. In the example, we will not consider standard Information Models other 
than using types of the base Information Model. In Chap. 4, we will introduce 
standard Information Models. When modeling your information, you should con-
sider using those Information Models and extend them rather than creating your 
own Information Model from scratch when this is appropriate in your domain. 

The notation used in the example to expose details on the Information Model is 
described in Appendix A of this book. The Appendix does not only describe the 
notation but also discusses its relation to UML. 

3.2  Example 

The application scenario of the example is described in the following section. 
Afterwards, the modeling of this example in OPC UA is discussed. It is separated 

the other extending that simple application to provide the full power of OPC UA. 

The application we want to model is an air conditioner similar to the one you 
might find in your office or at home. We do not want to go into details on how an 
air conditioner is working internally, but focus on the external communication and 
how to model that information. In Fig. 3.1, a typical air conditioner application is 

3.2.1  Application Scenario 

DOI: 10.1007/978-3-540-68899-0_3,

in two sections, one describing a simple application comparable to Classic OPC and 
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shown. There is a control module in which the controller application is running. 
The controller provides two set points to define the requested temperature and 
humidity. In addition, you can turn the air conditioner on or off. It offers the actual 
temperature and humidity as well as the power consumption, the fan speed, and 
the cooler state as measured values. It provides events generated internally as well 
as externally from the devices it is using. An internal event is, for example, gener-
ated if the communication to a device fails; an external event is, for example, for-
warded from the fan, indicating a maintenance request. The controller provides a 
short-term history of measured temperature and humidity also used internally to 
optimize the process. We do not show details on the internal logic of the control-
ler, but you can see that it uses some sensors on the left hand and some actors on 
the right hand. Using Classic OPC, you would have a PC-based client on top of 
the control module using a proprietary protocol talking to the control module and 
providing the data as a Classic OPC server. Clients to this server can run on the 
same machine as on other machines using DCOM to communicate. 

Fig. 3.1 Air conditioner application scenario 

There are different ways how to migrate this scenario to OPC UA. You could 
provide an OPC UA server on the client machine targeting the Classic OPC 
server(s), you could natively access the control module, or you could implement 
your OPC UA server on the control module. In the following, we do not go into 
those deployment issues but focus on the information modeling of this scenario. 
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In Classic OPC, you would provide an OPC DA server allowing to access the 
measured values and to set the set points. An OPC A&E server would provide 
the events and an OPC HDA server the history of the temperature and humidity. 
The history of events could not be provided in a standard way. We will focus on 
current data to expose how to model the above described data. 

In OPC DA, you would provide a structure as shown on the left hand of Fig. 3.2. 
As long as you only want to provide the similar information in OPC UA, your 
Address Space would look very similar as shown on the right hand in Fig. 3.2. 
Here, only the BaseObjectType, the BaseDataVariableType, and the PropertyType 
are used and the standard HasComponent and HasProperty References. 

 
Fig. 3.2 Simple mapping to OPC DA and OPC UA 

To extend this scenario to events and history, you would make the Controller  
Object an EventNotifier and change the AccessLevel Attribute of the Temperature 
and Humility Variables supporting history as well. The history of events can also 
be made available on the Controller Object. In addition, you need to provide the 
configuration of the historical data by adding this information to the Nodes. How 
this can be done is described in Sect. 4.6. 

If you look at this scenario, you can see that you provide the same information 
as in Classic OPC. Using Methods make things a little bit clearer although this is 
not required in the described scenario. You can provide the history of events,  
and in general events and history are integrated to the current data and not sepa-
rated in different servers as done in Classic OPC. You have your secure and  

3.2.2  Simple Scenario: Similar to Classic OPC 
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reliable communication, and your OPC UA applications can run on different  
platforms, including the control module. However, the information is still the 
same. On the one hand, this means that you do not need to put in any additional 
effort in providing more information, but on the other hand, you are not using the 
full power of OPC UA regarding information modeling. The above described 
modeling of information in OPC UA is a compliant application of OPC UA and 
may be sufficient for your needs. Nevertheless, in the following section we will 
see what the next steps regarding the modeling of information can be and how this 
can help your applications. 

The first step adding additional information in the above described model is to add 
type information. Before we go into details, let us extend our scenario by motivat-
ing the usage of types. For example, you do not only have one controller for one 
room, but you are in an office building having several rooms. All of them have air 
conditioners, some controllers even run on the same control module as shown in 
Fig. 3.3. 

Fig. 3.3 Multiple air conditioner 

3.2.3  Advanced Scenario: Providing Full Power of OPC UA 
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However, they all work the same way and your client applications always look 
the same for each room. Thus the client application should be developed only once 

done by creating a TypeDefinition for the controller and program your client appli-
cation with knowledge of the TypeDefinition. Creating a type for the controller is 
very simple by using the structure we have seen earlier and put them under an 
ObjectType Node instead of an Object. All Nodes in the structure reference a 

ModellingRule for all InstanceDeclarations. This is shown in Fig. 3.4. Now your 
client application can be programmed by using the TypeDefinition. You use the 

the knowledge about the InstanceDeclarations. 

Fig. 3.4 TypeDefinition for the controller 

To expose the power of using type hierarchies, we extend the example des-
cribed earlier. Let us assume your office building does not only have an air condi-
tioner, but also a furnace. A furnace is shown in Fig. 3.5. Again, we do not want to 
go into technical details but focus on the provided data. The controller of the fur-
nace provides the temperature, the power consumption as well as the gas con-
sumption by measuring the gas flow. It provides the state of the burner and allows 
setting the temperature and turning it on and off. It uses a temperature sensor to 
measure the temperature, a wattmeter to measure the power consumption, and a 
flow transmitter to measure the gas consumption. Thus in a way it is very similar 
to the controller of the air conditioner. It provides the measured temperature and 
the temperature can be controlled by a set point; it can be started or stopped. The 

become InstanceDeclarations. In the example, it makes sense to use the Mandatory 

and be applied to all air conditioner controllers. In OPC UA, this can easily be 

TranslateBrowsePathsToNodeIds Service to access the instance Nodes based on 

ModellingRule, and since they are referenced by a TypeDefinition Node they 
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only the common information provided by both controllers.  

 

 
Fig. 3.5 Adding a furnace to the application scenario 

Fig. 3.6 Type hierarchy for different controller 
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power consumption is measured in both cases. So when you think about it, there 

make it possible for client applications to be more general by using some base 
TypeDefinition and be programmed based on those supertypes. The type hierarchy  
that could be created in our advanced scenario is exposed in Fig. 3.6. On top we  
have an abstract base type for controllers that could, for example, be referenced 

In OPC UA, you can use a type hierarchy to expose that information and  

 by control modules. Then we have an abstract temperature controller providing

may be client applications that can handle both controllers in the same manner using 
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Controller the humidity and the humidity set point. Applications focusing only on 

at runtime. 

information could be useful for client applications and thus should be provided by 
your OPC UA server. In the description of this scenario, we have seen that beneath 

ler (actors). From the maintenance point of view as well as from the engineering 
point of view (e.g., when you engineer your controller), this is important informa-
tion. In our example, we will focus on the maintenance use case, although activi-
ties have started from PLCopen for an OPC UA Information Model for IEC 
61131-3, the only global standard for industrial control programming (see Chap. 4). 

The devices shown earlier do not necessarily belong to one single controller – 
they can, for example, also be used by several controllers. In the end, the devices 

 

 
Fig. 3.7 Devices in the Address Space 

can span a hierarchy independent of the controllers as shown in Fig. 3.7. On the 
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state. The FurnaceController adds the gas consumption and the AirConditioner-

the controller devices are providing data (sensors) or are controlled by the control-

the temperature can be programmed based on the abstract TemperatureController 

all the common features of a temperature controller, like the measured temperature 

and use concrete instances of the FurnaceController or AirConditionerController 

FurnaceController is a subtype of the TemperatureController inheriting the
and a set point as well as the start and stop methods. It already contains a state. 

base features. It is overriding the state to add additional states to the Enum-

The AirConditionerController inherits the same features without overriding the 

After looking at the use of types and inheritance, let us look what additional 

Strings.  



left hand, a hierarchy representing the communication to the devices is shown. 
The hierarchy on the right hand side provides the topology of your building. Of 
course, the devices are connected to the controllers as well since they are used by 
them.  

You can see that we use several new ReferenceTypes exposing all those infor-
mation. The connectivity hierarchy uses Connects References from the IO modules 
to the devices and the building topology uses Contains References to point from 
rooms to the devices. The Variables of the controllers point to the Variables of the 
devices using a non-hierarchical Reference called Signal. References of this type 
imply that the measured value of the device is used by the controller and thus both 
Variables have the same value. All those ReferenceTypes are newly created and 
not contained in the OPC UA specification. You do not always need to provide new 
ReferenceTypes, for example, you could use Organizes References from rooms to 
devices. However, creating new ReferenceTypes makes the semantic more explicit. 
In Fig. 3.8, the newly created ReferenceTypes are shown in the ReferenceType 
hierarchy. 

Fig. 3.8 Extended ReferenceType hierarchy 

As you can see, we have now left one simple hierarchy behind and reached a 
full-meshed network of Nodes. Clients should be able to deal with this. However, 
a maintenance engineer may not be interested in how devices are connected to 
controllers or more precisely he may not be interested in controllers at all. Thus a 
reasonable approach is to create a View for the maintenance engineer hiding the 
Signal References and all other References to the Controllers. Using this View, the 
maintenance engineer can focus on his tasks by only accessing information impor-
tant to him. 

We have not shown TypeDefinitions for the devices, but obviously it makes 
sense to have a hierarchy of devices as well. We do not go into details in this 
example, but in Chap. 4, an OPC UA Information Model for devices is introduced. 

Let us take another look at the controllers. Currently, we modeled all Variables 
using the BaseDataVariableType although they have different characteristics. Some 
should provide an engineering unit; some should provide strings for its numeric 
enumeration values. All this is handled by the Data Access Information Model 
provided by the OPC UA specification [UA Part 8]. It standardizes where to find 
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Properties on the Variable for the engineering units, etc. However, since we did 
not look at that model so far, we will not go into details on VariableTypes in this 
example. 

In the example, we have not considered the data types of the Variables at all. It 
is expected that in the described use case, built-in DataTypes can be used and thus 
no special considerations have to be made. In the next section we will consider 
complex DataTypes as well. 

We do not need to consider history in this example. History is just provided by 
the Variables and you have to provide a history configuration as described in the 
Historical Access Information Model in Set. 4.6. Events can be gained from  
Objects setting their EventNotifier Attribute to eventing. In the example, the Con-
troller Objects are good places for EventNotifier. Clients can subscribe to them to 
receive Events. However, you have to provide an EventType hierarchy, which  
enables clients to define a filter specifying the fields they want to receive as well 
as limiting the Events they want to receive.  

The base EventTypes are defined in [UA Part 5]. You can either just use those 
or extend the hierarchy by subtyping in order to add fields for the Events or to 
categorize the Events. In our example, we want to support two types of Events. 
One is for exposing communication errors to a device and one is for maintenance 
information coming from the devices. There is already a standard EventType 
called DeviceFailureEventType, which applies to the communication failure to the 
device. So after finding the right standard EventType, you have to consider two 
aspects: First, are the Event fields of the standard EventType suitable for the 
Events you need to generate or do you need more? Second, do you need to catego-
rize Events? In our case, the Event fields are suitable but we want to categorize the 
Events so you can filter only for communication Events. Therefore, you have to 
create a subtype of DeviceFailureEventType without additional InstanceDeclara-
tions. In our scenario, we call it DeviceCommunicationFailureEventType. For the 
second type of Events, the maintenance-related Events, we do not have a more 
concrete EventType than the BaseEventType. But the fields of the BaseEventType 
are not sufficient, so we need to create a subtype called MaintenanceEventType to 
define additional fields. In addition, the subtype is also needed for categorization 
purposes, allowing clients to filter for all maintenance Events. In Fig. 3.9, the 
extended EventType hierarchy is shown. 

In the example you have seen how to apply the OPC UA information modeling 
concepts. You can start by only providing simple Objects and Variables as well as 
Events and the history of current data and Events. This is very similar to Classic 
OPC. You can add TypeDefinitions allowing clients to be programmed using the 
knowledge of TypeDefinitions. You can use different ReferenceTypes to expose 
different kinds of relations between Nodes and thus expose multiple hierarchies 
for multiple purposes. By using Views you can hide parts of the Address Space, so 
clients see only the information they need to fulfill certain tasks. Thus you can 
model your information appropriately for your scenario. In the next section, we 
will generalize from the example and provide some best practices of how to use 
the different modeling concepts of OPC UA.  
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Fig. 3.9 Extended EventType hierarchy 

3.3 Best Practices 

In the following, we give you some hints how to use the modeling concepts of 
OPC UA. There is some flexibility in modeling information in OPC UA, so there 
is not always a strong rule that must be applied. We will provide the pros and cons 
of different solutions so you can judge which solution fits best for your concrete 
application. 

We start with some general advice before we go into the details. Model your 
OPC UA server according to your requirements and appropriate to the data 
sources you are accessing. If you are not expecting clients to browse your Address 
Space but they are only accessing some Variable values getting the NodeIds from 
some other sources, it is not necessary to provide a rich information model. If your 
underlying data source is a generic OPC DA server and you have no additional 
information available, you cannot provide a rich information model. 

Try to use standardized types if possible instead of creating your own types. 
This applies for Nodes defined by the base Information Model of OPC UA or 
standard Information Models specified by other organizations. When there is a 
standard Information Model in your domain try to use it. Clients that have know-
ledge of those models can make use of this instead of just generically accessing 
the data. But it also makes sense for generic clients to use standard Information 
Models as the user of the client may be aware of the model and thus knows better 
how to deal with the provided information. In Chap. 4, we introduce standard 
Information Models. 
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Objects are used to structure the Address Space. They are the entry points to Vari-
ables having values and Methods that can be called. How you want to structure 
your Address Space depends on your application. If you expect that clients will 
browse the Address Space to find information, it is probably not a good idea 
having one Object with 10,000 Variables beneath. It would be better to structure 
them with several Objects. Nodes can be structured according to different criteria, 
for example, by devices or similar constructs like controllers. Beneath them, the 
Variables can be grouped by Objects considering the different purposes of the 
Variables (configuration data, measured data, etc.). Devices can be ordered by 
the geographical location in the factory, by the functionality of a process, etc. 
Since OPC UA does not only provide one hierarchy, you can provide several 
different structures in one Address Space. This all depends on your use cases. 

As soon as you are not providing a simple hierarchy with a well-defined  
semantic, you should consider using different types of References. In our example, 
you have seen that we used different ReferenceTypes for the building and the 
communication hierarchy. This makes sense as both hierarchies imply a specific 
semantic between the connected Nodes. And they are referencing the same Nodes. 
When browsing a device, you can filter for inverse References regarding the 
communication, so you know which IO module is connected to it without getting 
the room in which the device is located. You can also provide non-hierarchical 
References between Nodes. This does not expose a hierarchy, but some other rela-
tion between them. The example uses this also for the signal References between 
Variables of the device and the controller. Here, and also as for hierarchical  
References, you should first check if an existing ReferenceType is suitable for 
that purpose. Existing ReferenceTypes include the ReferenceTypes defined by the 
OPC UA specification and potentially other ReferenceTypes defined by standard 
Information Models. When you need to create your own ReferenceType, you have 
to use the most appropriate supertype in the existing ReferenceType hierarchy. 
Always consider that clients might apply filters based on standard ReferenceTypes 
when they browse and query the Address Space. 

As long as your server only provides a small amount of Nodes, it is not neces-
sary to use any Views. However, if your server provides hundred of thousands of 
Nodes, it may be suitable using Views to show excerpts of the Address Space tai-
lored to specific tasks. There are two ways of how Views can be applied. 

A View can hide subcomponents of a Node but the Nodes are not organized in 
a View-specific hierarchy. In our example, an engineer may have the task to con-
figure devices. Here, it would be interesting to browse the building hierarchy or 
the communication hierarchy. However, on the device he is only interested in the 
configuration parameters and neither in other parameters nor the signals to the 
controllers. You have to provide the View Node which could, for example, just 

3.3.1   Structuring with Objects, ReferenceTypes, and Views 
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reference the Objects1 Node as the standard entry point into the Address Space. 
But when browsing the Objects in the context of that View, it would hide certain 
References to Nodes that do not belong to the View. Please be aware that you 
have to be able to access each Node that is part of the View starting from the View 
Node. On the left side of Fig. 3.10, this is exemplified by using an abstract example. 

 
Fig. 3.10 Two ways of providing Views 

The other scenario for Views is that they span a View-specific hierarchy in the 
Address Space. In that case it makes sense that the View Node is the only entry 
point into that hierarchy and it is therefore referenced by the Objects Node. So you 
would not provide an Object called BuildingHierarchy but a View. Clients not  
capable of handling View Nodes in a special way should handle them as normal 
Objects to access hierarchies only accessible via the View Node. On the right side 
of Fig. 3.10, this is exemplified using an abstract example. 

You have to decide what kind of View you want to use in order to know where 
to place it in the Address Space. View Nodes always have to be accessible from 
the standard Views Object, but in addition you might want to add the View Node 
under the standard Objects Node used as browse entry point for instances. 

All Objects and Variables have to be typed in OPC UA. But there is a simple  
solution for servers without type information. They can use the BaseObject- 
Type for their untyped Objects and the BaseDataVariableType for their untyped 

                                                           
 1 In Chap. 4, we will learn more about the entry points into the Address Space. 

3.3.2  TypeDefinitions (ObjectTypes and VariableTypes) 
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DataVariables. Properties are always of the PropertyType, anyhow. However, 
there are mainly two reasons providing type information for Objects and Data-
Variables. First, it provides a specific semantic for a Node defined by the Type-
Definition. Having an Object of type TemeratureSensorType gives clients a hint 
that the Object represents a temperature sensor. If the Object is of type Production-
ScheduleType, it is not representing a device but a production schedule. Second, 
by using complex TypeDefinitions you are also defining the structure beneath 
each instance. In other words, you are defining a specific syntax for Nodes of this 
type. Clients can use this knowledge based on the TypeDefinition on each instance 
of the type, without the need to reconfigure or reprogram the client. Through this 
information, clients are able to assign instances of client-side objects like graphics 
very efficient to corresponding Objects in the server. 

Therefore, it is often useful to provide specific TypeDefinitions for your Objects 
and DataVariables. The benefit becomes even bigger if you use TypeDefinitions 
specified by standard Information Models, as client applications may already  
be aware of those types. Those client applications include aggregating OPC UA 
servers, providing the information of many OPC UA servers in its Address Space 
(see Chap. 9 for details on aggregating servers). 

However, it only makes sense to provide a TypeDefinition when it is expected 
that it will be used more than once. This is not restricted to one server. It may 
make sense to provide a TypeDefinition that is only used once in a server but 
many servers use the same TypeDefinition. This provides interoperability on the 
modeling level. 

Before creating a specific TypeDefinition, you should ask yourself the follow-
ing questions: 

1. Is there already a TypeDefinition I can use instead of? 
It is always preferable to use TypeDefinitions of standard Information Models 
(including the base Information Model of OPC UA) instead of defining a simi-
lar type for yourself. However, the drawback of a standard Information Model 
is that it may not fit to the information you want to provide. If you can provide 
the information required by the standard Information Model you should con-
sider using it, if you cannot provide that information then obviously you cannot 
use it. In the case that you can provide the expected information but you want 
to provide more information you have the following choices: add the additional 
information on each instance without providing it on the TypeDefinition or 
specialize the standard TypeDefinition with a subtype. Here you have to con-
sider what additional information you want to provide and whether this is 
needed on the TypeDefinition. 

2. Is there already a specialized ObjectType I can use as supertype? 
Each ObjectType has to inherit from the BaseObjectType so you always have 
to inherit your ObjectTypes from another ObjectType. Same is true for Type-
Definitions of DataVariables and the BaseDataVariableType. However, there 
may be more specialized TypeDefinitions available you can inherit from. You 
have to verify whether the semantic of the supertype fits to the TypeDefinition 
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you want to create. You are only allowed to specialize the semantic, not generalize 
it. If your supertype is specifying a temperature sensor, your subtype must be a 
sensor providing temperature as well. It can add semantic, for example, a speci-
fic type of temperature sensor. You also have to consider if the information that 
is mandatory on the supertype can be provided in your scenario as well. If the 
TemperatureSensorType requires providing an engineering unit and you do not 
have that information available, you cannot use it as a supertype. For Variable-
Types, you also have to consider the data type. Only the same data type or sub-
types can be used. 

There is no rule how deep type hierarchies should be and rules from object-
oriented programming languages can not be applied, since an ObjectType or Vari-
ableType does not contain any code (at least from the OPC UA point of view).  
As long as it makes sense from the information point of view, you can create  
subtypes. 

There is a specialty to consider when creating subtypes. It is the question on 
single or multiple inheritance. OPC UA does not forbid multiple inheritance in the 
Object- and VariableType hierarchies. However, it only specifies inheritance rules 
for single inheritance. One reason for this is that there are different ways of how  
to work with multiple-inheritance. Defining one single way means that the server 
cannot use a different one. Another reason is that multiple-inheritance can become 
quite complex and hard to handle. Therefore, you should try to avoid multiple-
inheritance in type hierarchies. There are some drawbacks on that. For example, if 
you want to expose that all of your Objects support the NodeVersion Property, 
you could create a server-specific ObjectType having the NodeVersion as manda-
tory Property and let all ObjectTypes inherit from that server-specific ObjectType 
in addition to their normal supertype. To overcome this use case, the base Infor-
mation Model of OPC UA allows servers to add InstanceDeclarations to well-
defined TypeDefinitions. This means that you are allowed to add a mandatory 
Property to the BaseObjectType. This, in turn, requires that all Objects of the 
server must support the Property. This can become a hassle for aggregating 
servers and therefore should be well considered whether it makes sense to add this 
information. 

3.3.2.1 ObjectTypes 

After this general view, let us take a short look at some considerations specific to 
ObjectTypes before we look into more detail on VariableTypes. 

Should I create simple or complex ObjectTypes? 
Complex ObjectTypes define a base structure of each Object of the ObjectType, 

whereas simple ObjectTypes only define the semantic. For example, you can  
create an ObjectType called AirConditionerController either as a simple Object-
Type without InstanceDeclarations or as a complex ObjectType as shown in the 
example. This decision depends on answering the following question: do I expect 
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my instances always to have the same structure beneath and do I expect to have 
several instances (not necessarily in the same server)? In that case it makes sense 
to have a complex ObjectType. If each instance of the ObjectType has a different 
structure beneath, it does not make sense to have a complex type. If the type is 
only used once it is questionable why to create an ObjectType for it at all. In our 
example, we expect each AirConditionerController to have the same structure  
beneath so we created a complex ObjectType. An example where a complex  
ObjectType does not make sense is an ObjectType representing an area in a factory. 
Here, each area has typically a different structure beneath. So a complex ObjectType 
does not make sense. However, providing the semantic that an Object represents 
an area makes sense. 

Of course, the question is not always to create a simple or complex Object-
Type. The question is for each potential InstanceDeclaration whether it should be 
placed on the ObjectType or not. In the example with the area, there may be some 
Properties common to each area, for example, the coordinates. This can be cap-
tured in a Property defined on the ObjectType. However, most parts of an area 
should not be defined on the ObjectType. 

3.3.2.2 ObjectTypes or VariableTypes 

For complex ObjectTypes only providing one Variable, you can consider using a 
VariableType instead. For example, a simple temperature sensor could be repre-
sented as a Variable instead of an Object containing a Variable. However, you 
should consider the extensibility and the handling of other, similar constructs. When 
you want to define a more complex temperature sensor that supports measuring 
the flow in addition, you cannot just subtype the VariableType since you need two 
DataVariables instead of one. It can also be considered as bad design if you model 
your simple devices as Variables and having your complex devices modeled as 
Objects containing Variables. Clients (and their users) would have to handle those 
devices in different ways. 

3.3.2.3 VariableTypes (for DataVariables) 

VariableTypes should only be specified to add semantic to Variable instances. It is 
not needed to define VariableTypes just reflecting the data type of the Variables. 
This applies for the pre-defined DataTypes as well as for user-defined DataTypes. 
The Attributes of the Variable provide this information, so it is not needed to 
duplicate it in the VariableType. An example where it may make sense defining 
the semantic is to specify a setpoint. 

However, in the Data Access part there are some standard VariableTypes  
defined that can be applied in many scenarios, including specifying a setpoint. If 
you want to use the VariableTypes introduced in the Data Access Information 
Model and add a VariableType for setpoints, you would have to create subtypes 
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on each of those types. You can either define a base SetpointVariableType and let 
all newly created VariableTypes inherit from it or you can leave the base Set-
PointVariableType out to avoid multiple inheritance. In the second case, you loose 
the information that all newly created types have some commonality.  

The better approach is using composition instead of subtyping. In Fig. 3.11, 
this is exemplified. For the composition you can use an ObjectType instead of a 
VariableType, since you do not need an additional place to put the value to. It is 
expected that instead of extending the VariableType hierarchy of the Data Access 

is a good reason to provide additional VariableTypes, which is explained in the 
next section. 

Fig. 3.11 Subtyping vs. composition 

section we used an Object with Variables beneath to model that information. 
Actually you have three different possibilities of how to model that information: 

1. Provide several Variables with pre-defined DataTypes 

to the solution we used in Sect. 2.5.4. 
2. Provide one Variable with a structured DataType 

provide the information. 
You can create a complex DataType and use this DataType in one Variable to 

introduced an example for providing an address with the street and the city. In that 

beneath containing the information using pre-defined DataTypes. This is similar 

Information Model composition using ObjectTypes is used instead. However, there 

You are grouping the information by using an Object and provide variables 

Let us consider how to provide complex data structures. In Sect. 2.5.4, we already 

3.3.3  Providing Complex Data Structures 
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3. Provide one Variable with a structured DataType and sub-variables with built-in 
DataTypes 
A combination of both approaches is providing a structured DataType and use 
the DataType in a Variable, but in addition expose the information in sub-
variables using pre-defined DataTypes. 

The above described solutions imply that the complexity is only one level deep, 
that is the street and the city can be represented in a pre-defined DataType. Other-
wise, you can recursively use the above described approaches again. 

All choices are valid ways to model your information. However, there are dif-
ferent pros and cons for each solution. When you want to access individual ele-
ments of the complex structure, you can do this easily with solution one and three. 
For the second solution, you always access all data at once. It is possible to get the 
individual data, but there is always an overhead. Referencing individual elements 
is not possible with solution two, but it works well with one and three. You can 
access all data at once with all solutions; however, you have a small overhead in 
solution one, since you have to access several Variables in one request. If you 
need to access or manipulate all elements at once in a transaction context, you 
cannot use solution one. OPC UA does not specify any explicit transaction con-
text. This means that each Variable access will be executed individually (unless 
your server implements some proprietary transaction handling). In solution two 
and three, all data are in one Variable and therefore an implicit transaction context 
is given. On the other hand, complex DataTypes may not be supported by every 
OPC UA client. Those clients cannot access the data provided in solution two. In 
Table 3.1, the pros and cons are summarized.  

Table 3.1 Pros and cons for structuring data 

 Several 
variables 

Structured 
DataType 
using one 
Variable 

Structured 
DataType 

and several 
Variables 

Reading and writing individual  
values 

+ o + 

Subscribing to individual values + o + 
Referencing individual values in 
the Address Space 

+ – + 

Reading and writing all values at 
once 

+ + + 

Subscribing to all values at once + + + 
Reading or writing all values in a 
transaction context 

– + + 

Access possible with built-in 
DataTypes 

+ – + 

t3.1.1 
 
 t3.1.2 

t3.1.3 

t3.1.4 
t3.1.5 

 
t3.1.6 

 
t3.1.7 
t3.1.8 

 
t3.1.9 
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When you model your data and you do not need a transaction context, you 
should consider using solution one. This allows access from all clients and you can 
add References to individual entries. If you need transaction context or you know 
that many clients will always access the whole structure, you should consider solu-
tion three. If you expect all clients always accessing the whole structure, you can 
go for solution two. However, you have to be aware that an individual access is 
not possible in that solution.2  

When you use the third solution, it typically makes sense to define complex 
VariableTypes with mandatory sub-variables so clients know what to expect.  

As we just discussed the usage of structured DataTypes, let us look into some 
more details. As discussed, structured DataTypes provide an implicit transaction 
context. But they are harder to use by a generic client as the client needs to get and 
interpret the type description, which may not be supported by all clients. In addi-
tion, there is a slight overhead on the wire because the encoding information has 
to be put on it.3 Therefore, you should use numeric NodeIds for all Encoding 
Objects in order to keep the overhead low. 

define your structured DataTypes or your own mechanism for your own encoding. 
You should avoid using proprietary encoding mechanisms and use the standard 
mechanisms instead, since your own encoding will not be interpretable by most 

might consider using it. But in that case you should also provide the standard 
encodings so that generic clients are able to access the data as well. 

We already had a discussion about DataVariables and Properties in Sect. 2.6, 
which should provide enough information for a decision whether to use a Property 
or a DataVariable. 

                                                           
 2 We are considering this issue only from the modeling perspective. Of course, providing sub-

variables may be some coding effort for you, so you may want to go for solution two based on 
those considerations. 
3 The overhead is compared to one built-in DataType. Since a structured DataType often con-
tains the data of several built-in DataTypes, providing the same data in a structured DataType is 
typically more efficient. You only get one set of status code and timestamps (see Chap. 5 for  
details). 

3.3.4  Providing User-Defined DataTypes 

3.3.5   Properties 
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If your choice is a Property and you are applying Properties on Variables and 
Objects, you can decide whether you want to make it available on TypeDefinitions 
or not. Defining mandatory Properties makes sense as it gives the client additional 
information. An optional Property is not that useful. The semantic is defined by 
the BrowseName and Properties may show up on the instances or not. However, 
providing optional Properties give clients a hint that those Properties may exist. 
Properties are not defined by specific TypeDefinition Nodes, so you do not know 
that certain Properties may exist on your server unless you have seen an instance 
of it. Therefore, it is reasonable to use optional Properties in your type information 
to point out the existence of such Properties. 

Methods should be used whenever something is executed on the server triggered 
by the client. For long-running processes you should use Programs. But that  
implies using Methods as well since Programs are controlled using Methods. 

In Classic OPC, there is no concept of a method so you have to write some values 
to start a Method. This should be avoided in OPC UA and Methods should be used 
instead. Especially, if you have input or output parameters, a Method should be 
preferred. In a Method call, the input arguments have to be specified and the output 
arguments are returned. This means that those values are directly connected to the 
Method call and it is unambiguous when the Method was called several times and 
what value belongs to what call. 

You can define a Method on an Object or an ObjectType. If you define a 
Method on an ObjectType, you have to decide whether all Objects share the same 
Method Node or you provide additional copies of that Node. In the first case, you 
can reduce the number of Nodes in the Address Space. However, the Method contains 
Attributes specifying if it can be executed. If you want to provide this information 
on the granularity of the Objects, you should create copies. If this information is 
always the same for each Object you should share the Method Node. 

If you have Methods that are not related to a specific Object, you should put 
them on the Server Object. Clients are expected to look at the Server Object for 
those global Methods.  

You should use the standard ModellingRules whenever they are applicable. How-
ever, there is only a small set of ModellingRules defined. When you need to have 
a new constraint or some semantic that cannot be expressed in enough detail with 
the existing ModellingRules, you can define your own ModellingRules.  

3.3.6   Methods 

3.3.7  ModellingRules 
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Examples for new constraints are cardinality restrictions. OPC UA is an open 
model meaning that you can add References of any type to instances of your 
TypeDefinition as long as the constraints of the ReferenceType allow this. If you 
want to express, that your car can only have three or four wheels, you have to create 
a new ModellingRule.  

If you want to expose that a Method on an ObjectType is always shared on the 
instances, you have to create your own ModellingRule as the standard Modelling-
Rules do not define this behavior. 

However, you always have to consider whether it makes sense to provide this 
additional information, since you expect client applications to make use of it. A 
client who executes Methods is looking at the Attributes of the Method Node, but 
it does not care if the Node is shared or not. If your client is creating new Type-
Definitions and wants to specify whether the server should share the Methods, you 
need such a ModellingRule. 

Creating additional ModellingRules may make more sense for other standard 
Information Models than for vendor- or server-specific ones, since more clients 
may be able to interpret those standard ModellingRules. 

References are simple constructs in OPC UA only connecting two Nodes. The 
only information they provide is their ReferenceType and the direction. If you 
need to add any additional information to a Reference, you cannot do this directly 
in OPC UA. But there is a simple workaround. Instead of providing one Reference 
with additional information, you can create an Object which references the target 
and the source Node. This is exemplified in Fig. 3.12. 

 
Fig. 3.12 Usage of a Proxy Object instead of a reference 

3.3.8   Proxy Objects (Properties on References) 
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On the proxy Object, you can add your additional information. It already  
provides some base information like a NodeId and a name. Thus the relation 
represented by the proxy can be referenced by other Nodes and you can add Data-
Variables or Properties on the proxy. Of course, browsing the relationship becomes 
more cumbersome. So you should only use a proxy when you really need it. 

3.4  Summary 

In our example you have learned that you can use the OPC UA modeling concepts 
to model your information similar to Classic OPC. Only using the base types you 
do not have to define your own type system and you can focus simply on providing 
data. 

However, you have also seen how you can provide much more information using 
the advanced features and how this can help clients and users with their tasks. You 
can reuse client code or configuration data specified with the knowledge of your 
OPC UA TypeDefinitions by applying them on several instances of the same type. 
By using different ReferenceTypes you can expose different semantics and span 
multiple hierarchies. Views help you organizing large Address Spaces with poten-
tially hundred thousands of Nodes. 

In the best practices section you have learned that Objects, ReferenceTypes, 
and Views are the key features for organizing your Address Space. You should 
use standard TypeDefinitions instead of your own TypeDefinitions when possible. 
There are different ways of how to provide complex data structures in OPC UA.  
If possible you should expose them as a set of Variables using pre-defined Data-
Types. If transaction context is needed, you can additionally provide complex 
DataTypes. Optional Properties on TypeDefinitions make clients aware of the  
existence of those properties. Methods should be shared if the execution is not  
restricted per Object. In general, standard ModellingRules should be preferred. 
However, there are not enough standard ModellingRules defined to capture com-
mon use cases like cardinality restrictions. If you provide additional information  
to a relationship between Nodes, you need to use a proxy instead of a simple  
Reference. 

There are power-point presentations and videos of the OPC UA DevCon 2007 
available at the OPC Foundation web site (www.opcfoundation.org/ua). The pre-
sentation about “Information Model and Services” contains another example modeled 

3.4.1   Key Messages 

3.4.2   Where to Find More Information? 
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in OPC UA. The scenario includes a boiler having controls, flow transmitters, and 
valves. 

dix in [UA Part 5] explaining the design decisions regarding the modeling of the 
diagnostics information. 

In the next chapter, we will explain how to create Information Models and how 
servers support multiple Information Models. We will introduce the base Informa-
tion Model and the more specific Information Models like Data Access and Pro-
grams, provided by the OPC UA specification. Afterwards, we will look at current 
activities regarding the development of standard Information Models defined by 
other organizations. Starting with Chap. 5, we will finally explain how to access 
and manipulate the data modeled in OPC UA. 
 

 
 
 
 
 
 

3.4.3   What’s Next? 

There is an Appendix in [UA Part 3] providing some best practices and an Appen-
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4 Standard Information Models 

4.1 Overview 

In this chapter, the base Information Model of OPC UA is introduced. This model 
provides the foundation for OPC UA information modeling and is always used as 
foundation to define additional Information Models. We will also look at the 
extensions of this model defined by the OPC UA specification. Those extensions 
are used to define a standard way to represent capabilities and diagnostic informa-
tion of an OPC UA server in its Address Space and how specific information for 
current data, historical data, state machines, programs, alarms, and conditions are 
modeled. Depending on your application you should use those extensions (for 
example, in the case of Data Access) or you must use them (for example, in the 
case of Historical Data where it is required to provide certain information). Finally, 
we take a look at what standard Information Models are currently in development 
by other organizations based on OPC UA. Maybe there are already activities in 
your domain that you can use or should join. 

Before looking at those standard Information Models, we start this chapter by 
considering how to handle standard Information Models. What is defined by an 
OPC-UA-based Information Model, how you can actually define such a model, 
and what mechanisms are built into OPC UA allowing servers and clients to work 
simultaneously with different Information Models? 

4.2 Handling Information Models 

From the OPC UA Address Space point of view, an Information Model mainly 
defines Nodes. This includes well-defined NodeIds for the Nodes. Different kinds 
of Nodes can be defined. Typically an Information Model defines TypeDefinitions 
(incl. EventTypes), ReferenceTypes, and DataTypes. It can also define Modelling-
Rules when the standard ModellingRules are not sufficient. An Information Model 
can define standard Properties and Methods by defining a specific BrowseName 
and the semantic of it. An Information Model can also define standard Objects and 
Views as standard entry points into the Address Space and standard Variables con-
taining well-defined data. 

Beside this, an Information Model can define constraints that are not visible in the 
Address Space. For example, it defines rules that restrict the usage of ReferenceTypes. 

4.2.1   What is Specified by an Information Model? 
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example, you have to represent each session of a server as an Object of a specific 

be defined by an Information Model. 

Table 4.1 What can be specified by an Information Model 

Concept Description Example 
ObjectType Simple or complex ObjectTypes includ-

ing constraints on the instances of the 
type, e.g., when the type should be  
applied (semantic) and where instances 
of the type should be referenced in the 
Address Space (syntax).  
Some constraints can only be defined 
textual, either in the description or some 
additional Variables; some constraints 
can be defined by InstanceDeclarations 
and ModellingRules 

ObjectType repre-
senting devices 

Modelling-
Rule 

For complex TypeDefinitions, additional 
ModellingRules can by defined  
specifying specific constraints 

Cardinality  
restriction between 
instances of two 
types 

EventType EventTypes can be specified either to 
categorize Events or to add additional 
Event fields. In addition, constraints can 
be defined when Events of the type must 
be generated. Some constraints can be 
exposed by references in the Address 
Space (see the State Machine Informa-
tion Model), others only by a textual  
description 

EventType for level 
alarms 

Variable-
Type 

VariableTypes can be specified as  
subtype of the BaseDataVariableType. 
They can restrict the usage of data types, 
they can define a specific semantic, and 
they can be complex (containing  
sub-variables). Constraints can define 
where the VariableType can or must be 
applied and where it can be found in the 
Address Space 

VariableType with 
specific Properties 
like engineering unit 

In theory it can define any kind of constraint. It can specify that every device 

ObjectType. In the Capabilities and Diagnostics Information Model of OPC UA, for 

type in the Address Space. Table 4.1 summarizes the different concepts that can 

targeted by a system must be represented in the OPC UA server by a specific 
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Property  
semantic 

By defining a concrete BrowseName for 
a Property, a specific semantic for the 
Property is defined. Information Models 
can define constraints on allowed data 
types, and where the Property can or 
must be defined. Typically these  
constraints are defined only textually; 
however, adding the Property on a base 
TypeDefinition allows defining some 
constraints like the BrowseName and the 
data type more explicitly. When a  
Property is not used as InstanceDeclara-
tion, the actual support of this Property 
in a server cannot be detected in the  
Address Space1 

A Property for the 
engineering unit of a 
DataVariable 

Method  
semantic 

By defining a concrete BrowseName for 
a Method, a specific semantic for the 
Method is defined. Additional  
constraints like specifying where such 
Methods are applied or on the arguments 
of the Method can be defined. Like 
Properties there is no standard way  
exposing supported Methods 

A Method applicable 
on each Type 
Definition creating 
an instance of the 
type with specific 
input-arguments  
defining specific  
default values, 
whether optional  
InstanceDeclarations 
should be applied, 
etc. 

Reference-
Type 

Hierarchical or non-hierarchical Refer-
enceType defining specific semantic  
between two Nodes. Each Refer-
enceType has constraints where it can be 
applied, for example, the NodeClass and 
potentially the TypeDefinition of the 
source and target node, or how often it 
can be used for the same source. Those 
constraints are typically only visible as 
textual descriptions; at least there is no 
standard way to expose them 

A ReferenceType 
identifying that two 
Nodes representing 
devices communi-
cate with each other 

                                                           
 

1 At least in a standard way. Information Models may define a place where they expose all sup-
ported Properties in the Address Space. 
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DataType Simple DataTypes can be defined pro-
viding a specific semantic, and enumera-
tion DataTypes specifying a specific 
enumeration. Structured DataTypes can 
be defined for complex data. In addition, 
abstract DataTypes can be defined orga-
nizing the DataType hierarchy and pro-
viding places to extend the hierarchy 

A DataType repre-
senting a Status of a 
device 

DataType 
encodings 

For specific applications, a specific way 
how to encode a structured DataType 
can be defined. This is a sophisticated 
feature that should be avoided or used 
together with a standard encoding  
because of interoperability issues 

An encoding provid-
ing the data in  
exactly the same  
format as provided 
by a device 

Object Standard Objects can be defined as entry 
points into the Address Space. Clients 
can use those Objects and start browsing 
from the Object. Objects can also be  
defined as EventNotifiers and thus as 
standard sources to subscribe to Events 

Server Object as  
entry point into the 
diagnostics, but also 
as entry point to all 
Events of the server 

View Similar to Objects, Views can be defined 
as entry points into the Address Space. 
In addition, it can be defined what 
should be contained in the View 

A View providing 
all devices repre-
sented in a server 

Variable Variables contain a value and thus  
standard Variables define specific  
information. Clients can directly read, 
write, or subscribe to the value of the 
Variable without the need to find it first 

Variable containing 
the status of the 
server 

Method A standard Method can directly be 
called by a client without the need to 
find it first 

A Method to shut 
down the server 

Constraint A variety of constraints can be defined 
by an Information Model. These con-
straints can define how the Address 
Space is organized, but also what must 
be provided by the Address Space or 
how a server must behave. This behavior 
must not conflict with what is defined by 
OPC UA, but it may define a more  
restrictive behavior, like a server must 
be redundant 

All events generated 
by the devices repre-
sented by the server 
must be provided as 
Events in OPC UA 
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you look at the Information Models defined by the OPC Foundation, for example, 

For constraints we expect that there will always be the use case where plain text 
is needed. However, for standard Nodes it is desirable to have a more machine-
friendly way to provide this information. This could be used by a server to popu-
late its Address Space and by test tools checking if the Nodes exist. The SDKs 
provided by the OPC Foundation already use XML documents based on a specific 
XML Schema to generate code out of those documents. We expect that a similar 
XML Schema will be standardized by the OPC Foundation in the long-term and 
can be used as base to define Information Models. However, constraints that can-
not be easily exposed in the Address Space need to be defined as well. And – of 
course – there must be some introduction where the Information Model should be 
applied. Thus you will always need to create a text document, but in the long-term 
you may use an XML document to specific standard Nodes. 

Servers can support several Information Models at the same time. OPC UA pro-
vides some very simple mechanisms to accomplish this. In the end, an Information 
Model defines unique Nodes in the Address Space, standard Properties and 
Methods. The uniqueness of Nodes is provided by the NodeId, the uniqueness  
of standard Properties and Methods by the BrowseName. To avoid the risk that 
two Information Models use the same NodeId or the same BrowseName, both 
contain a NamespaceURI (optimized by the NamespaceIndex, see Sect. 2.8.5). 
Each organization uses its own NamespaceURI (which, by definition, is unique). 
Thus, NodeIds and BrowseNames become unique to the organization defining 
them. This allows servers to expose several Information Models without “name 
conflicts.”  

However, different Information Models may define global constraints that  
exclude each other. For example, one Information Model may define that all  
devices accessed by a server must be exposed; another one that devices only used 
for communication shall not be exposed. Those scenarios can be avoided when  
Information Models are more specific, for example, specifying that all communi-
cation devices are not exposed using their specific types. 

4.2.2   How is an Information Model Specified? 

4.2.3   How are Multiple Information Models Supported? 

At the moment there is no standard way how to specify an Information Model. If 

for Data Access and Programs, a text document is used. Standard Nodes are defined 
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in tables and constraints by text in the document. 



4.3 Base OPC UA Information Model 

The base Information Model is defined in [UA Part 3] and [UA Part 5]. In 
[UA Part 3], the Nodes used in the meta model of OPC UA are introduced like 
Nodes representing specific ReferenceTypes. The Nodes are formally defined 
together with additional Nodes in [UA Part 5]. In this book, we distinguish bet-
ween the base Information Model of OPC UA and the Nodes defining the capa-
bilities and diagnostics of the server. Both are defined in [UA Part 5]. All NodeIds 
defined by the OPC Foundation use the Namespace URI of OPC UA and Name-
spaceIndex zero. 

In Fig. 4.1, the base TypeDefinitions of the base Information Model is shown. 

the Address Space without providing additional semantic, and the PropertyType 
must be used for all Properties. The ModellingRuleType is used to define Model-

Fig. 4.1 Base TypeDefinitions 

In Fig. 4.2, an overview of ReferenceTypes and DataTypes of the base Infor-
mation Model is given. The base Information Model defines all built-in DataTypes. 

from the BaseVariableType. However, you can define only additional DataVari-
All ObjectTypes must inherit from the BaseObjectType and all VariableTypes 

lingRules. There are several TypeDefinitions used to define the encoding of struc-

from the BaseEventType. The FolderType can be used for Objects only organizing 
ableTypes inheriting from the BaseDataVariableType. All EventTypes must inherit 

is given in Appendix C. 
tured DataTypes as described in Sect.  2.8.4. The full list of audit-related EventTypes

The complete list of base ReferenceTypes and DataTypes is given in Appendix C. 
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Used to define encodings for DataTypes

BaseObjectType

FolderType

BaseEventType

BaseVariableType

PropertyType
BaseData-

VariableType

It is not allowed 
to create direct 
subtypes or 
instances of 
this type

It is not 
allowed to 
create 
subtypes of 
this type

SystemEventType

DeviceFailure -
EventType

SemanticChange -
EventType

BaseModelChange -
EventType

GeneralModel -
ChangeEventType

AuditEventType

...

There are several 
subtypes defined for 
audit events

Modelling-
RuleType

DataType -
EncodingType

DataType -
SystemType

DataType -
DecsriptionType

DataType -
DictionaryType



 

Fig. 4.2 Base DataTypes and ReferenceTypes 

instances with different default values or specifying what optional Instance-
Declarations should be applied. Standard Method means that the BrowseName is 
defined. Each ObjectType using this Method must define its own Method Node 
and offer input- and output arguments suitable for the type. There are several stan-
dard Properties. In Table 4.2, they are summarized. 

Table 4.2 Standard properties 

Property Description Constraint 
NodeVersion Used to track changes of the 

Address Space, see  
Sect. 2.11.3 

Can be applied on all Nodes 
(except for Properties) 

ViewVersion Used to track changes in a 
View, see Sect. 2.9 

Only defined on View 
Nodes 

Icon An icon that can be used by 
clients when displaying the 
Object or ObjectType 

Only defined on Objects 
and ObjectTypes 

NamingRule NamingRule of the  
ModellingRule, see  
Sect. 2.5.6 

Only for Objects of type 
ModellingRuleType 

The time difference (in  
minutes) between the Source-
Timestamp (UTC) associated 
with the value and the stan-
dard time at the location in 
which the value was obtained 

Only defined on  
DataVariables 

AllowNulls  Specifies whether a NULL 
value is allowed for the value 
of the DataVariable 

Only defined on  
DataVariables 
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... There are several 
subtypes defined

References

Hierarchical -
References

NonHierarchical -
References

...

BaseDataType

String Structure...

There are several additional 
subtypes defined

There is one standard Method called “Create”. It is used on ObjectTypes to create 

LocalTime 



DataType-
Version 

Used as version number of the 
encoding of structured 
DataTypes, see Sect. 2.8.4 

Only defined on Variables 
of type DataTypeDescrip-
tionType and  
DataTypeDictionaryType 

Dictionary-
Fragment 

Used for describing the encod-
ing of structured DataTypes, 
see Sect. 2.8.4 

Only defined on  
Variables of type 
DataTypeDescriptionType 

EnumStrings Used to define the string rep-
resentation of an enumeration, 
see Sect. 2.8.3 

Only defined for enumera-
tion DataTypes 
(in the Data Access Infor-
mation Model it is also  
defined for DataVariables) 

Input-
Arguments 

Input arguments of a Method Only defined on Methods 

Output-
Arguments 

Output arguments of a Method Only defined on Methods 

In addition to the standard types, Methods, and Properties, the base Information 
Model defines some standard Nodes as entry point into the Address Space. It also 
defines the Server Object as the EventNotifier providing all Events of the Server. 
The Server Object contains the Namespace- and ServerArray and is the entry point 
into the diagnostic information and the Variables describing the capabilities of 
the server. In Fig. 4.3 you can see the Objects and Variables defined by the base  
Information Model. There are no Views or standard Methods defined by the base 
Information Model.  

Fig. 4.3 Objects and Variables of the base Information Model 
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DataTypes ::
FolderType

ReferenceTypes ::
FolderType

VariableTypes ::
FolderType

ObjectTypes ::
FolderType

Types ::
FolderType

Objects::
FolderType

Views::
FolderType

Root::
FolderType

Organizes

Organizes

Organizes

Organizes

Organizes

Organizes

Organizes

BaseVariableType

BaseObjectType

References

BaseDataType

Organizes

Organizes

Organizes

Organizes

Server::
ServerType

NamespaceArray

ServerArray

Organizes

All Views of the server must be 
accessible beneath this Node

All Objects and variables (not used to organize the other 
hierarchies or used as InstanceDeclarations) should be 
accessible from here

All ObjectTypes, can be 
organized by additional 
folders

...

Server Object contains more 
Variables and Objects 
considered to be part of the 
diagnostic information



 

4.4 Capabilities and Diagnostics 

The Capabilities and Diagnostics Information Model contain information about 
the status of the server, the capabilities of the server, what clients are connected to 
the server, and what Service was called how many times. It offers entry points to 
which vendor-specific information can be added as well. Details of the provided 
information can be found in [UA Part 5]. The diagnostic information is split into 
information per server, per session, and per subscription. The general handling of 
this is shown in Fig. 4.4. 

 
Fig. 4.4 Diagnostic information 

4.5 Data Access 

The Data Access Information Model [UA Part 8] mainly defines standard Vari-
ableTypes and adds mandatory and optional Properties to them. The VariableType 
hierarchy is shown in Fig. 4.5. The DataItemType is used to represent arbitrary 
automation data. Two optional Properties are defined: definition contains a human-
readable string that specifies how the value of the DataItem is calculated and Value-
Precision specifies the maximum precision of the value. The AnalogItemType is 

Number DataTypes and defines Properties for the InstrumentRange, the EURange, 
and EngineeringUnits. The abstract DiscreteItemType is specialized to TwoState-
DiscreteType for Booleans and MultiStateDiscreteType for unsigned integers. Both 
contain Properties for the localized text representation of the numeric value. In that 
way they are enumerations, not by the DataType Attribute but the VariableType. 
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used to represent continuously-variable physical quantities. It only applies for 



You should use an enumeration DataType when you expect the enumeration to be 
used several times and a DiscreteItemType when the enumeration is only used 
once or a few times or the enumeration text may change often. Of course, this  
decision may also depend on the source the server is accessing. 

The Data Access Information Model also defines some DataTypes used in the 
Properties of the DataItemTypes, for example, defining the range structure used in 
the EURange Property or the engineering unit structure used in the Engineering-
Units Property. 

Fig. 4.5 Data Access information model 

4.6 Historical Access and Aggregates 

Historical Access defines the representation and access of historical time series 
data and historical event data in OPC UA. 

The Historical Access Part of the OPC UA specification was released in a first 
version in 2007 [UA Part 11]. Later, the document has been split into two documents, 
one for Historical Access [UA Part 11Draft] and one for Aggregates [UA Part 13]. 
We will give only a brief overview since both may change in details until release. 
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DataItemType

AnalogItemType
(DataType: Number)

DiscreteItemType

Definition:: 
PropertyType

ValuePrecision:: 
PropertyType

InstrumentRange:: 
PropertyType

EURange::
PropertyType

EngineeringUnits:: 
PropertyType

BaseDataVariableType

TwoStateDiscreteType 
(DataType: Boolean)

MultiStateDiscreteType
(DataType: UInteger)

TrueState:: 
PropertyType

FalseState:: 
PropertyType

EnumStrings:: 
PropertyType

PropertyType

DaylightSavingTime::

Not defined on the 
TypeDefinition Node, 
but can be applied on 
each DataVariable

PropertyType

LocalTime::



 

More details on Historical Access are described in the Service chapter (see Sect. 5.9) 
where also a list of Aggregates is provided in Table 5.48. 

The Historical Access Information Model mainly describes where to find con-
figuration information of historical data. It extends the Capabilities and Diagnos-
tics Information Model, with details on how history is supported. In addition, it 
defines how EventNotifiers and Variables expose their configuration and how his-
torical data are collected. Many EventNotifiers can use the same configuration; the 
same is true for Variables. In turn, each EventNotifier and Variable can have several 
configurations when a server collects the history in different ways (e.g., a more 
detailed history for 2 weeks and a less detailed history for 2 years). This is 
shown in Fig. 4.6. 

 
Fig. 4.6 Historical access information model 

With respect to information modeling, the Aggregates specification mainly 
extends the capabilities model of the server exposing the supported Aggregates. 
Those can be used for historical data or current data. Primarily, the Aggregates 
specification defines the behavior of the aggregate functions.  

4.7  State Machine 

The State Machine Information Model defines how to expose state machines in 
the OPC UA Address Space. This model is used by Programs as well as Alarms and 
Conditions. It is defined in an Appendix of [UA Part 5]. The model is summarized 
in Fig. 4.7. It defines two base types. The StateMachineType exposes only the cur-
rent state of the state machine, whereas the FiniteStateMachineType also provides 
information about the states and transitions of the state machine. It allows specifying 
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Fig. 4.7 State machine information model 

By subtyping you can extend a state machine. However, the base states of a 
concrete state machine cannot be extended, and you need to define substates of a 
state by another state machine. 

4.8  Programs 

A Method is invoked by a client, executed by the server, and the result is directly 
(in the Method call response) returned to the client. In contrast, a Program is used 
for more complex, long running, and stateful functionality. A Method may be 
called to calculate a value, whereas a Program may be used to run and control a 
batch process or a machine tool program. Programs can be controlled by a client 
(e.g., starting and stopping) and intermediate results can be returned to the client 
using Events. To control a Program, it is desirable to know its state (whether it is 
already running, interrupted, etc.). Therefore, the Programs Information Model 
uses the State Machine Information Model as base to model Programs. It defines a 
concrete subtype of the FiniteStateMachineType called ProgramType having four 
states as shown in Fig. 4.8. It also defines several transitions between them and 
optional Methods to control the Program. In addition, specific Variables containing 

It is defined how to use a Method call as cause and the generation of an Event 
as effect, but this can be extended to other causes and effects. An instance of a 
State Machine provides only the information about the current state, whereas the  
description of the possible states and transitions can be found at the type. 

118 4 Standard Information Models

State Machine providing states (without 
information about states and transitions)

Example state 
machine providing 
states and transitions

StateMachineType
CurrentState ::

StateVariableType

FiniteStateMachineType

UserDefinedStateMachineType
ON::

StateType

OFF::
StateType

TurnItOn ::
TransitionType

TurnItOff ::
TransitionType

Start

Stop

HasCause

HasCause

ToState

ToState

FromState FromState

TurnItOffEventType

HasEffect

CurrentState ::
FiniteStateVariableType

Abstract type for state machines providing 
state and transition information

causes triggering transitions and effects that are executed when a transition is triggered.



 

capabilities and diagnostics of the Program are defined. The ProgramType can be 
subtyped and substates can be added to the four states of the ProgamType. 

The first version of the Programs specification was released in 2007 [UA Part 10]. 
Although no updated release or release candidate is available while writing this 
section, it is not expected that there are major changes to the document. 

Fig. 4.8 Programs information model 

4.9 Alarms and Conditions 

The Alarms and Conditions specification defines an Information Model for Condi-
tions, acknowledgeable Conditions, confirmations, and Alarms. This Information 
Model can also be extended to support the needs of other domains. 

While writing this section the Alarms and Conditions specification [UA Part 9] 
was not jet released. To avoid providing you instable information, we just outline 
the ideas of the Alarms and Conditions Information Model. 

• Conditions are specific Events that are not transient but always maintain a state 
(e.g., enabled or disabled).  

• There are acknowledgeable conditions where entering a specific state req- 
uires a client to acknowledge this state. The acknowledgement is done by a 
Method call. For example, if a level reaches a certain value, this may have to be 
acknowledged by an operator. 

• Alarms are acknowledgeable conditions that can be suppressed and shelved to 
avoid an explosion of Alarms in a system when a critical error occurs. The 
most important state of an Alarm is the active state. For example, if a level 
reaches a critical value like 95% the Alarm changes to active. 
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FiniteStateMachineType
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StateType
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FromState
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The ProgramType also references all States 
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• Dialogs represent another subtype of Conditions. They allow a server to pop up 
different types of dialogs at the client. 

• Alarms and Conditions use state machines describing their states. Most types of 
Alarms and Conditions defined in the Alarms and Conditions specification uses 
several states and substates. An acknowledgeable Condition has, for example, 
substates exposing whether it is acknowledged. 

• In addition to the occurrence as Events, Alarms and Conditions can be made 
visible as Objects in the Address Space:  

– Therefore, Alarm- and ConditionTypes are not abstract and can be instan-
tiated.  

– Clients can read and change the configurations of Alarms and Conditions 
(e.g., the severity of a HiHi level alarm).  

• The state of the Alarms and Conditions can be accessed via the eventing 
mechanisms. To receive the current state of all Alarms and Conditions as Events, 
a special Method named ConditionRefresh has to be called. 

4.10  Domain-Specific Information Models 

The OPC UA Information Model provides a means to describe the semantics  
related to a specific domain. ISA-S88, ISA-S95, and IEC TC 57 – CIM are exam-
ples of existing information models for specific domains. The OPC Foundation is 
collaborating with these and other standard organizations to become the how for 
moving the other standard organizations what. In the following, we introduce activi-
ties done by other organizations in cooperation with the OPC Foundation defining 
domain-specific Information Models based on OPC UA. 

A common Information Model for devices is currently available in a draft ver-
sion [UA Devices]. Details of the model are described in Sect. 4.10.2. The EDD 
Cooperation Team (ECT) defined a mapping from an EDD to a device representa-
tion in OPC UA based on this model [ECT06]. The FDT group also defined a 
mapping of DTMs to OPC UA using the same model [FDT08]. 

While the devices Information Model specifies only a generic model how to 
represent devices, the ADI (analyzer device integration) initiative of the OPC 
Foundation brings the vendors and customers of analyzer devices together to define 
concrete types for different kinds of analyzers. The resulting Information Model is 
based on the devices Information Model. Currently there is a draft version avail-
able of this model as well [UA Analyzer]. 

4.10.1  Overview 
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The Field Device Integration (FDI) initiative brings together ECT and FDT 
group defining the future of device integration. The devices Information Model 
will be used in that approach, but also other facets like user interfaces are consid-
ered. 

Discussions have started with several other organizations regarding Informa-
tion Models based on OPC UA: 

• PRODML (www.prodml.org) for the vertical integration of oil values (drilling) 
• MIMOSA (Machinery Information Management Open Systems Alliance – 

www.mimosa.org) for plant operations and maintenance 
• ISA-88 (www.isa-88.com) for batch control 
• ISA-95 (www.isa-95.com) for the integration of control systems with enterprise 

systems (vertical integration) 

tion of different packaging line functions 
• PLCopen (www.plcopen.org) for standard PLC programming languages 

We are currently not aware of additional standard Information Models initia-
tives, although we know that other organizations are evaluating OPC UA as well 
figuring out whether it can be applied for their purposes. 

The device Information Model [UA Devices] defines the Information Model asso-
ciated with devices providing a unified view irrespective of the underlying device 
protocols. It defines a device as entity that provides sensing, actuating, communi-
cation, and/or control functionality. 

At the time of writing this book the device Information Model has been in draft 
state. Therefore, we will provide only the idea behind the model. A device is rep-
resented by an Object. All the parameters of the device are gathered with another 
Object called ParameterSet. Objects of type ParameterView can be used to group 
related parameters (e.g., all configuration parameters). The parameters use the 
VariableTypes defined by the Data Access Information Model. Sub-devices and 
function blocks are provided beneath the device as additional Objects. The devices 
Information Model defines ObjectTypes, for example, for the devices, blocks, and 
parameter sets. It is illustrated in Fig. 4.9. You can see that the devices Informa-
tion Model is derived from the base Information Model. Specific types of devices 
are modeled as sub-types of the DeviceType, like the motor starter type in the 
figure. As specified by the devices Information Model, the motor starter uses 
VariableTypes specified by the Data Access Information Model.  

4.10.2  Devices Information Model 

• OMAC (Open Modular Architecture Control – www.omac.org) for the integra-
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Fig. 4.9 Devices information model 

The devices Information Model also provides entry points for bus-specific 
extensions (like HART, FF, and PROFIBUS). 

4.11  Summary 

Information Models define standard Nodes, including types, Properties, and 
Methods. In addition, they define constraints on the Address Space. These con-
straints may reference the environment of the server, like all sessions of the server 
must be provided as Objects in the Address Space. Information Models are 
currently defined by text documents; in the future there will be an XML Schema 
that can be used to define standard Nodes. The NamespaceURI contained in 

4.11.1  Key Messages 
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BrowseNames and NodeIds allows providing several Information Models in one 
server. 

The base Information Model defines the foundation of all types and standard 
entry points into the Address Space. The Capabilities and Diagnostics Information 
Model defines standard places to find the capabilities of a server and diagnostic 
information. The Data Access Information Model provides VariableTypes having 
standard Properties storing Data Access related information like the engineering 
unit. The Historical Access Information Model defines where to find the configu-
ration of historical data and events. The State Machine Information Model pro-
vides a generic model for state machines used by the Programs and the Alarms 
and Events Information Models. 

There are several initiatives going on defining standard Information Models for 
specific domains. Make use of those models when they are appropriate in your 
domain or try to define additional standard Information Model when there is the 
need for it in your domain. 

The documents defining the Information Models are already referenced in the 
corresponding sections. URLs to the organizations cooperating with the OPC 
Foundation defining Information Models have been provided as well. 

In the next chapters we will leave the information modeling and look at how the 
information modeled in OPC UA can be accessed. This is done by the OPC UA 
Services described in Chap. 5. Chapter 6 discusses the mapping of those Services 
to concrete technologies. 

4.11.2  Where to Find More Information? 

4.11.3  What’s Next? 
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5.1 Overview 

The OPC UA Services are defining the data communication on application level. 
Services are methods used by an OPC UA client to access the data of the Information 
Model provided by an OPC UA server. Similar to Classic OPC, where the OPC speci-
fications just defined Application Programming Interface (APIs) between appli-
cations, the Services define the communication interface between UA applications. 
The definition of the Services is independent of the transport protocol and the pro-
gramming environment that is used to develop an OPC UA application. This is the 
fundamental difference to Classic OPC where the definition of the APIs was bound 
to a specific transport mechanism – Microsoft Component Object Model (COM). 

The independence of the transport protocol and the programming environment 
requires an abstract definition of the Services. This abstract definition [UA Part 4] 
can be applied to different transport mechanisms (see Chap.6) defining the repre-
sentation of the Services on the wire [UA Part 6] and to different implementations 

gramming languages. The language specific APIs for the application development 
are defined by the OPC UA Stacks based on the abstract UA Service definition. 
The different communication layers are shown in Fig. 5.1. 

Like Classic OPC, the OPC UA Services are designed for exchanging bulk data 
between UA applications running in different processes or on different network 

method does not read one Variable but allows defining a list of Variables to read. 
OPC UA Services are reduced to a generic set of methods. There are two main 
reasons for this reduction. On the one side a lot of information provided in Classic 

method like read instead of having specific methods to access the information. A 
simple example is the server status information. In Classic OPC, this information 
was obtained by a special GetStatus Method. In OPC UA, this information is 
modeled as server status Variable and can be accessed with the Read Service or 

generic Service for a specific functionality and not a long list of specialized meth-
ods for different variations of information. 

This chapter describes the general Service behavior and the functionality pro-
vided by the different Services. They are partitioned into Service Sets in the corre-
sponding OPC UA specification [UA Part 4]. The grouping in this chapter is based 
on use cases summarized in Table 5.1 and does not exactly match the Service 
Set partitioning. Each Service is described in this chapter with its key parameters. 
A complete list of parameters and their detailed description can be found in 
[UA Part 4] or in API documentations. 

5 Services 
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OPC is now modeled in the server Address Space and accessed with a generic 

monitored for changes. Another reason was the design goal to provide only one 
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of the transport mechanisms in OPC UA Stacks (see Sect. 6.5) in different pro-

nodes to reduce the roundtrips between the applications. For example, a Read 



 
Fig. 5.1 OPC UA communication layering 

Table 5.1 Services grouped by use cases 

Use case Service sets or services 
Find servers Discovery Services Set 
Connection management between  
clients and servers 

Secure Channel Service Set 
Session Service Set 

Find information in the Address Space View Service Set 
Read and write data and metadata Read and Write Service 
Subscribe for data changes and Events Subscription Service Set 

Monitored Item Service Set 
Calling Methods defined by the server Call Service 
Access history of data and Events HistoryRead and HistoryUpdate Service 
Find information in a complex  
Address Space 

Query Service Set 

Modify the structure of the server  
Address Space 

Node Management Service Set 

5.2 General Service Concepts 

The Service definition uses the request and response pattern known form Web 
Services where each Service is composed of a request and a response message.  
To invoke a Service in the server, the client sends a request message to the server. 
After processing the request, the server sends a response message back to the client. 
Since this message exchange is asynchronous, all Service invocations are asyn-
chronous by definition. After sending the request message, the client application 
can process other functionality until the response message arrives. Most UA Stack 
APIs provide synchronous versions of the APIs for convenience. This is a general 
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enhancement compared to Classic OPC where all functions are synchronous and 
only a few functions where provided as asynchronous versions in addition. 

5.2.1 Timeout Handling 

The OPC UA data communication is designed for data exchange between differ-
ent systems, typically running on different network nodes or in different proc-
esses. Especially network communication can be interrupted at any time and it is 
important to detect and handle these failures correctly. 

 An important concept in such an environment is configurable timeouts for Ser-
vice invocations to get a timely detection of communication failure. For this rea-
son each single Service call has individual timeouts defined by the client. This is 
an important enhancement over Classic OPC. 

The communication stack on the client side returns the call to the API or sends 
the callback with a timeout status if the timeout expires. But the timeout set on the 
client-side UA stack is also send to the server to detect Service invocations that 
are not longer expected to return to the client side. 

5.2.2 Request and Response Headers 

Each Service contains the same headers for request messages and for response 
messages. For this reason they are not listed for each Service in this chapter. They 
are containing common Service parameters like the token for the Session context 
or the result of the Service call. The request header parameters are described in 
Table 5.2 and response header parameters are described in Table 5.3. 

Table 5.2 Request header parameters 

Parameter Description 
AuthenticationToken The secret Session identifier used to assign the Service 

call to the Session context created between client and 
server application 

RequestHandle A client defined handle assigned to the Service call 
Timestamp The time the client sent the request 
TimeoutHint The timeout set in the client side UA Stack for the call. 

This hint can be used by the server to cancel long run-
ning calls if the timeout expires 

ReturnDiagnostic Indicates if the client requests the server to return  
additional detailed diagnostic information in the case of 
an error instead of returning only a status code 

AuditEntryId A string that identifies the client or user that initiated the 
action. The string is empty if this parameter is not used. 
It is used for auditing (see Sect. 9.5) 
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Table 5.3 Response header parameters 

Parameter Description 
ServiceResult UA defined result code for the Service call  
RequestHandle The client defined handle assigned to the Service call 
Timestamp The time the server sent the response 
ServiceDiagnostics Client requested detailed diagnostic information 

5.2.3 Error Handling 

Error handling is an important part of the Service parameters and Service handling 
since communication between distributed systems from different vendors can cause 
errors on different levels and in different scenarios. Errors can happen in normal 
operation, for example, when a client is using wrong parameters like NodeIds of 
Nodes that are no longer available or they can happen in communication error sce-
narios when the connection between client and server or between server and the 
underlying system1 is interrupted. 

There are two types of error information used in the Services. The one type is 
an error code called StatusCode. The StatusCode is a 32-bit unsigned integer. The 
most significant 16 bits represent the numeric value of the code that shall be used 
for detecting specific errors or conditions. The least significant 16 bits are bit flags 
that contain additional information but do not affect the meaning of the Status-
Code. The two most significant bits are indicating the overall severity which could 
be Good for success, Uncertain for warning, and Bad for failure. Status codes 
are only defined by OPC UA and cannot be extended by vendors or other organi-
zations. 

The second type of error information is the DiagnosticInformation. This struc-
ture contains additional information for a StatusCode including vendor-specific 
error codes, a localized description of the error, and a text field for additional  
information. The diagnostic information can be nested to be able to provide an error 
stack. There is a DiagnosticInformation field available for each StatusCode field 
in a Service, but the additional information is only returned by the Server if req-
uested by the client. The DiagnosticInformation fields are not contained in the 
Service descriptions in this chapter. 

The error information2 is provided on two levels. The first level is the result of 
the Service call. The second level is the list of operations inside the Service call. 
Since OPC UA supports bulk operations for all Services used to exchange data, 
some operations in a Service call can fail while others succeed. An example is the 
Read Service where the client can read a list of Variable values in one Read Ser-
vice call. Each Variable in the Read is an operation. 

                                                           
1For example devices connected to the server by an interrupted network. 
2Combination of StatusCode and DiagnosticInformation. 
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Clients must check the results always on both levels since both can fail. In the 
first step, the client must check if the Service call succeeded. If not, none of the 
result fields is valid. If the Service succeeded, each operation StatusCode must  
be verified by the client before using the result data of the operation. 

Compared to Classic OPC, the error handling was simplified in OPC UA. 
Classic OPC provided a result code and a quality code for read and data change 
methods. Clients needed to check first the result code and then the quality code 
but only one field was able to contain error information. OPC UA provides only 
one StatusCode field which contains general error codes and also quality codes for 
values in the same field. 

5.2.4 Extensible Parameters 

Extensible parameters are used to add flexibility and variations to Services with-
out having the need to extend the number of Services. Extensible parameters are 
used everywhere where a Service parameter can contain different structures for 
different use cases. Samples for the use of extensible parameters are the Subscrip-
tions where different types of information like data and Events are handled with 
the same Services using extensible parameters for the filters and the transport of 
the notifications from server to client. Another sample is the history access Ser-
vices where only two Services are defined for the read and update access to differ-
ent type of data and Events. 

5.2.5 Communication Context 

OPC UA Services are not stateless and cannot be called without establishing a 
communication context on different levels. For this reason a lot of Services are not 
used for data transfer but to create, maintain, and modify these different levels of 
communication context illustrated in Fig. 5.2. 

 
Fig. 5.2 Communication context 
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The Secure Channel is the low - level and protocol - dependent channel to secure 
the communication and the exchanged messages. This level is handled completely 
by the UA communication stacks hiding the different possible protocols. The  
Secure Channel must be renewed after the lifetime negotiated during the first  
establishment of the Secure Channel to reduce the risk of compromising the 
channel security. 

The Session is the connection context between the two applications created on 
the top of and in the context of a Secure Channel. The lifetime of the Session is 
independent of the Secure Channel and another Secure Channel can be assigned to 
the Session. A Session has a timeout that allows the server to free the resources for 
a Session after a defined time period. The timeout gets reset with each Service  
invocation in the Session context received by the server. 

Multiple Subscriptions can be created in the context of a Session. A Subscrip-
tion is the context to exchange data changes and Event notifications between 

ent but it can be transferred to another Session for example to be used in a Session 
created by a redundant backup client if the client that created the Subscription  
is no longer available. Therefore the Subscription lifetime is independent of the 

keep-alive messages get sent to the client. 
Multiple Monitored Items can be created in a Subscription but they are bound 

to this Subscription. A Monitored Item is used to define the Attribute of a Node 
that should be monitored for data changes or to define the Event source that 
should be monitored for Event notifications. 

OPC UA defines 37 Services whereof 21 Services are used to manage the 
communication infrastructure and context and only 16 Services are used to exchange 
different types of information. 

5.2.5.1 Services Used to Exchange Information 

Table 5.4 provides a list of Services used to exchange information between OPC 
UA client and OPC UA server applications. 

Table 5.4 Services used to exchange information between client and server 

Service Description 
Browse 
BrowseNext 

Navigate through the nodes of the OPC UA server  
address space. The client defines a starting node and 
filter criteria. The server returns a list of referenced 
nodes passing the filter 

TranslateBrowsePaths-
ToNodeIds 

Get NodeIds of Object components based on the 
knowledge about the ObjectType 

Read Read Attributes of nodes including Values of Variables 
Write Write Attributes of nodes including Values of  Variables 
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server and client. A Subscription requires a Session to transport the data to the cli-

Session lifetime and a Subscription has a timeout that gets reset every time data or 



Publish 
Republish 

Send changed data or Events for a Subscription from 
the OPC UA server to the OPC UA client 

Call Call a Method in the server 
HistoryRead Read the history of Variable Values or the history of 

Events 
HistoryUpdate Update the history of Variable Values or the history  

of Events 
AddNodes Adding nodes to the server address space. This includes 

the instantiation of Object instances 
AddReferences Adding references between nodes in the server address 

space 
DeleteNodes Deleting nodes in the server address space 
DeleteReferences Deleting references between nodes in the server address 

space 
QueryFirst 
QueryNext 

Returns a list of nodes and Attribute values based on 
complex filter criteria operating on the whole address 
space of a server 

5.2.6 Conventions for Describing Services in this Chapter 

The following sections are using tables to describe the Service paramters. Not all 
parameters are contained since some parameters like the diagnostic information 
are described as general concepts and other parameters are not important for  
understanding the Services. The data types of parameters are also not contained 
as general information in the tables. They are mentioned when it is important for 
understanding the Service. A complete list of parameters, data types, and their 
detailed description can be found in [UA Part 4] or in API documentations. 

5.3 Finding Servers 

The Discovery Service Set is used by clients to find available OPC UA servers 
and to get information about the available Endpoints of a server. It is used by the 
server to register with a Discovery server. The Discovery server maintains the list 
of available servers. The available Endpoints are provided by each server.  

An Endpoint defines the used network protocol and the necessary security  
settings to be able to connect to the Endpoint of a server. Fig. 5.3 shows the inter-
action between UA client, Discovery server, and UA server.  

Like all other Services, the Discovery Services can be invoked over the network 
and thus allow a network-wide discovery. Nevertheless OPC UA defines only 
the behavior of a local Discovery Server expecting that each node with more 
than one OPC UA server is running a Discovery Service. The definition of network-
wide discovery will be added in a future release of OPC UA. 
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Fig. 5.3 Use of Discovery server and the Discovery Service Set 

5.3.1 Service FindServers 

The FindServers Service is implemented by the Discovery server returning a list 
of registered servers and by each UA server returning only itself. This feature is 
necessary to ensure the same behavior if only one server is running on a network node 
without an additional Discovery server. The parameters are described in Table 5.5. 

This Service can be called on a Secure Channel without security enabled and 
without having a Session context created since this is not possible without the  
information returned during the discovery process. 

Table 5.5 FindServers Service parameters 

Request parameters Description 
LocaleIds [ ] A list of locales for the server name returned in the 

application description. The server should use the 
first locale in the list that it supports 

ServerUris [ ] A list of server URIs to allow the client to request  
information about specific servers. All available  
servers are returned if an empty list is passed in 

Response parameters Description 
Servers [ ] A list of application description structures for each 

returned server 
ApplicationUri Globally unique identifier for the server instance 
ApplicationName Human readable name for the server 
ProductUri Globally unique identifier for the server product 
ApplicationType The type of application which could be server, client, 

client and server and discovery server 

 

DiscoveryUrls [ ] The available URLs of the server that allow calling 
GetEndpoints without requiring a secure connection 
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5.3.2 Service GetEndpoints 

This Service returns the Endpoints supported by the server implementing this 
Service. An Endpoint description contains all information that is necessary to estab-
lish a Secure Channel and a Session between the client and the server. The main 
parts are the network address of the server and the security settings like the server 
instance certificate, the security policy defining the used algorithms, and the type 
of user authentication used to create a Session.  

Like FindServers this Service does not require a secure connection or a Session 
to be called. The parameters are described in Table 5.6. 

Table 5.6 GetEndpoints Service parameters 

Request parameters Description 
LocaleIds [ ] A list of locales for human readable strings returned 

in the endpoint descriptions. The server should use 
the first locale in the list that it supports 

ProfileUris [ ] A list of profile URIs to allow the client to request 
Endpoints supporting specific transport profiles. All 
available Endpoints are returned if an empty list is 
passed in 

Response parameters Description 
Endpoints [ ] A list of endpoint description structures for each  

returned Endpoint 
EndpointUrl Network address of the Endpoint used by the client to 

establish a Secure Channel 
ServerCertificate The server instance certificate used for the Endpoint. 

This is the public key of the server used by the client 
for securing the message exchange with the server 

SecurityPolicy The security policy URI defining the algorithm sets 
and key length used for the Secure Channel. The  
security policy URIs are defined in [UA Part 7] 

SecurityMode The message security mode used to secure the mes-
sages exchanged between client and server. Messages 
can be signed to detect changes of the message con-
tent and to ensure the right sender and messages can 
be encrypted to ensure privacy. The possible modes 
are SignAndEncrypt, Sign, and None 

UserIdentity 
Tokens [] 

A list of user identity tokens supported by the server 
to authenticate a user during the creation of a Session. 
Possible tokens are for example the combination of 
username and password, a certificate, or anonymous 

 

TransportProfileUri URI of the network protocol used by the Endpoint. 
The transports profiles are defined in [UA Part 7] 
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5.3.3 Service RegisterServer 

This Service registers a server with a discovery server. This Service will be called 
by a server or a separate configuration utility. Applications that are only client will 
not use this Service.  

This Service requires a secured connection to make sure that only trusted servers 
can be registered. The registration call is done periodically by the server to indi-
cate the availability. It is also called during shutdown to indicate that the server is 
shutting down and gets offline. 

The Server passes all information to the Service that is necessary to return the 
application description in FindServers. In addition, the online status is sent to the 
Discovery Server. 

5.4 Connection Management Between Clients and Servers 

OPC UA requires establishing different levels of communication channels to en-
sure that all requirements for a secure, flexible, and reliable data communication 
are fulfilled (see Fig. 5.4). 

 

Fig. 5.4 Different levels of communication channels 

The low - level network transport channel for exchanging the messages and the 
logical Secure Channel to secure the messages are handled by the UA Stacks. The 
Session on the application level used to authenticate users is handled by the client 
and server applications. 

Most of the security handling is implemented by the UA Stacks provided by the 
OPC Foundation. On the application level, security handling is only necessary 
during handshaking for the Session establishment. 

A client SDK will typically hide all of the security handling and combine the 
connection handling in connect and disconnect methods. 

A server SDK implements all Session and connection handling without the 
need for a server implementer to do anything for the Secure Channel and Session 
Service Sets other than providing the configuration information. 
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5.4.1 Secure Channel Establishment 

The SecureChannel Service Set is used to establish the low - level transport channel 
and the Secure Channel. Since most of the functionality is implemented in the UA 
Stacks, these Services are described from a Stack API point of view instead of the 
definition in the Service specification. These are the only two Services where the 
Stack APIs parameters are different than the parameters defined for the Services. 

More details for the security related parts of the Secure Channel can be found 
in Chap. 7. 

The Stack API parameters for OpenSecureChannel are described in Table 5.7. 
The Stack API parameters for CloseSecureChannel are described in Table 5.8. 
These Stack API parameters are different than the ones defined in [UA Part 4]. 

Table 5.7 Stack API parameters to open a Secure Channel 

Stack API in  
parameters 

Description 

EndpointUrl Network address of the server Endpoint used  
by the client to establish a Secure Channel 

SecurityPolicy The security policy URI defining the algorithm sets  
and key length used for the Secure Channel. The  
security policy URIs are defined in [UA Part 7] 

SecurityMode The message security mode used to secure the messages  
exchanged between client and server. Messages can be 
signed to detect changes of the message content and to  
ensure the right sender and messages can be encrypted to 
ensure privacy. The possible modes are SignAndEncrypt, 
Sign, and None 

ServerCertificate The server instance certificate used for the Endpoint. This 
is the public key of the server used by the client for securing 
the message exchange with the server 

ClientCertificate The client instance certificate. This is the public key of the 
client used by the server for securing the message exchange 
with the client 

ClientPrivateKey The private key for the client instance certificate. This pri-
vate key is used by the client side UA stack to secure the 
message exchange with the server 

RequestedLifetime Requested lifetime for the security token. The security token 
must be renewed by the UA Stack before the lifetime expires. 
A renew starts after 75% of the lifetime has expired 

Stack API Out  
parameters 

Description 

SecureChannelId Identifier for the created Secure Channel 
RevisedLifetime Revised lifetime of the channel  
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Table 5.8 Stack API parameters to close a Secure Channel 

Stack API In  
parameters 

Description 

SecureChannelId 
Stack API Out  
parameters 

Description 

No relevant out parameters 

5.4.2 Creating an Application Session 

Like the Secure Channel Service Set, the Session Service Set is only used to estab-
lish a secure and reliable communication channel and not to transfer information 
from one system to another. 

There are two Services for the handshaking to create a Session between two 
applications, one Service to close the Session and one Service to cancel Service 
calls in this Service Set.  

The handshaking with the Services CreateSession and ActivateSession is nec-
essary to ensure that the client can validate with CreateSession that the applica-
tion he connects to is the server he wants to connect to and trusts in the further 
communication before sending sensitive data in ActivateSession like user name 
and password for the user authentication. The Service ActivateSession is also used 
to impersonate a user on the active Session and to assign another Secure Channel 

5.4.2.1 CreateSession Service 

This Service is used by an OPC UA client to create a Session and the server  
returns the identifier that is used in all the following Service invocations to assign 
them to the Session context.  

A Session is not valid until the Service ActivateSession was called success-
fully. Sessions are terminated by the server if he did not receive Service calls dur-
ing the negotiated timeout period. This ensures that the server can free resources 
in a defined way if the client is no longer available, for example based on a net-

error handling is relying on fixed COM timeouts. Sessions should be closed grace-
fully by the client using the Service CloseSession if the communication channel is 
no longer needed.  

A flag in the CloseSession Service indicates if all associated Subscriptions 
should be deleted. Each Subscription has its own lifetime and can be transferred to 
another Session if the Session is terminated or closed without deleting the associ-
ated Subscriptions. 
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There are several parameters in this Service only used for additional security 
validations and security handling. Examples are the EndpointDescription and the 
application certificates. They are already exchanged during Discovery or Secure 
Channel establishment but must be also validated in the context of a secure appli-
cation Session. Since these parameters are typically handled by the UA SDKs 
and not visible to the application programmers, they are not listed here. See  
ref. [UA Part 4] for all parameters of this Service and Sect. 7.5.2 for more details 
on the security aspects of the secure communication channel (Table 5.9). 

Table 5.9 CreateSession Service parameters 

Request parameters Description 
SessionName Name for the Session assigned by the client. The 

name is shown in the diagnostics information of the 
server 

ClientDescription Application description for the client application  
containing information like application and product 
URI or the application name 

Requested 
SessionTimeout 

Timeout of the Session requested by the client.  
If the client fails to issue a Service request within the 
interval negotiated with the server, the Session will 
automatically be terminate by the server 

Response parameters Description 
SessionId 

the Session. It is used to identify the Session in server 
diagnostic objects or in audit logs  

AuthenticationToken 
the Session. This identifier is only used for assigning 
Service calls to the Session and must be kept private 
between the client and the server application 

Revised 
SessionTimeout 

Timeout of the Session assigned by the server. This time 
typically matches the requested timeout of the client if 
it falls into the valid range defined by the server  

ServerSoftware 
Certificates [ ] 

The list of software certificates of the server applica-

and the compliance test level for each profile 

5.4.2.2 ActivateSession Service 

an application Session. It is also used to change the user of the Session, to change 
the used language settings for a Session, and to assign a new Secure Channel to 
the Session (Table 5.10). 

1375.4 Connection Management Between Clients and Servers

The ActivateSession Service is used as the second part of the handshaking to establish 

tion identifying the product, the supported profiles, 

A unique public identifier assigned by the server to 

A unique private identifier assigned by the server to 



Table 5.10 ActivateSession Service parameters 

Request parameters Description 
ClientSoftware 
Certificates [ ] 

The list of software certificates of the client appli-
cation identifying the product, the supported profiles, 
and the compliance test level for each profile 

LocaleIds [] List of locales that should be used by the server to 
provide localized strings. The server uses the first  
locale he supports in the list 

UserIdentityToken User identity token to validate and logon a specific 
user to the Session. There are different token types 
like user name and password or certificates sup- 
ported. Section 7.5.3.4 describes the different token 
types 

Response parameters Description 
Results [ ] Validation results for the client software certificates 

5.4.3 Closing an Application Session 

If a client does no longer need the connection to the server, he must use the Ser-
vice CloseSession to start disconnecting from the Server and to free the Session 
resources in the server. The second step to disconnect is closing the Secure Channel. 
Both steps are typically combined in one disconnect method of a client SDK 
(Table 5.11). 

Table 5.11 CloseSession Service parameters 

Request parameters Description 
DeleteSubscriptions A flag that indicates if the Server must delete  

all Subscriptions associated with the Session. 

Session and can be transferred to another  
Session 

Response parameters Description 

5.4.4 Cancel Outstanding Service Requests 

A client is able to cancel outstanding Service requests by using the Service Can-
cel. To cancel requests can be helpful for potentially longer running Services like 
Query (Table 5.12). 
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Table 5.12 Cancel Service parameters 

Request  
parameters 

Description 

RequestHandle Request handle assigned by the client to 
one or more requests in the request header 

Response  
parameters 

Description 

CancelCount Number of canceled requests 

5.5 Find Information in the Address Space 

OPC UA provides capabilities to describe information and to transport this infor-
mation. This section describes how to find different types of data in the Address 
Space of the server. The two main Services for this purpose are Browse to navi-
gate through the Nodes in the Address Space and Read to access the metadata of 
the Nodes. Browse and the more specialized Services such as TranslateBrowsePath-
sToNodeIds, RegisterNodes, and UnregisterNodes are explained in this section. 
For a better understanding of how to use these generic Services, this section des-
cribes also the use of the Services and the Service parameters based on different 
typical use cases and types of information clients are interested in. 

Since the Services are used to access the Information Model provided by the 
server, it is necessary to understand the concepts described in Chap. 2. For the 
simple use cases it is enough to know how Objects and Variables are connected 
together to provide data access capabilities. For the more enhanced use cases it is 
necessary to read Chaps. 2 – 4 completely. 

5.5.1 Services Used for Discovering the Address Space 

One of the main design goals of OPC UA was the combination of all types of 
Classic OPC information in one Address Space and the generic access to this 
model. Each of the Classic OPC specifications defined different ways to navigate 
through the Address Space and to access the available, but in most cases limited, 
type and metadata information. OPC DA, A&E, and HDA defined different but 
similar methods for browsing. DA and HDA defined completely different con-
cepts of accessing properties of OPC variables and A&E defined eight methods 
to get information about the available event types. OPC UA covers all these dif-
ferent use cases with the flexible information modeling capabilities and the two 
Services Browse and Read. 
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5.5.1.1 Browse Service 

The Browse Service is used by a client to navigate through the Address Space by 

connected to the starting Node by references. 
The Browse Service takes a list of starting Nodes and returns a list of connected 

Nodes for each starting Node. Nevertheless, most clients will only pass one starting 
Node for the main purpose of building a tree hierarchy. Since the OPC UA Address 

ability to pass in a list of starting Nodes is mainly used to browse metadata like the 
Properties of a list of Variables. A client SDK will provide different browse methods, 
one for a single starting Node and one for a list of starting Nodes. 

Table 5.13 describes the parameters of the Browse Service. 

Table 5.13 Browse Service parameters 

Request parameters Description 
View Passing a View allows limiting the browse to a  

specific View. For browsing the entire Address 
Space this parameter is not set  

RequesteMax-
ReferencesPerNode 

Allows the client to limit the returned Nodes to  
protect against an unlimited number of results. 
BrowseNext can be used to get more results 

NodesToBrowse [ ] Defines a list of starting Nodes and browse filters 
NodeId NodeId of the starting Node 
BrowseDirection Indicates if the server should follow references in the 

ReferenceTypeId NodeId of the ReferenceType the server should  
follow. This parameter is typically combined with 
the IncludeSubtypes set to filter for a whole set of 
ReferenceTypes. This is for example Hierarchical-
References to fill a tree control 

IncludeSubtypes Indicates if also subtypes of the specified  
ReferenceTypeId should be returned by the server. 
Clients should set this value to true. Only in very 
seldom use cases it makes sense setting it to false 

NodeClassMask Filter on the NodeClass of the returned Nodes, for 
example only requesting Objects and Variables 

 

ResultMask Filter on the results returned per Node. The only  
information that is always returned is the NodeId  
of the target Node. All other result values can be  
excluded with this mask. This allows the client to  
reduce the server effort to find and return informa-
tion the client is not interested in and reduces also 
the amount of data on the wire 
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Space can be a full-meshed network and is not limited to a pure hierarchy, the cap-

passing a starting Node and browse filters and the server returns the list of Nodes 

forward, the inverse, or both directions 



Response parameters Description 
Results [ ] List of results for the passed starting Nodes and  

filters 
StatusCode Result code for the passed starting Node and filter. 

This status code indicates only invalid filters or an 
unknown starting Node. An empty result list does 
not cause a failed status code 

ContinuationPoint A continuation point is returned when the server was 
not able to deliver all results in the Browse response. 
The limitation can be set by the client in the request 
or by the server during Browse processing.  
The continuation point can be passed to BrowseNext 
to get the remaining results  

References [ ] List of references and target Node information for 
the Nodes passing the filter criteria set in the request 
NodeId of the ReferenceType followed from the 
starting Node to the target Node 

IsForward Indicates if the server followed a forward Reference 
or the inverse Reference from the starting Node to 
the target Node 

NodeId NodeId of the target Node passing the filter criteria 
set in the request. This could be also a Node in  
another server indicated by the server information  
in the ExpandedNodeId 
The qualified name of the target Node. This name 
provides in some use cases a relation to the type  
system 

DisplayName The localized name of the target Node used for dis-
play purposes. The locale depends on the Session 
setting defined in ActivateSession 

NodeClass Indicates the NodeClass of the target Node 

 

 

TypeDefinition NodeId of the Object or Variable type of the target 
Node. This parameter is only set if the target Node is 
a Variable or an Object 

5.5.1.2 BrowseNext Service 

This Service is only used to continue a Browse started with the Browse Service if 
not all results could be returned by the Browse or a following BrowseNext Service 
call. The number of Nodes to return can be limited by the client in the Browse  
request or by the Server during processing the Browse Service call. The parame-
ters of the BrowseNext Service are described in Table 5.14. 
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Table 5.14 BrowseNext Service parameters 

Request parameters Description 
ReleaseContinuation-
Points 

A flag that indicates if the Service is called only for 
releasing the memory associated with the continuation 
point in the server or if the next set of results should 
be returned Clients should always call this Service 
even if they do not want to continue browsing. In this 
case this flag is set to true 

ContinuationPoints [ ] List of continuation points returned from a previous 
Browse or BrowseNext Service call 

Response parameters Description 
This Service returns the same parameters like the Browse Service described in 
Table 5.13 

5.5.1.3 Read Service 

The Browse Service returns already the Attribute values normally needed for fill-
ing up a browse tree like the display name, the NodeClass, or the TypeDefinition 
needed to display different icons for the different types of Nodes. 

Additional Attributes needed for completing necessary information about 
Nodes like the data type or access level of Variables can be accessed using the 
Read Service. All available Attributes can be read by passing a list of NodeIds and 
AttributeIds as request parameters of the Read Service and the Server returns a list 
of Values for the requested NodeId and AttributeId combinations. The Read Ser-
vice is described more detailed in Sect. 5.6.1. 

5.5.1.4 TranslateBrowsePathsToNodeIds Service 

This Service is used to access components of an Object based on the knowledge 
about the ObjectType. Since the NodeId of a Node is needed to access information 
provided by the Node like subscribing for Variable Value changes or to call a 
Method, it is necessary to know the NodeIds of components of Objects. Since 
OPC UA allows programming software components with built-in knowledge of 
ObjectTypes, UA needs to provide a mechanism to return the NodeIds for compo-
nents of an Object instance based on the knowledge about the ObjectType. This 
mechanism is built on the requirement that the BrowseNames of components in 
the instance must be the same like BrowseNames of components in the type. 

Figure 5.5 shows an example with the components of air conditioner controllers 
where the BrowseNames like Temperature or EngineeringUnit are defined by the 
ObjectType and the same BrowseNames are used on the two instances Controller1 
and Controller2. 
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Fig. 5.5 Browse path in type definition and instance 

Based on the requirement to have the same BrowseName, the browse path from 
the object type to a component is the same like the browse path from an instance 
to the same component. 

For example a client wants to display the status of Controller1 in an air condi-
tioner graphic. The graphic monitors the Value of the Variable Temperature and 
reads the Property EngineeringUnit to display the Value together with the unit. To 
get the NodeIds of the Variable and the Property, the graphic uses the Service 
TranslateBrowsePathsToNodeIds to pass in the starting Node Controller1 and the 
browse path “Temperature” for the Variable and the browse path “Temperature. 
EngineeringUnit” for the Property. The server returns then the NodeIds of the target 
Nodes. If more than one Node matches the browse path, the first Node in the list is 
the Node that is based on the type. The parameters of the Service are described more 
detailed in Table 5.15. 
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Table 5.15 TranslateBrowsePathsToNodeIds Service parameters 
 

Request parameters Description 
BrowsePaths [ ] The list of browse paths for which NodeIds are  

requested 
StartingNode NodeId of the Node where the server should start fol-

lowing the browse path 
RelativePath [ ] The browse path the server should follow. It is  

composed of a list of browse elements 

 

 ReferenceTypeId NodeId of the ReferenceType the server should  
follow. This parameter is typically combined with the 
IncludeSubtypes set to filter for a whole set of  
ReferenceTypes  
This is for example HasComponent to find the  
components of an Object 

(Continued) 



The second level of optimization is possible inside the server. Since the client 
is telling the server that he wants to use the Node more frequently by registering 
the Node, the server is able to prepare everything that is possible to optimize the 
access to the Node. 
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IncludeSubtypes Indicates if also subtypes of the specified  
ReferenceTypeId should be followed by the server 

IsInverse Indicates if the server should follow the  
ReferenceType in inverse direction. This flag is set to 
false for the default forward direction 

TargetName BrowseName of the target Node. 
This name can be empty for the last element in the 
browse path. In this case all Nodes referenced by the 
specified ReferenceType are returned 

Response parameters Description 
Results [ ] List of results for the passed starting Nodes and paths 

StatusCode Result code for the passed starting Node and paths. If 
the path does not result in a target Node, BadNoMatch 
is returned by the server 

Targets [ ] List of target Nodes for each starting Node browse 
path combination. This list contains typically only one 
Node if the browse path is build with information 
from the type system 

TargetId NodeId of the target Node 

 

 
RemainingPath-
Index 

Servers can have references to Nodes in other  
servers. In that case the full browse path cannot  
be processed by one server. Therefore the TargetId  
contains the starting Node in the other server and  
the client must pass the remaining path to this other 
server. This parameter defines the index of the  
starting element for the remaining path 

5.5.1.5 RegisterNodes Service 

This Service allows clients to optimize the cyclic access to Nodes for example for 
Writing Variable Values or for calling methods. There are two levels of optimization.  

The first level is to reduce the amount of data on the wire for the addressing  
information. Since NodeIds are used for addressing in Nodes and NodeIds can be 
very long, a more optimized addressing method is desirable for cyclic use of Nodes. 
Classic OPC provided the concept to create handles for items by adding them to a 
group. RegisterNodes provides a similar concept to create handles for Nodes by 
returning a numeric NodeId that can be used in all functions accessing information 
from the server. The transport of numeric NodeIds is very efficient in the OPC UA 
binary protocol. 

 

Response parameters Description 



The handles returned by the server are only valid during the lifetime of the 
Session that was used to register the Nodes. Clients must call UnregisterNodes if 
the Node is no longer used to free the resources used in the server for the optimi-
zation. This method should not be used to optimize the cyclic read of data since 
OPC UA provides a much more optimized mechanism to subscribe for data changes. 
The parameters of the Service are listed in Table 5.16. 

Clients do not have to use the Service and servers can simply implement the 
Service only returning the same list of NodeIds that was passed in if there is no need 
to optimize the access. 

Table 5.16 RegisterNodes Service parameters 

Request parameters Description 
NodesToRegister [ ] The list of Nodes to register.  

For each Node the NodeId of the Node is passed in 
Response parameters Description 
RegisteredNodeIds [ ] List of NodeIds identifying the registered Node. 

This NodeId is typically an optimized numeric 
Node used as handle to the registered Node. This 
NodeId is only valid in the Session context it was 
created in. 
If the server does not know the NodeId or he is not 
able to optimize the access to the Node, he simply 
returns the NodeId provided in the request  

UnregisterNodes Service 

Handles created with the Service RegisterNodes must be freed by the client using 
the Service UnregisterNodes to free the resources in the server. The parameters of 
the Service are listed in Table 5.17. 

Table 5.17 UnregisterNodes Service parameters 

Request parameters Description 
NodesToUnregister [ ] The list of Nodes to unregister.  

Response parameters Description 

5.5.2 Use Cases for Finding Information in the Address Space 

OPC UA provides different information in different levels of complexity in one 
generic and extensible model accessed by a small set of generic Services. For a 
better understanding about the use of the Services to find information necessary 
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for different use cases, this section describes the use of the Services for specific use 
cases. Some of the use cases are known from Classic OPC, other use cases are only 
possible with the new features provided by OPC UA. 

5.5.2.1 Search Data Variables for Reading and Monitoring Data 

The most common use case for OPC is to access Variable Values to read and write 
the current Value or to monitor the Value for data changes. In most cases, a user 
must select the list of Variables the client software uses for read, write, and moni-
toring data changes. This selection includes navigating through the Address Space 
to find the available Variables and to select the right Variables by checking the  
Attributes like data type and access level. 

The Browse Service is used to navigate through the Address Space to find 

Table 5.18 Browse parameters used to find Variables 

Parameter Value 
View Not set for browsing the whole Address Space,  

otherwise set to a view restricting the Address Space 
RequestedMax 
ReferencesPerNode 

500 is a good compromise between an efficient  
transport and a protection of the client. This should be 
adapted to the needs or restrictions of the tree display. 

BrowseNext can be called with the returned continua-
tion point 

NodeId Objects folder or one of the server Views as starting 
point for the browse. 
Following Browse requests use objects returned by 
previous Browse requests 

BrowseDirection Forward 
ReferenceTypeId HierarchicalReferences 
IncludeSubtypes True 
NodeClassMask Object and View – Building the hierarchy 

Variable – Variables providing Values 
ResultMask DisplayName – Used to display the name in the tree 

NodeClass – Used to distinguish between Objects and 
Variables 
TypeDefinition – Can be used to display different icons 
for different ObjectTypes or VariableTypes. For example 
to distinguish between Folder objects and other Objects 
or between Properties and DataVariables. 
ReferenceTypeId – Used to filter results for HasNotifier 
and HasEventSource since they are used to build an 
Event hierarchy and they are not relevant for data access 
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Variables. Table 5.18 describes the Browse parameters used to fill a browse tree.  

If the server has more than 500 Nodes in one level, 



Only one starting Node is needed which allows using a simplified client SDK 
browse method that is reduced to one starting Node. 

The information returned by the Browse can be used to identify a Node as 
Variable with the information NodeClass and TypeDefinition and provides the  
addressing information NodeId also returned by the Browse.  

In addition a client needs other information like the data type of the Variable 
and the access level or the user access level to know if the Variable is readable or 
writable. The Read Service can be used to read this information for a list of Variables 
with one Read call. Table 5.19 provides a list of Attributes containing important 
metadata about a Variable. If a client wants to read these 5 Attributes for 10 
Variables, he needs to call Read with a list of 50 elements containing a NodeId 
and AttributeId pair for each possible combination. 

Table 5.19 Variable Attributes containing metadata 

Attribute Use 
DataType NodeId of the DataType. This could be one of the UA  

defined built-in types or a complex data type 
ValueRank 

multidimensional array indicating the dimension 
ArrayDimensions An array of integers indicating the length of each  

dimension 
AccessLevel A bit mask indicating if the Value is readable  

or writable in the system. There are additional  
bits defined indicating the historical access  
capabilities 

UserAccessLevel The same bit mask used for AccessLevel but this  
Attribute can differ from the AccessLevel based on  
the user that is logged into the Session. For example  
is the AccessLevel for a set point typically readable  
and writable but the UserAccessLevel is only  
readable for a normal user that is not allowed  
to change a set point 

In addition to reading the metadata of the Variables, a client may also be inter-
ested in Properties containing additional metadata for the Variables. To find such 
Properties, a Browse is called with a list of starting Nodes for each Variable that 
should be checked for availability of Properties. The same mechanism can be used 
to get the Properties of Objects or other Nodes (Table 5.20). 

For the returned Property Nodes the Property Value can be determined by  
reading the Value Attribute of the Nodes with the Read Service. 
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Table 5.20 Browse parameters used to find Properties 

Parameter Value 
NodesToBrowse [ ] List of Variables and filters 

NodeId NodeId of the Variable 
BrowseDirection Forward 
ReferenceTypeId HasProperty 
IncludeSubtypes True 
NodeClassMask Variable – Properties have the NodeClass Variable 

 

ResultMask DisplayName – Localized name of the Property 
BrowseName – Type name of the Property 

5.5.2.2 Find Variables with Historic Data 

The Variables providing historical data can be found in the same way like des-
cribed in Sect. 5.5.2.1 for the current data. The only difference is that different 
flags must be checked for the AccessLevel and UserAccessLevel Attribute of the 
Variables. The additional flags are indicating if the history of data is available for 
reading and if the history can be updated. 

There is another history - specific Attribute with the name Historizing. This flag 
indicates if the server is currently collecting history for the Value. Additional  
information can be found in the HistoricalConfiguration Object available for each 
Variable containing history by following the HasHistoricalConfiguration Reference 
from the Variable to the configuration Object. 

5.5.2.3 Get Information to Call a Method 

Methods are typically the target of a HasComponent Reference starting from  
an Object. Methods can be requested together with Variables and Objects when 
browsing an Object like described in Table 5.18. The NodeClass Method must 
be added to the NodeClassMask parameter settings described in this table. The 
parameters used to Browse only for Methods are described in Table 5.21. 

Table 5.21 Browse parameters used to find Methods 

Parameter Value 
NodeId NodeId of the Object that provides Methods 
BrowseDirection Forward 
ReferenceTypeId HasComponent 
IncludeSubtypes True 
NodeClassMask Method – Filter for Methods 
ResultMask DisplayName – Used to display the name in the user interface 

BrowseName – Used to distinguish between known Meth-
ods from the ObjectType 
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The necessary information to call a Method is the NodeId of the Method and of 
the Object in which context the Method should be called. Both NodeIds are known 
after browsing for the available Methods. If the Method is not a well-known Method, 
the clients need to get also the description of the input and the output arguments for 
example to populate a user interface with this information. 

There are two steps necessary to get this information, the first step is to find out 
the NodeIds of the Properties containing the argument descriptions and the second 
step is to read the values of the Properties to get the argument description. For the 
first step the most efficient way to get the NodeIds is to use the Service Translate-
BrowsePathsToNodeIds since we know the BrowsePath from a Method to the 
Properties InputArgument and OutputArgument and the Service returns exactly 
the information we need. If we would use the Browse Service instead we may get 
additional Nodes we are not interested in. The necessary parameters for the Trans-
lateBrowsePathsToNodeIds Service call are described in Table 5.22. 

The client must check the result StatusCode for both BrowsePaths since the 
server will return the BadNoMatch StatusCode for a path if the Method does not 
have input or output arguments.  

Table 5.22 TranslateBrowsePathsToNodeIds Service parameters 

Request parameters Description 
BrowsePaths [0] BrowsePath for Property InputArguments 

StartingNode NodeId of the Method 
RelativePath [0] Browse path with one element 

IncludeSubtypes True since the server may use a subtype of  
HasProperty 

IsInverse False 

 

 

TargetName BrowseName with the text InputArguments and the 
namespace index zero 

BrowsePaths [1] BrowsePath for Property OutputArguments 
StartingNode NodeId of the Method 
RelativePath [0] Browse path with one element 

HasProperty to find the Property of the Method 

IncludeSubtypes True since the server may use a subtype of  
HasProperty 

IsInverse False 

 

 

BrowseName with the text OutputArguments and the 
namespace index zero 
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For the returned NodeIds the client can call the Read Service to read the Value 
Attribute of the Properties. The Read returns an array of Argument structures for 

the information argument name, description, and data type. The DataType of  
an argument can be complex. This allows using nested structures in Method  
arguments. 

5.5.2.4 Find the Type Description for a Structured DataType 

from one of the following places: 

• DataType Attribute of a Variable 

Fig. 5.6 Nodes involved to describe complex data types 

Since OPC UA allows the support of different encodings for a complex 
DataType, the type description is not directly available through the DataType Node. 
Section 2.8.4 provides more details on structured DataTypes. The example used to 
explain the Service calls necessary to get the type description is shown in Fig. 5.6. 
The server in the sample has two DataTypeSystems, one is the OPCBinary and 
one is a vendor specific type system. The structured DataType MyStruct has the 
two corresponding encodings. 

The DataType NodeId for MyStruct is used as starting point to find the type 
description with the following steps and Service calls: 

1. To get the available data encodings for the DataType, the Browse Service 
is called to follow the ReferenceType HasEncoding from the DataType 
Node to the available DataTypeEncoding Objects. 
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both Properties. The Argument structure describes a Method argument and contains  

• DataType parameter of an Argument structure describing the parameters of a 

There are different use cases where a client needs to get the type description of a 

Method 
• DataType Attribute of an Event Field Variable. 

complex DataType but we assume that the NodeId of the type is already known 



2. The client must select an encoding from the list of returned DataTypeEncoding 
Objects. The selection can be done based on the preferred encoding or based 
on a user selection. In our example, the client is a generic client and 
therefore selects the DefaultBinary encoding.  

3. From the DefaultBinary encoding the DataTypeDescription Variable can 
be browsed by following the HasDescription ReferenceType. 

4. The client must read the Value Attribute of the DataTypeDescription Vari-
able MyStructBin to get the identifier of the description used to find the 
entry in the DataTypeDictionary. 

5. To find the DataTypeDictionary containing the description, the Browse 
Service needs to be called following the inverse HasComponent Refer-
enceType from the DataTypeDescription Node to the DataTypeDictionary: 

6. The client must first check if the returned DataTypeDictionary My-
DictionaryBin is already in the client cache to avoid multiple reads of poten-
tially large dictionaries. If the dictionary is not available, the client can 
read the dictionary by calling Read for the Value Attribute of the Variable 
MyDictionaryBin. The description can be found in the dictionary with 
the identifier read from the MyStructBin Variable. 

5.5.2.5 Find Object Components Based on ObjectType Knowledge 

If a client software component was built with the knowledge about an ObjectType, 
the component knows the path from the type to InstanceDeclarations. This know-
ledge is necessary to find the used components of an Object instance based on this 
knowledge. 

If the Object has for example three Variables the software component needs to 
monitor, the NodeIds of these three Variables are needed. To get the NodeIds the 
client calls the TranslateBrowsePathsToNodeIds Service with three browse paths 
containing the Object instance NodeId as starting Node and the relative path from 
the ObjectType to the InstanceDeclaration of the Variable. 

5.5.2.6 Search Event Hierarchy and Fill up an Event Filter Display 

The rules to create a filter are defined by OPC UA and are described in the Sect. 

Types and the Event fields defined by the EventTypes and sources for Events 
which can be found in the Object and Variable instances Nodes.  

Most of the information necessary to populate an Event filter dialog can  
be found in the EventType hierarchy. There is a well-known NodeId for the 
BaseEventType which is the root Node for the EventType hierarchy. Table 5.23 
describes the Browse parameters used to fill a tree control with the EventType 
hierarchy. 
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The Event fields from the tree are used to select the fields delivered with an 
Event notification and are used together with the EventTypes to filter Events. 

Table 5.23 Browse parameters used to find EventTypes and the Event Fields 

Parameter Value 
NodeId BaseEventType ObjectType as starting point for the 

browse 
Following Browse requests use derived EventType 
Nodes returned by previous Browse requests 

BrowseDirection Forward 
ReferenceTypeId HierarchicalReferences 
IncludeSubtypes True 
NodeClassMask ObjectType – Building the Type hierarchy 

and Event Fields in the Address Space. Only  
InstanceDeclarations, i.e. Objects referencing a  
ModellingRule with the HasModellingRule, should  
be considered 
Variable – Variables representing the fields of an  
Event Type. These Variables are typically Properties. 

ResultMask DisplayName – Used to display the name 
NodeClass – Used to distinguish between  
ObjectTypes,3 Objects and Variables 
TypeDefinition – Can be used to display different  
icons for different Object or Variable types. For  
example to distinguish between Folder objects and  

A second tree control can be populated with EventNotifiers4 and Event 
sources provided by the server. The References used to build such a hierarchy 
are Organizes, HasNotifier, and HasEventSource. Starting points for such hier-
archies are the Server Object, the Objects Folder, or Views. Table 5.24 describes 
the Browse parameters used to fill a tree control with the EventNotifier and Event 
source hierarchy. 

The EventNotifiers are used to create Monitored Items which is a preselection 
of Events provided by this EventNotifier. The Event sources can be used as filter 
criteria. 

                                                           
3ObjectTypes represent Event Types in this case. 
4An EventNotifier is an Object where the SubscribeForEvents flag is set in the EventNotifier  
Attribute. 
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Only InstanceDeclarations should be considered  

Object – Potentially used to structure Event Types  

other Objects or between Properties and DataVariables  



Table 5.24 Browse parameters used to find EventNotifiers 

Parameter Value 
NodeId Server Object, the Objects Folder or Views as  

starting point for the browse 
Following Browse requests use Objects returned by 
previous Browse requests 

BrowseDirection Forward 
ReferenceTypeId HierarchicalReferences 
IncludeSubtypes True 
NodeClassMask Object – Building the hierarchy 

Variable – Variables can be Event sources 
ResultMask DisplayName – Used to display the name 

NodeClass – Used to distinguish between Objects 
and Variables 
TypeDefinition – Can be used to display different 
icons for different Object or Variable types.  
For example to distinguish between Folder objects 
and other Objects or between Properties and Data-
Variables 
ReferenceTypeId – Used to filter results for  
Organizes, HasNotifier and HasEventSource. All 
other references are not relevant to the Event  
hierarchy 

5.5.2.7 Find Information for a State Machine Display 

State Machines are one of the base concepts of OPC UA. The base concept can be 
used by servers to describe application specific State Machines but it is also used 
by OPC Information Models like Programs [UA Part 10] and Alarm & Conditions 
[UA Part 9]. The base concepts and OPC Information Models using these concepts 
are described in Chap. 4. 

This section describes the discovery of a State Machine description based on an 
abstract example but the same concepts can also be used to discover also Program 
or Alarm State Machines. Since it is expected that clients understanding the OPC 
UA Program or Alarms and Conditions Information Model do not need to browse 
the well-known State Machines, this is only necessary for vendor – specific exten-
sions to these Information Models. 

The abstract example used to explain the concepts of browsing a State Machine 
is shown in Fig. 5.7. The ReadingUaBook State Machine and the corresponding 
State Machine Type has two states, Idle and Reading and the transitions between 
the two states. 
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Fig. 5.7 ReadingUaBook State Machine and its Type Definition 

If a client finds a StateMachine instance like the ReadUaBook Object in a server, 
the information provided by the instance itself is limited to information related to 
the current state. All information describing the State Machine like possible states 

Two NodeIds are needed as starting points. The NodeId of the State Machine 
instance ReadingUaBook is necessary to get information about the current state 
and to subscribe for transition Events. The NodeId of the StateMachineType Read-
ingStateType is necessary to get the description of the State Machine. The NodeId  
of the TypeDefinition ReadingStateType is normally known from browsing the 
instance or can be browsed by following the HasTypeDefinition Reference from 
the instance ReadingUaBook. 

Using the ReadingStateType NodeId as starting point the State Machine  
description can be discovered with the following steps and Service calls: 

1. To get the available states, transitions, Methods, and Variables containing 
additional information, the Browse Service is called with the following 
settings: 

• ReadingStateType NodeId as starting Node  
• BrowseDirection set to Forward  
• ReferenceTypeId set to HasComponent  
• IncludeSubtypes set to True  
• NodeClassMask set to Object, Method, and Variable  
• and Result Mask set to DisplayName, BrowseName, and TypeDefinition 
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and transitions is only available on the StateMachineType. 



2. To find the relations between the returned components, the client takes 
the list of NodeIds of the transition Nodes as list of starting Nodes to four 
Browse calls with the following settings: 

• IdleToReading and ReadingToIdle Object NodeIds as starting Node  
• BrowseDirection set to Forward  
• ReferenceTypeId set to HasCause, HasEffect, FromState, and ToState 

in the four different Browse calls  
• IncludeSubtypes set to True  
• NodeClassMask set to all 
• and Result Mask set to DisplayName and BrowseName 

Based on the information returned from the Browse calls the client can for  
example display the State Machine with the states and transitions, he can provide a 
way to trigger state changes with the available Methods and by reading the current 
state from the instance and subscribing for the transition Events, the client can 
monitor the state of the State Machine. 

5.6 Read and Write Data and Metadata 

One of the most important features of OPC is to read and write data from another 
system using a standardized data exchange mechanism.  

The Read and Write Services not only allow reading and writing the Values of 
Variables, but are also used in a generic way to read and write Attributes of Nodes 
to access metadata in the Address Space. A different way to read data is the sub-
scription for data changes. This is the preferred method for clients needing cyclic 
updates of variable value changes. 

5.6.1 Reading Data 

The Read Service is used to read one or more Attributes of one or more Nodes. 
It allows also reading subsets or single elements of array values and to define a 
valid age of values to be returned to reduce the need for device reads. Like most 
other Services, the Read Service is optimized for bulk read operations and not for 
reading single Attribute values. Typically all Node Attributes are readable. For 
the Value Attribute the Read rights are indicated by the AccessLevel and User-
AccessLevel Attribute of the Variable. The parameters of the Read Service are des-
cribed in Table 5.25. 
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Table 5.25 Read Service parameters 

Request parameters Description 
MaxAge The maximum age of the value to be read in milli-

seconds. This parameter allows clients to reduce the 
communication between server and data source by  
allowing the server to return a cached value that is not 
older than the defined time period. Setting a value of 0 
forces the server to obtain the current value. This is 
similar to a device read in Classic OPC 

TimestampsToReturn OPC UA defines two timestamps, the source and the 
server timestamp. This parameter allows the client to 
define which timestamps the server should return with 
the value. See the response parameters for a  
description of the different timestamps 

NodesToRead [ ] List of Nodes and Attributes to read 
NodeId Identifier for the Node to read 
AttributeId Identifier for the Attribute of the Node to read.  

This could be the Value Attribute or any other valid 
Attribute providing metadata for Nodes. A list of  

IndexRange This parameter is used to identify a single element of 
an array or a single range of indexes for arrays 

 

DataEncoding This parameter is only relevant for reading values 
with a structured DataType. Structured types can be 
transported using different data encodings. Default 
encodings for UA are XML or UA binary format. 
This parameter allows the client to define the encod-
ing used to transport the complex value 

Response parameters Description 
Results [ ] List of read results contained in DataValue structures 

Value Contains the read value if the StatusCode parameter 
indicates a successful read 

StatusCode Success code for the read operation or quality of the 
read value. The value is only usable if the status is good 

 

SourceTimestamp Source timestamp assigned to the value if requested 
by the client. The source timestamp is only available 
for Value Attributes 
The source timestamp is used to reflect the timestamp 
that was applied to a Variable value by the data 
source. It should indicate the last change of the value 
or status code. The source timestamp must be always 
generated by the same physical clock. 
This timestamp type was added for OPC UA to cover 
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Attributes can be found in Appendix B 



the use case to get the timestamp of the last value 
change which is different than the ServerTimestamp 
definition 

ServerTimestamp Server timestamp assigned to the value if requested by 
the client 
The server timestamp is used to reflect the time that 
the server received a Variable value or knew it to be 
accurate if the changes are reported by exeption and 
the connection to the data source is operating.  
This is the behavior expected by Classic OPC 

5.6.2 Writing Data 

The Write Service is used to write one or more Attributes of one or more Nodes. It 
allows also writing of subsets or single elements of array values. Like most other 
UA Services, the Write Service is optimized for bulk write operations and not for 
writing single Attribute values. The parameters of the Write Service are described 
in Table 5.26. 

Table 5.26 Write Service Parameters 

Request parameters Description 
NodesToWrite [ ] List of Nodes, Attributes, and values to write 

NodeId Identifier for the Node to write 
AttributeId Identifier for the Attribute of the Node to write. This 

could be the value Attribute or any other valid Attri-

IndexRange This parameter is used to identify a single element of 
an array or a single range of indexes for arrays 

 

Value Contains the value to write 
 StatusCode Status code assigned to the value. A zero value  

indicates that the status is not set 
 SourceTimestamp Source timestamp assigned to the value. A null value 

indicates that the timestamp is not set 
 ServerTimestamp Server timestamp assigned to the value. A null value 

indicates that the timestamp is not set 
Response parameters Description 
Results [ ] List of write result status codes for each write operation 

Typically only the Value Attributes of Variables are writable. Other Attributes 
are only writable if the server allows the configuration of Nodes through OPC 
UA. For the Value Attribute the Write rights are indicated by the AccessLevel or 
UserAccessLevel Attribute of the Variable. The Write rights for all other Attributes 
are indicated by the WriteMask or UserWriteMask Attributes. 
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This Service allows also writing the status and the timestamps of the value if 
it is supported by the server. There is a defined error status code returned if the 
client tries to write these parameters but the server does not support this feature. 

5.7 Subscribe for Data Changes and Events 

A client can subscribe for three different types of information from an OPC UA 
server. A Subscription is used to group sources of information together. A Moni-
tored Item is used to manage a source of information. A piece of information is 
called a notification. A Subscription can contain all three different types of Moni-
tored Items and the server will deliver notifications for these Monitored Items 
until the Subscription or the Monitored Items are deleted. 

The first and most common type of Monitored Item is used to subscribe for 

is used to subscribe for Events by defining an EventNotifier5 to monitor and by 

used to subscribe for aggregated Values calculated based on current Variable Values 

Most of the Services are used to create the necessary context for the Subscrip-

between the communication context created on top of a Session for subscribing to 
data changes or Events. 

 
Fig. 5.8 Context necessary to subscribe for data changes and Events 

All Monitored Items have common settings like monitoring mode, sampling 
interval, filter settings, and queue size. The different types of Monitored Items are 
defined by the type of source assigned to the item and the filter defined for the Moni-
tored Item. Figure. 5.9 shows the different Subscription and Monitored Item settings. 

                                                           
5An EventNotifier is an Object where the SubscribeForEvents flag is set in the EventNotifier  
Attribute. 
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data changes of Variable Values (Sect. 5.7.4). The second type of Monitored Item 

defining a filter for the Events (Sect. 5.7.5). The third type of Monitored Item is 

in client-defined time intervals (Sect. 5.7.6). 

tion (Sect. 5.7.2) and Monitored Items (Sect. 5.7.3). Figure. 5.8 shows the relation 



Fig. 5.9 Settings for Subscription and Monitored Items 

The sampling interval defines the rate the server checks Variable Values for 
changes or defines the time the aggregate gets calculated. The monitoring mode 
defines if the Monitored Item is active or inactive. The queue size defines how 
many notifications can be queued for delivery. The default value for data changes 
is one and the value for Events is infinite where the size of infinite depends on the 
resources available in the server. The filter settings are different for data changes, 
Events, and aggregate calculation. 

There are two Subscription settings. The Publish interval defines the interval 
when the server clears the queues and delivers the notifications to the client. The 
Publish enabled setting defines whether the data gets delivered to the client. 

The only two Services used to actually deliver the notifications in a notification 
message to the client are the Publish Service for transferring the notification mes-
sages and the Republish Service to get lost notification messages from the server. 

used to create the necessary Subscription and MonitoredItem context are explained 
afterward. 

5.7.1 Delivery of Changed Data and Events 

The nature of the notifications provided by the Subscription requires a report by 
exception from the server to the client. It is required to combine notifications to  
larger notification messages to optimize interprocess or network communication 
which is the typical use case of OPC. Nevertheless the server needs to be able to 
send a notification message to the client whenever it is required. 

In Classic OPC this was achieved by defining callback interfaces allowing the 
server to call methods on the client to send data change or event notifications. 
Based on the requirement to be firewall-friendly and to ensure the same behavior 
for all transports, OPC UA does not define such a callback interface. An early 
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version of the Services specified a callback channel but the use of the callback 
channel was reduced to the UA TCP protocol or required a bidirectional connection 
establishment for Web Services which is not possible through firewalls. Since 
the final mechanism to exchange notification messages through a one - way connec-
tion had no limitations, the callback channel approach was removed from the Ser-
vice specification. The current mechanism is even more efficient and reliable 

account. 
The mechanism for a secure and reliable exchange of notification messages has 

the following requirements:  

• Server-triggered sending of notification messages 
• Sending a life ping from the client to the server 

The Services used to implement this mechanism are the Publish and the Repub-
lish Services. The Services fulfill all these requirements based on the Service 

mechanism realized with Publish and Republish. 

5.7.1.1 Server-Triggered Sending of Notification Messages 

The server-triggered sending of notification messages is accomplished by a special 
rule for the Publish Service. It is the only Service that can be blocked by the 
Server without doing any processing. It is expected that a client sends a list of 
Publish requests to the server without expecting an immediate response. The server 
can queue the Publish requests until a notification message is ready for sending to 
the client. Since the exchange of request and response messages is asynchronous 
by definition, the communication is not blocked by these outstanding Publish 
requests. If the client uses the right algorithm for sending Publish requests, the 
server is able to trigger the sending of notification messages. 

The algorithm for sending Publish requests from the client to the server depends 
on the following parameters: 

• Number of Subscriptions 
• Network latency 
• 
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are available 
• Sending sequence numbers together with the notification message from the server 

the Services are described in the following sections after describing the base 

to the client to allow the client detecting lost messages 

parameters and the special behavior defined for these Services. The parameters of 

• Acknowledgement of received sequence numbers from the client to the 
server 

• Resending of lost notification messages. 

Maximum queue size for Publish requests in the server. 

• Sending a life ping from the server to the client when no notification messages 

taking all requirements for a communication between distributed systems into 



The Publish request is not bound to a specific Subscription and can be used by 
the server for all Subscriptions running in the same Session context. To make sure 
that all Subscriptions can send a notification message at the same time, the client 
should make sure that there are more outstanding Publish requests than active 
Subscriptions. 

Additional Publish requests may be required if the latency of the network  
connection is very high. This can be calculated based on the timestamps contained 
in the request and response messages. In the case of a large number of Subscriptions 
and low network latency, the number of outstanding Publish requests can be reduced. 

If the Server indicates an overflow of his Publish queue with a Service result 
of BadTooManyPublishRequests, the client must reduce the calculated number of 
outstanding Publish requests. 

Figure 5.10 summarizes the mechanisms used for the delivery of notification 
messages. 

Fig. 5.10 Delivery of notification messages 

5.7.1.2 Keep Alive Messages 

An important requirement for a quick recovery from error scenarios is a timely 
detection of communication problems. One important feature is the configurable 
timeout for Service invocations in OPC UA. But this feature cannot be used to 
detect connection problems for the Publish since Publish requests are queued in 
the server and need therefore a much longer timeout than required for a timely 
detection of communication problems. 
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message is available, an empty Publish response is sent to the client as life ping 

multiple of the publishing interval used to send notification messages. 

5.7.1.3 Detection and Resending of Lost Notification Messages 

notification message. If a client detects missing sequences, he can use the Republish 
Service to get the lost notification message from the server. This is important for 

Resending lost notification messages is also important for clients which are 
only interested in the latest values since the lost message may contain changes for 
Variables Values that have not be changed in the next notification message. 

If a client received a notification message, he needs to acknowledge the sequence 
number in the next Publish request to allow the server to free the memory allo-
cated for the buffered notification messages. 

5.7.1.4 Real Callbacks and Other Help from SDKs 

The Publishing mechanism is very powerful and has a certain complexity to fulfill 
all requirements for a secure, reliable, and high performance communication through 
firewalls. But the mechanisms are only necessary for a remote communication and 
can therefore be hided by a client-side UA SDK providing a real callback inside 
the client application. All complexity can be completely hidden by the SDK. 

On the server-side a SDK can do even more since the whole Subscription 
handling including the Publish Service handling is typically implemented by a 
server-side UA SDK. Only the sampling of the data or the event monitoring needs 
to be done by the server application. 

5.7.1.5 Publish Service 

The parameters of the Publish Service are described in Table 5.27. The relevant 
Subscription settings for the trigger of the Publish response like the publishing 
interval or the keep-alive interval are negotiated during the creation of the  
Subscription. 
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For this reason the Publish procedure provides life ping mechanisms in both 

Another important requirement for a reliable communication is the detection of 

directions. Every Publish request is a life ping from the client to the server. Every 

clients interested in all Value changes or for clients subscribing for Events. 

after the keep-alive interval. This interval is configurable by the client and is a 

lost data. This can be achieved with the exchange of sequence numbers with each 

notification message is a life ping from the server to the client. If no notification 



Table 5.27 Publish Service parameters 

Request parameters Description 
Subscription 
Acknowledgements [ ] 

List of sequence numbers the client received and 
where the server can free resources for 

SubscriptionId The id of the Subscription that sent the notification 
message 

 

SequenceNumber Sequence number of the received notification mes-
sage to acknowledge 

Response parameters Description 
SubscriptionId The id of the Subscription sending the notification 

message 
Available 
SequenceNumbers [ ] 

A list of sequence numbers available in the  
Subscription for retransmission and not  
acknowledged by the client 

MoreNotifications A flag that indicates if the server was not able to send 
all available notifications in this Publish response 

NotificationMessage Structure containing the notification message 
SequenceNumber Sequence number of the notification message 
PublishTime The time that this message was sent to the client 

 

NotificationData [ ] A list of extensible parameters containing the  
notification data. This could be a DataChange  
notification or an Event notification. Since only 
two notification data types are defined yet, this list 
can have a size of one or two elements  

5.7.1.6 Republish Service 

The parameters of the Republish Service are described in Table 5.28. 

Table 5.28 Republish Service Parameters 

Request parameters Description 
SubscriptionId The id of the Subscription that sent the notification message 
Retransmit 
SequenceNumber 

Sequence number of the notification message to  
resend 

Response parameters Description 
NotificationMessage Structure containing the notification message 

SequenceNumber Sequence number of the notification message 
PublishTime The time that this message was sent to the client 

 

NotificationData [ ] A list of extensible parameters containing the notification 
data. This could be a DataChange notification or an Event 
notification. Since only two notification data types are def-
ined yet, this list can have a size of one or two elements  
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5.7.2 Create and Manage Subscriptions 

count, maximum number of notifications per Publish, and the priority of the 
Subscription. 

The keep-alive count defines how many times the Publish interval needs to expire 
without having notifications available before the server sends an empty message to 
the client indicating that the server is still alive but no notifications are available. 

having a connection to the client to deliver data. If the server is not able to deliver 

Both values are negotiated between the client and the server. 
The maximum number of notifications per Publish is used to limit the size of 

tions is set by the client but the server can send fewer notifications in one message 
if his limit is smaller than the client-side limit. If not all available notifications can 
be sent with one notification message, another notification message is sent. 

The priority setting defines the priority of the Subscription relative to the other 

with higher priorities first in high-load scenarios. 

5.7.2.1 CreateSubscription Service 

This Service is used to create a Subscription and to define the initial settings for 
the Subscription. The Subscription can be deleted using the DeleteSubscriptions 
Service or by setting the DeleteSubscriptions flag when closing the Session. The 
parameters of the CreateSubscription Service are described in Table 5.29. 

Table 5.29 CreateSubscription Service parameters 

Request parameters Description 
Requested 
PublishingInterval Subscription  
PublishingEnabled Publish enabled setting for the Subscription 
Requested 
MaxKeepAliveCount 

Client-requested keep-alive count for the  
Subscription 

Requested 
LifetimeCount 

Client-requested lifetime count for the Subscription 

MaxNotifications 
PerPublish 

Client-defined maximum number of notifications  
per notification message delivered to the client by 
Publish 
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enabled and the Publish interval. Additional settings are keep-alive count, lifetime 
In normal operation the relevant settings for the Subscription are the Publish

the notification message sent from the server to the client. The number of notifica-

Subscriptions created by the Client. This allows the server to handle Subscriptions 

ources. The lifetime count must be at minimum three times the keep-alive count. 

The lifetime count defines how many times the Publish interval expires without 

notification messages after this time, it deletes the Subscription to clear the res-

Client-requested publishing interval for the  



Priority Priority of the Subscription in the client relative to 
other Subscriptions created by the client 

Response parameters Description 
SubscriptionId Id of the subscription set by the server. The client 

must use this id in all following Service calls related 
to this Subscription 

Revised 
PublishingInterval 

Server-revised publishing interval for the  
Subscription 

Revised 
MaxKeepAliveCount 

Server-revised keep-alive count for the Subscription 

RevisedLifetimeCount Server-revised lifetime count for the Subscription 

5.7.2.2 DeleteSubscriptions Service 

This Service is used to delete a list of Subscriptions created with the CreateSub-
scription Service. The parameters of the DeleteSubscription Service are described 
in Table 5.30. 

Table 5.30 DeleteSubscriptions Service parameters 

Request parameters Description 
SubscriptionIds [ ] List of Subscriptions to delete. The Subscriptions are 

identified by their ids created in the CreateSubscrip-
tion Service 

Response parameters Description 
Results [ ] List of status codes for the passed Subscription ids 

indicating if the delete was successful 

5.7.2.3 ModifySubscription Service 

This Service is used to modify the settings of a Subscription. The parameters of 
the ModifySubscription Service are described in Table 5.31. 

Table 5.31 ModifySubscription Service parameters 

Request parameters Description 
SubscriptionId Id of the Subscription to modify. This id was  

returned from the CreateSubscription Service 
Requested 
PublishingInterval 

Client-requested publishing interval for the  
Subscription  

Requested 
MaxKeepAliveCount 

Client-requested keep-alive count for the  
Subscription 
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Requested 
LifetimeCount 

Client-requested lifetime count for the Subscription 

MaxNotifications 
PerPublish 

Client-defined maximum number of notifications per 
notification message delivered to the client by Publish 

Priority Priority of the Subscription in the client relative to 
other Subscriptions created by the client 

Response parameters Description 
Revised 
PublishingInterval 

Server-revised publishing interval for the  
Subscription 

Revised 
MaxKeepAliveCount 

Server-revised keep-alive count for the Subscription 

RevisedLifetimeCount Server-revised lifetime count for the Subscription 

5.7.2.4 SetPublishingMode Service 

This Service is used to modify the Publish-enabled setting for a list of Subscriptions. 
The parameters of the SetPublishingMode Service are described in Table 5.32.  

Table 5.32 SetPublishingMode Service parameters 

Request parameters Description 
PublishingEnabled A flag that indicates if the Publish should be enabled or 

disabled for the list of Subscriptions passed to this Service 
SubscriptionIds [ ] List of Subscriptions to modify. The Subscriptions are 

identified by their ids returned by the CreateSubscription 
Service 

Response parameters Description  
Results [ ] List of status codes for the passed Subscription ids indicat-

ing if the setting of the Publish-enabled flag was successful 

The Service allows clients to deactivate the delivery of notification messages 
without deactivating the collection of data and events. 

5.7.2.5 TransferSubscriptions Service 

This Service is used to transfer a list of Subscriptions to the Session that is used to 
call this Service. This feature is used by redundant clients to transfer a Subscrip-
tion from the main client to the backup client if the main client is no longer avail-
able. It is also used to assign a Subscription to a new Session if the old one is not 
longer valid but the Subscription is still valid. The parameters of the TransferSub-
scriptions Service are described in Table 5.33. 
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Table 5.33 TransferSubscriptions Service parameters 

Request parameters Description 
SubscriptionIds [ ] List of Subscriptions to transfer. The Subscriptions 

are identified by their ids returned by the CreateSub-
scription Service 

Response parameters Description 
Results [ ] List of transfer results 

StatusCode Result of the transfer operation for one Subscription  
AvailableSequence 
Numbers [ ] 

A list of sequence numbers available in the Subscrip-
tion for retransmission and not acknowledged by the 
client 

5.7.3 Create and Manage Monitored Items 

Clients are creating Monitored Items in a Subscription to subscribe for data changes 
and Events. This section describes the common settings for Monitored Items and 
the Services to manage Monitored Items. The three different types of Monitored 
Items are described in more detail in the following sections. 

 The sampling interval of the Monitored Item defines the rate in milliseconds; 
the underlying data source is sampled for data changes. The sampling interval can 
be inherited from the publish interval of the Subscription but can be also set indi-
vidually for each item. If the server must sample the data source, there is typically 
a minimum possible rate. If this minimum is known, it is exposed as Minimum-
SamplingInterval Attribute of the Variable. If the data source delivers the data 
exception based at changes, the server can also accept sampling intervals of 0. The 
server can adjust the requested rate to the next possible rate it supports but the server 
must attempt to sample at the defined rate, however, the server is not allowed to 
sample faster than the negotiated rate. The sampling interval is 0 for Event Moni-
tored Items. 

The monitoring mode defines the states disabled, sampling, and reporting. The 
difference between sampling and reporting is that for sampling the data source is 
sampled but the notifications are not sent to the client and for reporting they are 
also sent to the client. The setting sampling is necessary for the definition of trig-
gered monitored items where the notifications are only reported when a triggering 
Monitored Item has a new notification. More details on triggering are described 
for the SetTriggering Service in this section. 

Filter settings are specific to the different types of Monitored Items and are 
described in the following sections. The filter defines if a notification gets queued 
for transfer to the client. 

The queue parameters define the size of the queue for notification message and 
the discard policy if the queue is full but a new notification message is available 
and passed the filter criteria. In this case it could be defined that the newest or the 
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oldest notification in the queue will be overwritten. The queue size for Event 
Monitored Items is unlimited. For data Monitored Items it depends on the use 
case. A HMI client only displaying the latest value will set the size to one. A size 
greater than one can be used by clients that do not want to lose data changes even 
if the sampling is faster than the delivery of the notification message with Publish. 
This applies for example for a trend display. 

5.7.3.1 CreateMonitoredItems Service 

This Service is used to create Monitored Items in a Subscription and to define the 
initial settings for the Monitored Items. They can be deleted using the Delete-
MonitoredItems Service or by deleting the Subscription. The parameters of the 
CreateMonitoredItems Service are described in Table 5.34. 

Table 5.34 CreateMonitoredItems Service parameters 

Request parameters Description 
SubscriptionId Id of the Subscription to add the items to. This id 

was returned from the CreateSubscription Service 
TimestampsToReturn OPC UA defines two timestamps, the source and the 

server timestamp. This parameter allows the client to 
define which timestamps the server should return 
with the value. The two different timestamps are  
described in Sect. 5.6.1 

ItemsToCreate [ ] List of items to create with the requested settings 
NodeId NodeId of the Node to monitor. This is typically a 

Variable for data and must be an Object for Events. 
This can be also all other Node classes for data 

AttributeId Id of the Attribute to monitor. This could be the 
Value Attribute of a Variable for data or the Event-
Notifier Attribute for Events 
It is possible to subscribe for data changes of all  
defined Attributes for all possible Node classes. But 

get informed about changes of Attributes other than 
Value since it is expected that these Attributes 
change never or only after configuration changes 

MonitoringMode Monitoring mode of the item which could be dis-
abled, sampling, or reporting 

 

ClientHandle Client defined handle for the Monitored Item. This 
handle gets delivered together with the notification  
to allow the client to assign the notification to a 
Monitored Item 
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monitoring but this would be an unusual use case 

there are more efficient methods (see Sect. 5.7.4) to 



Monitoring 
Parameters 

Client requested monitoring parameters sampling  
interval, filter, queue size, and discard policy 

Response parameters Description 
Results [ ] List of results for the list of items to create 

StatusCode Status code that indicates if the creation of the  
requested Monitored Item succeeded 

MonitoredItemId Id for the Monitored Item assigned by the server This 
id must be passed in Services used to modify and  
delete Monitored Items 

Revised 
SamplingInterval 

Sampling interval accepted by the server. If the  
requested rate is not available, the server adjusted the 
interval to the next available longer rate 

 

RevisedQueueSize Queue size used by the server 

5.7.3.2 DeleteMonitoredItems Service 

This Service is used to delete MonitoredItems created with CreateMonitoredItems. 
The parameters of the DeleteMonitoredItems Service are described in Table 5.35. 

Table 5.35 DeleteMonitoredItems Service parameters 

Request parameters Description 
SubscriptionId Id of the Subscription to remove the items from. This 

id was returned from the CreateSubscription Service 
MonitoredItemIds [ ] List of Monitored Items to delete. The ids were  

returned from the CreateMonitoredItems Service 
Response parameters Description 
Results [ ] List of status codes for each item to delete indicating 

if the delete succeeded 

5.7.3.3 ModifyMonitoredItems Service 

This Service is used to modify MonitoredItems in the Subscription. The parameters 
of the ModifyMonitoredItems Service are described in Table 5.36. 

Table 5.36 ModifyMonitoredItems Service parameters 

Request parameters Description 
SubscriptionId Id of the Subscription to add the items to. This id 

was returned from the CreateSubscription Service 
TimestampsToReturn OPC UA defines two timestamps, the source and the 

server timestamp. This parameter allows the client to 
define which timestamps the server should return 
with the value 
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ItemsToModify [ ] List of items to modify with the requested settings 
MonitoredItemId Server defined handle for the Monitored Item used  

to identify the item in the Subscription. This id was 
returned from the CreateMonitoredItems Service 

ClientHandle Client defined handle for the Monitored Item 

 

Monitoring 
Parameters 

Client requested monitoring parameters sampling  
interval, filter, queue size, and discard policy 

Response parameters Description 
Results [ ] List of results for the list of items to modify 

StatusCode Status code that indicates if the modification of the 
Monitored Item succeeded 

Revised 
SamplingInterval 

Sampling interval used by the server. If the requested 
rate is not available, the server adjusted the interval 
to the next available longer rate 

 

RevisedQueueSize Queue size used by the server 

5.7.3.4 SetMonitoringMode Service 

This Service is used to set the monitoring mode for MonitoredItems in the Subscrip-
tion. The parameters of the SetMonitoringMode Service are described in Table 5.37. 

Table 5.37 SetMonitoringMode Service parameters 

Request parameters Description 
SubscriptionId Id of the Subscription containing the items to modify 
MonitoringMode Monitoring mode of the items which could be  

disabled, sampling, or reporting 
MonitoredItemIds [ ] List of Monitored Items to modify. The ids were  

returned from the CreateMonitoredItems Service 
Response parameters Description 
Results [ ] List of status codes for each item to modify indicating 

if setting the monitoring mode succeeded 

5.7.3.5 SetTriggering Service 

The Monitored Items Service Set allows adding items that are reported only when 
another item, the triggering item, triggers. This is done by creating links between the 
triggered items and the triggering item. The monitoring mode of the triggered items 
is set to sampling-only so that it will sample and queue notifications without report-
ing them. The parameters of the SetTriggering Service are described in Table 5.38. 
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Table 5.38 SetTriggering Service parameters 

Request parameters Description 
SubscriptionId Id of the Subscription containing the trigger items 
TriggeringItemId The server defined id for the Monitored Item that 

should be used as trigger item 
A list of server defined ids of Monitored Items that 
should be assigned to the triggering item 
A list of server defined ids of Monitored Items that 
should be removed from the triggering item 

Response parameters Description 
AddResults [ ] List of status codes for each trigger link to add  

indicating if the add succeeded 
RemoveResults [ ] List of status codes for each trigger link to remove 

indicating if the remove succeeded 

5.7.4 Monitor Data Changes 

OPC. OPC UA allows subscribing for more information than just Variable Value 
changes but it is expected that it is also one of the most important features of OPC 
UA. Table 5.39 describes the Value change specific MonitoredItem settings. 

The other specific part is the structure of a notification message sent for a data 
change. The structure contains value, status of the value, the source timestamp, and 
the server timestamp assigned to the value. The same parameters are returned by 
the Read Service. They are described more detailed in Sect. 5.6.1. 

It is expected that other Attributes than the Value Attribute or Properties of a 
Variable are changed very infrequently. Therefore the monitoring with a data 
Monitored Item should be avoided if possible. For this reason OPC UA provides 
two features used to monitor changes of metadata. 

Item. Any changes in the structure or the DataType of the sent data or any seman-

the normal data flow with the StructureChanged flag and the SemanticsChanged 
flag in the StatusCode assigned to each Value sent from the server to the client. If 
the StructureChanged flag is set, the client should read the data type information 
or the type description of a structured DataType. If the SemanticsChanged flag is 
set, the client should check the Properties of the Variable for changes. 

Another feature is the SemanticsChange Event indicating changes in the Address 
Space semantic of the server. The changes covered by this Event are changes of 
Property Values. The AccessLevel Attribute of a Property indicates with the 
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tic changes of the Variable like a change of the engineering units are indicated in 

One feature is directly related to Values monitored with a data change Monitored 

SemanticsChange bit if the Property is able to trigger such an Event if the Value is 

LinksToAdd [ ] 

Subscribing for data changes of Variable Values is the main use case in Classic 

LinksToRemove [ ] 



Table 5.39 Data Monitored Item settings 

Parameters Description 
NodeId NodeId of the Variable to monitor 
AttributeId Value Attribute 
SamplingInterval The rate in milliseconds the server checks the under-

lying data source for changes. The type of change 
that triggers a notification is defined by the filter.  
If –1 is used for this interval, the publishing interval 
of the Subscription is used as for this setting. 
A client can over sample the Value by setting the 
SamplingInterval to a smaller value than the publishing 
interval and the queue size to 1 

QueueSize Maximum number of values stored for the Monitored 
Item during a publishing interval. After each publish-
ing interval the server will send the values in the 
queue to the client 

Filter Data change filter settings 
Trigger Type of change that triggers a notification message. 

The possible triggers are change in:  
• The status of the value 
• The value or status of the value (default) 
• The source timestamp, value, or status of 

the value 
DeadbandType This parameter indicates if a deadband is applied and 

if applied, which type of deadband. OPC UA defines 
two type, absolute deadband and percent deadband 

 

DeadbandValue Absolute deadband 
For this type the DeadbandValue contains the abso-
lute change in a number data value that will cause a 
notification to be generated. Triggers a value change 
if abs(last value – new value) > DeadbandValue  
Percent deadband 
For this type of deadband the DeadbandValue is  
defined as the percentage of the EURange. This 
deadband setting is only applied to Variables having 
a EURange Property. This setting triggers a value 
change if the value changed more than the per-
centage of the configured Value range 

changed. Servers will support this typically only for Properties where they get infor-
med by the underlying system about such changes. Otherwise the server needs to 
monitor all Properties in the system if a client subscribes for such an Event which is 
even worse than monitoring Properties with a data change Monitored Item for 
changes. 
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5.7.5 Monitor Events 

The only way to receive current Events from a Server is the creation of an Event 
Monitored Item in a Subscription. Event and data Monitored Items can be com-
bined in one Subscription. The main difference between an Event and a data 
Monitored Item is the way to select the subset of information to receive. For data 
items the client selects exactly one Variable Value and monitors the Value for 
changes. For an Event Item it is normally not possible to directly select the Event 
Source since Objects acting as EventNotifiers may combine a large number of 
Event Sources. For this reason the filter settings are very important to be able to 
reduce the amount of Events and Event Fields to the needed subset. The Event 
Monitored Item settings including the filter are described in Table 5.40.  

Table 5.40 Event Monitored Item settings 

Parameters Description 
NodeId NodeId of the Object to monitor 
AttributeId EventNotifier Attribute 
SamplingInterval 0 
QueueSize 0 – this means that the maximum size supported by 

Filter Event filter settings 
SelectClauses [ ] List of select clauses used to select the Event fields 

to return for each Event notification 
TypeId NodeId of the Event Type defining the Event field  
BrowsePath [ ] List of BrowseNames from the Event Type to the  

Instance Declaration representing the Event field. This 
list has one element for simple Event Types. If the list 
has more elements the server must follow forward  
hierarchical references to find the Event field 

WhereClause Limits the notifications to those Events that match 
the criteria defined by this ContentFilter 

Elements [ ] List of operators and their operands that compose the 
filter criteria. The filter is evaluated by starting with 
the first entry in this array 

FilterOperator Filter operator to be evaluated. Possible operators are 
described in Table 5.41 

 

 

 

Filter 
Operands [ ] 

Array of extensible parameters containing the oper-
ands used by the selected operator. The number and 
use depend on the operands described in Table 5.41. 
This array needs at least one entry 
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The Select clause is used to reduce the number of data contained in an Event 
notification. The client must explicitly select Event fields he is interested in. There 

The Where clause is used to filter on the Event fields to reduce the number of 
Events to the ones the client is interested in. Examples for typical filters are: 

• EventType = TransitionEventType 
• ((SourceNode = DeviceX) OR (SourceNode = DeviceY)) AND  

(Severity > 200)  
• (EventType = MyEventType) AND (Severity > 500) 

Figure 5.11 shows the fields of the BaseEventType, a derived Event Type 
MyEventType, and an Event filter with a select of some fields of both Types and a 
Where clause using other fields to filter the Events. 

The operators and operands are defined by OPC UA. The operators are des-
cribed in Table 5.41. Additional information can be found in [UA Part 4]. 
The Operands could be:  

• A index of another element in the list used to build a logic tree of elements 
• A literal value, e.g., the NodeId of the EventType to filter for  
• An operand6

 
Fig. 5.11 Example for Event filter 

Table 5.41 Filter operators 

Operator Description 
Equals True if operand one is equal to operand two 
IsNull True if operand one is null 
GreaterThan 
LessThan 
GreaterThanOrEqual True if operand one is greater or equal to operand two 

                                                           
6SimpleAttributeOperand containing similar information like a SelectClause element. 
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 identifying the field of the new Event used to filter on, e.g., the 
EventType field defined by the BaseEventType. 

are no default fields returned like in Classic OPC. 

True if operand one is greater than operand two 
True if operand one is less than operand two 



LessThanOrEqual True if operand one is less or equal to operand two 
Like True if operand one matches a pattern defined by  

operand two. 
The pattern syntax is defined in [UA Part 4] 

Not True if operand one is false 
Between True if operand one is greater or equal to operand two 

and less than or equal to operand three 
InList True if operand one is equal to one or more of the  

remaining operand 
And True if operand one AND operand two are true 
Or True if operand one OR operand two are true 
Cast Converts operand one to a data type identified with a 

DataType NodeId in operand two 

5.7.6 Monitor Aggregated Data 

A special version of subscribing for data changes of Variable Values is the moni-
toring of aggregated data where the server samples on a higher rate, calculates the 
selected aggregate after the SamplingInterval and sends only the aggregated values 
to the client. Table 5.42 describes the aggregate specific MonitoredItem settings. 
More details about aggregate calculation are described in Chapter 5.9.1 in the section 
for HistoryRead processed and in [UA Part 13]. 

Table 5.42 Aggregate MonitoredItem settings 

Parameters Description 
NodeId NodeId of the Variable to monitor 
AttributeId Value Attribute 
SamplingInterval The interval in milliseconds for which the server  

calculates the aggregate 
QueueSize Maximum number of values stored for the Monitored 

Item during a publishing interval. After each publishing 
interval the server will send the values in the queue to 
the client 

Filter Aggregate filter settings 
StartTime Start time of the first interval to calculate. The length 

of the intervals is defined by the SamplingInterval 
AggregateType NodeId of the aggregate type. The list of aggregates is 

described in Table 5.48 

 

RawData 
SamplingInterval 

The rate at which values are sampled from the under-
lining system to be used to compute the aggregate 

The structure of a notification message sent for an aggregate result is the same 
like for data MonitoredItems. 
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OPC UA allows servers to expose Methods in the Address Space that can be 
called by clients. Methods are components of Objects and can be called in the con-
text of an Object. All necessary information to call a Method is available in the 
Method description including the detailed description of the input and the output 
parameters of the Method. Section 5.5.2.3 describes how to find this information 
in the use case to get information to call a method. 

The Call Service is used to actually call a method with built-in knowledge of 
the client or based on knowledge the client got through the information available 
in the Address Space. The Service allows calling a list of Methods to reduce the 
roundtrips between the client and the server. OPC UA client SDKs will provide 
simplified functions to call one Method and full featured functions to call a list 
of Methods in one Service invocation. The parameters of the Call Service are 
described in Table 5.43. 

Table 5.43 Call Service parameters 

Request parameters Description 
MethodsToCall [ ] List of Methods to call 

ObjectId NodeId of the Object or ObjectType Node that  
provides the Method 

MethodId NodeId of the Method to call in the context of the 
Object or ObjectType 

 

InputArguments [ ] List of input argument values of the Method. The  
required arguments and the necessary data types for 
each argument are defined by the InputArgument 
Property of the Method in the Address Space 

Response parameters Description 
Results [ ] List of results for each Method to call 

StatusCode 
InputArgument 
Results [ ] 

List of input argument result codes for the Method 
call 

 

OutputArguments[ ] List of output argument values of the Method.  

each argument are defined by the OutputArgument  
Property of the Method in the Address Space 
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5.9 Access History of Data and Events 

The main difference between the access to current data and Events using Read, 
Write, and Subscriptions and the access to the history is the definition of a time 
domain in the history request and the return of an array of information archived 

Attribute of an Object. 
The history access Services HistoryRead and HistoryUpdate are making exten-

sive use of extensible parameters to cover the different use cases for history access 

The HistoryRead Service request uses an extensible parameter to define the 
type of read for raw data, modified data, processed data, data on specific time-
stamps, and history of Events. The HistoryRead response is using an extensible 
parameter for the transport of the two types of requested information, data and 
Events. The HistoryUpdate Service request uses an extensible parameter to insert, 
to replace, to update, and to delete data or Events. 

To describe these different variations of the Services, the following sections are 
describing first the Service with the common parameters and then the different 
types of extensible parameters. OPC UA client SDKs will typically expose nine 
history methods. Their signatures are defined by the different types of extensible 
parameters. 

5.9.1 HistoryRead Service 

This Service is used to read historical Values or Events of one or more Nodes in 
an ordered sequence for the defined time domain. Continuation points are used to 
continue the read of the ordered sequence if not all data can be returned in one 
HistoryRead response. The returned number can be limited by the client or the 
server. Table 5.44 describes the general HistoryRead Service parameters. The  
extensible parameters for the different types of history Read are described in the 
following Sections.  
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with two Services. [UA Part 4] defines only the fixed Service parameters. All

tory is indicated by the AccessLevel Attribute of a Variable or the EventNotifier 

extensible parameters are defined in [UA Part 11]. 

for the time period domain of the current data or Events. The availability of his-



Table 5.44 General HistoryRead Service parameters 

Request parameters Description 
HistoryReadDetails Extensible parameter containing the parameters for 

the different types of history read operations. This 
could be a read of raw, modified, and processed  
values, read of Values at certain timestamps or the 
read of Event history 

TimestampsToReturn Indicates if the source timestamp, the server  
timestamp, or both should be returned 
The selected timestamp is also used for the selection 
of the values in the time domain to read. If both are 
selected, the source timestamp is used 

Release 
ContinuationPoint 

The flag indicates if the Service call is used to  
release ContinuationPoints returned from previous 
calls without returning additional data. This allows 
clients to free resources in the server if the client 
does not continue the read 

NodesToRead [ ] List of Nodes where the client wants to read history 
NodeId NodeId of the Node that provides historical information 

For reading data history this must be the NodeId of a 
Variable Node where the HistoryRead flag is set for 
the Access Level Attribute 
For reading Event history this must be the NodeId of 
an Object Node where the HistoryRead flag is set for 
the EventNotifier Attribute 

 

ContinuationPoint Returned by the server in a previous HistoryRead 
call. It is used by the client to continue the read or to 
release the continuation point 

Response parameters Description 
Results [ ] List of results for each Node to read 

StatusCode Success code for the Node and the filter settings  
HistoryData Extensible parameter containing the result data for 

the different types of history read operations. This 
could be a list of data values or a list of Event notifi-
cations 

 ContinuationPoint Set by the server if not all data can be returned in this 
call. This allows the client to continue the read with-
out exceeding the limits set by the client or the server 

5.9.1.1 Reading Raw or Modified Data 

The HistoryRead Service is called with the extensible parameter of type Read-
RawModified to read raw or modified data for a specified time domain. It reads 
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the Values, status, and timestamps of one or more Variables. The extensible 
parameter is described in Table 5.45 and is used in the HistoryReadDetails para-
meter of the HistoryRead Service. 

For raw data the values stored in the history database are returned directly. A 
modified value is a value that has been replaced by another value at the same 
timestamp in the history database. If there are multiple replaced values the server 
must return all of them. 

Table 5.45 ReadRawModified extensible parameter 

Parameters Description 
IsReadModified Specifies the type of read. If the flag is set to false, a 

read raw is performed, if set to true a read modified 
is performed 

StartTime Begin of the time period to read 
EndTime End of the time period to read 
NumValuesPerNode The maximum number of values returned for each 

Node. If this maximum is exceeded by the number  
of available values in the defined time domain, the 
server returns a continuation point. The value 0  
indicates that there is no limit set by the client.  
The server can also reduce the number of values  
to return 

ReturnBounds A flag that indicates if bounding values should  
be returned. If set to true, a value before the start 
time and a value after the end time is returned if  
no values are available at the specified start and  
end timestamps 

The extensible parameter type HistoryData is used to return the data for read 
raw, modified, processed and read at time. The content of the HistoryData struc-
ture is described in Table 5.46. The data value structure is also used in the Read 
Service and data change notifications. The parameters are described more detailed 
at the Read Service in Table 5.25. 

Table 5.46 HistoryData extensible parameter 

Parameters Description 
DataValues [ ] Array of data values containing the result data 

Value Raw or processed value from the history database 
StatusCode Status of the value. There are special historical  

access status codes and info bits defined providing 
history specific information 

SourceTimestamp Source timestamp for the value 

 

ServerTimestamp Server timestamp for the value 
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5.9.1.2 Reading Processed Data 

The HistoryRead Service is called with the extensible parameter of type Read-
Processed to Read processed data calculated with the specified aggregate based on 
the raw data in the history database. It reads the processed Values, status and time-
stamps for one or more Variables in the specified time domain. The extensible 
parameter is described in Table 5.47 and is used in the HistoryReadDetails parameter 
of the HistoryRead Service. The server must use start time, end time, and the resample 
interval to generate a sequence of time intervals and then calculate an aggregate 
for each interval. The aggregates are defined in [UA Part 13] and described in 
Table 5.48. 

Table 5.47 ReadProcessed extensible parameter 

Parameters Description 
StartTime Begin of the time period to read 
EndTime End of the time period to read 
ResampleInterval Time interval in milliseconds that is used to calculate 

one aggregated value from the raw values in the his-
tory database. The time domain is divided into sub-
intervals with the length of the ResampleInterval  
beginning with the start time 
If the ResampleInterval is 0, one aggregated value is 
calculated for the time domain 

AggregateType The NodeId of the aggregate used for the calculation 
of the values. The OPC UA defined aggregates are 
described in Table 5.48 

All aggregates in the following table without an additional comment return a 
timestamp of the start of the interval. If the aggregate returns another timestamp, 
the specific behavior is described for the aggregate. 

Table 5.48 Aggregates used for HistoryRead and monitoring of aggregated values 

Aggregate Description 
Interpolative Returns an interpolated value for the starting time of the  

interval 
Data averaging and summation aggregates 
Average Returns the average data over the resample interval. It adds 

up all values in the interval and divides the sum by the  
number of values 

TimeAverage Returns the time weighted average data over the resample  
interval. A straight line is drawn between each raw value in 
the interval. The area under the line is divided by the length 
of the interval to yield the average. Interpolated values are 
used at the start and at the end of the interval 
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Total Returns the sum of the data over the resample interval. It adds 
up all values in the interval 

Totalize 
Average 

Returns the totalized Value (time integral) of the data over 
the resample interval 

Data variation aggregates 
Minimum Returns the minimum value in the resample interval 
Maximum Returns the maximum value in the resample interval 
Minimum 
ActualTime 

Returns the minimum value in the resample interval and the 
timestamp of the minimum value 

Maximum 
ActualTime 

Returns the maximum value in the resample interval and the 
timestamp of the maximum value 

Range Returns the difference between the minimum and maximum 
Value over the sample interval 

Counting aggregates 
Annotation 
Count 

Returns the number of annotations in the resample interval. 
Annotations are user entered comments in the history database 

Count Returns the number of raw values with good status in the  
resample interval 

Duration 
InState0 

The duration of the interval the value was in FALSE state. 
The value of the aggregate is the time in milliseconds 

Duration 
InState1 

The duration of the interval the value was in TRUE state. The 
value of the aggregate is the time in milliseconds 

Number 
OfTransitions 

Returns the number of value changes with good quality in the 
resample interval 

Time aggregates 
Start Returns the first value in the interval and the timestamp of the 

first value 
End Returns the last value in the interval and the timestamp of the 

last value 
Delta The difference between the first and the last good value in the 

interval. If the last value is less than the first value, the result 
will be negative 

Data quality aggregates 
DurationGood The duration of the interval the value had good quality. The 

value of the aggregate is the time in milliseconds 
DurationBad The duration of the interval the value had bad quality. The 

value of the aggregate is the time in milliseconds 
PercentGood Percentage of the interval the value had good quality (0–100). 

PercentGood = DurationGood / ResampleInterval * 100 
PercentBad Percentage of the interval the value had bad quality (0–100). 

PercentGood = DurationGood / ResampleInterval * 100 
WorstQuality Returns the worst quality of the values in the interval. The 

value of the aggregate is the status code for the worst quality 
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5.9.1.3 Reading Data at a Series of Timestamps 

The HistoryRead Service is called with the extensible parameter of type Read-
AtTime to read data for the specified timestamps. When no value exists for a speci-
fied timestamp, a value is interpolated from the surrounding values to represent 
the value at the specified timestamp. It reads the Values, status, and timestamps for 
one or more Variables. The extensible parameter is described in Table 5.49 and is 
used in the HistoryReadDetails parameter of the HistoryRead Service. 

Table 5.49 ReadAtTime extensible parameter 

Parameters Description 
RequestedTimes [ ] List of requested timestamps 

5.9.1.4 Reading Event History 

The HistoryRead Service is called with the extensible parameter of type Read-
Event to read Events for the specified time domain. The filter parameter is used to 
determine which historical Events are returned and selects the Event field returned 
for an Event. The extensible parameter is described in Table 5.50 and is used in 
the HistoryReadDetails parameter of the HistoryRead Service. 

Table 5.50 ReadEvent extensible parameter 

Parameters Description 
NumValuesPerNode The maximum number of Events returned for each 

Node. If this maximum is exceeded by the number of 
available events in the defined time domain, the server 
returns a continuation point. The value zero indicates 
that there is no limit set by the client. The server can 
also reduce the number of events to return 

StartTime Begin of the time period to read 
EndTime End of the time period to read 
Filter The filter allows reducing the amount of Events  

returned from the Read by using the same Event  
filter used for monitoring current Events. The filter  
is described there in Table 5.40 

The extensible parameter type HistoryEvent is used to return the Events for 
Read Events. The content of the HistoryEvent structure is described in Table 5.51.  
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5.9.2 HistoryUpdate Service 

This Service is used to insert, replace, update, or delete historical Values or 
Events. Table 5.52 describes the general HistoryUpdate Service parameters. The 
extensible parameters for the different types of history update are described in the 
following sections.  

Table 5.52 General HistoryUpdate service parameters 

Request parameters Description 
HistoryUpdate  
Details [ ] 

A list of extensible parameters containing the infor-
mation for the different types of history updates. 
This could be insert, replace, update, or delete of  
historical Values or Events 

Response parameters Description 
Results [ ] List of results for each update detail list entry 

StatusCode Status code for the list entry  
OperationResults [ ] Status code for each operation in the list entry 

5.9.2.1 Insert, Replace, or Update Data 

The HistoryUpdate Service is called with the extensible parameter of type Update-
Data to insert, replace, or update data in the history database. The extensible  
parameter is described in Table 5.53 and is used in the HistoryUpdateDetails para-
meter of the HistoryUpdate Service. 

Table 5.53 UpdateData extensible parameter 

Parameters Description 
PerformInsert A flag that indicates if an insert should be performed 

if no value is available for the passed timestamp in the 
history database 

PerformReplace A flag that indicates if a replace should be performed 
if a value is available for the passed timestamp in the 
history database 

NodeId NodeId of the Variable to be updated 
DataValues [ ] A list of values including status codes and timestamps 

to update in the history database 

Table 5.51 HistoryData extensible parameter 

Parameters Description 
Events [ ] Array of Events being delivered 
 EventFields [ ] List of selected Event fields 
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Table 5.54 Update data flags 

Insert Replace Description 
True False The passed value will only be written to the history if no 

value exists at the specified timestamp 
False True The passed value will only be written to the history if a 

value exists at the specified timestamp. The existing 
value will be replaced 

True True The passed value will be inserted if no value exists for 
the timestamp but will also replace an existing value at 
the given timestamp 

5.9.2.2 Insert, Replace, or Update Event 

The HistoryUpdate Service is called with the extensible parameter of type Update-
Event to insert, replace, or update, Events in the history database. The extensible 
parameter is described in Table 5.55 and is used in the HistoryUpdateDetails para-
meter of the HistoryUpdate Service. 

Table 5.55 UpdateEvent extensible parameter 

Parameters Description 
PerformInsert A flag that indicates if an insert should be performed 

if no event is available for the passed timestamp in 
the history database 

PerformReplace A flag that indicates if a replace should be performed 
if an event is available for the passed timestamp in 
the history database 

NodeId NodeId of the Object to be updated 
Filter The filter is used to find the event to update or to  

replace or to insert the Event if PerformInsert is set 
and the Event was not found. The same Event filter 
is used like for monitoring current Events. The filter 
is described there in Table 5.40 

EventFields [ ] List of Event fields for the Event to update 

 
 

One of the two flags to force insert or replace must be set. Table 5.54 describes 
the update Event flags usage. 
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Table 5.56 Update Event Flags 

Insert Replace Description 
True False The passed Event will only be written to the history 

if no Event exists at the specified timestamp 
False True The passed Event will only be written to the history 

if an Event exists at the specified timestamp. The  
existing Event will be replaced 

True True The passed Event will be inserted if no Event exists 
for the timestamp but will also replace an existing 
Event at the given timestamp 

5.9.2.3 Delete Raw or Modified Data 

The HistoryUpdate Service is called with the extensible parameter of type Delete-
RawModified to delete raw or modified data for a specified time domain. The 
extensible parameter is described in Table 5.57 and is used in the HistoryUpdate-
Details parameter of the HistoryUpdate Service. 

For raw the values stored in the history database are deleted. A modified value is 
a value that has been replaced by another value at the same timestamp in the history 
database. If there are multiple replaced values the server must delete all of them. 

Table 5.57 DeleteRawModified extensible parameter 

Parameters Description 
IsDeleteModified Specifies the type of delete. If the flag is set to false, a delete 

raw is performed, if set to true a delete modified is performed 
NodeId NodeId of the Variable for which the values are to be deleted 
StartTime Begin of the time period to delete 
EndTime End of the time period to delete 

5.9.2.4 Delete Data at a Series of Timestamps 

The HistoryUpdate Service is called with the extensible parameter of type Delete-
AtTime to delete data for the specified timestamps. The extensible parameter is 
described in Table 5.58 and is used in the HistoryUpdateDetails parameter of the 
HistoryUpdate Service. 

One of the two flags to force insert or replace must be set. Table 5.56 describes 
the update Event flags usage. 
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5.9.2.5 Delete Events 

The HistoryUpdate Service is called with the extensible parameter of type  
DeleteEvent to delete specific events. The extensible parameter is described in 
Table 5.59 and is used in the HistoryUpdateDetails parameter of the History-
Update Service. 

Table 5.59 DeleteEvent extensible parameter 

Parameters Description 
NodeId NodeId of the Object for which the events are to be 

deleted 
EventId [ ] An array of Event ids to identify which Events are to 

be deleted 

5.10 Find Information in Complex Address Space 

The Browse Service is used to navigate through the Address Space. This mecha-
nism is useful to navigate through known areas and to find information in a small 
Address Space but it will be difficult or impossible to find the necessary informa-
tion in a very large or a very dynamic Address Space. Address Spaces of servers 
providing access to systems with rich Information Models can have millions of 
Nodes. Address Spaces of MES or ERP systems can have very dynamic Address 
Spaces representing for example current work orders. 

The OPC UA feature used to find information in such Address Spaces is 
Query. It implements a different approach than Browse. It allows defining filter 
criteria to retrieve a subset of Nodes and Information based on these filters, 
whereas Browse defines a starting Node and filters to reduce the list of returned 
referenced Nodes. The query mechanism of OPC UA is based on type informa-
tion. The starting point of each query is to specify the type of Objects or Variables 
the client is interested in. In the SECLECT-Part (DataToReturn) of a query, the 
client specifies what data should be returned relative to instances of the type and 
in the WHERE-Part (Filter) the client specifies the filter criteria. 

The QueryFirst Service is used to start a Query and QueryNext is used to get 
the remaining results if too many results are available. The Service parameters of 
QueryFirst are described in Table 5.60. 

 

 
 
  
 

Table 5.58 DeleteAtTime extensible parameter 

Parameters Description 
NodeId NodeId of the Variable for which the values are to be 

deleted 
RequestedTimes [ ] List of requested timestamps 
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Table 5.60 QueryFirst Service parameters 

Request parameters Description 
View Passing a View allows limiting the Query to a  

specific View 
NodeTypes [ ] Array of structures containing the type filter for the 

Query 
TypeDefinitionNode NodeId of the TypeDefinition VariableType or  

ObjectType where instances should be returned 
IncludeSubtypes Indicates whether instances of subtypes should be in-

cluded 
DataToReturn [ ] Specifies the Nodes and the Attributes of the  

instances to return 
RelativePath Brows Path from the instance of the specified type to 

the component of the instance 

 

 

AttributeId Id of the Attribute to return for the selected Node 
Filter Content filter used to reduce the returned instance 

Nodes and their Attribute values. The content filter is 
the same filter that is used in the where clause of the 
Event Monitored Items. The filter settings are de-

MaxDataSetToReturn This parameter allows the client to limit the number 
of returned results 

Response parameters Description 
QueryDataSets [ ] List of result data 

NodeId NodeId of the instance Node matching the query  
defined in the request 

TypeDefinitionNode TypeDefinition NodeId for the returned instance 
Node 

 

Values [ ] List of Values for the selected Attribute 
ContinuationPoint A continuation point is returned when the server was 

sponse. The limitation can be set by the client in the 
request or by the server during Query processing 
The continuation point can be passed to QueryNext to 
get the remaining results 
QueryNext takes the ContinuationPoint as input pa-

5.11 Modify the Address Space 

The NodeManagement Services enables an OPC UA client to create and delete 
Nodes and References in the Address Space of an OPC UA server. It is expected 
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scribed there in Tables 5.40, 5.41 

rameter and returns the same results like QueryFirst 

that this feature is mainly used between OPC UA servers and their configuration 

not able to deliver all results in the QueryFirst re-



clients. Information Models may define the use of these Services more detailed to 
make them useful for generic clients knowing the Information Model. 

5.11.1 Adding Nodes 

The AddNodes Service is used to add one or more Nodes to the Address Space. 
The parameters of the Service are described in Table 5.61. 

Table 5.61 AddNodes Service parameters 

Request parameters Description 
NodesToAdd [ ] List of Nodes to add to the server Address Space 

ParentNodeId NodeId of the Node where the new Node should be 
referenced from 

ReferenceTypeId NodeId of the Reference type used for the Reference 
to create between the parent Node and the new Node 

BrowseName Browse name of the new Node 
NodeClass Node class of the new Node 
NodeAttributes Extensible parameter containing the additional  

Attribute values depending on the NodeClass to create 

 

TypeDefinition TypeDefinition NodeId used to define which type of 
Object or Variable with its type defined components 
should be created. This parameter is not set if the 
NodeClass is not Object or Variable 

Response parameters Description 
Results [ ] List of results for each add operation 

StatusCode  
AddedNodeId NodeId of the newly created Node 

5.11.2 Creating References Between Nodes 

The AddReferences Service is used to create one or more References between Nodes 
in the Address Space. The parameters of the Service are described in Table 5.62. 

Table 5.62 AddReferences Service parameters 

Request parameters Description 
ReferencesToAdd [ ] List of References to create 

SourceNodeId NodeId of the source Node of the new Reference 
ReferenceTypeId NodeId of the Reference type used for the Reference 

to create between the source and the target Node 

 

TargetNodeId NodeId of the target Node of the new Reference 
Response parameters Description 
Results [ ] 
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5.11.3 Removing Nodes 

The DeleteNodes Service is used to remove one or more Nodes from the Address 
Space. The parameters of the Service are described in Table 5.63. 

Table 5.63 DeleteNodes Service parameters 

Request parameters Description 
NodesToDelete [ ] List of Nodes to remove from the server Address 

Space 
NodeId NodeId of the Node to delete  
DeleteTarget 
Reference 

A flag that indicates if the server should also delete 
the Reference to the target Node 

Response parameters Description 
Results [ ] 

5.11.4 Delete References Between Nodes 

The DeleteReferences Service is used to remove one or more References in the 
Address Space. The parameters of the Service are described in Table 5.64. 

Table 5.64 DeleteReferences Service parameters 

Request parameters Description 
ReferencesToDelete [ ] 

SourceNodeId NodeId of the source Node of the Reference to delete 
ReferenceTypeId NodeId of the Reference type used for the Reference 

to delete between the source and the target Node 

 

TargetNodeId NodeId of the target Node of the Reference to delete 
Response parameters Description 
Results [ ] 

5.12  Summary 

5.12.1 Key Messages 

There are two types of OPC UA Services. One type is used to create a communi-
cation context like the Secure Channel, Session, Subscription, and MonitoredItem 
Service Sets. The other type is used to exchange information like Browse to get 
information about the structure of the Address Space, Read, Write, and Publish to 
access data and Call to execute Methods. 
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List of result codes for each delete operation 

List of result codes for each delete operation 



Compared to Classic OPC the number of Services7 is reduced to a small set 
based on the design goal to provide only one generic Service for a task and on the 
design goal to provide information by modeling the information and not by pro-
viding a special access method for the type of information. 

The Services are defined in an abstract way enabling the implementation of the 

ments to achieve the requirements for platform-independence, scalability, and 
high performance but also for Internet access and the capability to cross firewalls. 

All Services can be called synchronous and asynchronous since the base mecha-
nism to exchange the messages is asynchronous and the calls to the client API can 

used by the client after short network interruptions but the negotiated timeouts are 
allowing the server to clear resources after the timeout expires. Together with the 

(see Sect. 9.3) a reliable communication between distributed systems is ensured. 

5.12.2 Where to Find More Information? 

The abstract OPC UA Services are defined in [UA Part 4]; the technology map-

Additional implementation specific information is provided by the documenta-
tion of the different UA Stack implementations and OPC UA SDKs. 

5.12.3 What’s Next? 

After explaining the abstract Services to access the OPC UA information provided 
by a server, Chap. 6 describes the different technology mappings of the Services 
to the different types of message serialization, message security, and message 
transport and the different available implementations of these mappings. 

Other related aspects are the Security concepts described in Chap. 7, the Appli-
cation Architecture explained in Chap. 8 and the System Architecture described 
in Chap. 9. 

                                                           
7Comparable to interface methods in COM. 
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be made synchronous in the UA Stack. Individual timeouts per Service call can 

ping is defined in [UA Part 6].  

be configured. A communication context like a Session or a Subscription can still be 

Service transport with different technologies and different development environ-

Publish mechanisms to ensure no data gets lost and the built-in redundancy features 



 

6 Technology Mapping 

6.1 Overview 

When considering developing applications it soon comes to the question which 

apply a matured technology and in other cases innovation is more important. 
However, when developing a standard, the technology question is not easy to  
answer if you intend to satisfy everyone in the community. For some people per-
formance and reliability are more important than security, for others this is vice-
versa. Another issue that has to be considered for answering the technology question 
is what happens when a technology retires? Technologies are provided and main-
tained for certain platforms like operating systems. When new versions of such 
platforms are provided then sometimes older technologies are replaced by newer 
ones. The backward compatibility is thereby not always given! 

In order to be open for future technologies and to provide certain interoperabi-
lity between OPC UA products the working group decided to define services (see 
Chap. 5) and concepts in an abstract manner and to specify a technological map-

exchanging data between OPC UA applications: data encoding, securing the 
communication, and transporting the data. This is illustrated in Fig. 6.1. OPC UA 
applications in general can be separated into several functional layers. There are 
layers for the application logic, for accessing other components (i.e., interfaces) 
and there are several layers responsible for encoding, security, and transport which 

rated from the real application since they can be reused by many other applica-
tions. Reference [UA Part 6] defines for each of the stack’s layer two technologies 
that can be used for implementation. However, technology evolves and additional 
technology mappings might be added in the future. In order to develop an OPC 
UA compliant product (see Chap. 12) at least one of the specified technologies for 
each layer has to be implemented.1 

In the following subsections each specified technology is briefly introduced. 

                                                           
1Note that the OPC Foundation provides deliverables already implementing all the technologies 
specified in [UA Part 6]; see Sect. 6.5 for some more information. 

technology to use for the implementation. There are often many different techno-
logy options from which one has to be selected. In some cases it is preferable to 

DOI: 10.1007/978-3-540-68899-0_6,

can be composed to a so-called stack. Stacks are mostly generic components sepa-
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ping for implementation. The specified mappings address three tasks necessary for 
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Fig. 6.1 Mappings 

6.2  Data Encodings 

Data encoding is the serialization of the Service messages including its input and 
output parameter to a network format OPC UA currently specifies two encodings: 
OPC UA Binary and XML. Both encodings are introduced in the following. How-
ever, there are some aspects common for both encoding types. 

For both, OPC UA Binary and for XML, the network representations of a set of 
primitive types (e.g., Boolean, Byte, and Float) are specified in order to compose 
structures and more complex types. This specific set of primitive types is called 
Built-In DataTypes and their encoding is defined in [UA Part 6]. 

A further aspect that is common for all encoding types is the ExtensionObject. 
This is a special type container for any complex data independent of the encoding. 
Beside the encoded data, the ExtensionObject contains also an identifier which  
indicates what data it contains and how it is encoded. There are two use cases for 
this special container. One use case is to provide type information for the decoding 
since the encoded data may not contain meta information about the structure of the 
data like in the binary encoding. It provides the necessary meta information in all 
places in the encoded data where different types can be used. The second use case 
is the transport of proprietary encoded data where the encoding is only known by 
the application layer. 

A Variant, which is also used in both encodings, is a data type that can be used 
to hold a set of different other types. In OPC UA, a Variant can represent each of 
the defined Built-In DataTypes mentioned above including an ExtensionObject. 

6.2.1  OPC UA Binary 

Performance and overhead on the wire is often a critical parameter for industrial 
systems such as for applications embedded in a controller. Therefore the OPC UA 

192 6 Technology Mapping



working group defined a data format – OPC UA Binary – providing fast encoding 
and decoding of data by only having a small size and efficient format of encoded 
data on the wire. 

zation and deserialization of the Service parameters to a binary stream is the most 

 

More complex data types are composed by combining a set of primitives. The 
translation to its binary format is performed by sequentially translating the con-
tained primitives. 

6.2.2  XML 

Sometimes it is desirable to exchange data in a format that can be easily consumed 
by different applications, platforms as well as by humans. In such scenarios, XML 
documents often play an important role since the structure is standardized. This  
allows every application or platform having an XML parser to interpret such docu-
ments. Based on this fact many applications at operations level (such as MES) use 
XML to exchange data with systems at corporate level (e.g., ERP systems). Since 
it is expected that OPC UA applications will run at both levels, an XML support 
has to be provided. 

specifications [W3C04a] and [W3C04b]. In some cases, restrictions or special  
usages have to be applied. However, these are not described in this book but they 

when applying XML encoding. The upper line represents the XML schema that 
defines the XML instance at the bottom.  

The basic concept of OPC UA Binary Encoding is that a specified set of primi-

“OPCUA” is encoded according to OPC UA Binary. Thereby a sequence of UTF-8 
representation of Built-In DataType is given in Fig. 6.2. In this figure, the String 
efficient way for data exchange between different systems. An example for a binary

tive data types (Built-In DataTypes) are translated into a binary representation by 

characters is used beginning with the length of the String (in the present example 5 

using well-defined rules by sequentially writing it to a binary stream. The seriali-

characters). Note that there is no null terminator contained. Null Strings are indicated 
by encoding the value “–1” as length. 

ExtensionObjects. 
The abstract Service messages defined in [UA Part 4] are encoded by using 

1936.2 Data Encodings

are specified in [UA Part 6]. Figure 6.3 illustrates how a String is represented 

Most of the Built-In DataTypes are encoded according to the common XML 

Fig. 6.2 String example of OPC UA Binary Encoding 



More complex types are composed by nested XML elements composed with 
primitives. A LocalizedText is a simple example of structure containing primitive 
types and is depicted in Fig. 6.4. 

Messages are represented the same way a structure is encoded and are therefore 

 

 

6.3 Security Protocols 

There are two security protocols defined for OPC UA in order to map the  
abstract services defined in [UA Part 4]: WS-SecureConversation and UA-
SecureConversation. Both are based on a certificate-based connection establishment 
as described in Sect. 7.5.2. 

6.3.1  WS-SecureConversation 

WS-SecureConversation defined at [OASIS07] is an extension specification to 
WS-Security specified at [OASIS04] which defines concepts and technologies for  
securing data exchanged via Web Services. These and other related standards are 
developed and published by OASIS2 a nonprofit organization driving open stan-
dards in the field of information technology. WS-SecureConversation is used in 

                                                           
2Organization for the Advancement of Structured Information Standards. 
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Fig. 6.3 Primitive example of XML Encoding 

Fig. 6.4 Structure example of XML Encoding 

also defined by a “xs:complexType”. 



conjunction with WS-SecurityPolicy [OASIS07a] defining the security algorithms 
and WS-Trust [OASIS07b] negotiating shared secrets for the Secure Channel 
that has to be established between OPC UA applications (see Sect. 7.5.2). WS-

3 

pyramid. 

and a Session (see Sect. 7.5.2.1). The abstract OpenSecureChannel request and  

SecurityTokenResponse (RSTR) messages of WS-SecureConversation. These 

ther messages (including the Session establishment) in a symmetric manner (which 
is better performing than securing messages with Public and Private Keys). In 
WS-SecureConversation this secret key is called DerivedKeyToken. 

Tables 6.1 and 6.2 show in more detail how to map OpenSecureChannel request 
and response to the WS-SecureConversation equivalents. 

Table 6.1 Mapping of OpenSecureChannel request to RequestSecurityToken 

OpenSecureChannel request RequestSecurityToken 
clientCertificate BinarySecurityToken 
requestType (open/renew) RequestType 
secureChannelId SecurityTokenReference 
securityMode 
securityPolicyUri 

SignatureAlgorithm 
EncryptionAlgorithm 
KeySize 

clientNonce Entropy 
requestedLifetime Lifetime 

 
 
Table 6.2 Mapping of OpenSecureChannel response to RequestSecurityTokenResponse 

OpenSecureChannel response RequestSecurityTokenResponse 
securityToken RequestedSecurityToken 
revisedLifetime Lifetime 
serverNonce Entropy 

                                                           
3http://msdn.microsoft.com/en-us/netframework/aa663324.aspx. 
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SecurityPolicy is also used as a basis for SecurityPolicies and SecurityProfiles used
by OPC UA which are introduced in Sect. 7.5.4. When it comes to encrypting and 

WS-SecureConversation is optimized for securing XML data since it applies 

OPC UA applications running at operations or corporate level of the automation 

The connection establishment in OPC UA requires creating a Secure Channel 

signing data then XML Encryption [W3C02] and XML Signature [W3C08] are 

response are mapped to the concrete RequestSecurityToken (RST) and Request-

applied. These standards have been chosen since they are approved and already 

XML Encryption and Signature which makes it a good approach for developing 

implemented in several products and platforms such as Microsoft’s Windows 

messages are used to agree upon a shared key which is used for securing all fur-

Communication Foundation.



 

Why does the OPC UA working group define its own new security protocol?  
This is a question which we have been asked a lot of times. First of all, UA-
SecureConversation is not a new security protocol. It is rather a combination  
of approved techniques and mechanisms of the standards TLS4 and WS-
SecureConversation. There are several reasons for heading this approach which 
are discussed in the following. 

WS-SecureConversation is a protocol tailored for communication scenarios in 
which XML documents are exchanged for example via SOAP/HTTP. However, 
other scenarios have also to be considered in which performance and overhead are 
quite important such as applications running on controllers. In such cases, some-
thing fast and efficient is needed and since XML comes up with a large overhead 
on the wire WS-SecureConversation is therefore rarely an option. 

One idea that came up in the working group was to use TLS for mapping the 
abstract connection establishment Services since this is widely accepted and used 
in a diverse range of applications. But after several investigations it turned out that 
TLS off-the-shelf cannot be used for OPC UA applications because either the 
specification or the TLS implementations do not meet certain requirement of  
OPC UA. 

TLS implementations do not support the latest security protocols which is quite 
obvious since these algorithms may have been developed when the products were 
already on the market. One problem is that updates are not always provided for the 
specific platform but only for the next release. Another problem is that updates are 
not always possible since it is not that easy to extend the implemented applica-
tions. This could lead to interoperability problems considering an environment 
with OPC UA applications running on different platforms. 

Another problem comes up with the Session handling. Many TLS implementa-
tions (such as Microsoft’s SSPI5) hide the context information of established SSL 
sessions since they are transparently created to the upper layers. Since OPC UA 
requires binding Sessions to Secure Channels, this is a problem. This means in  
addition to that the application above does not have the full control over the SSL 
session representing the OPC UA Secure Channel and therefore does not know 
when new sessions are created. Network interruptions causing the creation of a 
new SSL session would be an interesting event of that an application would like to 
know about. 

A further issue regarding SSL sessions is the lifetime. In many TLS implemen-
tations the maximum lifetime of a SSL session can be configured. After that  
lifetime the session ends and new one has to be created. However, the TLS speci-
fication suggests maximum of 24 h causing that most implementations use an even 
much shorter period. However, in industrial environments this can be far too short. 

                                                           
4Transport Layer Security; defined at [DR06]. 
5MS Security Support Provider Interface. 
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6.3.2  UA-SecureConversation 



Whenever the Secure Channel (in this case the SSL session) is renewed, it has to 
be bound to an OPC UA Session and during this phase no application-specific 
data (for example production requests) can be exchanged between clients and 
servers. This could lead to some problems when production process last longer 
than 24 h. 

One use case of OPC UA is to run several servers on a machine all sharing  
the same IP address and port. A special addressing mechanism at transport level  
allows such a scenario. But TLS 1.1 only supports one certificate per IP address 
and port which does not allow end-to-end security. This means the above des-
cribed scenario cannot be secured with TLS 1.1. 

Finally, it has to be said that although current TLS implementations and stan-
dard does not meet the requirements of OPC UA this does not mean that future 
versions of TLS addressing all those problems cannot be used. Since OPC UA is 
open for future technologies additional mappings can be defined. 

UA-SecureConversation does not directly map the abstract Services but uses 
the encoded Service messages as the payload and adds additional security-related 
information in front of and behind this payload. The message chunk structure is 
shown in Fig. 6.5. 

 
Fig. 6.5 Message chunk according to UA-SecureConversation 

This header is followed either by the Asymmetric Security Header or by the 
Symmetric Security Header. The first variant is only used for OpenSecureChannel 

secured with Public and Private Keys (see Sect. 7.5.2.1).This header contains the 
applied Security Policy identifying the algorithms used for securing the message, 

thumbprint identifying the certificate used for encrypting the message. The second 
variant is applied for all other messages beside the OpenSecureChannel message. 
In this case the header only contains a TokenId identifying the set of symmetric 
keys used to sign and encrypt messages. 

1976.3 Security Protocols

request.

the certificate of the sender in order to verify the signature of the message, and a 

The Message Header contains information identifying the type of the message, 

requests and responses since OpenSecureChannel is the only Service messages  

for example whether it is an OpenSecureChannel request or a CreateSession 



The Sequence Header contains a number identifying a chunk. This is used 
when the payload (i.e., the Encoded Service Message) does not fit in a single chunk 
and therefore the message has to split up into multiple chunks. 

Directly after the Encoded Service Message the Security Footer is placed. It 
contains among others the Signature of the message used to verify whether the 
signed data has been changed after it is sent and whether the message really comes 
from the entity (i.e., installed application instance) represented by the certificate in 

6.4 Transport Protocols 

UA TCP and SOAP/HTTP are the two transport protocols defined by the OPC UA 
standard. These protocols are used for establishing a connection between an OPC 
UA client and server at network level. On top of the transport protocol a Secure 

6.4.1  UA TCP 

A fast and simple network communication can be achieved by applying UA TCP 
for the transport layer. There are different requirements leading to the design deci-
sion to define a small protocol on top of TCP: First, the necessity of negotiating 

to share one IP-Address and port. Finally, it should be possible to react on and  
recover from errors occurring at transport level. 

The general structure of an UA TCP message chunk consists of a Message 

The Message Header contains information about the type and the length of the 
message. Note, that when combining UA-SecureConversation with UA TCP the 
Message Headers are intentionally the same which slightly reduces the overhead  
 

 
Fig. 6.6 Message chunk according to UA TCP 
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level. Second, different endpoints of OPC UA servers should have the possibility 

the Security Header. This signature is verified with the Public Key of the 

buffer sizes for sending and receiving data that can be configured at application 

sender certificate when an OpenSecureChannel message is exchanged and for 

Header and a Message Body which are depicted in Fig. 6.6. 

all other messages the negotiated symmetric keys identified by the TokenId 
are used. 

Channel and an OPC UA Session are created. 



on the wire when applying message security and allows the implementation of the 
Transport Layer to easily distinguish between Transport Layer messages and mes-
sages that have to be forwarded to the Security Layer (e.g., OpenSecureChannel 
messages). 

The Message Body either contains the encoded and secured Service messages 

There are three UA TCP messages types defined which are briefly introduced 
in the following. 

A Hello message is sent by the OPC UA client to the server in order to estab-
lish a socket connection to a specific endpoint provided by the server. It thereby 
also requests certain buffer sizes for sending and receiving data from the server as 
well as maximum chunk and total message lengths. 

As response to the Hello message, the server sends an Acknowledge message 
confirming or revising the requested buffer sizes as well as chunk and message 
lengths. An agreement on these numbers is important from reliability and from the 
security perspective. Clients and servers thereby know what to expect from each 
other and can resist certain attacks like buffer overflows or Denial-of-Service. 

Finally, the third message type is the Error message providing error informa-
tion to the other application. Such messages are sent around if connection prob-
lems occur, for example, if a message cannot be processed since the size is too 
long or the server is overloaded. 

As indicated above, UA TCP defines also a specific error recovery mechanism 
enabling OPC UA Sessions to survive network interruptions. When a client loses 
the socket connection then a new socket is created and assigned to the existing Secure 
Channel which has to be first reauthenticated by the server. Pending requests of 
the client and responses of the server are buffered until a new socket is available. 
However, if the error recovery fails (after trying to reconnect a certain number of 
times) an error message is sent around which enables the Application Layer to react 
on that. 

6.4.2  SOAP/HTTP 

SOAP/HTTP stands for SOAP over HTTP and is a widely accepted communication 
scheme in Web Service environments because it is simple and firewall-friendly. 
Since the standard ports for the Web protocol HTTP is used for transportation, no 
additional port has to be opened in the firewall. This means that OPC UA applica-
tions can securely communicate with each other via Internet in the same manner 
as Web browsers talk to Web servers. 

SOAP in general is a network protocol for exchanging data between systems 
and calling remote procedures. It thereby relies on several other standards for  
example XML for data representation and HTTP or TCP for data transportation. 

messages used for establishing a socket connection or exchanging connection error
that are forwarded to the upper layer or contains UA TCP-specific connection 

information. 
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Note that for OPC UA only HTTP is specified in the technological mapping. In 
principle a SOAP message is structured in a header and in a body which is reflected 
in Fig. 6.7. The headers contain addressing and routing information whereas the 
body encloses the payload that has to be transported. OPC UA does not define 
specific headers but uses headers specified in WS-Addressing defined at [W3C04c]. 
The encoded and secured Service message is then enclosed by the Body element 
of a SOAP message. Although the SOAP message is an XML-based data structure 
it is still capable of transporting both an XML encoded Service message as a child 
of the Body element and an UA Binary encoded message using Base64 encoding 
rules. Common structures and exchange patterns for SOAP messages used for 
OPC UA purposes are defined in [W3C07a] and [W3C07b]. 

 
Fig. 6.7 Structure of a SOAP message 

As mentioned above HTTP is used for transporting the SOAP messages. This is 
done by transmitting the OPC UA Service requests embedded in SOAP requests in 
the body of HTTP POST requests and the OPC UA Service responses the same 
way in HTTP POST responses. HTTPS which uses TLS for securing the exchanged 
HTTP data can also be used. However, when already applying one of the  above 
introduced Secure Channels this is an unnecessary overhead. Furthermore, TLS is 
not meeting all the requirements of OPC UA. But in some scenarios in where not 
all OPC UA requirements are needed it can make sense to disable UA security and 
use HTTP over TLS instead. 

6.5  Available Mapping Implementations 

Implementing a protocol stack for OPC UA is admittedly not an easy task and  
requires a lot of time. But it is not expected that everyone develops its own stack. 
An OPC UA stack is a generic component that can be used for a diverse range of 
applications and therefore many vendors can use the same stack and build their 
applications on top of it. To ensure interoperability on the stack layer and in order 
to verify the defined mappings the OPC Foundation decided to develop stacks  
implementing the specified mappings. 

Currently there are two stacks available: one implemented in C# and another 
one in ANSI C which are both part of the UA SDK provided by the OPC Foundation. 
The C# stack implements all mappings described above. However, the ANSI C 
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stack currently provides UA Binary, UA-SecureConversation, and UA TCP as 
mapping implementations. A JAVA stack implementation was under development 
during the time this book was written. 

In addition, it is possible generating your own stack for SOAP/HTTP using the 
WSDL provided by the OPC Foundation.  

6.6 Summary 

6.6.1  Key Messages 

OPC UA is open to future technologies since it defines abstract concepts and  
services which are then mapped to different concrete technologies. This allows 
adding additional mappings to technologies coming up in the future. 

A set of various mappings are already provided for the Transport Layer, the 
Security Layer, and for the Encoding Layer representing the protocol stack of an 
OPC UA application. A technological mapping of interfaces or applications using 
the stack is not in the scope of the OPC UA standard. 

For the Encoding Layer there are two mappings defined: UA Binary and XML. 
UA Binary is a fast and efficient encoding tailored for applications running at the 
Control Level or below (e.g., on the controller) of the automation pyramid whereas 
the XML provides a flexible and interoperable encoding for applications running 
at Operations Level or above (e.g., MES, ERP connectivity). 

OPC UA defines also two Security Layer mappings: WS-SecureConversation 
and UA-SecureConversation. WS-SecureConversation is a security protocol speci-
fied by OASIS in order to secure XML-based messages exchanged via Web  
Services. For example MS Windows Communication Foundation is implementing 
this standard. UA-SecureConversation is not a new protocol but combination of 
approved techniques and mechanisms of WS-SecureConversation and TLS. This 
adaptation has to be done, since the actual TLS standard as well as current imple-
mentations do not completely meet the requirements of OPC UA. However, this 
does not mean that future versions of TLS will not be a possible Security Layer 
mapping of OPC UA. 

At the lowest layer – the Transport Layer – OPC UA specifies two transport 
mechanisms which are namely UA TCP and SOAP/HTTP. UA TCP is a simple 
protocol on top of TCP providing special mechanisms required by OPC UA such 
as a special error recovery allowing the OPC UA Sessions to survive from network 
interruptions. The widely accepted standards SOAP/HTTP are used to provide a 
firewall-friendly mechanism for OPC UA applications in order to communicate 
over the Internet with Web Services. 

Since implementing all these layers is a lot of work and in order to help appli-
cation developers developing OPC UA applications the OPC Foundation provides 
a set of OPC UA standard deliverables already implementing all the defined  
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mappings. The standard deliverables are offered in the OPC UA SDK of the OPC 
Foundation which is freely available for members of the OPC Foundation. 

6.6.2  Where to Find More Information? 

All defined mappings are specified in [UA Part 6], whereas the abstract OPC UA 

6.6.3  What’s Next? 

Chapter 7 is about how OPC UA applications can be secured. Thereby the security 

OPC UA standard but necessary for running OPC UA applications such as Public 
Key Infrastructures. 
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Services are defined in [UA Part 4]. More information about XML schemas as a 
possible Data Encoding for OPC UA can be found at [W3C04a] and [W3C04b]. 

concepts of OPC UA are presented and also concepts that are not specified by the 

fications to be supported in order to implement SOAP/HTTP can be found at 
The specification of WS-SecureConversation is provided at [OASIS07]. The speci-

[W3C07a] and [W3C07b]. 



 

7 Security 

7.1  Why is Security so Important? 

The topic “security” gained a lot in importance in the automation domain in the 
past years although it is still very controversially discussed. 

In the IT world, this topic has already been very important for a long time 
caused by many publications and articles about security incidents of hackers that 
tried to intrude into systems of banks or credit card organizations. IT-administrators 
feared that the same could happen to their system and CEOs feared that the cus-

invest more money in security measures to resist those attackers. Soon people 

affected. Excellent examples for that can be found in the field of industrial auto-
mation. Today’s production processes of manufacturing companies are mostly based 
on IT systems. Production requests are initiated by Enterprise Resource Planning 
(ERP) systems, the execution of the process is managed by Manufacturing Execu-
tion Systems (MES), special HMIs used to for supervisory of the process, and the 
documentation of results, quality, and resource consumption are highly dependent 
on IT systems. And most of these systems do not act in an isolated environment 
anymore but have interconnections with systems from other areas within a plant, 

There are companies that have sites all around the world that are interconnected 

only a financial damage. Attacks on a chemical plant for example could also harm 
the environment and humans as well, which makes it to an attractive target for 
sabotage and terroristic activities. 

But how much security is necessary? This is the controversially discussed aspect 
of security. Some may state that security is not needed at all because their automa-
tion solution acts in an isolated environment, some others would like to secure any 
part of the system. A realistic answer to this question is that the appropriate level 
of security depends on many different factors like the concrete target environment, 
the asset to be protected, and also restrictions by regulation bodies. This means 

There are approved methods and tools available which can be used to simplify this 
investigation. One of the most important methods is a systematic security assess-
ment which is described in the Sect. 7.4. Once the necessary level of security is 
identified a security model can be developed in order to integrate security into the 
system in a proper way. Section 7.5 describes the abstract security model for OPC 
UA applications integrating measures identified in a security assessment for OPC 
UA environments described in Sect. 7.4.2. Besides the abstract model, also concrete 
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over the Internet. A security incident in such organizations could cause more than 

tomers would not trust the company anymore. Therefore companies decided to 

also any organization that is somehow dependent on distributed IT systems was

other sites of an organization or even from other organizations (e.g., supply chain). 

realized that not only banks and credit card organizations were affected but



technologies used for the implementation are important to the security of a system. 
The OPC UA Security implementations are based on certificates managed by 
Public Key Infrastructures (PKIs). Therefore, Sects. 7.6 and 7.7 point out how 
these technologies are used for securing OPC UA applications. Finally, Sect. 7.8 
gives a summary of security in the context of OPC UA. 

7.2  Organizational Perspective of Security 

Most people think about technical measures like firewalls when they first hear the 
term security and do not realize that it has also an organizational nature which is 
quite important to think about and to address in operational environments. How-
ever, OPC UA does not specify anything in that area since there are lots of other 
standards and guidelines mainly dealing with security from the management per-
spective. Therefore, this chapter only mentions some important aspects and refers 
to some sources that discuss that topic in more detail. 

Organizational security is about how humans deal with security instead of how 
computers and applications deal with security (which is discussed in Sect. 7.3). 
Obviously humans do not behave and work like computers since the way they 
work and act is influenced by feelings, motivation, background, and other social 
factors. An application can be forced to behave in a special way but this would not 
work in all cases with humans. For example, if data is encrypted with a certain 
tool then you can be pretty sure that this tool will not show the plain text to any-
body that does not know the correct password (assuming that the tool behaves 
correctly). But can you be sure that if you tell an employee a password that he will 
keep it for himself? Or that he will not write it on a piece of paper and place it dir-
ectly next to the computer as a reminder? 

There are a lot of different organizational measures that can be introduced in 
order to address this and similar problems. At this point only two aspects will be 
briefly discussed: awareness and responsibilities. 

Many people are often not aware of the potential threats at their workplace and 
the impacts on the organization they work for. Often they do not realize when 
something is going wrong. Opening an email attachment from an unknown sender 
is quite risky. There are attachments containing malicious code that can interrupt 
running production processes when it is executed. Some may argue that in the 
automation network no emails are allowed and that it is isolated from the office 
network. But in reality this isolation often does not exist anymore. Enterprise 
application such as ERP systems from the office network are tightly integrated in 
the production process. Such incidents can be avoided if an employee knows 
about the risks and the threats at his workplace and knows about proper measures 
learned in special trainings. Another problem comes up with the occurrence of 
anomalies in a system. Let us assume an operator of a production system realizes 
that the CPU load of his workstation is unusually high but after half an hour it 
returns to its usual load again. The most often reaction is that he is doing nothing 
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although this could mean that a malicious application is spying on the process and 
sending the recorded data to a person outside the company. The operator ignores 
the incident because he does not know what it is and also does not know what to 
do. A good measure to address this is to define clear responsibilities and duties for 
such incidents. The operator should know that he has to contact the responsible 
security team (which can be represented by the system administrator in smaller 
environments) of the company. The security team should inform the production 
manager, investigate and identify the problem, and solve the problem. 

These are just two typical scenarios the organizational security is dealing with. 
A broader and more detailed view on organizational security problems and mea-
sures can be found in [ISA99]. 

7.3  Technical Perspective of Security 

Besides the organizational perspective of security there is the more common tech-
nical perspective which more people are aware of. Technical security is about how 
systems and their infrastructures (e.g., software, computers, devices, and network) 
can be protected with technical measures. Security measures can thereby be intro-
duced in different phases of a system’s lifecycle. There are also approaches defining 
security measures for each phase of the development lifecycle like the Security 
Development Lifecycle (SDL) [LH05] defined by Microsoft. This is a good approach 
for assuring products are already secure before they are deployed at the customer’s 
site. But such an overall lifecycle model is neither in the scope of the book nor in 
the scope of the OPC UA standard. This book focuses on the requirements analysis 
and design of secure OPC UA applications. 

The first security-related task has to be done when collecting requirements for 
the system to be developed. Thereby security goals have to be defined (as a part of 
the requirements specification) addressing rules and regulations dictated by com-
panies or regulatory bodies like the Food and Drug Administration (FDA).1 
In the design phase, there are two tasks that have to be processed regarding secu-
rity: protecting the application to be developed and protecting its environment. 
The challenge for both tasks is to find the appropriate level of security since it has 
impacts on the characteristics of system such as performance and flexibility. 
Therefore, a tradeoff has to be made between those factors which are commonly 
investigated in an assessment. The common steps to be performed in such an 
assessment are described in Sect. 7.4.1. The results of such assessments are lists of 
security measures that have to be considered in the system design and imple-
mented in the product.  

                                                            
1The US Food and Drug Administration (FDA) define requirements for companies developing 
applications for the consumer industry in the United States. 
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The measures for the first task – protecting the environment of an OPC UA system – 
very much depend on the concrete environment. If security measures for the network 
infrastructure are introduced, then these measures have to be integrated into an  
existing network infrastructure and have thereby also to be conformant with rules 
and policies of the site. Therefore, it is hard to suggest concrete security measures 
on that level but generic concepts can be provided. Such a generic concept is the 
Defense-in-Depth strategy in which multiple layers of defense in networks are  
defined. For example, different network segments can be protected by firewalls of 
different vendors which makes it harder for hackers to intrude into the core of the 
system. A more detailed view on environment protection is provided in [ISA99]. 

For the second task – protecting the application – the OPC UA working group 
identified measures as results of a security assessment that are either suggested as 
good practices in [UA Part 2] or considered in the normative parts of the OPC UA 
standard. These measures are described in the Sect. 7.5 and 7.6. 

7.4  Determining the Appropriate Level of Security 

7.4.1   Security Assessments 

As indicated in the previous sections, the appropriate level of security for a system 
can be identified with the help of a security assessment. 

An assessment, in general, is a process with defined goals and steps that have 
to be accomplished by a defined group of persons. Each step instructs activities 
and results that have to be achieved in order to proceed to the next step. A security 
assessment has the goal to identify a useful set of security measures to protect 
assets2 of an environment or a system. Standardized security assessments are already 

domain some bigger companies just start to apply standardized assessments such 
as defined in [ISA99] for automation systems. There are lots of different standards 
for security assessments that vary in the amount of steps, the kind of activities, or 
the granularity of security measures but they all have the same basic procedure as 
described in the following sections. 

7.4.1.1  Defining Security Goals 

First of all security goals have to be defined. Security goals describe what of  
an asset has to be protected. In principle, there are three common security goals: 

                                                            
2An asset can be nearly anything that has to be protected (e.g., information, communication, 
hardware, and software). 
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processed for a long time in the “Office-IT-World”. However, in the automation 



confidentiality, availability, and integrity. Although these terms are quite well-known 
varying valid definitions can be found in literature [AL02]. However, it is impor-
tant that everybody that participates in the assessment has the same understanding 
of these three basic goals. This can be assured if an understandable and accepted 
definition is written down and distributed among the participants. But obviously 
three goals are not sufficient to describe what of an asset should be protected. There-
fore, further security goals have to be derived from these basic ones, for example 
auditability or nonrepudiation. In addition, a context in which the derived goals 
are used has to be defined, for example the auditability of the user authentication 
and authorization. Higher level security goals are often dictated by common secu-
rity policies of companies or rules by regulatory bodies. 

At the end of this step a list of security goals for a specific asset has to be cre-
ated to proceed to the next step. 

Common Security Policies vs. OPC UA Security Policies 
 
The term Security Policy is used in different contexts within this book. A 
security policy in general is a document written or at least approved by CIO 
of a company defining how a company deals with different security-related 
topics. 
In OPC UA a Security Policy is a collection of cryptographic algorithms 
used for securing the connection between OPC UA clients and servers. Sec-
tion 7.5.4 provides a more detailed description on that. 

7.4.1.2  Identifying Relevant Threats 

In the second step, the assessment team looks for threats that harm the previously 

attacks. But threats can also be of nontechnical nature. In such a case, they are 
more focusing on manipulating or tricking humans. For example, a hacker could 
personate himself as a service engineer pretending to repair something in a plant 
but intends to spy on the system. In many cases it is even a mixture of both. The 

Three good information sources for identifying potential threats are: vulnerabi-
lity databases, experience of security experts, and former security issues of previous 
or similar products. 

Vulnerability databases are provided via Web sites by special organizations that 
collect reports of exposures of security flaws and publish them in order to inform the 
community about these problems. There is the possibility to search threats by 
keywords which simplifies the process of getting vulnerabilities that are relevant 
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are based on a technical system like virus or a hacker that uses a computer for his 

tries to infect the plant network with a trojan that eavesdrop the network traffic. 

defined security goals. Threats can be of technical nature which means that they 

mentioned service engineer does not only want to get access to the system but also



for a specific target environment. The two famous examples for such vulnerability 
databases are CVE3 and CERT.4 

The involvement of security experts in principle is quite efficient since they 
have a good knowledge and a long experience with a broad range of security attacks 
and holes. Therefore, they can quickly identify the most important threats by ana-
lyzing the specific target environment and suggest countermeasures as well. But 
there are also some concerns with common “Office-IT” security experts since they 
often do not have enough domain knowledge and they may judge threats based on 
“Office-IT” requirements instead of considering the special requirements for 
automation systems. Particularly because of this circumstance some consulting 
companies specialized themselves on securing critical environments used in nuclear 
power plants and factories. 

It is also worth looking at problems and security issues of previous versions of 
the same product or similar products since they could also be relevant for the cur-
rent one. These issues should be captured in a kind of bug tracking database5 or 
documented in a bug report document or at least in the heads of some end-users or 
system-integrators that can be interviewed. 

As a result of this step, a list of threats has to be created whereby each of them 
harms at least one of the defined security goals defined in the first step. 

7.4.1.3  Determining Effective Countermeasures 

The process of searching countermeasures against specific threats can be very 
time consuming and therefore it is very helpful to have proper sources. Section 
7.4.1.2 mentions some sources for finding threats (vulnerability databases, secu-
rity consultancy, and experience) and these sources are also interesting for finding 
counter measures. The vulnerabilities databases for example often give hints and  
information about advisories, solutions and bug fixes for identified threats. 

                                                           
 3

4

5Bugzilla (http://www.bugzilla.org/) for example is useful open source tool that can be used. 
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CVE Web site, http://cve.mitre.org/cve/ 
CERT Web site, http://www.cert.org/advisories/ 

In the final step of the assessment, countermeasures have to be determined 
against the threats that were identified in the second step. As described previously, 
threats can be either of technical or of nontechnical nature – and this is also true 
for countermeasures. A threat can be mitigated by a technical solution such as an 
identity management system allowing or denying access to a server room by 
automatically validating ID-Cards or by a nontechnical solution by security  
personnel checking employee’s ID-Cards. It is also important when processing 
this assessment phase to realize that there are countermeasures addressing more 
than one threat and sometimes only several countermeasures together are able to 
mitigate a threat. 



At the end a list of countermeasures has to be generated in a way that for each 
relevant threat at least one countermeasure is identified. If there is more than one 
countermeasure for one threat, then a decision has to be made based on defined 
requirements. Thereby kind and priority of requirements can vary from company 
to company but most common ones are: 

• Effectiveness 
• Implementation efforts 
• Maintenance 
• Usability 

nition of the appropriate level of security for the investigated target environment 
and has to be implemented in the product. 

7.4.2  The OPC UA Security Assessment 

Section 7.4.1 describes what security assessments are and how they are processed 
for automation solutions in general. Such a security assessment has been processed 

tured in [UA Part 2] which is an informative part of the OPC UA specification. 

used within this part of the specification and also in other parts. Particularly for 
the security goals there are various interpretations even among security experts 
and therefore it is important to commit to one definition that is used throughout 
the different parts of the OPC UA specification. 

A further security assessment on OPC UA [Pet08] has been done by Digital 

7.5  The OPC UA Security Model 

7.5.1  Security Architecture 

7.5.1.1  Environment 

OPC UA applications will run in varying environments with different security 

how OPC UA applications can be deployed. In this example, OPC UA is applied 
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• Compliance. 

This part gives also a common understanding of important security terms that are 

for OPC UA applications by the OPC UA working group and the results are cap-

The resulting list of countermeasures after the decision finally represents the defi-

requirements, threats, and security policies. Figure 7.1 shows an example of 

Bond, a company specializing on securing critical infrastructures. 



at different levels of the automation pyramid which is reflected by the different 
network segments indicated in the example below. 

At the plant floor level an OPC UA server can run in the controllers providing 
data from field devices to OPC UA clients. Another OPC UA server can be used 
for gathering data from controllers which is handled by a field engineer working 
with an OPC UA engineering client. Furthermore an OPC UA server could even 
run in the controller providing data changes to clients (e.g., HMIs). 

On top of the plant floor at operations level an OPC UA application is acting as 
a client and a server at the same time. It could be the client collecting data from 
the server running at the lower level and performs special calculations, generates 
alarms, historizes data, or performs operations whereby the results are presented to 
other OPC UA clients. A good example for that are applications monitoring the 
state of the production process. 

At the very top level which is represented by the corporate network an OPC 
UA client integrated in an ERP system could obtain information about the work-
ing hours of used devices in the plant floor and if necessary automatically create a 
maintenance request. 

In addition to that the corporate network layer could allow remote access via 
Internet to OPC UA servers in order to perform service or maintenance tasks. 

 
Fig. 7.1 OPC UA environment 
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and for different purposes within the same environment. The security require-
ments for these applications may also differ in various ways. The tradeoff between 
security and performance is a good example. At the very top level security might 

At the very bottom level the requirements could be completely different: perform-
ance could be more important than security when data has to be acquired in very 
fast and efficient way in order to control a production process. 

Therefore, OPC UA has to provide a flexible security model that allows OPC 
UA applications to be run at different levels in the automation pyramid and at 
same time meeting the security requirements for each environment. This model is 
described in the following sections. 

7.5.1.2  Architecture 

The OPC UA security architecture is described in [UA Part 2] and defines a layered 
approach in which each layer has specific responsibilities regarding security. The 
security architecture is depicted in Fig. 7.2. 

 

Fig. 7.2 OPC UA security architecture 

information, settings, instructions, and real-time related data from devices between 
a client and a server in a Session. A Session is used for authenticating and authori-
zing users working with the client (Sect. 7.5.3.4) as well as for authenticating and 
authorizing certain products (Sect. 7.5.3.3). The mechanisms for both authorization 
and authentication mechanisms are addressed by the OPC UA Session Services 
specified in [UA Part 4] and described in Chap. 5. 

An OPC UA Session runs on top of a Secure Channel which is in the responsi-
bility of the communication layer. The Secure Channel secures data exchanged in 
a session in several ways: first of all it maintains the integrity by applying digital 

The application layer at the very top of the figure is used for transmitting plant  
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The example scenario above shows that OPC UA can be used at various places 

be more important than performance since this network is connected to the Internet. 



signatures and confidentiality by encrypting sensitive information of the transmitted 
messages. Furthermore OPC UA introduces the concept of application authentication 
and authorization which allows applications to identify other applications. This 
concept is based on the usage of special X.509 certificates in conjunction with the 
OPC UA Secure Channel Services and is described in sects. 7.5.2 and 7.6.2. The 
Secure Channel Services are also specified in [UA Part 4]. 

Both application and communication layer rely on a special infrastructure for 
managing certificates that are used for securing the application. On the one hand a 
technical infrastructure is needed for example in order to create such certificates 
and on the other hand an organizational infrastructure is needed for verifying to 
whom such certificates are provided. The OPC UA standard does not specify how 
such an infrastructure looks like since there are many different concepts that all 

cribes some general concepts and use cases as well as some hints for applying them 
in the industrial automation domain. 

At the very bottom the transport layer is responsible for transmitting and recei-
ving the secured data through a socket connection. Here mechanisms for error 
recovery have to be applied in order to maintain the availability of the system 
which can be threatened by special attacks such as Denial-of-Service.6 

environment in which OPC UA applications are deployed. Therefore, the architec-
ture and the specified Services of OPC UA are described in an abstract way and 
different technological mappings are specified in [UA Part 6]. An overview over the 
different mapping possibilities is given in Chap. 6. 

7.5.2  Securing the Communication Channel 

7.5.2.1  Connection Establishment 

The connection establishment between an OPC UA client and an OPC UA server 
includes four steps that are described in the following. 

In the first step, an OPC UA client informs itself about the different configura-
tion options of how a connection to the server can be established. If the applica-
tion is preconfigured and already knows how to connect to the server then this step 
can be skipped. If the OPC UA client is not preconfigured, it sends an unsecured 
GetEndpoints request to the Discovery Endpoint of the server in order to obtain the 
descriptions of the existing Session Endpoints including the security configuration 

                                                           
 6A Denial-of-Service attack prevents authorized access of a resource or a function of a system. A 

typical example for such an attack is overloading a server by sending a huge amount of messages 
in a very short period of time which is called as message flooding. 
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The technologies used for the different layers are also dependent on the concrete 

depend on the concrete environments and requirements. Therefore Sect. 7.7 des-



which contains for example the supported Security Policies (Sect. 7.5.4), the Security 
Modes, User Token Policies and the server’s Application Instance Certificate 

mation is retrieved by further discovery mechanisms like those described in Chap. 5 
and 9 and is specified in [UA Part 12]. As soon as the client receives the response 
with the desired information, it selects a Session Endpoint with a special security 

of the server. This is done by requesting the validity status from its associated Vali-
dation Authority (VA) which can be for example a local crypto component (e.g., 
OpenSSL or Microsoft crypto library) or a central service that is consumed for 
that purpose. 

If the certificate is considered as trustworthy, then as the second step an Open-

rity Mode is sent to the selected Session Endpoint of the server. The Security Mode 

is selected, then the OpenSecureChannel message will not be secured. When 
“Sign” is chosen then the message is signed with the associated Private Key of the 
Application Instance Certificate of the OPC UA client. Signing messages allows 
detecting whether a received message has been manipulated by an untrusted third 
party. If “SignAndEncrypt” is used, then the message is additionally encrypted with 
the Public Key of the server’s Application Instance Certificate. Encrypting mes-
sages prevents or at least makes it very difficult for untrusted third parties to read 
the content of messages exchanged between two applications. The Security Policy 
defines thereby which algorithm to choose for signing and encrypting the message. 

Application Instance Certificate by requesting its VA. The certificate is provided 

certificate is trustworthy by the server, then the message has to be interpreted 
according to the Security Policy and the Security Mode. This means the message 
is decrypted with the associated Private Key of the server’s Application Instance 
Certificate and the signature of the message is verified with the Public Key of the 
client’s Application Instance Certificate. The server sends back the response to 
this request which is similarly secured. Therefore, the same checks on the message 
and the server certificate are performed on the client side. The establishment of the 
Secure Channel is mainly used for exchanging special secret information between 
clients and servers. This secret is used for deriving Symmetric Keys used for 
encrypting and signing all further messages instead of using the Public Key 
Cryptography operations with Asymmetric Keys which are more CPU-intensive. 

Symmetric Key. 
If these keys are derived on both client- and server-side then the Secure Channel 

is established. However, such a Secure Channel has also a finite lifetime. After 
this lifetime has expired a renewal of this channel has to be initiated. Thereby the 
same steps have to be processed again in order to derive new Symmetric Keys. 
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Figure 7.3 illustrates how these secrets are exchanged and used for deriving a 

in an unencrypted part of the message and can thereby be read by the server. If the 

(Sect. 7.6.2.1). This Discovery Endpoint is either well-known or the location infor-

configuration that it can handle and validates the Application Instance Certificate 

has thereby three possible states: “None”, “Sign”, and “SignAndEncrypt”. If “None” 

Once the secured message is received by the server it first validates the client’s 

SecureChannel request secured in accordance to the Security Policy and the Secu-



 
Fig. 7.3 Creating Symmetric Keys 

Secure Channel. But this renewal process is transparent to the Session that is cre-
ated on top of a Secure Channel. This means that the Session is not affected and 
remains the same (Fig. 7.4). 

 
Fig. 7.4 Creating an OPC UA Secure Channel 
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This is an additional security measure in order to resist long-term attacks on the 



Channel. Therefore, a CreateSession request is sent to the server. This message is 
secured according to the Security Mode and Security Policy agreed upon for the 
connection. However, as indicated previously the derived Symmetric Keys are 
used instead of the Public and Private Keys of the client and the server. In the res-

the client in order to prove its functional capabilities and to prove with challenge–
response-test the possession of the certificate used for creating the underlying 
Secure Channel. Therefore, a nonce is sent with the request which has to be signed 
with the server’s private key. As soon as the client receives and interprets the res-

the server passed the challenge–response-test by verifying the signed nonce. If the 
certificates are trusted by the client, the server provides the needed capabilities 

and last step. 
Before the created Session can be used by the client and the server it has to be 

activated. This is done by sending an ActivateSession request to the server includ-
ing the credentials of the current user together with the Software Certificates of 
the client. One reason for separating the Session establishment in CreateSession 
and ActivateSession is that it has to be ensured that user credentials are sent to the 
same server that was used to establish the Secure Channel. This is verified in the 
CreateSession Service with several checks described above. The ActivateSession 

 

 
Fig. 7.5 Establishing an OPC UA Session 

Service is mainly for providing the user credentials. Once the request is received 
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The third step is to create a Session on top of the previously established Secure 

and proved that it possesses the correct certificate then it proceeds to the fourth 

ponse to this request the server provides its Software Certificates (Sect. 7.6.2.2) to 

ponse it validates the server’s Software Certificates. Furthermore it verifies whether 



by the server it validates the Software Certificates of the client and in addition it 
validates the user credentials. However, the user credentials can be of different 
types which imply also different validation mechanisms. The user credentials 
could be represented by an X.509 certificate which means that it is validated by a 
Validation Authority like it is done with the Application Instance and Software 
Certificates. In many other cases, the user credentials are provided in the form of a 
username and password. The validation of this type of credentials very much 
depends on the concrete application. In the simplest case it is a simple lookup in a 
user database. After all validation have succeeded a connection between the client 
and the server is fully established and process data in the server can be accessed 
by the client (Fig. 7.5). 

Symmetric Keys vs. Asymmetric Keys 
 
When using Symmetric Keys for encrypting and signing data then the same 
keys are used for decrypting and verifying the signature of the data. This 
means that in the client–server scenario both parties have identical keys for 
certain cryptographic operations. This kind of securing data is very fast and 
efficient. However, there is a fundamental key distribution problem: How 
can a secret key be provided to the communication partner in a secure way? 
There is always the risk that it gets lost, stolen, or is illegitimately handed to 
other parties. 
That problem can be solved by using the Public Key Cryptography with 
asymmetric keys. The basic concept thereby is that each entity has two keys: 
a Public and a Private Key. The Public Key can be used for encrypting data 
and can therefore be provided to any party intending to exchange secret 
data. The data encrypted with the Public Key can only be decrypted with the 
associated Private Key which is kept secret by the owner and never handed 
out. In addition, the Private Key allows creating Digital Signatures that can 
only be verified with the associated Public Key. So other parties can verify 
whether data has been changed during transmit and that these data really 
comes from the owner of a certain Public Key. 
The disadvantage of using Public Key Cryptography is the bad performance. 
Therefore these two concepts are often combined in one protocol (e.g., 
Transport Layer Security (TLS) and OPC UA). During the connection estab-
lishment the Asymmetric Keys are used for agreeing upon a Symmetric Key 
for securing the further exchanged data which is a good tradeoff between 
performance and security. 

7.5.2.2  Impersonation 

A typical use case in the automation domain is log-over of user sessions or in 
other words user impersonation (see Fig. 7.6). In such a scenario a user “A” with 
specific permissions is connected with his client to a server. Another user “B” 
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would like to overtake the session of user “A” in order to perform special tasks. A 
practical example is when an operator supervising a production process hands 
over a shift in plant to another operator. Thereby a log-over procedure has to be 
performed in which both operators type in their password in the monitoring appli-
cation (we assume that this application is an OPC UA client) in order to correctly 

Fig. 7.6 Operator log-over 

example above the credentials of the user “B”) is sent to the OPC UA server which 
is shown in Fig. 7.7. The user credentials are validated by an authentication ser-

 
Fig. 7.7 Impersonating a user 

local session management the owner of the session and returns a response to the client. 

sion is already running (Secure Channel and Session is created and activated) a fur-

vice which could be for example a directory service using LDAP. If the user is 

ther ActivateSession Request message with the credentials of the new user (in the 

authenticated and authorized to overtake the session then the server changes in its 

OPC UA addresses this use case with the ActivateSession Service. Once a Ses-
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hand over the shift of user “A” to user “B”. 



7.5.2.3  Connection Termination 

The whole connection is terminated by exchanging the appropriate closure service 
messages CloseSession and CloseSecureChannel whose usage is shown in Fig. 7.8. 
Both closure message types are secured with symmetric keys. However, OPC UA 
specifies that the CloseSecureChannel messages only have to be signed since no 
sensitive data is transmitted. 

 
Fig. 7.8 Terminating an OPC UA connection 

Do I have to implement that all on my own? 
 
No, note that the connection establishment and termination steps will in 
most cases be encapsulated by a third-party SDKs offering a “connect” and 
“disconnect” methods in their APIs processing all the described steps in order 
to hide complexity from the application developer. The OPC Foundation for 
example also offers different stacks and a SDK implementing all the func-
tionality necessary for securing the communication channel. This approach 

similar complexity for the connection establishment and most applications 
use third party libraries. 

7.5.3  Authentication and Authorization 

7.5.3.1  General Definitions 

Before talking about how authentication and authorization is done in OPC UA 
these terms have first to be defined for the present context. In general, they are  
often considered as the same. However, there are fundamental differences. 

218 7 Security

OpcUaClient
DiscoveryEndpoint SessionEndpoint

CloseSession Request

CloseSession Response

CloseSecureChannel Request

CloseSecureChannel Response

OpcUaServer

is quite similar to how HTTPs is handled by application vendors. It has a 



Authentication is the process of verifying a claim made by an entity (e.g., person, 
computer, and certificate). For example a person claims to be operator “A” of a 
system. The system is verifying that by checking the user name and password pro-
vided during the log-in process. If the user is found in the user database and the 
provided password is correct then the person is identified and therefore authenti-
cated. In another example a certificate (Sect. 7.6) sent to an entity “A” (e.g., a person 
or an application) contains the claim that the embedded public key belongs to another 
entity “B”. Authentication in this case could be done by verifying whether entity 
“A” has the private key associated to the embedded public key. A typical mecha-
nism for verifying that is a so-called challenge–response-test. Entity “B” sends 

with its private key and sent it back in a response entity “A” can verify the signature 
of the data with the public key of the provided certificate and confirm the claim. 

Authorization is the process of verifying whether an authenticated entity has 
the permission to perform a special task. For example, user “A” is authenticated 
since he provided the correct user name and password. But it has still to be veri-
fied whether he is allowed to access certain data. Typically he is not allowed to 
increase his salary in a financial system of an organization. 

7.5.3.2  Application Authentication and Authorization 

Application authentication and authorization means that in the present context an 

 

 
Fig. 7.9 Application authentication and authorization 
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OPC UA server can verify that an Application Instance Certificate belongs to a  

entity “A” data to be signed as the challenge. Once entity “B” has signed the data 



certain OPC UA client and can therefore allow the client to establish a Secure 
Channel and vice-versa. A mutual challenge–response-test is inherently performed 
in the OPC UA communication protocol when establishing a Secure Channel with 
the SecurityMode “Sign” or “SignAndEncrpyt” (see Sect. 7.5.2.1) between the 

is performed. On the one hand the client proves the possession of the private key 
associated with its Application Instance Certificate by signing the OpenSecure-
Channel request and the server can verify the signed request with the public key  
of the client’s certificate. On the other hand the server signs the response to the 
OpenSecureChannel request with its private key so that the client can verify whether 
the certificate received from the server is evidently the server’s certificate. 

7.5.3.3  Product Authentication and Authorization 

Products or specific versions of products can also be authenticated and authorized 

version of a product gets certified by a Certification Authority (CA) of a test lab it 
obtains Software Certificates (see Sect. 7.6.2.2) containing the test results in terms 
of tested Profiles (see Sect. 7.5.4). 

Software Certificates are exchanged during the session establishment: in the 
CreateSession response the server provides its certificates to the client and in the 
ActivateSession request the clients provides its certificates to the server. Both 
the client and the server validate the Software Certificates and decide based on the 
supported Profiles, the product or the product version whether they want to com-
municate with the other or not. For example if a specific version of an OPC UA 
server does not support a certain Service and a client needs that to fulfill its task it 
could immediately close the session and connect to another server. 

7.5.3.4  User Authentication and Authorization 

User authentication and authorization means that an OPC UA server can verify the 
user intending to access data of the server is really the user he claims to be. There-
fore the user provides its credentials to the server as a proof of its identity. OPC 
UA support different types of user credentials which are listed in Table 7.1. 

Table 7.1 IdentityToken types 

Symbolic ID Description 
Anonymous No user information is available 
UserName A user identified by user name and password 
X509v3 A user identified by an X509v3 Certificate 
WSS A user identified by a WS-SecurityToken. (e.g. SAML, 

Kerberos-Ticket) 
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client and the server. Figure 7.9 shows how the application authentication process 

by applications since they have also special certificates associated. When a certain 



 

Fig. 7.10 User authentication and authorization – general 

 

Fig. 7.11 User authentication and authorization with X.509 certificates 
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establishment. Here the ActivateSession Service is used for transferring user cre-
dentials to the server. However, depending on the transferred credential type, the 
server performs different tasks in order to verify the identity of the user. The com-
mon case is shown in Fig. 7.10. In this scenario the user identity and the associated 
permissions are verified by an authentication service accessing for example the 
ActiveDirectory of a domain or any other kind of identity management system. 

The other case is when the credentials are provided in the form of an X.509v3 
certificate indicated in Fig. 7.11. An additional authentication service is not neces-

ciated with the OPC UA server. Permissions of a user could also be a part of the 
certificate itself (e.g. defined in a V3 extensions) and be verified by the OPC UA 
server. Examples of how VAs look like and how they are used is given in Sect. 7.7. 

7.5.4  Security Policies and Profiles 

OPC UA products are certified against specific Profiles defined in [UA Part 7]. 
Profiles in general contain functionality that an application has to support in order 
to be compliant (see Chap. 12 for more details). Some of the Profiles define secu-
rity functions such as encryption algorithms. However, the fact that these func-
tions are implemented in the application does not imply that all functions are also 
used. For example, a set of different encryption algorithms can be supported by an 
OPC UA application but obviously only one can be used for a single connection. 

The choice of which security function is used for a connection is done by agreeing 
upon a specific Security Policy between client and server in advance. It is identi-
fied by a well-defined URI and contains unique names of security algorithms 
for different purposes such as signing and encrypting. For example http:// 
opcfoundation.org/UA/SecurityPolicy#Basic128Rsa15 is a security policy defining 
the AES algorithm with 128 Bits keys for encrypting and signing messages sym-
metrically and the RSA1.5 algorithm for asymmetric operations. Two OPC UA 
applications can only communicate with each other if they have at least one Security 
Policy in common. However, applications can be configured to not accept certain 
Security Policies although they support it (from the implementation point of view). 

7.6  Certificates 

7.6.1  What is a Certificate? 

Before talking about how to manage certificates it has to be made clear what in the 
certificates are in the context of OPC UA are. 
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The user authentication and authorization process is performed during the session 

sary since the user certificate can be validated with the Validation Authority asso-



A certificate in general is an official document affirming some fact. In OPC 
UA we are talking about so-called digital certificates. These are electronic docu-
ments containing different information affirmed by a trusted third party. In princi-
ple, certificates are used for distributing public keys of a public/private key pair 
used for Public Key Cryptography among entities that are using them for different 
purposes, for example for encrypting data. Public Key Cryptography is quite 
complicated and a big topic which is not described very detailed in this book. A 
detailed description is provided in [SF03] and [AL02]. Two main goals are fol-
lowed with digital certificates: the first is to bind special information and a public 
key to a specific owner that the receiver of certificate can identify the owner. And 
the second goal is to ensure the integrity of the public key and the associated data 
in order to detect manipulations of the certificate by third-parties. When discuss-
ing the concepts of a digital certificate it is important to recognize that there are 
different types and formats like X.509v3 certificates, Simple Public Key Infra-
structure (SPKI) certificates, Pretty Good Privacy (PGP) certificates and Attribute 
certificates. OPC UA focuses on the usage of X.509v3 certificates which is the 
most common type. 

Table 7.2 Content of a X.509 certificate 

Field Description 
Version Describes the version of the certificate which can be 1, 2, or 3 

For OPC UA purposes this should always be 3 
Serial Number Must be positive integer identifying a certificate issued by a par-

ticular CA and must therefore be unique in his scope 
Signature Algorithm Contains the identifier of the signature algorithm used by the CA 

for signing this certificate 
Issuer Identifies the CA who issued and signed the certificate. The 

identifier of the CA is represented by a distinguished name (DN) 
Valid From The date when the validation period of the certificate begins 
Valid To The date when the validation period of the certificate ends 
Subject The identifier of the entity that owns the certificate represented 

with a distinguished name (DN). A V3 extension may also pro-
vide an alternative name (subjectAlternativeName) for this en-
tity which may provide addition information or is simply more 
readable for humans 

Public Key Contains the identifier for the type of the public key of the sub-
ject as well as the key itself 

<Extensions> Extensions are only available when using V3 of X.509 certifi-
cates. Standardized extensions are for example Key Usage, Cer-
tificate Policies, Subject Alternative Name, and CRL Distribu-
tion Point 

Signature Contains the digital signature created by the issuer in order to 
sign the certificate 

 

2237.6 Certificates



X.509v3 is a standard format specified in [HPF+02]. Table 7.2 lists and describes 
the common content of such a certificate. The main advantage of X.509v3 is that it 
is extendable which means that additional fields can be added in a well-defined 
way. Common product-specific extensions like “Subject Alternative Name” or 
“Enhanced Key Usage” provide additional or more precise information about the 
embedded public key. Even OPC UA makes use of this concept and defines an 
addition extension for its Software Certificates which are explained in Sect. 7.6.2.2. 

Certificates can be further classified in self-signed and signed by trusted Certi-
fication Authority. When the private key associated to the public key of the new 
certificate is used to sign the certificate (i.e., to generate the signature) then this is 
called a self-signed certificate. This means the entity generating the certificate is 
its own Certification Authority (see left side in Fig. 7.12). However, when another 
entity uses its private key to sign the certificate then it is trusted by a Certification 
Authority (see right side in Fig. 7.12). 

The lifecycle of certificates is managed by a Public Key Infrastructure which is 
described in Sect. 7.7. 

Fig. 7.12 Self-signed vs. signed by a trusted CA 

7.6.2  OPC UA Certificates 

OPC UA applications use three kinds of X.509 certificates for the connection  
establishment (see Sect. 7.5.2.1). The different certificate types are described in 
the following sections. 

7.6.2.1  OPC UA Application Instance Certificates 

Each installation of an OPC UA product requires an X.509v3 certificate named as 
Application Instance Certificate. Table 7.3 shows the content of an Application 
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Instance Certificate specified in [UA Part 6] whereby the structure is compliant to 
[HPF+02]. This certificate identifies a running instance of an OPC UA application 

for the concrete environment. 

Field Description 
Version Shall be “V3” 
Serial Number The serial number assigned by the issuer 
Signature Algorithm The algorithm used to sign the Certificate 
Issuer The distinguished name of the Certificate used to create the signature 

The issuer field is completely described in [HPF+02] 
Valid From The date when the validation period of the certificate begins 
Valid To The date when the validation period of the certificate ends 
Subject The distinguished name of the application instance 

The Common Name attribute shall be specified and should be the 
productName or a suitable equivalent. The Organization Name  
attribute shall be the name of the Organization that executes the  
application instance. This organization is usually not the vendor  
of the application 
Other attributes may be specified 
The subject field is completely described in [HPF+02] 

Public Key The public key associated with the Certificate 
SubjectAltName 
(Ext) 

The alternate names for the application instance 
Shall include a uniformResourceIdentifier which is equal to the  
applicationUri 
Servers shall specify a dNSName or IPAddress which identifies the 
machine where the application instance runs. Additional dNSNames 
may be specified if the machine has multiple names. The IPAddress 
should not be specified if the Server has dNSName 
The subjectAltName field is completely described in [HPF+02] 

Key Usage (Ext) Specifies how the certificate key may be used 
Shall include digitalSignature, nonRepudiation, keyEncipherment, 
and dataEncipherment  
Other key uses are allowed 

Extended Key  
Usage (Ext) 

Specifies additional key uses for the Certificate 
Shall specify serverAuth and/or clientAuth  
Other key uses are allowed 

Signature The signature created by the Issuer 
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on a host and is obtained from either a trusted private or  public CA responsible 

Table 7.3 Fields of an Application Instance Certificate 



7.6.2.2  OPC UA Software Certificates 

Another type of X.509v3 certificate used for OPC UA is the Software Certificate 
which is also compliant to [HPF+02] and specified in [UA Part 6]. Instead of a 
running instance this certificate identifies a specific version of an OPC UA pro-
duct. It has an additional v3 extension field containing the tested and passed OPC 
UA Profiles defined in [UA Part 7] for this product. By exchanging this informa-
tion during the connection establishment both applications know whether they can 
communicate with each other in a proper way and which Services they support. 
This certificate can be obtained by accomplishing the OPC UA certification pro-
cess7 of accredited test laboratory.8 Table 7.4 lists the fields of OPC UA Software 
Certificates. 

Table 7.4 Software Certificates 

Field Description 
Version Shall be “V3” 
Serial Number The serial number assigned by the issuer 
Signature Algorithm The algorithm used to sign the Certificate 
Issuer The distinguished name of the Certificate used to create the  

signature 
The issuer field is completely described in [HPF+02] 

Valid From The date when the validation period of the certificate begins 
Valid To The date when the validation period of the certificate ends 
Subject The distinguished name of the product 

The Common Name attribute shall be the same as the product-
Name in the SoftwareCertificate and the Organization Name  
attribute shall the vendorName in the SoftwareCertificate 
Other attributes may be specified 
The subject field is completely described in [HPF+02] 

Public Key The public key associated with the Certificate 
SubjectAltName (Ext) The alternate names for the product 

shall include a “uniformResourceIdentifier” which is equal to 
the productUri specified in the SoftwareCertificate 
The subjectAltName field is completely described in [HPF+02] 

Key Usage (Ext) Specifies how the certificate key may be used 
Shall include digitalSignature, nonRepudiation, keyEncipher-
ment, and dataEncipherment  
Other key uses are allowed 

Extended Key Usage Specifies additional key uses for the Certificate 

  
7OPC Certification Process Web site, http://www.opcfoundation.org/Certification.aspx. 
8The first accredited OPC Certification Test Lab is operated by ascolab. 
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(Ext) May specify “codeSigning” 
Other key usages are not allowed 

softwareCertificate The XML encoded form of the SoftwareCertificate stored as 
UTF8 text 
Reference [UA Part 6] describes how to encode a Software-
Certificate in XML 
The ASN.1 Object Identifier (OID) for this extension is: 
1.2.840.113556.1.8000.2264.1.6.1 

Signature The signature created by the Issuer 

7.6.2.3  OPC User Certificates 

The third type of certificate is the user certificate identifying the current user  
intending to access the data of the server during the connection establishment (see 
Sect. 7.5.2.1). However, user certificates are only one possible credential type 
supported by OPC UA (see Sect. 7.5.3.4 for other types) and therefore not a req-
uirement for applying OPC UA. The content of the fields should be compliant to 
[HPF+02] in order to be fully interoperable with other OPC UA products. 

7.7  Public Key Infrastructure for OPC UA 

7.7.1  What is a PKI? 

A Public Key Infrastructure is used for managing Digital Certificates as described 
in Sect. 7.6. It provides thereby the technical and organizational basis for accom-
plishing different tasks with certificates. From an abstract point of view a PKI 
involves several entities with specific roles and duties such as the Registration 
Authority (RA), the Certification Authority (CA), Validation Authority (VA), and 

and in which PKI use cases they are involved in. 
An End-Entity (EE) is the user of a certificate and is represented for example 

by a person, a computer, or an application. For a better understanding EEs in the 
context of this book are considered to be OPC UA products, installed instances of 

A Registration Authority (RA) which can also be an application or a person or 
both is the direct contact for the EEs regarding questions on certificates. Certifica-
tion, certificate renewal, and revocation requests are first processed by a RA of a 
PKI. Thereby he has to identify the requesting EE and verify the provided infor-

further processing. 
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End-Entities (EE). Figure 7.13 shows how these entities are related to each other 

mation. After that the RA forwards the requests to the Certification Authority for 

OPC UA products, or users of OPC UA applications. 



Fig. 7.13 Entities of a Public Key Infrastructure 

  
The Certification Authority (CA) is the entity (which is mostly a person using 

like the Validation Authority when certificates are revoked. The RA and CA are 
often combined together since they have a very strong relation to each other.  

The different approaches for implementing the use cases are described in 
Sect. 7.7.3. 

7.7.2  Trust Models 

This section describes trust models in general and the different model types. How-
ever, it is important to define in advance what trust in the present context means. 
Adams and Lloyd [AL02] provides the following definition: “trust between two 

when the client can assume that the CA will establish and maintain an accurate 
binding of meta-information and the Public Key. Furthermore an OPC UA client 
trusts an OPC UA server if the client is convinced that a Public Key contained in 
the server’s certificate really belongs to the OPC UA server. So trust between enti-
ties can be established by trusting in the associated certificates. This can be done if 
the administrator decides that the certificate of the OPC UA server should be 
trusted and stores it in a database of the OPC UA client containing all the trusted 
certificates. The OPC UA client now knows that a communication with that cer-

described scenario which is commonly known as a Direct Trust Model. 
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tain server can be established since it is trustworthy. Figure 7.14 illustrates the 

entities in general means that one entity behaves exactly the way another entity 
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special software, but fully automated and rule-based CAs are also possible) that 

order to verify whether they can trust the certificates or not. 

issues, renews, and revokes certificates. In addition to that, it informs other entities 

The VA is responsible for validating certificates that are provided by EEs in

expects”. This means for the present context that an OPC UA client trusts a CA 



 
Fig. 7.14 Establishing Direct Trust 

 
Fig. 7.15 Establishing Hierarchical Trust 

the CA’s certificate is stored in the client’s database. The client trusts the server’s 

scenario represents a Hierarchical Trust Model. 
Trust models show the different trust relationships between entities and pro-

vide better understanding and reasoning about the security of the applying system. 
Therefore, they are used for planning and designing PKIs. The structure of such 
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the server certificate is signed by a trusted CA. Instead of the server’s certificate 
There is also another basic model of how trust can be established. In that model 

certificate since it trusts the CA’s certificate which can be seen in Fig. 7.15. This 
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models varies depending on the requirements of the concrete scenario. Two basic 
models are briefly introduced in the following. 

7.7.2.2  Strict CA Hierarchy 

The most common form of a trust model is the strict hierarchy of CAs. This model 
(see Fig. 7.16) is depicted as an inverted tree with special CA as the root. This CA 

domain trust this root CA. The root CA could for example be responsible for issu-
ing certificates for a whole organization. For larger organizations that are organ-
ized in different units it makes sense to have multiple CAs for example one for 
each unit. In such a case, the root CA is directly trusted by a defined number of 
sub-CAs and the sub-CAs are directly trusted by the EEs they are responsible for. 
Such a hierarchy is established by the following steps: 

1. A root CA is established and a so-called self-signed root certificate for the CA 
is created and distributed among all other entities in this trust domain. 

2. A defined number of sub-CAs are established and for each a certificate is  
issued by the root CA and is distributed among all EEs a particular CA is res-
ponsible for. 

3. For each EE (that is, a person, a computer, or an application) a certificate is 
created by a responsible sub-CA. A certificate of an EE is distributed among 
other EEs that it intends to communicate with. 

 
Fig. 7.16 Hierarchical Trust Model 

7.7.2.3  User-Centric Trust Model 

In a user-centric trust model each user (that is person, computer, or application) is 
totally responsible for deciding who to trust. Such a decision is made based on dif-
ferent factors such as personal contact, rules or experience. The model of the trust 
domain results in a full-meshed network of entities with trust relationships (see 
Fig. 7.17). In principle, there are two approaches leading to such a trust model: by 
applying Direct Trust and exchanging self-signed certificates or by a Web-of-Trust. 
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is the so-called root CA and acts as a “trust anchor”. All other entities in this trust 



A typical application applying that approach is Pretty Good Privacy (PGP)9 which 
builds up a Web-of-trust in which each entity certifies the public key of another 
entity. 

Fig. 7.17 User-Centric Trust Model 

7.7.3  Certificate Lifecycle Management 

In the sections before, we described how a PKI is established and which roles it 
involves. We also pointed out that PKIs are used for managing certificates which 
includes use cases like requesting, creating, installing, distributing, revoking, 
renewing, and validating certificates. This means that certificates are not static 
objects that are created once and used until a system retires. In other words, cer-
tificates have a specific lifecycle that is managed by a PKI. Furthermore, there are 
different approaches of handling the lifecycle phases. Therefore, in the following 
sections we will describe and discuss the most important approaches for each phase. 

7.7.3.1  Request and Create Certificate 

The creation of certificates signed by trusted CAs involves in principle four steps: 
The first step is to create a Public/Private Key pair. Three important parameters 

are critical for the security of the keys: the key strength, the algorithm, and the entropy 
source. Longer keys are more secure but require more time when using them for 
                                                           

 
9PGP is a signing and encrypting application used for securing e-mail communication. 
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example for encrypting data. The most often used Asymmetric Key algorithm is 
RSA which is part of the Public Key Cryptography Standards (PKCS). Another 
issue is the location where the keys are generated. The keys can be generated 
locally by the requestor, the RA with a secret from the requestor, the CA initiated 
by the RA with a secret from the requestor or by a trusted third-party. For machines 
or devices with smaller CPU power delegating the generation process is a good 
alternative. For generating such keys there are several tools available such as 
OpenSSL and the Certificate Creation tool (“Makecert”) from Microsoft.10 

In the second step, the identity of the certificate requestor is established and 
verified. This is done by exchanging registration information between requestor 
and RA. How this information looks like depends very much on the application 
scenario but at least some information about the requestor for example the name 
and an email address is provided that the RA is able to prove its identity. When the 
requestor itself has to create the key pair then the public key is often sent together 
with the information about the owner in a certificate request to the RA. Examples 
of how such requests are composed and transferred to the RA are the Certificate 
Management Protocol and Certificate Request Message Format described in 
[AFK+05], [MAS+99], [PKCS#7], and [PKCS#10]. 

Once the identity of the requestor is verified, the RA initiates the certificate 
creation process by the Certificate Authority and provides him with the necessary 
data. Thereby the public key, the information about the requestor, and sometimes 
also some additional proprietary information is signed with the private key of the 
CA. The signature together with the other information represents the signed cer-
tificate that is now trusted by the CA and handed to the certificate requestor. 

However, there is also the possibility of generating self-signed certificates. These 
certificates are not signed by other trusted CAs but with the private key associated 
with it. Thereby no central CA or RA is needed since the roles are maintained by 
the entity created the self-signed certificate. It is expected that there will be OPC 
UA-based products generating such certificates during the setup routine in order to 
provide a secure out-of-the-box installation. If necessary, this certificate can be 
replaced by another one signed by a trusted CA. 

7.7.3.2  Install Certificate 

Once the requestor receives the signed certificate from the CA the certificate has 
to be installed and the associated application has to be configured for using it. Cer-
tificates reside in a certificate repository (e.g., certificate store) in which own 
certificates as well as certificates from third-parties or root certificate are stored. 
Since it only contains the public key of the key pair putting all these certificates 
together in one store is not critical to the security of the whole system. In addition 
to that, the associated application has to know which certificate it should use for 
                                                           

 
10This tool is provided with the .NET Framework 2.0 and higher. 
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cryptographic operations. Therefore, the location in the store of the desired certificate 

of the target application or also on a central server which is accessed by the target 
application.  

Besides the certificate containing the public key also the private key has to be 
installed to a special location. However, this location must only be accessible by 
the owner of the private key and the access must therefore be secured. However, 

application as well. 

7.7.3.3  Distribute Certificate 

After the certificate and the private key are installed and the owning target appli-
cation is configured there must also be the possibility for other applications to 
retrieve the certificate for performing different cryptographic operations. Basically 
there are three ways for disseminating a certificate: out-of-band distributions, pub-
lic repositories, and in-band distributions. 

The out-of-band mechanism is for example the manual transportation and in-
stallation of certificates by individual users. Thereby a certificate is conveyed via 
disk or some other storage mediums to each target device, imported into the local 
repository and the application is configured accordingly. Another example is send-
ing the certificates via email and installing it manually like it is done with Pretty 
Good Privacy (PGP).11 One problem with such out-of-band mechanisms is that 
they do not scale very well. The manual transportation and installation of certifi-
cates on hundreds or thousands devices might take a long time until the whole 
system is ready to operate. Another problem is that such an approach is quite 
unreliable. It is not assured that certificates that are manually distributed or via 
email are not revoked or compromised. On the other hand it is also not ensured 
that every device receives or imports the certificate into the local repository. So 
this approach might be a quick and easy approach for small environment but comes 
up with several problems when applying it to bigger environments. 

The second dissemination mechanism is publishing certificates in a central 
repository. The idea behind that concept is to post certificates in a trusted, widely 
known, publicly available, and easily accessible location. Whenever a special cer-
tificate is needed by an application or a device then this repository is consumed. 
Typical examples for such repositories are LDAP servers, Web servers, or corpo-
rate databases. The advantage of this concept is that the effort for distributing and 
installing of certificates can be reduced since they are automatically downloaded 
from the repository by the application when they are needed. In addition, this is 
also a reliable source for certificates since such repository are mostly controlled 
                                                           

 
11PGP Web site, http://www.pgp.com/. 
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these locations are mostly on the same machine as the target application or stored 
on external devices like Smartcards. These locations must be known by the target 

has to be configured. Repositories for certificates can be located on the same machine 



and updated by the CA of the trust domain. One disadvantage of this approach is 
that it introduces another security risk regarding availability. A Denial-of-Service 
attack run against the repository can block the whole system. Another issue is that 
the communication overhead in the network is increased since the devices have to 
communicate with the repository in addition to its normal application-specific 
communication. In such cases a repository could also be bottleneck when lots of 
devices try to access the repository all at once. 

And finally, the third approach is the in-band distribution which uses the appli-
cation-specific communication protocol for exchanging certificates. This is the 
case with Secure/Multipurpose Internet Mail Extensions (S/MIME), TLS, or OPC 
UA. The advantage when using such an approach is that no additional channel or 
protocol has to be provided in order to get the necessary certificates. Channels and 
protocols that are used anyway can be used for the transportation and installation. 
This does not necessarily mean that this replaces other approaches like the reposi-
tory. The use of in-band mechanisms can also supplement a repository when for 
example different certificates (like the OPC UA Software, User or Application  
Instance Certificates) are used by the system. One type can be retrieved from the 
repository; the other one can be provided by the application-specific protocol. 

7.7.3.4  Validate Certificate 

Whenever an application intends to use certificate from another party it has first to 
validate the certificate. Validation in this context means the process of determining 
whether a given certificate can be trusted and therefore be used in a given context.  
A definition of trust and a description of the common trust models are given in 
Sect. 7.7.2. 

The validation process is commonly done with Certificate Path Processing 
which includes two steps: the path construction and the path validation. 

The EE tries to construct the certification path (also called the certification 
chain) of the certificate in order to aggregate all the certificates for validation step 
afterwards. Therefore, the CA certificates indicated in the received certificates are 
searched in the accessible repositories. If not all certificates can be retrieved, then 
the trustworthiness of the received certificate cannot be fully validated and thus the 
certificate should not be trusted. However, there are some scenarios in which the 
user is asked in such a case whether the certificate should be trusted or not. A typical 
example of such scenarios is a Web browser trying to validate SSL certificates 
obtained from Web servers. 

Once the certificate path is constructed the EE needs verify whether it is valid. 
If for each certificate in the certification path the following checks succeed, then 
the certificate can be considered as trustworthy: 

• The signature of the certificate can be properly verified 
• The certificate is within the specified validation period which is defined in the 

certificate itself 
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• The certificate has not been revoked (see Sect. 7.7.3.5 for details) 
• The operation that is performed with the certificate is in accordance with the 

In some special scenarios, there might be some additional checks that have to 
be passed but the above mentioned are the common ones that are applied in most 
applications. The order in which these checks are performed is also dependent on 
the concrete scenario. Some applications are running the less time-consuming ope-
rations before the more intensive ones to have a faster response time when a cer-
tificate check fails. 

7.7.3.5  Revoke Certificate and Update Revocation Information 

A certificate can be marked as revoked if a further usage has to be prohibited. 
Reasons for prohibiting the usage depend on many factors. Typical examples are: 

• A certificate was renewed or updated before the expiration date is reached 
• It is suspected that the certificate or the associated private key is compromised 
• The certificate is not needed since for example the using application is not run-

ning anymore 

Thereby the owner of the certificate or the RA acting on behalf of the owner or an 
authorized administrator contacts the CA requesting him to revoke a special cer-
tificate. This can be done via out-of-band mechanisms like physical presence or 
telephone or via special communication protocols such as CMP. Once the CA  
receives the revocation request he marks the certificate as revoked in his reposi-
tory and informs the VA. The VA provides offline- or online-validation services 
for end-entities in order to verify whether a specific certificate is revoked. 

In the following, one approach for both offline and online certificate validation 
is introduced. There are a lot of other variations of these concepts that can be  
applied and are described in detail [AL02]. 

Offline Approach 

An offline validation is based on publish-subscribe-mechanisms with Certificate 
Revocation Lists (CRLs). A CRL is a data structure that contains a list of revoked 
certificates and is signed by the publishing CA. The exact structure and fields of a 
CRL is defined in [HPF+02]. End-entities like applications or users download 
these lists typically by using standard protocol like LDAP, FTP, or HTTP from 
well-known locations. The exact content, the size, and the way how a CRL is pro-
cessed can vary dependent on the requirements of the concrete target environment. 
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defined purpose, usage, policy, or other rules. 

• The owner of the certificate has left the company. 



Fig. 7.18 Complete Certificate Revocation List (CRL) 

The simplest approach is always to provide a complete CRL containing revocation 
information of all revoked certificates in a trust domain like it is shown in Fig. 7.18. 
However, in some domain the size of the content of the CRL can get large by time 
and always downloading the full list could lead to unacceptable performance deg-
radation regarding network resources. Another performance bottleneck can be the 
lifetime of a CRL. Each CRL has like any other certificate a specified time dura-
tion in which it is considered as valid and therefore trusted. Specifying a short 
duration implies an increase of the number of downloads of CRLs whereas a long 
duration leads to a higher risk of accepting a revoked certificate. Therefore, there 
are a number of concepts that can be applied in order to make a tradeoff between 
performance and security. 

Online Approach 

Besides the offline approach of certificate revocation there is also an approach  
using online mechanisms for retrieving revocation information about certificates. 
The online approach differ from the offline way in many aspects but the most impor-

that the user or the application has to have access to services allowing validating 

The OCSP is an online protocol specified by the PKIX group12

shows an example scenario of OCSP. Thereby the request contains information 
about the certificates that have to be validated like distinguished name of the issuers, 
hashes of the public keys, and the serial numbers of the certificates. A so-called 
OCSP responder receives and processes the request. The mentioned responder 
                                                           

 
12The PKIX working group was established in 1995 in order to develop Internet standards for 
PKIs based on X.509. More information about the working group can be found on their Web site 
(http://www.ietf.org/html.charters/pkix-charter.html). 
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certificates which is provided by a relying third-party. One major standardized 

 of the IETF and 

a status of a certificate has to be validated. In the present context, online means 

is documented in [MAM+99]. OCSP is a simple request–response protocol that offers

tant is that the EE (i.e., OPC UA user or application) needs to be online whenever 

an EE to validate whether a number of certificates are revoked or not. Figure. 7.19 

online mechanism is the Online Certificate Status Protocol (OCSP). 



checks for each certificate indicated in the request whether it is revoked by querying 
local data sources such as CRLs, revocation databases, or by consuming another 
OCSP responder. Once the states of all certificates are ascertained a response is 
sent back to the EE containing the revocation states of the requested certificates. 

In order to help the EE to discover the appropriate OCSP responders, a special 
field of the certificate that has to be validated can be used which is indicated in 
Fig. 7.19. Typically URLs to the responders and a short description are provided. 
However, it is important that at least the responses returned by the OCSP responder 
are digitally signed in order to resist alteration during transit of the messages. This 
means that the certificate of the OCSP responder has to be obtained and trusted by 
the EE. But signing messages in general leads to a performance impact that has to 
be considered when using the protocol. In addition to that, the protocol only pro-
vides information about the revocation status which does not necessarily mean that 
the certificate is valid and can be trusted. Validation periods and proper context 
have to be validated with other mechanisms. 

 

 
Fig. 7.19 OCSP example 

7.7.3.6 Renew and Update Certificate 

Certificates are created for a specific lifetime also called as validity period. When 
this lifetime expires then the certificate is considered as invalid since the corre-
spondence of the data in the certificate with the contained public key cannot be 
ensured anymore. This means a new certificate has to be created at the latest when 
this lifetime has expired otherwise since the old one is not accepted by other par-
ties anymore. Normally a new certificate is created some time before the old one 
expires in order to avoid service outages of the applications. In such a case, there 
are two possibilities to obtain a new certificate: renewing or updating an expired 
certificate. 
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Renewing an expired certificate means that the key pair is reused for the new 
certificate and the associated meta-data like subject name or key usage has not 
changed. Furthermore the strength of the key still meets the requirements of the 
environment. Similar to creating a new certificate the owner of the expired certifi-
cate requests a new certificate from the RA and provides the existing public key 
together with the same meta-data and receives a renewed certificate. 

Updating an expired certificate means that a new key pair is created since the 
associated meta-data has changed or the strength of the key does not meet the req-
uirements of the target environment anymore. Updating a certificate is very much 
like creating a new certificate in many cases since the meta-data will still be the 
same as in the expired certificate. A typical example of a case when a certificate 
has to be renewed is when the associated private key got lost. 

7.7.3.7  Key Recovery 

Sometimes it is necessary to use a private key associated to an expired certificate 
in order to decrypt data that has been encrypted with the expired public key. In 
such a case it is important to have key recovery mechanisms allowing to access 
old keys. The keys can be stored in a local key history of the EE and it can also be 
stored in central key archive of a trusted third-party. The local key history is dir-
ectly coupled to the EE and provides a fast and easy access to old keys. The idea 
behind the key archive is to provide a central service for a number of EEs offering 
key recovery mechanisms which can be coupled with audit trails to satisfy the 
needs of regulatory bodies. The CMP specified in [AFK+05] for example con-
siders key recovery as a protocol service that can be consumed by the EE. 

7.7.4  Available PKI Frameworks 

This section shows some commercial and noncommercial PKI products and 
briefly describes some typical examples of how these products can be deployed 
and used for OPC UA applications. 

7.7.4.1  OpenSSL PKI 

In the first example, OpenSSL [OSSL] is used for implementing a PKI. OpenSSL 
is an open source toolkit that implements Transport Layer Security (TLS) specified 
at [DR06] as well as a general purpose cryptographic library. OpenSSL is not intended 
as a full-featured PKI product for large environments but it provides the necessary 
functionality for smaller environments to be used as a PKI management tool. 
Figure 7.20 shows an example of how such a PKI can look like. An administrator  
acts as the RA and CA for representing the primary interface for all certificate-related  
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Fig. 7.20 OpenSSL PKI example 

issues. He creates, revokes, and deploys certificates manually with the OpenSSL 
tool installed on his computer. The OpenSSL tool uses a special directory structure 
for storing issued certificates, CRLs as well as the Administrator’s Private Key. 
From security perspective it is important to protect these directories in a way that 
it can only be accessed by the administrator. The VA is represented by the OpenSSL 
cryptographic library and the OpenSSL PKI directory structure and therefore the 
OpenSSL toolkit has to be installed on every computer in the trust domain. In order 
to enable an automated validation of certificates the cryptographic library has to 
be integrated into the OPC UA application that has to be secured. 

7.7.4.2  MS Windows Server 2003 PKI 

Another example is the PKI [MS03] provided by Microsoft which is tightly inte-
grated in the operating system Windows Server 2003. An example of a deployment 
scenario in which the MS Windows 2003 Server PKI is used is depicted in 
Fig. 7.21. The MS Certification Authority Server represents the CA that issues 
and revokes certificates of the PKI. The RA which registers and validates identi-
ties is partly represented by a MS ISS Web-server and by the ActiveDirectory. 
The pages presented by this Web-server are used for providing identity informa-
tion which is verified by a Web-application using the ActiveDirectory which is the 
other part of the RA. The ActiveDirectory is used to validate users and computers 
submitting a certificate request. The VA used for validating received certificates is 
represented by a local database (namely the Windows Certificate Store) storing 
certificates and revocation information used for validating certificates and the 
Cryptographic Service Provider of the Windows Crypto Library integrated in OPC 
UA applications. 
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Fig. 7.21 MS Windows 2003 PKI example 

7.7.4.3  OpenXPKI 

OpenXPKI [OXPKI] is an open source PKI provided by the OpenXPKI Founda-
tion and is running under Apache-style license. The software is implemented in 
Perl and available for Debian, FreeBSD, and Suse Linux. Depending on its con-
figuration the OpenXPKI software will act as a CA, RA, or EE. This means that 
on each node in the network the same software is installed and configured for its 

mentioned PKI is used. The OpenXPKI Server represents both RA and CA and 
uses MySQL database for storing certificates and revocation information as well 

cle, DB2, or Postgresql. An Apache Web-server represents the other part of the 
RA which provides Web pages allowing submitting certificate requests. Identity 
information is forwarded to the OpenXPKI Server which either uses internal 

or Unix Pluggable Authentication Modules (PAM).13 In this scenario, the VA is 
represented by the MySQL databases in conjunction with OpenSSL as the crypto-
graphic toolkit used to validate the certificates. Based on the modular design of 
OpenXPKI also other cryptographic libraries can be used. 

                                                           
 

13PAM is a flexible mechanism for authenticating users in Unix environments. 
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special role. Figure 7.22 shows an example deployment scenario in which the 

as Private Keys. However, also other third-party databases can be used like Ora-

mechanisms such as a central user database or uses external mechanisms like LDAP 



Fig. 7.22 Linux OpenXPKI example 

7.7.4.4 

Managed PKI Services.14 This kind of PKI product differs from the others des-
cribed before in a very fundamental aspect: the infrastructure is managed by a 
third party and is therefore a “blackbox” for users, computers, and applications which 

                                                           
 

14The Web site of VeriSign providing more information about their Managed PKI Service can be 
found at [VMPKI]. 

7.7 Public Key Infrastructure for OPC UA 241

 VeriSign Managed PKI Services 

The fourth example of a PKI product described in this document is the VeriSign 

is shown in Fig. 7.23. They only need to consume special services from VeriSign  

Fig. 7.23 VeriSign managed PKI example 



can be offered either by Web pages or by special API for programmatic access. 
However, parts of the validation of certification are still done locally. Only the 
validation of the revocation status of a received certificate is offered as validation 

tificates have to be done locally. 

7.7.5  PKI for Industrial Applications 

7.7.5.1  Special Requirements for Industrial Environments 

Today PKIs are widely used for Web applications to ensure a secure communica-
tion through unsecure environments such as the Internet. But there are very few 
cases in which PKIs have been used for industrial applications because they have 
partly different requirements. In the following, the specialties and the main issues 
are explained and hints for possible solutions are pointed out. 

7.7.5.2  Certificate Expiration 

Each certificate has a specified period of time in which it is considered as valid. If 
certificates are outside that period then the validation should fail. Schneier and 
Ferguson [SF03] suggests for example that the validation period of an EE certifi-
cate should some value between several months and several years. Public root cer-
tificates such as “VeriSign Trust Network” certificate are valid for more than  
20 years. However, the long-lived certificates should have strong keys. With weak 
keys there is always the risk that due to rising computing power this key can be 
compromised. When looking at the industrial environment then we realize that 
once an application for controlling a production process is installed in the field it 
often runs for 25 years without significant changes. Furthermore particular indus-
tries underlie specific regulatory that force them to run audits for each change in 
the system which costs a lot of money. This leads to the question: What is the  
appropriate validation period for a certificate used by an industrial application? 

The main risk of long validation periods for certificates are long-running attacks 
such as computing the private key based on the public key with factorizing. Attacks 
on RSA keys with the length of 1,039 bits have already been successful. However, 
such an attack requires a large computer infrastructure in order to succeed in a 
proper time frame. With off-the-shelf computers like an Intel Pentium D with  
3 GHz it would take 95 years [Con07] to break a key with 1,039 bits! Therefore, 
one possible solution to the problems discussed earlier in this section is using cer-
tificates with strong keys (e.g., 2,048 bits or higher) together with a longer lifetime 
(e.g., 5–7 years) in order to reduce the number changes in the system. Some time 
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service by VeriSign. Other checks like validating against a local list of trusted cer-

via the Internet in order to create, renew, revoke, and validate certificates. These 



before the existing certificate expires (e.g., 2–3 months) the administrator could be 
informed by a global OPC UA alarm generated by an OPC UA server. Thereby 
OPC UA clients subscribe for those special alarms published by an OPC UA 
server which is shown in Fig. 7.24. If for example the Application Instance Cer-
tificate of “OPC UA Client A” expires in 2 months the server generates a global 
alarm. Both the “Engineering Workplace” and the “Administration Workplace” 
receive the notification that the certificate will expire soon. The Administrator 
should now create and install the new certificate before the expiration date is 
reached. 

 
Fig. 7.24 Certificate alarms 
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Fig. 7.25 Managing certificate renewal 

For doing that he can choose a proper point of time (e.g., when the plant is in 
maintenance mode or no production process is running) for installing the certificate 
and revoke the old one. As long as the old certificate is still in use, the administrator 
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should be regularly reminded. Once the old certificate is replaced by the new one 
the alarm can be acknowledged. This procedure has to be repeated whenever a 
certificate is about to expire. This is illustrated in Fig. 7.25. In such a case a cer-
tificate has only to be renewed 4–5 times during the lifetime of a plant of 25 years 
(of course only if no certificate has been revoked meanwhile). 

One could argue that using strong keys for signing, encrypting as well as for 
decrypting and signature verification extremely slows down the system’s perform-
ance. However, in OPC UA certificates are only used during the connection estab-
lishment phase and during the secure channel renewal phase and not for the normal 
communication like reading or writing process data. During the connection estab-
lishment and the Secure Channel renewing symmetric encryption and signing keys 
are negotiated and thus the fast and efficient symmetric encrypting and signing 
operations are used instead of the slower Public Key Cryptography. The lifetime 
of the Secure Channel can also be configured adequately in order to avoid a fre-
quent usage of asymmetric keys. 

7.7.5.3  Long-Running Connections 

A further issue of industrial applications that has to be addressed is how long-
running connections are handled. In Sect. 7.7.5.2 it was mentioned that industrial 
applications are running without significant changes for 25 years, whereas most  
e-commerce Web applications have maximum connection duration below 24 h. 
This does not mean that a single network connection is established for the whole 
lifetime of the industrial application but there are in fact connections opened up 
for a long period of time. An operator workplace supervising a special area of a 
power plant for example can be connected to a server for 10 years without termi-
nation. But what should be done if in-between a certificate gets invalid due to 
revocation or expiration? 

As mentioned previously certificates are only used during connection establish-
ment phase and the secure channel renewal phase. When a certificate gets invalid 
after connection has been established, then this does not directly affect the existing 
connection since the negotiated symmetric keys are used for encrypting and sign-
ing messages. However, the next time the Secure Channel has to be renewed the 
problem will occur. A certificate gets invalid because of two reasons: first because 
its validation period expired and second because it was revoked. If certificate life-
times are managed strictly according to the concept described in Sect. 7.7.5.2 then 
certificate expiration should normally not occur. However, if it still occurs due to 
any strange reasons or a certificate gets revoked then another approach has to be 
processed. Such cases should in general be treated as an error since both cases 
threat the system’s security in terms of integrity and confidentiality. However, for 
some applications availability is more important then the other security goals like 
for the supervisory of a nuclear power plant and therefore fallback solutions are 
needed. 
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One possible solution is to use two Application Instance Certificates, one with 
a short lifetime and another one with long lifetime acts as a kind of default certifi-
cate. Whenever the establishment of a Secure Channel fails due to certificate vali-

shows how the lifetimes of these certificates are related to each other. As men-
tioned above the expiration of a certificate should be an exception and normally 
new certificate should be installed before the old one expires in order to prevent 
such situations. 

 
Fig. 7.26 Default Certificate 

 
Fig. 7.27 Certificate expiration fallback solution 
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dation the default certificate is used until a new certificate is available. Figure 7.26 



7.7.5.4  Devices Without an Internal Clock 

As mentioned in earlier sections, validating certificates include the verification of 
the validation period. This process requires computer to have a clock in order to 
compare the dates and times. Obviously every common office PC has such an inter-
nal clock. But that is not true for every device or controller. How should the vali-
dation period be checked in such devices? 

In such a case, the verification of the validity period of a certificate can also be 

cation running for example on a PC and offering a service for validating certifi-
cates similar like OCSP described in Sect. 7.7.3.5. A real option for solving the 
problem is the Server-based Certificate Validation Protocol (SCVP) [FHM+07] 
defined by the PKIX group of the IETF which allows relying parties to off-load 
the certificate validation process to a trusted third-party. However, instead of only 
validating the validity period other checks are performed as well. Thereby a secure 
connection to the SCVP server is established. The controller then provides the cer-
tificate in a request message and receives in a response message the results whether 
the certificate has expired or not. However, this mechanism requires establishing 
trust relationship between the controller and Validation Authority. Since the con-
troller cannot check the validity period of the VA’s certificate this trust must be 
established in another way. A possible solution to this problem is to establish two 
trust domains like it is shown in Fig. 7.28. On the one hand there is the normal 
application trust domain in which OPC UA client and server are communicating 
with each other. On the other hand there is a special validation trust domain in 
which the OPC UA server is running on the controller and the Validation Author-
ity belongs to. This VA can also represent a CA issuing special “validation certifi-
cates”. In order to trust the VA an administrator can install this special certificate 
on the controller and configures OPC UA the application to directly trust the VA. 
The validity period of the VA’s certificate does not need to be checked. The veri-
fication of the validity periods of all other certificates is then done by consuming 
that special validation service offered by the VA. 

 
Fig. 7.28 Outsourcing certificate validation 
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“outsourced”. Thereby the Validation Authority of the controller is another appli-



7.7.5.5  Validation Costs Time 

If you find an interesting article in a Web shop and decide to buy it, would you 
wait 5–10 s until the Web server hosting the Web shop has validated your certifi-
cate? In most cases you would, since 5–10 s are not a very long time in order get a 
purchase confirmation. However, 5–10 s can be a very long time for industrial 
applications! Sometimes this is even far too long. Especially for applications in 
chemical or pharmaceutical industries waiting too long could lead to manufactur-
ing poor products that cannot be sold. The question that has to be answered here 
is: How can the validation time of certificates be reduced? 

In principle there are three parameters affecting the performance of certificate 
validation that can be influenced: the way how certificate revocation is checked, 
the length of the certification path of a certificate, and the extensions to be checked 
of a certificate. These parameters are discussed in the following. 

For the first parameter, the way of checking certificate revocation, it is not easy 
to determine in general whether the offline or the online approach is faster since it 
depends on many factors. The offline approach uses CRLs for checking the revo-
cation status. These are files containing the serial number of the revoked certifi-
cate and are stored locally on the device. This seems to be faster than checking the 
status with an online service. However, it must be considered that different CRLs 
can also be obtained from several locations and can get very large by time. Further-
more such a CRL must also be validated since it is signed by a certain publisher 
and a new CRL must be downloaded according to the “next update” date specified 
in the CRL. When using the online approach the performance of the validation 
depends on the communication protocol as well as on the service provider pro-
cessing the validation. In a scenario in which the service provider resides in the 
same network segment or even on the same node the performance might be accept-
able. However, there are also other scenarios in which the validation service has to 
be accessed over the Internet which is in the most cases not an option. This means 
the offline approach with a simple CRL might result in a better performance than 
using the online approach. But when CRL information has to be downloaded from 
multiple locations frequently you should think of introducing a central validation 
service in order to reduce the communication overhead. 

The length of the certification path is represented by the number of CAs in the 
trust hierarchy up to the root CA of the trust domain. The validation of a certifi-
cate includes performing the same checks on each certificate in the trust hierarchy 
up to the root which has a significant impact on the performance of the system. In 
order to reduce the validation time it is desirable to restrict the number of interme-
diate CAs in an organization. The minimum validation time can be achieved by 
using self-signed certificates for each device since thereby only one certificate has 
to be validated. However, this may lead to a higher overhead when deploying and 
distributing certificates since every device has to have the certificate of every 
device it intends to communicate with in advance. In the most cases one common 
CA should be a proper tradeoff between performance and ease-of-use for indus-
trial environments. 
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Finally, for X.509v3 certificates there are special extensions that can be checked 
during validation. Typical examples are KeyUsage, AlternativeNames for Issuer 
and Subject, or other policy definitions. In many cases these checks are optional 
and do not take too much time. Nevertheless the number of extensions that have to 
be checked should be restricted to minimum. 

7.7.5.6  Certificate- and Key-Management for Controllers 

OPC UA applications are intended to be run on controllers, but how do controllers 
manage certificates and keys when they have limited resources? Where are they 
stored? How are they loaded into the controllers? 

In principle three types of artifacts have to be handled by controllers in order to 
be integrated in a PKI: trusted certificates, private keys, and CRLs if an offline 
validation approach is used. One approach is to store all artifacts on a memory 
card such as a CompactFlash which is supported by many controllers to extend 
their memory. There are even memory cards with password protection support like 
CompactFlash 4.0 so that the private key can be stored on it without being afraid 
that it can be used or manipulated by third-parties. But there is still the risk that 

certificates and CRLs on the memory card and load the private key and the associ-
ated certificate directly into the controller by using a secured protocol (like sFTP 
or proprietary protocols) supported by the controller. This has the advantage 
compared to the first approach that common memory cards can be used and the 
private key cannot be stolen that easy. 

7.7.5.7  Self-Managed PKI vs. Managed by Third-Party 

7.7.4 shows different PKI examples including both self-managed PKIs and PKIs 
managed by a third-party. A self-managed PKI is under complete control of the  
organization also using the services. In the other scenario, a third-party provides 
the PKI services and the infrastructure which can be used by customers. A typical 
example for that scenario using VeriSign as the relying third-party is given in Sect. 
7.7.4.4. Whereas both scenarios work quite well with organizations offering pro-
ducts in a Web shop such a decision can have crucial impacts for organization 
within industrial automation. What happens, for example, if the company offering 
PKI services and infrastructures goes bankrupt? Is it really so easy to move from 
one vendor to another if thousands of certificates are in use and already deployed? 

In the following, the different advantages and disadvantages of both the self-
managed and third-party managed PKI are discussed. 
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Finally, a last important topic is by whom the PKI should be managed. Section 

the memory card could get lost or stolen. Another approach is to store the trusted 



One advantage of self-managing a PKI is that the applying organization has the 
full control. If for example a certificate has expired and a new one is needed quickly, 
then the organization does not need to wait until a third-party verifies a certificate 
request. The same is true when intending to revoke a certificate which includes 
updating revocation information. Normally processing a revocation request and 
publishing revocation information is faster compared to “outsourcing” this task. 
Another advantage is that the organization has more flexibility. It is not dependent 
on the functionality and on the service the third-party provides. If for example the 
organization desires to change the way how certificates are validated against revo-
cation from an offline approach (e.g., CRLs) to an online approach (e.g., OCSP) 
then it may be limited by the third-party since it only offers the offline version. 
Furthermore by self-managing a PKI an organization can adapt the PKI to its spe-
cific needs. Especially in the field of industrial automation this is an important  
aspect to consider. The applying organization knows its environments, the special 
requirements of their applications and of their domain whereas most third parties 
offering PKI services only consider common needs, requirement, and have limited 
domain knowledge (since they provide a generic product for range of different 
domains and industries). And a final advantage for self-managing PKIs is the  
independency. By signing a contract with a PKI provider an organization has also 
to be aware about risks and one major risk is thereby the PKI provider could go 
bankrupt. In such a case, no services are available anymore and applications of the 
organization may run into security problems. Obviously this will not happen that 
often and if it happens then the organization will be warned in advance. How-
ever, this will not always be the case and moving applications from one PKI pro-
vider to another is not a simple and cheap approach. All the certificates distributed 
have to be replaced by certificates issued by the new CA which can take while. 

But there are also some disadvantages when self-managing PKIs which are 
mainly cost-related. First of all a proper technical infrastructure has to be estab-
lished including software and hardware. Depending on the desired size and neces-
sary complexity of the PKI the amount of infrastructure costs vary. In some cases 
existing workstations and servers can be used to host the PKI in other cases dis-
tributed trust domains have to be managed by sub-CAs which requires several 
servers which should deployed redundantly. Once the PKI is deployed and running 
it has to be maintained which means for example that software has to be updated 
or hardware has to be replaced. Besides the technical aspects there are also organ-
izational issues that have to be addressed. One big topic here is the personnel that 
have to deal with the PKI which should in an ideal world be the administrator, not 
the end-user. However, even administrators have to be trained and introduced into the 
different PKI processes, policies, and applications. But training is not enough, the 
defined processes and policies have also to be followed accordingly. Another dis-
advantage that comes up compared to outsourcing PKI management is that many 
organizations do not have much experience in dealing with larger PKIs which either 
costs time for gaining experience or costs money for hiring experts in this area. 
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Finally, it can be concluded that the question whether managing a PKI on his 
own or outsourcing it to a third-party depends on many factors such as the size and 
the complexity of the PKI and costs. Simple and small PKI can be easily managed 
by most organizations without much effort, however, as soon as the several trust 
domains with different sub-CAs faces critical infrastructures some experts should 
at least be involved in the planning and deployment of the PKI. 

7.7.5.8  PKI Example Scenario for OPC UA 

with this topic. Let us assume that we are acting as application vendors and want 
to develop a PKI concept for our OPC UA client and server. 

cations will run do not necessarily have an existing infrastructure for managing 
certificates. Therefore we decide that our applications should be able establishing 
trust without the need of a central Certification Authority. This can be achieved  
by applying a Direct Trust Model as described in Sect. 7.7.2 and is illustrated in 
Fig. 7.29. This model can be realized by using self-signed certificates for each  
application instance which is trusted by any other entity in our trust domain. 

 

infrastructure includes applications and libraries for creating, deploying and vali-
dating certificates as described in Sect. 7.7.3. A proper selection is not always 

Sect. 7.7.4. Since in our present example we consider only a small environment 
OpenSSL PKI is chosen for implementation. It contains powerful cryptographic 
libraries for creating and validating certificates as well as for storing certificates. 

Thereby certificates are managed by three special directories with defined 

 
access restrictions. One of the directories organizes the trusted certificates as well  
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ments of different sizes and complexities. Some of them are briefly introduced in 

Figure 7.30 shows how OpenSSL can be used for that purpose. 

First of all we have to think about which trust model (Sect. 7.7.2) our applications

After describing and discussing the abstract concepts of how certificates are to be 

should support. We assume that the target environments in which these appli-

managed we will give a simple and concrete example helping you getting started 

Fig. 7.29 Example of a simple PKI trust model 

Now we have to think about how such a trust model can be implemented. Thereby 

easy since there are lots of different PKI products available for managing environ-

the technical and organizational infrastructure has to be established. The technical 



as the certificates belonging to the owning application, another contains Certificate 
Revocation Lists (CRLs) and finally there is also a directory for Private Keys. All 
these entities are stored in a DER encoded format and are loaded by the applications 
with the OpenSSL library whenever they are needed (e.g., when encrypting or signing 
messages). But when and how are these entities actually created and deployed? 
Since certificates identify installed application instances they should be created 
when installing the application. Functions for creating certificates and the associ-
ated Private Keys are provided by the OpenSSL library which can be integrated in 
the application installer of both client and server. An installer could create self-
signed certificates and Private Keys for the applications and automatically store 
them in the correct folders. In our scenario, OPC UA applications can only com-
municate with each other in a secure way when they directly trust each other. This 
means that if an application intends to communicate with another applications 
then each application has to store the certificate of the other application in its cer-
tificates folder. In our example, this can be done by an administrator manually  
installing them or by using special deployment tools (e.g., sFTP). In fact this 
shows also that an organizational infrastructure is needed for managing certifi-
cates. The main task besides installing and deploying certificates (which can also 
be automated) is maintaining the technical infrastructure. This includes renewing 
certificates and revoking certificates (i.e., putting a certificate that should not be 
trusted anymore in the CRL). Note that CRLs in the present example are used in 
the context of a certain OPC UA application. This means that each application has 
its own CRL since it acts as both Certification Authority and End-Entity. There is 
no common CRL provided by a central CA for all entities in the trust domain. 

Once all certificate-related information on both sides is available in the store a  
secure communication between OPC UA client and server can be established. 
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Fig. 7.30 Example of a PKI deployment model 



7.8 Summary 

7.8.1  Key Messages 

In today’s industrial automation systems security is getting more important since 
control networks are not that isolated anymore and security incidents in such envi-
ronments can have enormous financial and environmental impacts. 

It is important to realize that security has a technical and an organizational notion. 
The most sophisticated security system with the strongest password encryption 
algorithm is useless if the password is written on a piece of paper lying on the 
desk of the administrator. Humans have to understand how important security is 
and how to deal with the topic. However, OPC UA is focusing on the technical 
perspective since it was not the goal of OPC UA addressing the organizational 
aspects since there are already detailed standards for that such as [ISA99]. 

It is not always clear how much security is necessary for certain environments. 
Furthermore, the level of security differs for each environment since they all have 
their special threats and requirements. This means that the proper level of security 
has to be investigated. An effective method for doing this is a security assessment 
which has a process-oriented approach. In order to determine proper security 
measures for OPC UA applications, the working group processed such an assessment 
and documented the results as a part of the specification. 

OPC UA defines generic security architecture with different layers, each of 
them with certain responsibilities regarding security. Each layer can thereby be 
implemented by using different technologies specified in the mapping part of the 
OPC UA specification. 

The communication between OPC UA clients and servers is secured by estab-
lishing sessions on top of secure channels with special OPC UA Services. The 
connection establishment is based on Public Key Cryptography with certificates. 
Certificates identify persons, computers, or applications and are used for establish-
ing trust between two entities. 

Certificates are managed by a PKI which represents the technical and organiza-
tional infrastructure for requesting, creating, distributing, validating, and revoking 
certificates. There are a number of existing PKI products available in market which 
vary in functionality and scalability. However, there are special requirements of 
industrial environments for PKIs that have to be addressed. 

7.8.2  Where to Find More Information? 

Security-related information about OPC UA is distributed over several parts of the 
OPC UA specifications. The common security model of OPC UA as well as the secu-
rity assessment processed for OPC UA applications can be found in [UA Part 2]. The 
abstract definitions for security-related Services used for connection establishment 
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and termination as well as for impersonation can be found in [UA Part 4]. Further 
discovery mechanisms are described in [UA Part 12]. [UA Part 6] defines the differ-
ent technology mappings for the security layer of OPC UA applications. And finally 
[UA Part 7] describes the existing security profiles containing algorithms that 
should be supported by the applications which are used for deriving security policies. 

In addition to OPC UA, a good source for addressing organizational aspect of 
security is [ISA99]. And finally a deep introduction into PKIs is given in [AL02]. 

7.8.3  What’s Next? 

The following chapter is about a generic application architecture for OPC UA. 
Thereby the different layers consisting of a stack, an SDK, and an application are 
described and the responsibilities are pointed out. Furthermore the OPC Founda-
tion’s standard deliverables for OPC UA are introduced. 
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8 Application Architecture 

8.1  Introduction 

This chapter describes an abstract architecture for OPC UA applications with 
different layers having defined responsibilities regarding OPC UA functionality. 
Afterward the deliverables of the OPC Foundation and their features are listed and 
it is pointed out how these are reflected in the abstract architecture. 

8.2  Architectural Overview 

When you intend to develop an application based on OPC UA you first have to 
think about what it should do by specifying the requirements and the functionality. 
Having that in mind you normally start designing the architecture of your applica-
tion. Thereby certain design goals (e.g., portability, performance, or security) have 
to be agreed upon before first architectural concepts are developed. In this chapter, 
we will take a look at OPC UA from the design perspective and introduce a poten-
tial application scenario. We expect that this scenario will be applied by many 
application vendors. The main design goal thereby is the reuse of components and 
artifacts. 

In this scenario, we assume that we have to develop an OPC UA client and a 
server. Both client and server will have application logic covering functionality 
tailored to concrete use cases. For example, the server has to access special data 
sources (e.g., data bases, devices, or other applications) or the client has to be integ-

application logic covering common functionality like managing connections, cre-
ating and processing OPC UA messages as well as securing them. Since we defined 
reuse as our main design goal it would make sense to separate use-case-specific 
and common functionality when designing the architecture. The common part can 

tions and processing Service messages and lower level functions like encoding, 
securing, and transmitting messages. The part providing the higher level functions 
can be considered as a Software Development Kit (SDK) and the part with the 
lower level functions can be represented by a protocol stack. The client and server 
applications are layered on top of the SDK. Based on these blocks we come to a 
very high level architecture shown in Fig. 8.1. 

The above-described software layers are named as Application, SDK, and 
Stack and are described in more details in the following sections. 
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Fig. 8.1 Architectural overview 

8.3 Stack 

As mentioned in Sect. 8.2, the Stack is a common part covering lower level func-
tionality. In this section, we want to structure the Stack further into different parts 
leading to a more detailed architectural view like the one shown in Fig. 8.2. 

 
Fig. 8.2 Stack overview 

8.3.1 Interfaces 

First of all, the layers above need somehow to access the Stack in order to send 
and receive messages. Both client and server can use the same stack since it pro-
vides a lot of functionality that can be used for both sides such as encoding and 
securing messages. However, there are also functions specific to each side. For 
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example the client is only sending requests and processing responses, whereas the 
server processes requests and sends responses. Therefore an access layer (i.e., 
interface) is needed for both the client- and the server-side (Client and Server API 
in the figure). They could, for example, offer methods for configuring the Stack, 
for managing the connection establishment, for sending OPC UA Service mes-
sages, and for notifying the layers above when messages are received. 

The encoding and the decoding of messages are processed in the Encoding Layer. 
Once data structures representing Service messages are provided from the API 
layer they are serialized according to the special rules defined by OPC UA and 
passed to the layer beneath for further processing. Service messages received from 
the Security Layer are deserialized and passed as arguments of callback functions 
registered by the upper layer. 

8.3.3 Security Layer 

Encoded Service messages passed by the Encoding Layer to the Security Layer 
are then secured. Secured in this context means that depending on the configura-

encrypted or only signed. In scenarios in which applications are running in iso-
lated environments there must also be the possibility to disable message security 
by configuration. In addition, special security headers and footers are appended 
providing information for the receiver on how to decrypt the message and how to 
verify the signature of the message. The Security Layer of the receiver has to 
check the security headers and footers of incoming messages to know how they 
were secured. Depending on that messages are first decrypted and afterward the 
signature of the message is verified or only the signature is verified or none of 
these activities are done (in the case the message was not secured).  

8.3.4 Transport Layer 

The Transport Layer is responsible for transmitting and receiving messages as 
well as for dealing with errors at Network Layer. Before transmitting messages 
special transport headers are appended containing special information for example 
about the type and the length of the message. The Transport Layer of the receiver 
verifies whether it is well-formed meaning whether the type can be identified or 
whether the message is not too long1 before forwarding it to the Security Layer. 

                                                            
1In UA TCP, the maximum message lengths are negotiated and verified at Transport Level. 
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8.3.2 Encoding Layer 

tion of the Secure Channel (Sect. 7.5.2.1) outgoing messages are signed and 



8.3.5 Platform Layer 

The reuse factor of the Stack can be increased by adding an additional layer to this 
model – the Platform Layer. The basic idea thereby is that all other layers of the 
Stack are developed in platform-neutral manner. Only the Platform Layer contains 
as name indicates platform-specific code like the integration of special libraries 
for managing sockets, threads, or cryptographic operations (e.g., encrypting and 
signing messages). This means that only the Platform Layer has to be changed in 
order to port the Stack to another platform, the other parts of the code can be reused. 

8.4  Software Development Toolkit  

On top of the Stack, the SDK Layer is located covering the higher level function-
ality. This layer can be in general composed of three parts which are illustrated in 
Fig. 8.3. 

 
Fig. 8.3 SDK overview 

8.4.1 UA-Specific Functionality 

The UA-specific part represents the implementation of the concepts and the Services 
specified in OPC UA. Note, that all the different aspects (like Sessions, Events, or 
Nodes) depicted in Fig. 8.3 have to be addressed by both the client and the server. 
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However, the semantic of these aspects for client and server is different (e.g., Client 
creates a Session request and server processes the client’s Session request). 

One important aspect is the management of OPC UA Sessions. As we learned 
the connection establishment of OPC UA includes creating a Secure Channel,  
establishing a Session, and activating the Session. The SecureChannel Services 
should be implemented in the Stack Layer to reduce the complexity in the SDK. 
Therefore, the Secure Channels should also be managed in that layer. The Session 
Services (i.e., CreateSession, ActivateSession, and CloseSession) are implemented 
in the present model in the SDK Layer. However, managing OPC UA Sessions 
does not only mean processing the Service requests and responses. There has also 
to be special logic behind like associating Sessions with the Secure Channel that 
secures the exchanged messages for that context. In addition, Sessions are run on 
behalf of users that have to be authenticated and authorized. Furthermore there are 
special Session parameters that have to be taken care of like the lifetime of the 
session or used locales. Such tasks are handled by a management class which can 
be called as a Session Manager. 

Another important aspect is working with Nodes. Nodes are very essential to 
OPC UA and are used for organizing Address Spaces as well as for providing 
attribute values. Address Spaces in OPC UA reside on the server-side allowing 
clients to access and manipulate them via the NodeManagement and Attribute Service 
Sets. This means that on the server-side there has to be entities managing the 
Nodes (e.g., Node Manager) of the Address Space (i.e., Nodes and References) 
and the manipulation of the values contained in the Nodes (e.g., I/O Manager). 
Other concepts and Services like Subscriptions, Events, and History can be 
approached in a similar way. 

OPC UA defines certain diagnostics information for Services and exposes it in 
the Address Space. It contains for example information about how often Services 
have been called. Managing this information is also a task for the SDK Layer 
since is also manages the Services of which the upper layer may not be aware of. 

8.4.2 Common Functionality 

The second part of the SDK Layer covers more general functionality that has to be 
implemented by clients and servers. 

OPC UA exchanges certificates in order to establish secure connections. Before 
using them it has to be verified whether a received certificate can be trusted or not. 
OPC UA specifies what part of a certificate has to be validated to be trusted, how-
ever, it does not state how it has to be validated. Therefore common functionality 
has to be provided allowing the applications to validate certificates and accessing 
their associated certificate stores. An alternative to implementing that function-
ality in the SDK is using the Stack for that purpose. Since the Stack is a common 
component that should be used for large range of applications it is assumed 
that all applications use the same way of validating certificates. In heterogeneous 
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environments, it sometimes can make more sense to implement that in SDK or even 
in the Application Layer when different sources for gathering certificates or 
certificate-related information (e.g., certificate revocation lists, private keys, or 
validation rules) have to be consumed. 

Other important topics that belong to the common part are application configu-
ration and logging. 

8.4.3 Interfaces 

The last part of the SDK discussed in this context represents the interfaces to the 
Application Layer. Client interfaces are needed for sending requests to the server 
and for receiving responses from it (i.e., callback interfaces). On the server side 
some interfaces for initializing and configuring the SDK should be provided as 
well as for integrating underlying systems acting as data providers. 

8.5  Application 

The Application Layer includes in principle two kinds of applications: clients and 
servers. The way how the architectures of these applications look like differs very 
much depending on the concrete scenario. 

8.5.1 Client 

One example for an OPC UA client application is a generic browser used for  
exploring and manipulating the Address Space provided by a server. The main 
tasks of the client is visualizing data provided by the SDK Layer and translating 
user interactions into calls to the SDK’s API. The design of such an application 
from the functionality point of view can be quite simple which is shown in Fig. 8.4. 

User Interface

Client SDK

Stack

Configuration Use Case specific functions

 
Fig. 8.4 Example of a high-level client architecture 
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8.5.2 Server 

In principle there are two kinds of server applications: one managing the whole 
address space in the main memory and another one accessing underlying systems 
for gathering Address Space information. 

In the first case, the Address Space is stored in a special data source (e.g., data-
base or XML file) and completely loaded into the main memory when the server 
starts up. This provides a fast access to information contained in the Address 
Space requested by clients.  

In the second case, an OPC UA server facades an underlying system like a  
device, controller or DCS. In the last case, typically several sources are accessed, 
like a configuration database and several controllers. It is expected that many sys-
tem vendors will first head such an approach in order to smoothly migrate existing 
applications to OPC UA. The main responsibilities of this layer are reading and 
writing data from the underlying system. A SDK could for example provide spe-
cial callback interfaces for exchanging data in a simple way to reduce the 
complexity of the server implementation on top of the SDK. An example of 
that architecture is given in Fig. 8.5. 

 

Use case specific functions

Underlying System

Server SDK

Stack
 

Fig. 8.5 Example of a high-level server architecture 

8.6 Deliverables Provided by the OPC Foundation 

The OPC Foundation provides a set of deliverables that can make your life easier 
when developing OPC UA applications. Some of the deliverables follow the archi-
tecture described in Sect. 8.5. All of them are available in the so-called UA SDK. 
It contains thereby various Stacks, libraries, and sample applications. 
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8.6.1  Stacks 

Both an ANSI-C-based and a C#-based Stack is provided with the UA SDK.  
A Java-based Stack was under development at the time when this book was writ-
ten. It is recommended to use the UA stacks provided by the OPC Foundation in 
order to ensure interoperability between applications implemented in different  
development environments. 

The ANSI-C Stack is implemented according to the architecture depicted in 

Conversation for the Security Layer, and UA TCP for the Transport. For securing 
messages and validating certificates, the OpenSSL crypto library is applied and  
integrated in the platform-specific part of the Stack. 

Alternatively there is also a .NET Stack written in C# which does not have a 
Platform Layer. Therefore the architecture is different to the one shown above. For 
the Encoding Layer it supports UA Binary and XML, UA-SecureConversation and 
WS-SecureConversation as Security Layer protocols, and the transport protocols 
UA TCP and SOAP/HTTP. However, only the following combinations of the pro-
tocols (also named as Stack profiles or mappings schemes; see Chap. 6 for more 
details) can be used: 

• HTTP/SOAP, WS-SecureConversation, UA Binary 
• HTTP/SOAP, WS-SecureConversation, XML 
• HTTP/SOAP, WS-SecureConversation, UA Binary, and XML 

8.6.2  SDKs 

There are two C#-based libraries contained in the UA SDK: a client library and a 
server library. These libraries can be considered as the SDK Layer described ear-
lier. Both are providing the base functionality for handling the UA protocol and 
for processing common tasks regarding logging, security, and configuration. The 
server library provides special interfaces that can be used to integrate underlying 
systems for example in order to read or write certain values. The client library  
implements a NodeCache for buffering Nodes and References. In addition to the 
client and server libraries, the SDK also provides a C#-based discovery server 
used by clients for identifying running endpoints of the server they can connect to. 

C++-based UA SDKs for clients and servers were developed by a group of 
early adopter companies and are available as commercial libraries from Unified 
Automation. They are using the ANSI-C stack and are providing platform layers 
for different operating systems. Similar to the .NET UA SDK, the C++ SDKs are 
implementing common UA functionality to reduce the development effort for UA 
applications and are defining interfaces to integrate the application-specific infor-
mation with the SDK. 
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8.6.3  Applications 

The OPC Foundation’s UA SDK provides both a sample client and server application 
written in C#. The client application is a generic OPC UA browser offering the 
base OPC UA functionality like browsing the Address Space, reading and writing 
Node attributes, subscribing for data changes and Events, and also more sophisti-
cated concepts like calling Methods or using Views. Therefore, it is a powerful tool 
for learning and exploring the concepts of OPC UA. The server uses an in-memory 
Address Space including standard Nodes as well as an example describing a boiler 
and its components. 

8.7  Summary 

8.7.1  Key Messages 

This chapter describes how the architecture of an OPC UA application typically 
looks like. The main design goal is thereby the reuse of artifacts (e.g., code and 
components). Therefore the following layers with certain responsibilities are  
defined: Application Layer, SDK Layer, and Stack Layer. 

The Stack is responsible for the lower level functions like encoding and decod-
ing messages, securing messages, as well as sending and receiving messages. In 
addition to that, it has a Platform Layer containing only platform-specific code 
whereas the other layers are written in platform neutral manner. This facilitates the 
portability of the Stack to other platforms. 

The SDK contains higher level functionality covering UA-specific functions 
and common functions. The UA-specific part implements the OPC UA concepts 
and Services whereas the common part deals for example with configurations and 
logging. Additionally the server-side of the SDK provides interfaces in order to  
integrate other systems used as data providers. 

The Application Layer covers the use-case-specific part of the functionality. 
Clients could, for example, process data received from the SDK in a special way 
in order expose it to the user. Servers could access underlying systems in order to 
expose its information via OPC UA to clients. 

The OPC Foundation offers a set of OPC UA standard deliverables that system 
vendors can reuse. Some of the components already implement similar architec-
ture as described in this chapter. 

8.7.2  Where to Find More Information? 

More information about the OPC UA standard deliverables can be found on the 
OPC Foundation Web site (http://www.opcfoundation.org/). More information 
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about the C++ SDKs can be found at the Unified Automation Web site (http:// 
www.unified-automation.com). Finally, the Web site of the OPC programmers’ 
connection (http://www.opcconnect.com/) provides a section with SDKs that can a 
useful source when intending to implement OPC UA applications. 

8.7.3  What’s Next? 

In Chap. 8 – System Architecture – different variants of OPC UA client–server 
concepts are introduced like chained or aggregating server. In addition, some related 
concepts regarding redundancy, discovery, and auditing are introduced. 
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9 System Architecture 

9.1  System Environment 

We mentioned several times in this book that OPC UA is designed in a generic 
manner and can therefore be applied in a diverse range of applications running at 
various locations within an organization’s network. Figure 9.1 shows an example 
of an environment in which OPC UA is used in various ways. In this scenario, 
OPC UA servers are running on controllers of the Control Network, on Batch sys-
tems in the Operations Network, and are applied for MES application as a part of 
the production planning. Furthermore, an ERP system uses an OPC UA client as 
an interface for consuming services in the Corporate Network. In addition, there 
are not only different applications involved but also different platforms. The control-
lers require real-time operating systems, the Batch systems as well as the MES 
might be Windows-based and the ERP system might be deployed on UNIX plat-
forms. Besides the possibility to run OPC UA on different platforms, it can also be 
used for applying different architectural concepts at system level. In our example, 
several architectural concepts can be identified such as redundancy (Batch serv-
ers), server-chaining (MES and Batch), or server aggregation (Batch and OPC UA 
servers running on the controllers). 

other concepts at system level. 

9.2 Basic Architecture Patterns 

patterns are either used for structuring systems and applications or used for solving 

Server, Server-to-Server Communication, and Aggregating Servers, are described 
that can be applied in different OPC UA-specific scenarios. 

9.2.1  Client-Server 
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This section introduces different architectural patterns for OPC UA systems. Such 

certain design problems. In the following, four basic patterns, Client–Server, Chained 

The first pattern–the Client–Server pattern – is the most common one and represents 
the basic OPC UA communication pattern (Fig. 9.2). There are two roles defined 
in this scenario: a server offering a service and a client consuming that service to 
fulfill certain tasks. The communication between them is defined by a contract they 
both agree upon. This means for the present context that an OPC UA client sends 
a well-formed request message to an OPC UA server, which answers to the  
request with an appropriate response message. 
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Fig. 9.1 Example for an OPC UA system environment 

 
Fig. 9.2 Client–Server pattern 

9.2.2  Chained Server 

In the Chained-Server pattern depicted in Fig. 9.3 three entities are involved: a com-
mon OPC UA client (OPC UA Client 1), an OPC UA server (OPC UA Server 1) with 
an embedded client (OPC UA Client 2), and a common OPC UA server (OPC UA 
Server 2). The OPC UA Client 1 exchanges messages with OPC UA Server 1 and 
the embedded OPC UA Client 2 communicates with OPC UA Server 2. 

is useful. One possible scenario could be to use the chaining server as a gateway. 
If, for example, OPC UA Client 1 only supports HTTP(s) as transport protocol and 
the server it intends to talk with resides in a network segment in which a firewall 
restricts the access to TCP combined with a special port, then a chaining server 
could act as a gateway in-between. Thereby, it translates HTTP(s) requests com-
ing from the client to TCP and responses in TCP to HTTP(s) since it acts as client 
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There are several use cases and scenarios in which the application of such a pattern 

to OPC UA Server 2 and as a server to OPC UA Client 1. 



 
Fig. 9.3 Chained Server pattern 

9.2.3 Server-to-Server Communication 

that are only consumed by clients. But how can servers communicate with each 

Fig. 9.4 Server-to-Server pattern 

since we know from the basic Client–Server pattern that a server provides services 

other? This can be achieved by embedding a client into a server. This concept is quite 
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The term Server-to-Server communication sounds somewhat contradictory, 



similar to the Chained-Servers pattern introduced in the Sect. 9.2.2, with the exception 
that both servers have embedded clients, which enables both sides to initiate the 
communication (i.e., both sides can send request messages). This scenario is illu-
strated in Fig. 9.4. Note that although this concept is named Server-to-Server com-
munication, this does not mean that only servers can communicate with each other. 
Of course, non-embedded OPC UA clients can talk with the servers as well. 

But why should servers communicate with each other? One very typical use 
case is server redundancy. To provide the same data to clients in a failover case, 
redundant servers have to replicate their data especially when both servers are 
running and in operational mode (e.g., hot-failover concept described in Sect. 9.3). 

9.2.4  Aggregating Server 

Finally, the last of the four patterns described in this chapter is the concept of Ag-
gregating Servers. This pattern is also similar to the Chaining-Server concept. In 
Fig. 9.5, an example for that concept is given. The common OPC UA Client talks 
with OPC UA Server 1 containing an embedded OPC UA Client. This embedded 
client accesses data provided by multiple other OPC UA servers. The data ret-
rieved from these servers is prepared or processed in a special way by the inter-
mediate server before a response is sent back to the common client. 
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Fig. 9.5 Aggregating Server pattern 
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Such a pattern can, for example, be applied in the field of MES. In such a scenario, 
the common OPC UA client can be used for executing and supervising production 
requests. A production request contains among others information about the type 
and the quantity of the product that has to be manufactured. OPC UA Server 1 
processes the request and distributes subtasks to the underlying servers. Each of 
the aggregated servers is thereby responsible for a defined part of the production 
process. Once they have completed their tasks, they return the results to OPC UA 
Server 1, which composes a response for the common client. Before sending the 
response to the common client, the data obtained from the aggregated servers can 
be prepared in a special way for the client. For example, the overall status of the 
request or some statistical data like number of occurred errors can be returned. 

The main difference between an aggregating server and a chaining server is 
that the chaining server just passes the data of the underlying server(s), while an  
aggregating server typically concentrates the information of the underlying server(s). 

9.3  Redundancy 

Redundancy in general is the existence of multiple critical components of a system 
in order to increase the reliability. If an error occurs in one of the components, then 
another one is used instead. 

In OPC UA, redundancy is based on the existence of duplicate client or server 
applications and can be achieved by using special data structures and services of 
OPC UA. In the following, we distinguish between client and server redundancy. 

9.3.1  Client Redundancy 

Client redundancy is needed in environments in which, for example, a continuous 
supervisory of a production process is needed. Another example is when an OPC 
UA server aggregates data from underlying servers to perform special calculations 

TransferSubscriptions Service in combination with monitoring client information 
residing in the server’s Address Space. 

have an active OPC UA client with running data subscriptions and a backup client. 
This backup client monitors the session information of the active client in the 
server address space in the same way any other data is monitored in OPC UA. 
Once the active client fails and the status of the session changes in the address 
space, the backup client uses the service TransferSubscriptions to get all running 
subscriptions from the active client. Subscriptions can survive sessions since their 
lifetime is independent from the session lifetime. The server must thereby buffer 
data to be sent to the client during this failover process to avoid loosing data. This 
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Figure 9.6 illustrates an example of how this can work. Let us assume that we 

(Sect. 9.2.4). OPC UA supports these types of redundancy by applying the 



mechanism requires the backup client to have knowledge about the SessionId for 
monitoring the session and in addition the SubscriptionId for transferring the sub-
scriptions of the active client. However, there is no standard way specified by 
OPC UA for exchanging this information between those clients. 
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Fig. 9.6 Example of client redundancy 

9.3.2  Server Redundancy 

Server redundancy can be further differentiated in transparent server redundancy 
and nontransparent server redundancy. 

9.3.2.1 Transparent Server Redundancy 

In the first approach, server redundancy is handled transparently to the client. This 
means that in a failover case the client does not realize that an error occurred and  

Fig. 9.7 Transparent server redundancy 
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it does not need to do anything to continue performing its tasks. However, the 
server has the full responsibility to ensure that the client can access its required 
data. This means that the redundant servers have to be mirrored. They have to 

of how this can look like in the context of OPC UA. If the active server is not 
available anymore, further requests are redirected to the identical backup server. 

server, the information that they are accessing a redundant server can be found in 
the Address Space. To achieve requirements from FDA,1 the server also exposes 
an Id that uniquely identifies the server in the redundant set of servers. 

9.3.2.2 Nontransparent Server Redundancy 

In contrast to the above described transparent server redundancy concept, the 
nontransparent server redundancy requires some actions of the client to continue 
its work in the case when the server fails. For this type of redundancy, OPC UA 
specifies several failover modes defining for each case the role of the backup ser-
ver. Depending on the selected failover mode at the client side, different actions to 
support redundancy have to be performed. Table 9.1 describes each mode and the 
roles of the backup server as well as the required actions for the client side. 

9.3.2.3 Nontransparent Server Redundancy Approaches 

and transfer the subscription data of the previous session to the new session. For 
doing that, OPC UA proposes two approaches: by duplicating subscriptions or by 
using the TransferSubscriptions Service. Both ways are described later. Since this 
mechanism can be reused by any type of OPC UA client, it makes sense to encap-
sulate this functionality into a separated component (Failover Proxy). 

residing on the client side. In this case, it acts as proxy and creates a connection on 
both active and backup server. Furthermore, all subscriptions created on the active 
server are created on the backup as well while sampling or reporting is only enabled 
on the active one. Other service requests such as Read or Write are only forwarded. 
If, in a failover case, the active server is not accessible, then the proxy component 
enables sampling or reporting on the backup server. 

                                                            
1 The U.S. Food and Drug Administration (FDA) define requirements for companies developing 
applications for the consumer industry in the United States 
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have exactly the same data and session information. Figure 9.7 shows an example 

Although clients do not have to do anything special accessing a redundant 

The first approach (Fig. 9.8) requires only actions of the Failover Proxy  

To perform the failover, the client has to create a new session to a backup server 



Table 9.1 Failover modes and client side actions 

The second approach requires actions of the Failover Proxy component on the 
client side and additional actions on the server side. The proxy on the client side 
only creates subscriptions on the active server. The active server mirrors all created 
subscriptions to the backup server. Once the active server fails, the proxy creates a 
new session on the backup server and uses the TransferSubscriptions Service for 
getting the subscriptions of the previous session. This is exemplified in Fig. 9.9. 
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Failover mode Role of the backup server Client side actions 
Cold Backup server is running but not  

active. Once the active server fails  
the backup is activated. 

On initial connection: 

1. Nothing to do 

 
 At Failover: 

1. Connect to backup server 

2. Create subscriptions and add moni-
tored items 

3. Activate sampling on the subscrip-
tions 

4. Activate reporting of notifications 

Warm Backup server is running and active 
but it cannot connect to actual data 
points. This is applied in scenarios in 
which the number of connections to 
the underlying devices is limited. 
Therefore, the backup server only 
connects to the device in the case  
of a failover. 

On initial connection: 

1. Connect to both active and backup 

2. Create subscriptions and add moni-
tored items (enable subscription on  
active server and disable on backup 
server) 

At Failover: 

1. Activate sampling on the subscrip-
tions 

2. Activate reporting of notifications 

Hot Backup server is like the active  
server full operational and can be 
used for accessing data. When the  
active server breaks, then the backup 
server is running with a higher load 
since all clients previously connected 
to the active server move to the 
backup server. 

On initial connection: 

1. Connect to both active and backup 

2. Create subscriptions and add moni-
tored items 

3. Activate sampling on the subscrip-
tions  

At Failover: 

1. Activate reporting of notifications 



Fig. 9.8 Nontransparent server redundancy – approach 1 

Fig. 9.9 Nontransparent server redundancy –approach 2 

9.4  Discovery 

9.4.1  Why Discovery? 

In large OPC UA environments, there might be scenarios in which many OPC UA 
servers with different endpoints are provided. Each endpoint can have different 
configurations regarding communication, encoding, or security as well. In addition, 
the servers can run at different locations (e.g., network segments or sites). The 

2739.4 Discovery

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

Subscription: 
sampling/reporting

Subscription: 
disabled

Subscription: 
sampling/reporting

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

Transfer
Data 

Subscription 1 
over Session 1

Data 
Subscription 1 
over Session 1

Data 
Subscription 1 
over Session 2



problem for a client here is to find the server it intends to communicate with and 
which has an endpoint that the client is able to connect to. This is why OPC UA 
clients have to discover servers and inform themselves about the existing configu-
ration options of the endpoints before they can connect to a server. Note that cli-
ents do not have to perform the discovery process each time they intend to connect 
to a server. Typically, the information gathered during the discovery process is 
stored and reused for further connection establishment requests. 

OPC UA specifies a set of abstract services for performing the discovery proc-
ess as well as different design concepts. Section 9.4.2 describes the entities in-
volved in discovery, and Sect. 9.4.3 shows how the services are used for performing 
the different discovery approaches. 

9.4.2  Discovery Entities 

For performing discovery, special entities are specified in [UA Part 12], each of 
them covering a special discovery boundary. The Discovery services are defined 
in [UA Part 4]. The entities are briefly introduced in the following and are the  
basis for understanding the discovery processes in OPC UA. 

9.4.2.1 Session Endpoint 

A Session Endpoint is always associated to an OPC UA server. Only this type of 
endpoints can be used for creating Secure Channels and Sessions to access data 
provided by the server. 

9.4.2.2 Discovery Endpoint 

Endpoints providing information about other endpoints are called Discovery End-
points. This type of endpoint is either created by an OPC UA server providing 
data to clients or created by a Local or Global Discovery Server. 

9.4.2.3 Local Discovery Server 

If a discovery server resides on the same machine as the OPC UA servers of which 
it provides the Discovery Endpoints, then it is named as the Local Discovery Server. 
Multiple servers running on a single machine can share the same Local Discovery 
Server. 
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9.4.2.4 Global Discovery Server 

This discovery server maintains information about existing servers in a network 
and is accessible at a well-known address such as an URL or simply an IP address 
together with a port. More precisely, it provides the available Discovery Endpoints 
to which clients can connect to in order to get information about the Session End-
points. 

9.4.3  Discovery Process 

Before clients can start the discovery process the installed servers (i.e. the end-
points) have to be registered in the discovery servers by using the RegisterServer 
Services defined in [UA Part 4]. Thereby a description and the discovery URL has 
to be provided. 

The discovery process itself is performed by exchanging discovery messages 
among the above defined entities. There are a number of ways of how this process 
can be performed. The basic approaches are described in the following. 

9.4.3.1 Simple Discovery 

In the case that a client already has the address of the OPC UA server (e.g., by 
configuration), it only sends a GetEndpoints request to the server to get the des-
criptions of the available Session Endpoints. Once the client received the response 
from the Discovery Endpoints, it selects an appropriate Session Endpoint and 
establishes a connection to the selected endpoint starting with an OpenSecure-
Channel request. This is illustrated in Fig. 9.10. 

 
Fig. 9.10 Simple discovery 
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9.4.3.2 Normal Discovery 

There will also be scenarios in which multiple OPC UA servers are running on a 
single machine. In such a case, the client asks the Local Discovery Server for the 
existing servers by sending a FindServers request. The address at which a client 
can access the Local Discovery Server is either well-known2 or preconfigured in 
the client by the administrator. If the desired server is listed in the ServerDescrip-
tions returned by the Local Discovery Server, the client extracts the DiscoveryURL 
and connects to the Discovery Endpoint of the server and proceeds like described 
in the Simple Discovery case. In Fig. 9.11, it is shown how Normal Discovery is 
performed. 

 
Fig. 9.11 Normal discovery 

9.4.3.3 Hierarchical Discovery 

If OPC UA servers are widely distributed at several locations within the network, 
it might be hard for a client to identify the desired server or even the machine it is 
running on. In such a case, a Global Discovery Server should be introduced pro-
viding information about these servers within the network. Thereby the client 
sends a FindServers request to a well-known (or preconfigured) Global Discovery 
Server and obtains the descriptions of the existing machines offering a Local Dis-
covery Servers or OPC UA servers. If the returned list contains the desired OPC 
UA server, then the client proceeds as described in the Simple Discovery case, 

                                                           
 2Port 4840. 
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otherwise it selects an appropriate Local Discovery Server running on a certain 
machine (e.g., the description may give hints that facilitates the decision which 
one to select) and proceeds like in the Normal Discovery described earlier. The 
complete message exchange for hierarchical discovery is depicted in Fig. 9.12. 

Fig. 9.12 Hierarchical discovery 

9.5  Auditing 

9.5.1  Overview 

Auditing in the context of OPC UA means the tracking of activities of OPC UA 
applications, including normal and abnormal behaviors. It ensures thereby the 
traceability of the system for several purposes. One example is debugging applica-
tions on errors by extracting information from audit logs. Another example is  

3

tory bodies. 
Auditing can be accomplished by one of the following approaches or by applying 

both of them: 

                                                           
 3Forensic in the context of security means gathering information that help to identify the reason 

why a certain security incident occurred (e.g., a hacker that intruded into a system). A typical  
activity is thereby exploring different log files to detect strange behaviors or anomalies. 

tries (e.g., consumer industries), it is even a hard requirement defined by regula-
forensic  activities after a security incident occurred. And in some special indus-
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• OPC UA applications generate audit events and store the audit information in 
logfiles or databases. 

• OPC UA applications generate audit events and publish the audit event to 
which clients can subscribe. Thereby, clients can store audit information to spe-
cial locations. 

the second one. 

9.5.2  Audit Logs 

Audit logs in OPC UA store information about certain events that occurred in an 

an AuditActivateSessionEvent is generated by the server, which causes the crea-

by the client in the request header of the message. If a client does not specify an 

 
Fig. 9.13 Example of how audit logs can be used 

9.5.3 Audit Events 

Audit events are different kinds of events occurring in a system for which a sys-
tem should generate an audit log entry. OPC UA specifies a wide range of differ-
ent audit event types that can be used directly or for subtyping a more specialized 
type. Clients can subscribe for audit events in the same way they subscribe for 
other events. An example is given in Fig. 9.14. In this example, during a Secure 

278 9 System Architecture

In the following, Sect. 9.5.2 describes the first approach and Sect. 9.5.3 describes 

tion of an audit log entry. The EntryID for the ActivateSession request is provided 

application. Each entry in an audit log has an identifier – the EntryID. An example 

EntryID in his request, the server uses an alternative identifier for the log entry.  

of how audit logs can be used is illustrated in Fig. 9.13. In this scenario, UserA is 

Note that also the client can create audit logs to track internal actions such as

logging in to the OPC UA server by using the ActivateSession Service. Therefore, 

sending requests. 



Channel establishment it turns out that a certificate has expired. Therefore, an 
AuditCertificateExpiredEvent is created. Since the Admin workstation has also an 
OPC UA client, which subscribes for audit events of this type, it gets notified by 
the server. Now the administrator knows that certain clients identified with the 
EntryID need new certificates. 

 
Fig. 9.14 Example of how audit events can be used 

9.5.4 Service Auditing 

For each of the Service Sets defined in [UA Part 4] certain event types for auditing 
are defined and also how to deal with the events. For example, for the Secure-
Channel Service Set the following special Event Types should be used: 

• AuditOpenSecureChannelEventType for OpenSecureChannel Service 

covery Service Set, no special EventTypes are defined. In this case, the base type 
AuditEventType can be used or a custom subtype if it. 

A specific Profile is defining whether a server supports auditing by generating 
audit events. 

9.5.5 Use Cases 

This section describes how to handle audit logs and how they look like in certain 

additional ones can be defined. These EventTypes are used in both cases, when a 

• AuditCloseSecureChannelEventType for CloseSecureChannel Service 

service call fails and succeeds. For some services like for the services of the Dis-
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• Subtypes of AuditCertificateEventType for certificate errors. 

If the granularity of the types is not sufficient, they can easily be subtyped and 

system architectures (Sect. 9.2). 



9.5.5.1 Client and Server Auditing 

The first scenario describes the common client–server architecture shown in  
Fig. 9.15. When a client sends a request message to the server, then the client creates 

it also creates an audit log entry, but with its own special EntryID “SB” and con-
taining the client’s name and EntryID. 

 
Fig. 9.15 Client–Server auditing 

9.5.5.2 Aggregating Server 

When considering a scenario in which an aggregated server is used as illustrated 
in Fig. 9.16. The first step is similar to the normal client–server approach des-
cribed earlier. In the second step, the aggregating server sends a request to OPC 
UA Server C. When this server receives the message, it creates an audit log entry 
with the EntryID “SC” and the ClientName is thereby the name of the aggregating 

 
Fig. 9.16 Aggregating server auditing 

9.5.5.3  Aggregation through a nonauditing server 

The last use case considered in this section describes auditing in a scenario in 
which an aggregating server is used that does not support auditing. However, the 
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an audit log entry with the EntryID “CA”. When the server receives the message, 

server “B” its EntryID “SB”. 



creates an audit log when it sends a request to the OPC UA Server B, which does 
not create an audit event but includes the EntryID in the request message it sends 
to Server C. When Server C receives the request from B, it creates an audit log  
entry with ClientName of “B” and the EntryID “CA” belonging to client A. 
 

 
Fig. 9.17 Aggregation through a nonauditing server 

9.6  Summary 

9.6.1  Key Messages 

Applications based on OPC UA can be run at different levels in an automation 
network and is therefore applied for a diverse range of scenarios. However, there 
is a number of generic architectural patterns representing typical use cases or solv-
ing certain design problems. One problem domain in which some of the patterns 
can be applied is redundancy. OPC UA provides information about dealing with 
both client- and server-redundancy. On the server side, it is distinguished between 
transparent and nontransparent redundancy. Another important topic regarding the 
system architecture is discovery. Before an OPC UA client connects to a server, it 
first has to get information about how it can establish the connection. There are 
different possible configurations regarding communications protocols, encoding, 
and security. OPC UA specifies different ways of how discovery can be per-
formed. When considering installing OPC UA applications in a concrete environment, 
it has to be taken care of how to configure and deploy those applications regarding 
discovery. Auditing is important also required for a number of reasons like for 
detecting errors or for accountability requirements defined by regulatory bodies. 
Therefore, OPC UA specifies how auditing is done with services and events. 

9.6.2  Where to Find More Information? 

The different concepts regarding redundancy in OPC UA are defined in [UA Part 4] 
as well as how services and events are audited. Some more general information 
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server it connects to does. Figure 9.17 depicts such a case. OPC UA Client A  



about auditing can also be found in [UA Part 2]. Special EventTypes for audit 
events are provided in [UA Part 3] and [UA Part 5]. There are two sources des-
cribing the discovery mechanisms of OPC UA: [UA Part 4] defines common ser-
vices whereas [UA Part 12] comes up with different concepts of how the discovery 
process can be performed. 

9.6.3  What’s Next? 

The next chapter describes how Classic OPC can be mapped to OPC UA. Thereby, 
it is shown how the different entities (i.e., objects and types) used in OPC Data 
Access, Alarms & Events, and Historical Access can be exposed in an OPC UA 
Address Space and also how they can be accessed. 
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10.1  Overview 

is implemented in more than 15,000 products and used in a huge installed base. 
This makes the mapping of COM based OPC interfaces to OPC UA an important 
task, allowing the installed base to profit from the advantages of OPC UA and to 
provide OPC vendors an easy migration strategy. 

OPC UA keeps the successful concepts of Classic OPC. This was an important 

information. 

late the different standards from and to OPC UA. A proxy allows Classic OPC cli-
ents to access UA server and a wrapper allows UA clients to access Classic OPC 
servers. But the mapping is also important for the migration of existing OPC 
products to OPC UA. It enables existing OPC information to be exposed with 
OPC UA to use the advantages of the reliable and secure communication features 
of OPC UA without the need to support new features. They can be added over 
time in an iterative development and improvement process. 

Based on the experience from several projects to integrate OPC UA in existing 
OPC products, it is much more efficient and from a product point of view less  
error-prone to integrate OPC UA directly into an existing product, since the OPC 
DA interface hides normally information that is useful to implement OPC UA.  

installed base into OPC UA communication and to add OPC UA support to legacy 
products, which are not longer updated. 

This chapter provides mapping tables between Classic OPC terms and con-
structs and OPC UA. It does not explain the Classic OPC terms. The OPC UA 
terms are explained in the Chaps. 2 and 5 of this book. Therefore, this chapter  
requires knowledge about Classic OPC terms to understand the mapping. 

10.2  OPC Data Access 2.05A and 3.0 

Most of the OPC UA facets needed to implement the complete OPC Data Access 
functionality are contained in the base specifications of OPC UA. Only some 
process automation specific VariableTypes are defined in [UA Part 8].  
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standards. Classic OPC  can be mapped to OPC UA without loosing information.
design goal of OPC UA. It allows the mapping between OPC UA and existing 

The Classic OPC standard, especially the OPC DA interface, is very successful. It 

The use of wrappers and proxies should be limited to the integration of the  

Mapping from OPC UA to Classic OPC is possible but may lead to loss of 

The mapping is the base for proxies and wrappers (see chap. 11) used to trans-



necessary to replace an OPC Data Access server. 

10.2.1  Address Space 

Only a very small set of the OPC UA modeling capabilities is used to expose an 

Object, Data Variables, Organizes, and HasComponent References. Table 10.1  
describes the complete mapping more detailed. 

Table 10.1 Mapping address space OPC DA to UA 

OPC DA OPC UA 
Nodes in the Address Space 

Branches are used to structure the 
hierarchical Address Space 

Branches can be represented with Folder 
Objects. The hierarchy is spanned with 
Organizes References. The root in OPC 
DA is the Objects Folder in OPC UA 

OPC Items are used to represent 
data in the Address Space. They 
are the leafs of Branches 

Data Variables are used to represent OPC 
Items. The Data Variables are structured 
using Folder Objects and HasComponent 
References 

Variable Types 
OPC Item with no EUType VariableType is BaseDataVariableType 
OPC Item with EUType Analog VariableType is AnalogItemType 
OPC Item with EUType  
Enumerated 

VariableType is TwoStateDiscreteType or 
MultiStateDiscreteType 

Properties and Attributes 
ItemID  
A string uniquely identifying an 
item in the server Address Space 

NodeId 
Numeric, string, GUID, or opaque identi-
fier including a namespace used to 
uniquely identify a Node in the server 
Address Space. The ItemID can be 
mapped to the string identifier 

Property Item Canonical Data 
Type 

Attributes DataType, ValueRank, and  
ArrayDimensions 

Properties Item Value, Item Qual-
ity, and Item Timestamp 

Attribute Value containing the Value, 
status, and timestamps. The DA  
timestamp is mapped to the UA server 
timestamp 

Property Item Access Rights Attributes AccessLevel and User 
AccessLevel 
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The standard server profile described in Chap. 12 contains the OPC UA features 

OPC Data Access Address Space with OPC UA. The main components are Folder 



Property Server Scan Rate Attribute MinimumSamplingInterval 
Property EU Units Property EngineeringUnits 
Property Item Description Attribute Description 
Properties High EU and Low EU Property EURange 
Properties High Instrument Range 
and Low Instrument Range 

Property InstrumentRange 

10.2.2  Access Information 

The context created for the communication, the methods for creating the context, 
and the methods to access information have different names, but they can easily be 
mapped from OPC DA to OPC UA. Table 10.2 lists the mapping necessary to 
provide the same level of access to OPC DA information in OPC UA. 

Table 10.2 Mapping information access from OPC DA to UA 

OPC DA OPC UA 
Context 

COM Object OPCServer OPC UA Session 
COM Object OPCGroup OPC UA Subscription 
OPCItem in a Group Data Monitored Item in a Subscrip-

tion 
Creating Context 

CoInitializeEx 
CoInitializeSecurity 
CoCreateInstanceEx creates OPCServer

OpenSecureChannel 
CreateSession 
ActivateSession 

AddGroup 
IOPCGroupStateMgt::SetState 
RemoveGroup 

CreateSubscription  
ModifySubscription 
DeleteSubscriptions 

AddItems 
RemoveItems 

CreateMonitoredItems 
DeleteMonitoredItems 

Accessing Information 
ChangeBrowsePosition 
BrowseOPCItemIDs 
GetItemID 
QueryAvailableProperties 

Browse 

IOPCItemIO::Read 
IOPCSyncIO::Read 
IOPCSyncIO2::ReadMaxAge 
IOPCAsyncIO2::Read 
IOPCAsyncIO3::ReadMaxAge 
IOPCItemProperties::GetItemProperties

Read 
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IOPCItemIO::WriteVQT 
IOPCSyncIO::Write 
IOPCSyncIO2::WriteVQT 
IOPCAsyncIO2::Write 
IOPCAsyncIO3::WriteVQT 

Write 

OnDataChange Publish 
GetStatus 
ShutdownEvent 

Read or monitoring of ServerState 
and ServerStatus Variables 

10.2.3  OPC XML-DA 1.01 

OPC XML-DA was already reduced to the core functionality necessary for Data 
Access; therefore, it is even easier to map OPC XML-DA to OPC UA. OPC XML-
DA uses the same Address Space concept like COM-based OPC DA. Therefore, the 
mapping described in Table 10.1 applies. Table 10.3 describes the mapping of the 
information access part of OPC XML-DA to OPC UA. 

Table 10.3 Mapping information access from OPC XML-DA to UA 

OPC XML-DA OPC UA 
Browse Browse 
Read 
GetProperties 

Read 

Write Write 
Subscribe 
SubscriptionPolledRefresh 
SubscriptionCancel 

CreateSubscription  
Publish 
DeleteSubscriptions 

GetStatus Read or monitoring of ServerState 
Variable 

The mapping of OPC Alarm & Events to OPC UA is not as straightforward as the 
mapping of OPC DA. OPC A&E provided already an Information Model for 
Events and Process Alarms. But the model is very static and limited compared to 
the generic and extensible model provided by OPC UA. This makes the mapping 
more complex than for DA. 

The simple and tracking Events defined in OPC A&E can be implemented with 
OPC UA by just using the base specifications of OPC UA, since monitoring 
Events and defining EventTypes is already defined there. For the mapping of condition 
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10.3  OPC Alarm and Events 1.1 



Events, the OPC UA Alarms & Conditions Information Model [UA Part 9] is 
needed. This Information Model is described in Sect.  4.9. 

10.3.1  Address Space 

There are three main groups of mappings that need to be addressed. The first 
group is the Areas and Event sources used to structure sources for Events in a hier-
archy. The second group is the Event type used to classify the Events and the third 
group is the conditions used to represent process alarms. Table 10.4 describes the 
mapping more detailed. 

Table 10.4 Mapping address space OPC A&E to UA 

OPC A&E OPC UA 
Nodes in the Address Space 

Areas are used to structure the hier-
archical Address Space 

Areas can be represented with Folder 
Objects. The hierarchy is spanned with 
HasNotifier References. The root in 
OPC A&E should be the Server Object 
in OPC UA 

Sources are the event sources in the 
Address Space 

Sources could be represented by Object 
or by Variables depending on the type 

with the HasEventSource Reference 
from the Folder Objects 

Event Types 
Simple Event BaseEventType 
Tracking Event AuditEventType 
Condition Event AlarmConditionType 
EventCategories define a list of 
server specific Event Types for each 
base Event Type 

Mapped to a derived Event Type of 
BaseEventType, AuditEventType, or 
AlarmConditionType 

Event Fields 
dwEventType / dwEventCategory  EventType 
szSource SourceName 
ftTime Time 
szMessage Message 
dwSeverity Severity 

Conditions 
Enabled state Condition State Machine 
Active state Alarm Active State Machine 
Acked state Acknowledge State Machine 
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of Source. The Sources are referenced 



As mentioned earlier in this chapter, the mapping of the Address Space informa-
tion is not straightforward. But also the access to the information is different and 
more generic in OPC UA. 

One difference is that OPC A&E provides only one filter per Subscription, and 

and Event Monitored Items. Another difference is the selection of Event Fields 

the base Event Type1 and additional attributes can be requested and the filter is 
limited to a small and fixed list of filter criteria. In OPC UA, there is no default 
Event field that is delivered to the client. The client is able to select only the fields 
he is interested in. The filter criteria in OPC UA are much more flexible by allow-
ing filtering on all Event fields. Figure 10.1 shows the main differences between 
OPC A&E and OPC UA. 

 

Fig. 10.1 Communication context in OPC A&E and OPC UA 

Table 10.5 contains more details for the mapping of information access bet-
ween OPC A&E and OPC UA. 

 

                                                            
1Simple, Tracking of Condition Event. 

in OPC UA, the Subscription can have a list of MonitoredItems, each of them defin-

and the possible filters. In OPC A&E, the provided Event attributes are defined by 

ing an Event filter and it can also contain a mix of data change Monitored Items 
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Table 10.5 Mapping information access from OPC A&E to UA 

OPC A&E OPC UA 
Context 

COM Object OPCEventServer OPC UA Session 
COM Object OPCEventSubscription OPC UA Subscription  

Event Monitored Item 
Creating Context 

CoInitializeEx 
CoInitializeSecurity 
CoCreateInstanceEx creates Server 

OpenSecureChannel 
CreateSession 
ActivateSession 

CreateEventSubscription 
SetFilter 

CreateSubscription 
CreateMonitoredItems 

Accessing Information 
ChangeBrowsePosition 
BrowseOPCAreas 
QueryEventCategories 
QueryConditionNames 
QuerySubConditionNames 
QuerySourceConditions 
QueryEventAttributes 

Browse 
Read 

GetConditionState Read 
EnableConditionByArea 
EnableConditionBySource 
DisableConditionByArea 
DisableConditionBySource 

Methods on Condition State Ma-
chines called with the Call Service 

OnEvent Publish 
GetStatus 
ShutdownRequest 

Read or monitoring of ServerState 
and ServerStatus Variables 

The OPC UA Historical Access functionality is defined in [UA Part 11], and the 
Aggregates to retrieve calculated Values from the raw Values in the history data-
base are defined in [UA Part 13]. This book provides Historical Access specific 
information in Sects. 4.6 and 5.9. 

The main difference between OPC Historical Data Access and the History Access 
functionality in OPC UA is the additional support of Event History not included in 
Classic OPC. 
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Only a very small set of the OPC UA modeling capabilities is used to expose an 
OPC Historical Data Access Address Space with OPC UA. The main components 
are Folder Object, Data Variables, Organizes, and HasComponent References. 
Table 10.6 describes the mapping more detailed. 

Table 10.6 Mapping address space OPC HDA to UA 

OPC HDA OPC UA 
Nodes in the Address Space 

Branches are used to structure the  
hierarchical Address Space 

Branches can be represented with 
Folder Objects. The hierarchy is 
spanned with Organizes References. 
The root in OPC HDA is mapped to the 
Objects Folder in OPC UA 

OPC Items are used to represent data 
in the Address Space. They are the 
leafs of Branches 

Data Variables with the HistoryRead 
flag set in the AccessLevel are used to 
represent OPC Items. The Data Variables 
are references with the HasComponent 
Reference from the Folder Objects 

HDA Item Attributes mapped to UA Attributes and Properties 
OPCHDA_ITEMID  
A string uniquely identifying a item 
in the server Address Space 

NodeId  
Numeric, string, GUID or opaque  
identifier including a namespace used 
to uniquely identify a Node in the 
server Address Space 

OPCHDA_DATA_TYPE Attributes DataType, ValueRank and 
ArrayDimensions 

OPCHDA_ARCHIVING Attribute Archiving 
OPCHDA_DESCRIPTION Attribute Description 
OPCHDA_ENG_UNITS Property EngineeringUnits 
OPCHDA_STEPPED and Attributes 
which affect how the data is  
historized 

Historical configuration object. 

10.4.2  Access Information 

The context created for the communication, the methods for creating the context, 
and the methods to access information have different names but they can easily be 
mapped from OPC HDA to OPC UA. Table 10.7 lists the mapping necessary to 
provide the same level of access to OPC HDA information in OPC UA. 
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Table 10.7 Mapping information access from OPC HDA to UA 

OPC HDA OPC UA 
Context 

COM Object OPCHDAServer OPC UA Session 
COM Object OPCHDABrowser OPC UA Session 

Creating Context 
CoInitializeEx 
CoInitializeSecurity 

OpenSecureChannel 
CreateSession 
ActivateSession 

GetItemHandles 
ReleaseItemHandles 

RegisterNodes 
UnregisterNodes 

ChangeBrowsePosition 
GetEnum 
GetItemID 

Browse 

GetItemAttributes Read 
IOPCHDA_SyncRead::ReadRaw 
IOPCHDA_AsyncRead::ReadRaw 
IOPCHDA_SyncRead::ReadModified 
IOPCHDA_AsyncRead::ReadModified 

HistoryRead with read detail 
ReadRawModified 

IOPCHDA_SyncRead::ReadProcessed 
IOPCHDA_AsyncRead::ReadProcessed 

HistoryRead with read detail 
ReadProcessed 

IOPCHDA_SyncRead::ReadAtTime 
IOPCHDA_AsyncRead::ReadAtTime 

HistoryRead with read detail 
ReadAtTime 

IOPCHDA_SyncUpdate::Insert, Replace 
and InsertReplace 
IOPCHDA_AsyncUpdate::Insert, Replace 
and InsertReplace 

HistoryUpdate with update detail 
UpdateData 

IOPCHDA_SyncUpdate::DeleteRaw 
IOPCHDA_AsyncUpdate::DeleteRaw 

HistoryUpdate with update detail 
DeleteRawModified 

IOPCHDA_SyncUpdate::DeleteAtTime 
IOPCHDA_AsyncUpdate::DeleteAtTime 

HistoryUpdate with update detail 
DeleteAtTime 

IOPCHDA_AsyncRead:: AdviseRaw 
IOPCHDA_AsyncRead::AdviseProcessed

Subscription with Data or Aggre-
gate Monitored Item 

GetAggregates Browse and Read starting from 
Object HistoryAggregates 

QueryCapabilities Browse and Read HistoryServer-
Capabilities Object. 

GetHistorianStatus Read or monitoring of ServerState 
and ServerStatus Variables 

 

10.4 OPC Historical Data Access 291

CoCreateInstanceEx creates OPCHDAServer 

Accessing Information 



10.5.1  Key Messages 

Most of the Classic OPC features can be mapped straightforward to OPC UA, 
since OPC UA adopted a lot of the concepts and similar functionality has just dif-
ferent names in OPC UA. The main reason for different names is the much wider 
approach of OPC UA, where defined terms need to cover more functionality than 
in Classic OPC. For example, an OPCGroup in OPC DA and an OPCEventSub-
scription in OPC A&E and a Subscription in OPC XML-DA became a Subscrip-
tion in OPC UA covering both DA and A&E. 

Just by looking through the mapping tables, it can be seen that OPC UA is 
much more generic than Classic OPC. A long list of different interface methods 
used to access information in Classic OPC is replaced with a few generic OPC UA 
Services. Different concepts to represent information in the Address Space are  
replaced with one generic and extensible instance and type model in OPC UA. 

10.5.2  Where to Find More Information? 

The mapping tables in this chapter just give a hint how to map different terms, 
concepts, and features from Classic OPC to OPC UA. They are a starting point to 
find the details in the different OPC specifications for Classic OPC and OPC UA. 
These specifications are the main source for additional information to implement 
the mappings. SDK documentations and the documentations for the wrappers and 
proxies provided by the OPC Foundation may give additional hints. 

10.5.3  What’s Next? 

The mapping from Classic OPC to OPC UA described in this chapter is used in 
the implementation of wrapper and proxy components or for the integration of OPC 
UA into existing OPC products. These migration strategies are described in the 
next chapter. 
 

10.5  Summary 
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11 Migration 

11.1  Overview 

OPC UA provides migration strategies for different requirements and levels of 

different Classic OPC interfaces to OPC UA and vice-versa. This level is appro-
priate for integrating the installed base of OPC products and legacy products into 

For OPC product vendors, the other levels of migration are more important. 
The second level uses the mappings described in the previous chapter to expose 
the same features as in the existing products with OPC UA. This does not require 
any changes on internal interfaces to access information of a system exposed with 
Classic OPC today. The advantage over the use of wrappers is a higher perform-
ance, fewer limitations, and less maintenance efforts by avoiding an additional 
wrapper software layer. From a product point of view,1 this is not much more  
effort than using the integration of the wrappers. This level allows OPC products 
already to profit from all enhancements regarding the reliable and secure commu-
nication between distributed systems. 

In an iterative development and improvement process, it is easy to add addi-
tional features supported by OPC UA. A good example is the support of the new 
feature Methods. For adding this feature to an OPC UA Data Access server, it is 
only necessary to support the Method NodeClass with the Properties to describe 
the input and output arguments of a Method and the Call Service to enable a client 
to call the provided Methods. Since OPC UA is flexible and extensible, more and 
more features can be added over time. 

11.2  Wrappers: Access COM Server from UA Client 

OPC UA Wrappers are used to allow OPC UA clients to access Classic OPC servers. 
Such a wrapper component is an OPC client for one of the Classic OPC standards 
accessing a server and at the same time the wrapper is an OPC UA server allowing 
UA clients to talk to the wrapped server. 

Figure 11.1 shows the components of a UA wrapper providing access to an 
OPC Data Access server for UA clients. 

                                                            
1The development effort is only a small part of the product costs. Testing, documentation, and 
long-term support needs to be provided also for the wrappers. 

OPC UA adoption. The first level does not require changes in existing products. 

OPC UA communication networks. This migration strategy is explained more

Wrappers and proxies provided by the OPC Foundation are able to translate the 

detailed in the next sections. 
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Fig. 11.1 UA wrapper providing access to OPC DA servers 

UA clients to access the data from any server providing an OPC Data Access 
compliant interface. A Session created by a UA client results in the creation of an 

in the wrapper uses the mapping described in Sect. 10.2.1 and the browse and 
property access interfaces defined for OPC DA. 

Figure 11.2 shows the components of a UA wrapper providing access to an 
OPC Alarm & Events server for UA clients. 

 
Fig. 11.2 UA wrapper providing access to OPC A&E servers 

UA clients to receive Events from any server providing an OPC Alarm & Events 
compliant interface. A Session created by a UA client results in the creation of an 
OPCEventServer object in the OPC A&E server and a Monitored Item created in 
 a Subscription is mapped to an OPCEventSubscription. The View Service Set  

The UA DA wrapper implements a UA server exposing UA Endpoints, allowing 

OPCServer object in the OPC DA server and a Subscription with Monitored Items 
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The UA A&E wrapper implements a UA server exposing UA Endpoints, allowing 

is mapped to an OPCGroup with OPCItems. The View Service Set implemented 



implemented in the wrapper uses the mapping described in Sect. 10.3.1 and the 
browse and event type access methods defined for OPC A&E. 

11.3  Proxies: Access UA Server from COM Client 

OPC UA Proxies are used to allow Classic OPC clients to access OPC UA servers. 
Such a proxy component is an OPC UA client accessing a UA server and at the 
same time the proxy is a Classic OPC server exposing a COM interface, allowing 

Figure 11.3 shows the components of a proxy providing access to an OPC  
UA server for OPC DA clients. The proxy implements the mapping described in 
Sect. 10.2.1. 

 
Fig. 11.3 DA COM proxy providing access to OPC UA server 

server for OPC A&E clients. The proxy implements the mapping described in 
Sect. 10.3.1. 

 

Fig. 11.4 A&E COM proxy providing access to OPC UA server 

Figure 11.4 shows the components of a proxy providing access to an OPC UA 

clients using one of the Classic OPC standards to access OPC UA servers. 

29511.3 Proxies: Access UA Server from COM Client



The Wrappers and Proxies are used to integrate OPC UA applications with existing 

ance overheads and adds additional configuration and maintenance effort. 
SDKs and UA Stacks for different programming languages and development 

environments make the native integration of OPC UA into a product a manageable 

this first step are the integration of existing OPC features like DA, HAD, and 
A&E into one address space and the use of the reliable, secure, and easy to con-
figure communication features of OPC UA. This first step overcomes the limita-
tions of DCOM in a distributed environment. 

systems. 
New OPC UA features like the support of methods, structured data types, and 

ing engineering tools should be enhanced to support features like remote access, 
internet access, user authentication, and security mechanisms. The OPC UA 
mechanisms for application and product authentication can be used to limit the 
configuration access to certain applications. The use of enhanced features between 
the products from one vendor like the use for engineering purposes does not  
require the support of these features by other vendors, but can help to reduce the 
design and development efforts when features supported by OPC UA are needed 
in a product. 

Domain-specific Information Models will make use of the new features and  
capabilities of OPC UA. This enhances the usability and interoperability of OPC 
UA applications by defining guidelines and constraints for special use cases. 
Therefore, the implementation of these Information Models is the next step for 
OPC UA products to use the enhanced OPC UA features for information exchange 
between systems from different vendors. 

11.5  Summary 

11.5.1  Key Messages 

Applications only using the OPC UA protocol cannot exchange information directly 
with applications only using the Classic OPC protocols even if they provide similar 
data and are using similar concepts to describe and exchange the data. 

task. Existing OPC functionality can be exposed with OPC UA in a first iteration 

ducts and existing installations, since the additional software layer creates perform-

step. This allows using Classic OPC and OPC UA in parallel. The advantages of 

applications based on Classic OPC. Their use should be restricted to legacy pro-

Systems based on non-Microsoft platforms can integrate OPC UA directly

the availability of a type system can be used in a second iteration. One use case is 

into their systems without the need of additional gateways running on Windows

the configuration of products through OPC UA. This can be an option when exist-

11 Migration

11.4  Native Development 
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The mapping between such applications is provided by wrapper and proxy 
components developed by the OPC Foundation. These components can be used to 
integrate OPC UA applications into existing OPC installations or to use legacy 
OPC products in OPC UA communication environments. 

The wrappers and proxies are not adding any new OPC UA features. They are 
only translating the Classic OPC functionality to OPC UA. These components are 
implementing the mapping described in Chap.10 but they can be used together 
with any OPC compliant product to translate OPC UA to Classic OPC and vice-
versa. The main used case for these components is the integration with the  

This covers the important design goal of OPC UA to allow easy migration from 
Classic OPC to OPC UA to protect investments in OPC and to use the large installed 
OPC base for OPC UA. 

Another aspect is the reuse of successful OPC concepts and the integration of 
all existing OPC standards in one generic model. This allows existing OPC pro-

These products can provide or use OPC UA and Classic OPC in parallel in one 
product without loosing already provided functionality. New OPC UA features 
can be added over time. 

The wrapper and proxy components can be downloaded from the OPC Foundation 
web site. 

The next chapter introduces Profiles. They are used to declare what features an 
OPC UA product ensures to support. Applications exchange these profiles to 
know what they can expect from the application they want to exchange data with. 

11.5.3  What’s Next? 

11.5.2  Where to Find More Information? 
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ducts to migrate to OPC UA by following the mappings described in Chap. 10. 

installed base and legacy OPC products. 



 

12 Profiles 

12.1  Motivation 

OPC UA combines the functionality of OPC DA, OPC HDA, and OPC A&E, and 
introduces additional features like historical Events and Methods. Not every OPC 
UA application will support all the functionality of OPC UA. For example, a server 
running on an embedded device may not provide any historical information or may 
even not be able to support subscriptions. Some servers are able to track changes in 
their Address Space, others not. The same is true for clients. For example, some cli-
ents will only deal with current data, others will only subscribe to Events. To handle 
OPC UA applications with different functionalities, OPC UA introduces Profiles. 

Profiles define the functionality of an OPC UA application. A Profile can be 
used by vendors for marketing (“my product supports these features”) and as deci-
sion support for customers (“I need a product supporting these features”). To verify 
that an application really supports a Profile there are test cases defined for the fea-
tures of a Profile. Independent testing authorities will test the applications and create 
signed Software Certificates for the application. Those Certificates contain infor-
mation about the supported Profiles. 

Profiles are not only used as human-readable announcement, but information 
about the supported Profiles is also exchanged between OPC UA applications. This 
allows applications to reject connections when their counterpart does not support 
required Profiles. It also illustrates the features supported by an application and 
allows other applications to only use those features and not try to use features that 
are not supported. 

In the following section we will introduce the different building-blocks for Profiles 
and explain the different kinds of Profiles. Afterwards we will look at client- and 
server-related Profiles as well as transport- and security-related Profiles. Finally we 
will describe the certification process of how you can get signed Software Certificates. 

12.2  Profiles, Conformance Units, and Test Cases 

An OPC UA application can support several Profiles and each Profile can contain 
other Profiles. There are different categories of Profiles: server-related, client-
related, security-related, or transport-related. A Profile is typically composed of 
several Conformance Units. A Conformance Unit is a testable unit. An example of 
a Conformance Unit is the Call Service. Each Conformance Unit has Test Cases. 
Test Cases for the Call Service are, for example, calling one Method in a Service 
invocation or calling several Methods. The Profiles and Conformance Units are 
defined in [UA Part 7], whereas the Test Cases are defined in the separated test 
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from Profiles to Conformance Units and Test Cases are summarized in Figure 12.1.  
specifications [OPCTL Part 8], and [OPCTL Part 9] . The relations from Profiles to 
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TestCase
B2
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Same Conformance 
Unit can be referenced 
by several Profiles

Profile CProfiles can 
contain 
Profiles

 
Fig. 12.1 Profiles, Conformance Units, and Test Cases 

12.3  Profiles for Server Applications 

There are two kinds of server-related Profiles: facets and full-featured. Full-featured 
Profiles define a set of Conformance Units that are expected to be supported by a 
large amount of applications. A UA server needs to support at least one full-featured 
Profile. Facets define certain facets of the server like supporting event subscriptions. 
Full-featured Profiles already contain some facets, but additional facets can be 
added to a server, extending the functionality supplied by the server.  

  
Fig. 12.2 Server-related profiles 
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In Figure 12.2, the list of facets and full-featured server-related Profiles is 
shown. As an example, the Embedded UA Server is expanded. You can see that it 
contains facets and another full-featured Profile. It does not only reference server-
related Profiles but also transport- and security-related Profiles. Please be aware 
that the list of Profiles can always be extended and Fig. 12.2 contains only facets 
regarding Part 1–8 of the specification. There will be additional Profiles, for example, 
for Historical Access. 

12.4 Profiles for Client Applications 

Unlike server-related Profiles, client-related Profiles define only facets of a client. 
It is not expected that there will be a large set of clients supporting the same group 
of facets and therefore there is no need for full-featured client-related profiles. 
Clients will pick and choose the facets they are supporting. 

12.5  Transport Profiles 

The transport-related Profiles define the supported communication protocols of an 
OPC UA application. Thus they define only a facet. Currently there are five Profiles, 
one for each reasonable combination of security protocol, transport protocol and 
encoding, and one combining two encodings. This is summarized in Fig. 12.3.  

It is expected that servers will support as many of the transport-related Profiles 
as possible to allow for as great a range of interoperability. Clients would support 
all transports that they could reasonably expect in their domain, for example, an 
ERP system may never expect anything but SOAP-HTTP and thus would only 
support SOAP-HTTP transports. 

SOAP / HTTP UA TCP Transport Protocol

Security Protocol

SOAP-HTTP WS-SC UA XML-UA Binary

WS-SecureConversation UA-SecureConversation

UA XML UA Binary

UA-TCP UA-SC UA Binary

Encoding

SOAP-HTTP UA-SC UA BinarySOAP-HTTP WS-SC UA BinarySOAP-HTTP WS-SC UA XML

Name of Protocol

 
Fig. 12.3 Transport-related profiles 
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12.6 Security Profiles 

The security-related Profiles define the security algorithms and key length used to 
sign and encrypt messages and whether certificates are validated. Security-related 
Profiles always only define a facet. Currently there are three security-related Pro-
files defined: Basic128Rsa15, Basic256, and None. Since encryption algorithms 
get compromised over time due to increasing computing power, it is expected that 
additional security-related Profiles will be defined over time either increasing the 
required key length or exchanging the security algorithms. 

12.7  Certification Process 

The OPC Foundation will serve as authority signing Software Certificates that 
contain certain Profiles. To get your Software Certificate signed, you have two 
choices. In Fig. 12.4, the process regarding server products is shown. First you 
have to run the Compliance Test Tool testing your server. Then you can either go 
to an Interoperability Workshop to receive a self-tested compliance logo (which 
you can use for marketing) and the signed Software Certificate. Or you can use an 
independent test-lab testing your server product. In that case you get the golden 
certified compliance logo and the signed Software Certificate. 

 
Fig. 12.4 Certification process for servers 

For client products the process is similar, but there is no automated Compliance 
Test Tool at the beginning you can test your client against. The client test tool  
requires manual interaction and requires therefore an independent person to verify 
the testing. 

The certification process is not established while writing this book. However, 
some independent test labs have already been announced and certification of OPC 
UA products will be available soon after the release of first products. 

The certification process only reflects Profiles provided by the OPC Foundation. 
It is possible for other organizations, for example, those defining domain-specific 
Information Models, to define their own Profiles. These Profiles can reference 
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Conformance Units and Profiles of the OPC Foundation. It is also allowed creating 
additional Conformance Units. Those domain-specific Profiles are not tested by 
the OPC Foundation and the certification of Software Certificates referencing 
those Profiles must be managed by the organizations defining the Profiles. 

12.8  Summary 

12.8.1  Key Messages 

Profiles are the mechanism for scaling OPC UA applications. There are full-
featured server-related Profiles defining low-end device servers, embedded servers, 
and standard servers. Additional full-featured servers may be defined as in the 

choose which client-related Profiles it supports. Transport- and security-related 

on client and server applications. 
The certification process provides trust that an application claiming to support a 

Profile is tested and true supported the claimed Profile. The Profile mechanism of 
OPC UA is open, that is, other organizations may define additional Profiles for 
their domains and can set up their own certification environment. 

12.8.2  Where to Find More Information? 

12.8.3  What’s Next? 

In the next chapter we will finally take a look at the performance of OPC UA. 
There you will see how the chosen transport and security settings will affect the 
performance, but especially how the chosen encoding can slow down or boost 
your performance. 

30312.8 Summary

Profiles define the supported transport and security mechanisms and can be applied 

future. For client applications only facets are defined, that is, each client will 

defined in [OPCTL Part 8], and [OPCTL Part 9].. However, to get an overview 
over the available Profiles, we suggest using the Profiles web page of the OPC 

Profiles and Conformance Units are defined in [UA Part 7]. The Test Cases are 

Foundation (http://www.opcfoundation.org/UAProfiles), where you can browse
the Profiles and see the dependencies to other Profiles and the Conformance 
Units. 



 

13 Performance 

13.1  Overview 

One of the requirements for OPC UA was to maintain or even enhance the  
performance of Classic OPC. Performance in this context does not only mean 
speed of communication, it also means less load and resource requirements on the 
target system. It was an important lesson learned with the adoption of OPC XML-
DA in embedded systems where processing XML messages was a problem for 
those not optimized for string handling. 

OPC UA must scale from small embedded systems up to enterprise systems 
with different requirements regarding speed and type of transferred data. In embed-
ded systems, where smaller pieces of data must be transferred in short time inter-
vals, the performance and minimal system load is the most important requirement. 
In enterprise systems, where structured data must be processed in a transaction- and 
event-based manner, the efficient handling of structured data is more important 
than the absolute speed of data transfer. OPC UA uses different transport tech-
nologies to cover all these requirements and to ensure the scalability of OPC UA.1 
For embedded systems and UA products used in an automation environment, the 
preferred transport mechanism will be the optimized UA TCP protocol with binary 
encoding. For enterprise systems, the preferred mechanism may be Web Services 
using binary or XML encoding. 

There are more performance relevant aspects than only the different transport 
and encoding mechanisms implemented by the UA Stacks. The application layer, 
the integration of the application with the UA Stacks, and the way how the appli-
cation layer can access the provided data has much more impact to the perform-
ance than the UA Stacks. If the data source is in a device connected via a serial 
link to a PC running the OPC UA server, the performance bottleneck will be  
always the serial connection and not the OPC UA communication. 

For these reasons it is impossible to provide general performance numbers for 
OPC UA products. This chapter provides numbers for the UA Stack layer perform-
ance compared with COM and with the different possible transport and encoding 
mechanisms. These numbers give a hint for the best possible performance. Very 
efficient UA applications having direct access to the data may reach these numbers 
but typical UA applications, for example, a UA server talking to a device will 
cause overheads in the communication, which can be much higher than the num-
bers provided in this chapter. In this case the numbers give a hint about the expected 
load created by the OPC UA part of the application. 

                                                           
 1There are also other requirements for having two protocol versions like communication through 

firewalls and internet access. 
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13.2  Performance Numbers 

The environment used to measure the absolute numbers to compare OPC UA with 
OPC Data Access was based on two Pentium 4 PCs with 2.4 GHz and a 100 MBit 
network. The performance measurement covers the roundtrips necessary for a 
typical Read method call depending on the number of Variables included in the 
bulk operation. The method called for OPC DA was IOPCSyncIO::Read, and for 
OPC UA the Read service was called using numeric NodeIds from registered 
Variable Nodes. The measurement was executed with special server applications 
without application logic just creating return parameters with valid values. Figure 13.1 
shows the applications used to measure the performance numbers. 

 
Fig. 13.1 Application setup used for measurement 

All applications in the measurements used to compare COM with OPC UA are 
C++ based applications. The data type used in the Read methods was a four byte 
integer value. 

The methods were called in a loop for different configurations. 

• OPC DA using  
o remote communication with DCOM 
o 

• OPC UA with UA TCP and binary encoding 
o remote communication without security 
o remote communication using the security profile  

Basic128RSA15 with security mode sign&encrypt 
o 
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local COM communication. 

local communication without security. 

for remote UA communication without security. 
Table 13.1 shows the absolute numbers for a Read roundtrip in milliseconds



Table 13.1 Call time in milliseconds for read using remote communication 

Number of variables 
in one read call  

UA without 
security 

1 0.28 ms 
10 0.35 ms 
100 0.93 ms 
1000 5.26 ms 

Figure 13.2 shows the factor comparing the remote OPC DA Read using DCOM 
and the remote OPC UA Read with and without security. The baseline is the numbers 
for the OPC UA Read without security. 

 
Fig. 13.2 Factor comparing UA with DCOM 

cient than the DCOM communication where the factor of performance improve-
ment over DCOM is between 1.1 for small messages and factor 1.6 for Read calls 
with 1,000 Variables. When adding the high level of security provided by OPC 
UA, which was not available for DCOM, the OPC UA communication is still pro-
viding the same performance like Classic OPC. 

Figure 13.3 shows the factor comparing the local OPC DA Read using COM 
and the local OPC UA Read without security. 

 
Fig. 13.3 Factor comparing UA with COM 
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The remote numbers are indicating that the OPC UA communication is more effi-



Classic OPC is a little bit faster than the OPC UA communication, where the dif-
ference is a factor of 2.3 for small messages and a factor of 1.4 for a Read with 
1,000 Variables. The OPC UA stack at the moment does not have any optimiza-
tion for the local communication using the same mechanisms like for the remote 
communication. Improvements for the local use case can reduce the difference in 
the future. Measurements with instrumented UA Stacks are indicating that the 
overhead for the TCP communication can be minimized by using a local data  
exchange mechanism like named pipes for small messages. For larger messages 
most of the time is used by the serializers used to encode and decode the Service 
calls. This time can be reduced by eliminating the serialization between applica-
tions using the same UA Stack. 

Figure 13.4 shows the factor between the UA TCP protocol using binary  
encoding as base compared with SOAP/HTTP using binary encoding and SOAP/ 
HTTP using XML encoding. All protocols are using the security profile Basic 
128RSA15 with security mode sign&encrypt. The measurement is based on the 
.NET UA Stack. 

 
Fig. 13.4 Factor comparing UA TCP with SOAP 

protocol with binary encoding instead of the UA TCP protocol. This allows to 
communicate through firewalls using internet protocols but to maintain the effi-
ciency of the UA binary encoding. 

There is a much bigger overhead when using SOAP/HTTP protocol with XML 
encoding instead of the UA TCP protocol. It is 1.8 times slower for small mes-
sages and 18 times slower for large messages. 
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The local measurement indicates that the local COM communication used with 

    The numbers indicate that there is only a small overhead for using SOAP/HTTP 



13.3  Summary 

13.3.1  Key Messages 

OPC UA maintains the performance of Classic OPC with the optimized UA protocol 
but adds security and reliability for communication between distributed systems. 
By integrating OPC UA directly into embedded system, an additional communica-
tion layer can be removed and the performance and flexibility can be improved. 

Like for Classic OPC, the performance of OPC UA products does normally  
depend more on the efficiency of the application and the internal performance of the 
system accessing the data provided by the system than on the OPC communication. 

The Web Service base UA communication has impact on the performance. Espe-
cially, the XML-encoded Web Services create much more overhead but they provide 
flexibility in use cases where performance is not the most important requirement. 

13.3.2  Where to Find More Information? 

Concrete performance numbers of OPC UA products may be available in the 
documentation of those products. 

On the OPC Foundation web site, you can find presentations of developer con-
ferences containing additional performance measurements, including the comparison 
of different data types.  

13.3.3  What’s Next? 

In the next chapter – the last one of this book – we will summarize OPC UA and 
discuss the complexity of OPC UA, pointing out that it is simple in most cases and 
explain why some parts must have some complexity. We also provide an outlook 
of what we expect to happen in the near future regarding OPC UA. 
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14 Conclusion and Outlook 

14.1  OPC UA in a Nutshell 

OPC Unified Architecture (OPC UA) is the new standard for data communication 
in process automation and beyond, provided by the OPC Foundation. It is expected 
that OPC UA will replace the very successful Microsoft-DCOM-based specifica-
tions of the OPC Foundation (DA, HDA, and A&E) over the next few years as 
OPC UA unifies all the functions provided by those specifications. Because of its 
platform-independence and use of state-of-the-art Web service technology (see 
Chap. 6) it is expected that OPC UA will be applied in an even wider range of indus-
tries and applications, compared to Classic OPC. It can be deployed on devices, 
DCS, MES and ERP systems. The small set of easy-to-use services (see Chap. 5) 
allows accessing the unified address space in a reliable and secure manner (see 
Chap. 7). By using binary encoding on the wire OPC UA is a high-performance 
solution, significantly faster than XML data exchange (see Chap. 13). 

OPC UA not only addresses data communication but also information model-
ing (see Chap. 2). With its rich address space model, it allows high-value metadata 
exposure and thus provides significantly more information than before. For this 
purpose, OPC UA uses object-oriented concepts and allows a full-meshed network 
of nodes related by multiple types of references. There is a high interest in these 
capabilities in many domains and there are already projects to standardize infor-
mation models based on OPC UA. Examples of such activities are FDI where a 
common field device description is targeted and common activities with PLCopen 
(Industrial Control), MIMOSA (Maintenance Information – ERP and above), and 
S95 (Production Information – MES) (see Chap. 4). 

With its profiles (see Chap. 12) OPC UA scales well from small servers to highly 
sophisticated systems. Small servers only providing simple functionality are able 
to run on limited hardware, exposing only a small set of simple data. Highly 
sophisticated servers are able to expose a large amount of complex information 

Nevertheless, some people are complaining that “Everything is so complicated” 
in OPC UA. Therefore, in the next section we will take a look at this objection 
against OPC UA. Finally, there is an outlook examining how OPC UA may be 
applied in the market and what is missing in it, to improve it even further. 

14.2  Is OPC UA Complicated? 

Over the last couple of years we had several discussions about OPC UA with people 
from different domains, backgrounds and, of course, different companies. Most of 
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and to support complex functionality like querying the address space (see Chap. 9). 



them were excited about the power and possibilities that OPC UA offers. However, 
there were a few people complaining about the complexity of OPC UA. A quick 
and simple answer is that OPC UA is very simple for users of base functionality. 
For users of advanced features, it is not complex but as simple and generic as pos-
sible, and still very powerful. Of course this answer does not really help to con-
vince people. Thus, in the following sections, we explain the features involved in 
several different places in OPC UA, why it is designed in the way it is, and what 
this means for people actually using OPC UA. The management summary is given 
in Sect. 14.2.6. 

14.2.1  Are OPC UA Services Difficult to Handle? 

Looking at the OPC UA Services, you can see that actually the number of Ser-
vices is very small. OPC UA has only 37 Services, of which three Services deal 
with discovery and six with connection handling. That leaves 28 Services to actu-
ally access OPC UA data. Let us compare that with the old and very successful 
OPC DA specification. This specification deals only with current data, not events, 
history or a rich information model and thus deals only with a subset of function-
ality provided by the OPC UA specification. Nevertheless, the old OPC DA speci-
fication had nearly 70 methods.1 That shows that the OPC UA Service framework 
is designed for simplicity. The intention was not to provide two Services offering 
the same functionality in a different manner.2 Thus OPC UA does not offer several 
Services with browsing functionality but one Browse Service that allows the setting 
of filters on References, NodeClasses, etc. and specifying what information should 
be returned, such as the name or the type of information of the referenced node. 

OPC UA Services are designed in a service-oriented manner, always providing 
bulk operations. For example the Call Service does not call a single method but 
allows calling a set of methods with one Service call. That design principle reduces 
the number of roundtrips for a set of operations and is a common feature in service-
oriented architecture. It is also used in object-oriented APIs like the OPC DA 
specification and a reasonable compromise between simplicity and performance. 

There are three concepts in the OPC UA Service framework that can be consid-
ered to be complex: First of all the query capabilities of OPC UA, second the pub-
lish mechanism of OPC UA, and third the connection establishment.  

                                                            
1The OPC DA specification does not use a pure object-oriented design but supports bulk opera-
tions instead of simple methods and thus the numbers are comparable. 
2There are some minor exceptions from that rule. For example, the Read service and the sub-
scription mechanisms both provide access to actual data. However, the use cases are very differ-
ent and thus the simple Read only reading a value once and the subscription requiring some setup 
first and then getting changes of the value are both supported. 
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In the first case the complexity is inherent to the provided functionality. Complex 
queries are complex in SQL [ISO08a] or OQL [CBB+00] as well. Queries are an 
optional feature in OPC UA and many servers will not support it and it does not 
even make sense to support it in many scenarios where the amount of data in the 
server is small and browsing the address space is the best way to deal with the 
data. However, there will be OPC UA servers having a huge address space with 
millions of nodes and in that scenario the querying capabilities become a require-
ment to efficiently find data in the server. But a complex problem cannot be 
solved without any complexity. 

The second complex concept of OPC UA is the publish mechanism. The pub-
lish mechanism allows the logical callback to asynchronously send notification 
messages to a client containing data changes or event data without establishing a 
real backward channel from the server to the client. The main reason for designing 
the publish mechanism in that way was that OPC UA potentially runs in a Web 
Service environment, connecting clients and servers over the Internet or intranet, 
having firewalls between them. In that environment, it is easy to “talk” from a client 
to a server but often impossible to “talk” from the server to the client (that would 
require the server to be a client and more important the client to become a server). 
Introduced as a second method to do callbacks, the OPC UA working group found 
that the publish mechanism is always as good as a real callback mechanism, con-
sidering the additional requirement of sending keep-alive messages and sequence 
numbers to have a reliable communication in an unreliable environment. Thus the 
callback approach was discarded and only the publish mechanism is part of the 
OPC UA specification as it provides the same functionality as a real callback. In 
addition, the callback mechanism would highly increase the complexity regarding 
security mechanisms, as another secure connection has to be established from the 
OPC UA server to the client. Here again the simplicity of the OPC UA Service 
framework can be seen: only one method is available for one purpose. However, it 
requires some time to truly understand the publish mechanism. The good news is 
that only a very small number of people really have to understand the mechanism. 
Most people will use a server or client SDK that deals with the mechanism and 
provides real callbacks internally. 

The third complex concept in OPC UA is connection establishment. This step 
requires establishing a secure channel. On top of the secure channel a session has to 
be created. The secure channel provides security on the transport level, which means 
that messages can be encrypted and signed.3 OPC UA uses WS-SecureConversation 
as part of the WS-* standard [OASIS07] for its secure channel when SOAP mes-
sages are exchanged in the Web Service world and adapts this specification to 
UA-SecureConversation when the high performance UA TCP is used. Details of 
the technologies used for secure channels are given in Chap. 7, including why no 

                                                            
3Security has to be implemented in certified OPC UA products (see Chaps. 7 and 12). Whether 
security is enabled in a concrete installation depends on the configuration based on the security 
requirements of the installation. 

31314.2 Is OPC UA Complicated?



standard protocols like TLS/SSL can be used, based on requirements for OPC UA, 
such as having long-running connections, etc. On top of such a secure channel, 
multiple sessions can be created, decoupling the secure communication from the 
session management on the application level. The described steps are very com-
mon and a good security design in various ways. Therefore they are necessary for 
ensuring a secure and reliable communication between clients and servers. The 
good news is that again only a few people really have to deal with it, as an OPC 
UA SDK will provide a connect method that hides the handshaking to establish a 
connection. 

To summarize the discussion: 

1. The OPC UA Service framework (measured by the number of Services) is very 
simple. 

2. OPC UA Services are designed for bulk operations to avoid roundtrips. This 
increases the complexity of the Services but greatly improves the performance. 
Also, Classic OPC has been designed in a similar way for most methods. Han-
dling of bulk operations is commonly used and thus it is not “too complex to be 
used.” 

3. OPC UA queries are complex; however this is part of the addressed problem. 
OPC UA queries are an optional feature, useful only for large address spaces. 

4. The publish mechanism of OPC UA is required in environments where the 
OPC UA client cannot act as a server (firewall). Using only this mechanism 
reduces the complexity of OPC UA (compared to adding a real callback, espe-
cially if security is considered). OPC UA SDKs will hide the mechanism and 
provide real callbacks anyway. 

5. The connection establishment in OPC UA uses proven security mechanisms 
and adapts them to the needs of OPC UA. Thus some messages have to be 
exchanged, but this complexity will be hidden by an OPC UA SDK offering 
only a connect method. 

Thus OPC UA Services are not complex but very simple with regard to the pro-
vided functionality and the addressed non-functional requirements such as security 
and reliability. Using an SDK will further hide the complexity in the Services, for 
example, by hiding the connection establishment and the publish mechanism. 

14.2.2  Is Information Modeling a Pain? 

OPC UA does not only standardize the data communication but also provides a 
meta model allowing standardized information models built on top of it. The old 
OPC DA specification provided a very simple but limited way to expose data 
items in a hierarchy. OPC UA supports the same simple approach to build a hier-
archy of data variables but it also allows exposing rich models. 

There are other specifications like DSSP [MS07] or DPWS [MS06] that only 
standardize the data exchange without specifying a model. They may define a 
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fixed or extendable set of operations that a server provides and a client can call. 
The client can ask for the metadata of the operation, i.e., what data the operation 
will provide. However, there is no fixed syntax4 and semantic for the data exchanged. 
Obviously those specifications look less complicated at first glance as they exclude 
the modeling capabilities. But let us take a look at Figs. 14.1 and  14.2 to see the 
implications of those different approaches. With a standardized protocol for data 
communication, there is interoperability between applications on the communica-
tion level (right side of Fig. 14.1). Here, no point-to-point integration is needed as 
in the left side of Fig. 14.1. 

 
Fig. 14.1 Interoperability on protocol level 

on a concrete application,5 there is no interoperability on what data are exchanged, 
and therefore no interoperability at the model level (left side of Fig. 14.2). Clients 
cannot generically interpret the data provided by the server and cannot generically 
provide data to the server. 

OPC UA offers a solution shown in the right side of Fig. 14.2. It provides the 
data in a way that generic OPC UA clients are able to deal with all the data (sub-
scribe to data, browse the address space, etc.). However, OPC UA still allows 
servers to define their domain and vendor-specific model, based on the standard-
ized meta model. The Services are all based on the meta model and thus a generic 
client can deal with all the data. But not all semantic of the concrete model is dir-
ectly captured in the meta model since it is an extensible model and not a concrete 
model tailored to one specific domain.6 However, the meta model provides all 
information about the extensions and thus a generic client can easily display all 
semantic information, but some of them have to be interpreted by a user. Clients 
can be implemented with built-in knowledge of concrete OPC UA Information 
Model Standards and thus no additional interpretation by the user is needed. 

 

                                                            
4Other then XML without an XML-Schema. 
5And of course a client also has to send data to the server in a format the server expects. 
6The OPC UA meta model is tailored to the broad domain of exchanging real-time related data, 
including events and history, but not to a concrete domain like drilling or pulp and paper. 
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But if no meta model is provided and the structure of the exchanged data depends 



 
Fig. 14.2 Interoperability on model level 

Let us take a quick look at the implications for client and server developers, 
whether a meta model is provided or not. Obviously, having a common model 
makes life much easier for client developers as they can implement their clients 
with knowledge of one model supported by all servers. Otherwise they would 
have to deal with several servers providing different data structures. However, 
leaving the data structures undefined seems like a great opportunity for server 
developers. They have complete freedom to do whatever they want to do. But they 
also have all the work to do. It took the OPC UA working group several years to 
develop the meta model that is able to access and change real-time related data, 
alarms and events, and the history of both. Of course a specific server does not 
have to provide a generic meta model as OPC UA has to do, but there is still a lot 
of work to do and many pitfalls to avoid. And after creating their own model they 
have to document it, so that clients are able to get access to the data and users 
understand at least a basic semantic so they are able to deal with the provided data 
and the ways to access them. Looking at all those tasks, mapping the data to a 
well-defined meta model and enriching the server to a concrete model using the 
extension mechanisms does not seem so complicated anymore. 

After explaining the need for a meta model in OPC UA there is still the ques-
tion of its complexity. The Classic OPC specifications, for example, only provided 
one7 concrete and very simple model. The reason for having the more powerful 
and more complex model in OPC UA is that it allows exposing much more 
semantic and thus much more information. Since OPC UA does not target one 
concrete domain, it allows defining information models for concrete models tailored 
to specific domains. Therefore we have typed objects and references, etc. To 
                                                           

 
7Actually one per specification. 
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expose more information in a usable way more concepts have to be introduced 
and this increases the complexity. However, the complexity is found in the infor-
mation provided additionally. If no additional information needs to be provided, 
the OPC UA model becomes very simple. For example, the OPC DA wrapper of 
the OPC Foundation wraps any OPC DA server. Since the OPC DA server does 
not provide complex information, the OPC UA model of the wrapper is very sim-
ple (see Chap. 10). It contains only one hierarchy with OPC UA Folder Objects 
for the OPC DA Branches and OPC UA Variables for the OPC DA Items. OPC 
DA properties are provided as OPC UA Properties. No detailed type information 
(all Objects are of the same type), no additional ReferenceTypes, no ModelChan-
geEvents tracking changes on the model, no other fancy stuff is to be found. It is 
optional to use those features and it does not make sense to use them in many 
cases. However, if you need to provide more information, it is very useful to have 
those concepts in place so you can use them appropriately. As it is the choice of 
the server to use features regarding the modeling, it is the choice of the client to 
decide what features it wants to use. Programming against types is a very powerful 
feature and very helpful when creating process graphics or other user interfaces 
specific for certain OPC UA types. However, a simple client providing only 
browsing capabilities will never use this feature. 

Information modeling can be done very easily, keeping everything very simple. 
Then little effort is required and using some very basic OPC UA modeling con-
cepts keeps everything very simple. The OPC DA wrapper is a good example of 
that approach. But if more information must be provided OPC UA is equipped 
with the necessary concepts to allow it. The complexity is based on the informa-
tion to be modeled, not in OPC UA itself. 

14.2.3  Transport Protocols and Encodings: Why So Many? 

OPC UA defines an abstract set of Services that is mapped to different technolo-
gies. Currently there are two protocol mappings and two encodings supported. The 
reason for having abstract Services is that, if a new technology for data communi-
cation enters the stage, OPC UA can be adapted to that technology just by defining 
another mapping. But why does OPC UA support two protocols and two encod-
ings from the beginning? The reason is that OPC UA will be applied in different 
application domains with different requirements. Supporting HTTP and UA TCP 
(see Chap. 6) allow it to run Internet applications crossing firewalls with HTTP as 
well as running optimized applications with limited resources via the UA TCP 
protocol, which is optimized for the wire (no overhead) and the needed resources 
(no HTTP stack needed). But the main optimization on the wire is not UA TCP 
versus HTTP but exchanging binary encoded data versus XML encoded data. 
Unlike other protocols, OPC UA does not require the data to be first converted to 
XML and then binary encoded; the data is directly binary encoded and is thus very 
efficient. However, there are applications that do not need high performance but 
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data provided in a generic way (which nowadays means in XML) to be able to 
handle them easily. Those applications are typically placed not on the bottom, but 
the top of the automation pyramid. Therefore OPC UA supports XML encoding as 
well. Figure 14.3 summarizes the use of different protocol options in a simplified 
form. 

Fig. 14.3 Simplified view of OPC UA transport protocols and encodings 

will discuss how this affects people dealing with OPC UA. The good news is that 
anybody using an OPC UA SDK or even only an OPC UA stack provided by the 
OPC Foundation could not care less about that. The OPC UA Services stay the 
same and thus the server or client implementation stays the same, no matter what 
the stack uses to communicate with another stack (see Chap. 8 for details). Only 
those people developing stacks or using generic toolkits, for example, to generate 
clients talking to Web Services (e.g., by a WSDL) are affected by supporting dif-
ferent protocols and encodings. It is the job of stack developers, so we will not  
argue about that. Generic toolkit users bound to a technology like Web Services 
are bound to the technology provided by the toolkit. But those users choose to use 
that generic toolkit (which is of course reasonable in some scenarios) and there-
fore they are intentionally bound to that technology. This leads to potential inter-
operability problems between OPC UA servers and OPC UA clients supporting 
different technologies. But here again OPC UA profiles are a good mechanism to 
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avoid that and new technologies are not provided so often that one must fear an 
explosion on OPC UA technology mappings. 

14.2.4  Implementation Issues 

A few people have complained about the lack of comfort of OPC UA SDKs. This 
is of course something we cannot answer in general but it depends on the used 
SDK. As a general statement, people have to be aware that OPC UA is a new 
specification and thus people are dealing more with developing initial products 
than with providing a perfect SDK. The comfort of OPC UA SDKs will increase 
in future.8 However, the SDKs we are aware of already support the developer 
quite well by implementing all the housekeeping functions of the OPC UA Service 
framework.  

Let us take a look at server-side development. You do not have to deal with 
subscriptions; you only have to provide the data that are to be published. You do 
not have to deal with queue management, republishing, or packing of data. There 
is infrastructure to manage OPC UA nodes in the server. Thus you only have to 
configure the Address Space of your server. This can be done by an XML con-
figuration where most of the code is generated. 

On the client-side, you get real callbacks, you can connect by one call, etc. So 
there is already a lot of comfort in the SDKs we are aware of. However, there is 
still room for improvements, e.g., fancy wizards, graphical modeling tools, etc. 

14.2.5  Migration of Existing Code 

For somebody with Classic OPC servers and clients it might seem like a large 
amount of work migrating to OPC UA. Since the OPC Foundation provides wrap-
pers for the Classic OPC servers as well as proxies for the Classic OPC clients, 
this is obviously not true if you do not want to change your existing code. You 
simply deploy the provided proxies or wrappers with your existing product and 
you are ready for OPC UA. However, let us take a quick look at what you need to 
do for native OPC UA support in existing products. As OPC DA is the most popu-
lar Classic OPC specification, we will examine what to do in that case. 

In the case of an OPC DA client, it is easy to replace the existing code for read-
ing, writing, and adding groups and items to receive data changes with similar 
concepts from UA, such as subscriptions and monitored items. UA client SDKs 
will provide data change callbacks on top of a subscription hiding the publish 
                                                           

 8This is a general statement true for all SDKs in all domains. The comfort and quality of an SDK 
always increases from very early versions (1.0 or even less) to higher and more stable versions. 
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mechanism. The biggest change is the handling of NodeIds instead of pure string 
based ItemIDs in old OPC DA. For the configuration part the browsing and pro-
perty access methods from OPC DA can be replaced with the UA Browse Service 
calls. This is all the functionality most OPC DA clients use today. 

In the case of an OPC DA server, there are only a few Services that need to be 
implemented like Read, Write, Browse, and the delivery of data changes to a UA 
SDK. All other Services are implemented by a UA SDK or are not needed for sup-
porting DA functionality. Providing the required data model is also very simple as 
exposing a pure DA address space with no type system uses only a small number 
of predefined types of OPC UA. 

As the OPC UA design is generic and extensible, it is easy to choose an itera-
tive development approach to add UA features over time to a product, starting 
with a pure DA implementation. For example, to add OPC UA Method support, a 
product must implement one more UA Service and one more NodeClass to expose 
the Methods in the Address Space. 

Let us assume you plan to migrate your products to a higher-level program-
ming language like JAVA or .NET. Using Classic OPC requires you to deal with 
the interop from COM to the modern programming language. This can become a 
real problem when you deal with multiple threads, the life-cycle of COM objects, 
etc. [Ge03]. Instead you can directly target OPC UA as communication interface. 
Here, your product can use UA SDKs and stacks natively developed for those 
programming languages. Thus, the new code is separated from any COM-based 
code. To connect to Classic OPC products, you can use the wrappers and proxies 
provided by the OPC Foundation. This is exemplified in Fig. 14.4, where a C++-
based OPC DA client is migrated to .NET and uses OPC UA as the new commu-
nication infrastructure. 

Fig. 14.4 Migrating Classic OPC applications to modern programming languages using OPC UA 

move a Classic OPC environment to OPC UA in different levels. The lowest level 
is to use the proxies and wrappers; the next level is to expose the same level of  
information you expose today with UA and the next level is to add additional UA 
features like Methods or a type system over time. If you want to migrate your code 
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to a modern programming language, using OPC UA provides you a solution that 
does not require you to deal with all the COM interop problems and allows sepa-
rating your new code from COM. 

14.2.6  Management Summary 

OPC UA is just as complex as it has to be, to fulfill the requirements of a secure 
and reliable communication, able to run in different environments including dif-
ferent networks separated by firewalls. The binary encoding provides high per-
formance data exchange. Unlike other protocols OPC UA defines a meta model 
and thus not only provides interoperability regarding the protocol but also regard-
ing the exchanged data. By defining an extensible base model with all the infor-
mation necessary to know what data have to be exchanged but still allowing  
refinements and extensions to the model OPC UA is a well-suited compromise for 
a specification applied in various domains. Information model standards based on 
OPC UA define a more specific model tailored to the domain that is extended by 
vendor specific information. Generic OPC UA clients can easily access all this  
information. OPC UA profiles allow servers to be scaled from small servers with 
limited functionality able to run on limited resources to highly sophisticated serv-
ers providing a large amount of complex data with the full power of OPC UA. 

14.3  Outlook 

A first release of Part 1–5, 8, 10, and 11 of the OPC UA specification has been  
released from July 2006 to January 2007. Those specifications did not contain the 
release of technology mapping and therefore could not be applied in products. 
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While writing this section the technical advisory counsel of the OPC Founda-
tion has already voted and agreed to release updated versions of Part 1–8 of the 
specification. Those specifications include the technology mapping and so we finally 
have a specification that can be used to build products. However, some last com-
ments still need to be integrated into the final documents. The final release has not 
been done will we write this last section, but we expect that the specification is  
released when you can read the book beginning of 2009. 

Even more important than having a released specification is that all building 
blocks provided by the OPC Foundation, namely the stack, are available and 
working. The early adopters of OPC UA have first products ready and already  
released when you can read this book. 



We have experienced such a big interest in OPC UA that we expect a wide 
adoption even in areas where Classic OPC is not used today. OPC UA can be applied 
on devices, controllers, DCS up to MES and ERP systems and thus has a brighter 
scope then Classic OPC. This does not imply that OPC UA will replace all prod-

by the OPC Foundation are a good strategy dealing with those legacy products 
that will run probably for the next decade or longer. In the first step of adoption 
we expect that existing OPC products will be migrated to OPC UA supporting 
both Classic OPC and UA. The second area of early adoption will be on embed-
ded and non Microsoft systems where OPC is needed but can not be used today. 
Both groups of products will mainly profit from the platform independent and  
reliable communication features. 

A big opportunity provided by OPC UA is defining standard Information Mod-
els using OPC UA. Here, the access to domain-specific information is standardized 
and the secure, reliable, interoperable and platform-independent communication 
mechanism of OPC UA can be used. In Sect. 4.10, some of currently ongoing 
activities are listed. We expect that other initiatives will follow as soon as OPC 
UA is applied in the marked. 

Finally let us take a look at OPC UA from the technical perspective. Is every 
feature that should be integrated into OPC UA built into it? We had a list of  
improvements for the version released in 2006, for example bulk browse opera-
tions. But they are already integrated in the updated version. Some of the features 
we can see for the future are standardized rules for cardinality restrictions and the 
support for transactions. Both can easily be built on top of OPC UA by defining 
standardized ModellingRules or standardized Methods creating a transaction con-
text. Thus neither the Service definitions must be changed or extended nor must 
the stack implementation be adapted to include those features. This shows again 
flexibility of OPC UA. We hope this book helped you understanding OPC UA and 
you are now ready to apply OPC UA in your environment. 
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ucts supporting Classic OPC in the near future. The wrappers and proxies provided 
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Appendix A: Graphical Notation 

Motivation and Relation to UML 

OPC UA defines a graphical notation for an OPC UA Address Space [UA Part 3]. 
It defines graphical symbols for all NodeClasses and how References of different 
types can be visualized. It is used to show you a view on the Address Space by 
browsing it and reading current values. Thus it does not consider historical data or 
events that are not visible in the Address Space. This notation is already used in 
several parts of the specification and we use it in this book as well. 

desirable. Most people who want to define an Information Model need that possi-
bility. This is needed independent of whether they define a standard Information 
Model, a vendor-specific or even product- or server-specific one. By standardizing 
the visualization, people can easily exchange their diagrams and understand each 
other without the need to translate different notations. 

various phases of software development called UML [OMG08]. An obvious ques-

a new one? For those not familiar with UML, you can skip the rest of this section 
and take the simple answer that in the end the OPC UA notation is actually stereo-
typed UML. For those familiar with UML, we go a little bit more into details. 

Actually the OPC UA specification has already an informative Appendix defin-
ing the OPC UA meta model in UML [UA Part 3]. Since instances are part of the 
model like the base ReferenceTypes, the UML model has to deal with instances 
and classes. Looking at this model you can also see some difficulties. For example, 
there is a UML-Class called ObjectType. Thus, OPC UA ObjectTypes become 
instances of that UML-Class. But OPC UA also deals with Objects. They are 
instances of the UML-Class Object but of course also instances of the Object-
Types. UML is not perfectly designed to support these different levels with its 
base concepts. But UML allows defining stereotypes for special instances. This 
concept is already used in the UML model defined by the OPC UA specification. 
But UML also allows defining specific graphical representations for stereotyped 
model elements. Although this was not done in the UML model defined in the 
OPC UA specification, the graphical notation defined by the OPC UA specifica-
tion is in the end nothing but stereotyped UML using specific graphical elements 
for the different NodeClasses of OPC UA.  

Thus, in the end it should be very simple for everybody familiar with UML to 
understand the OPC UA notation. The only thing to consider is that all Nodes you 
see in the diagrams would be mapped to instances in UML, thus you are only look-
ing at UML object diagrams. The OPC UA NodeClasses would be mapped to 
UML-Classes. 

tion is why not to use this notation so that nobody familiar with UML has to learn 

It is obvious that having a graphical notation to visualize OPC UA data is  

However, there is already a very popular standard notation broadly used in 
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Notation 

The graphical notation defined by OPC UA gives you a view on an OPC UA  
Address Space. The granularity of details can vary, and you can, for example, 
visualize the Attributes of a Node, but you do not have to. You can also combine 
this by only exposing some Attributes of a Node that are important for the dia-
gram. The same is true for References of a Node; you can expose a few and do not 
expose other. 

Each NodeClass has its own graphical element as shown in Table A.1. The Dis-
playName of the Node is shown as text inside the Node. NodeClasses representing 
types always have a shadow beneath it; otherwise they have the same graphical 
representation as there instances (only applicable for Objects and variables since 
DataType instances and ReferenceType instances are not represented as Nodes). 

and concrete types do not use italic. In the OPC UA specification, all types use 

seems more suitable for us. 
References between Nodes are represented by lines between them. Arrows expose 

the direction. There are some special forms for specific base ReferenceTypes, as 
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Table A.1 Notation of NodeClasses 

NodeClass Graphical Representation Comment 
Object 

 

Can contain the TypeDefini-

“Object1::Type1” 
ObjectType Abstract types use italic,  

Variable 
 

Can contain the TypeDefini-

“Variable1::Type1” 
VariableType Abstract types use italic,  

DataType Abstract types use italic,  

ReferenceType Abstract types use italic,  

Method 
 

– 

View 
 

– 

Unlike defined by OPC UA, we use italic font style to expose that a type is abstract, 

exposed in Table A.2. All other ReferenceTypes must put in the ReferenceType 

italic, independent if they are abstract or not. The UML way of dealing with this 

tion separated by “::”, e.g., 

tion separated by “::”, e.g., 

ObjectType

VariableType

DataType

ReferenceType

concrete types not 

concrete types not 

concrete types not 

concrete types not 



name on the line and use the notation of a symmetric, asymmetric, or hierarchical 
ReferenceType exposed in Table A.2.1 Please note that the HasSubtype Reference 
points with the arrow in the inverse direction to point from the subtype to the  
supertype like in all other graphical notations known to the authors. 

The Attributes of a Node can be put inside the graphical element representing 
the Node. This is exemplified using an Object in Fig. A.1, but it can be applied on 
any NodeClass. As shown in Fig. A.1, you can either provide all Attributes (A) or 
only some Attributes (B). Since this makes it ambiguous for optional Attributes 
whether they are provided, you can make this explicit by striking that Attribute 
out, as shown in (C).  

 
Fig. A.1 Attributes included in Node 

There are some built-in DataTypes having internally a structure that are often 
used in OPC UA diagrams like LocalizedText (e.g., in the DisplayName) or 
QualifiedName (in the BrowseName). For those it is not needed to provide the whole 
                                                           

 
1 Please be aware that each Reference connects two concrete Nodes, thus you do not have any 
cardinality restrictions or role names on them like you would have in UML class diagrams. We 
are on the level of UML object diagrams where you do not have those things either. 
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Table A.2 Notation of References based on ReferenceTypes 

ReferenceType Graphical Representation 
Any symmetric ReferenceType 

 
Any asymmetric ReferenceType 

 
Any hierarchical ReferenceType 

 
HasComponent  
HasProperty  
HasTypeDefinition  
HasSubtype  
HasEventSource  



information. For the LocalizedText and the QualifiedName, it is enough to provide 
the string-part as done in all diagrams of this book. However, the LocaleId respec-
tively the NamespaceIndex can be exposed by prefixing them, separated by a “:”. 

To avoid a large amount of Nodes in a diagram, it is allowed to handle Proper-
ties similar to Attributes exposing them inside the Node. This is shown in Fig. A.2. 
Of course, this is a limited representation and here you cannot reference the Pro-
perties since they are not shown as Nodes. 

 
Fig. A.2 Properties and Attributes included in Node 

Example 

We will take a look at a small example to point out the different possibilities using 
the graphical notation of OPC UA. In Fig. A.3, you can see the Device1 Object hav-
ing a DataVariable and two Properties. In addition, the reference to its TypeDefi-
nition is shown.  

Fig. A.3 Example of a Device Object exposing References 

In Fig. A.4, the same information is provided (except for the data types of the 
Properties). Here, the Properties are included in the Node as well as the TypeDefi-
nition name and thus only the Data Variable is exposed as additional Node. 
Please be aware that this simplified notation has some drawbacks. For example, 
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PVDevice1
Attributes
DisplayName = „Device1“  
BrowseName = (0, Device) 
NodeId = (3, „121“) 
NodeClass = Object  
Description  = „Example Device“ 
WriteMask = 0  
UserWriteMask = 0  
EventNotifier = False   

Attributes
Value = 12  
DataType = Int16  
ValueRank = Scalar

DeviceType

VendorName

Attributes
Value = „ABB“  
DataType = LocalizedText  
ValueRank = Scalar   

VendorId

Attributes
Value = 0  
DataType = Int32  
ValueRank = Scalar



the DisplayName of the ObjectType does not have to be unique. In Fig. A.3, you 
could expose the NodeId of the TypeDefinition Node as well (which must be 
unique), this is not possible in Fig. A.4.  

PV

Device1::DeviceType
Attributes
BrowseName = (0, Device)
NodeId = (3, „121“)
Description = „Example Device“
WriteMask = 0
UserWriteMask = 0
EventNotifier = False
Properties
VendorName = ABB
VendorId = 0

Attributes
Value = 12
DataType = Int16
ValueRank = Scalar 

 
Fig. A.4 Example of a Device Object including TypeDefinition and Properties 
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Table B.1 List of Attributes 

Attribute ID Description 
NodeId 1 The server unique identifier for the node 
NodeClass 2 The base type of the node 
BrowseName 3 A nonlocalized, human readable name for the node 
DisplayName 4 A localized, human readable name for the node 
Description 5 A localized description for the node 
WriteMask 6 Indicates which attributes are writeable 
UserWriteMask 7 Indicates which attributes are writeable by the cur-

rent user 
IsAbstract 8 Indicates that a type node may not be instantiated 
Symmetric 9 Indicates that forward and inverse references have 

the same meaning 
InverseName 10 The browse name for an inverse reference 
ContainsNoLoops 11 Indicates that following forward references within a 

view will not cause a loop 
EventNotifier 12 Indicates that the node can be used to subscribe to 

events 
Value 13 The value of a variable 
DataType 14 The node id of the data type for the variable value 
ValueRank 15 The number of dimensions in the value 
ArrayDimensions 16 The length for each dimension of an array value 
AccessLevel 17 How a variable value may be accessed 
UserAccessLevel 18 How a variable value may be accessed after taking 

the user’s access rights into account 
MinimumSam-
plingInterval 

19 Specifies (in milliseconds) how fast the server can 
reasonably sample the value for changes 

Historizing 20 Specifies whether the server is actively collecting 
historical data for the variable 

Executable 21 Whether the method can be called 
UserExecutable 22 Whether the method can be called by the current user 



 

Appendix C: Base Information Model Reference 

Fig. C.1 ReferenceType Hierarchy 

Fig. C.2 DataType Hierarchy 

 

References
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Fig. C.3 EventType Hierarchy 
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A 
 
AccessLevel, 32 
ActivateSession, 137 
AddNodes, 188 
AddReferences, 188 
Address Space, 22, 81, 82, 83 

Historical Address Space, 79 
Services, 139 

ADI, 120 
Aggregates, 28, 50, 180 
Aggregating Server, 97, 98, 264, 268, 

280 
Alarm & Events, 5 
Alarms and Conditions, 119 
AllowNulls, 113 
Application Instance Certificate, 213, 

224 
ArrayDimensions, 32, 40 
Attribute, 22 
Audit Log, 137, 277, 278, 280, 281 
Authentication, 133, 207, 219, 220, 240, 

296 
Authorization, 207, 219, 220 
 
B 
 
Browse, 140 
BrowseName, 23 
BrowseNext, 141 
Built-in DataType, 63 
 
C 
 
Call, 176 
Cancel, 138 
Certificate, 197, 213, 222, 227, 229,  

231 
Certificate Store, 232, 239, 259 
Certification, 302 
Client-Server, 3, 13, 216, 265, 267, 280 
CloseSecureChannel, 135 
CloseSession, 138 
Conformance Unit, 299 
ContainsNoLoops, 74 
 

CreateMonitoredItems, 168 
CreateSession, 136 
CreateSubscription, 164 
CRL, 235, 237, 247, 249 
 
D 
 
Data Access, 4 
Data Variable, 58 
DataType, 61, 100, 150 

Attribute, 32, 40 
DataTypeVersion, 114 
DaylightSavingTime, 113 
DeleteMonitoredItems, 169 
DeleteNodes, 189 
DeleteReferences, 189 
DeleteSubscription, 165 
Description, 23 
DictionaryFragment, 114 
Direct Trust Model, 228, 250 
Discovery, 131, 273 
Discovery Endpoint, 212, 274, 275 
DisplayName, 23 
 
E 
 
EntryID, 127, 278, 280 
Enumeration DataType, 63 
EnumStrings, 114 
Error Handling, 128 
Event, 31, 74, 151, 158, 173 

Audit, 278 
Historical, 78, 177 

EventNotifier, 31, 32, 74, 75, 117 
Attribute, 74 

EventType, 74, 93, 112, 151 
Executable, 34 
ExpandedNodeId, 69 
Extensible Parameter, 129 
 
F 
 
FDI, 121 
Filter Operators, 174 
FindServers, 132 
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G 
 
GeneratesEvent, 77 
GetEndpoints, 133 
 
H 
 
HasChild, 28 
HasComponent, 28, 59, 87, 148 
HasDescription, 151 
HasEncoding, 150 
HasEventSource, 76, 146 
HasModellingRule, 49 
HasModelParent, 60 
HasNotifier, 75 
HasOrderedComponent, 24 
HasProperty, 59, 87 
HasSubtype, 28 
HasTypeDefinition, 26, 37, 154 
Hierarchical Trust Model, 229 
Historical Data Access, 6 
Historizing, 33 
HistoryRead, 177 
HistoryUpdate, 183 
 
I 
 
Icon, 113 
Information Model, 19, 81, 82, 107 

Standard, 107 
InputArguments, 34, 114 
InstanceDeclaration, 45 
InverseName, 25 
IsAbstract, 25, 37, 40, 62 
 
K 
 
Keep Alive, 162 
 
L 
 
Local Discovery Server, 131, 274, 276 
LocalizedText, 70 
 
M 
 
Method, 30, 34, 36, 45, 103, 118, 148, 

176 
Migration, 15, 283, 293 
MinimumSampling-Interval, 33 
ModelChangeEvent, 79 

ModellingRule, 45, 48, 49, 103 
Constaints, 52 
ExposesItsArray, 52 
Mandatory, 49 
Optional, 49 

ModelParent, 60 
ModifyMonitoredItems, 169 
ModifySubscription, 165 

Monitored Item, 158, 167 
Monitoring Mode, 159, 167 
 
N 
 
NamespaceArray, 68, 69 
NamespaceIndex, 68 
NamingRule, 48, 49, 50, 51, 113 
Node, 22, 23, 24, 79, 188, 189 
NodeClass, 22, 23 
NodeId, 22, 23, 45, 111 

DataType, 68 
RegisterNodes, 143 

NodeVersion, 79, 113 
 
O 
 
Object, 30, 95 
ObjectType, 36, 37, 96 

Complex, 42 
Simple, 37 

OCSP, 236, 246, 249 
OpenSecureChannel, 135 
OutputArguments, 34, 114 
 
P 
 
Performance, 305 
PKI, 227, 238, 242 
Private Key, 195, 197, 213, 216, 224, 

233, 238 
Profile, 299 
Program, 118 
ProgramType, 119 
Property, 58, 102 
Proxy, 295 
Proxy Object, 104 
Public Key, 216, 219, 225, 226, 228, 

242 
Publish, 160, 162 

Monitor Aggregated Data, 175 
Monitor Data Changes, 171 
Monitor Events, 173 
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Q 
 
QualifiedName, 70 
Query, 186 
QueryFirst, 186 
QueryNext, 186 
Queue Size, 159, 167 
 
R 
 
Read, 155 
ReadAtTime, 182 
ReadEvent, 182 
ReadProcessed, 180 
ReadRawModified, 178 
Reference, 22, 23, 24, 29, 79, 95, 104, 

188, 189 
ReferenceType, 25, 26, 29, 92, 95 

Standard ReferenceTypes, 112 
RegisterNodes, 143 
RegisterServer, 134 
Republish, 163 
Request, 127 
Response, 127 
 
S 
 
Sampling Interval, 159, 167 
SDK, 14, 258 
Secure Channel, 130, 135 
Security Policy, 197, 207, 213, 222 
ServerArray, 69, 114 
Service, 125 
Session, 130, 136 
Session Endpoint, 212, 274, 275 
SetMonitoringMode, 170 
SetPublishingMode, 166 
SetTriggering, 170 
Simple DataType, 63 
Software Certificate, 215, 220, 226, 299, 

302 
Software Layers, 13, 255 
Specifications, 11 
Stack, 14, 191, 256 

State Machine Information Model, 117, 
153 

Structured DataType, 64, 150 
Subscription, 130, 158, 164 
Subtyping, 54 
Symmetric, 25 
 
T 
 
Test Case, 299 
Timeout Handling, 127 
TimeZone, 113 
TransferSubscriptions, 166 
TranslateBrowsePathsToNodeIds, 142 
 
U 
 
UnregisterNodes, 145 
User Certificate, 222, 227 
UserAccessLevel, 33 
UserExecutable, 34 
UserWriteMask, 23 
 
V 
 
Value, 32, 40 
ValueRank, 32, 40 
Variable, 30, 32, 100 
VariableType, 36, 96 

Complex, 48 
Simple, 39 

View, 71, 95 
ViewVersion, 113 
 
W 
 
Wrapper, 293 
Write, 157 
WriteMask, 23 
 
X 
 
X.509, 224 
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