

OPC Unified Architecture

123

Wolfgang Mahnke • Stefan-Helmut Leitner

OPC Unified Architecture

•

Matthias Damm

© 2009 Springer-Verlag Berlin Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication

are liable for prosecution under the German Copyright Law.
in its current version, and permissions for use must always be obtained from Springer-Verlag. Violations

Wolfgang Mahnke

e-ISBN 978-3-540-68899-0

ABB Forschungszentrum
Ladenburg
 Wallstadter Str. 59

Germany

Stefan-Helmut Leitner

68526 Ladenburg

stefan.leitner@de.abb.com
wolfgang.mahnke@de.abb.com

Cover design: KüenkelLopka GmbH

ISBN 978-3-540-68898-3

Library of Congress Control Number: 2008941149

DOI 10.1007/978-3-540-68899-0

Germany

Matthias Damm
ascolab GmbH
Automation Systems
Communication Lab.
 Am Weichselgarten 7
91058 Erlangen

Foreword by Tom Burke

are the architectural and development leaders who have enabled OPC to be so

The OPC Unified Architecture was developed by over 30 companies over
approximately 5 years. Complete reference implementations and technology were
developed to validate the specifications and prove the technical feasibility. The
purpose of the OPC Unified Architecture was to enable a platform-independent
interoperability standard for moving data/information between the factory floor
and the enterprise. During the course of the development it was obvious that the
OPC Unified Architecture was well positioned to expand beyond industrial auto-
mation. OPC has expanded into areas of building automation, security, home
automation, power generation, packaging, and petrochemicals. Because of the
highly scalable architecture of OPC UA, it is also well-positioned for deployment
in intelligent embedded devices.

OPC UA is a collaborative effort with other standards organizations as well.
OPC UA is also built on the premise of do not reinvent technology that already
exists. OPC pulls all the pieces together as necessary for true secure reliable inter-
operability.

This book provides you a solid foundation to learn everything you could ever
want to know about developing world-class products for multi-vendor interopera-
bility based on OPC UA.

The OPC Foundation is proud to recognize the achievements and quality work
that the authors have put together in developing and assembling this book. I
encourage you to read this book multiple times and use it as a constant preference
as you develop or use OPC-based products in your respective domain. You as a
reader are very fortunate to have obtained this book.

I encourage you to constantly refer and take advantage of this book for all your
OPC needs.

Tom Burke

President and Executive Director OPC Foundation

The OPC Foundation is very honored to endorse this superior book and the excellent

The authors of this book, I have been pleased to know for many years, clearly

work that the authors have put together. This book provides a solid framework

widely successful. The readers of this book are fortunate to be able to learn from

specifications and technology.

operability standard, that being the OPC Unified Architecture.

the experts who actually developed the OPC Foundation Unified Architecture

the beginning of OPC up through and including the most important OPC inter-
of understanding about the OPC Foundation specifications and technology from

v

Foreword by Jim Luth

with others. A group of dedicated volunteer members of the OPC Foundation con-
tributed countless hours to complete this ambitious endeavor. By combining the
tried and true functionality of the previous generation of OPC Interfaces along

Service Oriented Architecture, the Semantic Web, Network Model Databases),

metadata of any complexity.

fication for Data Access (DA) that specified how a server would expose a simple
hierarchical organization of items (tags) that could be read, written, and sub-
scribed to by conformant clients. The Foundation quickly followed up with addi-
tional popular specifications for different types of data, in particular, Alarms &

platform independent Web Service interface for Data Access with similar func-
tionality as the original COM version. Unfortunately, the performance of the Web

DA could not be viewed as a newer and better replacement for the platform spe-

goals of OPC UA:

mentable specifications, communication stacks, and SDKs in multiple programming

revolutionary step forward for vendors wishing to write software that interoperates

create a true replacement for all of the existing COM-based specifications without

In the mid-nineties, the OPC Foundation published its first Microsoft COM speci-

Events and Historical Data. With the invention of XML Web Services and the
promise of vendor neutral communication, the Foundation created XML-DA, a

(MES, ERP, Asset Management…).
• Allow Data Access, Alarms & Events, and Historical data to be exposed using

cific COM version. The OPC Unified Architecture was born out of the desire to

a single set of generic, data-agnostic Services.
• Allow the nodes in the address space to be connected in hierarchies and non-

hierarchical “meshes.”

losing any features (or performance) in the process. Here are some of the design

• Future-proof the specifications by making them abstract and not dependent on
existing communication technologies.

• Specify concrete data serializations and protocol mappings using accepted internet

• Support a wider range of applications that use complex instead of simple data

standards (Web Services, XML, HTTP, TCP …)
• Allow rich metadata to be exposed (the same way the data itself is), so that

generic clients can interpret data without a priori knowledge.

All these goals and more have been realized in OPC UA. We now have imple-

Service version was orders of magnitude slower than the COM version, so XML-

OPC UA represents a generic framework for exposing and consuming data and

More than 5 years in the making, OPC Unified Architecture represents a

with the latest advances in computer science (e.g., Object Oriented Programming,

vii

skilled at developing SQL applications, yet most have never read the SQL specifi-

specification and coding effort, represents the best way to learn and use OPC UA
in your programming and design tasks.

Jim Luth
Technical Director OPC Foundation

Foreword by Jim Luth

UA. I like to use the corollary to SQL. There are thousands of software developers

With the reach-for-the-stars design goals and the huge scope of OPC UA, the
specifications, currently comprised of 13 Parts and climbing, while terse, dense,
and exact, are not the easiest way for developers and architects to approach OPC

languages and higher level third-party toolkits. We now invite the rest of the world

cations. They learned SQL by reading books, studying vendor documentation, tak-
ing classes, etc. This book, written by key authors and contributors to the OPC UA

to go forth and create software applications that interoperate at the highest possi-
ble semantic levels using OPC UA.

 viii

Preface

Motivation for This Book

The OPC Foundation provides specifications for data exchange in industrial auto-
mation. There is a long history of COM/DCOM-based specifications, most promi-
nent OPC Data Access (DA), OPC Alarms and Events (A&E), and OPC Historical
Data Access (HDA), which are widely accepted in the industry and implemented
by almost every system targeting industrial automation.

Now the OPC Foundation has released a new generation of OPC specifications
called OPC Unified Architecture (OPC UA). With OPC UA, the OPC Foundation
fulfills a technology shift from the retiring COM/DCOM technology to a service-
oriented architecture providing data in a platform-independent manner via Web
Services or its own optimized TCP-based protocol. OPC UA unifies the previous
specifications into one single address space capable of dealing with current data,
alarms and events and the history of current data as well as the event history. A
remarkable enhancement of OPC UA is the Address Space Model by which ven-
dors can expose a rich and extensible information model using object-oriented
techniques. OPC UA scales well from intelligent devices, controllers, DCS, and
SCADA systems up to MES and ERP systems. It also scales well in its ability to
provide information; on the lower end, a model similar to Classic OPC can be
used, providing only base information, while at the upper end, highly sophisticated
models can be described, providing a large amount of metadata including complex
type hierarchies.

There is a high interest in the advanced modeling capabilities in many domains
and there are already initiatives to standardize information models based on OPC
UA. Examples of these activities are FDI where a common field device descrip-
tion is targeted and common activities with MIMOSA (Maintenance Information –
ERP and above), S95 (Production Information – MES), and PLCopen (Industrial
Control).

The OPC UA specification currently consists of 13 parts and therefore 13
documents, some specifying the base technology and others defining specific in-
formation models. An example is a model describing how to provide process
automation-specific alarm information. All in all, there are over 700 pages of
specification, written to be accurate and complete. The specification primarily de-
fines how to do things and to a lesser extent explains why it was designed that
way. This is the way specifications have to be written to be widely applied by
many developers and to guarantee interoperability between different applications.
As a result, the OPC UA specification is hard to read for someone new to OPC
UA. This is also true of other specifications such as SQL or UML.

With this book, we want to fill this gap and provide an easy to understand intro-
duction to OPC UA. We will not provide the same level of detail as the specifica-
tion, but rather introduce and explain the main concepts of OPC UA. We will give

ix

guidelines that help you in determining the best alternative among different concepts
for your use cases and requirements. We will also target relevant topics that are
not directly addressed in the specification but are needed to apply OPC UA.

Who Should Read This Book?

If you are interested in the OPC Unified Architecture – and that is probably the
reason why you are reading this text – you should read this book. It is written by
the editors of the key parts of the OPC UA specification, and they will explain to
you what is behind the acronym OPC UA.

We had a broad audience in mind when writing this book, including people
with the following tasks:

makers)
• Applying OPC UA in their client or server applications (software architects,

engineers, and developers)
• Using applications based on OPC UA (administrators and engineers, e.g., re-

sponsible for configuring a process control system; not end users such as opera-

of OPC UA. It will explain how to define your model and how to access the data.
You will learn how redundancy, security, and more are addressed in OPC UA and
how well it performs compared to Classic OPC. However, you will not find any
code examples. When you implement your OPC UA application, it is expected
that you will use an SDK and you should look into the documentation of such an
SDK for coding examples. This book explains how the mechanisms behind any
OPC UA SDK – the OPC UA Services – work and how to model your informa-
tion in OPC UA. It also explains the information you can expect when accessing
an OPC UA server.

You do not have to be familiar with Classic OPC to read this book. You should
have a basic understanding of object-oriented concepts in order to understand the
information modeling. Some basic knowledge of software architecture is needed
to understand the underlying architecture of OPC UA.

Outline

Chapter 1 gives a short introduction into Classic OPC before starting with the
motivation for OPC UA and giving a short overview of OPC UA.

Preface

tors of a process control system).

This book will introduce the communication and information modeling concepts

• Judging whether OPC UA should be applied in their applications (decision

x

The next three chapters focus on information modeling, that is, how data can be
represented using OPC UA. Chapter 2 introduces the modeling concepts. We start
with the fundamental concepts to provide data, and later introduce more sophisti-
cated constructs such as type hierarchies. Chapter 3 introduces a real-life example
of how to model information in OPC UA and then generalizes modeling by ex-
plaining some best practices. Standard information models are introduced in
Chap. 4. Starting by explaining what an information model is and how it can be
specified as well as how OPC UA deals with information models. Continuing, the
base OPC UA information model is introduced followed by more specialized in-
formation model extensions of the OPC UA specification. Finally, we will look at
the current state of additional information model standards provided by other or-
ganizations.

The next two chapters focus on the way how to access the information modeled
in OPC UA. In Chap. 5, the abstract Services are described, which are used to ac-
cess or manipulate data. In Chap. 6, the mapping of those Services to concrete
technology is introduced. It is described how data is serialized, how messages are
secured, and what transport protocol is used.

In Chap. 7, the security considerations of OPC UA are discussed. This includes
the theoretical thoughts behind the security model of OPC UA as well as the prac-
tical implications for developers and administrators of OPC UA applications.

Chapter 8 explains the application architecture of OPC UA. Here, the different
components needed to implement OPC UA are introduced.

In Chap. 9, the system architecture of OPC UA is described. Included are de-
scriptions of how you can deploy and configure OPC UA applications in your sys-
tems, and how to handle redundancy, aggregation of servers, etc.

In the next chapters, we focus on migration of existing applications to OPC
UA. In Chap. 10 we explain how concepts of Classic OPC map to the concepts of
OPC UA. This chapter is especially useful for readers having a deep knowledge of
Classic OPC. Chapter 11 provides strategies of how to migrate your Classic OPC
applications to OPC UA and how components, provided by the OPC Foundation,
can help you in this effort.

OPC UA specifies a large number of features, but not every application will
make use of all of them. OPC UA provides profiles to deal with this fact. Profiles
specify a subset of features a product ensures to support. Applications exchange
these profiles to know what they can expect from the other application. Details on
profiles and how they are organized are described in Chap. 12.

Performance is a critical factor in the scenarios where Classic OPC is typically
used today. In Chap. 13, performance considerations of OPC UA are given. This
includes a comparison of OPC UA performance to Classic OPC.

We close with Chap. 14 where we summarize OPC UA and discuss the com-
plexity of OPC UA, pointing out that it is simple in most cases and explain why
some parts must have some complexity. We also provide an outlook of what we
expect to happen in the near future regarding OPC UA.

In addition, some Appendices provide a quick reference when you need to find
some details of OPC UA.

Preface xi

About the Authors

Dr. Wolfgang Mahnke

Wolfgang Mahnke works at the ABB Corporate Re-
search Center in Germany in the field of Industrial
Software Technology. In recent years, he has been the
project leader of several projects related to the OPC
Unified Architecture. Those projects target the speci-
fication of OPC UA, the implementation of the infra-
structure provided by the OPC Foundation as well as
the application of OPC UA inside ABB, for example,
in ABB’s major DCS 800xA. He is editor of the
Address Space Model and the Information Model
parts of the OPC UA specification and has con-
ducted several OPC UA training sessions and given
several presentations over the last years.

Wolfgang holds a Diploma in Computer Science
from the University of Stuttgart. During his work at
the University of Kaiserslautern he gained his Ph.D. in the area of Databases and
Information Systems.

Stefan-Helmut Leitner

Stefan-Helmut Leitner works at the ABB Corporate
Research Center in Germany in the area of Industrial
Software Technologies. He has been involved in
various research and development topics regarding

such as the development of the ANSI-C protocol
stack, certificate management for OPC UA, and held
several trainings and presentations. In addition, he
has the editing responsibility for the Security Model
part of the OPC UA specification.

Technology from the University of Corporate Edu-
cation Mannheim.

Stefan-Helmut holds a Diploma in Information

OPC Unified Architecture inside and outside ABB,

xiii

About the Authors

Matthias Damm

Matthias Damm is Executive Director and founder of
ascolab, where he is responsible for OPC consulting
and certification. Since the last 10 years, he has been
actively involved in OPC work especially in the areas
of compliance testing and OPC Unified Architecture.

Before founding ascolab, Matthias worked as man-
ager of the OPC competence centre in the Siemens
division Industrial Services and Solutions.

Matthias is manager of the OPC Foundation Certi-
fication Test Lab at ascolab and his team is responsi-
ble for the development and maintenance of the OPC
Foundation Compliance Test Tools since several years.

He is editor of the Service part of the OPC UA
specification and has conducted OPC UA training sessions and given several pres-

was also responsible for the design and development of the C++ UA Server SDK

tion GmbH.
Matthias has a Dipl. Ing. (FH) degree in Electrical Engineering from University

of applied Science in Schweinfurt/Germany.

used by many early OPC UA products, which is distributed by Unified Automa-

UA Stack developed by ascolab that was donated to the OPC Foundation. He was

xiv

entations over the last years. He was involved in the design of the portable ANSI C

Acknowledgements

Writing a book is a time consuming task that requires many extra after-office
hours and weekend hours. First of all, we thank our families and friends for their
patience and support. Helmut and Wolfgang thank Martin Naedele from ABB for
sponsoring some of our time at the office for this book project. Matthias thank his
co-executives at ascolab, Gerhard Gappmeier and Uwe Steinkrauß.

The topic of this book – OPC Unified Architecture – was created by the OPC
UA working group of the OPC Foundation. We gained our knowledge and thereby
the foundation for writing this book by being part of this working group. We al-
ways enjoyed the positive atmosphere of the group focusing on technology issues

Armstrong (OPC Foundation), Karl-Heinz Deiretsbacher (Siemens), Jens Doppel-
hamer (ABB), Gerhard Gappmeier (ascolab), Jeff Harding (ABB), Paul Hunkar

Jim Luth (OPC Foundation), Uwe Steinkrauß (ascolab), and Roland Weiss (ABB)
for their assistance.

Thanks also to our publisher for their support, especially to Dorothea Glaunsinger,
Hermann Engesser, and the native speakers who greatly improved our English.

Finally, we thank all those people we have had discussions with about OPC UA
at DevCons, workshops, trainings, and other occasions. Those discussions helped
us a great deal identifying key problems with understanding OPC UA and gave us
the motivation to write this book.

To the readers of this book: We encourage you to contact us if you find errors

October 2008

Stefan-Helmut Leitner (stefan.leitner@de.abb.com)
Matthias Damm (matthias.damm@ascolab.com)

and not on politics. A lot of people have participated in the working group meetings,
some from the beginning to the present and some only for a while. We thank all of

Several reviewers helped improve the quality of this book. We thank Randy

them for the excellent cooperation. We specially thank Jim Luth of the OPC Found-
ation as the leader of the working group, and those who where involved in so many
discussions: Randy Armstrong and Tom Burke (OPC Foundation), Jeff Harding and

Ayana Craven (OSIsoft), Erik Murhpy (Matrikon), Christian Zugfil (ascolab), Jörg
Allmendinger (Allmendinger), and Betsy Hawkinson (Honeywell), to name a few.

(ABB), Emanuel Kolb (ABB), Heiko Koziolek (ABB), Claude Lafond (ABB),

Wolfgang Mahnke (wolfgang.mahnke@de.abb.com)

or unclear statements in this book or if you have suggestions for improvement. We

Paul Hunkar (ABB), Karl-Heinz Deiretsbacher (Siemens), Lee Neit-zel (Emerson),

xv

will post corrections and additional information on www.opcuabook.com.

Table of Contents

Foreword by Tom Burke ... v

Foreword by Jim Luth... vii

Preface .. ix

About the Authors...xiii

Acknowledgements... xv

1 Introduction .. 1
1.1 OPC Foundation .. 1
1.2 Classic OPC... 3

1.2.1 OPC Data Access.. 4
1.2.2 OPC Alarm and Events... 5
1.2.3 OPC Historical Data Access ... 6
1.2.4 Other OPC Interface Standards... 6
1.2.5 OPC XML-DA.. 7

1.3 Motivation for OPC UA .. 8
1.4 OPC UA Overview.. 10
1.5 OPC UA Specifications... 11
1.6 OPC UA Software Layers ... 13
1.7 Evolution Not Revolution ... 15
1.8 Summary.. 16

1.8.1 Key Messages ... 16
1.8.2 Where to Find More Information?.. 17
1.8.3 What’s Next? .. 17

2 Information Modeling: Concepts.. 19
2.1 Why Information Modeling?... 19
2.2 Nodes and References ... 22
2.3 ReferenceTypes ... 25
2.4 Objects, Variables and Methods.. 30
2.5 Types for Objects and Variables ... 36

2.5.1 Simple ObjectTypes.. 37
2.5.2 Simple VariableTypes... 39
2.5.3 Complex ObjectTypes .. 42
2.5.4 InstanceDeclarations ... 45
2.5.5 Complex VariableTypes ... 48
2.5.6 ModellingRules... 48
2.5.7 Subtyping of ComplexTypes .. 54

2.6 Data Variables and Properties ... 58

xvii

 Table of Contents

2.7 ModelParent for Objects, Variables and Methods 60
2.8 DataTypes.. 61

2.8.1 DataType NodeClass .. 62
2.8.2 Built-in and Simple DataTypes... 63
2.8.3 Enumeration DataTypes.. 63
2.8.4 Structured DataTypes.. 64
2.8.5 Specific Built-in DataTypes.. 68
2.8.6 Summary on DataTypes.. 71

2.9 Views... 71
2.10 Events .. 74
2.11 Historical Access ... 77

2.11.1 Historical Data .. 77
2.11.2 Historical Events... 78
2.11.3 Historical Address Space .. 79

2.12 Address Space Model and Information Models...................................... 81
2.13 Summary.. 83

2.13.1 Key Messages ... 83
2.13.2 Where to Find More Information?.. 84
2.13.3 What’s Next? .. 84

3 Information Modeling: Example and Best Practice.................................... 85
3.1 Overview ... 85
3.2 Example ... 85

3.2.1 Application Scenario... 85
3.2.2 Simple Scenario – Similar to Classic OPC................................. 87
3.2.3 Advanced Scenario – Providing Full Power of OPC UA........... 88

3.3 Best Practices... 94
3.3.1 Structuring with Objects, ReferenceTypes and Views 95
3.3.2 TypeDefinitions (ObjectTypes and VariableTypes)................... 96
3.3.3 Providing Complex Data Structures ... 100
3.3.4 Providing User-Defined DataTypes.. 102
3.3.5 Properties .. 102
3.3.6 Methods... 103
3.3.7 ModellingRules... 103
3.3.8 Proxy Objects (Properties on References) 104

3.4 Summary.. 105
3.4.1 Key Messages ... 105
3.4.2 Where to Find More Information?.. 105
3.4.3 What’s Next? .. 106

4 Standard Information Models... 107
4.1 Overview ... 107
4.2 Handling Information Models ... 107

4.2.1 What is Specified by an Information Model?........................... 107
4.2.2 How is an Information Model Specified?................................. 111

xviii

Table of Contents

4.2.3 How are Multiple Information Models Supported?.................. 111
4.3 Base OPC UA Information Model .. 112
4.4 Capabilities and Diagnostics ... 115
4.5 Data Access ... 115
4.6 Historical Access and Aggregates... 116
4.7 State Machine .. 117
4.8 Programs.. 118
4.9 Alarms and Conditions .. 119
4.10 Domain-Specific Information Models... 120

4.10.1 Overview... 120
4.10.2 Devices Information Model .. 121

4.11 Summary.. 122
4.11.1 Key Messages ... 122
4.11.2 Where to Find More Information?.. 123
4.11.3 What’s Next? .. 123

5 Services .. 125
5.1 Overview ... 125
5.2 General Service Concepts ... 126
 5.2.1 Timeout Handling ... 127
 5.2.2 Request and Response Headers .. 127
 5.2.3 Error Handling .. 128
 5.2.4 Extensible Parameters... 129
 5.2.5 Communication Context ... 129
 5.2.6 Convention for Describing Services in this Chapter 131
5.3 Finding Servers.. 131

5.3.1 Service FindServers .. 132
5.3.2 Service GetEndpoints.. 133
5.3.3 Service RegisterServer.. 134

5.4 Connection Management Between Clients and Servers 134
5.4.1 Secure Channel Establishment.. 135
5.4.2 Creating an Application Session... 136
5.4.3 Closing an Application Session .. 138
5.4.4 Cancel Outstanding Service Requests 138

5.5 Find Information in the Address Space... 139
5.5.1 Services Used for Discovering the Address Space................... 139
5.5.2 Use Cases for Finding Information in the Address Space........ 145

5.6 Read and Write Data and Metadata... 155
5.6.1 Reading Data... 155
5.6.2 Writing Data.. 157

5.7 Subscribe for Data Changes and Events.. 158
5.7.1 Delivery of Changed Data and Events...................................... 159
5.7.2 Create and Manage Subscriptions... 164
5.7.3 Create and Manage Monitored Items.. 167
5.7.4 Monitor Data Changes .. 171

xix

5.7.5 Monitor Events.. 173
5.7.6 Monitor Aggregated Data ... 175

5.8 Calling Methods Defined by the Server .. 176
5.9 Access History of Data and Events ... 177

5.9.1 HistoryRead Service ... 177
5.9.2 HistoryUpdate Service .. 183

5.10 Find Information in Complex Address Space 186
5.11 Modify the Address Space .. 187
 5.11.1 Adding Nodes ... 188
 5.11.2 Creating References Between Nodes.. 188
 5.11.3 Removing Nodes... 189
 5.11.4 Delete References Between Nodes ... 189
5.12 Summary.. 189

5.12.1 Key Messages ... 189
5.12.2 Where to Find More Information?.. 190
5.12.3 What’s Next? .. 190

6 Technology Mapping.. 191
6.1 Overview ... 191
6.2 Data Encodings.. 192

6.2.1 OPC UA Binary .. 192
6.2.2 XML.. 193

6.3 Security Protocols.. 194
6.3.1 WS-SecureConversation ... 194
6.3.2 UA-SecureConversation ... 196

6.4 Transport Protocols ... 198
6.4.1 UA TCP .. 198
6.4.2 SOAP/HTTP ... 199

6.5 Available Mapping Implementations .. 200
6.6 Summary.. 201

6.6.1 Key Messages ... 201
6.6.2 Where to Find More Information?.. 202
6.6.3 What’s Next? .. 202

7 Security .. 203
7.1 Why is Security so Important? .. 203
7.2 Organizational Perspective of Security ... 204
7.3 Technical Perspective of Security ... 205
7.4 Determining The Appropriate Level of Security 206

7.4.1 Security Assessments.. 206
7.4.2 The OPC UA Security Assessment .. 209

7.5 The OPC UA Security Model ... 209
7.5.1 Security Architecture .. 209
7.5.2 Securing the Communication Channel 212

xx Table of Contents

Table of Contents

7.5.4 Security Policies and Profiles ... 222
7.6 Certificates... 222

7.6.1 What is a Certificate?.. 222
7.6.2 OPC UA Certificates... 224

7.7 Public Key Infrastructure for OPC UA ... 227
7.7.1 What is a PKI? .. 227
7.7.2 Trust Models ... 228
7.7.3 Certificate Lifecycle Management.. 231
7.7.4 Available PKI Frameworks .. 238
7.7.5 PKI for Industrial Applications... 242

7.8 Summary.. 252
7.8.1 Key Messages ... 252
7.8.2 Where to Find More Information?.. 252
7.8.3 What’s Next? .. 253

8 Application Architecture ... 255
8.1 Introduction ... 255
8.2 Architectural Overview ... 255
8.3 Stack .. 256

 8.3.1 Interface .. 256
 8.3.2 Encoding Layer ... 257
 8.3.3 Security Layer ... 257
 8.3.4 Transport Layer... 257
 8.3.5 Platform Layer .. 258

8.4 Software Development Toolkit ... 258
 8.4.1 UA-Specific Functionality .. 258
 8.4.2 Common Functionality ... 259
 8.4.3 Interfaces... 260

8.5 Application .. 260
 8.5.1 Client... 260
 8.5.2 Server .. 261
8.6 Deliverables Provided by the OPC Foundation 261

8.6.1 Stacks .. 262
8.6.2 SDKs ... 262
8.6.3 Applications .. 263

8.7 Summary.. 263
8.7.1 Key Messages ... 263
8.7.2 Where to Find More Information?.. 263
8.7.3 What’s Next? .. 264

9 System Architecture ... 265
9.1 System Environment ... 265
9.2 Basic Architecture Patterns ... 265

9.2.1 Client-Server ... 265
9.2.2 Chained Server.. 266

7.5.3 Authentication and Authorization... 218

xxi

Table of Contents

9.2.3 Server-to-Server Communication ... 267
9.2.4 Aggregating Server ... 268

9.3 Redundancy ... 269
9.3.1 Client Redundancy.. 269
9.3.2 Server Redundancy ... 270

9.4 Discovery... 273
9.4.1 Why discovery? .. 273
9.4.2 Discovery Entities... 274
9.4.3 Discovery Process... 275

9.5 Auditing... 277
9.5.1 Overview... 277
9.5.2 Audit Logs .. 278
9.5.3 Audit Events.. 278
9.5.4 Service Auditing ... 279
9.5.5 Use Cases .. 279

9.6 Summary.. 281
9.6.1 Key Messages ... 281
9.6.2 Where to Find More Information?.. 281
9.6.3 What’s Next? .. 282

10 Mapping of COM OPC to OPC UA ... 283
10.1 Overview ... 283
10.2 OPC Data Access 2.05A and 3.0... 283

10.2.1 Address Space... 284
10.2.2 Access Information ... 285
10.2.3 OPC XML-DA 1.01.. 286

10.3 OPC Alarm and Events 1.1 ... 286
10.3.1 Address Space... 287
10.3.2 Access Information ... 288

10.4 OPC Historical Data Access.. 289
10.4.1 Address Space... 290
10.4.2 Access Information ... 290

10.5 Summary.. 292
10.5.1 Key Messages ... 292
10.5.2 Where to Find More Information?.. 292
10.5.3 What’s Next? .. 292

11 Migration... 293
11.1 Overview ... 293
11.2 Wrappers - Access COM Server from UA Client................................. 293
11.3 Proxies - Access UA Server from COM Client 295
11.4 Native Development.. 296
11.5 Summary.. 296

11.5.1 Key Messages ... 296
11.5.2 Where to Find More Information?.. 297
11.5.3 What’s Next? .. 297

xxii

Table of Contents

12 Profiles ... 299
12.1 Motivation ... 299
12.2 Profiles, Conformance Units and Test Cases .. 299
12.3 Profiles for Server Applications .. 300
12.4 Profiles for Client Applications... 301
12.5 Transport Profiles .. 301
12.6 Security Profiles .. 302
12.7 Certification Process.. 302
12.8 Summary.. 303

12.8.1 Key Messages ... 303
12.8.2 Where to Find More Information?.. 303
12.8.3 What’s Next? .. 303

13 Performance .. 305
13.1 Overview ... 305
13.2 Performance Numbers ... 306
13.3 Summary.. 309

13.3.1 Key Messages ... 309
13.3.2 Where to Find More Information?.. 309
13.3.3 What’s Next? .. 309

14 Conclusion and Outlook... 311
14.1 OPC UA in a Nutshell ... 311
14.2 Is OPC UA Complicated? ... 311

14.2.1 Are OPC UA Services Difficult to Handle? 312
14.2.2 Is Information Modeling a Pain? .. 314
14.2.3 Transport Protocols and Encodings: Why So Many?............... 317
14.2.4 Implementation Issues .. 319
14.2.5 Migration of Existing Code .. 319
14.2.6 Management Summary ... 321

14.3 Outlook .. 321

Appendix A: Graphical Notation.. 327
Motivation and Relation to UML... 327
Notation .. 328
Example .. 330

Appendix B: NodeClasses and Attributes.. 333

Appendix C: Base Information Model Reference... 335

Index .. 337

15 Literature .. 323

 xxiii

1 Introduction

1.1 OPC Foundation

The use of PC- and software-based automation systems in industrial automation
rapidly increased since the early nineties. Especially, Windows-based PCs are used
for visualization and control purposes. One of the major efforts for the development
of standardized automation software in the past years was the access to automation
data in devices where an uncountable number of different bus systems, protocols,
and interfaces are used.

A similar problem for software applications did exist for the access to printers,

for all supported printers. Windows solved the printer driver problem by incorpo-
rating printer support into the operating system. This one printer driver interface
served all applications that needed printer access. And these printer drivers are
provided by the printer manufacturer and not by the application developers.

Since vendors of Human Machine Interface (HMI) and Supervisory Control
and Data Acquisition (SCADA) software had similar problems, a task force initiated

and Intuitive Technology was founded in 1995. The goal of the task force was to
define a Plug&Play standard for device drivers providing a standardized access to
automation data on Windows-based systems.

The result was the OPC Data Access specification released after short time in
August 1996. The nonprofit organization that is maintaining this standard is the
OPC Foundation. Nearly all vendors providing systems for industrial automation
became member of the OPC Foundation. The OPC Foundation was able to define
and adopt praxis relevant standards much quicker than other organizations. One of
the reasons for this success was the reduction to main features and the restriction
to the definition of APIs using the Microsoft Windows technologies Component
Object Model (COM) and Distributed COM (DCOM). The focus on important

the standard for the addressed use case.
As a result of the experience from product developments, multi-vendor demon-

strations, and interoperability workshops, version two of the OPC Data Access
specification was introduced in 1998. Based on this version, a large number of
products implemented the standard. OPC Data Access version two is still the most
important interface for OPC products.

SCADA and HMI systems, process management and Distributed Control

(MES) must support OPC interfaces today. OPC is the one – universally accepted –
standard delivering the ability to exchange data between different industrial auto-
mation system in manufacturing and process industry.

Systems (DCS), PC-based control systems, and Manufacturing Execution Systems

DOI: 10.1007/978-3-540-68899-0_1,
1W. Mahnke et al., OPC Unified Architecture,

features and the use of base Windows technologies allowed a quick adoption of

© Springer-Verlag Berlin Heidelberg 2009

where in old DOS days, every application needed to write its own printer drivers

by the companies Fisher-Rosemount, Rockwell Software, Opto 22, Intellution,

After 12 years, the OPC Foundation has over 450 members including all relevant
automation system suppliers around the world. Figure 1.1 shows the OPC Founda-
tion member demography classified with membership classes and region. The
membership class is based on sales number for corporate members and the classes

OPC Foundation is governed by a Board of Directors elected by the membership.
The Board, in turn, appoints the Foundation’s Officers and the OPC Chief Architect.

Fig. 1.1 OPC Foundation member demography

The OPC Foundation has listed over 1,500 OPC-based products in its product
catalog containing only products from OPC members. The total OPC market has
over 2,500 vendors providing over 15,000 OPC-enabled products.

This great success requires verification mechanisms to make sure that all OPC
products interoperate with each other and to ensure a certain level of quality. For
this reason the OPC Compliance Program is, beside the development of new stan-
dards, the main focus of the OPC Foundation working groups.

The OPC Compliance Program defines two certification levels. The first level

offers Compliance Test Tools for all relevant OPC standards. These tools are used
for testing and the encrypted results are sent to the OPC Foundation. These test
tools cover the functional tests on the interface level. Interoperability workshops
are yearly events in Europe, North America, and Japan, where different vendors
can test the interoperability of their OPC products against each other. Products
passing self-certification can use the Self-Tested logo to indicate a basic level of
OPC Compliance.

The second level is the product certification in independent Certification Test
Labs. Accredited third party test labs are verifying OPC products with broader test
coverage. In addition to the basic functional tests executed by the Compliance
Test Tools, the test labs are running behavior tests, load and stress tests, inter-
operability tests as well as environment and usability tests. For products passing

2 1 Introduction

for end user and non-voting members like universities or other organizations. The

A Marketing Committee, a Technical Advisory Council, and various working groups
have been established.

third party certification, the OPC Certified logo indicates a high level of quality

combines self certification and interoperability workshops. The OPC Foundation

and OPC Compliance.

End users are encouraged to buy only OPC Compliance tested products to
reduce interoperability problems and to ensure reliability and performance of their
OPC-based solution.

1.2 Classic OPC

In recent years, the OPC Foundation has defined a number of software interfaces
to standardize the information flow from the process level to the management
level. The main use cases are interfaces for industrial automation applications like
HMIs and SCADA systems to consume current data from devices and to provide
current and historical data and events for management applications.

According to the different requirements within industrial applications, three
major OPC specifications have been developed: Data Access (DA), Alarm &
Events (A&E), and Historical Data Access (HDA). Access to current process data
is described in the DA specification, A&E describes an interface for event-based
information, including acknowledgement of process alarms, and HDA describes
functions to access archived data. All interfaces offer a way to navigate through
the address space and to provide information about the available data.

OPC uses a client–server approach for the information exchange. An OPC
server encapsulates the source of process information like a device and makes the
information available via its interface. An OPC client connects to the OPC server
and can access and consume the offered data. Applications consuming and provid-
ing data can be both client and server. Figure 1.2 shows a typical use case of OPC
clients and servers.

Fig. 1.2 Typical use case of OPC clients and servers

 31.2 Classic OPC

Classic OPC interfaces are based on the COM and DCOM technology from
Microsoft.

The advantage of this approach was the reduction of the specification work
to the definition of different APIs for different specialized needs without the
requirement to define a network protocol or a mechanism for interprocess commu-
nication. COM and DCOM provide a transparent mechanism for a client to call
methods on a COM-object in a server running in the same process, in another
process, or on another network node. Using this technology available on all PC-
based Windows operating systems reduced the development time of the specifica-
tions and products and the time-to-market for OPC. This advantage was important
for the success of OPC.

The two main disadvantages are the Windows-platform-dependency of OPC
and the DCOM issues when using remote communication with OPC. DCOM is
difficult to configure, has very long and non-configurable timeouts, and cannot be
used for internet communication.

The OPC Data Access interface enables reading, writing, and monitoring of vari-
ables containing current process data. The main use case is to move real-time data
from PLCs, DCSs, and other control devices to HMIs and other display clients.
OPC DA is the most important OPC interface. It is implemented in 99% of the

mented in addition to DA.
OPC DA clients explicitly select the variables (OPC items) they want to read,

write, or monitor in the server. The OPC client establishes a connection to the
server by creating an OPCServer object. The server object offers methods to navi-
gate through the address space hierarchy to find items and their properties like
data type and access rights.

For accessing the data, the client groups the OPC items with identical settings
such as update time in an OPCGroup object. Figure 1.3 shows the different objects
the OPC client creates in the server.

Fig. 1.3 Objects created by an OPC client to access data

4 1 Introduction

products using OPC technology today. Other OPC interfaces are mostly imple-

1.2.1 OPC Data Access

When added to a group, items can be read or written by the client. However,
the preferred way for the cyclic reading of data by the client is monitoring the
value changes in the server. The client defines an update rate on the group con-
taining the items of interest. The update rate is used in the server to cyclic check
the values for changes. After each cycle, the server sends only the changed values
to the client.

OPC provides real-time data that may not permanently be accessible, for exam-
ple, when the communication to a device gets temporarily interrupted. The Classic
OPC technology handles this issue by providing timestamp and quality for the
delivered data. The quality specifies if the data is accurate (good), not available
(bad), or unknown (uncertain).

The OPC A&E interface enables the reception of event notifications and alarm
notifications. Events are single notifications informing the client about the occur-
rence of an event. Alarms are notifications that inform the client about the change
of a condition in the process. Such a condition can be the level of a tank. In this
example, a condition change can occur when a maximum level is exceeded or is
fallen below a minimum level. Many alarms include the requirement that the
alarm has to be acknowledged. This acknowledgement is also possible via the
OPC A&E interface.

OPC A&E thus provides a flexible interface for transmitting process alarms
and events from different event sources.

To receive notifications, the OPC A&E client connects to the server, subscribes
for notifications, and than receives all notifications triggered in the server. To limit
the number of notifications, the OPC client can specify certain filter criteria.

The OPC client connects by creating an OPCEventServer object in the A&E
server in the first step and by generating an OPCEventSubscription used to receive
the event messages in the second step. Filters for these event messages can be con-
figured separately for each subscription. Figure 1.4 shows the different objects the
OPC client creates in the server.

Fig. 1.4 Objects created by an OPC client to receive events

51.2 Classic OPC

1.2.2 OPC Alarm & Events

In contrast to OPC DA, there is no explicit request for specific information like
reading values; however, all process events are supplied and the client can limit
the quantity of the events by setting certain filter criteria, for example, filter by

Where OPC Data Access gives access to real-time, continually changing data,
OPC Historical Data Access provides access to data already stored. From a simple
serial data logging system to a complex SCADA system, historical archives can be
retrieved in a uniform manner.

The OPC client connects by creating an OPCHDAServer object in the HDA
server. This object offers all interfaces and methods to read and update historical
data. A second object OPCHDABrowser is defined for browsing the address space
of the HDA server.

The main functionality is the reading of historical data in three different ways.
The first mechanism reads raw data from the archive, where the client defines one
or more variables and the time domain he wants to read. The server returns all
values archived for the specified time range up to the maximum number of values
defined by the client. The second mechanism reads values of one or more vari-
ables for specified timestamps. The third read mechanism computes aggregate
values from data in the history database for the specified time domain for one or
more variables. Values include always the associated quality and timestamp.

 In addition to the read methods, OPC HAD also defines methods for inserting,
replacing, and deleting data in the history database.

OPC specified several additional standards as base specifications or for specialized
needs. Base specifications are OPC Overview and OPC Common defining interfaces
and behavior that is common to all COM-based OPC specifications. Figure 1.5
gives an overview for all Classic OPC specifications.

OPC Security specifies how to control client access to servers to protect sensi-

meters.
OPC Complex Data, OPC Batch, and OPC Data eXchange (DX) are extensions

to OPC DA. Complex Data defines how to describe and transport values with
complex structured data types. OPC DX specifies the data exchange between Data
Access servers by defining the client behavior and the configuration interfaces for
the client inside a server. OPC Batch extends DA for the specialized needs of
batch processes. It provides interfaces for the exchange of equipment capabilities

tive information and to guard against unauthorized modification of process para-

6 1 Introduction

1.2.3 OPC Historical Data Access

1.2.4 Other OPC Interface Standards

event types, by priority, or by event source.

Fig. 1.5 Classic OPC interface standards

corresponding to the S88.01 Physical Model [ISA88] and current operating condi-
tions.

OPC Commands defines mechanisms to call methods or to execute programs
via OPC. This specification was never released since it was finished after OPC UA
was started. But its content and functionality is completely incorporated into UA.

OPC XML-DA was the first platform-independent OPC specification replacing
COM/DCOM with HTTP/SOAP and Web Service technologies. Thus a vendor-
and platform-neutral communication infrastructure was introduced and widely
accepted functionality of OPC Data Access was retained.

Since typical Web Services are stateless, the functionality was reduced to the
minimum set of methods to exchange OPC Data Access information, without the
need for methods to create and modify a context for communication. Only eight
methods were needed to cover the key features of OPC Data Access.

The eight services are the following:
• GetStatus to verify the server status
• Read to read one or more item values
• Write to write one or more item values
• Browse and GetProperties to get information about the available items
• Subscribe to create a subscription for a list of items
• SubscriptionPolledRefresh for the exchange of changed values of a

subscription
•

OPC XML-DA was designed for internet access and enterprise integration.
But based on its platform-independence, it was mainly implemented in embedded
systems and on non-Microsoft platforms. But due to its high resource consumption

71.2 Classic OPC

1.2.5 OPC XML-DA

SubscriptionCancel to delete the subscription.

and limited performance, it was not as successful as expected for this type of
applications.

1.3 Motivation for OPC UA

The first and still most successful Classic OPC standard – OPC Data Access – was
designed as interface to communication drivers, allowing a standardized read and
write access to current data in automation devices. The major use case was HMI
and SCADA systems accessing data from different types of automation hardware
and devices from different vendors using one defined software interface supplied
by the hardware vendor. Standards following later like OPC Alarm & Events and
OPC Historical Data Access were also designed to access information provided by
SCADA systems.

With the successful adoption of OPC in thousands of products, OPC is used
today as standardized interface between automation systems in different levels of
the automation pyramid. It is even used in a lot of areas where it was not designed
for, and there are many more areas where manufacturers want to use a standard
like OPC but are not able to use it because of the COM dependency of OPC or
because of the limitations for remote access using DCOM.

OPC XML-DA was the first approach of the OPC Foundation to maintain suc-
cessful features of OPC but to use a vendor and platform neutral communication
infrastructure. There are several reasons why just creating Web Service versions
of the successful OPC specification did not cover the requirements for a new OPC
generation. One reason was the poor performance of XML Web Service compared
with original COM version. Furthermore, using different XML Web Service stacks
caused interoperability problems.

But besides the issue of platform independence, the OPC member companies
brought forward the requirement to expose complex data and complex systems,
removing the limitations of Classic OPC.

The OPC Unified Architecture was born out of the desire to create a true replace-
ment for all existing COM-based specifications without losing any features or per-
formance. Additionally it must cover all requirements for platform-independent
system interfaces with rich and extensible modeling capabilities being able to des-
cribe also complex systems. The wide range of applications where OPC is used
requires scalability from embedded systems across SCADA and DCS up to MES
and ERP systems. The most important requirements for OPC UA are listed in
Table 1.1.

The requirements can be grouped into the ones for the communication between
distributed systems being able to exchange information and the requirements for
modeling of data describing a system and the available information.

Classic OPC was designed as device driver interface. OPC is used as system
interface today; therefore, the reliability for the communication between distri-
buted systems is very important. Since network communication is not reliable by

8 1 Introduction

definition, robustness and fault-tolerance are the important requirement, including
redundancy for high availability. Platform-independence and scalability is necessary
to be able to integrate OPC interfaces directly into the systems running on many
different platforms. To replace proprietary communication, an important require-
ment is always high-performance in intranet environments. But also internet com-
munication through firewalls must be possible out of the box, which makes security
and access control another important requirement. And first and foremost the
interoperability between systems from different vendors is still the most important
requirement.

Table 1.1 Requirements for OPC UA

• Reliability by
• Robustness and fault tolerance
• Redundancy

• Platform-independence
• Scalability
• High performance
• Internet and firewalls
• Security and access control
• Interoperability

• Common model for all OPC data
• Object-oriented
• Extensible type system
• Meta information
• Complex data and methods
• Scalability from simple to complex

models
• Abstract base model
• Base for other standard data models

Modeling of data was very limited in Classic OPC and needed to be enhanced
by providing a common, object-oriented model for all OPC data. This model must
include an extensible type system to be able to offer meta information and to des-
cribe also complex systems. The availability of methods provided and described
by servers and callable by clients is a powerful feature needed to make OPC flexible
and extensible. Complex data is required to support the description and consistent
transport of complex data structures. It was an important requirement to enhance
the modeling capabilities, but it was equally important to support simple models
with simple concepts. For this reason it is required to have a simple and abstract
but extensible base model to be able to scale from simple to complex models.

In addition to the functional requirements for a new OPC generation, the initial
group of over 40 representatives defining the requirements and use cases for OPC
Unified Architecture was not only composed of OPC members. Other standardiza-
tion organizations like IEC and ISA interested in using OPC as transport mecha-
nism for their information were involved in the early design process. In this group
the OPC Foundation defines HOW to describe and transport data, and the colla-
borating organizations define WHAT data they want to describe and transport
depending on their information model.

Another important design goal was to allow an easy migration to OPC Unified
Architecture to protect the investment in the very successful Classic OPC stan-
dards and to build upon the large installed base of OPC.

91.3 Motivation for OPC UA

Communication between
distributed systems

Modeling Data

To reach the defined goals, the OPC Unified Architecture builds on different layers
shown in Fig. 1.6.

Fig. 1.6 The foundation of OPC UA

The fundamental components of OPC Unified Architecture are transport mecha-
nisms and data modeling.

The transport defines different mechanisms optimized for different use cases.
The first version of OPC UA is defining an optimized binary TCP protocol for
high performance intranet communication as well as a mapping to accepted inter-
net standards like Web Services, XML, and HTTP for firewall-friendly internet
communication. Both transports are using the same message-based security model
known from Web Services. The abstract communication model does not depend

transport mechanisms are described more detailed in Chap. 6.
The data modeling defines the rules and base building blocks necessary to

expose an information model with OPC UA. It defines also the entry points into
the address space and base types used to build a type hierarchy. This base can be
extended by information models building on top of the abstract modeling concepts.
In addition, it defines some enhanced concepts like describing state machines used

in Chap. 2 and an example and best practices are introduced in Chap. 3.
The UA Services are the interface between servers as supplier of an infor-

mation model and clients as consumers of that information model. The Services
are defined in an abstract manner. They are using the transport mechanisms to
exchange the data between client and server.

This basic concept of OPC UA enables an OPC UA client to access the smallest
pieces of data without the need to understand the whole model exposed by com-

on a specific protocol mapping and allows adding new protocols in the future. The

plex systems. OPC UA clients also understanding specific models can use more

in different information models. The basics of information modeling are described

10 1 Introduction

1.4 OPC UA Overview

OPC UA
Meta
Model

Rules how to
model , base

modelling
constructs

OPC UA Services

Base OPC UA Information Model

Transport

Web
Services

TCP UA
Binary

Information Models
using OPC UA

Fig. 1.7 OPC UA layered architecture

enhanced features defined for special domains and use cases. Figure 1.7 shows the
different layers of information models defined by OPC, by other organizations, or
by vendors.

To cover all successful features known from Classic OPC, information models
for the domain of process information are defined by OPC UA on top of the base
specifications. DA defines automation-data-specific extensions such as the model-
ing of analog or discrete data and how to expose quality of service. All other DA
features are already covered by the base. Alarm & Conditions (AC) specifies an
advanced model for process alarm management and condition monitoring. Historical
Access (HA) defines the mechanisms to access historical data and historical events.
Programs (Prog) specifies a mechanism to start, manipulate, and monitor the exe-
cution of programs.

Other organizations can built their models on top of the UA base or on top of
the OPC information model, exposing their specific information via OPC UA.
Examples for standards already working on mappings to OPC UA are Field Device
Integration (FDI) combining Electronic Device Description Language (EDDL), and
Field Device Tool (FDT) both used to describe, to configure, and to monitor devices
and PLCopen, a standard for PLC programming languages.

Additional vendor-specific information models will be defined using directly
the UA base, the OPC models, or other OPC-UA-based information models.

1.5 OPC UA Specifications

The OPC UA specifications are partitioned in different parts also required for IEC
standardization. OPC UA will be known as IEC 62541 standards. Figure 1.8 shows
an overview of all specification parts split into the core specifications defining the
base for OPC UA and the access type specific parts mainly specifying the OPC
UA information models.

111.5 OPC UA Specifications

Fig. 1.8 OPC UA specifications

The first two parts are not normative. The concepts part [UA Part 1] gives an
overview about OPC UA and [UA Part 2] describes the security requirements and
the security model for OPC UA.

Most important to understand how to model and access information are part 3

The Address Space Model [UA Part 3] specifies the building blocks to expose
instance and type information and thus the OPC UA meta model used to describe
and expose information models and to build an OPC UA server address space.

The abstract UA Services defined in [UA Part 4] represent the possible inter-
actions between UA client and UA server applications. The client uses the Services

but not the concrete representation on the wire and also not the concrete represen-
tation in an API used by the applications. Figure 1.9 shows the layered communi-
cation architecture of OPC UA.

Fig. 1.9 Layered OPC UA communication architecture

12 1 Introduction

to find and access information provided by the server. The Services are abstract

lopment of OPC UA applications.

because they are defining the information to be exchanged between UA applications

and 4. These two specifications are the key documents for the design and deve-

The mapping of the UA Services to messages, the security mechanisms applied
to the messages, and the concrete wire transport of the messages are defined in
[UA Part 6]. Only implementers of UA stacks need to completely understand this
specification. Since the OPC Foundation supplies proper UA stacks, typical UA
application architects and programmers do not need to read this specification.

The base information model specified in [UA Part 5] provides the framework
for all information models using OPC UA. It defines the following:

•

• The base types building the root for the different type hierarchies
• The built-in but extensible types like object types and data types
• The Server Object providing capability and diagnostic information.

The profiles are defining useful subsets of OPC UA features in [UA Part 7].
Such a subset must be implemented completely by an UA application to ensure
interoperability for the defined subset. The specification defines the subsets on two
levels. The first level are Conformance Units defining a small set of functionality
that is always used together and can be tested with Compliance Test Tools and
verified as unit. The second level are Profiles composed of a list of conformance
units. A profile must be implemented completely and will be verified as complete
set during the certification of OPC UA products. The list of supported and used
Profiles is exchanged during the connection establishment between client and server
and allows the applications to determine if the needed features are supported by
the communication partner.

The DA information model defines how to represent and use automation data

The AC information model specifies process alarm and condition monitoring
specific state machines and types of events in [UA Part 9].

The Programs information model defines a base state machine for the execu-
tion, manipulation, and monitoring of programs in [UA Part 10].

The HA information model in [UA Part 11] specifies the use of the history
access Services and how to present information about the configuration of data
and event history.

The aggregates used to compute aggregated values from raw data samples are
specified in [UA Part 13]. The aggregates are used for historical access as well as
the monitoring of current values.

[UA Part 12] defines how to find servers in the network and how a client can
get the necessary information to be able to establish a connection to a certain
server.

1.6 OPC UA Software Layers

OPC UA uses a similar client–server concept like Classic OPC. An application
that wants to expose its own information to other applications is called UA server

131.6 OPC UA Software Layers

The entry points into the address space used by clients to navigate through

and specific characteristics like engineering units in [UA Part 8].

the instances and types of an OPC UA server

and an application that wants to consume information from other applications is
called UA client. But it is expected that much more applications will be both UA
server and UA client in one application than in Classic OPC. One reason is that
more UA servers will be integrated directly in devices. Implementing also a UA
client enables device to device communication. Another reason is the use of OPC
UA as configuration interface, where UA clients are also UA servers to be config-
ured via OPC UA.

A typical OPC UA application is composed of three software layers shown in
Fig. 1.10. The complete software stack can be implemented with C/C++, .NET, or
JAVA. OPC UA is not limited to these programming languages and development
platforms, but only these environments are currently used for implementing the
OPC Foundation UA Stack deliverables.

Fig. 1.10 OPC UA software layers

An OPC UA Application is a system that wants to expose or to consume data
via OPC UA. It contains the specific functionality for the application and the
mapping of this functionality to OPC UA by using an OPC UA Stack and an OPC
UA Software Development Kit (SDK).

An OPC UA client or server SDK implements common OPC UA functionality
that is part of the application layer, since the UA Stacks implement only the com-
munication channels. An OPC UA SDK reduces the development effort and facili-
tates faster interoperability for an OPC UA application.

An OPC UA Stack implements the different OPC UA transport mappings
defined in [UA Part 6]. The Stack is used to invoke UA Services across process or
network boundaries. OPC UA defines three Stack layers and different profiles for
each layer. The message encoding layer defines the serialization of Service para-
meters in a binary and a XML format. The message security layer specifies how
the messages must be secured by using the Web Service security standards or a
UA binary version of the Web Service standards. The message transport layer
defines the used network protocol, which could be UA TCP or HTTP and SOAP
for Web Services. Figure 1.11 illustrates the different UA communication stack
layers. The implementation of the layers in a UA Stack and the resulting API for

14 1 Introduction

the applications is not part of the OPC UA specification. The UA Stacks provide
language-dependent APIs for UA client and UA server applications, but the Ser-
vices and their parameters are similar and based on the abstract Service definition
in [UA Part 4].

Fig. 1.11 UA communication stack layers defined in UA Part 6

With implementations in ANSI C/C++, .NET, and JAVA, the main development
environments and programming languages are covered by UA Stacks developed
and maintained by the OPC Foundation.

1.7 Evolution Not Revolution

OPC UA is much more flexible and has much more features than all Classic OPC
specifications together, but it incorporates all successful concepts of existing OPC
specification, fixes known issues in existing standards, and adds standardization
for a lot of additional use cases.

It was an important design goal to allow an easy migration from Classic OPC
to OPC UA. For this reason most features known from Classic OPC can be found
in OPC UA using sometimes slightly different terminology. It is not possible to
expose all UA features with Classic OPC interfaces, but it is no problem to map
Classic OPC features to OPC UA.

OPC UA allows a simple mapping and offers migration strategies to integrate
OPC products based on previous OPC standards. One part of the migration strat-
egy does not even require a change in existing products. Wrappers and proxies
provided by the OPC Foundation are able to translate the different Classic OPC
interfaces into OPC UA and vice-versa. This first level in the migration strategy
can be used by vendors to support OPC UA for legacy products.

The second level of migration to OPC UA is the integration of OPC UA
directly into existing products without adding OPC UA specific features. This step
does not require changes in interfaces used between systems and their OPC com-
munication components today. It is much easier to integrate new components if
the existing interfaces of a system do not have to be changed. The advantage over
the use of wrappers or proxies is a better performance and less configuration and

151.7 Evolution Not Revolution

engineering efforts by removing an additional software layer. The direct integration
will make it easier to remove potential limitations of wrappers and proxies and
allows an iterative development approach by adding OPC UA features step by step.

The third level may require changing internal interfaces of the product to
support all features of OPC UA that are of interest for the product. OPC UA will
allow systems to make product features available in a standard way, which they
can not expose today without the new options provided by OPC UA.

For end users, it is important to have the wrappers and proxies available to

can install wrappers and proxies for tunneling Classic OPC through firewalls,
including secure transmission over the internet and authenticated access, so they
simply add value to existing industry proven solutions.

These components are only a first step. For vendors it is much more important
that OPC UA offers abstract, modular, and simple base concepts in all areas of the

The very powerful concepts for extending this base enable vendors to expose more

1.8 Summary

The OPC Foundation provides standards for data exchange in industrial automa-
tion. This includes the very successful OPC DA specification for current data, as
well as OPC A&E for alarms and events and OPC HDA for historical data. All

moving forward to state-of-the-art technologies was OPC XML-DA, which used

requirements of typical OPC applications.
With the lessons learned from OPC XML-DA the OPC Foundation created a

new standard called Unified Architecture. Here, the transport can be done either
using firewall-friendly Web Services by standards like SOAP and HTTP or an
optimized binary TCP protocol for high performance communication. OPC UA
provides interoperable and platform-independent, high-performing, scalable, secure,
and reliable communication between applications. The technology switch from
Microsoft’s COM/DCOM to state-of-the-art and platform-independent transport
protocols allows OPC UA applications to run on intelligent devices and control-
lers as well as in DCS and SCADA systems and up to the enterprise level with
MES and ERP systems. This immensely increases the range of use compared to
Classic OPC application

16 1 Introduction

those specifications are based on the retiring COM/DCOM technology. A first step

1.8.1

only XML as data transport format and therefore did not meet the performance

Key Messages

lopment and improvement process.

migrate the large installed base of Classic OPC products to OPC UA. End users

and more of their system features via OPC UA. This leads to an iterative deve-

standard, allowing an easy migration of existing OPC functionality to OPC UA.

Besides the transport, the second big achievement of OPC UA is information
modeling. OPC UA unifies the functionality of the different Classic OPC specifi-
cations by exposing current data, event notifications, and the history of both in one
address space. It additionally provides a rich and extensible information model
using object-oriented concepts, allowing meta data as well as complex data of
your applications to be exposed. The extensible mechanisms allow defining stan-
dard information models by other organizations that can make use of the OPC
UA communication infrastructure and focus on standardizing the information to
be exposed. There are already initiatives going on defining standard information
models, for example, FDI for device descriptions by mapping EDDL and FDT to

capabilities the modeling capabilities of OPC UA scale well. You can keep the
offered information simple, similar to Classic OPC, but you can also enrich the
information with a type system and thus providing more information useful in
many application scenarios.

Information about Classic OPC can be found at the OPC Foundation web site
(www.opcfoundation.org). There is also a book on Classic OPC [IL06]. Several
vendors provide Classic OPC products and toolkits. A list can be found at
www.opcconnect.com; here you will find overview information about OPC, includ-

General information about OPC UA can be found at the OPC Foundation web
site, including a special section on OPC UA (www.opcfoundation.org/ua). The
web site also offers access to the OPC UA specifications where [UA Part 4] and
[UA Part 6] focus on the data transport and [UA Part 3] and [UA Part 5] focus on
modeling information.

In the next three chapters, we will focus on how to provide information using
OPC UA before we go into details on how to access those data (starting with
Chap. 5).

In Chaps. 2 and 3, we introduce the base modeling concepts and give examples
and best practice for these concepts. Standard information models are described in
Chap. 4. This includes an introduction on how to create models: the description of
the OPC defined models and an overview of standard information models defined
by other organizations.

In Chap. 5 we will introduce the abstract Services of OPC UA, and Chap. 6 des-
cribes the mapping of those Services to concrete technologies like Web Services.

171.8 Summary

1.8.2 Where to Find More Information?

1.8.3

OPC UA or for PLC programming languages by PLCopen. Like the transport

What’s Next?

ing OPC UA. Additional links and information can be found on the book website
 www.opcuabook.com.

2 Information Modeling: Concepts

2.1 Why Information Modeling?

The fundaments of OPC UA are data transport and information modeling. Compared
to Classic OPC, the data transport was changed to state-of-the-art, platform-
independent, secure, and reliable technologies and the capabilities to model infor-
mation are highly improved. In Classic OPC, only “pure” data is provided, for
example, the temperature measured by a temperature sensor. The only information
available to understand the semantic of the provided data is the tag name and some
rudimentary information like the engineering unit of the measured value. OPC UA
provides more powerful possibilities exposing the semantic of the provided data.
In addition to the data provided by Classic OPC, it allows exposing information
like that the measured temperature is provided by a specific type of sensor device
and allows to expose in a type hierarchy what kind of devices are supported.
Thereby, OPC UA clients can get the information that they are dealing with the
same kind of device at different places. By exposing much more semantics, OPC
UA servers allow clients to process highly sophisticated tasks by interpreting the
semantic of the provided data. That includes the automated integration of data
provided by an OPC UA server as well as engineering an OPC UA server from a
generic OPC UA client.

The base OPC UA specifications provide only the infrastructure to model

lead to different ways how to model similar information and thus makes the life
hard for OPC UA clients. To avoid that situation, the OPC UA specification pro-

The OPC Foundation already started activities to generate these specifications. For
example, there are efforts to define a base model exposing device information and

device information provided by different, vendor-specific OPC UA servers in the
same manner, since they are exposed in a similar way using the same base model.
In addition, a vendor may integrate third-party devices exposing their data via
OPC UA into its OPC UA server easily and seamlessly since both use the same
base model. This of course does not only apply for device models, but for other
scenarios as well, for example, providing data to MES or ERP systems by expos-

The base principles of information modeling in OPC UA are the following:

• Using object-oriented techniques including type hierarchies and inheritance.
Typed instances allow clients to handle all instances of the same type in the
same way. Type hierarchies allow clients to work with base types and to ignore
more specialized information.

DOI: 10.1007/978-3-540-68899-0_2,
19W. Mahnke et al., OPC Unified Architecture,

© Springer-Verlag Berlin Heidelberg 2009

information. The information can be modeled by vendors - which of course would

device types in OPC UA [UA Devices]. A vendor will use this base model and

vides possibilities to define Information Model specifications based on OPC UA.

extend it with vendor-specific information about its devices. Clients can access

ing the ISA 95 model [ISA95] in OPC UA.

• Type information is exposed and can be accessed the same way as instances. The
type information is provided by the OPC UA server and can be accessed with
the same mechanisms used to access instances. This is similar to the informa-
tion schema of relational database systems, where information about the data-
base tables is managed in database tables and accessible with normal SQL
statements [ISO08b].

• Full meshed network of nodes allowing information to be connected in various
ways. OPC UA allows supporting several hierarchies exposing different seman-
tics and references between nodes of those hierarchies. Thus the same informa-
tion can be exposed in different ways, providing different paths and ways to
organize the information in the same server depending on the use case.

• Extensibility regarding the type hierarchies as well as the types of references
between nodes. OPC UA is extensible in several ways regarding the modeling
of information. Beside the definition of subtypes, it allows, for example, to

methods extending the functionality of OPC UA.
• No limitations on how to model information in order to allow an appropriate

UA instead of mapping the model to a different model.
• OPC UA information modeling is always done on server-side. OPC UA infor-

mation models always exist on OPC UA servers, not on client-side. They can
be accessed and modified from OPC UA clients and OPC UA servers can also
have a client-part accessing other OPC UA servers. But in general, an OPC UA

does not have to provide such information to an OPC UA server.

some configuration parameters and some measurement values that may differ
depending on the configuration. It provides that information in an OPC UA server
using the base device model mentioned earlier.

Fig. 2.1 Temperature sensor and provided data in OPC UA

20 2 Information Modeling: Concepts

model for the provided data. OPC UA servers targeting a system that already
contains a rich information model can expose that model “natively” in OPC

A device vendor provides a temperature sensor as shown in Fig. 2.1. The device has

specify additional types of references defining relations between nodes and

Let us examine the modeling capabilities of OPC UA by looking at an example.

Device A

Configuration

TemperatureSensorType

EngineeringUnit

Measurement

Temperature

Tolerance

OPC UA Server

Address Space

Configuration:
- Engineering Unit, etc.
Measurement data:
- Temperature, etc.
Device Type Information:
- Tolerance, etc.

client is not required having an integrated OPC UA information model and it

server is running and what additional information is provided by it. In the simplest

a temperature sensor it is more likely that the OPC UA server would run on the

priate user interface exposing the measured values of the device as well as config-
uring the device by using the device model provided by the server. The model can

based on the type information. They have to be implemented or configured only

types. Thus such a user interface can be defined for the base types of the device
model without exposing any vendor-specific extensions. It can also be defined for
a vendor-specific type tailored to the vendor-specific device and its extensions.
The most common use-case of integrating device data is aggregating them in a

data. Any OPC UA client could access the device data through the DCS without
loosing any functionality. The scenario in which the server contains the informa-

of the type information. For example, the same graphical element can be used several

afore mentioned use cases for OPC UA clients.

Fig. 2.2 Different scenarios how to access device data with OPC UA

212.1 Why Information Modeling?

include events and historical data. The client can use a generic user interface (show-

controller or a PC on top of the controller. Any OPC UA client can provide an appro-

once for a type and can be used for each instance of the type or instances of sub-

ing lists of parameters) or a specialized one showing a graphical representation of

case, the OPC UA server would directly run on the device; for a simple device like

as an OPC UA client to receive the data and as an OPC UA server to expose the

the device and the main parameters. Those specific user interfaces can be created

To understand the example, it is not important to know where the OPC UA

tion of several devices demonstrates the power of programming with knowledge

times in one graphic, showing a process in the factory. Figure 2.2 outlines the

DCS and providing them via the DCS to the client. In that case, a DCS should act

Device A

Configuration

TemperatureSensorType

EngineeringUnit

Measurement

Temperature

Tolerance

OPC UA Server

Address Space

OPC UA Server

DCS

OPC UA Client

Device A

Configuration

TemperatureSensorType

EngineeringUnit

Measurement

Temperature

Tolerance

Device A

Configuration

EngineeringUnit

Measurement

Temperature

Device A

Configuration

EngineeringUnit

Measurement

Temperature

Device A

Configuration

TemperatureSensorType

EngineeringUnit

Measurement

Temperature

Tolerance

OPC UA Server

Address Space

Specific Client

OPC UA Client OPC UA Client

Generic Client

23 .1

Configure Reset

Trend

Configuration

° CelsiusUnit :

Device A

Measurement

Temerature : 23 .1

Configuration

OPC UA Client

23.1
Con
figu
re

R
e
s
et

23.1
Con
figu
re

R
e
s
et

23.1
Con
figu
re

R
e
s
et

This chapter gives an overview of how information is modeled in OPC UA.
The following sections describe the concepts of OPC UA used for modeling, start-
ing from the base concepts of nodes and references between them, explaining the
Object Model of OPC UA containing typed objects with variables, methods and
events, and finishes with describing the differences between the OPC UA Address
Space Model as the meta model of OPC UA and Information Models tailored to
certain domains. In the next chapter, a detailed example on how to model informa-
tion in OPC UA is given and some best practices are provided.

2.2 Nodes and References

The base modeling concepts of OPC UA are Nodes and References between
Nodes. Nodes can be of different NodeClasses, depending on the purpose of a
Node. There are Nodes representing instances, others representing types, etc. Attrib-
utes are used to describe Nodes, and depending on the NodeClass a Node can have
a different set of Attributes. In Fig. 2.3, an example is given. Node1, Node2, and
Node3, all containing Attributes, are connected with several References (Refer-
ence 1–6).

Reference 1Node 1

Attributes

Node 2

Attributes

Node 3

Attributes

Reference 2
Reference 3

Reference 4 Reference 5

Reference 6

Fig. 2.3 Nodes and References between Nodes

The Attributes of a Node depend on its NodeClass. However, there are some Attri-
butes common to every Node. In Table 2.1, those Attributes are summarized.

The NodeId uniquely identifies a Node in the server. The NodeId is the most
important concept addressing information and exchanged in the Services to refer-
ence Nodes. The server returns NodeIds when browsing or querying the Address
Space and clients use the NodeId to address Nodes in the Service calls. A Node
can have several alternative NodeIds that can be used to address the Node. The
canonical NodeId can be gained by reading the NodeId Attribute, even if the Node

22 2 Information Modeling: Concepts

The different NodeClasses of OPC UA are introduced in the following sections.

was accessed by an alternative NodeId. NodeIds contain a Namespace, allowing

Table 2.1 Common Attributes

Attribute DataType Description
NodeId NodeId Uniquely identifies a Node in an OPC UA

server and is used to address the Node in
the OPC UA Services

NodeClass NodeClass An enumeration identifying the NodeClass
of a Node such as Object or Method

BrowseName QualifiedName Identifies the Node when browsing the
OPC UA server. It is not localized

DisplayName LocalizedText Contains the Name of the Node that should
be used to display the name in a user inter-
face. Therefore, it is localized

Description LocalizedText This optional Attribute contains a localized
textual description of the Node

WriteMask UInt32 Is optional and specifies which Attributes
of the Node are writable, i.e., can be modi-
fied by an OPC UA client

UserWriteMask UInt32 Is optional and specifies which Attributes
of the Node can be modified by the user
currently connected to the server

different naming authorities to uniquely define NodeIds. Naming authorities can
be organizations, vendors, or systems. Details about the NodeId and its data type
are described in Sect. 2.8.5.

The BrowseName is used only for browsing purposes and should not be used
for displaying the name of a Node. BrowseNames have a special meaning for
Properties (see Sect. 2.6) and for programming with the knowledge of type infor-
mation (see Sect. 2.5.4). Like the NodeId, the BrowseName is a structure containing
a Namespace and a nonlocalized string as described in Sect. 2.8.5.

The DisplayName and Description are localized. Section 2.8.5 describes details
about localization and the data type LocalizedText.

In theory, a Reference describes the relation between exactly two Nodes.
Therefore, a Reference is uniquely identified by the source Node of the Reference,
the target Node, the semantic of the Reference (the ReferenceType, see Sect. 2.3),
and the direction of the Reference.

In practice, a server may expose a Reference only in one direction and the Ref-
erence may point to a Node in another OPC UA server or a nonexisting Node.
Therefore, it makes sense to think about a Reference as a pointer living in a Node
and pointing to another Node by storing the NodeId of the other Node. In Fig. 2.4,
this view on References is shown.

Such a Reference pointer contains the NodeId of the referenced Node, the OPC
UA server where the referenced Node is managed, the type of Reference defining
the semantic of the Reference (see Sect. 2.3), and the direction of the Reference.
References are distinguished between symmetric and nonsymmetric References.

232.2 Nodes and References

A nonsymmetric Reference is, for example, “has-parent” in one direction and
“is-child-of” in the other direction, whereas a symmetric Reference has the same
semantic in both directions like “is-sibling-of.” In the first case, the direction of
the Reference is important, whereas in the second case it does not matter.

Looking at References as pointers to other Nodes helps understanding the con-
straints or missing constraints defined for References in OPC UA. Although Ref-
erences connect two Nodes OPC UA servers may expose only one direction of the
Reference, for example, only the pointer from Node 1 to Node 2 in Fig. 2.4, not
the inverse direction. If only one direction is exposed, the Reference is called uni-
directional, otherwise bidirectional. The pointers may refer to Nodes that do not
exist (anymore) in the server or to Nodes in other servers that may not be available
at a specific point in time or maybe not at all anymore. Clients must expect that
they may be able to browse a Reference in one direction but not in the inverse
direction or that the referenced Node does not exist.

Node 1

Attributes
NodeId: „1“

References

Ref1:
- NodeId: „2“
- ServerUri: NULL
- Type: „has-parent“
- Direction: forward

Node 1
Attributes
NodeId: „2“

References

Ref1:
- NodeId: „1“
- ServerUri: NULL
- Type: „has-parent“
- Direction: inverse

Fig. 2.4 References as pointers to Nodes

References are not ordered, that is, asking a Node for its References two times
may lead to differently ordered sets of References. However, there are types of
References that define an order for References of that type, like HasOrderedCom-
ponent [UA Part 3]. The server has always to return those References in the same
order.

What’s allowed and what’s not?
The set of Attributes of a Node is defined by the OPC UA specifications and
cannot be extended. If additional information describing a Node is needed,
Properties (see Sect. 2.6) have to be used instead.
The set of writable Attributes indicated by the WriteMask must be the same
or a superset of the writable Attributes indicated by the UserWriteMask,
since the WriteMask defines which Attributes may be modified by any user.
In general, the requirements on the integrity of References are very low.
References may point to none-existing Nodes in the same server or to other
servers that are not accessible for the client. References may be exposed in
only one direction, and References may lead to loops. Clients must be able

24 2 Information Modeling: Concepts

to deal with those inaccurate data. Specific References may restrict this and
define much higher constrains on References (see the next section).
References do not contain any Attributes or Properties. In the case that some
additional information should be added to the relation of two Nodes, a
Proxy-Node must be added and connected by both Nodes instead of using a
single Reference (see Sect. 3.3.8 for details on how to use a Proxy-Node).

2.3 ReferenceTypes

A Reference is a connection between two Nodes. A Reference cannot directly be
accessed, only indirectly by browsing a Node and thus following References. Ref-
erences are not represented as Nodes and cannot contain any Attributes or Pro-
perties. However, References are used to expose different semantics on how the
Nodes are connected. To expose the semantic of References OPC UA uses Refer-
enceTypes. A ReferenceType defines the semantic of a Reference and every Ref-
erence is typed and therefore has a defined semantic. The OPC UA specification
defines a set of ReferenceTypes. Some of them are used in very fundamental
places, for example, to expose a type hierarchy. But the concept of Reference-
Types is an extensible concept, that is, an OPC UA server can define its own
ReferenceTypes exposing a specific semantic for References. To organize Refer-
enceTypes they are managed in a type hierarchy.

Although References are no Nodes and have no Attributes, the ReferenceTypes
are exposed as Nodes in the Address Space. That allows clients to gain the infor-
mation about the References used by an OPC UA server by accessing Nodes in the
Address Space of the OPC UA server. In Table 2.2, the Attributes used to describe
a ReferenceType are summarized.

Table 2.2 Additional Attributes for ReferenceTypes

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
IsAbstract Boolean Specifies if the ReferenceType can be used for

References or is only used for organizational
purposes in the ReferenceType hierarchy

Symmetric Boolean Indicates whether the Reference is symmetric,
i.e., whether the meaning is the same in
forward and inverse direction

InverseName LocalizedText This optional Attribute specifies the semantic
of the Reference in inverse direction. It can
only be applied for nonsymmetric References
and must be provided if such a ReferenceType
is not abstract

252.3 ReferenceTypes

In addition to those Attributes, the common Attributes used for all Nodes
described in Table 2.1 are valid for ReferenceTypes as well. Some of those
Attributes have some additional constraints when used for ReferenceTypes. The
BrowseName of a ReferenceType must be unique in an OPC UA server in order
to avoid confusion having several ReferenceTypes with different semantic but
the same name. The DisplayName must contain a localized representation of the
BrowseName. The BrowseName, and thus the DisplayName as well, defines the
semantic of the ReferenceType in forward direction, like the InverseName defines
the semantic in inverse direction.

References are managed in a ReferenceType hierarchy. This allows specializ-
ing existing ReferenceTypes with more specialized types. In Fig. 2.5, the base
ReferenceType hierarchy defined by the OPC UA specification is shown. It uses
the OPC UA notation to visualize OPC UA related information as described in
Appendix A. In Appendix C the complete hierarchy of ReferenceTypes defined by
the base OPC UA specifications is shown.

Fig. 2.5 Base ReferenceType hierarchy

The ReferenceTypes using italic letters are abstract and only used for organiza-
tional purposes and for filtering. Chapter 5 describes where you can apply filtering.
The “References” ReferenceType is used if all References should be considered in
a filter. It has two subtypes distinguishing References in hierarchical References
and non-hierarchical References. Hierarchical References should be used when a
hierarchy should be modeled, non-hierarchical for other purposes like exposing
relationships between different hierarchies. For example, the non-hierarchical
HasTypeDefinition references from an instance to its type in the type hierarchy.
Clients are expected to use References according to that, for example, displaying
hierarchical References in a tree control and filtering out the non-hierarchical
References.

26 2 Information Modeling: Concepts

References

HierarchicalRefedrences NonHierarchicalRefedrences

HasChild Organizes

Aggregates HasSubtype

HasComponent

HasSubtype Reference

ReferenceType

HasTypeDefinition

To simplify the filtering on ReferenceTypes, the ReferenceType hierarchy
supports only single-inheritance, that is, each ReferenceType has exactly one
supertype.1 This guarantees, for example, that each ReferenceType 2 is either a hier-
archical ReferenceType or a non-hierarchical ReferenceType and never both
of them.

In Fig. 2.5, some subtypes of hierarchical References are shown. The Organizes
ReferenceType is used when two Nodes should be connected in a hierarchical way,
without defining any additional semantic. An example using this ReferenceType is
when a file system is mapped to OPC UA. Folders could be exposed as Nodes

Fig. 2.6 Example of a loops in hierarchies

1 Of course the base “References” ReferenceType does not have a supertype, since it is the root
of the hierarchy.
2 Another requirement to fulfill this constraint is that only HierarchicalReferences and NonHier-
archicalReferences are allowed to directly inherit from References.

272.3 ReferenceTypes

and could reference their subfolders using Organizes References. The Organizes

Reference or any hierarchical Reference does not guarantee that there is no loop
when following those References.3 In Fig. 2.6, such an example is given. In the
example, two hierarchies exist. One is organizing devices and one contains configu-
ration information. The devices reference some configuration objects containing
their configuration, but several devices can use the same configuration like
Device1 and Device2, both using the configuration Config1. In the configuration
hierarchy, several configurations are organized having the devices beneath them
that are using the configuration. If you look at those hierarchies in a combined
view, you can see that there are loops in that hierarchy. Looking at that example
also shows that Organizes is not always the best choice for referencing Nodes in a
hierarchical way. In the example, some more specific ReferenceTypes could have
been applied. We will take another look at the example after introducing some
more ReferenceTypes.

The abstract HasChild Reference disallows any loop following only subtypes of
it. Thus, the HasChild ReferenceType defines a nonlooping Hierarchy. The Nodes
can be organized in another hierarchy as well and thus following hierarchical Refer-
ences may lead to Nodes as shown in Fig. 2.7. In that case, the HasComponent
ReferenceType is used, exposing the configuration of a device as a component of
the device. As a concrete subtype of the abstract Aggregates ReferenceType, it
inherits the “is-part-of” semantic. The nature of an is-part-of relation is that it is
not looped, that is, that a part of “A” cannot have “A” as a subpart. Please note
that not allowing loops does not mean that a Node cannot have two parents, like
Config1 is a component of Device1 and Device2 and thus having two parents in
the hierarchy.

Combined with the configuration hierarchy, loops are still possible. The con-
figuration hierarchy cannot use HasComponent References; otherwise, the nonloop-
ing constraint on the inherited HasChild ReferenceType would be broken. Since
configurations logically do not have the devices they configure as part of them, it
makes no sense to use the HasComponent ReferenceType.

Another example of a HasChild Reference is the HasSubtype ReferenceType
exposing type hierarchies (used, e.g., in the ReferenceType hierarchy in Fig. 2.5).
Loops do not make any sense in this case since types cannot be (indirect) subtypes
of themselves.

The Reason to allow loops in hierarchical References is that a server may
expose the same Nodes in different Hierarchies as already shown in Fig. 2.7.
Servers may define their own ReferenceTypes under HierarchicalReferences used
to expose additional Hierarchies. They can choose to make those hierarchies
nonlooping as well, but loops are possible in combination with other hierarchies,
for example, the hierarchy using HasChild References. When no additional hier-
archy needs to be defined, but only a more specific semantic of the References
should be specified, the additional ReferenceTypes should become subtypes of
the HasChild ReferenceType.

3 However, it is not allowed that a Node references itself directly with a hierarchical Reference.

28 2 Information Modeling: Concepts

Organizes

ObjectObject

Area1

Device1

Device2

Device3

Configurations

Config1

Config2

Organizes

Organizes

Device1

Device2

Device3Organizes

Organizes

Organizes
Config1

Config2

Device Hierarchy Configuration Hierarchy

Combined Hierarchies containing loops

Area1

Device1

Device2

Device3

Config1

Config2

Configurations

Organizes

Organizes

Organizes

Organizes

Organizes HasComponent
Organizes

Fig. 2.7 Example of nonlooping and looping hierarchies

What’s allowed and what’s not?
References between Nodes are restricted. It is not allowed to provide a Ref-
erence of the same type in the same direction between the same Nodes
twice. This includes subtypes of the ReferenceType, but not supertypes. For
example, it is allowed having References of different types of hierarchical
References, but not using HasComponent and a subtype of HasComponent.
The restriction regarding the same type is inherent by the model, since
References are defined by the source and target Node and the Refer-
enceType. To avoid that servers provide a Reference of type “A” as well as
the more specialized subtype of “A” called “B” it is not allowed to provide
both References. Only the most appropriated ReferenceType should be used.
Using the subtype always implies that the supertype is valid as well. Clients
must consider this when browsing or querying the Address Space using fil-
ters on References.
Specific ReferenceTypes further restrict the use of the ReferenceType. That
may include the allowed source Node and the target Node (e.g., restricting
the NodeClass or a concrete type), the number of times a Reference is used

292.3 ReferenceTypes

on the same Node (e.g., each ReferenceType can only be the target of one
HasSubtype Reference4), whether loops are allowed or not like specified by
the HasChild ReferenceType, etc. Subtypes can only further restrict the use
of the References; the constraints on the supertype are still valid for the sub-
type.
There is no standardized way to expose constraints on ReferenceTypes in
the Address Space. However, the Description Attribute is in general a good
place to put a textual description of the constraints.

2.4 Objects, Variables, and Methods

The most important NodeClasses in OPC UA are Object, Variable, and Method.
These concepts are also known from object-oriented programming. Objects have
variables and methods and can fire events.

Nodes of the NodeClass Variable represent a value. The data type of the value
depends on the Variable. Clients can read the value, subscribe to changes of the
value, and write the value. A Variable is used, for example, to represent the tem-
perature measured by a temperature sensor or a setpoint to manage some control
applications, but in general to expose any data in the Address Space that is not
captured by References or the Attributes of the Nodes. This includes configuration
data or additional metadata describing a Node.

Nodes of the NodeClass Method represent a method, that is, something that is
called by a client and returns a result. Each Method specifies the input arguments
a client shall use and the output arguments a client shall expect as a result. The
intention of a Method is that it executes relatively fast. The client uses the Call Ser-
vice to invoke the Method (see Chap. 5) and the response of this Service call al-
ready contains the result. When servers need to expose long running processes that
are started and controlled by the client, they should use Programs (see Sect. 4.8).
Examples are Methods to open a valve or starting a motor, as well as more complex
tasks like calculating some simulation results based on provided input values. In
general, using a Method makes sense when a set of arguments is used as input
or output or both or a special action should be triggered in a defined way in the
server. A Method in OPC UA does only provide the signature of a Method. There
is no standardized way to get or set the implementation of a Method of an OPC
UA server.

Nodes of the NodeClass Object are used to structure the Address Space. Objects
do not contain data other than describing the Node with Attributes like Display-
Name and Description. Values of Objects are exposed using Variables. Objects

4 Please be aware that the HasSubtype Reference is modeled pointing from the supertype to the
subtype. It is a hierarchical Reference and therefore it makes sense to expose a type hierarchy
in that direction. However, typically in modeling languages like UML the subtype points to its
supertype.

30 2 Information Modeling: Concepts

contain no Value Attribute like Variables. Objects can be used to group Variables,
Methods, or other Objects. Although OPC UA does not define a clear concept of
ownership, Methods and Variables always belong to an Object (or ObjectType,
see Sect. 2.5). Methods are always called in the context of an Object. In addition
to the contained Methods and the Variables, an Object can be an EventNotifier.
Clients can subscribe to an EventNotifier to receive Events (see Sect. 2.10).

In Fig. 2.8, the concept of an Object containing Objects, Variables, and Methods
and generating Events is summarized. The Object Motor contains a Variable Status
identifying if the motor is running or not. Clients can subscribe to this Variable
and thus always get Notifications when the status of the motor changes. In addi-
tion, the Motor has some configuration Variables, grouped under another Object
called Configuration. A client can read or subscribe to those Variables, but also
change the configuration by writing the Variables. The Methods Start and Stop

scribe to Events of the Motor. The motor can, for example, generate Events when
it goes into a maintenance state and is not working properly anymore. The Motor

Fig. 2.8 Overview of Objects, Variables, and Methods

Object can be connected to other Objects using specific ReferenceTypes, in

can be invoked by the client to start or stop the motor. In addition, clients can sub-

312.4 Objects, Variables, and Methods

the example it just references another Object Object1 with a Reference of
MyReferenceType. In that case, the referenced Object is not considered to be part
of the motor.

The only additional Attribute of the Object NodeClass is used to identify if an
Object can be used as EventNotifier, that is, whether clients can subscribe to the
Object to receive Events or to read or update the history of Events. This is cap-
tured in Table 2.3.

Table 2.3 Additional Attributes for Objects

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
EventNotifier Byte This Attribute represents a bit mask that identi-

fies whether the Object can be used to sub-
scribe to Events and whether the history of
Events is accessible and changeable

higher. These Attributes are summarized in Table 2.4.

Table 2.4 Additional Attributes for Variables

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
Value

Is not fix;
specified
by other
Attributes

The actual value of the Variable. The data
type of the value is specified by the
DataType, ValueRank, and ArrayDimen-
sions Attributes

DataType NodeId DataTypes are represented as Nodes in the
Address Space. This Attribute contains a
NodeId of such a Node and thus defines
the DataType of the Value Attribute

ValueRank Int32 Identifies if the value is an array and when
it is an array it allows specifying the
dimensions of the array

ArrayDimensions UInt32[] This optional Attribute allows specifying
the size of an array and can only be used if
the value is an array. For each dimension
of the array a corresponding entry defines
the length of the dimension

AccessLevel Byte A bit mask indicating whether the current
value of the Value Attribute is readable
and writable as well as whether the history
of the value is readable and changeable

 (Continued)

32 2 Information Modeling: Concepts

Variables provide real data and thus the number of additional Attributes is much

UserAccessLevel Byte Contains the same information as the
AccessLevel but takes user access rights
into account

MinimumSampling-
Interval

Duration This optional Attribute provides the infor-
mation how fast the OPC UA server can
detect changes of the Value Attribute. For
Values not directly managed by the server,
e.g., the temperature of a temperature
sensor, the server may need to scan the
device for changes (polling) and thus is not
able to detect changes faster than this
minimum interval

Historizing Boolean Indicates whether the server currently
collects history for the Value. The
AccessLevel Attribute does not provide
that information, it only specifies whether
some history is available

the ArrayDimensions Attribute. The reason having three Attributes is that the sup-
port of multidimensional arrays is built into OPC UA. Clients can read or write
only parts of an array or subscribe to parts of an array. Thus the DataType speci-
fies only the base type and the other Attributes define whether an array or a matrix
of the DataType is used and optionally the size of the array or matrix. More details
about DataTypes are described in Sect. 2.8. The reason for not using References to
indicate a DataType is that some Variables may often change the DataType and
thus clients may want to subscribe to them. Tracking changes on References is
much harder in OPC UA, as described in Sect. 2.11.3.

To avoid confusion regarding the Attributes defining the data type of the Value,
we provide examples of how to use those Attributes showing allowed Values in
Table 2.5.

Table 2.5 Examples of how to use the Attributes of a Variable defining the type of the Value

Possible Values DataType ValueRank ArrayDimensions
“Just a String” String –1 (Scalar) –
{1,2,3}
{4,7,9,12}

Int16 1 (OneDimension) –

{1,2,3}
{3,4,8}

UInt16 1 (OneDimension) {3}

1
{1,4,9}
{1,2}{1,5}

UInt32 –2 (Any) –

{3,4}{1,2}{3,4} Int32 2 (two dimensions) {2, 3}
{123,123}
{1,2}{1,1}{2,4}

UInt64 0 (OneOrMoreDimensions) –

332.4 Objects, Variables, and Methods

The data type of the Value Attribute is defined by the DataType, ValueRank, and

The main difference between the WriteMask and the AccessLevel, respectively,
UserWriteMask and UserAccessLevel is that the AccessLevel is only related to
the Value Attribute. In addition to the write access indicated by the WriteMask, it
captures the read access of current data as well as the read and write access to his-
torical data. Thus the optional WriteMask Attribute excludes the Value Attribute
of Variables, which means the information is not duplicated and clients must always
access the mandatory AccessLevel Attribute to receive that information.

The additional Attributes of a Method are summarized in Table 2.6. For the
Method NodeClass, a concept introduced in the Address Space Model is already
used to form the Address Space Model. The input- and output-arguments of a
Method are not described in Attributes but in OPC UA Variables belonging to the
Method. That allows keeping all Attribute data types simple except for the Value
Attribute, since the complex argument structure defining Method arguments is
provided in the Value Attribute of a Variable. Since those Variables are needed for
most Methods, Table 2.6 does not only contain the Attributes of the Method
NodeClass but also the standard Variables used to define the arguments of the
Method (or more precise standard Properties which are special Variables des-
cribed in Sect. 2.6).

Table 2.6 Additional Attributes and standard Properties for Methods

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
Executable Boolean A flag indicating if the Method can be in-

voked at the moment
UserExecutable Boolean Same as the Executable Attribute taking

user access rights into account
Property
InputArguments Argument[] This optional Property defines an array of

input arguments for the method. The order
of the array defines the order of the argu-
ments. If the Property is not provided the
Method has no input argument

OutputArguments Argument[] Same as InputArguments for the output of
a Method

The structure of the data type Argument is summarized in Table 2.7. The des-
cription of each argument of a Method contains a name, a textual description, and
the definition of the data type. Here, the same mechanisms are used as in the Vari-
able NodeClass.

Let us take a look on how a method in an object-oriented programming lan-
guage is mapped to the Method NodeClass. At the moment we do not consider
how the Method is bound to an Object, and this will be done in Sect. 2.5 when
ObjectTypes are introduced. In Fig. 2.9, a method signature is shown using pseudo
code. This method, called Encrypt, takes a key and some data as input and returns

34 2 Information Modeling: Concepts

the encrypted data and the length of the encrypted data. The mapping to OPC UA
is shown in Fig. 2.9 as well. In OPC UA, a Method is created called Encrypt having

The return value of the method and the out parameter called length are both pro-
vided by the Value of the OutputArguments Variable. Since the return value of a

ple, all Arguments have no description. Of course it is reasonable to put in a des-
cription if available, for example, from the comments of the method.

Table 2.7 Structure of the Argument DataType

Name DataType Description
Name String Name of the Argument
DataType NodeId NodeId of a DataType Node
ValueRank Int32 Indicates if the argument is a scalar

value, an array, or a matrix
ArrayDimensions UInt32[] Optionally defines the size of the array

or matrix
Description LocalizedText Description of the argument

Fig. 2.9 Mapping of a method in pseudo code to OPC UA

method is not named, a name has to be generated for that Argument. In the exam-

Variables for input- and output-arguments. The description of the input arguments
of the Method is provided by the Value Attribute of the InputArguments Variable.

and Variables. By using OPC UA Methods, you can avoid workarounds having

352.4 Objects, Variables, and Methods

The full functionality of Classic OPC can be provided by using only Objects

items as output parameters.

What’s allowed and what’s not?
Variables must always belong to another Node. Therefore, they must be ref-
erenced by at least one HasComponent or HasProperty Reference from
another Node. In Sect. 2.6, details are described for the different kinds of
Variables, called Data Variables and Properties.
Methods must belong to an Object (or ObjectType) and therefore referenced
from one of those with at least one HasComponent Reference. Methods can
only be invoked on Objects (or ObjectTypes) referencing the Method with a
HasComponent Reference.
Each Object and each Variable must be typed, that is, pointing with exactly
one HasTypeDefinition Reference to an ObjectType, respectively, Vari-
ableType (details can be found in Sect. 2.5). However, this requirement can
be fulfilled very easily. If no real type information is available or shall not
be exposed for some reasons, the base types defined by OPC UA can be
used.

2.5 Types for Objects and Variables

A main feature of OPC UA is providing type information not only on data type
level (knowing that a Value is an Int32 or a String) but on object level as well.
This allows, for example, exposing the information that a specific type of device
provides a measured temperature. In Classic OPC, there was no other possibility
then using product- or domain-specific naming conventions. In OPC UA you can

ing objects of that type. Standard types can be defined and by using inheritance

programmed with the knowledge of specific types, for example, by defining a
graphical element like a faceplate tailored to a specific type and to use it for sev-
eral instances of the type.

OPC UA provides a rich type model, but it does not force servers to really use
it. For example, the wrapper of the OPC Foundation generically maps Classic
OPC DA data to OPC UA and does not have any real type information available
and thus cannot provide a real type system. In that case, only some base types are
used. Thus, the type model introduced in the following is a powerful concept, but
if no type information is available it is not an obstacle to use OPC UA.

The OPC UA Address Space defines the NodeClass ObjectType for type defi-
nitions of Objects and VariableType for type definitions of Variables. There are no
type definitions available for Methods. Methods can be bound to an ObjectType and

express this information by defining a type for temperature sensors and by creat-

write-only items to specify input arguments and to start a method and using read-only

the standard type with vendor-specific characteristics. This allows clients to be

36 2 Information Modeling: Concepts

vendor-specific types can be derived from. The vendor-specific type can enhance

are thus available on Objects, but they are defined by their BrowseName and its
arguments and thus no type is needed.

If we are generalizing ObjectTypes and VariableTypes to explain common
characteristics, we will call them TypeDefinition.

ObjectTypes can be simple or complex. Complex types expose some structure of
Nodes beneath them that are present on each instance of the type, whereas simple
types define only some semantic for the Object. An example of a simple type is
the FolderType defined by OPC UA [UA Part 3]. Here the semantic is defined that
the purpose of a folder is to organize other Nodes in the Address Space. No addi-
tional structure is defined beneath the FolderType.

The Attributes of an ObjectType are summarized in Table 2.8. The only addi-
tional Attribute specifies if the type is abstract. An abstract type cannot be refer-
enced as type definition by an Object and is only used to organize the types in the
type hierarchy.

Table 2.8 Additional Attributes for ObjectTypes

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
IsAbstract Boolean This Attribute indicates whether the Ob-

jectType is concrete or abstract and therefore
cannot directly be used as type definition

Let us examine how the type system for Objects works. In Fig. 2.10, you can
see the simple ObjectType FolderType defined by OPC UA and some Objects
using the type. An Object references its type using the HasTypeDefinition Refer-
enceType. Each Object is typed and has exactly one type, thus each Object is the
source of exactly one HasTypeDefinition Reference. In Fig. 2.10, the Objects
“Root” and “Objects” references the FolderType using a HasTypeDefinition Ref-
erence and therefore are of type FolderType. Both Nodes are actually standard
entry points into the Address Space and defined in [UA Part 5].

When the NodeManagement Services (see Chap. 5) are used to create a new
Object, the type definition has to be provided. Some Attributes for the new Object
do not have to be specified but can be filled with default values of the ObjectType.
For Objects only5 the Description and the DisplayName Attributes are by default

5 The WriteMask and UserWriteMask can be used as well; however, here something may need to
be changed by some server-internal logic since Objects and ObjectTypes have different Attri-
butes.

372.5 Types for Objects and Variables

2.5.1 Simple ObjectTypes

Fig. 2.10 Example of a simple ObjectType

filled with default values from the ObjectType. This is exemplified on the Root
Object where the Description of the FolderType is used.

Other than providing the semantic, the FolderType does not restrict the usage
of its instances. In theory, all Attributes of the Node can be changed (which typi-
cally does not make sense for some Attributes like the NodeClass). New Refer-
ences can be added to the Node (like Root is now referencing Objects in Fig. 2.10)
and later on they can be removed from the Object. However, this may not be true
for all kinds of References. Even if the FolderType does not restrict the usage of
References, there may be a ReferenceType that restricts its usage to certain
ObjectTypes or NodeClasses. In addition, other ObjectTypes may restrict how in-
stances of it are referenced as we will see when we talk about complex Ob-
jectTypes.

ObjectTypes support inheritance and thus there is a type hierarchy of Object-
Types. In Fig. 2.11, you can see an excerpt of a type hierarchy where the simple
type BranchType is derived from FolderType. This type could be used by a wrapper
of OPC DA servers to represent OPC DA branches.6 They have the same purpose
then Objects of FolderType, that is, they are just organizing the Address Space.
However, making a subtype makes sense, so clients know that they are accessing
wrapped Classic OPC DA data. Clients can ignore the subtype and based on the
knowledge that it is a subtype of FolderType handle every Object of type Branch-
Type like an Object of type FolderType.

6 Please be aware that the actual OPC DA Wrapper implementation of the OPC Foundation does
not use a subtype but directly uses the FolderType for DA branches.

38 2 Information Modeling: Concepts

Root

Organizes Object
HasTypeDefinition

Organizes
ObjectType

FolderType

Attributes
DisplayName = „FolderType“
BrowseName = (0, FolderType)
NodeId = …
NodeClass = ObjectType
Description =
 „Organizes the Address Space“
IsAbstract = False

Attributes
DisplayName = „FolderType“
BrowseName = (0, FolderType)
NodeId = …
NodeClass = ObjectType
Description =
 „Organizes the Address Space“
EventNotifier = NoAccess

Objects

Attributes
DisplayName = „FolderType“
BrowseName = (0, FolderType)
NodeId = …
NodeClass = ObjectType
Description =
 „Entry point to Objects“
EventNotifier = NoAccess

Organizes

Fig. 2.11 Inheritance of a simple ObjectType

Like ObjectTypes, VariableTypes can be simple or complex as well. The complex
type exposes a structure of Nodes beneath it that is available at the instances,
whereas the simple VariableType defines only the semantic of a Variable or res-
tricts the usage of the data type of the Value Attribute on the instances. For example,
the OPC UA specification defines a base type for Variables called BaseDataVari-
ableType not restricting the usage of the data type [UA Part 5]. A subtype could
define a Counter Variable having a typical counter semantic and restricting the
usage of the data type to a scalar integer value.

VariableType NodeClass in Table 2.9.
The Attributes of the VariableType NodeClass are very similar to the Variable

NodeClass. It contains the Value Attribute and the definition of the data type for
the Value Attribute. It does not contain those Attributes providing information
about the runtime behavior of the Value (is it currently historized, is it readable,
what is the minimum sampling rate, etc.), but it contains the IsAbstract Attribute
identifying if the VariableType can directly be used by instances or is only used to
organize the VariableType hierarchy. Unlike for Variables, the Value Attribute is
only optional since it has no real use for VariableTypes since it is expected that

providing the Value is to define a default value for instances of the VariableType.
Thus providing the data type information for the value on the VariableType is
used mainly to define the data type for instances of the VariableType.

ableType may use only some base types of that hierarchy and instances of the
VariableType may offer more concrete types. Let us examine a concrete example.

392.5 Types for Objects and Variables

2.5.2 Simple VariableTypes

BranchType

Branch1

Organizes Object
HasTypeDefinition

Organizes
ObjectType

FolderType

Attributes
DisplayName = „FolderType“
BrowseName = (0, FolderType)
NodeId = …
NodeClass = ObjectType
Description =
 „Organizes the Address Space“
IsAbstract = False

Attributes

 „Branch of OPC DA Server“
EventNotifier = NoAccess

Objects

Organizes

Attributes
DisplayName = „FolderType“
BrowseName = (0, BranchType)
NodeId = …
NodeClass = ObjectType
Description =
 „Branch of OPC DA Server“
IsAbstract = False

HasSubtype

OPC DA Server

Organizes

DisplayName = „Branch 1“
BrowseName = (1, Branch 1)
NodeId = …
NodeClass = ObjectType
Description =

Before we go into the details of the example, let us examine the Attributes of the

In Sect. 2.8, you will learn that there is also a hierarchy of DataTypes. A Vari-

the Value will have no real meaning on the VariableType. The only reason for

Table 2.9 Additional Attributes for VariableTypes

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
Value Is not fix;

specified
by other
Attributes

This optional Attribute defines a default
value for instances of this VariableType.

the DataType, ValueRank, and ArrayDi-

DataType NodeId Defines the DataType of the Value Attrib-
ute for instances of this type as well as for
the Value Attribute of the VariableType if

ValueRank Int32 Identifies if the value of instances of this
type is a scalar value, an array, or a multi-

ArrayDimensions UInt32[] This optional Attribute allows specifying
the size of an array or a matrix and can
only be used if the value is an array. For
each dimension of the array the corre-
sponding entry into this array defines the

IsAbstract Boolean This Attribute indicates if the VariableType
is abstract and therefore cannot directly be

In Fig. 2.12, you can see the BaseDataVariableType. It uses the BaseDataType
(the root of the DataType hierarchy) and does not restrict the usage of arrays. Thus
instances of this VariableType can restrict their data type to their needs (like Vari-
able1 uses a scalar Int32).

But the restriction of the data type does not have to be made on instances. It is
also valid that Variables use only abstract base data types. In that case, the client
must expect that any subtype of that data type is returned. For example, Variable2
only restricts the data type to be a scalar, thus valid retuned values are a String
“Test1,” the Int32 “123,” etc. The data type can change every time the value
changes and clients must be able to handle this behavior. In Sect. 2.8, you will see
that there are more abstract DataTypes. This allows, for example, to expose that a
number is provided as value without specifying the concrete type of number.

For subtyping simple VariableTypes, the same rules apply as for instantiating
a VariableType. The data type can be made more concrete, but of course not be
expanded. In Fig. 2.13, you can see an example of subtyping the BaseDataVari-
ableType. The subtype Counter of the BaseDataVariableType restricts the usage
of the data type (only scalar integers are allowed) and also defines the semantic for
instances of that VariableType. It uses the name (Counter) and the Description
Attribute to define the semantic.

40 2 Information Modeling: Concepts

The data type of the value is specified by

mensions Attributes

provided

dimensional array

size of the dimension

used as type definition or concrete

Fig. 2.12 Example of a simple VariableType

Fig. 2.13 Inheritance of a simple VariableType

412.5 Types for Objects and Variables

BaseDataVariableType

HasSubtype

Attributes
DisplayName = „BaseDataVariableType“
BrowseName = (0, BaseDataVariableType)
NodeId = …
NodeClass = VariableType
Description = „Base Type of DataVariables“
Value
DataType = BaseDataType
ValueRank = Any
ArrayDimensions
IsAbstract = False

VariableType

CounterType

Attributes
DisplayName = „CounterType“
BrowseName = (0, CounterType)
NodeId = …
NodeClass = VariableType
Description =
„A counter always increasing ist value by
one until max . value is reached . Then it rolls
over to 0.“
Value
DataType = Integer
ValueRank = Scalar
ArrayDimensions
IsAbstract = False

Variable1

BaseDataVariableType

HasTypeDefinition

Attributes
DisplayName = „BaseDataVariableType“
BrowseName = (0, BaseDataVariableType)
NodeId = …
NodeClass = VariableType
Description = „Base Type of DataVariables“
Value
DataType = BaseDataType
ValueRank = Any
ArrayDimensions
IsAbstract = False

Attributes
DisplayName = „Variable1“
BrowseName = (1, Variable1)
NodeId = …
NodeClass = Variable
Description = „A simple test variable“
Value = 1
DataType = Int32
ValueRank = Scalar
ArrayDimensions
AccessLevel = Readable | Writeable
UserAccessLevel = Readable
Historizing = False
MinSamplingInterval = 0

VariableType Variable

Variable2

Attributes
DisplayName = „Variable2“
BrowseName = (1, Variable2)
NodeId = …
NodeClass = Variable
Description = „A simple test variable“
Value = „Some Value“
DataType = BaseDataType
ValueRank = Scalar
ArrayDimensions
AccessLevel = Readable | Writeable
UserAccessLevel = Readable
Historizing = False
MinSamplingInterval = 0

An outlined Attribute
indicates that the Attribute
is not provided

What’s allowed and what’s not?
The following rules apply not only for simple types but also for complex
types.
There are no rules keeping the names of Object- or VariableTypes unique.
A server can provide several types with the same name. Only the NodeId
makes a type unique. However, it is not recommended using the same
BrowseName twice.
It is not forbidden that Object- or VariableTypes have multiple supertypes;
however, it is not recommended. Each Object- and each VariableType must
have at least one supertype, except for the BaseObjectType and the Base-
VariableType. Thus each ObjectType must be a subtype of BaseObjectType
and each VariableType must be a subtype of BaseVariableType.
Instances and subtypes of VariableTypes can further restrict the data type,
but they cannot leverage it. That means that they can use a subtype of the
DataType but not use a supertype or any other DataType that is not the same
DataType or a subtype. If the ValueRank does not specify the concrete char-
acteristic, it can be specified in the instance or subtype. If the VariableType
specifies, for example, “Any” in the ValueRank, the subtype or instance can
choose “Scalar” or any other choice. If the VariableType specifies OneOr-
MoreDimensions the instance or subtype can specify a concrete dimension
(e.g., OneDimension); however, it cannot specify “Any” or “Scalar.”
Any semantic defined by a supertype still has to be applicable for the sub-
types. VariableType CounterType used in the example may be subtyped but
the semantic defined for the CounterType must still be valid for the subtype.

Complex ObjectTypes define a structure of Nodes beneath them that is available
on each instance of the ObjectType as well. In Fig. 2.14, an example of a complex
ObjectType is given. MotorType has the Methods Start and Stop, a Status Vari-

that Instances of the MotorType like Motor1 have the same structure beneath them.
Before we go into more details of how complex ObjectTypes work, let us

debate why we may need complex ObjectTypes at all. A server exposing complex
ObjectTypes and instances of that type gives clients the possibility program their
application with knowledge of the type information and use this on all instances.
A client can, for example, have a specific part of a user interface tailored to the
ObjectType and displays this for each instance of the type. In Fig. 2.15, this scenario
is summarized.

42 2 Information Modeling: Concepts

2.5.3 Complex ObjectTypes

able, and an Object called Configuration having two Variables. Figure 2.14 shows

Fig. 2.14 Example of a complex ObjectType

The graphical element of the client is programmed with knowledge of the
MotorType. In the user interface of the client, this graphical element is used two
times representing the two instances of the MotorType, called Motor1 and
Motor2. The knowledge about the type is used to access and display the informa-
tion provided by the instances. Using the knowledge about the type is not res-
tricted to complex ObjectTypes. For example, a client can implement a special
handling for the FolderType by using a specific icon for it in a tree control. Never-
theless, the real power comes into play when programming with knowledge of
complex types considering the structure of Nodes beneath the types.

Another advantage of having complex ObjectTypes is that they are defined
once and can be used in several places. When a server creates a new instance of
the ObjectType, it is guaranteed that it has the structure defined by the ObjectType. An
ObjectType can be defined in a project where it is used several times, in a vendor-
specific library, or even in a standard Information Model. Several instances of the
ObjectType can be instantiated, using the AddNodes Service (see Chap. 5). Only
the ObjectType and the base Attributes of the instance have to be specified. This
scenario is shown in Fig. 2.16. The client calls the AddNodes Service to create a
new Object Motor1. All newly created Nodes and References based on this call
are exposed in a bold line style. In the AddNodes Service, the client has to specify
the ReferenceType and Node to which the new Node should be connected. In our
example the Area1 Object is chosen and Organizes ReferenceType. In addition,
it specifies the Attributes for the new Node like the DisplayName Motor1 and
it specifies the ObjectType. Based on the specified ObjectType, the HasType-
Definition Reference to the ObjectType is created and the structure defined by
the ObjectType is automatically created beneath the new Object.

432.5 Types for Objects and Variables

Object

Configuration

HasComponent

Status

Start

Stop

Emergency Start

Method

Variable

Reversing
Lock - out Time

Motor Type

Configuration

Status

Start

Stop

Emergency S tart

Reversing
Lock - out Time

ObjectType

HasTypeDefinition

Same Structure

Motor1

Fig. 2.15 Programming against complex ObjectType

Fig. 2.16 Creating Instances based on complex ObjectTypes

44 2 Information Modeling: Concepts

Configuration

Status

Start

Stop

Emergency Start

Reversing
Lock-out Time

MotorType

Configuration

Status

Start

Stop

Emergency Start

Reversing
Lock - out Time

Motor1

Configuration

Status

Start

Stop

Emergency Start

Reversing
Lock - out Time

Motor2

OPC UA Server

Complex Type Instances

OPC UA Client

.Status

Graphical Element

Status:

Configuration

Start Stop

Programmed
against

ObjectType

Running
against

Instances

User Interface

.DisplayName

Running

Start Stop

Motor1

Status:

Configuration

Off

Start Stop

Motor2

Status:

Configuration

Other Graphic Element

Reset

Load
applied

Configuration

Status

Start

Stop

Emergency Start

Reversing
Lock-out Time

MotorType

Configuration

Status

Start

Stop

Emergency Start

Reversing
Lock-out Time

Motor1

OPC UA Client

Objects

Area1Organizes

Organizes

Calls
AddNodes

Service

In AddNodes the client
specifies the type definition
(for Objects and Variables)

In AddNodes the client
specifies the base
Attributes of the new Object
(like the DisplayName)

All the structure beneath
the new Object is
automatically created based
on the ObjectType,
including the values for
Attributes like DisplayName

OPC UA Server
In AddNodes the client
specifies the target Node
and ReferenceType where
the new Node should be in
the AddressSpace

After explaining why complex ObjectTypes can be a very useful feature, let us
examine them a little closer. As you can see in Fig. 2.14, the ObjectType Motor-
Type uses the NodeClass ObjectType. All Nodes beneath it are of the Node-
Classes Object, Variable, or Method and thus instances and not types. However,
they are typically no real instances having real values behind them and thus they
are called InstanceDeclarations. An InstanceDeclaration is a named entity used to
define a complex ObjectType. The InstanceDeclarations are defined as Variables,
Objects, and Methods exposed beneath the ObjectType. Since beneath something
is not that obvious in a full-meshed network of Nodes exposing several hierar-
chies, the more precise definition is InstanceDeclarations are referenced from the
ObjectType by a hierarchical Reference in forward direction, either directly or
indirectly by another InstanceDeclaration. In addition, the InstanceDeclaration

A key feature of InstanceDeclarations is that they can be uniquely identified
relative to the ObjectType. The same relative identifier applies for instances of the
ObjectType and the counterpart of the InstanceDeclaration. This allows program-
ming using the knowledge of the ObjectType. NodeIds cannot be used for that
purpose since the InstanceDeclaration is typically a different Node than its coun-
terpart on the instance and thus must have a different NodeId. Instead the Browse-
Name is used, or for indirectly referenced InstanceDeclarations the BrowsePath
which is a list of BrowseNames. This requires that an InstanceDeclaration must
have a unique BrowsePath starting from the ObjectType. The path must be unique
independent of the NodeClass, which means that an ObjectType cannot have
an Object and a Variable with the same BrowseName directly referenced as
InstanceDeclaration. The BrowsePath is exemplified in Fig. 2.17.

Fig. 2.17 Unique BrowsePaths for InstanceDeclarations

452.5 Types for Objects and Variables

2.5.4 InstanceDeclarations

Motor01

Configuration 01

Emergency Start

Attribute
DisplayName = “Emergency Start“
BrowseName = “ES“

Attribute
DisplayName = “Configuration“
BrowseName = “Configuration“

MotorType

Configuration

Attribute
DisplayName = “Configuration01“
BrowseName = “Configuration“

EmergencyStart 01

Attribute
DisplayName = “EmergencyStart01“
BrowseName = “ES“

BrowsePath: /Configuration/ES

BrowsePath: /Configuration/ES

Same
BrowsePath

on
ObjectType

and
Instance

DisplayName and
BrowseName may be
different in
InstanceDeclarations

DisplayName can change in
instance based on
InstanceDeclaration, the
BrowseName must stay the same

must have a ModellingRule (see Sect. 2.5.6).

Clients can detect the BrowsePath of an InstanceDeclaration starting at the
ObjectType and following hierarchical References in forward direction. They have
to add the BrowseName of each Node before they reach the target InstanceDeclara-
tion. Clients can store that information and when they use their display or other
application to access a concrete instance of the ObjectType, they can call a special
Service called TranslateBrowsePathsToNodeIds (see Chap. 5 for details). This
Service takes the NodeId of the instance and the BrowsePath as input and returns
the NodeId of the counterpart of the InstanceDeclaration. By using this NodeId,
clients can do the appropriate action with the Node, like subscribing to the data or
writing them.

Please be aware that the constraint on unique BrowseNames only applies for
InstanceDeclarations, not for instances. In Fig. 2.18 you can see that MotorX ref-
erences another Configuration Object containing the default Configuration settings
having the same BrowseName as the Configuration Object based on the Motor-
Type. In that case, the TranslateBrowsePathsToNodeIds Service will return an
array of NodeIds, having the NodeId of the Node based on the TypeDefinition as
first entry.

Fig. 2.18 Nonunique BrowsePaths for Instances

A complex ObjectType having InstanceDeclarations is very similar to a class in
object-oriented programming languages having variables. In a class, a variable is a
named entity that is addressed by the name. Let us look at a sample object-
oriented class and how this can easily be mapped to a complex ObjectType. In
Fig. 2.19, the class Employee is shown in pseudo-code. The class has the public
variables Name, Salary, and Address. For simplicity the name is just a String, the
Salary an Integer, but the address uses another class Address having the public
variables Street and City. In addition, the Employee has two methods, Increase-
Salary() and SalaryAfterTax(). The first one takes a percentage and increases the

46 2 Information Modeling: Concepts

MotorX

Configuration 01

Emergency Start

Attribute
DisplayName = “Emergency Start“
BrowseName = “ES“

Attribute
DisplayName = “Configuration“
BrowseName = “Configuration“

MotorType

Configuration

Attribute
DisplayName = “Configuration01“
BrowseName = “Configuration“ EmergencyStart 01

Attribute
DisplayName = “EmergencyStart01“
BrowseName = “ES“

BrowsePath: /Configuration/ES

BrowsePath: /Configuration/ES

DefaultConfig

Attribute
DisplayName = “DefaultConfig“
BrowseName = “Configuration“ EmergencyStart

Attribute
DisplayName = “EmergencyStart“
BrowseName = “ES“

BrowsePath: /Configuration/ES

MotorX has the same
BrowsePath two
times.
TranslateBrowsePaths
ToNodeIds will return
the one based on the
TypeDefinition first

Based on TypeDefintion

Added later to MotorX

7

ments and the other having only output arguments.

Fig. 2.19 Mapping an object-oriented class to an ObjectType

Of course, there are also differences between classes of typical object-oriented
programming languages and ObjectTypes. One difference is that there is no stan-
dard way to expose the implementation of a Method. On the other hand, OPC UA
is more flexible. It is allowed to add components to an instance independent of the
type definition. For example, an instance of Employee could have a Variable
called Award storing information about an award received by the employee, with-
out altering the ObjectType or creating a subtype of it. That is also allowed on
InstanceDeclarations, thus the EmployeeType could add a Variable ZipCode
beneath the Address Object. In an object-oriented programming language, you
would typically have to subtype Address to add information in that place.

7 Please note that all Objects and Variables used as InstanceDeclarations are typed, although the
type is not exposed in most of the examples shown so far. All constraints valid for Objects and
Variables used as instances are valid for Objects and Variables used as InstanceDeclarations as
well.

472.5 Types for Objects and Variables

The mapping to ObjectTypes is straight forward. The Address class is mapped to

to the ObjectType EmployeeType having two Variables for Salary and Name and

salary of the employee; the second returns the salary of the employee after taxes.

an instance of AddressType to represent the Address. In addition, there are two

EmployeeType

Address

class Address
{
public:

std::string Street ;
std::string City;

};

class Employee
{
public:

std::string Name;
int Salary;
Address Address;

void IncreaseSalary (int percentage)
{

Salary =
Salary + ((Salary * percentage)/100);

};
int SalleryAfterTax ()
{

return (Salary - Salary * 0.4);
};

};

AddressType

Street

City

Street

City

Name

Salary

IncreaseSalary

InputArguments

SalaryAfterTax

OutputArguments

Methods IncreaseSalary and SalaryAfterTax, one having only input arguments and

an ObjectType AddressType having two Variables. The class Employee is mapped

Before we consider ModellingRules and how subtyping works, let us take a look
at complex VariableTypes. They are very similar to complex ObjectTypes. The
main difference is that they can only use Variables as InstanceDeclarations and
not Objects or Methods. Methods are defined for Objects; thus it is obvious that
they do not fit to a VariableType. Variables are always parts of Objects or other
Nodes and thus it makes no sense that a VariableType contains an Object as part
of it. VariableTypes can only expose additional Variables, either describing the
Variable (like providing the engineering unit of the value provided by the Vari-
able) or exposing parts of the structure of the value. For example, the Variable
could provide a complex data type having several fields and sub-variables would
expose each of the fields. But it is also possible that a Variable provides an aver-
age of measured values provided by three other Variables and thus those Variables
become sub-variables of it. By providing those sub-variables as InstanceDeclara-
tions, the VariableType formalizes this information so clients will know that each
instance of the VariableType will have that information.

The rules defined for InstanceDeclarations in the section above also apply for
VariableTypes, considering that only Variables can be used as InstanceDeclara-
tions.

Each instance referenced by a TypeDefinition (i.e., ObjectType or VariableType)
becomes an InstanceDeclaration if it has a ModellingRule. A ModellingRule
specifies what happens to the InstanceDeclaration with respect to instances of the
ObjectType. There are three fundamental choices, also called the NamingRule of
the ModellingRule.

1. The first choice is to make the InstanceDeclaration Mandatory, which means
that each instance must have a counterpart of the InstanceDeclaration having
the same BrowsePath and must be of the same type as the InstanceDeclaration
(when it is an Object or Variable) or a subtype of that type.

2. The second choice is to make it Optional, that is, each instance may have such
a counterpart. But it is not required that each instance has such a counterpart.

3. The third choice is to make it a Constraint, which means that the Instance-
Declaration defines a constraint for instances of the TypeDefinition. We will
see later on more details on what constraints are possible. An example is a
cardinality restriction specifying that an instance of the TypeDefinition shall
reference a defined range of instances having the same type as the Instance-
Declaration.

48 2 Information Modeling: Concepts

2.5.5 Complex VariableTypes

2.5.6 ModellingRules

ModellingRules is an extensible concept in OPC UA, that is, servers or standard
Information Models may define their own ModellingRules. However, they always

2.5.6.1 ModellingRules in the Address Space

ModellingRules are represented as Objects of the type ModellingRule. Each Mod-
ellingRule has a Variable (more precisely Property, see Sect. 2.6) called Naming-
Rule. It contains the NamingRule of the ModellingRule. InstanceDeclarations
reference a ModellingRule Object with the ReferenceType HasModellingRule to
specify their ModellingRule. Each Node can reference only one ModellingRule
using the HasModellingRule Reference. How ModellingRules are used in the
Address Space is shown in Fig. 2.20 on the left side. To simplify the figures, we
use in this book the notation shown on the right side, where the ModellingRule is
added to the Node as text in brackets.

2.5.6.2 ModellingRules Mandatory and Optional

There are two standard ModellingRules called Optional and Mandatory, named
equally to their NamingRule. Let us take a look at an example how these two
ModellingRules work. In Fig. 2.21, the AddressType has the InstanceDeclarations
Street with the ModellingRule Optional and City with the ModellingRule Manda-

Fig. 2.21 you can see that Address1 has both. In that case, both instances have
ModellingRules as well. As long as they are not referenced by a TypeDefinition,
they are no InstanceDeclarations. In that case it is allowed that any ModellingRule
is used for the instances. Typically, normal instances have no ModellingRules like

tory. This means that each instance must have a City and may have a Street. In

492.5 Types for Objects and Variables

EmployeeType

Address

HasComponent

HasProperty

Optional ::
ModellingRuleType

Mandatory ::
ModellingRuleType

Each ModellingRule only

several times

Each
InstanceDeclafration
references exactly
one ModellingRule

HasModellingRule

NamingRule

Name

Salary

Attribute
Value = „Optional“

NamingRule
Attribute
Value = „Mandatory“

HasModellingRule

HasModellingRule

ModellingRules in the Address Space Simplified Notation

EmployeeType

Address
[Optional]

Name
[Mandatory]

Salary
[Optional]

have to specify one of the earlier mentioned NamingRules.

exists once and is referenced

in Address2-4. Address2 omits the Street and only provides the City. In Address3

Fig. 2.20 ModellingRules in the Address Space

Fig. 2.21 Applying Optional and Mandatory ModellingRules

and 4 you can see that both share the same City. The ModellingRules Optional
and Mandatory do not specify how a server has to deal with InstanceDeclarations
when a new instance of a TypeDefinition is created. It can create new Nodes
for the InstanceDeclarations or it just references existing Nodes. Instances of
a TypeDefinition just have to reference an instance with the same BrowsePath
and the same type (or a subtype). A server can, for example, also reference the
InstanceDeclaration Node and thus create something like a static class variable
having the same value for all instances. During runtime, Nodes may change as

each instance of the type.

8 since it does not have a Node referencing it,

8

automatically by the server or by a client. However, if a client requests to delete only Address3,
the server either has to delete the Street Node as well or reject the request.

50 2 Information Modeling: Concepts

AddressType

Street
[Optional]

City
[Mandatory]

Address1

Street
[Optional]

City
[Mandatory]

Address2

Street

City

Address3

City

Address4

Street

After looking at simple ModellingRules, let us take a look at ownership of
Variables and Methods. As mentioned earlier, a Method and a Variable must always
be referenced by an Object or ObjectType using a HasComponent or HasProperty
Reference. But since Variables and Methods can be shared and belong to several
Objects, they are not owned by one Object. Thus, if Address3 in Fig. 2.21 is deleted,
the Street beneath it must be removed
but the City cannot be deleted since it is still used by Address4.

long as there is always a Node with the correct BrowseName and type available on

 There is no clear responsibility defined who has to delete the Node. It could be either done

again. In Fig. 2.22, you can see that Address is used as an InstanceDeclaration.

ModellingRules. The ModellingRules may change; however, the NamingRule must

Instances of complex TypeDefinitions can be used as InstanceDeclarations,

stay the same. The only exception is Optional, which can be replaced by Mandatory.

Therefore, the instances based on the InstanceDeclarations City and Street become

In general, ModellingRules may only be replaced if their contraints are tightened,
not loosened. In Fig. 2.22, the ModellingRule of Street changed from Optional

InstanceDeclarations as well. This means that there are rules regarding the

to Mandatory. Thus, a valid instance is Employee1 having both. It would not be

In Fig. 2.22, another rule regarding ModellingRules is exposed. The Address

This means that when Address is not provided, Street and City do not have to be
provided as well as you can see in the valid Employee3 Object.

Fig. 2.22 Instances used as InstanceDeclarations and based on InstanceDeclarations

tion to the InstanceDeclaration. In Fig. 2.23, an example is given. A Temperature-

Configuration and the Temperature Variable under Measurement. The Tempera-
ture Variable uses the EngineeringUnit Variable to expose its engineering unit.

There are two special cases; first two different References are connecting the
same source with the same target. In Fig. 2.23, you can see that Measurement
references Temperature two times. In that case, on each instance the counterpart to
Measurement must reference the same Node with those two References; it is not
allowed to point to two different Nodes.

The second case is that there are two different indirect paths. In Fig. 2.23, the
EngineeringUnit is referenced by two different paths. In that case, it is allowed
that an instance references one Node from Configuration and a different one from
Temperature. In the example that probably does not make sense, but there are
other use cases where this is a reasonable approach, for example, when shared
(static) class variables are used.

512.5 Types for Objects and Variables

EmployeeType

Address
[Optional]

AddressType

Street
[Optional]

City
[Mandatory]

Name
[Mandatory]

Salary
[Optional]

Street
[Mandatory]

City
[Mandatory]

Employee3

Name
[Mandatory]

Employee 1

Name
[Mandatory]

Address
[Optional]

Street
[Mandatory]

City
[Mandatory]

Employee2

Name
[Mandatory]

Address
[Optional]

City
[Mandatory]

Not allowed, for Employees:
Street must be provided if

Address is provided

Object has the ModellingRule Optional and is on the only path to Street and City.

does not require it.
allowed having an Employee2 not providing the Street, also the AddressType

own ModellingRules, let us consider some more complex examples. First let us take
Before we look at how to use the NamingRule Constraint and how to create our

SensorType having the EngineeringUnit Variable organized under the Folder

a look at what happens if there is more than one BrowsePath from the TypeDefini-

Fig. 2.23 Example of InstanceDeclarations referenced by several paths

Now let us see what happens if we add non-hierarchical References between
InstanceDeclarations. In Fig. 2.24. you can see a DeviceType having a non-
hierarchical Reference between two sub-devices. Instances may or may not provide
this non-hierarchical Reference. This behavior is server-specific for the Modelling-
Rules defined by OPC UA. However, you may define your own ModellingRule
that specifies how to deal with non-hierarchical References between Instance-
Declarations.

Fig. 2.24 Non-hierarchical References between InstanceDeclarations

2.5.6.3 ModellingRules as Constraints

After looking at Mandatory and Optional InstanceDeclarations, let us take a look

The ModellingRule is called ExposesItsArray and can be used for VariableTypes

52 2 Information Modeling: Concepts

Configuration

Measurement

EngineeringUnitOrganizes

Organizes HasEventSource
HasComponent
HasProperty

Measuement references

Organizes reference and in
addition with a
HasEventSource pointing
out that it may expose
events sourced by the

The EnginneringUnit is used by Temperature
and thus there are two paths to
EngineeringUnit:
/Configuration/EngineeringUnit and
/Measurement/Temperature/EngineeringUnit

DeviceType

Subdevice1

Subdevice2

Non-hierarchical Reference: CommunicatesWith

HasComponent

CommunicatesWith

CommunicatesWith

Device1

Subdevice1

Subdevice2

CommunicatesWith

Device2

Subdevice1

Subdevice2

Reference may be
provided on instance ..

… but do not have to
be provided

Temperature using a

TemperatureSensorType

temperature

ModellingRule defined by the current OPC UA specification defining a constraint.

at InstanceDeclarations used to define constraints, and thus having the Naming-
Rule Constraint in their ModellingRule. We will first take a look at the only

having an array as data type. The semantic is that each entry of the array is also

Temperature

exposed as a sub-variable. In Fig. 2.25, this is exemplified. The TeamType
contains an array of Strings and a Constraint Variable using the ModellingRule
ExposesItsArray. Instances of that type must have a sub-variable for each entry of
the array as you can see in the UABookTeam Variable in Fig. 2.25. Exposing the
sub-variables allows referencing single entries of the array since they are exposed
as Nodes in the Address Space. Please be aware that it is not necessary to expose
arrays to allow access to single entries of an array (subscribing to them, reading or
writing them). This can be done with the OPC UA Services directly by addressing
parts of the array (see Chap. 5).

Fig. 2.25 Using the ExposesItsArray ModellingRule

ExposesItsArray is just an example of Constraint ModellingRules. You can
define your own ModellingRules needed to define constraints in your model. A
typical constraint in modeling is a cardinality restriction. An instance of one type
shall reference between n and m instances of another type. Such a constraint
can be exposed by a Constraint ModellingRule. An InstanceDeclaration having
such a ModellingRule can be used as a proxy Object (see Sect. 3.3.8) between
two TypeDefinitions containing the min and max values and also reference the
addressed ReferenceType. Such a ModellingRule will probably be integrated
into version two of OPC UA. Therefore, we will not expose any details of such a
ModellingRule, since we might model it slightly different then it will be in the
specification.

Finally let us discuss why the ModellingRules defined by OPC UA do not
cover every facet like what happens with non-hierarchical References or how
instances are created based on the InstanceDeclarations. The OPC UA working
group started defining all those things. But it turned out that there are different
ways of how to handle this and different use cases where either one or the other
possibility was more appropriate. Specifying all those possibilities would lead to a
relatively large amount of ModellingRules that would become hard to understand.
In addition, it is questionable how useful this additional information would become.
In the case of programming against types you just need to know the hierarchical
path to the target Node and you have to know if the Node is optional or manda-
tory. This is all provided by the defined ModellingRules. When creating instances

532.5 Types for Objects and Variables

TeamType

ConstraintVariable
[ExposesItsArray]

Attribute
DataType = String
ValueRank = 1
ArrayDimensions

One
dimensional
array of type
string

Attribute
DataType = String
ValueRank = Scalar
ArrayDimensions

Scalar sting

Using
ModellingRule
ExposesItsArray

UABookTeam

Attribute
Value = {„Wolfgang“,
„Helmut“, „Matthias“} TeamMember 1

Attribute
Value = „Wolfgang“

TeamMember 2

Attribute
Value = „Helmut“

TeamMember 3

Attribute
Value = „Matthias“

Same
ReferenceType as
used by
ConstraintVariable

BrowseName not
defined by
TypeDefinition

based on types, the server is responsible that counterparts of all InstanceDeclarations
exist based on the ModellingRules. Whether new Nodes are created or Nodes
are shared is in the responsibility of the server and does not necessarily has to be
exposed to the client. Thus the ModellingRules provided by OPC UA are a good
foundation that can be extended with additional ModellingRules, especially with
those that are constraint-related.

Subtyping of simple types was already explained in Sect. 2.5.1 for ObjectTypes and
Sect. 2.5.2 for VariableTypes. For VariableTypes, the usage of the data type can
be restricted in the subtype, thus the subtype can only use the same data type as
defined in the supertype or a sub(data)type of it, including restrictions on array-
size, etc. Thus clients know that they can work with a subtype the same way they
can work with the supertype.

The same guarantee has to be fulfilled regarding subtyping of complex types.
When a complex type is subtyped, the base characteristics of the supertype still have

instance of the subtype as well. Generally spoken, each constraint on the supertype
has to be fulfilled on the subtype as well and can only be further restricted. This
means that an optional InstanceDeclaration can be made mandatory on the sub-
type, but no mandatory InstanceDeclaration can be made optional.

subtype, one solution is that each subtype copies all InstanceDeclarations of the
supertype or references the same Nodes. The other solution is that they are not
copied but clients need to request the InstanceDeclarations of the supertypes as
well to get a full picture of the subtype. The second approach is typically being
used in object-oriented programming languages where variables of the supertype

having several levels. Thus InstanceDeclarations do not have to be duplicated on
subtypes unless you want to override them. In Fig. 2.26, subtyping of a complex

tional variable Country is added, the other variables are not specified but inherited
by Address. The same is applied on the ObjectType InternationalAddressType.
Only the InstanceDeclaration Country is added, the other InstanceDeclarations are
inherited. To get the full picture of a TypeDefinition, you need to combine the

the Address Space. Since each InstanceDeclaration of the supertype is valid on the

oriented class Address is subtyped by InternationalAddress. Here, only an addi-
type is shown in comparison to subtyping an object-oriented class. The object-

to be fulfilled. Thus a mandatory InstanceDeclaration has to be available on each

the second approach as well to avoid an explosion of Nodes in a type hierarchy

54 2 Information Modeling: Concepts

2.5.7 Subtyping of Complex Types

InstanceDeclarations of the supertypes with the TypeDefinition. This combi-

There have been two possibilities how to expose subtypes of complex types in

nation is called fully-inherited InstanceDeclarationHierarchy, and is shown for

are inherited without the need to copy the code to the subtype. OPC UA has chosen

Fig. 2.26 Subtyping object-oriented classes and complex types

To use the fully-inherited InstanceDeclarationHierarchy, all InstanceDeclara-
tions must have unique BrowsePaths. Thus subtypes cannot use the same Browse-
Path for a different InstanceDeclaration. However, subtypes are able to override

international address it may be required that a Street is provided. Therefore, the

it is allowed to change Optional to Mandatory in an InstanceDeclaration. This is
also true for subtyping. Thus a modified InternationalAddressType would create
its own Street Variable defining it to be mandatory. Since the same BrowsePath is
used then in the supertype, it is not an additional InstanceDeclaration, but the
InstanceDeclaration of InternationalAddressType is overriding the one from
AddressType. So the fully-inherited InstanceDeclarationHierarchy has still only
one Street Variable, but this time the ModellingRule has changed since the over-
ridden InstanceDeclaration is used. In [UA Part 3], the detailed algorithm how to
get the fully-inherited InstanceDeclarationHierarchy is defined, considering a chain
of supertypes.

Of course, when overriding InstanceDeclarations some rules have to be applied.
In general, constraints can only be tightened, not loosened. This means that the
same type or a subtype of the overridden InstanceDeclaration must be used, and
that ModellingRules may only be further restricted. For example, if there was a
constraining ModellingRule saying a Reference must exist 3–6 times, it is allowed

ModellingRule Optional is not appropriated anymore. As we have learned earlier,

552.5 Types for Objects and Variables

against the type or to get the knowledge what would be instantiated as a minimum.

an existing InstanceDeclaration of the supertype (Fig. 2.27). For example, in an

Logical View on TypeDefinition

class Address
{
public:

std::string Street ;
std::string City;

};

class InternationalAddress : Address
{
public:

std::string Country;
};

AddressType

Street
[Optional]

City
[Mandatory]

Country
[Mandatory]

InstanceDeclaration-
Hierachy of AddressType

InstanceDeclarationHierachy of
InternationalAddressType

Street
[Optional]

City
[Mandatory]

Country
[Mandatory]

Fully-interited
InstanceDeclarationHierachy of
InternationalAddressType

Just a logical view not directly
browsable in Address Space

InternationalAddressType

InternationalAddressType

InternationalAddressType in Fig. 2.26. Here all information is captured to program

Fig. 2.27 Overriding InstanceDeclarations when subtyping complex TypeDefinitions

to increase the lower bound and decrease the upper bound, but not the other way
around. So 4–5 is allowed, 2–5 or 4–8 are not allowed.

Let us consider another example for subtyping and overriding with a more
complex InstanceDeclarationHierarchy. In Fig. 2.28, there is the Temperature-
SensorType we have already introduced in Fig. 2.23. The EngineeringUnit Vari-
able is referenced by two BrowsePaths as well as by the Temperature Variable.
The subtype MyTemperatureSensorType derives from the TemperatureSensorType.
In this subtype, the optional EngineeringUnit of the Temperature has to be made
mandatory. Since the EngineeringUnit Variable is not directly referenced by the
ObjectType, it cannot directly be overridden. Instead the first InstanceDeclaration
on the path to EngineeringUnit must be overridden and beneath that Node the full
path to EngineeringUnit must be duplicated to be able to override Engineering-
Unit. In Fig. 2.28, you can see that the path starting from Measurement and in
addition the Temperature Variable are overridden and beneath it the Engineering-
Unit, changing its ModellingRule to Mandatory.

Let us see what that means for the fully-inherited InstanceDeclarationHierarchy.
As you can see, only one Reference between the ObjectType and Measurement is
provided in the subtype. However, since both References must always refer to the
same Node, they reference one Node in the fully-inherited InstanceDeclaration-
Hierarchy. The EngineeringUnit is accessible by two paths in the supertype and
only overridden in one path. In that case, the fully-inherited InstanceDeclaration-
Hierarchy has to duplicate the EngineeringUnit, for the overridden path providing
the changed ModellingRule and the original ModellingRule for the not overridden

chy references two different Nodes called EngineeringUnit, instances of MyTem-
peratureSensorType can reference the same Node in both paths.

In OPC UA, each ObjectType must be a subtype of the BaseObjectType defined
in [UA Part 5], thus there is only one type hierarchy. The specification does not

path. Please be aware that although the fully-inherited InstanceDeclarationHierar-

restrict the type hierarchy to single inheritance. Thus multiple inheritance,

56 2 Information Modeling: Concepts

Logical View on TypeDefinition

AddressType

Street
[Optional]

City
[Mandatory]

Country
[Mandatory]

Overridden InstanceDelcation
only once in fully-inherited

InstanceDeclarationHierarchy

InstanceDeclaration
overrides
InstanceDeclaration
of supertype

Street
[Mandatoryl]

City
[Mandatory]

Country
[Mandatory]

Street
[Mandatory]

InternationalAddressType

InternationalAddressType

Fig. 2.28 Overriding InstanceDeclarations having multiple BrowsePaths

that is, having several supertypes, is an option. However, the specification does
only specify the rules for single inheritance (only needed for complex types).9
Therefore, it is recommended to use single inheritance when possible.

What’s allowed and what’s not?
Complex TypeDefinitions have InstanceDeclarations with unique Browse-
Paths. The ModellingRules define what’s allowed on instances of the
TypeDefinitions and what is not allowed.
Instances can have the same BrowsePath pointing to different Nodes; the
TranslateBrowsePathsToNodeIds Service can be used to gather the Nodes
based on the TypeDefinition.
OPC UA defines an open model. As long as it is not defined by some con-
straints on the TypeDefinition, it is possible to add References to instances
of a TypeDefinition and thus adding Variables, Methods, etc. to those in-
stances. However, servers may always restrict those capabilities without
making them explicit on the TypeDefinition.

9 Since there are different strategies how to deal with conflicts when using multiple inheritance,
providing one specific semantic would exclude the simple mapping for models using a different
semantic.

572.5 Types for Objects and Variables

TemperatureSensorType

Configuration
[Mandatory]

Measurement
[Mandatory]

EngineeringUnit
[Optional]Organizes

Temperature
[Mandatory]Organizes

HasEventSource
HasComponent
HasProperty

In the generic
TemperatureSensorType
providing the EngineeringUnit is
optional

MyTemperatureSensorType

Measurement
[Mandatory]

EngineeringUnit
[Mandatory]

Temperature
[Mandatory]Organizes

In order to change the
InstanceDeclaration to be
Mandatory its parent path of
InstanceDeclartions has to be
provided as well

MyTemperatureSensorType

Configuration
[Mandatory]

Measurement
[Mandatory]

EngineeringUnit
[Optional]Organizes

Temperature
[Mandatory]Organizes

Fully-inherited
InstanceDeclarationHierarchy

EngineeringUnit
[Mandatory]

When subtyping TypeDefinitions, it must always be guaranteed that the
constraints on the supertype are still fulfilled. That includes the semantic of
ModellingRules, the data type of Variables, and any other constraint.
InstanceDeclarations can be overridden by providing the same BrowsePath
in the subtype.

2.6 Data Variables and Properties

OPC UA defines two kinds of Variables: Data Variables and Properties. The sepa-
ration between those two concepts is not always easy when data is modeled, that
is, when you have to decide if you use a Data Variable or a Property to represent
some data. This leads to the fact that it is also not always easy for a client to decide
what to do with Properties and Data Variables. However, in the following we will
try to explain the differences between those concepts and in Chap. 3 we give
guidelines when to use what concept.

Data Variables are used to represent the data of an Object, like the temperature
of a temperature sensor or the flow of a flow transmitter. Data Variables can be
complex, that is, they can have sub-variables containing parts of the data and
Properties describing them (see later). An example of the usage of a complex Data
Variable is when a Data Variable provides a complex type containing all data
measured by a device and sub-variables only containing part of the measured
data. The device could, for example, measure the temperature and the flow. Both
values are captured in one Data Variable and are also exposed separately in sub-
variables. Another example is a temperature calculated by the average of measured
values from three temperature sensors. The Variables representing the individual
measured values can be exposed as sub-variables of the aggregated Variable.

Properties are used to represent the characteristics of a Node, for example, con-
taining the engineering unit of a measured temperature, whether it is measured in
°C, °K, or Fahrenheit. In general, Properties are used whenever some characteris-
tics of a Node should be described, which are not captured by the Attributes of a
Node. InputArguments and OutputArguments of a Method are another example for
Properties. Properties are simple. They cannot be complex exposing sub-variables
and are always the leaf of each hierarchy, that is, cannot be the source of any hier-
archical Reference.

This is the brief definition of Data Variables and Properties. Although this
definition makes it very clear for some data to distinguish them between Data
Variables and Properties, there is a large grey area in the middle where this is not
clear. Is a writeable flag indicating whether a device generates real data or simu-
lates data a Data Variable or a Property? Is the address of a vendor stored in your
OPC UA server a Data Variable or a Property?

Another way to look at Data Variables and Properties is where the data is
stored and how often it is changed. It is expected that Data Variables typically
change their values often and are typically provided by underlying devices,

58 2 Information Modeling: Concepts

whereas the values of Properties do not change so often and are stored in some
configuration database. However, this is not specified by the OPC UA standard,
since it cannot be clearly specified what it means that data changes often or not. Is
it once per millisecond, per second, or per day? And depending on the mode of the
server this behavior may be very different. When engineering a system, the tempe-
rature of a temperature device may not change at all since the device is not con-
nected or activated. The engineering unit may change several times due to different

data vs. configuration data may help you in your thinking.
Beside those semantic considerations, there are also syntactic differences bet-

ween Data Variables and Properties.
Each Node may have Properties. They are connected using the HasProperty

Reference. A Property must belong to at least one Node by being the target of at
least one HasProperty Reference. Properties are not typed or more precise all
Properties point to the same VariableType called PropertyType. The semantic of
the Property is defined by its BrowseName. Since the semantic is defined by the
BrowseName, each Property of a Node must have a unique BrowseName. Properties
cannot be the source of any hierarchical Reference, which implies that Properties
cannot have Properties.

Data Variables must belong to an Object or ObjectType. Therefore, they must
be referenced by a HasComponent Reference coming from an Object, an Object-
Type, a Variable, or a VariableType. References from a Variable or VariableType
are allowed because they are used to expose complex Data Variables, and the root
of such a complex Data Variable is again part of an Object or ObjectType. Data
Variables are typed. Each Data Variable is of the type BaseDataVariableType or a
subtype. In turn, the BrowseName of Data Variables does not have to be unique
since the semantic is defined by the type.

Data Variables is the more powerful concept, whereas Properties are very simple
to use. If you have to make the decision whether to use a Data Variable or a Pro-
perty and you cannot make the decision based on the semantic differences des-
cribed in this section, you should consider the syntax. If you need to use some
features not provided by Properties directly or potentially in the future (e.g., exten-
sibility through subtyping), your choice has to be Data Variables. Otherwise, you
should consider using Properties since they are simpler to handle.

What’s allowed and what’s not?
A Property cannot be a Data Variable and vice versa. This means that a
Property cannot be referenced by a HasComponent Reference and must be
of the type PropertyType, whereas a Data Variable cannot be referenced by
a HasProperty Reference and must be of type BaseDataVariableType or a
subtype.
Properties cannot be the source of any hierarchical Reference. However,
they can be the source of non-hierarchical References. Whenever you need
to add information to a Property, you must use non-hierarchical References.
This implies that when you need to add information the same way for Data

592.6 Data Varibles and Properties

engineering tasks. During runtime, it is different. Nevertheless, thinking about online

Variables and Properties you must use non-hierarchical References. This is
used by the OPC UA specification, for example, when the historical con-
figuration of a Variable is referenced.
Properties must have unique BrowseNames, that is, no Node may reference
two Properties with the same BrowseName using the HasProperty Refer-
ence.

2.7 ModelParent for Objects, Variables, and Methods

ReferenceTypes like HasComponent give you a good indication that the refer-
enced component contains or describes some characteristics of its parent. How-
ever, when looking at a TypeDefinition and its instances, you can see that some
Nodes may be shared by several Nodes, for example, a static class variable con-
taining the same value for all instances. As long as a client reads only the data of

client intends to change the Node, it is desirable that the client knows in what

may not be provided, which is expected when having a static class variable since

having the Node referenced by several other Nodes does not provide you with in-
formation which Node was used to define the scope of it.

For that purpose OPC UA introduced the concept called ModelParent. It is
modeled by a HasModelParent Reference pointing from the contained Node to the
parent Node defining the scope of the contained Node. In the example of the class
variable it would be the TypeDefinition Node. Let us look at a concrete example.
The DeviceType in Fig. 2.29 has a Property called Icon representing an Icon,10 for
example used in a tree control exposing the type. Instances like Device1 share this
Icon, that is, they are pointing to the same Node. If a client wants to change the
Icon for a single instance Device1, it cannot just write a new Icon, since this
would affect the TypeDefinition and all other instances like Device2 as well. The
client could create a new Icon Node and let Device1 reference that Node. Thus the
client can make a change in the scope of Device1 without changing the TypeDefi-
nition of other instances. If a client wants to change the Icon for the Type-
Definition, it can realize that the Icon is in the right scope by following the
HasModelParent Reference. In that case the change of the Icon affects the instan-
ces as well, but that is the intended use when changing the Icon for the Type-
Definition.

10 By the way: Icon is an optional standard Property for Objects and ObjectTypes defined in
[UA Part 3]

60 2 Information Modeling: Concepts

scope the Node is changed. Of course, the client can browse for inverse References

that Node, it should not care whether the Node is shared or not. But as soon as the

to figure out how often the Node is referenced. However, the inverse Reference

you typically do not want to reference every single instance of a type. In addition,

Fig. 2.29 Example of the usage of ModelParents

What’s allowed and what’s not?

standard ModellingRules Optional, Mandatory, and ExposesItsArray. It is
allowed to provide the Reference for Objects, Variables, and Methods with
other ModellingRules or without ModellingRules, but this is not required.
Thus clients should make use of the feature if it is available, but they cannot
expect the feature to be provided on Nodes using no ModellingRules or
ModellingRules not defined by OPC UA.

2.8 DataTypes

All Attributes except for the Value Attribute of Variables and VariableTypes have
a fixed data type. The DataType Attribute of Variable and VariableTypes is used
together with the ValueRank and ArrayDimensions Attribute to define the data
type of the Value Attribute of a specific Variable or VariableType. Variables are used
to define Event fields and thus this also applies for Event fields. The same mecha-
nism is used to define the data type of Methods in the Argument DataType. The
ValueRank and ArrayDimensions Attributes are used to define whether the data
type is a scalar or an array. The DataType Attribute is used to define the type used as
scalar or array. The Attribute contains a NodeId of a DataType Node. DataTypes
are represented as Nodes in the Address Space. This allows servers to define their
own DataTypes and clients to access the information about the DataTypes. OPC
UA distinguishes four kinds of DataTypes:

1. Built-in DataTypes are a fixed set of DataTypes defined by the OPC UA speci-
fication that cannot be extended by standardized or vendor-specific Information
Models. They provide base types like Int32, Boolean, Double, and also OPC

612.8 DataTypes

HasModelParent References must be provided for all instances using the

UA specific types like NodeId, LocalizedText, and QualifiedName. The
complete list of built-in DataTypes can be found in [UA Part 6].

2. Simple DataTypes11 are subtypes of the Built-In DataTypes. They are handled
on the wire exactly like their supertypes, that is, a concrete value of a simple
DataType cannot be distinguished from the same value of its supertype when
sent by the server and received by a client or vice versa. However, clients can
access the DataType Attribute of a Variable to get information about the simple
DataType. An example of a simple DataType is Duration as a subtype of Double
defining an interval of time in milliseconds. Information Models can add their
own simple DataTypes.

3. Enumeration DataTypes represent a discrete set of named values. Enumera-
tions are always handled the same way as the built-in DataType Int32 on the
wire. An example of an enumeration DataType is the NodeClass used in the

DataTypes.
4. Structured DataTypes represent structured data. They are the most powerful

construct specifying user-defined, complex DataTypes. An example of a struc-
tured DataType is the Argument DataType used to define an argument of a
Method. It contains the name, data type, and a description of the argument. Infor-
mation Models can add their own structured DataTypes.

All DataTypes are represented as Nodes of the NodeClass DataType in the
Address Space. The Attributes of this NodeClass are summarized in Table 2.10.

Table 2.10 Additional Attributes for DataTypes

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
IsAbstract Boolean Indicates whether the DataType is abstract. An

abstract DataType can be used in the DataType
Attribute. However, concrete values must be of

Depending on the characteristics of the DataType, additional information
is provided. All DataTypes are managed in a DataType hierarchy. This hier-
archy only supports single inheritance, that is, each DataType has exactly one
supertype except for the BaseDataType used as root of each hierarchy.

11 In SQL [ISO08a] similar types are called distinct types.

62 2 Information Modeling: Concepts

2.8.1 DataType NodeClass

NodeClass Attribute. Information Models can add their own enumeration

a concrete DataType

In addition to those DataTypes, there is a set of abstract DataTypes that do not
fit into these categories and are only used to organize the DataType hierarchy.

In Fig. 2.30, the DataType hierarchy for the built-in DataTypes and some simple
DataTypes is shown. Since the handling of the built-in DataTypes is defined by
the OPC UA specification, there is no need to add additional information about
these DataTypes into the Address Space. The handling of the simple DataTypes is
defined by their supertypes. In Sect. 2.8.5, we will describe the characteristics of
some of the built-in DataTypes having a special handling, like NodeId and Local-
izedText.

Fig. 2.30 DataType hierarchy for built-in and simple DataTypes

Enumeration DataTypes are identified in the DataType hierarchy as subtypes of
the abstract DataType Enumeration. Since enumeration DataTypes are always
handled as Int32, the only additional information needed in the Address Space is
the mapping of the discrete set of named values to the integer values. Therefore, a
standard Property called EnumStrings is added to the DataType Node holding an
array of LocalizedText. Each integer value can be mapped to an entry in the array.

632.8 DataTypes

2.8.2 Built-in and Simple DataTypes

2.8.3 Enumeration DataTypes

Abstract base type

DataType

BaseDataType

Boolean

ByteString DateTime

DataValue

DiagnosticInfo

ExpandedNodeIdGUID NodeIdLocalizedTextQualifiedName

String XMLElementNumber

Abstract type

Integer UIntegerDouble Float

SByte

Int16

Int32

Int64

Byte

UInt32

UInt64

Abstract

Abstract

Some simple DataTypes

DurationLocaleIdImage

Abstract
(Simple DataTypes
can be defined as
Abstract)

UtcTime

ImageBMP

ImageJPG ImageGIF

ImagePNG

UInt16

In Fig. 2.31, this is exemplified by a user-defined enumeration DataType called
MotorStatus. The DataType Node has a Property called EnumStrings containing
an array of LocalizedText with the discrete set of named values. Variables using
this DataType provide a zero-based Int32 value that points into the array, as, for
example, the Variable Status of Motor1 in Fig. 2.31.

Fig. 2.31 Example of an Enumeration DataType

Structured DataTypes are the most powerful and also the most complicated
DataTypes. They are always subtypes of the abstract DataType called Structure.
DataTypes are encoded by the sender and decoded by the receiver. This is also
done for built-in DataTypes, but here the encoding is well defined by the OPC UA
specification. But for structured DataTypes, the handling on the wire is not
defined. Thus for each structured DataType it has to be defined how they are
encoded. Servers have to provide this information, so that clients can decode the

write values to the server. Before we go into details, let us take a look on how this
works. In Fig. 2.32, you can see OPC UA Client1 connected to an OPC UA server
using OPC UA Binary as data encoding (see Sect. 6.2 for details). Client1 requests
data (1.1). The server gets this data from its data source in an internal format and
converts it to OPC UA Binary (1.2). Then it sends the encoded data to the Client1
(1.3). Client1 has to decode the data into its internal format to make use of it (1.4).

data encoding. Client2 requests the data (2.1) and the server uses its internal for-
mat and encodes the data (2.2). But in that case the data is encoded into OPC UA

The handling is similar for Client2 connected to the OPC UA server using XML

data when they receive this information and can encode the data if they want to

64 2 Information Modeling: Concepts

2.8.4 Structured DataTypes

Abstract base type BaseDataType

Enumeration

User-defined
Enumeration

MotorStatus

Abstract

EnumStrings

Motor1

Status
Attribute
DataType = MotorStatus
ValueRank = Scalar
ArrayDimensions
Value = 1

Attribute
DataType = LocalizedText
ValueRank = OneDimensionalArray
ArrayDimensions = {3}
Value = { „ON“,

„OFF“,
„Starting“ }

Uses MotorStatus
DataType

Points into the Array
of the EnumStrings,
Value 1 means „OFF“

Fig. 2.32 Encoding and decoding data

XML format and sent that way to the client (2.3). Client2 must decode these data
into its internal format (2.4). Thus you can see that there are two encodings used
depending on the data encoding of the connection.

The above described scenario is used for all built-in DataTypes and thus also
for enumeration and simple DataTypes. The encoding of each built-in DataType is
defined for binary and XML in [UA Part 6]. For structured DataTypes, the encod-
ing is not defined and thus has to be provided by the server providing those
DataTypes. Looking at the above described scenario, it seems like the server has
to provide an XML encoding and a binary encoding for each structured DataType.
This is desirable but not required. It is also possible to send a XML encoded value
via a binary encoded connection and vice versa. Thus a server only has to provide
one encoding that can be used in both data encoding choices of connections. The
possibility to use a different encoded value in connections allows another scenario.
For specific clients and servers both using the same internal format for their data,
it may be desirable to use that format on the wire as well in order to reduce the
effort of encoding and decoding data. OPC UA offers this possibility by allowing
servers to provide and clients to choose additional encodings. The scenario is out-
lined in Fig. 2.33. Here, the client requests the data (1.1) and the server can get its
internal data without encoding them (1.2). When sending them (1.3) they are
embedded in an encoded message and can directly be used by the client without
decoding them (1.4).

Fig. 2.33 User-defined encodings

652.8 DataTypes

Please be aware that it is not necessarily a good idea using a specific encoding.
Independent of the interoperability problems, the performance may decrease when
the amount of data sent becomes bigger than, for example, the same data encoded
in OPC UA Binary. The performance gained by getting rid of the encoding and
decoding may be lost two times in the transport of more data on the wire. Thus
this is a very special use case that should be avoided. It is expected that specific
standard Information Models may need this feature, although it turned out so far
that is not used at the moment (to the best knowledge of the authors).

After this long side-discussion how encoding works (there are more details in
Sect. 6.2), let us see what this means for structured DataTypes. Structured Data-
Types can provide several encodings, and a concrete structured DataType must
provide at least one encoding. The encoding must be provided by the server in the
Address Space in order that clients can get the information about the encoding.
Thus the DataType Node representing a structured DataType points to DataType-
Encoding Objects representing the encodings (see Fig. 2.34 for an example). The
NodeId of such an Object is sent together with each value on the wire and so the
receiver knows what encoding was used by the sender. Clients can choose what
encoding they want to receive for a concrete value and can also leave this open to
get the default encoding. Therefore, two BrowseNames are defined: “Default
Binary” and “Default XML,” both with the NamespaceIndex 0 (see Sect. 2.8.5 for
details on Namespaces). A concrete structured DataType must reference at least
one of those. If both are provided, “Default XML” is used as default for a connec-
tion using XML data encoding and “Default Binary” for a connection using OPC
UA Binary. If only one is provided, this is used as default in both cases.

Of course, the client needs to get the information how the encoding is working.
Therefore, the server provides a DataTypeDictionary Variable containing the
information about the encoding of several DataTypes. This can become a large
amount of data and typically a client should read a DataTypeDictionary once and
cache it persistently. When reconnecting to a server, clients need only to check if
the information has changed12 and only then need to update the cached informa-
tion. For each DataType stored in the DataTypeDictionary, a DataTypeDescrip-
tion Variable is exposed having a pointer into the DataTypeDictionary to the
DataType. In Fig. 2.34, this is exemplified by MyTypeDictionary, containing the
encoding information of MyType1 and MyType2. In addition to the pointer into a
DataTypeDictionary, a DataTypeDescription can provide the optional Property
DictionaryFragment directly containing the encoding information. This is useful
when the DataTypeDictionary becomes large and some clients do not want to read
the whole dictionary but only information about some DataTypes. In Fig. 2.34,
you can see such a Property using OPC Binary to define the encoding of the
DataType MyType1 having two integers.

12 There is a standard Property called DataTypeVersion, indicating if the information has

66 2 Information Modeling: Concepts

changed. While the Value of that Property has not changed, clients can use their cached version.

Fig. 2.34 Example of a structured DataType

Since a DataTypeEncoding represents a concrete encoding, it points to a Data-
TypeDescription Variable. This is an indirection; the pointer into the DataType-
Dictionary is not directly stored in the DataTypeEncoding. It is done since several
DataTypeEncodings may choose the same DataTypeDescription as you can see in
Fig. 2.34. You can think of the DataTypeEncoding Object as a proxy Object that
is only used to put some information (in that case name and NodeId) into a Refer-
ence (see Sect. 3.3.8 for details on proxy Objects).

Finally the server has to specify how the DataTypes are defined inside the
DataTypeDictionary. The “how” is specified by the DataTypeSystem. The Data-
TypeSystems predefined by the OPC UA specification are OPC Binary defined as
an Appendix in [UA Part 3] and W3C XML Schema defined in [W3C04a] and
[W3C04b]. However, servers may use additional DataTypeSystems to define spe-
cific encodings for their DataTypes. When the server provides only those encod-
ings – also as the default encodings – they cannot expect that generic clients are
able to interpret those data. The format of the pointer into the DataTypeDictionary
used by the DataTypeDescription depends on the DataTypeSystem. For OPC
Binary it is the name of the data type, for XML Schema it is an XPath expression
pointing to a schema element.

672.8 DataTypes

BaseDataType Structure

User-defined
Structure

MyType1

Abstract

MyType1Description:
DataTypeDecriptionType

OPC Binary :DataTypeSystemType

MyTypeDictionary :DataTypeDictionaryType

Attribute
DataType = ByteString
ValueRank = Scalar
Value = {„...
<opc:StructuredType Name="MyType1">
 <opc:Field Name="f1" TypeName ="opc:Int32"/>
 <opc:Field Name="f2" TypeName ="opc:Int32"/>
</opc:StructuredType>
<opc:StructuredType Name="MyType2">
...“ }

Attribute
DataType = ByteString
ValueRank = Scalar
Value = {„MyType1“ }

MyTypeDictionary:
DataTypeDictionaryType

Default Binary:
DataTypeEncoding

HasEncoding

HasDescription

UA Binary:
DataTypeEncoding

HasEncoding

HasDescription

MyXMLTypeDescription :
DataTypeDecriptionType

Default XML:
DataTypeEncoding

HasEncoding

HasDescription

Can be used
by several
Encodings

DictionaryFragment :PropertyType
Attribute
DataType = ByteString
ValueRank = Scalar
Value = {„
<opc:StructuredType Name="MyType 1">
 <opc:Field Name="f1" TypeName ="opc:Int32"/>
 <opc:Field Name="f2" TypeName ="opc:Int32"/>
</opc:StructuredType >“ }

Optional property
providing only
definition of one
DataType

XML Schema:
DataTypeSystemType

MyType2Description:
DataTypeDecriptionType
Attribute
DataType = ByteString
ValueRank = Scalar
Value = {„MyType2“ }

be explained to understand the usage of them.

mental DataType used in various places to address a Node. The NodeId is a built-
in DataType. However, there is a structure behind this DataType as described in
Fig. 2.35. The first part of the NodeId is the NamespaceIndex, followed by an

be a numeric value, a GUID, a string, or an opaque value (byte string). Together
with the NamespaceIndex it uniquely identifies a Node in an OPC UA server.
Obviously the length of a NodeId depends on the concrete value of the identifier
and the IdentifierType. NodeIds that are used very often like DataType NodeIds
and DataTypeEncoding NodeIds should use a small NodeId, preferable a numeric
one. The Service RegisterNodes allows the server to translate a relatively long
NodeId to a short NodeId that will be used by a client several times (see Chap. 5
for details).

Fig. 2.35 Structure of NodeId

The NamespaceIndex of the NodeId (and also the QualifiedName) is intro-
duced for optimization purposes. The NamespaceIndex is used instead of a Name-
space URI like “http://opcfoundation.org/UA/,” the Namespace URI of OPC UA.
The Namespace URI is used in combination with the identifier to create unique
IDs in the Address Space of an OPC UA Server. The Namespace URI identifies
the naming authority defining the identifiers. Naming authorities are the OPC
Foundation, other organizations defining standard Information models, server
vendors, or systems using an OPC UA server to expose their information.

The NamespaceIndex is a pointer to the NamespaceArray provided by each
OPC UA server. Thus a client only needs to read the NamespaceArray once and
later on only uses small integer values instead of large string values in NodeIds.
Using the Namespace URI instead of the NamespaceIndex in the NodeId would
lead to a huge overhead. NodeIds are used very often in Service calls since they
are used to address Nodes. In Fig. 2.36, an example is shown how the Name-
spaceIndex is used.

68 2 Information Modeling: Concepts

2.8.5 Specific Built-in DataTypes

After going through different kinds of DataTypes where most can be used to create

We will not go into details of how Int32, Boolean, or Double are represented.
However, some built-in DataType use internally a specific structure that needs to

enumeration defining the data type of the last part, the identifier. The identifier can

user-defined DataTypes, let us take a shorter look at some built-in DataTypes.

The first built-in DataType we are considering is the NodeId. It is a very funda-

Fig. 2.36 NamespaceArray and NamespaceIndex

they are connected. However, new entries may be added and thus clients should
subscribe to changes of the NamespaceArray. When a client disconnects from the
server, it does not have any guarantees on the NamespaceArray. The Name-
spaceArray may have changed completely, including the order of the array. Thus a
Namespace URI represented by index “3” could be represented by index “5” when
the client reconnects. Therefore, clients shall not persist a NodeId or Qualified-
Name without storing the Namespace URI as well. There is one exception to that
rule: the NamespaceIndex “0” is always reserved for the Namespace URI of
OPC UA.

Let us take a look at the built-in DataType ExpandedNodeId that uses a concept
similar to the NamespaceIndex. The ExpandedNodeId is mainly used as Service
parameter, but in some use cases it is also reasonable to use it as value of a Vari-
able, like for AuditEvents (see Sect. 9.5). An ExpandedNodeId allows referencing
Nodes of another OPC UA server. An example is some vendor contact informa-
tion stored only in one company-wide OPC UA server but referenced from several
other OPC UA servers. TypeDefinitions could also be managed in one server and
referenced by several other servers using those types (i.e., having instances of
those types). Therefore, the ExpandedNodeId has a similar structure as the NodeId
with two additional fields (see Fig. 2.37). The NamespaceURI field allows storing
the real Namespace URI if it is not in the NamespaceArray of the server providing
the ExpandedNodeId. Second, the ServerIndex points to the server actually
managing the Node. Like the NamespaceIndex, the ServerIndex points into the
ServerArray. The same constraints as for the NamespaceArray apply. The Server-
Index 0 is reserved for the local server, that is, if the ServerIndex of an Expanded-
NodeId is 0 then a local Node is referenced.

Fig. 2.37 Structure of ExpandedNodeId

692.8 DataTypes

Clients have the guarantee that no entry of the NamespaceArray is deleted while

The QualifiedName DataType is used as BrowseName. Like the NodeId it has
a NamespaceIndex following the same rules as in the NodeId. In addition, it con-
tains a String representing the name that is qualified with the Namespace. In Fig.
2.38, this structure is summarized.

Fig. 2.38 Structure of QualifiedName

The LocalizedText DataType provides a localized text. The structure is exposed
in Fig. 2.39. It contains the localized text as string and the identifier of the locale
as second String following the RFC 3066 [Al01].

Fig. 2.39 Structure of LocalizedText

Although the structure of LocalizedText is relatively simple, there are some
thoughts to follow when dealing with LocalizedText. When a client connects to a
server, it specifies a prioritized list of requested locales. The server returns all val-
ues of the type LocalizedText based on that list. It tries to return the value using
the first locale in the list, if that is not available, the next, etc. If no locale specified
by the client is available, the server will use the default locale that is available for
a value. Thus a client should always check the returned locale of a value of the
type LocalizedText.

Writing a LocalizedText value is a bit more complicated. By writing a Local-
izedText the client only changes the value for the locale specified in the value to
be written. This can lead to the situation that a value is changed in one locale but
has still the old value in another locale. To avoid this situation, the following rules
apply for writing LocalizedText.

1. Writing a value with a concrete locale will either change an existing value, or
the value with the locale is added when not available before.

2. When a null text is written together with a concrete locale, the value for the
locale is deleted.

3. By writing a null value for text and locale, all entries for all locales are deleted.

These rules allow clients who want to change the values for all locales first to
delete all values by writing null values and afterwards adding the desired values
for all desired locales (this can be done in one Write Service call, see Chap. 5).

70 2 Information Modeling: Concepts

The encoding for built-in, simple, and enumeration DataTypes is fixed and optimized
in the OPC UA protocol. Applications should use those types when it is appropri-
ate. However, to support complex user-defined types structured DataTypes must
be used. Structured DataTypes allow user-defined encodings. But they have a
small overhead on the wire because the DataTypeEncoding NodeId is send with
each value. Simple DataTypes are put on the wire like their built-in DataTypes and
are thus optimized for transport. On the other hand, they are not type-save, that is,
a client receiving that value cannot distinguish them from the built-in DataType.
The DataType information can be gained from the DataType Attribute of the
Variable, but in case the Variable only defines a supertype and values use sub-

DataType Money, where individual values would be of the subtypes US-Dollar,

using the subtypes would not be recognized by the server. For those scenarios it is
required to use structured DataTypes where the type information is sent with each
value.

What’s allowed and what’s not?
Servers should expose the DataType Nodes in their Address Space, but that
is not a requirement. Thus clients must be able to deal with the fact that not
every server provides them.
Variables may point to abstract DataTypes. Concrete values must always be
of a concrete DataType. It is allowed that concrete values are of subtypes of
the DataType specified by a Variable. Thus clients must deal with the fact
that they receive not exactly the DataType specified by a Variable but a sub-
type of it. For built-in DataTypes this makes no difference, but for structured
DataTypes the structure of subtypes can be different.
Clients can choose what encoding they want to receive for structured
DataTypes independent of the data encoding chosen when establishing a
connection.

2.9 Views

We are finally coming to the last NodeClass of OPC UA, the View. A View is
used to restrict the number of visible Nodes and References in a large Address
Space. By using Views servers can organize their Address Space and provide
views on it tailored to specific tasks or use cases. For example, the server can pro-
vide a View for maintaining the server. For that task, only Nodes containing main-
tenance information are important and other Nodes can be hidden.

712.9 Views

2.8.6 Summary on DataTypes

types, this information is lost. An example is a Variable providing the simple

Euro, etc. The client would not be able to recognize the subtypes and sending values

There are two ways to look at Views in OPC UA:

1. A View is represented as a Node in the Address Space. This Node gives an
entry point into the content of the View. All Nodes that are part of a View must
be accessible starting from the View Node. However, they do not have to be
directly referenced by the View Node; they can also be indirectly referenced by
other Nodes that are connected to the View Node.

2. The NodeId of the View Node can be used as filter parameter when browsing
the Address Space. By using the View as filter, servers may restrict the Refer-
ences to other Nodes. Thus clients browsing the Address Space in the context
of a View will only see an excerpt of the Address Space. Be aware that the View
context is only used in the Services when browsing and querying the Address
Space, not when reading or writing a concrete Node.
By combining those two ways of how to look at Views, you get the full picture.

When you want to access the content of a View you typically start at the View
Node and then browse in the context of the View by using the View as a filter. Let
us take a look at an example. In Fig. 2.40, you can see an Address Space with some
devices containing maintenance information. A View called Maintenance refer-
ences all devices and when browsing in the context of the View only the Refer-
ences exposed in bold are returned. A user responsible for maintenance can start

mation. It is not required that the user starts browsing on the View Node. He could
also come to the device using a different starting Node (or has the NodeId of the
device available) and thus starts browsing in the context of the View from the
device Node.

There are several different ways of how to use Views to organize the Address

Fig. 2.40 Example of an View organizing the Address Space

at the View Node and browse in the context of the View to get all relevant infor-

Space. The first approach was just shown in Fig. 2.40. Here, there is one organization

72 2 Information Modeling: Concepts

of Nodes and the View gives an additional entry point into those Nodes hiding some
information. Another approach is that all Nodes are organized beneath View Nodes
and thus clients always access the Address Space starting from a View Node. This
is exemplified in Fig. 2.41, where the Views Engineering and Online are the only
entry points into the Address Space. Not all clients may be capably of browsing in
the context of a View. In that case they should treat View Nodes as Folder Objects
to allow accessing those Address Spaces.

Of course, it is possible to combine both approaches, as pointed out in Fig. 2.42.
Here, the Engineering and Online Views are the entry points into Address Space and
the Maintenance View is used as additional View pointing inside those other Views.

Fig. 2.41 Example of Views as only entry points into the Address Space

Fig. 2.42 Combined usage of Views in the Address Space

732.9 Views

In Table 2.11, the additional Attributes of the View NodeClass are summarized.
When the ContainsNoLoops Attribute is set, clients can use this information to opti-
mize their display since they know that no loop will occur. When the View is an
EventNotifier, it is guaranteed that the Events of all EventNotifier Objects that are
part of the View are also sent through the View Node.

Table 2.11 Additional Attributes for DataTypes

Attribute DataType Description
Containing all the common Attributes defined in Table 2.1
Con-
tainsNoLoops

Boolean This Attributes indicates whether the Nodes
contained in the View do span a nonlooping
hierarchy when following hierarchical

EventNotifier Byte This Attribute represents a bit mask that
identifies whether the View can be used to
subscribe to Events and whether the history

Views can be used to track different versions of an Address Space. There is a
ViewVersion Property that is updated whenever the content of the View changes.
Content here means References and Nodes belonging to the View, not the Attri-
butes of those Nodes. Clients can access different Versions of the View. Details
are defined in Sect. 2.11.3.

What’s allowed and what’s not?
In Version one of OPC UA Views are always server-defined, that is, there is
no (standard) way for a client to define Views. Clients can only use the Views
provided by the server.
Views cannot be combined, that is, a client can only browse in the context of
one View at the same time. However, internally servers can implement their
logic that a View is based on another View. But this information cannot be
exposed in a standard way to the client.

2.10 Events

Events are received via notifications when subscribing to an EventNotifier. They
are typically not visible in the Address Space (exceptions are Alarms and Condi-
tions – see Sect. 4.9). Events are typed and based on the type an Event has differ-
ent fields. OPC UA defines a base hierarchy of EventTypes that can be extended.
Therefore, it is required that a server exposes its EventType hierarchy in the
Address Space so clients can retrieve this information. Using the information
about the EventType hierarchy, clients can create filters on what Event fields they
are interested in as well as what kind of Events they want to receive. This is illus-
trated in Fig. 2.43.

74 2 Information Modeling: Concepts

References

of Events is accessible and changeable

Fig. 2.43 Subscribing to Events using the EventType hierarchy

Types in the Address Space, no new NodeClass is introduced but the NodeClass
ObjectType is used. This makes sense for several reasons.

1. There is no additional information needed to expose EventTypes and thus
ObjectTypes are a reasonable approach supporting inheritance and Variables
used to expose the available fields of Events.

2. No additional NodeClass has to be introduced and clients can use their mecha-

3. Some Events will be represented as Objects in the Address Space, and thus
ObjectTypes have to be created for them anyhow.

For normal EventTypes, that is, EventTypes of Events that are not visible as
Nodes in the Address Space, abstract ObjectTypes are used. OPC UA defines the

In Fig. 2.44, the BaseEventType is shown with its Variables and some example
EventTypes as well to point out the possibilities of EventTypes. The BaseEvent-
Type uses Properties to expose its field directly beneath it. This is expected for

expose complex Variables and to use Objects to group Variables as shown in the
example EventType MaintenanceType. The type information of an Event defines
categories of Events and can be used for filtering Events. EventTypes without
additional InstanceDeclarations can be introduced for that purpose. A client may,
for example, subscribe to all Events of type CriticalMaintenanceEventType.

Another mechanism to group Events is by providing a hierarchy of EventNoti-
fiers. The ReferenceType HasNotifier is used for that purpose. When an EventNo-
tifier references another EventNotifier, it is guaranteed that all Events exposed by
the referenced EventNotifier are exposed by the referencing EventNotifier as well.

752.10 Events

Details on how Event filers work can be found in Chap. 5. To represent Event-

nisms they have to handle ObjectTypes to also handle EventTypes.

most EventTypes. However, it is allowed to use Data Variables, for example, to

BaseEventType; all other EventTypes must inherit directly or indirectly from it.

Fig. 2.44 EventType hierarchy

Fig. 2.45 Hierarchy of EventNotifiers

76 2 Information Modeling: Concepts

Events are exposed by EventNotifiers, but the source of the Event that actually
generated the Event is not necessarily the EventNotifier. The source of an Event is
exposed in fields of the Event. It is expected that the source is typically exposed as
Node in the Address Space, although that is not required. If the source is exposed
as a Node, EventNotifier can reference those Nodes using the HasEventSource
Reference. This completes the EventNotifier hierarchy, as exemplified in Fig. 2.45.

BaseEventType

DaylightSavingTime

Message

Severity

TimeZone

ReceiveTime

Time

SourceTime

SourceNode

EventType

EventId

Typically Properties
are used to expose
Event fields

Is provided as Property so
Clients can get this as
Event field
(and filter based on the
type information)

MaintenanceType

CriticalMaintenanceType UncriticalMaintenanceType

Subtypes without additional
InstanceDeclarations can be
used to categorize Events

Report

Author

ReportText

DataVariables are
allowed as Event
fields, e.g. to expose
complex Variables

MaintenanceValues

Objects can be used
to group event fields
(but do not represent
event fields)

Val1

Val2

There is one EventNotifier, which logically references all other EventNotifiers
with a HasNotifier Reference, the Server Object. A client can subscribe to that
Object to get all Events of the server (except for Events bound to Views like
ModelChangeEvents, see Sect. 2.11.3).

Finally, a TypeDefinition Node can already expose what types of Events may
be generated by instances of it by referencing from the TypeDefinition Node
to the EventType using a GeneratesEvent Reference. It is not guaranteed that
instances will generate Events of the referenced EventType, but it is expected in
most cases. For example, there may be a device that is intended to generate a
Maintenance Event, but the concrete hardware is built in a way that this is not
happening as long as the system is running.

What’s allowed and what’s not?
It is required to expose the EventType hierarchy. It is not required to expose
an EventNotifier hierarchy or GeneratesEvent References in the TypeDefini-
tions.
EventTypes are modeled as ObjectTypes and thus must follow the rules of
ObjectTypes (like unique BrowsePath for InstanceDeclarations, or inheri-
tance of InstanceDeclarations). InstanceDeclarations of the NodeClass Vari-
able define the fields of the Event. Here, the same rules apply as for compo-
nents of an instance based on the ObjectType. If the whole BrowsePath has
Mandatory InstanceDeclarations, the field must be provided in the Event. If
it is Optional, it does not have to be provided.

2.11 Historical Access

There are three facets of dealing with history in OPC UA. First of all there is the
history of current data. This answers questions like: What was the value of the
temperature sensor in the last three days? This is similar to what was captured in
OPC HDA. Second, there is the history of Events. It answers questions like: What
have been the Events in the last hour? This was not captured in Classic OPC. The
third facet is the history of the structure of the Address Space. This answers ques-
tions like: How has the structure of the Address Space changed the last two weeks?
We will take a short look into those three facets in the following subsections.

OPC UA allows accessing and changing the history of the Value Attribute of a
Variable. Special Services are introduced for that purpose (and for accessing event-
related history as described in the next section). In Chap. 5, it is described how
these Services are working. The OPC UA Address Space Model has three differ-
ent Attributes on Variable Nodes dealing with the history of the Value Attribute.

772.11 Historical Access

2.11.1 Historical Data

The AccessLevel and the UserAccessLevel indicate whether the history is accessible
and changeable, the first one in general and the second one taking the access rights
of the current connected user into account. These Attributes indicate whether some
history is available, but not if currently history is collected. Therefore, the Histor-
izing Attribute is used, indicating whether the history is currently collected. All
three Attributes work on the granularity of a Variable. The model is summarized
in Fig. 2.46. In addition to those Variables, there is the possibility to expose (and
allow manipulations) of the configuration of how the data is historized. This is
described in Sect. 4.6.

OPC UA only allows historizing the Value Attributes of Variables. If a server
collects the history of other Attributes and wants to expose that and makes it acces-
sible in the Address Space, the most appropriate way is to create a Property for
each historized Attribute and add those historized Attributes to the Node.

Fig. 2.46 Historical data in the Address Space

The history of Events can be gained from EventNotifiers, that is, Objects and

Device A

Parameter Set
This Object does not
provide any Events

Flow

Attribute:
EventNotifier = „Readable | History | History Update“

Temperature

EngineeringUnit

This View provides Events, including their
histroy. The history cannot be changed.

This Object does not only provide
Events but also the history of Events

Attribute:
EventNotifier = „None“

View1
Attribute:
EventNotifier = „Readable | History“

Since Device A is in View1 it is garanteed
that all Events of Device A are reported by
View1 as well.
But it is not garanteed that the history
provided by Device A is also provided by
View1 since there is no general statement
what history is provided by View1

 Fig. 2.47 Historical data in the Address Space

78 2 Information Modeling: Concepts

2.11.2 Historical Events

Views. The EventNotifier Attribute indicates whether the history of Events can

be accessed and manipulated. It is not standardized how to expose what Events are
historized in an EventNotifier and thus there is also no Historizing Attribute like
on Variables. However, there is the possibility to expose the configuration of how
Events are historized and this can contain that information (see Sect. 4.6 for the
configuration of Event history). In Fig. 2.47, the model of Historizing Events is
shown.

Besides dealing with the history of current data and events, the third facet is about
dealing with changes in the Address Space. Nodes and References in the Address
Space may be added or deleted over time. OPC UA allows clients to track those
changes and to access different versions of the Address Space by referencing dif-
ferent points of time. Please note that this is an optional feature that many servers
will not support.

To track changes of the Address Space, OPC UA supports the NodeVersion
Property and ModelChangeEvents. A server must always support either both,
ModelChangeEvents and NodeVersion, or none of them for a Node. The NodeVer-
sion is a Property on a Node that is updated every time a Reference is added or
deleted from the Node. Please be aware that the relation of a Variable or Vari-
ableType to its DataType is not modeled as a Reference but as an Attribute, which
is considered as a Reference in this case. Thus changes on the DataType Attribute
lead to a changed NodeVersion and to a ModelChangeEvent. The NodeVersion is
provided per Node, that is, clients can cache the References of a Node and as long
as the NodeVersion has not changed they do not need to re-browse the Node.

The ModelChangeEvent is generated in the context of a View (or the Server
Object for the whole Address Space) and allows the tracking of several changes in
one ModelChangeEvent. Clients interested in changes in the Address Space in
general should subscribe for ModelChangeEvents; clients interested in small
excerpts may look at individual NodeVersion changes. In Fig. 2.48, the handling
of NodeVersions and ModelChangeEvents is exemplified. On the left side, you
can see an Address Space before some changes occur. Then, some References are
added and deleted, and on the right side, you can see the new Address Space in-
cluding the updated NodeVersions and the generated ModelChangeEvent. OPC
UA provides the BaseModelChangeEvent only indicating that something has
changed and the GeneralModelChangeEvent containing the changes as well. In
Fig. 2.48, the second type of Event is used indicating the changes as well.

With NodeVersion and ModelChangeEvents it is relatively easy to track changes
of the References. When this feature is not provided by a server, the only possibi-
lity for a client getting information about changes on the References is by periodi-
cally browsing or querying the Address Space.

792.11 Historical Access

2.11.3 Historical Address Space

Fig. 2.48 NodeVersion and ModelChangeEvent to track changes of the Address Space

To access different versions of the Address Space, the browse and query Ser-
vices allow to specify a certain version or a certain point of time of the Address
Space they want to access. This only affects querying and browsing, meaning that
not the concrete Attribute values of a Node are managed in different versions of
the Address Space, but the References and thereby indirectly whether specific
Nodes where accessible in a concrete version of the Address Space. This implies
that clients cannot make a direct connection between the different versions of the
Address Space and the tracking of changes of the Address Space. When clients
access an older version of the AddressSpace, they still only read the current value
of the NodeVersion of a Node, not the value that was valid in the old version of the
Address Space. In Fig. 2.49, different versions of an Address Space are exemplified.
On the left side you can see the References you get when browsing the View in
ViewVersion 1 and on the right side when browsing the ViewVersion 2. As soon
as the content of a View changes, the ViewVersion has to be increased. But like
the ModelChangeEvents, several changes can be captured by increasing the
ViewVersion only once. The ViewVersion Property is different than the NodeVer-
sion Property. Here, also changes in the content of the View are tracked that do
not affect References directly connected to the View Node. For example, when the
Reference from the Maintenance Object to Var3 is deleted from the View, the
ViewVersion must be increased although the NodeVersion Property of the View
Node would not change.

80 2 Information Modeling: Concepts

Fig. 2.49 Different Versions of an Address Space

What’s allowed and what’s not?
Details on how to access and manipulate the history of current data and
events can be found in Chap. 5. How the configuration can be accessed is
described in Sect. 4.6. The rules how to deal with the Attributes described in
this section have already been captured before. The UserAccessLevel must
be a subset of AccessLevel, and Historizing can only be set if the Access-
Level defines access to history. Nodes can provide only the history without
providing current data or current events.
There are no standard ways defined what Events are provided in the Event
history. It can be any subset of the Events accessible by an Event subscrip-
tion, and since the history of Events can be manipulated it can also provide
additional Events. The rules defined for HasNotifier do not apply for the his-
tory of Events.
If a NodeVersion is provided, the ModelChangeEvent must be generated
and vice versa. Address Spaces may only provide NodeVersions for some
Nodes in the Address Space and not for other Nodes.

2.12 Address Space Model and Information Models

The concepts introduced in this chapter build the foundation to model data in OPC
UA. The different NodeClasses with their fixed set of Attributes define the meta
model of OPC UA. In addition to the NodeClasses, some standard Nodes are used
inside the meta model and thus can be seen as part of the meta model as well. In
particular, these are base ReferenceTypes like HasSubtype and base TypeDefini-
tions like PropertyType, but also standard Properties like the Input- and Output-
Arguments of Methods. In terms of OPC UA, the meta model is called Address
Space Model.

812.12 Address Space Model and Information Models

Fig. 2.50 Address Space Model, Information Model, and Data

An OPC UA Information Model uses the concepts of the Address Space Model
to define its own, domain-specific types and constrains as well as well-defined
instances. Finally, the concrete data of a server is created based on the Information
Model as shown in Fig. 2.50.

Typically, a server will support several Information Models where some may
be based on other Information Models. The OPC UA specification already defines
the base Information Model containing base types. Some of those are already part
of the OPC UA meta model, whereas other parts are additional information, for
example, used as entry points into the Address Space of the server or for exposing
diagnostic information of the server. Based on the base Information Model, other
Information Models can be derived for domain specific purposes. Finally the

specific Information Model used by the specific data provided by the server. This
server may extend those to define some server-specific types and thus a server-

82 2 Information Modeling: Concepts

is exemplified in Fig. 2.51. The base Information Model is extended by a Topology
and a Device Information Model. The Device Information Model is extended by

NodeClasses

Object
DisplayName
BrowseName

NodeId
EventNotifier

...

ObjectType
DisplayName
BrowseName

NodeId
IsAbstract

...

ReferenceType
DisplayName
BrowseName

IsAbstract
... ...

Types and Constraints References

Hierarchical
References

HasChild

HasSubtype

Constraint: Method can have Properties
(InputArguments and OutputArguments)

exposing the Arguments

Constraint: A Property must
be referenced by a

HasProperty Reference

BaseObjectType

DeviceType HasSubdevice
Types already use
instances as
InstanceDeclarations PV

Constraint: PV must contain
the primary value

Instances
AllDevices

Device1

PV

Device2

PV

Device3

PV

Organizes

Organizes

Organizes

HasSubdevice

us
es

us
es

us
es

Address Space
Model

(Meta Model)

Information
Model

Data

Defines NodeClasses
and base types and

constraints

Defines types and
constraints and well
defined instances

Concrete instances

Base of every
OPC UA Server

Can be used in
serevel servers

Data of a
specific server

Fig. 2.51 Address Space Model and several Information Models

the vendor-specific Device Information Model containing vendor-specific types
of devices. Finally, the server-specific Information Model extends Topology and
vendor-specific Information Model and is used by the instances of the server. In
the server-specific Information Model, some preconfigured Device Types and
entry points into the Address Space are provided. In Chap. 4, details on standard
Information Models and how to deal with them are given.

2.13 Summary

The OPC UA Address Space is composed of Nodes and References between
them. Nodes are of different NodeClasses for different purposes. Each NodeClass
has a fixed set of Attributes, whereas References do not have Attributes.

832.13 Summary

2.13.1 Key Messages

Address Space Model

Base Information Model

Device Information Model
Topology Information Model

Server - specific Information Model

Vendor-specific
Device Information Model

Data

BaseObjectType

FolderType

ParameterView

DeviceType

ParameterSet

VendorDeviceType

PreConfiguredDeviceType

TopologyType

Topology

Subtopology 1

Subtopology 2

ex
ten

ds
ex

te
nd

s

MyDevice 1

ParameterSet

The base NodeClasses are Objects to structure the Address Space and to provide
Events, Variables containing data in its Value Attribute, and Methods that can be
executed in the server. Using these simple constructs, you can expose all data cur-
rently done with Classic OPC.

Creating detailed TypeDefinitions for Objects and Variables allows provid-
ing much more information in an OPC UA server. Using instances as Instance-
Declarations, complex TypeDefinition can be defined and OPC UA clients can be
programmed with knowledge of those TypeDefinitions. ReferenceTypes allow
specifying semantics for References between Nodes. User-defined DataTypes
allow exchanging complex data in the needed format.

Views can be used to organize an OPC UA Address Space for different tasks,
providing only the needed information for the specific task.

Events are seamlessly integrated into that model by making Objects EventNoti-
fier. The history of events and current data can be accessed on the same places
where the actual data is provided. OPC UA allows tracking changes of the Address
Space using the NodeVersion Property and ModelChangeEvents and it is possible
to access different versions of the Address Space using the ViewVersion.

The OPC UA Address Space defines the meta model of OPC UA. The base
Information Model builds the foundation for creating standard or vendor-specific
Information Models tailored for specific domains.

With these capabilities, OPC UA allows providing simple Address Spaces as
done in Classic OPC as well as Address Spaces with a rich type model exposing
detailed semantics of the provided data.

The Address Space Model is defined in [UA Part 3]; the base types used in the
Address Space are defined in [UA Part 5]. In Appendix A of this book, you can
find a description of the notation used in this chapter. In Appendix B, a summary
of the NodeClasses and their Attributes is given. The base Information Model
including ReferenceTypes that are part of the Address Space Model is provided in
Appendix C.

In the next chapter, we will look at an example how to use the modeling concepts
you just learned in this chapter. Afterwards, we describe some best practice on
how to use those modeling concepts. In Chap. 4, we will take a look at standard
Information Models including the base Information Model and specific Informa-
tion Models for Data Access, Programs, Alarms and Conditions, etc. provided by
the OPC UA Specification. After that chapter, you should know everything about
modeling information in OPC UA and we will take a look at the Services of OPC
UA to see how you can actually access and manipulate your OPC UA data.

84 2 Information Modeling: Concepts

2.13.2 Where to Find More Information?

2.13.3 What’s Next?

3 Information Modeling: Example and Best
Practice

3.1 Overview

In Chap. 2 you learned the concepts of modeling information in OPC UA. In this
chapter we will tighten your knowledge by looking at a concrete example showing
how to apply the concepts. We will start with a simple scenario only exposing
data similar to Classic OPC. Then we will go forward by adding type information,
multiple references, etc. to demonstrate the full power of information modeling in
OPC UA. This already shows a way of how to migrate existing Classic OPC
applications to OPC UA with respect to the modeling. However, in Chap. 10, we
talk about more details on how to migrate from Classic OPC to OPC UA.

In the example, we target an application scenario typical for Classic OPC
applications. However, in the second part of this chapter we will generalize the
example by looking at some general best practices on how to model information in
OPC UA. In the example, we will not consider standard Information Models other
than using types of the base Information Model. In Chap. 4, we will introduce
standard Information Models. When modeling your information, you should con-
sider using those Information Models and extend them rather than creating your
own Information Model from scratch when this is appropriate in your domain.

The notation used in the example to expose details on the Information Model is
described in Appendix A of this book. The Appendix does not only describe the
notation but also discusses its relation to UML.

3.2 Example

The application scenario of the example is described in the following section.
Afterwards, the modeling of this example in OPC UA is discussed. It is separated

the other extending that simple application to provide the full power of OPC UA.

The application we want to model is an air conditioner similar to the one you
might find in your office or at home. We do not want to go into details on how an
air conditioner is working internally, but focus on the external communication and
how to model that information. In Fig. 3.1, a typical air conditioner application is

3.2.1 Application Scenario

DOI: 10.1007/978-3-540-68899-0_3,

in two sections, one describing a simple application comparable to Classic OPC and

85W. Mahnke et al., OPC Unified Architecture,
© Springer-Verlag Berlin Heidelberg 2009

shown. There is a control module in which the controller application is running.
The controller provides two set points to define the requested temperature and
humidity. In addition, you can turn the air conditioner on or off. It offers the actual
temperature and humidity as well as the power consumption, the fan speed, and
the cooler state as measured values. It provides events generated internally as well
as externally from the devices it is using. An internal event is, for example, gener-
ated if the communication to a device fails; an external event is, for example, for-
warded from the fan, indicating a maintenance request. The controller provides a
short-term history of measured temperature and humidity also used internally to
optimize the process. We do not show details on the internal logic of the control-
ler, but you can see that it uses some sensors on the left hand and some actors on
the right hand. Using Classic OPC, you would have a PC-based client on top of
the control module using a proprietary protocol talking to the control module and
providing the data as a Classic OPC server. Clients to this server can run on the
same machine as on other machines using DCOM to communicate.

Fig. 3.1 Air conditioner application scenario

There are different ways how to migrate this scenario to OPC UA. You could
provide an OPC UA server on the client machine targeting the Classic OPC
server(s), you could natively access the control module, or you could implement
your OPC UA server on the control module. In the following, we do not go into
those deployment issues but focus on the information modeling of this scenario.

86 3 Information Modeling: Example and Best Practice

In Classic OPC, you would provide an OPC DA server allowing to access the
measured values and to set the set points. An OPC A&E server would provide
the events and an OPC HDA server the history of the temperature and humidity.
The history of events could not be provided in a standard way. We will focus on
current data to expose how to model the above described data.

In OPC DA, you would provide a structure as shown on the left hand of Fig. 3.2.
As long as you only want to provide the similar information in OPC UA, your
Address Space would look very similar as shown on the right hand in Fig. 3.2.
Here, only the BaseObjectType, the BaseDataVariableType, and the PropertyType
are used and the standard HasComponent and HasProperty References.

Fig. 3.2 Simple mapping to OPC DA and OPC UA

To extend this scenario to events and history, you would make the Controller
Object an EventNotifier and change the AccessLevel Attribute of the Temperature
and Humility Variables supporting history as well. The history of events can also
be made available on the Controller Object. In addition, you need to provide the
configuration of the historical data by adding this information to the Nodes. How
this can be done is described in Sect. 4.6.

If you look at this scenario, you can see that you provide the same information
as in Classic OPC. Using Methods make things a little bit clearer although this is
not required in the described scenario. You can provide the history of events,
and in general events and history are integrated to the current data and not sepa-
rated in different servers as done in Classic OPC. You have your secure and

3.2.2 Simple Scenario: Similar to Classic OPC

873.2 Example

reliable communication, and your OPC UA applications can run on different
platforms, including the control module. However, the information is still the
same. On the one hand, this means that you do not need to put in any additional
effort in providing more information, but on the other hand, you are not using the
full power of OPC UA regarding information modeling. The above described
modeling of information in OPC UA is a compliant application of OPC UA and
may be sufficient for your needs. Nevertheless, in the following section we will
see what the next steps regarding the modeling of information can be and how this
can help your applications.

The first step adding additional information in the above described model is to add
type information. Before we go into details, let us extend our scenario by motivat-
ing the usage of types. For example, you do not only have one controller for one
room, but you are in an office building having several rooms. All of them have air
conditioners, some controllers even run on the same control module as shown in
Fig. 3.3.

Fig. 3.3 Multiple air conditioner

3.2.3 Advanced Scenario: Providing Full Power of OPC UA

88 3 Information Modeling: Example and Best Practice

However, they all work the same way and your client applications always look
the same for each room. Thus the client application should be developed only once

done by creating a TypeDefinition for the controller and program your client appli-
cation with knowledge of the TypeDefinition. Creating a type for the controller is
very simple by using the structure we have seen earlier and put them under an
ObjectType Node instead of an Object. All Nodes in the structure reference a

ModellingRule for all InstanceDeclarations. This is shown in Fig. 3.4. Now your
client application can be programmed by using the TypeDefinition. You use the

the knowledge about the InstanceDeclarations.

Fig. 3.4 TypeDefinition for the controller

To expose the power of using type hierarchies, we extend the example des-
cribed earlier. Let us assume your office building does not only have an air condi-
tioner, but also a furnace. A furnace is shown in Fig. 3.5. Again, we do not want to
go into technical details but focus on the provided data. The controller of the fur-
nace provides the temperature, the power consumption as well as the gas con-
sumption by measuring the gas flow. It provides the state of the burner and allows
setting the temperature and turning it on and off. It uses a temperature sensor to
measure the temperature, a wattmeter to measure the power consumption, and a
flow transmitter to measure the gas consumption. Thus in a way it is very similar
to the controller of the air conditioner. It provides the measured temperature and
the temperature can be controlled by a set point; it can be started or stopped. The

become InstanceDeclarations. In the example, it makes sense to use the Mandatory

and be applied to all air conditioner controllers. In OPC UA, this can easily be

TranslateBrowsePathsToNodeIds Service to access the instance Nodes based on

ModellingRule, and since they are referenced by a TypeDefinition Node they

893.2 Example

Temperature
::BaseDataVariable

Temperature Setpoint
::BaseDataVariable

Humidity
::BaseDataVariable

Humidity Setpoint
::BaseDataVariable

Cooler State
::BaseDataVariable

Fan Speed
::BaseDataVariable

Start

Stop

Power Consumption
::BaseDataVariable

EngineeringUnit
::PropertyType

EnumStrings
::PropertyType

Controller1

Temperature
::BaseDataVariable

Temperature Setpoint
::BaseDataVariable

Humidity
::BaseDataVariable

Humidity Setpoint
::BaseDataVariable

Cooler State
::BaseDataVariable

Fan Speed
::BaseDataVariable

Start

Stop

Power Consumption
::BaseDataVariable

EngineeringUnit
::PropertyType

EnumStrings
::PropertyType

AirConitionerController

Controller2

Temperature
::BaseDataVariable

Temperature Setpoint
::BaseDataVariable

Humidity
::BaseDataVariable

Humidity Setpoint
::BaseDataVariable

Cooler State
::BaseDataVariable

Fan Speed
::BaseDataVariable

EngineeringUnit
::PropertyType

EnumStrings
::PropertyType

Controller3

Temperature
::BaseDataVariable

Temperature Setpoint
::BaseDataVariable

Humidity
::BaseDataVariable

Humidity Setpoint
::BaseDataVariable

Cooler State
::BaseDataVariable

Fan Speed
::BaseDataVariable

Power Consumption
::BaseDataVariable

EngineeringUnit
::PropertyType

EnumStrings
::PropertyType

TypeDefintion

Instance

Instance

Same structure
as TypeDefinition

only the common information provided by both controllers.

Fig. 3.5 Adding a furnace to the application scenario

Fig. 3.6 Type hierarchy for different controller

90 3 Information Modeling: Example and Best Practice

power consumption is measured in both cases. So when you think about it, there

make it possible for client applications to be more general by using some base
TypeDefinition and be programmed based on those supertypes. The type hierarchy
that could be created in our advanced scenario is exposed in Fig. 3.6. On top we
have an abstract base type for controllers that could, for example, be referenced

In OPC UA, you can use a type hierarchy to expose that information and

 by control modules. Then we have an abstract temperature controller providing

may be client applications that can handle both controllers in the same manner using

Temperature Setpoint
::BaseDataVariable

Humidity
::BaseDataVariable

Humidity Setpoint
::BaseDataVariable

Fan Speed
::BaseDataVariable

Start

Stop

Power Consumption
::BaseDataVariable

AirConitionerController

Abstract TypeDefinition
containing all common parts

Clients can be programmed
against this type

ControllerType
Abstract base
type for all
Controllers

TemperatureController

Temperature
::BaseDataVariable

State
::BaseDataVariable

FurnaceController

Gas Consumption
::BaseDataVariable

EnumStrings
::PropertyType

State
::BaseDataVariable

EnumStrings
::PropertyType

State Variable is overridden to
add States in the EnumString

Controller the humidity and the humidity set point. Applications focusing only on

at runtime.

information could be useful for client applications and thus should be provided by
your OPC UA server. In the description of this scenario, we have seen that beneath

ler (actors). From the maintenance point of view as well as from the engineering
point of view (e.g., when you engineer your controller), this is important informa-
tion. In our example, we will focus on the maintenance use case, although activi-
ties have started from PLCopen for an OPC UA Information Model for IEC
61131-3, the only global standard for industrial control programming (see Chap. 4).

The devices shown earlier do not necessarily belong to one single controller –
they can, for example, also be used by several controllers. In the end, the devices

Fig. 3.7 Devices in the Address Space

can span a hierarchy independent of the controllers as shown in Fig. 3.7. On the

913.2 Example

state. The FurnaceController adds the gas consumption and the AirConditioner-

the controller devices are providing data (sensors) or are controlled by the control-

the temperature can be programmed based on the abstract TemperatureController

all the common features of a temperature controller, like the measured temperature

and use concrete instances of the FurnaceController or AirConditionerController

FurnaceController is a subtype of the TemperatureController inheriting the
and a set point as well as the start and stop methods. It already contains a state.

base features. It is overriding the state to add additional states to the Enum-

The AirConditionerController inherits the same features without overriding the

After looking at the use of types and inheritance, let us look what additional

Strings.

left hand, a hierarchy representing the communication to the devices is shown.
The hierarchy on the right hand side provides the topology of your building. Of
course, the devices are connected to the controllers as well since they are used by
them.

You can see that we use several new ReferenceTypes exposing all those infor-
mation. The connectivity hierarchy uses Connects References from the IO modules
to the devices and the building topology uses Contains References to point from
rooms to the devices. The Variables of the controllers point to the Variables of the
devices using a non-hierarchical Reference called Signal. References of this type
imply that the measured value of the device is used by the controller and thus both
Variables have the same value. All those ReferenceTypes are newly created and
not contained in the OPC UA specification. You do not always need to provide new
ReferenceTypes, for example, you could use Organizes References from rooms to
devices. However, creating new ReferenceTypes makes the semantic more explicit.
In Fig. 3.8, the newly created ReferenceTypes are shown in the ReferenceType
hierarchy.

Fig. 3.8 Extended ReferenceType hierarchy

As you can see, we have now left one simple hierarchy behind and reached a
full-meshed network of Nodes. Clients should be able to deal with this. However,
a maintenance engineer may not be interested in how devices are connected to
controllers or more precisely he may not be interested in controllers at all. Thus a
reasonable approach is to create a View for the maintenance engineer hiding the
Signal References and all other References to the Controllers. Using this View, the
maintenance engineer can focus on his tasks by only accessing information impor-
tant to him.

We have not shown TypeDefinitions for the devices, but obviously it makes
sense to have a hierarchy of devices as well. We do not go into details in this
example, but in Chap. 4, an OPC UA Information Model for devices is introduced.

Let us take another look at the controllers. Currently, we modeled all Variables
using the BaseDataVariableType although they have different characteristics. Some
should provide an engineering unit; some should provide strings for its numeric
enumeration values. All this is handled by the Data Access Information Model
provided by the OPC UA specification [UA Part 8]. It standardizes where to find

92 3 Information Modeling: Example and Best Practice

References

HierarchicalRefedrences NonHierarchicalRefedrences

Contains Connects Signal

Properties on the Variable for the engineering units, etc. However, since we did
not look at that model so far, we will not go into details on VariableTypes in this
example.

In the example, we have not considered the data types of the Variables at all. It
is expected that in the described use case, built-in DataTypes can be used and thus
no special considerations have to be made. In the next section we will consider
complex DataTypes as well.

We do not need to consider history in this example. History is just provided by
the Variables and you have to provide a history configuration as described in the
Historical Access Information Model in Set. 4.6. Events can be gained from
Objects setting their EventNotifier Attribute to eventing. In the example, the Con-
troller Objects are good places for EventNotifier. Clients can subscribe to them to
receive Events. However, you have to provide an EventType hierarchy, which
enables clients to define a filter specifying the fields they want to receive as well
as limiting the Events they want to receive.

The base EventTypes are defined in [UA Part 5]. You can either just use those
or extend the hierarchy by subtyping in order to add fields for the Events or to
categorize the Events. In our example, we want to support two types of Events.
One is for exposing communication errors to a device and one is for maintenance
information coming from the devices. There is already a standard EventType
called DeviceFailureEventType, which applies to the communication failure to the
device. So after finding the right standard EventType, you have to consider two
aspects: First, are the Event fields of the standard EventType suitable for the
Events you need to generate or do you need more? Second, do you need to catego-
rize Events? In our case, the Event fields are suitable but we want to categorize the
Events so you can filter only for communication Events. Therefore, you have to
create a subtype of DeviceFailureEventType without additional InstanceDeclara-
tions. In our scenario, we call it DeviceCommunicationFailureEventType. For the
second type of Events, the maintenance-related Events, we do not have a more
concrete EventType than the BaseEventType. But the fields of the BaseEventType
are not sufficient, so we need to create a subtype called MaintenanceEventType to
define additional fields. In addition, the subtype is also needed for categorization
purposes, allowing clients to filter for all maintenance Events. In Fig. 3.9, the
extended EventType hierarchy is shown.

In the example you have seen how to apply the OPC UA information modeling
concepts. You can start by only providing simple Objects and Variables as well as
Events and the history of current data and Events. This is very similar to Classic
OPC. You can add TypeDefinitions allowing clients to be programmed using the
knowledge of TypeDefinitions. You can use different ReferenceTypes to expose
different kinds of relations between Nodes and thus expose multiple hierarchies
for multiple purposes. By using Views you can hide parts of the Address Space, so
clients see only the information they need to fulfill certain tasks. Thus you can
model your information appropriately for your scenario. In the next section, we
will generalize from the example and provide some best practices of how to use
the different modeling concepts of OPC UA.

933.2 Example

Fig. 3.9 Extended EventType hierarchy

3.3 Best Practices

In the following, we give you some hints how to use the modeling concepts of
OPC UA. There is some flexibility in modeling information in OPC UA, so there
is not always a strong rule that must be applied. We will provide the pros and cons
of different solutions so you can judge which solution fits best for your concrete
application.

We start with some general advice before we go into the details. Model your
OPC UA server according to your requirements and appropriate to the data
sources you are accessing. If you are not expecting clients to browse your Address
Space but they are only accessing some Variable values getting the NodeIds from
some other sources, it is not necessary to provide a rich information model. If your
underlying data source is a generic OPC DA server and you have no additional
information available, you cannot provide a rich information model.

Try to use standardized types if possible instead of creating your own types.
This applies for Nodes defined by the base Information Model of OPC UA or
standard Information Models specified by other organizations. When there is a
standard Information Model in your domain try to use it. Clients that have know-
ledge of those models can make use of this instead of just generically accessing
the data. But it also makes sense for generic clients to use standard Information
Models as the user of the client may be aware of the model and thus knows better
how to deal with the provided information. In Chap. 4, we introduce standard
Information Models.

94 3 Information Modeling: Example and Best Practice

BaseEventType

EventType

EventId

SystemEventType

DeviceFailureEventType

Maintenance EventType

...

DeviceCommunicationFailureEventType

MaintenanceIntervalOnly used for
catagorization, no
additional event fields

Adds event fields

...

Objects are used to structure the Address Space. They are the entry points to Vari-
ables having values and Methods that can be called. How you want to structure
your Address Space depends on your application. If you expect that clients will
browse the Address Space to find information, it is probably not a good idea
having one Object with 10,000 Variables beneath. It would be better to structure
them with several Objects. Nodes can be structured according to different criteria,
for example, by devices or similar constructs like controllers. Beneath them, the
Variables can be grouped by Objects considering the different purposes of the
Variables (configuration data, measured data, etc.). Devices can be ordered by
the geographical location in the factory, by the functionality of a process, etc.
Since OPC UA does not only provide one hierarchy, you can provide several
different structures in one Address Space. This all depends on your use cases.

As soon as you are not providing a simple hierarchy with a well-defined
semantic, you should consider using different types of References. In our example,
you have seen that we used different ReferenceTypes for the building and the
communication hierarchy. This makes sense as both hierarchies imply a specific
semantic between the connected Nodes. And they are referencing the same Nodes.
When browsing a device, you can filter for inverse References regarding the
communication, so you know which IO module is connected to it without getting
the room in which the device is located. You can also provide non-hierarchical
References between Nodes. This does not expose a hierarchy, but some other rela-
tion between them. The example uses this also for the signal References between
Variables of the device and the controller. Here, and also as for hierarchical
References, you should first check if an existing ReferenceType is suitable for
that purpose. Existing ReferenceTypes include the ReferenceTypes defined by the
OPC UA specification and potentially other ReferenceTypes defined by standard
Information Models. When you need to create your own ReferenceType, you have
to use the most appropriate supertype in the existing ReferenceType hierarchy.
Always consider that clients might apply filters based on standard ReferenceTypes
when they browse and query the Address Space.

As long as your server only provides a small amount of Nodes, it is not neces-
sary to use any Views. However, if your server provides hundred of thousands of
Nodes, it may be suitable using Views to show excerpts of the Address Space tai-
lored to specific tasks. There are two ways of how Views can be applied.

A View can hide subcomponents of a Node but the Nodes are not organized in
a View-specific hierarchy. In our example, an engineer may have the task to con-
figure devices. Here, it would be interesting to browse the building hierarchy or
the communication hierarchy. However, on the device he is only interested in the
configuration parameters and neither in other parameters nor the signals to the
controllers. You have to provide the View Node which could, for example, just

3.3.1 Structuring with Objects, ReferenceTypes, and Views

953.3 Best Practices

reference the Objects1 Node as the standard entry point into the Address Space.
But when browsing the Objects in the context of that View, it would hide certain
References to Nodes that do not belong to the View. Please be aware that you
have to be able to access each Node that is part of the View starting from the View
Node. On the left side of Fig. 3.10, this is exemplified by using an abstract example.

Fig. 3.10 Two ways of providing Views

The other scenario for Views is that they span a View-specific hierarchy in the
Address Space. In that case it makes sense that the View Node is the only entry
point into that hierarchy and it is therefore referenced by the Objects Node. So you
would not provide an Object called BuildingHierarchy but a View. Clients not
capable of handling View Nodes in a special way should handle them as normal
Objects to access hierarchies only accessible via the View Node. On the right side
of Fig. 3.10, this is exemplified using an abstract example.

You have to decide what kind of View you want to use in order to know where
to place it in the Address Space. View Nodes always have to be accessible from
the standard Views Object, but in addition you might want to add the View Node
under the standard Objects Node used as browse entry point for instances.

All Objects and Variables have to be typed in OPC UA. But there is a simple
solution for servers without type information. They can use the BaseObject-
Type for their untyped Objects and the BaseDataVariableType for their untyped

 1 In Chap. 4, we will learn more about the entry points into the Address Space.

3.3.2 TypeDefinitions (ObjectTypes and VariableTypes)

96 3 Information Modeling: Example and Best Practice

DataVariables. Properties are always of the PropertyType, anyhow. However,
there are mainly two reasons providing type information for Objects and Data-
Variables. First, it provides a specific semantic for a Node defined by the Type-
Definition. Having an Object of type TemeratureSensorType gives clients a hint
that the Object represents a temperature sensor. If the Object is of type Production-
ScheduleType, it is not representing a device but a production schedule. Second,
by using complex TypeDefinitions you are also defining the structure beneath
each instance. In other words, you are defining a specific syntax for Nodes of this
type. Clients can use this knowledge based on the TypeDefinition on each instance
of the type, without the need to reconfigure or reprogram the client. Through this
information, clients are able to assign instances of client-side objects like graphics
very efficient to corresponding Objects in the server.

Therefore, it is often useful to provide specific TypeDefinitions for your Objects
and DataVariables. The benefit becomes even bigger if you use TypeDefinitions
specified by standard Information Models, as client applications may already
be aware of those types. Those client applications include aggregating OPC UA
servers, providing the information of many OPC UA servers in its Address Space
(see Chap. 9 for details on aggregating servers).

However, it only makes sense to provide a TypeDefinition when it is expected
that it will be used more than once. This is not restricted to one server. It may
make sense to provide a TypeDefinition that is only used once in a server but
many servers use the same TypeDefinition. This provides interoperability on the
modeling level.

Before creating a specific TypeDefinition, you should ask yourself the follow-
ing questions:

1. Is there already a TypeDefinition I can use instead of?
It is always preferable to use TypeDefinitions of standard Information Models
(including the base Information Model of OPC UA) instead of defining a simi-
lar type for yourself. However, the drawback of a standard Information Model
is that it may not fit to the information you want to provide. If you can provide
the information required by the standard Information Model you should con-
sider using it, if you cannot provide that information then obviously you cannot
use it. In the case that you can provide the expected information but you want
to provide more information you have the following choices: add the additional
information on each instance without providing it on the TypeDefinition or
specialize the standard TypeDefinition with a subtype. Here you have to con-
sider what additional information you want to provide and whether this is
needed on the TypeDefinition.

2. Is there already a specialized ObjectType I can use as supertype?
Each ObjectType has to inherit from the BaseObjectType so you always have
to inherit your ObjectTypes from another ObjectType. Same is true for Type-
Definitions of DataVariables and the BaseDataVariableType. However, there
may be more specialized TypeDefinitions available you can inherit from. You
have to verify whether the semantic of the supertype fits to the TypeDefinition

973.3 Best Practices

you want to create. You are only allowed to specialize the semantic, not generalize
it. If your supertype is specifying a temperature sensor, your subtype must be a
sensor providing temperature as well. It can add semantic, for example, a speci-
fic type of temperature sensor. You also have to consider if the information that
is mandatory on the supertype can be provided in your scenario as well. If the
TemperatureSensorType requires providing an engineering unit and you do not
have that information available, you cannot use it as a supertype. For Variable-
Types, you also have to consider the data type. Only the same data type or sub-
types can be used.

There is no rule how deep type hierarchies should be and rules from object-
oriented programming languages can not be applied, since an ObjectType or Vari-
ableType does not contain any code (at least from the OPC UA point of view).
As long as it makes sense from the information point of view, you can create
subtypes.

There is a specialty to consider when creating subtypes. It is the question on
single or multiple inheritance. OPC UA does not forbid multiple inheritance in the
Object- and VariableType hierarchies. However, it only specifies inheritance rules
for single inheritance. One reason for this is that there are different ways of how
to work with multiple-inheritance. Defining one single way means that the server
cannot use a different one. Another reason is that multiple-inheritance can become
quite complex and hard to handle. Therefore, you should try to avoid multiple-
inheritance in type hierarchies. There are some drawbacks on that. For example, if
you want to expose that all of your Objects support the NodeVersion Property,
you could create a server-specific ObjectType having the NodeVersion as manda-
tory Property and let all ObjectTypes inherit from that server-specific ObjectType
in addition to their normal supertype. To overcome this use case, the base Infor-
mation Model of OPC UA allows servers to add InstanceDeclarations to well-
defined TypeDefinitions. This means that you are allowed to add a mandatory
Property to the BaseObjectType. This, in turn, requires that all Objects of the
server must support the Property. This can become a hassle for aggregating
servers and therefore should be well considered whether it makes sense to add this
information.

3.3.2.1 ObjectTypes

After this general view, let us take a short look at some considerations specific to
ObjectTypes before we look into more detail on VariableTypes.

Should I create simple or complex ObjectTypes?
Complex ObjectTypes define a base structure of each Object of the ObjectType,

whereas simple ObjectTypes only define the semantic. For example, you can
create an ObjectType called AirConditionerController either as a simple Object-
Type without InstanceDeclarations or as a complex ObjectType as shown in the
example. This decision depends on answering the following question: do I expect

98 3 Information Modeling: Example and Best Practice

my instances always to have the same structure beneath and do I expect to have
several instances (not necessarily in the same server)? In that case it makes sense
to have a complex ObjectType. If each instance of the ObjectType has a different
structure beneath, it does not make sense to have a complex type. If the type is
only used once it is questionable why to create an ObjectType for it at all. In our
example, we expect each AirConditionerController to have the same structure
beneath so we created a complex ObjectType. An example where a complex
ObjectType does not make sense is an ObjectType representing an area in a factory.
Here, each area has typically a different structure beneath. So a complex ObjectType
does not make sense. However, providing the semantic that an Object represents
an area makes sense.

Of course, the question is not always to create a simple or complex Object-
Type. The question is for each potential InstanceDeclaration whether it should be
placed on the ObjectType or not. In the example with the area, there may be some
Properties common to each area, for example, the coordinates. This can be cap-
tured in a Property defined on the ObjectType. However, most parts of an area
should not be defined on the ObjectType.

3.3.2.2 ObjectTypes or VariableTypes

For complex ObjectTypes only providing one Variable, you can consider using a
VariableType instead. For example, a simple temperature sensor could be repre-
sented as a Variable instead of an Object containing a Variable. However, you
should consider the extensibility and the handling of other, similar constructs. When
you want to define a more complex temperature sensor that supports measuring
the flow in addition, you cannot just subtype the VariableType since you need two
DataVariables instead of one. It can also be considered as bad design if you model
your simple devices as Variables and having your complex devices modeled as
Objects containing Variables. Clients (and their users) would have to handle those
devices in different ways.

3.3.2.3 VariableTypes (for DataVariables)

VariableTypes should only be specified to add semantic to Variable instances. It is
not needed to define VariableTypes just reflecting the data type of the Variables.
This applies for the pre-defined DataTypes as well as for user-defined DataTypes.
The Attributes of the Variable provide this information, so it is not needed to
duplicate it in the VariableType. An example where it may make sense defining
the semantic is to specify a setpoint.

However, in the Data Access part there are some standard VariableTypes
defined that can be applied in many scenarios, including specifying a setpoint. If
you want to use the VariableTypes introduced in the Data Access Information
Model and add a VariableType for setpoints, you would have to create subtypes

993.3 Best Practices

on each of those types. You can either define a base SetpointVariableType and let
all newly created VariableTypes inherit from it or you can leave the base Set-
PointVariableType out to avoid multiple inheritance. In the second case, you loose
the information that all newly created types have some commonality.

The better approach is using composition instead of subtyping. In Fig. 3.11,
this is exemplified. For the composition you can use an ObjectType instead of a
VariableType, since you do not need an additional place to put the value to. It is
expected that instead of extending the VariableType hierarchy of the Data Access

is a good reason to provide additional VariableTypes, which is explained in the
next section.

Fig. 3.11 Subtyping vs. composition

section we used an Object with Variables beneath to model that information.
Actually you have three different possibilities of how to model that information:

1. Provide several Variables with pre-defined DataTypes

to the solution we used in Sect. 2.5.4.
2. Provide one Variable with a structured DataType

provide the information.
You can create a complex DataType and use this DataType in one Variable to

introduced an example for providing an address with the street and the city. In that

beneath containing the information using pre-defined DataTypes. This is similar

Information Model composition using ObjectTypes is used instead. However, there

You are grouping the information by using an Object and provide variables

Let us consider how to provide complex data structures. In Sect. 2.5.4, we already

3.3.3 Providing Complex Data Structures

100 3 Information Modeling: Example and Best Practice

A) Subtyping B) Composition

DataItemType

AnalogItemType DiscreteItemType

BaseDataVariableType

TwoStateDiscreteType MultiStateDiscreteType

SetpointType

Hierarchy provided
by the Data Access
Information Model

AnalogSetpointType

TwoStateSetpointType MultiStateSetpointType

Added
subtypes

SetpointType

DataItem::
DataItemType

For the composition
an ObjectType can
be used since the
value is stored in the
contained Variable

Only the base
DataItemType is
referenced.
On the instances (or in
InstanceDeclarations),
subtypes can be used.

3. Provide one Variable with a structured DataType and sub-variables with built-in
DataTypes
A combination of both approaches is providing a structured DataType and use
the DataType in a Variable, but in addition expose the information in sub-
variables using pre-defined DataTypes.

The above described solutions imply that the complexity is only one level deep,
that is the street and the city can be represented in a pre-defined DataType. Other-
wise, you can recursively use the above described approaches again.

All choices are valid ways to model your information. However, there are dif-
ferent pros and cons for each solution. When you want to access individual ele-
ments of the complex structure, you can do this easily with solution one and three.
For the second solution, you always access all data at once. It is possible to get the
individual data, but there is always an overhead. Referencing individual elements
is not possible with solution two, but it works well with one and three. You can
access all data at once with all solutions; however, you have a small overhead in
solution one, since you have to access several Variables in one request. If you
need to access or manipulate all elements at once in a transaction context, you
cannot use solution one. OPC UA does not specify any explicit transaction con-
text. This means that each Variable access will be executed individually (unless
your server implements some proprietary transaction handling). In solution two
and three, all data are in one Variable and therefore an implicit transaction context
is given. On the other hand, complex DataTypes may not be supported by every
OPC UA client. Those clients cannot access the data provided in solution two. In
Table 3.1, the pros and cons are summarized.

Table 3.1 Pros and cons for structuring data

 Several
variables

Structured
DataType
using one
Variable

Structured
DataType

and several
Variables

Reading and writing individual
values

+ o +

Subscribing to individual values + o +
Referencing individual values in
the Address Space

+ – +

Reading and writing all values at
once

+ + +

Subscribing to all values at once + + +
Reading or writing all values in a
transaction context

– + +

Access possible with built-in
DataTypes

+ – +

t3.1.1

 t3.1.2

t3.1.3

t3.1.4
t3.1.5

t3.1.6

t3.1.7
t3.1.8

t3.1.9

1013.3 Best Practices

When you model your data and you do not need a transaction context, you
should consider using solution one. This allows access from all clients and you can
add References to individual entries. If you need transaction context or you know
that many clients will always access the whole structure, you should consider solu-
tion three. If you expect all clients always accessing the whole structure, you can
go for solution two. However, you have to be aware that an individual access is
not possible in that solution.2

When you use the third solution, it typically makes sense to define complex
VariableTypes with mandatory sub-variables so clients know what to expect.

As we just discussed the usage of structured DataTypes, let us look into some
more details. As discussed, structured DataTypes provide an implicit transaction
context. But they are harder to use by a generic client as the client needs to get and
interpret the type description, which may not be supported by all clients. In addi-
tion, there is a slight overhead on the wire because the encoding information has
to be put on it.3 Therefore, you should use numeric NodeIds for all Encoding
Objects in order to keep the overhead low.

define your structured DataTypes or your own mechanism for your own encoding.
You should avoid using proprietary encoding mechanisms and use the standard
mechanisms instead, since your own encoding will not be interpretable by most

might consider using it. But in that case you should also provide the standard
encodings so that generic clients are able to access the data as well.

We already had a discussion about DataVariables and Properties in Sect. 2.6,
which should provide enough information for a decision whether to use a Property
or a DataVariable.

 2 We are considering this issue only from the modeling perspective. Of course, providing sub-

variables may be some coding effort for you, so you may want to go for solution two based on
those considerations.
3 The overhead is compared to one built-in DataType. Since a structured DataType often con-
tains the data of several built-in DataTypes, providing the same data in a structured DataType is
typically more efficient. You only get one set of status code and timestamps (see Chap. 5 for
details).

3.3.4 Providing User-Defined DataTypes

3.3.5 Properties

102 3 Information Modeling: Example and Best Practice

clients. When proprietary encoding would highly improve your performance, you

When talking about encoding, you can use OPC Binary or XML Schema to

If your choice is a Property and you are applying Properties on Variables and
Objects, you can decide whether you want to make it available on TypeDefinitions
or not. Defining mandatory Properties makes sense as it gives the client additional
information. An optional Property is not that useful. The semantic is defined by
the BrowseName and Properties may show up on the instances or not. However,
providing optional Properties give clients a hint that those Properties may exist.
Properties are not defined by specific TypeDefinition Nodes, so you do not know
that certain Properties may exist on your server unless you have seen an instance
of it. Therefore, it is reasonable to use optional Properties in your type information
to point out the existence of such Properties.

Methods should be used whenever something is executed on the server triggered
by the client. For long-running processes you should use Programs. But that
implies using Methods as well since Programs are controlled using Methods.

In Classic OPC, there is no concept of a method so you have to write some values
to start a Method. This should be avoided in OPC UA and Methods should be used
instead. Especially, if you have input or output parameters, a Method should be
preferred. In a Method call, the input arguments have to be specified and the output
arguments are returned. This means that those values are directly connected to the
Method call and it is unambiguous when the Method was called several times and
what value belongs to what call.

You can define a Method on an Object or an ObjectType. If you define a
Method on an ObjectType, you have to decide whether all Objects share the same
Method Node or you provide additional copies of that Node. In the first case, you
can reduce the number of Nodes in the Address Space. However, the Method contains
Attributes specifying if it can be executed. If you want to provide this information
on the granularity of the Objects, you should create copies. If this information is
always the same for each Object you should share the Method Node.

If you have Methods that are not related to a specific Object, you should put
them on the Server Object. Clients are expected to look at the Server Object for
those global Methods.

You should use the standard ModellingRules whenever they are applicable. How-
ever, there is only a small set of ModellingRules defined. When you need to have
a new constraint or some semantic that cannot be expressed in enough detail with
the existing ModellingRules, you can define your own ModellingRules.

3.3.6 Methods

3.3.7 ModellingRules

3.3 Best Practices 103

Examples for new constraints are cardinality restrictions. OPC UA is an open
model meaning that you can add References of any type to instances of your
TypeDefinition as long as the constraints of the ReferenceType allow this. If you
want to express, that your car can only have three or four wheels, you have to create
a new ModellingRule.

If you want to expose that a Method on an ObjectType is always shared on the
instances, you have to create your own ModellingRule as the standard Modelling-
Rules do not define this behavior.

However, you always have to consider whether it makes sense to provide this
additional information, since you expect client applications to make use of it. A
client who executes Methods is looking at the Attributes of the Method Node, but
it does not care if the Node is shared or not. If your client is creating new Type-
Definitions and wants to specify whether the server should share the Methods, you
need such a ModellingRule.

Creating additional ModellingRules may make more sense for other standard
Information Models than for vendor- or server-specific ones, since more clients
may be able to interpret those standard ModellingRules.

References are simple constructs in OPC UA only connecting two Nodes. The
only information they provide is their ReferenceType and the direction. If you
need to add any additional information to a Reference, you cannot do this directly
in OPC UA. But there is a simple workaround. Instead of providing one Reference
with additional information, you can create an Object which references the target
and the source Node. This is exemplified in Fig. 3.12.

Fig. 3.12 Usage of a Proxy Object instead of a reference

3.3.8 Proxy Objects (Properties on References)

104 3 Information Modeling: Example and Best Practice

On the proxy Object, you can add your additional information. It already
provides some base information like a NodeId and a name. Thus the relation
represented by the proxy can be referenced by other Nodes and you can add Data-
Variables or Properties on the proxy. Of course, browsing the relationship becomes
more cumbersome. So you should only use a proxy when you really need it.

3.4 Summary

In our example you have learned that you can use the OPC UA modeling concepts
to model your information similar to Classic OPC. Only using the base types you
do not have to define your own type system and you can focus simply on providing
data.

However, you have also seen how you can provide much more information using
the advanced features and how this can help clients and users with their tasks. You
can reuse client code or configuration data specified with the knowledge of your
OPC UA TypeDefinitions by applying them on several instances of the same type.
By using different ReferenceTypes you can expose different semantics and span
multiple hierarchies. Views help you organizing large Address Spaces with poten-
tially hundred thousands of Nodes.

In the best practices section you have learned that Objects, ReferenceTypes,
and Views are the key features for organizing your Address Space. You should
use standard TypeDefinitions instead of your own TypeDefinitions when possible.
There are different ways of how to provide complex data structures in OPC UA.
If possible you should expose them as a set of Variables using pre-defined Data-
Types. If transaction context is needed, you can additionally provide complex
DataTypes. Optional Properties on TypeDefinitions make clients aware of the
existence of those properties. Methods should be shared if the execution is not
restricted per Object. In general, standard ModellingRules should be preferred.
However, there are not enough standard ModellingRules defined to capture com-
mon use cases like cardinality restrictions. If you provide additional information
to a relationship between Nodes, you need to use a proxy instead of a simple
Reference.

There are power-point presentations and videos of the OPC UA DevCon 2007
available at the OPC Foundation web site (www.opcfoundation.org/ua). The pre-
sentation about “Information Model and Services” contains another example modeled

3.4.1 Key Messages

3.4.2 Where to Find More Information?

1053.4 Summary

in OPC UA. The scenario includes a boiler having controls, flow transmitters, and
valves.

dix in [UA Part 5] explaining the design decisions regarding the modeling of the
diagnostics information.

In the next chapter, we will explain how to create Information Models and how
servers support multiple Information Models. We will introduce the base Informa-
tion Model and the more specific Information Models like Data Access and Pro-
grams, provided by the OPC UA specification. Afterwards, we will look at current
activities regarding the development of standard Information Models defined by
other organizations. Starting with Chap. 5, we will finally explain how to access
and manipulate the data modeled in OPC UA.

3.4.3 What’s Next?

There is an Appendix in [UA Part 3] providing some best practices and an Appen-

106 3 Information Modeling: Example and Best Practice

4 Standard Information Models

4.1 Overview

In this chapter, the base Information Model of OPC UA is introduced. This model
provides the foundation for OPC UA information modeling and is always used as
foundation to define additional Information Models. We will also look at the
extensions of this model defined by the OPC UA specification. Those extensions
are used to define a standard way to represent capabilities and diagnostic informa-
tion of an OPC UA server in its Address Space and how specific information for
current data, historical data, state machines, programs, alarms, and conditions are
modeled. Depending on your application you should use those extensions (for
example, in the case of Data Access) or you must use them (for example, in the
case of Historical Data where it is required to provide certain information). Finally,
we take a look at what standard Information Models are currently in development
by other organizations based on OPC UA. Maybe there are already activities in
your domain that you can use or should join.

Before looking at those standard Information Models, we start this chapter by
considering how to handle standard Information Models. What is defined by an
OPC-UA-based Information Model, how you can actually define such a model,
and what mechanisms are built into OPC UA allowing servers and clients to work
simultaneously with different Information Models?

4.2 Handling Information Models

From the OPC UA Address Space point of view, an Information Model mainly
defines Nodes. This includes well-defined NodeIds for the Nodes. Different kinds
of Nodes can be defined. Typically an Information Model defines TypeDefinitions
(incl. EventTypes), ReferenceTypes, and DataTypes. It can also define Modelling-
Rules when the standard ModellingRules are not sufficient. An Information Model
can define standard Properties and Methods by defining a specific BrowseName
and the semantic of it. An Information Model can also define standard Objects and
Views as standard entry points into the Address Space and standard Variables con-
taining well-defined data.

Beside this, an Information Model can define constraints that are not visible in the
Address Space. For example, it defines rules that restrict the usage of ReferenceTypes.

4.2.1 What is Specified by an Information Model?

DOI: 10.1007/978-3-540-68899-0_4,
107W. Mahnke et al., OPC Unified Architecture,

© Springer-Verlag Berlin Heidelberg 2009

example, you have to represent each session of a server as an Object of a specific

be defined by an Information Model.

Table 4.1 What can be specified by an Information Model

Concept Description Example
ObjectType Simple or complex ObjectTypes includ-

ing constraints on the instances of the
type, e.g., when the type should be
applied (semantic) and where instances
of the type should be referenced in the
Address Space (syntax).
Some constraints can only be defined
textual, either in the description or some
additional Variables; some constraints
can be defined by InstanceDeclarations
and ModellingRules

ObjectType repre-
senting devices

Modelling-
Rule

For complex TypeDefinitions, additional
ModellingRules can by defined
specifying specific constraints

Cardinality
restriction between
instances of two
types

EventType EventTypes can be specified either to
categorize Events or to add additional
Event fields. In addition, constraints can
be defined when Events of the type must
be generated. Some constraints can be
exposed by references in the Address
Space (see the State Machine Informa-
tion Model), others only by a textual
description

EventType for level
alarms

Variable-
Type

VariableTypes can be specified as
subtype of the BaseDataVariableType.
They can restrict the usage of data types,
they can define a specific semantic, and
they can be complex (containing
sub-variables). Constraints can define
where the VariableType can or must be
applied and where it can be found in the
Address Space

VariableType with
specific Properties
like engineering unit

In theory it can define any kind of constraint. It can specify that every device

ObjectType. In the Capabilities and Diagnostics Information Model of OPC UA, for

type in the Address Space. Table 4.1 summarizes the different concepts that can

targeted by a system must be represented in the OPC UA server by a specific

108 4 Standard Information Models

(Continued)

Property
semantic

By defining a concrete BrowseName for
a Property, a specific semantic for the
Property is defined. Information Models
can define constraints on allowed data
types, and where the Property can or
must be defined. Typically these
constraints are defined only textually;
however, adding the Property on a base
TypeDefinition allows defining some
constraints like the BrowseName and the
data type more explicitly. When a
Property is not used as InstanceDeclara-
tion, the actual support of this Property
in a server cannot be detected in the
Address Space1

A Property for the
engineering unit of a
DataVariable

Method
semantic

By defining a concrete BrowseName for
a Method, a specific semantic for the
Method is defined. Additional
constraints like specifying where such
Methods are applied or on the arguments
of the Method can be defined. Like
Properties there is no standard way
exposing supported Methods

A Method applicable
on each Type
Definition creating
an instance of the
type with specific
input-arguments
defining specific
default values,
whether optional
InstanceDeclarations
should be applied,
etc.

Reference-
Type

Hierarchical or non-hierarchical Refer-
enceType defining specific semantic
between two Nodes. Each Refer-
enceType has constraints where it can be
applied, for example, the NodeClass and
potentially the TypeDefinition of the
source and target node, or how often it
can be used for the same source. Those
constraints are typically only visible as
textual descriptions; at least there is no
standard way to expose them

A ReferenceType
identifying that two
Nodes representing
devices communi-
cate with each other

1 At least in a standard way. Information Models may define a place where they expose all sup-
ported Properties in the Address Space.

1094.2 Handling Information Models

(Continued)

DataType Simple DataTypes can be defined pro-
viding a specific semantic, and enumera-
tion DataTypes specifying a specific
enumeration. Structured DataTypes can
be defined for complex data. In addition,
abstract DataTypes can be defined orga-
nizing the DataType hierarchy and pro-
viding places to extend the hierarchy

A DataType repre-
senting a Status of a
device

DataType
encodings

For specific applications, a specific way
how to encode a structured DataType
can be defined. This is a sophisticated
feature that should be avoided or used
together with a standard encoding
because of interoperability issues

An encoding provid-
ing the data in
exactly the same
format as provided
by a device

Object Standard Objects can be defined as entry
points into the Address Space. Clients
can use those Objects and start browsing
from the Object. Objects can also be
defined as EventNotifiers and thus as
standard sources to subscribe to Events

Server Object as
entry point into the
diagnostics, but also
as entry point to all
Events of the server

View Similar to Objects, Views can be defined
as entry points into the Address Space.
In addition, it can be defined what
should be contained in the View

A View providing
all devices repre-
sented in a server

Variable Variables contain a value and thus
standard Variables define specific
information. Clients can directly read,
write, or subscribe to the value of the
Variable without the need to find it first

Variable containing
the status of the
server

Method A standard Method can directly be
called by a client without the need to
find it first

A Method to shut
down the server

Constraint A variety of constraints can be defined
by an Information Model. These con-
straints can define how the Address
Space is organized, but also what must
be provided by the Address Space or
how a server must behave. This behavior
must not conflict with what is defined by
OPC UA, but it may define a more
restrictive behavior, like a server must
be redundant

All events generated
by the devices repre-
sented by the server
must be provided as
Events in OPC UA

110 4 Standard Information Models

you look at the Information Models defined by the OPC Foundation, for example,

For constraints we expect that there will always be the use case where plain text
is needed. However, for standard Nodes it is desirable to have a more machine-
friendly way to provide this information. This could be used by a server to popu-
late its Address Space and by test tools checking if the Nodes exist. The SDKs
provided by the OPC Foundation already use XML documents based on a specific
XML Schema to generate code out of those documents. We expect that a similar
XML Schema will be standardized by the OPC Foundation in the long-term and
can be used as base to define Information Models. However, constraints that can-
not be easily exposed in the Address Space need to be defined as well. And – of
course – there must be some introduction where the Information Model should be
applied. Thus you will always need to create a text document, but in the long-term
you may use an XML document to specific standard Nodes.

Servers can support several Information Models at the same time. OPC UA pro-
vides some very simple mechanisms to accomplish this. In the end, an Information
Model defines unique Nodes in the Address Space, standard Properties and
Methods. The uniqueness of Nodes is provided by the NodeId, the uniqueness
of standard Properties and Methods by the BrowseName. To avoid the risk that
two Information Models use the same NodeId or the same BrowseName, both
contain a NamespaceURI (optimized by the NamespaceIndex, see Sect. 2.8.5).
Each organization uses its own NamespaceURI (which, by definition, is unique).
Thus, NodeIds and BrowseNames become unique to the organization defining
them. This allows servers to expose several Information Models without “name
conflicts.”

However, different Information Models may define global constraints that
exclude each other. For example, one Information Model may define that all
devices accessed by a server must be exposed; another one that devices only used
for communication shall not be exposed. Those scenarios can be avoided when
Information Models are more specific, for example, specifying that all communi-
cation devices are not exposed using their specific types.

4.2.2 How is an Information Model Specified?

4.2.3 How are Multiple Information Models Supported?

At the moment there is no standard way how to specify an Information Model. If

for Data Access and Programs, a text document is used. Standard Nodes are defined

1114.2 Handling Information Models

in tables and constraints by text in the document.

4.3 Base OPC UA Information Model

The base Information Model is defined in [UA Part 3] and [UA Part 5]. In
[UA Part 3], the Nodes used in the meta model of OPC UA are introduced like
Nodes representing specific ReferenceTypes. The Nodes are formally defined
together with additional Nodes in [UA Part 5]. In this book, we distinguish bet-
ween the base Information Model of OPC UA and the Nodes defining the capa-
bilities and diagnostics of the server. Both are defined in [UA Part 5]. All NodeIds
defined by the OPC Foundation use the Namespace URI of OPC UA and Name-
spaceIndex zero.

In Fig. 4.1, the base TypeDefinitions of the base Information Model is shown.

the Address Space without providing additional semantic, and the PropertyType
must be used for all Properties. The ModellingRuleType is used to define Model-

Fig. 4.1 Base TypeDefinitions

In Fig. 4.2, an overview of ReferenceTypes and DataTypes of the base Infor-
mation Model is given. The base Information Model defines all built-in DataTypes.

from the BaseVariableType. However, you can define only additional DataVari-
All ObjectTypes must inherit from the BaseObjectType and all VariableTypes

lingRules. There are several TypeDefinitions used to define the encoding of struc-

from the BaseEventType. The FolderType can be used for Objects only organizing
ableTypes inheriting from the BaseDataVariableType. All EventTypes must inherit

is given in Appendix C.
tured DataTypes as described in Sect. 2.8.4. The full list of audit-related EventTypes

The complete list of base ReferenceTypes and DataTypes is given in Appendix C.

112 4 Standard Information Models

Used to define encodings for DataTypes

BaseObjectType

FolderType

BaseEventType

BaseVariableType

PropertyType
BaseData-

VariableType

It is not allowed
to create direct
subtypes or
instances of
this type

It is not
allowed to
create
subtypes of
this type

SystemEventType

DeviceFailure -
EventType

SemanticChange -
EventType

BaseModelChange -
EventType

GeneralModel -
ChangeEventType

AuditEventType

...

There are several
subtypes defined for
audit events

Modelling-
RuleType

DataType -
EncodingType

DataType -
SystemType

DataType -
DecsriptionType

DataType -
DictionaryType

Fig. 4.2 Base DataTypes and ReferenceTypes

instances with different default values or specifying what optional Instance-
Declarations should be applied. Standard Method means that the BrowseName is
defined. Each ObjectType using this Method must define its own Method Node
and offer input- and output arguments suitable for the type. There are several stan-
dard Properties. In Table 4.2, they are summarized.

Table 4.2 Standard properties

Property Description Constraint
NodeVersion Used to track changes of the

Address Space, see
Sect. 2.11.3

Can be applied on all Nodes
(except for Properties)

ViewVersion Used to track changes in a
View, see Sect. 2.9

Only defined on View
Nodes

Icon An icon that can be used by
clients when displaying the
Object or ObjectType

Only defined on Objects
and ObjectTypes

NamingRule NamingRule of the
ModellingRule, see
Sect. 2.5.6

Only for Objects of type
ModellingRuleType

The time difference (in
minutes) between the Source-
Timestamp (UTC) associated
with the value and the stan-
dard time at the location in
which the value was obtained

Only defined on
DataVariables

AllowNulls Specifies whether a NULL
value is allowed for the value
of the DataVariable

Only defined on
DataVariables

1134.3 Base OPC UA Information Model

(Continued)

... There are several
subtypes defined

References

Hierarchical -
References

NonHierarchical -
References

...

BaseDataType

String Structure...

There are several additional
subtypes defined

There is one standard Method called “Create”. It is used on ObjectTypes to create

LocalTime

DataType-
Version

Used as version number of the
encoding of structured
DataTypes, see Sect. 2.8.4

Only defined on Variables
of type DataTypeDescrip-
tionType and
DataTypeDictionaryType

Dictionary-
Fragment

Used for describing the encod-
ing of structured DataTypes,
see Sect. 2.8.4

Only defined on
Variables of type
DataTypeDescriptionType

EnumStrings Used to define the string rep-
resentation of an enumeration,
see Sect. 2.8.3

Only defined for enumera-
tion DataTypes
(in the Data Access Infor-
mation Model it is also
defined for DataVariables)

Input-
Arguments

Input arguments of a Method Only defined on Methods

Output-
Arguments

Output arguments of a Method Only defined on Methods

In addition to the standard types, Methods, and Properties, the base Information
Model defines some standard Nodes as entry point into the Address Space. It also
defines the Server Object as the EventNotifier providing all Events of the Server.
The Server Object contains the Namespace- and ServerArray and is the entry point
into the diagnostic information and the Variables describing the capabilities of
the server. In Fig. 4.3 you can see the Objects and Variables defined by the base
Information Model. There are no Views or standard Methods defined by the base
Information Model.

Fig. 4.3 Objects and Variables of the base Information Model

114 4 Standard Information Models

DataTypes ::
FolderType

ReferenceTypes ::
FolderType

VariableTypes ::
FolderType

ObjectTypes ::
FolderType

Types ::
FolderType

Objects::
FolderType

Views::
FolderType

Root::
FolderType

Organizes

Organizes

Organizes

Organizes

Organizes

Organizes

Organizes

BaseVariableType

BaseObjectType

References

BaseDataType

Organizes

Organizes

Organizes

Organizes

Server::
ServerType

NamespaceArray

ServerArray

Organizes

All Views of the server must be
accessible beneath this Node

All Objects and variables (not used to organize the other
hierarchies or used as InstanceDeclarations) should be
accessible from here

All ObjectTypes, can be
organized by additional
folders

...

Server Object contains more
Variables and Objects
considered to be part of the
diagnostic information

4.4 Capabilities and Diagnostics

The Capabilities and Diagnostics Information Model contain information about
the status of the server, the capabilities of the server, what clients are connected to
the server, and what Service was called how many times. It offers entry points to
which vendor-specific information can be added as well. Details of the provided
information can be found in [UA Part 5]. The diagnostic information is split into
information per server, per session, and per subscription. The general handling of
this is shown in Fig. 4.4.

Fig. 4.4 Diagnostic information

4.5 Data Access

The Data Access Information Model [UA Part 8] mainly defines standard Vari-
ableTypes and adds mandatory and optional Properties to them. The VariableType
hierarchy is shown in Fig. 4.5. The DataItemType is used to represent arbitrary
automation data. Two optional Properties are defined: definition contains a human-
readable string that specifies how the value of the DataItem is calculated and Value-
Precision specifies the maximum precision of the value. The AnalogItemType is

Number DataTypes and defines Properties for the InstrumentRange, the EURange,
and EngineeringUnits. The abstract DiscreteItemType is specialized to TwoState-
DiscreteType for Booleans and MultiStateDiscreteType for unsigned integers. Both
contain Properties for the localized text representation of the numeric value. In that
way they are enumerations, not by the DataType Attribute but the VariableType.

1154.5 Data Access

used to represent continuously-variable physical quantities. It only applies for

You should use an enumeration DataType when you expect the enumeration to be
used several times and a DiscreteItemType when the enumeration is only used
once or a few times or the enumeration text may change often. Of course, this
decision may also depend on the source the server is accessing.

The Data Access Information Model also defines some DataTypes used in the
Properties of the DataItemTypes, for example, defining the range structure used in
the EURange Property or the engineering unit structure used in the Engineering-
Units Property.

Fig. 4.5 Data Access information model

4.6 Historical Access and Aggregates

Historical Access defines the representation and access of historical time series
data and historical event data in OPC UA.

The Historical Access Part of the OPC UA specification was released in a first
version in 2007 [UA Part 11]. Later, the document has been split into two documents,
one for Historical Access [UA Part 11Draft] and one for Aggregates [UA Part 13].
We will give only a brief overview since both may change in details until release.

116 4 Standard Information Models

DataItemType

AnalogItemType
(DataType: Number)

DiscreteItemType

Definition::
PropertyType

ValuePrecision::
PropertyType

InstrumentRange::
PropertyType

EURange::
PropertyType

EngineeringUnits::
PropertyType

BaseDataVariableType

TwoStateDiscreteType
(DataType: Boolean)

MultiStateDiscreteType
(DataType: UInteger)

TrueState::
PropertyType

FalseState::
PropertyType

EnumStrings::
PropertyType

PropertyType

DaylightSavingTime::

Not defined on the
TypeDefinition Node,
but can be applied on
each DataVariable

PropertyType

LocalTime::

More details on Historical Access are described in the Service chapter (see Sect. 5.9)
where also a list of Aggregates is provided in Table 5.48.

The Historical Access Information Model mainly describes where to find con-
figuration information of historical data. It extends the Capabilities and Diagnos-
tics Information Model, with details on how history is supported. In addition, it
defines how EventNotifiers and Variables expose their configuration and how his-
torical data are collected. Many EventNotifiers can use the same configuration; the
same is true for Variables. In turn, each EventNotifier and Variable can have several
configurations when a server collects the history in different ways (e.g., a more
detailed history for 2 weeks and a less detailed history for 2 years). This is
shown in Fig. 4.6.

Fig. 4.6 Historical access information model

With respect to information modeling, the Aggregates specification mainly
extends the capabilities model of the server exposing the supported Aggregates.
Those can be used for historical data or current data. Primarily, the Aggregates
specification defines the behavior of the aggregate functions.

4.7 State Machine

The State Machine Information Model defines how to expose state machines in
the OPC UA Address Space. This model is used by Programs as well as Alarms and
Conditions. It is defined in an Appendix of [UA Part 5]. The model is summarized
in Fig. 4.7. It defines two base types. The StateMachineType exposes only the cur-
rent state of the state machine, whereas the FiniteStateMachineType also provides
information about the states and transitions of the state machine. It allows specifying

1174.7 State Machine

Fig. 4.7 State machine information model

By subtyping you can extend a state machine. However, the base states of a
concrete state machine cannot be extended, and you need to define substates of a
state by another state machine.

4.8 Programs

A Method is invoked by a client, executed by the server, and the result is directly
(in the Method call response) returned to the client. In contrast, a Program is used
for more complex, long running, and stateful functionality. A Method may be
called to calculate a value, whereas a Program may be used to run and control a
batch process or a machine tool program. Programs can be controlled by a client
(e.g., starting and stopping) and intermediate results can be returned to the client
using Events. To control a Program, it is desirable to know its state (whether it is
already running, interrupted, etc.). Therefore, the Programs Information Model
uses the State Machine Information Model as base to model Programs. It defines a
concrete subtype of the FiniteStateMachineType called ProgramType having four
states as shown in Fig. 4.8. It also defines several transitions between them and
optional Methods to control the Program. In addition, specific Variables containing

It is defined how to use a Method call as cause and the generation of an Event
as effect, but this can be extended to other causes and effects. An instance of a
State Machine provides only the information about the current state, whereas the
description of the possible states and transitions can be found at the type.

118 4 Standard Information Models

State Machine providing states (without
information about states and transitions)

Example state
machine providing
states and transitions

StateMachineType
CurrentState ::

StateVariableType

FiniteStateMachineType

UserDefinedStateMachineType
ON::

StateType

OFF::
StateType

TurnItOn ::
TransitionType

TurnItOff ::
TransitionType

Start

Stop

HasCause

HasCause

ToState

ToState

FromState FromState

TurnItOffEventType

HasEffect

CurrentState ::
FiniteStateVariableType

Abstract type for state machines providing
state and transition information

causes triggering transitions and effects that are executed when a transition is triggered.

capabilities and diagnostics of the Program are defined. The ProgramType can be
subtyped and substates can be added to the four states of the ProgamType.

The first version of the Programs specification was released in 2007 [UA Part 10].
Although no updated release or release candidate is available while writing this
section, it is not expected that there are major changes to the document.

Fig. 4.8 Programs information model

4.9 Alarms and Conditions

The Alarms and Conditions specification defines an Information Model for Condi-
tions, acknowledgeable Conditions, confirmations, and Alarms. This Information
Model can also be extended to support the needs of other domains.

While writing this section the Alarms and Conditions specification [UA Part 9]
was not jet released. To avoid providing you instable information, we just outline
the ideas of the Alarms and Conditions Information Model.

• Conditions are specific Events that are not transient but always maintain a state
(e.g., enabled or disabled).

• There are acknowledgeable conditions where entering a specific state req-
uires a client to acknowledge this state. The acknowledgement is done by a
Method call. For example, if a level reaches a certain value, this may have to be
acknowledged by an operator.

• Alarms are acknowledgeable conditions that can be suppressed and shelved to
avoid an explosion of Alarms in a system when a critical error occurs. The
most important state of an Alarm is the active state. For example, if a level
reaches a critical value like 95% the Alarm changes to active.

1194.9 Alarms and Conditions

FiniteStateMachineType

ProgramType

Halted::
StateType

Running ::
StateType

Ready::
StateType

Suspended ::
StateType

Start
[Optional]

Suspend
[Optional]

HasCause

HasCause

ToState

FromState

Reset
[Optional]

Halt
[Optional]

Resume
[Optional]

ReadyToRunning

ReadyToHaltedHaltedToReady

SuspendedToRunning

RunningToReady
SuspendedToReady

RunningToHalted

RunningToSuspended

SuspendedToHalted

ToState

ToState

ToState

ToState

ToState

ToState

ToState
FromState

FromState

FromState

FromState
FromState

FromState

FromState

FromState

ToState

HasCause

HasCause

HasCause

HasCause

HasCause

HasCause

The ProgramType also references all States
and Transitions with a HasComponent

Reference not shown in this figure

• Dialogs represent another subtype of Conditions. They allow a server to pop up
different types of dialogs at the client.

• Alarms and Conditions use state machines describing their states. Most types of
Alarms and Conditions defined in the Alarms and Conditions specification uses
several states and substates. An acknowledgeable Condition has, for example,
substates exposing whether it is acknowledged.

• In addition to the occurrence as Events, Alarms and Conditions can be made
visible as Objects in the Address Space:

– Therefore, Alarm- and ConditionTypes are not abstract and can be instan-
tiated.

– Clients can read and change the configurations of Alarms and Conditions
(e.g., the severity of a HiHi level alarm).

• The state of the Alarms and Conditions can be accessed via the eventing
mechanisms. To receive the current state of all Alarms and Conditions as Events,
a special Method named ConditionRefresh has to be called.

4.10 Domain-Specific Information Models

The OPC UA Information Model provides a means to describe the semantics
related to a specific domain. ISA-S88, ISA-S95, and IEC TC 57 – CIM are exam-
ples of existing information models for specific domains. The OPC Foundation is
collaborating with these and other standard organizations to become the how for
moving the other standard organizations what. In the following, we introduce activi-
ties done by other organizations in cooperation with the OPC Foundation defining
domain-specific Information Models based on OPC UA.

A common Information Model for devices is currently available in a draft ver-
sion [UA Devices]. Details of the model are described in Sect. 4.10.2. The EDD
Cooperation Team (ECT) defined a mapping from an EDD to a device representa-
tion in OPC UA based on this model [ECT06]. The FDT group also defined a
mapping of DTMs to OPC UA using the same model [FDT08].

While the devices Information Model specifies only a generic model how to
represent devices, the ADI (analyzer device integration) initiative of the OPC
Foundation brings the vendors and customers of analyzer devices together to define
concrete types for different kinds of analyzers. The resulting Information Model is
based on the devices Information Model. Currently there is a draft version avail-
able of this model as well [UA Analyzer].

4.10.1 Overview

120 4 Standard Information Models

The Field Device Integration (FDI) initiative brings together ECT and FDT
group defining the future of device integration. The devices Information Model
will be used in that approach, but also other facets like user interfaces are consid-
ered.

Discussions have started with several other organizations regarding Informa-
tion Models based on OPC UA:

• PRODML (www.prodml.org) for the vertical integration of oil values (drilling)
• MIMOSA (Machinery Information Management Open Systems Alliance –

www.mimosa.org) for plant operations and maintenance
• ISA-88 (www.isa-88.com) for batch control
• ISA-95 (www.isa-95.com) for the integration of control systems with enterprise

systems (vertical integration)

tion of different packaging line functions
• PLCopen (www.plcopen.org) for standard PLC programming languages

We are currently not aware of additional standard Information Models initia-
tives, although we know that other organizations are evaluating OPC UA as well
figuring out whether it can be applied for their purposes.

The device Information Model [UA Devices] defines the Information Model asso-
ciated with devices providing a unified view irrespective of the underlying device
protocols. It defines a device as entity that provides sensing, actuating, communi-
cation, and/or control functionality.

At the time of writing this book the device Information Model has been in draft
state. Therefore, we will provide only the idea behind the model. A device is rep-
resented by an Object. All the parameters of the device are gathered with another
Object called ParameterSet. Objects of type ParameterView can be used to group
related parameters (e.g., all configuration parameters). The parameters use the
VariableTypes defined by the Data Access Information Model. Sub-devices and
function blocks are provided beneath the device as additional Objects. The devices
Information Model defines ObjectTypes, for example, for the devices, blocks, and
parameter sets. It is illustrated in Fig. 4.9. You can see that the devices Informa-
tion Model is derived from the base Information Model. Specific types of devices
are modeled as sub-types of the DeviceType, like the motor starter type in the
figure. As specified by the devices Information Model, the motor starter uses
VariableTypes specified by the Data Access Information Model.

4.10.2 Devices Information Model

• OMAC (Open Modular Architecture Control – www.omac.org) for the integra-

1214.10 Domain-Specific Information Models

Fig. 4.9 Devices information model

The devices Information Model also provides entry points for bus-specific
extensions (like HART, FF, and PROFIBUS).

4.11 Summary

Information Models define standard Nodes, including types, Properties, and
Methods. In addition, they define constraints on the Address Space. These con-
straints may reference the environment of the server, like all sessions of the server
must be provided as Objects in the Address Space. Information Models are
currently defined by text documents; in the future there will be an XML Schema
that can be used to define standard Nodes. The NamespaceURI contained in

4.11.1 Key Messages

122 4 Standard Information Models

Vendor-specific Information Model

Devices Information Model Data Access Information Model

Base Information Model

DataItemType

AnalogType
(DataType : Number)

DiscreteType

Definition :
PropertyType

ValuePrecision :
PropertyType

InstrumentRange
: PropertyType

EURange :
PropertyType

EngineeringUnits
: PropertyType

BaseDataVariableType

MultiStateDiscreteType
(DataType : UInteger)

EnumStrings :
PropertyType

ParameterSet

BaseObjectType FolderType

ParameterSetTypeDeviceType

ParameterViewType

Motor
Parameters

Control
Function

Local
Operation

ParameterSet

Organizes

Organizes

MotorStarterType

EnumStrings :
PropertyType

EnumStrings :
PropertyType

BrowseNames and NodeIds allows providing several Information Models in one
server.

The base Information Model defines the foundation of all types and standard
entry points into the Address Space. The Capabilities and Diagnostics Information
Model defines standard places to find the capabilities of a server and diagnostic
information. The Data Access Information Model provides VariableTypes having
standard Properties storing Data Access related information like the engineering
unit. The Historical Access Information Model defines where to find the configu-
ration of historical data and events. The State Machine Information Model pro-
vides a generic model for state machines used by the Programs and the Alarms
and Events Information Models.

There are several initiatives going on defining standard Information Models for
specific domains. Make use of those models when they are appropriate in your
domain or try to define additional standard Information Model when there is the
need for it in your domain.

The documents defining the Information Models are already referenced in the
corresponding sections. URLs to the organizations cooperating with the OPC
Foundation defining Information Models have been provided as well.

In the next chapters we will leave the information modeling and look at how the
information modeled in OPC UA can be accessed. This is done by the OPC UA
Services described in Chap. 5. Chapter 6 discusses the mapping of those Services
to concrete technologies.

4.11.2 Where to Find More Information?

4.11.3 What’s Next?

1234.11 Summary

5.1 Overview

The OPC UA Services are defining the data communication on application level.
Services are methods used by an OPC UA client to access the data of the Information
Model provided by an OPC UA server. Similar to Classic OPC, where the OPC speci-
fications just defined Application Programming Interface (APIs) between appli-
cations, the Services define the communication interface between UA applications.
The definition of the Services is independent of the transport protocol and the pro-
gramming environment that is used to develop an OPC UA application. This is the
fundamental difference to Classic OPC where the definition of the APIs was bound
to a specific transport mechanism – Microsoft Component Object Model (COM).

The independence of the transport protocol and the programming environment
requires an abstract definition of the Services. This abstract definition [UA Part 4]
can be applied to different transport mechanisms (see Chap.6) defining the repre-
sentation of the Services on the wire [UA Part 6] and to different implementations

gramming languages. The language specific APIs for the application development
are defined by the OPC UA Stacks based on the abstract UA Service definition.
The different communication layers are shown in Fig. 5.1.

Like Classic OPC, the OPC UA Services are designed for exchanging bulk data
between UA applications running in different processes or on different network

method does not read one Variable but allows defining a list of Variables to read.
OPC UA Services are reduced to a generic set of methods. There are two main
reasons for this reduction. On the one side a lot of information provided in Classic

method like read instead of having specific methods to access the information. A
simple example is the server status information. In Classic OPC, this information
was obtained by a special GetStatus Method. In OPC UA, this information is
modeled as server status Variable and can be accessed with the Read Service or

generic Service for a specific functionality and not a long list of specialized meth-
ods for different variations of information.

This chapter describes the general Service behavior and the functionality pro-
vided by the different Services. They are partitioned into Service Sets in the corre-
sponding OPC UA specification [UA Part 4]. The grouping in this chapter is based
on use cases summarized in Table 5.1 and does not exactly match the Service
Set partitioning. Each Service is described in this chapter with its key parameters.
A complete list of parameters and their detailed description can be found in
[UA Part 4] or in API documentations.

5 Services

DOI: 10.1007/978-3-540-68899-0_5,
125W. Mahnke et al., OPC Unified Architecture,

OPC is now modeled in the server Address Space and accessed with a generic

monitored for changes. Another reason was the design goal to provide only one

© Springer-Verlag Berlin Heidelberg 2009

of the transport mechanisms in OPC UA Stacks (see Sect. 6.5) in different pro-

nodes to reduce the roundtrips between the applications. For example, a Read

Fig. 5.1 OPC UA communication layering

Table 5.1 Services grouped by use cases

Use case Service sets or services
Find servers Discovery Services Set
Connection management between
clients and servers

Secure Channel Service Set
Session Service Set

Find information in the Address Space View Service Set
Read and write data and metadata Read and Write Service
Subscribe for data changes and Events Subscription Service Set

Monitored Item Service Set
Calling Methods defined by the server Call Service
Access history of data and Events HistoryRead and HistoryUpdate Service
Find information in a complex
Address Space

Query Service Set

Modify the structure of the server
Address Space

Node Management Service Set

5.2 General Service Concepts

The Service definition uses the request and response pattern known form Web
Services where each Service is composed of a request and a response message.
To invoke a Service in the server, the client sends a request message to the server.
After processing the request, the server sends a response message back to the client.
Since this message exchange is asynchronous, all Service invocations are asyn-
chronous by definition. After sending the request message, the client application
can process other functionality until the response message arrives. Most UA Stack
APIs provide synchronous versions of the APIs for convenience. This is a general

126 5 Services

enhancement compared to Classic OPC where all functions are synchronous and
only a few functions where provided as asynchronous versions in addition.

5.2.1 Timeout Handling

The OPC UA data communication is designed for data exchange between differ-
ent systems, typically running on different network nodes or in different proc-
esses. Especially network communication can be interrupted at any time and it is
important to detect and handle these failures correctly.

 An important concept in such an environment is configurable timeouts for Ser-
vice invocations to get a timely detection of communication failure. For this rea-
son each single Service call has individual timeouts defined by the client. This is
an important enhancement over Classic OPC.

The communication stack on the client side returns the call to the API or sends
the callback with a timeout status if the timeout expires. But the timeout set on the
client-side UA stack is also send to the server to detect Service invocations that
are not longer expected to return to the client side.

5.2.2 Request and Response Headers

Each Service contains the same headers for request messages and for response
messages. For this reason they are not listed for each Service in this chapter. They
are containing common Service parameters like the token for the Session context
or the result of the Service call. The request header parameters are described in
Table 5.2 and response header parameters are described in Table 5.3.

Table 5.2 Request header parameters

Parameter Description
AuthenticationToken The secret Session identifier used to assign the Service

call to the Session context created between client and
server application

RequestHandle A client defined handle assigned to the Service call
Timestamp The time the client sent the request
TimeoutHint The timeout set in the client side UA Stack for the call.

This hint can be used by the server to cancel long run-
ning calls if the timeout expires

ReturnDiagnostic Indicates if the client requests the server to return
additional detailed diagnostic information in the case of
an error instead of returning only a status code

AuditEntryId A string that identifies the client or user that initiated the
action. The string is empty if this parameter is not used.
It is used for auditing (see Sect. 9.5)

1275.2 General Service Concepts

Table 5.3 Response header parameters

Parameter Description
ServiceResult UA defined result code for the Service call
RequestHandle The client defined handle assigned to the Service call
Timestamp The time the server sent the response
ServiceDiagnostics Client requested detailed diagnostic information

5.2.3 Error Handling

Error handling is an important part of the Service parameters and Service handling
since communication between distributed systems from different vendors can cause
errors on different levels and in different scenarios. Errors can happen in normal
operation, for example, when a client is using wrong parameters like NodeIds of
Nodes that are no longer available or they can happen in communication error sce-
narios when the connection between client and server or between server and the
underlying system1 is interrupted.

There are two types of error information used in the Services. The one type is
an error code called StatusCode. The StatusCode is a 32-bit unsigned integer. The
most significant 16 bits represent the numeric value of the code that shall be used
for detecting specific errors or conditions. The least significant 16 bits are bit flags
that contain additional information but do not affect the meaning of the Status-
Code. The two most significant bits are indicating the overall severity which could
be Good for success, Uncertain for warning, and Bad for failure. Status codes
are only defined by OPC UA and cannot be extended by vendors or other organi-
zations.

The second type of error information is the DiagnosticInformation. This struc-
ture contains additional information for a StatusCode including vendor-specific
error codes, a localized description of the error, and a text field for additional
information. The diagnostic information can be nested to be able to provide an error
stack. There is a DiagnosticInformation field available for each StatusCode field
in a Service, but the additional information is only returned by the Server if req-
uested by the client. The DiagnosticInformation fields are not contained in the
Service descriptions in this chapter.

The error information2 is provided on two levels. The first level is the result of
the Service call. The second level is the list of operations inside the Service call.
Since OPC UA supports bulk operations for all Services used to exchange data,
some operations in a Service call can fail while others succeed. An example is the
Read Service where the client can read a list of Variable values in one Read Ser-
vice call. Each Variable in the Read is an operation.

1For example devices connected to the server by an interrupted network.
2Combination of StatusCode and DiagnosticInformation.

128 5 Services

Clients must check the results always on both levels since both can fail. In the
first step, the client must check if the Service call succeeded. If not, none of the
result fields is valid. If the Service succeeded, each operation StatusCode must
be verified by the client before using the result data of the operation.

Compared to Classic OPC, the error handling was simplified in OPC UA.
Classic OPC provided a result code and a quality code for read and data change
methods. Clients needed to check first the result code and then the quality code
but only one field was able to contain error information. OPC UA provides only
one StatusCode field which contains general error codes and also quality codes for
values in the same field.

5.2.4 Extensible Parameters

Extensible parameters are used to add flexibility and variations to Services with-
out having the need to extend the number of Services. Extensible parameters are
used everywhere where a Service parameter can contain different structures for
different use cases. Samples for the use of extensible parameters are the Subscrip-
tions where different types of information like data and Events are handled with
the same Services using extensible parameters for the filters and the transport of
the notifications from server to client. Another sample is the history access Ser-
vices where only two Services are defined for the read and update access to differ-
ent type of data and Events.

5.2.5 Communication Context

OPC UA Services are not stateless and cannot be called without establishing a
communication context on different levels. For this reason a lot of Services are not
used for data transfer but to create, maintain, and modify these different levels of
communication context illustrated in Fig. 5.2.

Fig. 5.2 Communication context

1295.2 General Service Concepts

The Secure Channel is the low - level and protocol - dependent channel to secure
the communication and the exchanged messages. This level is handled completely
by the UA communication stacks hiding the different possible protocols. The
Secure Channel must be renewed after the lifetime negotiated during the first
establishment of the Secure Channel to reduce the risk of compromising the
channel security.

The Session is the connection context between the two applications created on
the top of and in the context of a Secure Channel. The lifetime of the Session is
independent of the Secure Channel and another Secure Channel can be assigned to
the Session. A Session has a timeout that allows the server to free the resources for
a Session after a defined time period. The timeout gets reset with each Service
invocation in the Session context received by the server.

Multiple Subscriptions can be created in the context of a Session. A Subscrip-
tion is the context to exchange data changes and Event notifications between

ent but it can be transferred to another Session for example to be used in a Session
created by a redundant backup client if the client that created the Subscription
is no longer available. Therefore the Subscription lifetime is independent of the

keep-alive messages get sent to the client.
Multiple Monitored Items can be created in a Subscription but they are bound

to this Subscription. A Monitored Item is used to define the Attribute of a Node
that should be monitored for data changes or to define the Event source that
should be monitored for Event notifications.

OPC UA defines 37 Services whereof 21 Services are used to manage the
communication infrastructure and context and only 16 Services are used to exchange
different types of information.

5.2.5.1 Services Used to Exchange Information

Table 5.4 provides a list of Services used to exchange information between OPC
UA client and OPC UA server applications.

Table 5.4 Services used to exchange information between client and server

Service Description
Browse
BrowseNext

Navigate through the nodes of the OPC UA server
address space. The client defines a starting node and
filter criteria. The server returns a list of referenced
nodes passing the filter

TranslateBrowsePaths-
ToNodeIds

Get NodeIds of Object components based on the
knowledge about the ObjectType

Read Read Attributes of nodes including Values of Variables
Write Write Attributes of nodes including Values of Variables

130 5 Services

(Continued)

server and client. A Subscription requires a Session to transport the data to the cli-

Session lifetime and a Subscription has a timeout that gets reset every time data or

Publish
Republish

Send changed data or Events for a Subscription from
the OPC UA server to the OPC UA client

Call Call a Method in the server
HistoryRead Read the history of Variable Values or the history of

Events
HistoryUpdate Update the history of Variable Values or the history

of Events
AddNodes Adding nodes to the server address space. This includes

the instantiation of Object instances
AddReferences Adding references between nodes in the server address

space
DeleteNodes Deleting nodes in the server address space
DeleteReferences Deleting references between nodes in the server address

space
QueryFirst
QueryNext

Returns a list of nodes and Attribute values based on
complex filter criteria operating on the whole address
space of a server

5.2.6 Conventions for Describing Services in this Chapter

The following sections are using tables to describe the Service paramters. Not all
parameters are contained since some parameters like the diagnostic information
are described as general concepts and other parameters are not important for
understanding the Services. The data types of parameters are also not contained
as general information in the tables. They are mentioned when it is important for
understanding the Service. A complete list of parameters, data types, and their
detailed description can be found in [UA Part 4] or in API documentations.

5.3 Finding Servers

The Discovery Service Set is used by clients to find available OPC UA servers
and to get information about the available Endpoints of a server. It is used by the
server to register with a Discovery server. The Discovery server maintains the list
of available servers. The available Endpoints are provided by each server.

An Endpoint defines the used network protocol and the necessary security
settings to be able to connect to the Endpoint of a server. Fig. 5.3 shows the inter-
action between UA client, Discovery server, and UA server.

Like all other Services, the Discovery Services can be invoked over the network
and thus allow a network-wide discovery. Nevertheless OPC UA defines only
the behavior of a local Discovery Server expecting that each node with more
than one OPC UA server is running a Discovery Service. The definition of network-
wide discovery will be added in a future release of OPC UA.

1315.3 Finding Servers

Fig. 5.3 Use of Discovery server and the Discovery Service Set

5.3.1 Service FindServers

The FindServers Service is implemented by the Discovery server returning a list
of registered servers and by each UA server returning only itself. This feature is
necessary to ensure the same behavior if only one server is running on a network node
without an additional Discovery server. The parameters are described in Table 5.5.

This Service can be called on a Secure Channel without security enabled and
without having a Session context created since this is not possible without the
information returned during the discovery process.

Table 5.5 FindServers Service parameters

Request parameters Description
LocaleIds [] A list of locales for the server name returned in the

application description. The server should use the
first locale in the list that it supports

ServerUris [] A list of server URIs to allow the client to request
information about specific servers. All available
servers are returned if an empty list is passed in

Response parameters Description
Servers [] A list of application description structures for each

returned server
ApplicationUri Globally unique identifier for the server instance
ApplicationName Human readable name for the server
ProductUri Globally unique identifier for the server product
ApplicationType The type of application which could be server, client,

client and server and discovery server

DiscoveryUrls [] The available URLs of the server that allow calling
GetEndpoints without requiring a secure connection

132 5 Services

5.3.2 Service GetEndpoints

This Service returns the Endpoints supported by the server implementing this
Service. An Endpoint description contains all information that is necessary to estab-
lish a Secure Channel and a Session between the client and the server. The main
parts are the network address of the server and the security settings like the server
instance certificate, the security policy defining the used algorithms, and the type
of user authentication used to create a Session.

Like FindServers this Service does not require a secure connection or a Session
to be called. The parameters are described in Table 5.6.

Table 5.6 GetEndpoints Service parameters

Request parameters Description
LocaleIds [] A list of locales for human readable strings returned

in the endpoint descriptions. The server should use
the first locale in the list that it supports

ProfileUris [] A list of profile URIs to allow the client to request
Endpoints supporting specific transport profiles. All
available Endpoints are returned if an empty list is
passed in

Response parameters Description
Endpoints [] A list of endpoint description structures for each

returned Endpoint
EndpointUrl Network address of the Endpoint used by the client to

establish a Secure Channel
ServerCertificate The server instance certificate used for the Endpoint.

This is the public key of the server used by the client
for securing the message exchange with the server

SecurityPolicy The security policy URI defining the algorithm sets
and key length used for the Secure Channel. The
security policy URIs are defined in [UA Part 7]

SecurityMode The message security mode used to secure the mes-
sages exchanged between client and server. Messages
can be signed to detect changes of the message con-
tent and to ensure the right sender and messages can
be encrypted to ensure privacy. The possible modes
are SignAndEncrypt, Sign, and None

UserIdentity
Tokens []

A list of user identity tokens supported by the server
to authenticate a user during the creation of a Session.
Possible tokens are for example the combination of
username and password, a certificate, or anonymous

TransportProfileUri URI of the network protocol used by the Endpoint.
The transports profiles are defined in [UA Part 7]

1335.3 Finding Servers

5.3.3 Service RegisterServer

This Service registers a server with a discovery server. This Service will be called
by a server or a separate configuration utility. Applications that are only client will
not use this Service.

This Service requires a secured connection to make sure that only trusted servers
can be registered. The registration call is done periodically by the server to indi-
cate the availability. It is also called during shutdown to indicate that the server is
shutting down and gets offline.

The Server passes all information to the Service that is necessary to return the
application description in FindServers. In addition, the online status is sent to the
Discovery Server.

5.4 Connection Management Between Clients and Servers

OPC UA requires establishing different levels of communication channels to en-
sure that all requirements for a secure, flexible, and reliable data communication
are fulfilled (see Fig. 5.4).

Fig. 5.4 Different levels of communication channels

The low - level network transport channel for exchanging the messages and the
logical Secure Channel to secure the messages are handled by the UA Stacks. The
Session on the application level used to authenticate users is handled by the client
and server applications.

Most of the security handling is implemented by the UA Stacks provided by the
OPC Foundation. On the application level, security handling is only necessary
during handshaking for the Session establishment.

A client SDK will typically hide all of the security handling and combine the
connection handling in connect and disconnect methods.

A server SDK implements all Session and connection handling without the
need for a server implementer to do anything for the Secure Channel and Session
Service Sets other than providing the configuration information.

134 5 Services

5.4.1 Secure Channel Establishment

The SecureChannel Service Set is used to establish the low - level transport channel
and the Secure Channel. Since most of the functionality is implemented in the UA
Stacks, these Services are described from a Stack API point of view instead of the
definition in the Service specification. These are the only two Services where the
Stack APIs parameters are different than the parameters defined for the Services.

More details for the security related parts of the Secure Channel can be found
in Chap. 7.

The Stack API parameters for OpenSecureChannel are described in Table 5.7.
The Stack API parameters for CloseSecureChannel are described in Table 5.8.
These Stack API parameters are different than the ones defined in [UA Part 4].

Table 5.7 Stack API parameters to open a Secure Channel

Stack API in
parameters

Description

EndpointUrl Network address of the server Endpoint used
by the client to establish a Secure Channel

SecurityPolicy The security policy URI defining the algorithm sets
and key length used for the Secure Channel. The
security policy URIs are defined in [UA Part 7]

SecurityMode The message security mode used to secure the messages
exchanged between client and server. Messages can be
signed to detect changes of the message content and to
ensure the right sender and messages can be encrypted to
ensure privacy. The possible modes are SignAndEncrypt,
Sign, and None

ServerCertificate The server instance certificate used for the Endpoint. This
is the public key of the server used by the client for securing
the message exchange with the server

ClientCertificate The client instance certificate. This is the public key of the
client used by the server for securing the message exchange
with the client

ClientPrivateKey The private key for the client instance certificate. This pri-
vate key is used by the client side UA stack to secure the
message exchange with the server

RequestedLifetime Requested lifetime for the security token. The security token
must be renewed by the UA Stack before the lifetime expires.
A renew starts after 75% of the lifetime has expired

Stack API Out
parameters

Description

SecureChannelId Identifier for the created Secure Channel
RevisedLifetime Revised lifetime of the channel

1355.4 Connection Management Between Clients and Servers

Table 5.8 Stack API parameters to close a Secure Channel

Stack API In
parameters

Description

SecureChannelId
Stack API Out
parameters

Description

No relevant out parameters

5.4.2 Creating an Application Session

Like the Secure Channel Service Set, the Session Service Set is only used to estab-
lish a secure and reliable communication channel and not to transfer information
from one system to another.

There are two Services for the handshaking to create a Session between two
applications, one Service to close the Session and one Service to cancel Service
calls in this Service Set.

The handshaking with the Services CreateSession and ActivateSession is nec-
essary to ensure that the client can validate with CreateSession that the applica-
tion he connects to is the server he wants to connect to and trusts in the further
communication before sending sensitive data in ActivateSession like user name
and password for the user authentication. The Service ActivateSession is also used
to impersonate a user on the active Session and to assign another Secure Channel

5.4.2.1 CreateSession Service

This Service is used by an OPC UA client to create a Session and the server
returns the identifier that is used in all the following Service invocations to assign
them to the Session context.

A Session is not valid until the Service ActivateSession was called success-
fully. Sessions are terminated by the server if he did not receive Service calls dur-
ing the negotiated timeout period. This ensures that the server can free resources
in a defined way if the client is no longer available, for example based on a net-

error handling is relying on fixed COM timeouts. Sessions should be closed grace-
fully by the client using the Service CloseSession if the communication channel is
no longer needed.

A flag in the CloseSession Service indicates if all associated Subscriptions
should be deleted. Each Subscription has its own lifetime and can be transferred to
another Session if the Session is terminated or closed without deleting the associ-
ated Subscriptions.

136 5 Services

Identifier for the Secure Channel to close

work interruption. This is a big advantage over Classic OPC specifications where the

to the Session if the used Secure Channel is no longer valid.

There are several parameters in this Service only used for additional security
validations and security handling. Examples are the EndpointDescription and the
application certificates. They are already exchanged during Discovery or Secure
Channel establishment but must be also validated in the context of a secure appli-
cation Session. Since these parameters are typically handled by the UA SDKs
and not visible to the application programmers, they are not listed here. See
ref. [UA Part 4] for all parameters of this Service and Sect. 7.5.2 for more details
on the security aspects of the secure communication channel (Table 5.9).

Table 5.9 CreateSession Service parameters

Request parameters Description
SessionName Name for the Session assigned by the client. The

name is shown in the diagnostics information of the
server

ClientDescription Application description for the client application
containing information like application and product
URI or the application name

Requested
SessionTimeout

Timeout of the Session requested by the client.
If the client fails to issue a Service request within the
interval negotiated with the server, the Session will
automatically be terminate by the server

Response parameters Description
SessionId

the Session. It is used to identify the Session in server
diagnostic objects or in audit logs

AuthenticationToken
the Session. This identifier is only used for assigning
Service calls to the Session and must be kept private
between the client and the server application

Revised
SessionTimeout

Timeout of the Session assigned by the server. This time
typically matches the requested timeout of the client if
it falls into the valid range defined by the server

ServerSoftware
Certificates []

The list of software certificates of the server applica-

and the compliance test level for each profile

5.4.2.2 ActivateSession Service

an application Session. It is also used to change the user of the Session, to change
the used language settings for a Session, and to assign a new Secure Channel to
the Session (Table 5.10).

1375.4 Connection Management Between Clients and Servers

The ActivateSession Service is used as the second part of the handshaking to establish

tion identifying the product, the supported profiles,

A unique public identifier assigned by the server to

A unique private identifier assigned by the server to

Table 5.10 ActivateSession Service parameters

Request parameters Description
ClientSoftware
Certificates []

The list of software certificates of the client appli-
cation identifying the product, the supported profiles,
and the compliance test level for each profile

LocaleIds [] List of locales that should be used by the server to
provide localized strings. The server uses the first
locale he supports in the list

UserIdentityToken User identity token to validate and logon a specific
user to the Session. There are different token types
like user name and password or certificates sup-
ported. Section 7.5.3.4 describes the different token
types

Response parameters Description
Results [] Validation results for the client software certificates

5.4.3 Closing an Application Session

If a client does no longer need the connection to the server, he must use the Ser-
vice CloseSession to start disconnecting from the Server and to free the Session
resources in the server. The second step to disconnect is closing the Secure Channel.
Both steps are typically combined in one disconnect method of a client SDK
(Table 5.11).

Table 5.11 CloseSession Service parameters

Request parameters Description
DeleteSubscriptions A flag that indicates if the Server must delete

all Subscriptions associated with the Session.

Session and can be transferred to another
Session

Response parameters Description

5.4.4 Cancel Outstanding Service Requests

A client is able to cancel outstanding Service requests by using the Service Can-
cel. To cancel requests can be helpful for potentially longer running Services like
Query (Table 5.12).

138 5 Services

Subscriptions can exist independent of a

Table 5.12 Cancel Service parameters

Request
parameters

Description

RequestHandle Request handle assigned by the client to
one or more requests in the request header

Response
parameters

Description

CancelCount Number of canceled requests

5.5 Find Information in the Address Space

OPC UA provides capabilities to describe information and to transport this infor-
mation. This section describes how to find different types of data in the Address
Space of the server. The two main Services for this purpose are Browse to navi-
gate through the Nodes in the Address Space and Read to access the metadata of
the Nodes. Browse and the more specialized Services such as TranslateBrowsePath-
sToNodeIds, RegisterNodes, and UnregisterNodes are explained in this section.
For a better understanding of how to use these generic Services, this section des-
cribes also the use of the Services and the Service parameters based on different
typical use cases and types of information clients are interested in.

Since the Services are used to access the Information Model provided by the
server, it is necessary to understand the concepts described in Chap. 2. For the
simple use cases it is enough to know how Objects and Variables are connected
together to provide data access capabilities. For the more enhanced use cases it is
necessary to read Chaps. 2 – 4 completely.

5.5.1 Services Used for Discovering the Address Space

One of the main design goals of OPC UA was the combination of all types of
Classic OPC information in one Address Space and the generic access to this
model. Each of the Classic OPC specifications defined different ways to navigate
through the Address Space and to access the available, but in most cases limited,
type and metadata information. OPC DA, A&E, and HDA defined different but
similar methods for browsing. DA and HDA defined completely different con-
cepts of accessing properties of OPC variables and A&E defined eight methods
to get information about the available event types. OPC UA covers all these dif-
ferent use cases with the flexible information modeling capabilities and the two
Services Browse and Read.

1395.5 Find Information in the Address Space

5.5.1.1 Browse Service

The Browse Service is used by a client to navigate through the Address Space by

connected to the starting Node by references.
The Browse Service takes a list of starting Nodes and returns a list of connected

Nodes for each starting Node. Nevertheless, most clients will only pass one starting
Node for the main purpose of building a tree hierarchy. Since the OPC UA Address

ability to pass in a list of starting Nodes is mainly used to browse metadata like the
Properties of a list of Variables. A client SDK will provide different browse methods,
one for a single starting Node and one for a list of starting Nodes.

Table 5.13 describes the parameters of the Browse Service.

Table 5.13 Browse Service parameters

Request parameters Description
View Passing a View allows limiting the browse to a

specific View. For browsing the entire Address
Space this parameter is not set

RequesteMax-
ReferencesPerNode

Allows the client to limit the returned Nodes to
protect against an unlimited number of results.
BrowseNext can be used to get more results

NodesToBrowse [] Defines a list of starting Nodes and browse filters
NodeId NodeId of the starting Node
BrowseDirection Indicates if the server should follow references in the

ReferenceTypeId NodeId of the ReferenceType the server should
follow. This parameter is typically combined with
the IncludeSubtypes set to filter for a whole set of
ReferenceTypes. This is for example Hierarchical-
References to fill a tree control

IncludeSubtypes Indicates if also subtypes of the specified
ReferenceTypeId should be returned by the server.
Clients should set this value to true. Only in very
seldom use cases it makes sense setting it to false

NodeClassMask Filter on the NodeClass of the returned Nodes, for
example only requesting Objects and Variables

ResultMask Filter on the results returned per Node. The only
information that is always returned is the NodeId
of the target Node. All other result values can be
excluded with this mask. This allows the client to
reduce the server effort to find and return informa-
tion the client is not interested in and reduces also
the amount of data on the wire

140 5 Services

(Continued)

Space can be a full-meshed network and is not limited to a pure hierarchy, the cap-

passing a starting Node and browse filters and the server returns the list of Nodes

forward, the inverse, or both directions

Response parameters Description
Results [] List of results for the passed starting Nodes and

filters
StatusCode Result code for the passed starting Node and filter.

This status code indicates only invalid filters or an
unknown starting Node. An empty result list does
not cause a failed status code

ContinuationPoint A continuation point is returned when the server was
not able to deliver all results in the Browse response.
The limitation can be set by the client in the request
or by the server during Browse processing.
The continuation point can be passed to BrowseNext
to get the remaining results

References [] List of references and target Node information for
the Nodes passing the filter criteria set in the request
NodeId of the ReferenceType followed from the
starting Node to the target Node

IsForward Indicates if the server followed a forward Reference
or the inverse Reference from the starting Node to
the target Node

NodeId NodeId of the target Node passing the filter criteria
set in the request. This could be also a Node in
another server indicated by the server information
in the ExpandedNodeId
The qualified name of the target Node. This name
provides in some use cases a relation to the type
system

DisplayName The localized name of the target Node used for dis-
play purposes. The locale depends on the Session
setting defined in ActivateSession

NodeClass Indicates the NodeClass of the target Node

TypeDefinition NodeId of the Object or Variable type of the target
Node. This parameter is only set if the target Node is
a Variable or an Object

5.5.1.2 BrowseNext Service

This Service is only used to continue a Browse started with the Browse Service if
not all results could be returned by the Browse or a following BrowseNext Service
call. The number of Nodes to return can be limited by the client in the Browse
request or by the Server during processing the Browse Service call. The parame-
ters of the BrowseNext Service are described in Table 5.14.

1415.5 Find Information in the Address Space

Reference-

BrowseName

TypeId

Table 5.14 BrowseNext Service parameters

Request parameters Description
ReleaseContinuation-
Points

A flag that indicates if the Service is called only for
releasing the memory associated with the continuation
point in the server or if the next set of results should
be returned Clients should always call this Service
even if they do not want to continue browsing. In this
case this flag is set to true

ContinuationPoints [] List of continuation points returned from a previous
Browse or BrowseNext Service call

Response parameters Description
This Service returns the same parameters like the Browse Service described in
Table 5.13

5.5.1.3 Read Service

The Browse Service returns already the Attribute values normally needed for fill-
ing up a browse tree like the display name, the NodeClass, or the TypeDefinition
needed to display different icons for the different types of Nodes.

Additional Attributes needed for completing necessary information about
Nodes like the data type or access level of Variables can be accessed using the
Read Service. All available Attributes can be read by passing a list of NodeIds and
AttributeIds as request parameters of the Read Service and the Server returns a list
of Values for the requested NodeId and AttributeId combinations. The Read Ser-
vice is described more detailed in Sect. 5.6.1.

5.5.1.4 TranslateBrowsePathsToNodeIds Service

This Service is used to access components of an Object based on the knowledge
about the ObjectType. Since the NodeId of a Node is needed to access information
provided by the Node like subscribing for Variable Value changes or to call a
Method, it is necessary to know the NodeIds of components of Objects. Since
OPC UA allows programming software components with built-in knowledge of
ObjectTypes, UA needs to provide a mechanism to return the NodeIds for compo-
nents of an Object instance based on the knowledge about the ObjectType. This
mechanism is built on the requirement that the BrowseNames of components in
the instance must be the same like BrowseNames of components in the type.

Figure 5.5 shows an example with the components of air conditioner controllers
where the BrowseNames like Temperature or EngineeringUnit are defined by the
ObjectType and the same BrowseNames are used on the two instances Controller1
and Controller2.

142 5 Services

Fig. 5.5 Browse path in type definition and instance

Based on the requirement to have the same BrowseName, the browse path from
the object type to a component is the same like the browse path from an instance
to the same component.

For example a client wants to display the status of Controller1 in an air condi-
tioner graphic. The graphic monitors the Value of the Variable Temperature and
reads the Property EngineeringUnit to display the Value together with the unit. To
get the NodeIds of the Variable and the Property, the graphic uses the Service
TranslateBrowsePathsToNodeIds to pass in the starting Node Controller1 and the
browse path “Temperature” for the Variable and the browse path “Temperature.
EngineeringUnit” for the Property. The server returns then the NodeIds of the target
Nodes. If more than one Node matches the browse path, the first Node in the list is
the Node that is based on the type. The parameters of the Service are described more
detailed in Table 5.15.

1435.5 Find Information in the Address Space

Table 5.15 TranslateBrowsePathsToNodeIds Service parameters

Request parameters Description
BrowsePaths [] The list of browse paths for which NodeIds are

requested
StartingNode NodeId of the Node where the server should start fol-

lowing the browse path
RelativePath [] The browse path the server should follow. It is

composed of a list of browse elements

 ReferenceTypeId NodeId of the ReferenceType the server should
follow. This parameter is typically combined with the
IncludeSubtypes set to filter for a whole set of
ReferenceTypes
This is for example HasComponent to find the
components of an Object

(Continued)

The second level of optimization is possible inside the server. Since the client
is telling the server that he wants to use the Node more frequently by registering
the Node, the server is able to prepare everything that is possible to optimize the
access to the Node.

144 5 Services

IncludeSubtypes Indicates if also subtypes of the specified
ReferenceTypeId should be followed by the server

IsInverse Indicates if the server should follow the
ReferenceType in inverse direction. This flag is set to
false for the default forward direction

TargetName BrowseName of the target Node.
This name can be empty for the last element in the
browse path. In this case all Nodes referenced by the
specified ReferenceType are returned

Response parameters Description
Results [] List of results for the passed starting Nodes and paths

StatusCode Result code for the passed starting Node and paths. If
the path does not result in a target Node, BadNoMatch
is returned by the server

Targets [] List of target Nodes for each starting Node browse
path combination. This list contains typically only one
Node if the browse path is build with information
from the type system

TargetId NodeId of the target Node

RemainingPath-
Index

Servers can have references to Nodes in other
servers. In that case the full browse path cannot
be processed by one server. Therefore the TargetId
contains the starting Node in the other server and
the client must pass the remaining path to this other
server. This parameter defines the index of the
starting element for the remaining path

5.5.1.5 RegisterNodes Service

This Service allows clients to optimize the cyclic access to Nodes for example for
Writing Variable Values or for calling methods. There are two levels of optimization.

The first level is to reduce the amount of data on the wire for the addressing
information. Since NodeIds are used for addressing in Nodes and NodeIds can be
very long, a more optimized addressing method is desirable for cyclic use of Nodes.
Classic OPC provided the concept to create handles for items by adding them to a
group. RegisterNodes provides a similar concept to create handles for Nodes by
returning a numeric NodeId that can be used in all functions accessing information
from the server. The transport of numeric NodeIds is very efficient in the OPC UA
binary protocol.

Response parameters Description

The handles returned by the server are only valid during the lifetime of the
Session that was used to register the Nodes. Clients must call UnregisterNodes if
the Node is no longer used to free the resources used in the server for the optimi-
zation. This method should not be used to optimize the cyclic read of data since
OPC UA provides a much more optimized mechanism to subscribe for data changes.
The parameters of the Service are listed in Table 5.16.

Clients do not have to use the Service and servers can simply implement the
Service only returning the same list of NodeIds that was passed in if there is no need
to optimize the access.

Table 5.16 RegisterNodes Service parameters

Request parameters Description
NodesToRegister [] The list of Nodes to register.

For each Node the NodeId of the Node is passed in
Response parameters Description
RegisteredNodeIds [] List of NodeIds identifying the registered Node.

This NodeId is typically an optimized numeric
Node used as handle to the registered Node. This
NodeId is only valid in the Session context it was
created in.
If the server does not know the NodeId or he is not
able to optimize the access to the Node, he simply
returns the NodeId provided in the request

UnregisterNodes Service

Handles created with the Service RegisterNodes must be freed by the client using
the Service UnregisterNodes to free the resources in the server. The parameters of
the Service are listed in Table 5.17.

Table 5.17 UnregisterNodes Service parameters

Request parameters Description
NodesToUnregister [] The list of Nodes to unregister.

Response parameters Description

5.5.2 Use Cases for Finding Information in the Address Space

OPC UA provides different information in different levels of complexity in one
generic and extensible model accessed by a small set of generic Services. For a
better understanding about the use of the Services to find information necessary

1455.5 Find Information in the Address Space

For each Node the registered NodeId is passed in

for different use cases, this section describes the use of the Services for specific use
cases. Some of the use cases are known from Classic OPC, other use cases are only
possible with the new features provided by OPC UA.

5.5.2.1 Search Data Variables for Reading and Monitoring Data

The most common use case for OPC is to access Variable Values to read and write
the current Value or to monitor the Value for data changes. In most cases, a user
must select the list of Variables the client software uses for read, write, and moni-
toring data changes. This selection includes navigating through the Address Space
to find the available Variables and to select the right Variables by checking the
Attributes like data type and access level.

The Browse Service is used to navigate through the Address Space to find

Table 5.18 Browse parameters used to find Variables

Parameter Value
View Not set for browsing the whole Address Space,

otherwise set to a view restricting the Address Space
RequestedMax
ReferencesPerNode

500 is a good compromise between an efficient
transport and a protection of the client. This should be
adapted to the needs or restrictions of the tree display.

BrowseNext can be called with the returned continua-
tion point

NodeId Objects folder or one of the server Views as starting
point for the browse.
Following Browse requests use objects returned by
previous Browse requests

BrowseDirection Forward
ReferenceTypeId HierarchicalReferences
IncludeSubtypes True
NodeClassMask Object and View – Building the hierarchy

Variable – Variables providing Values
ResultMask DisplayName – Used to display the name in the tree

NodeClass – Used to distinguish between Objects and
Variables
TypeDefinition – Can be used to display different icons
for different ObjectTypes or VariableTypes. For example
to distinguish between Folder objects and other Objects
or between Properties and DataVariables.
ReferenceTypeId – Used to filter results for HasNotifier
and HasEventSource since they are used to build an
Event hierarchy and they are not relevant for data access

146 5 Services

Variables. Table 5.18 describes the Browse parameters used to fill a browse tree.

If the server has more than 500 Nodes in one level,

Only one starting Node is needed which allows using a simplified client SDK
browse method that is reduced to one starting Node.

The information returned by the Browse can be used to identify a Node as
Variable with the information NodeClass and TypeDefinition and provides the
addressing information NodeId also returned by the Browse.

In addition a client needs other information like the data type of the Variable
and the access level or the user access level to know if the Variable is readable or
writable. The Read Service can be used to read this information for a list of Variables
with one Read call. Table 5.19 provides a list of Attributes containing important
metadata about a Variable. If a client wants to read these 5 Attributes for 10
Variables, he needs to call Read with a list of 50 elements containing a NodeId
and AttributeId pair for each possible combination.

Table 5.19 Variable Attributes containing metadata

Attribute Use
DataType NodeId of the DataType. This could be one of the UA

defined built-in types or a complex data type
ValueRank

multidimensional array indicating the dimension
ArrayDimensions An array of integers indicating the length of each

dimension
AccessLevel A bit mask indicating if the Value is readable

or writable in the system. There are additional
bits defined indicating the historical access
capabilities

UserAccessLevel The same bit mask used for AccessLevel but this
Attribute can differ from the AccessLevel based on
the user that is logged into the Session. For example
is the AccessLevel for a set point typically readable
and writable but the UserAccessLevel is only
readable for a normal user that is not allowed
to change a set point

In addition to reading the metadata of the Variables, a client may also be inter-
ested in Properties containing additional metadata for the Variables. To find such
Properties, a Browse is called with a list of starting Nodes for each Variable that
should be checked for availability of Properties. The same mechanism can be used
to get the Properties of Objects or other Nodes (Table 5.20).

For the returned Property Nodes the Property Value can be determined by
reading the Value Attribute of the Nodes with the Read Service.

1475.5 Find Information in the Address Space

Points out if the value is scalar, an array or a

Table 5.20 Browse parameters used to find Properties

Parameter Value
NodesToBrowse [] List of Variables and filters

NodeId NodeId of the Variable
BrowseDirection Forward
ReferenceTypeId HasProperty
IncludeSubtypes True
NodeClassMask Variable – Properties have the NodeClass Variable

ResultMask DisplayName – Localized name of the Property
BrowseName – Type name of the Property

5.5.2.2 Find Variables with Historic Data

The Variables providing historical data can be found in the same way like des-
cribed in Sect. 5.5.2.1 for the current data. The only difference is that different
flags must be checked for the AccessLevel and UserAccessLevel Attribute of the
Variables. The additional flags are indicating if the history of data is available for
reading and if the history can be updated.

There is another history - specific Attribute with the name Historizing. This flag
indicates if the server is currently collecting history for the Value. Additional
information can be found in the HistoricalConfiguration Object available for each
Variable containing history by following the HasHistoricalConfiguration Reference
from the Variable to the configuration Object.

5.5.2.3 Get Information to Call a Method

Methods are typically the target of a HasComponent Reference starting from
an Object. Methods can be requested together with Variables and Objects when
browsing an Object like described in Table 5.18. The NodeClass Method must
be added to the NodeClassMask parameter settings described in this table. The
parameters used to Browse only for Methods are described in Table 5.21.

Table 5.21 Browse parameters used to find Methods

Parameter Value
NodeId NodeId of the Object that provides Methods
BrowseDirection Forward
ReferenceTypeId HasComponent
IncludeSubtypes True
NodeClassMask Method – Filter for Methods
ResultMask DisplayName – Used to display the name in the user interface

BrowseName – Used to distinguish between known Meth-
ods from the ObjectType

148 5 Services

The necessary information to call a Method is the NodeId of the Method and of
the Object in which context the Method should be called. Both NodeIds are known
after browsing for the available Methods. If the Method is not a well-known Method,
the clients need to get also the description of the input and the output arguments for
example to populate a user interface with this information.

There are two steps necessary to get this information, the first step is to find out
the NodeIds of the Properties containing the argument descriptions and the second
step is to read the values of the Properties to get the argument description. For the
first step the most efficient way to get the NodeIds is to use the Service Translate-
BrowsePathsToNodeIds since we know the BrowsePath from a Method to the
Properties InputArgument and OutputArgument and the Service returns exactly
the information we need. If we would use the Browse Service instead we may get
additional Nodes we are not interested in. The necessary parameters for the Trans-
lateBrowsePathsToNodeIds Service call are described in Table 5.22.

The client must check the result StatusCode for both BrowsePaths since the
server will return the BadNoMatch StatusCode for a path if the Method does not
have input or output arguments.

Table 5.22 TranslateBrowsePathsToNodeIds Service parameters

Request parameters Description
BrowsePaths [0] BrowsePath for Property InputArguments

StartingNode NodeId of the Method
RelativePath [0] Browse path with one element

IncludeSubtypes True since the server may use a subtype of
HasProperty

IsInverse False

TargetName BrowseName with the text InputArguments and the
namespace index zero

BrowsePaths [1] BrowsePath for Property OutputArguments
StartingNode NodeId of the Method
RelativePath [0] Browse path with one element

HasProperty to find the Property of the Method

IncludeSubtypes True since the server may use a subtype of
HasProperty

IsInverse False

BrowseName with the text OutputArguments and the
namespace index zero

1495.5 Find Information in the Address Space

Reference-

TargetName

TypeId

Reference- HasProperty to find the Property of the Method
TypeId

For the returned NodeIds the client can call the Read Service to read the Value
Attribute of the Properties. The Read returns an array of Argument structures for

the information argument name, description, and data type. The DataType of
an argument can be complex. This allows using nested structures in Method
arguments.

5.5.2.4 Find the Type Description for a Structured DataType

from one of the following places:

• DataType Attribute of a Variable

Fig. 5.6 Nodes involved to describe complex data types

Since OPC UA allows the support of different encodings for a complex
DataType, the type description is not directly available through the DataType Node.
Section 2.8.4 provides more details on structured DataTypes. The example used to
explain the Service calls necessary to get the type description is shown in Fig. 5.6.
The server in the sample has two DataTypeSystems, one is the OPCBinary and
one is a vendor specific type system. The structured DataType MyStruct has the
two corresponding encodings.

The DataType NodeId for MyStruct is used as starting point to find the type
description with the following steps and Service calls:

1. To get the available data encodings for the DataType, the Browse Service
is called to follow the ReferenceType HasEncoding from the DataType
Node to the available DataTypeEncoding Objects.

150 5 Services

both Properties. The Argument structure describes a Method argument and contains

• DataType parameter of an Argument structure describing the parameters of a

There are different use cases where a client needs to get the type description of a

Method
• DataType Attribute of an Event Field Variable.

complex DataType but we assume that the NodeId of the type is already known

2. The client must select an encoding from the list of returned DataTypeEncoding
Objects. The selection can be done based on the preferred encoding or based
on a user selection. In our example, the client is a generic client and
therefore selects the DefaultBinary encoding.

3. From the DefaultBinary encoding the DataTypeDescription Variable can
be browsed by following the HasDescription ReferenceType.

4. The client must read the Value Attribute of the DataTypeDescription Vari-
able MyStructBin to get the identifier of the description used to find the
entry in the DataTypeDictionary.

5. To find the DataTypeDictionary containing the description, the Browse
Service needs to be called following the inverse HasComponent Refer-
enceType from the DataTypeDescription Node to the DataTypeDictionary:

6. The client must first check if the returned DataTypeDictionary My-
DictionaryBin is already in the client cache to avoid multiple reads of poten-
tially large dictionaries. If the dictionary is not available, the client can
read the dictionary by calling Read for the Value Attribute of the Variable
MyDictionaryBin. The description can be found in the dictionary with
the identifier read from the MyStructBin Variable.

5.5.2.5 Find Object Components Based on ObjectType Knowledge

If a client software component was built with the knowledge about an ObjectType,
the component knows the path from the type to InstanceDeclarations. This know-
ledge is necessary to find the used components of an Object instance based on this
knowledge.

If the Object has for example three Variables the software component needs to
monitor, the NodeIds of these three Variables are needed. To get the NodeIds the
client calls the TranslateBrowsePathsToNodeIds Service with three browse paths
containing the Object instance NodeId as starting Node and the relative path from
the ObjectType to the InstanceDeclaration of the Variable.

5.5.2.6 Search Event Hierarchy and Fill up an Event Filter Display

The rules to create a filter are defined by OPC UA and are described in the Sect.

Types and the Event fields defined by the EventTypes and sources for Events
which can be found in the Object and Variable instances Nodes.

Most of the information necessary to populate an Event filter dialog can
be found in the EventType hierarchy. There is a well-known NodeId for the
BaseEventType which is the root Node for the EventType hierarchy. Table 5.23
describes the Browse parameters used to fill a tree control with the EventType
hierarchy.

1515.5 Find Information in the Address Space

5.7.5 for Event monitoring. The server - specific parts of the Event filters are Event

The Event fields from the tree are used to select the fields delivered with an
Event notification and are used together with the EventTypes to filter Events.

Table 5.23 Browse parameters used to find EventTypes and the Event Fields

Parameter Value
NodeId BaseEventType ObjectType as starting point for the

browse
Following Browse requests use derived EventType
Nodes returned by previous Browse requests

BrowseDirection Forward
ReferenceTypeId HierarchicalReferences
IncludeSubtypes True
NodeClassMask ObjectType – Building the Type hierarchy

and Event Fields in the Address Space. Only
InstanceDeclarations, i.e. Objects referencing a
ModellingRule with the HasModellingRule, should
be considered
Variable – Variables representing the fields of an
Event Type. These Variables are typically Properties.

ResultMask DisplayName – Used to display the name
NodeClass – Used to distinguish between
ObjectTypes,3 Objects and Variables
TypeDefinition – Can be used to display different
icons for different Object or Variable types. For
example to distinguish between Folder objects and

A second tree control can be populated with EventNotifiers4 and Event
sources provided by the server. The References used to build such a hierarchy
are Organizes, HasNotifier, and HasEventSource. Starting points for such hier-
archies are the Server Object, the Objects Folder, or Views. Table 5.24 describes
the Browse parameters used to fill a tree control with the EventNotifier and Event
source hierarchy.

The EventNotifiers are used to create Monitored Items which is a preselection
of Events provided by this EventNotifier. The Event sources can be used as filter
criteria.

3ObjectTypes represent Event Types in this case.
4An EventNotifier is an Object where the SubscribeForEvents flag is set in the EventNotifier
Attribute.

152 5 Services

Only InstanceDeclarations should be considered

Object – Potentially used to structure Event Types

other Objects or between Properties and DataVariables

Table 5.24 Browse parameters used to find EventNotifiers

Parameter Value
NodeId Server Object, the Objects Folder or Views as

starting point for the browse
Following Browse requests use Objects returned by
previous Browse requests

BrowseDirection Forward
ReferenceTypeId HierarchicalReferences
IncludeSubtypes True
NodeClassMask Object – Building the hierarchy

Variable – Variables can be Event sources
ResultMask DisplayName – Used to display the name

NodeClass – Used to distinguish between Objects
and Variables
TypeDefinition – Can be used to display different
icons for different Object or Variable types.
For example to distinguish between Folder objects
and other Objects or between Properties and Data-
Variables
ReferenceTypeId – Used to filter results for
Organizes, HasNotifier and HasEventSource. All
other references are not relevant to the Event
hierarchy

5.5.2.7 Find Information for a State Machine Display

State Machines are one of the base concepts of OPC UA. The base concept can be
used by servers to describe application specific State Machines but it is also used
by OPC Information Models like Programs [UA Part 10] and Alarm & Conditions
[UA Part 9]. The base concepts and OPC Information Models using these concepts
are described in Chap. 4.

This section describes the discovery of a State Machine description based on an
abstract example but the same concepts can also be used to discover also Program
or Alarm State Machines. Since it is expected that clients understanding the OPC
UA Program or Alarms and Conditions Information Model do not need to browse
the well-known State Machines, this is only necessary for vendor – specific exten-
sions to these Information Models.

The abstract example used to explain the concepts of browsing a State Machine
is shown in Fig. 5.7. The ReadingUaBook State Machine and the corresponding
State Machine Type has two states, Idle and Reading and the transitions between
the two states.

1535.5 Find Information in the Address Space

Fig. 5.7 ReadingUaBook State Machine and its Type Definition

If a client finds a StateMachine instance like the ReadUaBook Object in a server,
the information provided by the instance itself is limited to information related to
the current state. All information describing the State Machine like possible states

Two NodeIds are needed as starting points. The NodeId of the State Machine
instance ReadingUaBook is necessary to get information about the current state
and to subscribe for transition Events. The NodeId of the StateMachineType Read-
ingStateType is necessary to get the description of the State Machine. The NodeId
of the TypeDefinition ReadingStateType is normally known from browsing the
instance or can be browsed by following the HasTypeDefinition Reference from
the instance ReadingUaBook.

Using the ReadingStateType NodeId as starting point the State Machine
description can be discovered with the following steps and Service calls:

1. To get the available states, transitions, Methods, and Variables containing
additional information, the Browse Service is called with the following
settings:

• ReadingStateType NodeId as starting Node
• BrowseDirection set to Forward
• ReferenceTypeId set to HasComponent
• IncludeSubtypes set to True
• NodeClassMask set to Object, Method, and Variable
• and Result Mask set to DisplayName, BrowseName, and TypeDefinition

154 5 Services

and transitions is only available on the StateMachineType.

2. To find the relations between the returned components, the client takes
the list of NodeIds of the transition Nodes as list of starting Nodes to four
Browse calls with the following settings:

• IdleToReading and ReadingToIdle Object NodeIds as starting Node
• BrowseDirection set to Forward
• ReferenceTypeId set to HasCause, HasEffect, FromState, and ToState

in the four different Browse calls
• IncludeSubtypes set to True
• NodeClassMask set to all
• and Result Mask set to DisplayName and BrowseName

Based on the information returned from the Browse calls the client can for
example display the State Machine with the states and transitions, he can provide a
way to trigger state changes with the available Methods and by reading the current
state from the instance and subscribing for the transition Events, the client can
monitor the state of the State Machine.

5.6 Read and Write Data and Metadata

One of the most important features of OPC is to read and write data from another
system using a standardized data exchange mechanism.

The Read and Write Services not only allow reading and writing the Values of
Variables, but are also used in a generic way to read and write Attributes of Nodes
to access metadata in the Address Space. A different way to read data is the sub-
scription for data changes. This is the preferred method for clients needing cyclic
updates of variable value changes.

5.6.1 Reading Data

The Read Service is used to read one or more Attributes of one or more Nodes.
It allows also reading subsets or single elements of array values and to define a
valid age of values to be returned to reduce the need for device reads. Like most
other Services, the Read Service is optimized for bulk read operations and not for
reading single Attribute values. Typically all Node Attributes are readable. For
the Value Attribute the Read rights are indicated by the AccessLevel and User-
AccessLevel Attribute of the Variable. The parameters of the Read Service are des-
cribed in Table 5.25.

1555.6 Read and Write Data and Metadata

Table 5.25 Read Service parameters

Request parameters Description
MaxAge The maximum age of the value to be read in milli-

seconds. This parameter allows clients to reduce the
communication between server and data source by
allowing the server to return a cached value that is not
older than the defined time period. Setting a value of 0
forces the server to obtain the current value. This is
similar to a device read in Classic OPC

TimestampsToReturn OPC UA defines two timestamps, the source and the
server timestamp. This parameter allows the client to
define which timestamps the server should return with
the value. See the response parameters for a
description of the different timestamps

NodesToRead [] List of Nodes and Attributes to read
NodeId Identifier for the Node to read
AttributeId Identifier for the Attribute of the Node to read.

This could be the Value Attribute or any other valid
Attribute providing metadata for Nodes. A list of

IndexRange This parameter is used to identify a single element of
an array or a single range of indexes for arrays

DataEncoding This parameter is only relevant for reading values
with a structured DataType. Structured types can be
transported using different data encodings. Default
encodings for UA are XML or UA binary format.
This parameter allows the client to define the encod-
ing used to transport the complex value

Response parameters Description
Results [] List of read results contained in DataValue structures

Value Contains the read value if the StatusCode parameter
indicates a successful read

StatusCode Success code for the read operation or quality of the
read value. The value is only usable if the status is good

SourceTimestamp Source timestamp assigned to the value if requested
by the client. The source timestamp is only available
for Value Attributes
The source timestamp is used to reflect the timestamp
that was applied to a Variable value by the data
source. It should indicate the last change of the value
or status code. The source timestamp must be always
generated by the same physical clock.
This timestamp type was added for OPC UA to cover

156 5 Services

(Continued)

Attributes can be found in Appendix B

the use case to get the timestamp of the last value
change which is different than the ServerTimestamp
definition

ServerTimestamp Server timestamp assigned to the value if requested by
the client
The server timestamp is used to reflect the time that
the server received a Variable value or knew it to be
accurate if the changes are reported by exeption and
the connection to the data source is operating.
This is the behavior expected by Classic OPC

5.6.2 Writing Data

The Write Service is used to write one or more Attributes of one or more Nodes. It
allows also writing of subsets or single elements of array values. Like most other
UA Services, the Write Service is optimized for bulk write operations and not for
writing single Attribute values. The parameters of the Write Service are described
in Table 5.26.

Table 5.26 Write Service Parameters

Request parameters Description
NodesToWrite [] List of Nodes, Attributes, and values to write

NodeId Identifier for the Node to write
AttributeId Identifier for the Attribute of the Node to write. This

could be the value Attribute or any other valid Attri-

IndexRange This parameter is used to identify a single element of
an array or a single range of indexes for arrays

Value Contains the value to write
 StatusCode Status code assigned to the value. A zero value

indicates that the status is not set
 SourceTimestamp Source timestamp assigned to the value. A null value

indicates that the timestamp is not set
 ServerTimestamp Server timestamp assigned to the value. A null value

indicates that the timestamp is not set
Response parameters Description
Results [] List of write result status codes for each write operation

Typically only the Value Attributes of Variables are writable. Other Attributes
are only writable if the server allows the configuration of Nodes through OPC
UA. For the Value Attribute the Write rights are indicated by the AccessLevel or
UserAccessLevel Attribute of the Variable. The Write rights for all other Attributes
are indicated by the WriteMask or UserWriteMask Attributes.

1575.6 Read and Write Data and Metadata

bute. A list of Attributes can be found in Appendix B

This Service allows also writing the status and the timestamps of the value if
it is supported by the server. There is a defined error status code returned if the
client tries to write these parameters but the server does not support this feature.

5.7 Subscribe for Data Changes and Events

A client can subscribe for three different types of information from an OPC UA
server. A Subscription is used to group sources of information together. A Moni-
tored Item is used to manage a source of information. A piece of information is
called a notification. A Subscription can contain all three different types of Moni-
tored Items and the server will deliver notifications for these Monitored Items
until the Subscription or the Monitored Items are deleted.

The first and most common type of Monitored Item is used to subscribe for

is used to subscribe for Events by defining an EventNotifier5 to monitor and by

used to subscribe for aggregated Values calculated based on current Variable Values

Most of the Services are used to create the necessary context for the Subscrip-

between the communication context created on top of a Session for subscribing to
data changes or Events.

Fig. 5.8 Context necessary to subscribe for data changes and Events

All Monitored Items have common settings like monitoring mode, sampling
interval, filter settings, and queue size. The different types of Monitored Items are
defined by the type of source assigned to the item and the filter defined for the Moni-
tored Item. Figure. 5.9 shows the different Subscription and Monitored Item settings.

5An EventNotifier is an Object where the SubscribeForEvents flag is set in the EventNotifier
Attribute.

158 5 Services

data changes of Variable Values (Sect. 5.7.4). The second type of Monitored Item

defining a filter for the Events (Sect. 5.7.5). The third type of Monitored Item is

in client-defined time intervals (Sect. 5.7.6).

tion (Sect. 5.7.2) and Monitored Items (Sect. 5.7.3). Figure. 5.8 shows the relation

Fig. 5.9 Settings for Subscription and Monitored Items

The sampling interval defines the rate the server checks Variable Values for
changes or defines the time the aggregate gets calculated. The monitoring mode
defines if the Monitored Item is active or inactive. The queue size defines how
many notifications can be queued for delivery. The default value for data changes
is one and the value for Events is infinite where the size of infinite depends on the
resources available in the server. The filter settings are different for data changes,
Events, and aggregate calculation.

There are two Subscription settings. The Publish interval defines the interval
when the server clears the queues and delivers the notifications to the client. The
Publish enabled setting defines whether the data gets delivered to the client.

The only two Services used to actually deliver the notifications in a notification
message to the client are the Publish Service for transferring the notification mes-
sages and the Republish Service to get lost notification messages from the server.

used to create the necessary Subscription and MonitoredItem context are explained
afterward.

5.7.1 Delivery of Changed Data and Events

The nature of the notifications provided by the Subscription requires a report by
exception from the server to the client. It is required to combine notifications to
larger notification messages to optimize interprocess or network communication
which is the typical use case of OPC. Nevertheless the server needs to be able to
send a notification message to the client whenever it is required.

In Classic OPC this was achieved by defining callback interfaces allowing the
server to call methods on the client to send data change or event notifications.
Based on the requirement to be firewall-friendly and to ensure the same behavior
for all transports, OPC UA does not define such a callback interface. An early

1595.7 Subscribe for Data Changes and Events

Sampling Interval

Publish Interval

Publish Enabled

SubscriptionMonitored Item for Data

Notification
Message

sent to client

Monitoring Mode defines if data gets sampled and delivered

Queue of data or events with configurable size

Filter for the Monitored Item defines deadband for data, event filter or aggregate and raw sampling interval

f

f

f
Variable
Value

Variable
Value

Object
Event Notifier

Monitored Item for Events

Monitored Item for calculated aggregates

The mechanism to deliver the information is described in Sect. 5.7.1. The Services

version of the Services specified a callback channel but the use of the callback
channel was reduced to the UA TCP protocol or required a bidirectional connection
establishment for Web Services which is not possible through firewalls. Since
the final mechanism to exchange notification messages through a one - way connec-
tion had no limitations, the callback channel approach was removed from the Ser-
vice specification. The current mechanism is even more efficient and reliable

account.
The mechanism for a secure and reliable exchange of notification messages has

the following requirements:

• Server-triggered sending of notification messages
• Sending a life ping from the client to the server

The Services used to implement this mechanism are the Publish and the Repub-
lish Services. The Services fulfill all these requirements based on the Service

mechanism realized with Publish and Republish.

5.7.1.1 Server-Triggered Sending of Notification Messages

The server-triggered sending of notification messages is accomplished by a special
rule for the Publish Service. It is the only Service that can be blocked by the
Server without doing any processing. It is expected that a client sends a list of
Publish requests to the server without expecting an immediate response. The server
can queue the Publish requests until a notification message is ready for sending to
the client. Since the exchange of request and response messages is asynchronous
by definition, the communication is not blocked by these outstanding Publish
requests. If the client uses the right algorithm for sending Publish requests, the
server is able to trigger the sending of notification messages.

The algorithm for sending Publish requests from the client to the server depends
on the following parameters:

• Number of Subscriptions
• Network latency
•

160 5 Services

are available
• Sending sequence numbers together with the notification message from the server

the Services are described in the following sections after describing the base

to the client to allow the client detecting lost messages

parameters and the special behavior defined for these Services. The parameters of

• Acknowledgement of received sequence numbers from the client to the
server

• Resending of lost notification messages.

Maximum queue size for Publish requests in the server.

• Sending a life ping from the server to the client when no notification messages

taking all requirements for a communication between distributed systems into

The Publish request is not bound to a specific Subscription and can be used by
the server for all Subscriptions running in the same Session context. To make sure
that all Subscriptions can send a notification message at the same time, the client
should make sure that there are more outstanding Publish requests than active
Subscriptions.

Additional Publish requests may be required if the latency of the network
connection is very high. This can be calculated based on the timestamps contained
in the request and response messages. In the case of a large number of Subscriptions
and low network latency, the number of outstanding Publish requests can be reduced.

If the Server indicates an overflow of his Publish queue with a Service result
of BadTooManyPublishRequests, the client must reduce the calculated number of
outstanding Publish requests.

Figure 5.10 summarizes the mechanisms used for the delivery of notification
messages.

Fig. 5.10 Delivery of notification messages

5.7.1.2 Keep Alive Messages

An important requirement for a quick recovery from error scenarios is a timely
detection of communication problems. One important feature is the configurable
timeout for Service invocations in OPC UA. But this feature cannot be used to
detect connection problems for the Publish since Publish requests are queued in
the server and need therefore a much longer timeout than required for a timely
detection of communication problems.

1615.7 Subscribe for Data Changes and Events

message is available, an empty Publish response is sent to the client as life ping

multiple of the publishing interval used to send notification messages.

5.7.1.3 Detection and Resending of Lost Notification Messages

notification message. If a client detects missing sequences, he can use the Republish
Service to get the lost notification message from the server. This is important for

Resending lost notification messages is also important for clients which are
only interested in the latest values since the lost message may contain changes for
Variables Values that have not be changed in the next notification message.

If a client received a notification message, he needs to acknowledge the sequence
number in the next Publish request to allow the server to free the memory allo-
cated for the buffered notification messages.

5.7.1.4 Real Callbacks and Other Help from SDKs

The Publishing mechanism is very powerful and has a certain complexity to fulfill
all requirements for a secure, reliable, and high performance communication through
firewalls. But the mechanisms are only necessary for a remote communication and
can therefore be hided by a client-side UA SDK providing a real callback inside
the client application. All complexity can be completely hidden by the SDK.

On the server-side a SDK can do even more since the whole Subscription
handling including the Publish Service handling is typically implemented by a
server-side UA SDK. Only the sampling of the data or the event monitoring needs
to be done by the server application.

5.7.1.5 Publish Service

The parameters of the Publish Service are described in Table 5.27. The relevant
Subscription settings for the trigger of the Publish response like the publishing
interval or the keep-alive interval are negotiated during the creation of the
Subscription.

162 5 Services

For this reason the Publish procedure provides life ping mechanisms in both

Another important requirement for a reliable communication is the detection of

directions. Every Publish request is a life ping from the client to the server. Every

clients interested in all Value changes or for clients subscribing for Events.

after the keep-alive interval. This interval is configurable by the client and is a

lost data. This can be achieved with the exchange of sequence numbers with each

notification message is a life ping from the server to the client. If no notification

Table 5.27 Publish Service parameters

Request parameters Description
Subscription
Acknowledgements []

List of sequence numbers the client received and
where the server can free resources for

SubscriptionId The id of the Subscription that sent the notification
message

SequenceNumber Sequence number of the received notification mes-
sage to acknowledge

Response parameters Description
SubscriptionId The id of the Subscription sending the notification

message
Available
SequenceNumbers []

A list of sequence numbers available in the
Subscription for retransmission and not
acknowledged by the client

MoreNotifications A flag that indicates if the server was not able to send
all available notifications in this Publish response

NotificationMessage Structure containing the notification message
SequenceNumber Sequence number of the notification message
PublishTime The time that this message was sent to the client

NotificationData [] A list of extensible parameters containing the
notification data. This could be a DataChange
notification or an Event notification. Since only
two notification data types are defined yet, this list
can have a size of one or two elements

5.7.1.6 Republish Service

The parameters of the Republish Service are described in Table 5.28.

Table 5.28 Republish Service Parameters

Request parameters Description
SubscriptionId The id of the Subscription that sent the notification message
Retransmit
SequenceNumber

Sequence number of the notification message to
resend

Response parameters Description
NotificationMessage Structure containing the notification message

SequenceNumber Sequence number of the notification message
PublishTime The time that this message was sent to the client

NotificationData [] A list of extensible parameters containing the notification
data. This could be a DataChange notification or an Event
notification. Since only two notification data types are def-
ined yet, this list can have a size of one or two elements

1635.7 Subscribe for Data Changes and Events

5.7.2 Create and Manage Subscriptions

count, maximum number of notifications per Publish, and the priority of the
Subscription.

The keep-alive count defines how many times the Publish interval needs to expire
without having notifications available before the server sends an empty message to
the client indicating that the server is still alive but no notifications are available.

having a connection to the client to deliver data. If the server is not able to deliver

Both values are negotiated between the client and the server.
The maximum number of notifications per Publish is used to limit the size of

tions is set by the client but the server can send fewer notifications in one message
if his limit is smaller than the client-side limit. If not all available notifications can
be sent with one notification message, another notification message is sent.

The priority setting defines the priority of the Subscription relative to the other

with higher priorities first in high-load scenarios.

5.7.2.1 CreateSubscription Service

This Service is used to create a Subscription and to define the initial settings for
the Subscription. The Subscription can be deleted using the DeleteSubscriptions
Service or by setting the DeleteSubscriptions flag when closing the Session. The
parameters of the CreateSubscription Service are described in Table 5.29.

Table 5.29 CreateSubscription Service parameters

Request parameters Description
Requested
PublishingInterval Subscription
PublishingEnabled Publish enabled setting for the Subscription
Requested
MaxKeepAliveCount

Client-requested keep-alive count for the
Subscription

Requested
LifetimeCount

Client-requested lifetime count for the Subscription

MaxNotifications
PerPublish

Client-defined maximum number of notifications
per notification message delivered to the client by
Publish

164 5 Services

(Continued)

enabled and the Publish interval. Additional settings are keep-alive count, lifetime
In normal operation the relevant settings for the Subscription are the Publish

the notification message sent from the server to the client. The number of notifica-

Subscriptions created by the Client. This allows the server to handle Subscriptions

ources. The lifetime count must be at minimum three times the keep-alive count.

The lifetime count defines how many times the Publish interval expires without

notification messages after this time, it deletes the Subscription to clear the res-

Client-requested publishing interval for the

Priority Priority of the Subscription in the client relative to
other Subscriptions created by the client

Response parameters Description
SubscriptionId Id of the subscription set by the server. The client

must use this id in all following Service calls related
to this Subscription

Revised
PublishingInterval

Server-revised publishing interval for the
Subscription

Revised
MaxKeepAliveCount

Server-revised keep-alive count for the Subscription

RevisedLifetimeCount Server-revised lifetime count for the Subscription

5.7.2.2 DeleteSubscriptions Service

This Service is used to delete a list of Subscriptions created with the CreateSub-
scription Service. The parameters of the DeleteSubscription Service are described
in Table 5.30.

Table 5.30 DeleteSubscriptions Service parameters

Request parameters Description
SubscriptionIds [] List of Subscriptions to delete. The Subscriptions are

identified by their ids created in the CreateSubscrip-
tion Service

Response parameters Description
Results [] List of status codes for the passed Subscription ids

indicating if the delete was successful

5.7.2.3 ModifySubscription Service

This Service is used to modify the settings of a Subscription. The parameters of
the ModifySubscription Service are described in Table 5.31.

Table 5.31 ModifySubscription Service parameters

Request parameters Description
SubscriptionId Id of the Subscription to modify. This id was

returned from the CreateSubscription Service
Requested
PublishingInterval

Client-requested publishing interval for the
Subscription

Requested
MaxKeepAliveCount

Client-requested keep-alive count for the
Subscription

1655.7 Subscribe for Data Changes and Events

(Continued)

Requested
LifetimeCount

Client-requested lifetime count for the Subscription

MaxNotifications
PerPublish

Client-defined maximum number of notifications per
notification message delivered to the client by Publish

Priority Priority of the Subscription in the client relative to
other Subscriptions created by the client

Response parameters Description
Revised
PublishingInterval

Server-revised publishing interval for the
Subscription

Revised
MaxKeepAliveCount

Server-revised keep-alive count for the Subscription

RevisedLifetimeCount Server-revised lifetime count for the Subscription

5.7.2.4 SetPublishingMode Service

This Service is used to modify the Publish-enabled setting for a list of Subscriptions.
The parameters of the SetPublishingMode Service are described in Table 5.32.

Table 5.32 SetPublishingMode Service parameters

Request parameters Description
PublishingEnabled A flag that indicates if the Publish should be enabled or

disabled for the list of Subscriptions passed to this Service
SubscriptionIds [] List of Subscriptions to modify. The Subscriptions are

identified by their ids returned by the CreateSubscription
Service

Response parameters Description
Results [] List of status codes for the passed Subscription ids indicat-

ing if the setting of the Publish-enabled flag was successful

The Service allows clients to deactivate the delivery of notification messages
without deactivating the collection of data and events.

5.7.2.5 TransferSubscriptions Service

This Service is used to transfer a list of Subscriptions to the Session that is used to
call this Service. This feature is used by redundant clients to transfer a Subscrip-
tion from the main client to the backup client if the main client is no longer avail-
able. It is also used to assign a Subscription to a new Session if the old one is not
longer valid but the Subscription is still valid. The parameters of the TransferSub-
scriptions Service are described in Table 5.33.

166 5 Services

Table 5.33 TransferSubscriptions Service parameters

Request parameters Description
SubscriptionIds [] List of Subscriptions to transfer. The Subscriptions

are identified by their ids returned by the CreateSub-
scription Service

Response parameters Description
Results [] List of transfer results

StatusCode Result of the transfer operation for one Subscription
AvailableSequence
Numbers []

A list of sequence numbers available in the Subscrip-
tion for retransmission and not acknowledged by the
client

5.7.3 Create and Manage Monitored Items

Clients are creating Monitored Items in a Subscription to subscribe for data changes
and Events. This section describes the common settings for Monitored Items and
the Services to manage Monitored Items. The three different types of Monitored
Items are described in more detail in the following sections.

 The sampling interval of the Monitored Item defines the rate in milliseconds;
the underlying data source is sampled for data changes. The sampling interval can
be inherited from the publish interval of the Subscription but can be also set indi-
vidually for each item. If the server must sample the data source, there is typically
a minimum possible rate. If this minimum is known, it is exposed as Minimum-
SamplingInterval Attribute of the Variable. If the data source delivers the data
exception based at changes, the server can also accept sampling intervals of 0. The
server can adjust the requested rate to the next possible rate it supports but the server
must attempt to sample at the defined rate, however, the server is not allowed to
sample faster than the negotiated rate. The sampling interval is 0 for Event Moni-
tored Items.

The monitoring mode defines the states disabled, sampling, and reporting. The
difference between sampling and reporting is that for sampling the data source is
sampled but the notifications are not sent to the client and for reporting they are
also sent to the client. The setting sampling is necessary for the definition of trig-
gered monitored items where the notifications are only reported when a triggering
Monitored Item has a new notification. More details on triggering are described
for the SetTriggering Service in this section.

Filter settings are specific to the different types of Monitored Items and are
described in the following sections. The filter defines if a notification gets queued
for transfer to the client.

The queue parameters define the size of the queue for notification message and
the discard policy if the queue is full but a new notification message is available
and passed the filter criteria. In this case it could be defined that the newest or the

1675.7 Subscribe for Data Changes and Events

oldest notification in the queue will be overwritten. The queue size for Event
Monitored Items is unlimited. For data Monitored Items it depends on the use
case. A HMI client only displaying the latest value will set the size to one. A size
greater than one can be used by clients that do not want to lose data changes even
if the sampling is faster than the delivery of the notification message with Publish.
This applies for example for a trend display.

5.7.3.1 CreateMonitoredItems Service

This Service is used to create Monitored Items in a Subscription and to define the
initial settings for the Monitored Items. They can be deleted using the Delete-
MonitoredItems Service or by deleting the Subscription. The parameters of the
CreateMonitoredItems Service are described in Table 5.34.

Table 5.34 CreateMonitoredItems Service parameters

Request parameters Description
SubscriptionId Id of the Subscription to add the items to. This id

was returned from the CreateSubscription Service
TimestampsToReturn OPC UA defines two timestamps, the source and the

server timestamp. This parameter allows the client to
define which timestamps the server should return
with the value. The two different timestamps are
described in Sect. 5.6.1

ItemsToCreate [] List of items to create with the requested settings
NodeId NodeId of the Node to monitor. This is typically a

Variable for data and must be an Object for Events.
This can be also all other Node classes for data

AttributeId Id of the Attribute to monitor. This could be the
Value Attribute of a Variable for data or the Event-
Notifier Attribute for Events
It is possible to subscribe for data changes of all
defined Attributes for all possible Node classes. But

get informed about changes of Attributes other than
Value since it is expected that these Attributes
change never or only after configuration changes

MonitoringMode Monitoring mode of the item which could be dis-
abled, sampling, or reporting

ClientHandle Client defined handle for the Monitored Item. This
handle gets delivered together with the notification
to allow the client to assign the notification to a
Monitored Item

168 5 Services

(Continued)

monitoring but this would be an unusual use case

there are more efficient methods (see Sect. 5.7.4) to

Monitoring
Parameters

Client requested monitoring parameters sampling
interval, filter, queue size, and discard policy

Response parameters Description
Results [] List of results for the list of items to create

StatusCode Status code that indicates if the creation of the
requested Monitored Item succeeded

MonitoredItemId Id for the Monitored Item assigned by the server This
id must be passed in Services used to modify and
delete Monitored Items

Revised
SamplingInterval

Sampling interval accepted by the server. If the
requested rate is not available, the server adjusted the
interval to the next available longer rate

RevisedQueueSize Queue size used by the server

5.7.3.2 DeleteMonitoredItems Service

This Service is used to delete MonitoredItems created with CreateMonitoredItems.
The parameters of the DeleteMonitoredItems Service are described in Table 5.35.

Table 5.35 DeleteMonitoredItems Service parameters

Request parameters Description
SubscriptionId Id of the Subscription to remove the items from. This

id was returned from the CreateSubscription Service
MonitoredItemIds [] List of Monitored Items to delete. The ids were

returned from the CreateMonitoredItems Service
Response parameters Description
Results [] List of status codes for each item to delete indicating

if the delete succeeded

5.7.3.3 ModifyMonitoredItems Service

This Service is used to modify MonitoredItems in the Subscription. The parameters
of the ModifyMonitoredItems Service are described in Table 5.36.

Table 5.36 ModifyMonitoredItems Service parameters

Request parameters Description
SubscriptionId Id of the Subscription to add the items to. This id

was returned from the CreateSubscription Service
TimestampsToReturn OPC UA defines two timestamps, the source and the

server timestamp. This parameter allows the client to
define which timestamps the server should return
with the value

1695.7 Subscribe for Data Changes and Events

(Continued)

ItemsToModify [] List of items to modify with the requested settings
MonitoredItemId Server defined handle for the Monitored Item used

to identify the item in the Subscription. This id was
returned from the CreateMonitoredItems Service

ClientHandle Client defined handle for the Monitored Item

Monitoring
Parameters

Client requested monitoring parameters sampling
interval, filter, queue size, and discard policy

Response parameters Description
Results [] List of results for the list of items to modify

StatusCode Status code that indicates if the modification of the
Monitored Item succeeded

Revised
SamplingInterval

Sampling interval used by the server. If the requested
rate is not available, the server adjusted the interval
to the next available longer rate

RevisedQueueSize Queue size used by the server

5.7.3.4 SetMonitoringMode Service

This Service is used to set the monitoring mode for MonitoredItems in the Subscrip-
tion. The parameters of the SetMonitoringMode Service are described in Table 5.37.

Table 5.37 SetMonitoringMode Service parameters

Request parameters Description
SubscriptionId Id of the Subscription containing the items to modify
MonitoringMode Monitoring mode of the items which could be

disabled, sampling, or reporting
MonitoredItemIds [] List of Monitored Items to modify. The ids were

returned from the CreateMonitoredItems Service
Response parameters Description
Results [] List of status codes for each item to modify indicating

if setting the monitoring mode succeeded

5.7.3.5 SetTriggering Service

The Monitored Items Service Set allows adding items that are reported only when
another item, the triggering item, triggers. This is done by creating links between the
triggered items and the triggering item. The monitoring mode of the triggered items
is set to sampling-only so that it will sample and queue notifications without report-
ing them. The parameters of the SetTriggering Service are described in Table 5.38.

170 5 Services

Table 5.38 SetTriggering Service parameters

Request parameters Description
SubscriptionId Id of the Subscription containing the trigger items
TriggeringItemId The server defined id for the Monitored Item that

should be used as trigger item
A list of server defined ids of Monitored Items that
should be assigned to the triggering item
A list of server defined ids of Monitored Items that
should be removed from the triggering item

Response parameters Description
AddResults [] List of status codes for each trigger link to add

indicating if the add succeeded
RemoveResults [] List of status codes for each trigger link to remove

indicating if the remove succeeded

5.7.4 Monitor Data Changes

OPC. OPC UA allows subscribing for more information than just Variable Value
changes but it is expected that it is also one of the most important features of OPC
UA. Table 5.39 describes the Value change specific MonitoredItem settings.

The other specific part is the structure of a notification message sent for a data
change. The structure contains value, status of the value, the source timestamp, and
the server timestamp assigned to the value. The same parameters are returned by
the Read Service. They are described more detailed in Sect. 5.6.1.

It is expected that other Attributes than the Value Attribute or Properties of a
Variable are changed very infrequently. Therefore the monitoring with a data
Monitored Item should be avoided if possible. For this reason OPC UA provides
two features used to monitor changes of metadata.

Item. Any changes in the structure or the DataType of the sent data or any seman-

the normal data flow with the StructureChanged flag and the SemanticsChanged
flag in the StatusCode assigned to each Value sent from the server to the client. If
the StructureChanged flag is set, the client should read the data type information
or the type description of a structured DataType. If the SemanticsChanged flag is
set, the client should check the Properties of the Variable for changes.

Another feature is the SemanticsChange Event indicating changes in the Address
Space semantic of the server. The changes covered by this Event are changes of
Property Values. The AccessLevel Attribute of a Property indicates with the

1715.7 Subscribe for Data Changes and Events

tic changes of the Variable like a change of the engineering units are indicated in

One feature is directly related to Values monitored with a data change Monitored

SemanticsChange bit if the Property is able to trigger such an Event if the Value is

LinksToAdd []

Subscribing for data changes of Variable Values is the main use case in Classic

LinksToRemove []

Table 5.39 Data Monitored Item settings

Parameters Description
NodeId NodeId of the Variable to monitor
AttributeId Value Attribute
SamplingInterval The rate in milliseconds the server checks the under-

lying data source for changes. The type of change
that triggers a notification is defined by the filter.
If –1 is used for this interval, the publishing interval
of the Subscription is used as for this setting.
A client can over sample the Value by setting the
SamplingInterval to a smaller value than the publishing
interval and the queue size to 1

QueueSize Maximum number of values stored for the Monitored
Item during a publishing interval. After each publish-
ing interval the server will send the values in the
queue to the client

Filter Data change filter settings
Trigger Type of change that triggers a notification message.

The possible triggers are change in:
• The status of the value
• The value or status of the value (default)
• The source timestamp, value, or status of

the value
DeadbandType This parameter indicates if a deadband is applied and

if applied, which type of deadband. OPC UA defines
two type, absolute deadband and percent deadband

DeadbandValue Absolute deadband
For this type the DeadbandValue contains the abso-
lute change in a number data value that will cause a
notification to be generated. Triggers a value change
if abs(last value – new value) > DeadbandValue
Percent deadband
For this type of deadband the DeadbandValue is
defined as the percentage of the EURange. This
deadband setting is only applied to Variables having
a EURange Property. This setting triggers a value
change if the value changed more than the per-
centage of the configured Value range

changed. Servers will support this typically only for Properties where they get infor-
med by the underlying system about such changes. Otherwise the server needs to
monitor all Properties in the system if a client subscribes for such an Event which is
even worse than monitoring Properties with a data change Monitored Item for
changes.

172 5 Services

5.7.5 Monitor Events

The only way to receive current Events from a Server is the creation of an Event
Monitored Item in a Subscription. Event and data Monitored Items can be com-
bined in one Subscription. The main difference between an Event and a data
Monitored Item is the way to select the subset of information to receive. For data
items the client selects exactly one Variable Value and monitors the Value for
changes. For an Event Item it is normally not possible to directly select the Event
Source since Objects acting as EventNotifiers may combine a large number of
Event Sources. For this reason the filter settings are very important to be able to
reduce the amount of Events and Event Fields to the needed subset. The Event
Monitored Item settings including the filter are described in Table 5.40.

Table 5.40 Event Monitored Item settings

Parameters Description
NodeId NodeId of the Object to monitor
AttributeId EventNotifier Attribute
SamplingInterval 0
QueueSize 0 – this means that the maximum size supported by

Filter Event filter settings
SelectClauses [] List of select clauses used to select the Event fields

to return for each Event notification
TypeId NodeId of the Event Type defining the Event field
BrowsePath [] List of BrowseNames from the Event Type to the

Instance Declaration representing the Event field. This
list has one element for simple Event Types. If the list
has more elements the server must follow forward
hierarchical references to find the Event field

WhereClause Limits the notifications to those Events that match
the criteria defined by this ContentFilter

Elements [] List of operators and their operands that compose the
filter criteria. The filter is evaluated by starting with
the first entry in this array

FilterOperator Filter operator to be evaluated. Possible operators are
described in Table 5.41

Filter
Operands []

Array of extensible parameters containing the oper-
ands used by the selected operator. The number and
use depend on the operands described in Table 5.41.
This array needs at least one entry

1735.7 Subscribe for Data Changes and Events

the server is used

The Select clause is used to reduce the number of data contained in an Event
notification. The client must explicitly select Event fields he is interested in. There

The Where clause is used to filter on the Event fields to reduce the number of
Events to the ones the client is interested in. Examples for typical filters are:

• EventType = TransitionEventType
• ((SourceNode = DeviceX) OR (SourceNode = DeviceY)) AND

(Severity > 200)
• (EventType = MyEventType) AND (Severity > 500)

Figure 5.11 shows the fields of the BaseEventType, a derived Event Type
MyEventType, and an Event filter with a select of some fields of both Types and a
Where clause using other fields to filter the Events.

The operators and operands are defined by OPC UA. The operators are des-
cribed in Table 5.41. Additional information can be found in [UA Part 4].
The Operands could be:

• A index of another element in the list used to build a logic tree of elements
• A literal value, e.g., the NodeId of the EventType to filter for
• An operand6

Fig. 5.11 Example for Event filter

Table 5.41 Filter operators

Operator Description
Equals True if operand one is equal to operand two
IsNull True if operand one is null
GreaterThan
LessThan
GreaterThanOrEqual True if operand one is greater or equal to operand two

6SimpleAttributeOperand containing similar information like a SelectClause element.

174 5 Services

(Continued)

 identifying the field of the new Event used to filter on, e.g., the
EventType field defined by the BaseEventType.

are no default fields returned like in Classic OPC.

True if operand one is greater than operand two
True if operand one is less than operand two

LessThanOrEqual True if operand one is less or equal to operand two
Like True if operand one matches a pattern defined by

operand two.
The pattern syntax is defined in [UA Part 4]

Not True if operand one is false
Between True if operand one is greater or equal to operand two

and less than or equal to operand three
InList True if operand one is equal to one or more of the

remaining operand
And True if operand one AND operand two are true
Or True if operand one OR operand two are true
Cast Converts operand one to a data type identified with a

DataType NodeId in operand two

5.7.6 Monitor Aggregated Data

A special version of subscribing for data changes of Variable Values is the moni-
toring of aggregated data where the server samples on a higher rate, calculates the
selected aggregate after the SamplingInterval and sends only the aggregated values
to the client. Table 5.42 describes the aggregate specific MonitoredItem settings.
More details about aggregate calculation are described in Chapter 5.9.1 in the section
for HistoryRead processed and in [UA Part 13].

Table 5.42 Aggregate MonitoredItem settings

Parameters Description
NodeId NodeId of the Variable to monitor
AttributeId Value Attribute
SamplingInterval The interval in milliseconds for which the server

calculates the aggregate
QueueSize Maximum number of values stored for the Monitored

Item during a publishing interval. After each publishing
interval the server will send the values in the queue to
the client

Filter Aggregate filter settings
StartTime Start time of the first interval to calculate. The length

of the intervals is defined by the SamplingInterval
AggregateType NodeId of the aggregate type. The list of aggregates is

described in Table 5.48

RawData
SamplingInterval

The rate at which values are sampled from the under-
lining system to be used to compute the aggregate

The structure of a notification message sent for an aggregate result is the same
like for data MonitoredItems.

1755.7 Subscribe for Data Changes and Events

OPC UA allows servers to expose Methods in the Address Space that can be
called by clients. Methods are components of Objects and can be called in the con-
text of an Object. All necessary information to call a Method is available in the
Method description including the detailed description of the input and the output
parameters of the Method. Section 5.5.2.3 describes how to find this information
in the use case to get information to call a method.

The Call Service is used to actually call a method with built-in knowledge of
the client or based on knowledge the client got through the information available
in the Address Space. The Service allows calling a list of Methods to reduce the
roundtrips between the client and the server. OPC UA client SDKs will provide
simplified functions to call one Method and full featured functions to call a list
of Methods in one Service invocation. The parameters of the Call Service are
described in Table 5.43.

Table 5.43 Call Service parameters

Request parameters Description
MethodsToCall [] List of Methods to call

ObjectId NodeId of the Object or ObjectType Node that
provides the Method

MethodId NodeId of the Method to call in the context of the
Object or ObjectType

InputArguments [] List of input argument values of the Method. The
required arguments and the necessary data types for
each argument are defined by the InputArgument
Property of the Method in the Address Space

Response parameters Description
Results [] List of results for each Method to call

StatusCode
InputArgument
Results []

List of input argument result codes for the Method
call

OutputArguments[] List of output argument values of the Method.

each argument are defined by the OutputArgument
Property of the Method in the Address Space

176 5 Services

5.8 Calling Methods Defined by the Server

The returned arguments and the data types for

Success code for the Method call

5.9 Access History of Data and Events

The main difference between the access to current data and Events using Read,
Write, and Subscriptions and the access to the history is the definition of a time
domain in the history request and the return of an array of information archived

Attribute of an Object.
The history access Services HistoryRead and HistoryUpdate are making exten-

sive use of extensible parameters to cover the different use cases for history access

The HistoryRead Service request uses an extensible parameter to define the
type of read for raw data, modified data, processed data, data on specific time-
stamps, and history of Events. The HistoryRead response is using an extensible
parameter for the transport of the two types of requested information, data and
Events. The HistoryUpdate Service request uses an extensible parameter to insert,
to replace, to update, and to delete data or Events.

To describe these different variations of the Services, the following sections are
describing first the Service with the common parameters and then the different
types of extensible parameters. OPC UA client SDKs will typically expose nine
history methods. Their signatures are defined by the different types of extensible
parameters.

5.9.1 HistoryRead Service

This Service is used to read historical Values or Events of one or more Nodes in
an ordered sequence for the defined time domain. Continuation points are used to
continue the read of the ordered sequence if not all data can be returned in one
HistoryRead response. The returned number can be limited by the client or the
server. Table 5.44 describes the general HistoryRead Service parameters. The
extensible parameters for the different types of history Read are described in the
following Sections.

1775.9 Access History of Data and Events

with two Services. [UA Part 4] defines only the fixed Service parameters. All

tory is indicated by the AccessLevel Attribute of a Variable or the EventNotifier

extensible parameters are defined in [UA Part 11].

for the time period domain of the current data or Events. The availability of his-

Table 5.44 General HistoryRead Service parameters

Request parameters Description
HistoryReadDetails Extensible parameter containing the parameters for

the different types of history read operations. This
could be a read of raw, modified, and processed
values, read of Values at certain timestamps or the
read of Event history

TimestampsToReturn Indicates if the source timestamp, the server
timestamp, or both should be returned
The selected timestamp is also used for the selection
of the values in the time domain to read. If both are
selected, the source timestamp is used

Release
ContinuationPoint

The flag indicates if the Service call is used to
release ContinuationPoints returned from previous
calls without returning additional data. This allows
clients to free resources in the server if the client
does not continue the read

NodesToRead [] List of Nodes where the client wants to read history
NodeId NodeId of the Node that provides historical information

For reading data history this must be the NodeId of a
Variable Node where the HistoryRead flag is set for
the Access Level Attribute
For reading Event history this must be the NodeId of
an Object Node where the HistoryRead flag is set for
the EventNotifier Attribute

ContinuationPoint Returned by the server in a previous HistoryRead
call. It is used by the client to continue the read or to
release the continuation point

Response parameters Description
Results [] List of results for each Node to read

StatusCode Success code for the Node and the filter settings
HistoryData Extensible parameter containing the result data for

the different types of history read operations. This
could be a list of data values or a list of Event notifi-
cations

 ContinuationPoint Set by the server if not all data can be returned in this
call. This allows the client to continue the read with-
out exceeding the limits set by the client or the server

5.9.1.1 Reading Raw or Modified Data

The HistoryRead Service is called with the extensible parameter of type Read-
RawModified to read raw or modified data for a specified time domain. It reads

178 5 Services

the Values, status, and timestamps of one or more Variables. The extensible
parameter is described in Table 5.45 and is used in the HistoryReadDetails para-
meter of the HistoryRead Service.

For raw data the values stored in the history database are returned directly. A
modified value is a value that has been replaced by another value at the same
timestamp in the history database. If there are multiple replaced values the server
must return all of them.

Table 5.45 ReadRawModified extensible parameter

Parameters Description
IsReadModified Specifies the type of read. If the flag is set to false, a

read raw is performed, if set to true a read modified
is performed

StartTime Begin of the time period to read
EndTime End of the time period to read
NumValuesPerNode The maximum number of values returned for each

Node. If this maximum is exceeded by the number
of available values in the defined time domain, the
server returns a continuation point. The value 0
indicates that there is no limit set by the client.
The server can also reduce the number of values
to return

ReturnBounds A flag that indicates if bounding values should
be returned. If set to true, a value before the start
time and a value after the end time is returned if
no values are available at the specified start and
end timestamps

The extensible parameter type HistoryData is used to return the data for read
raw, modified, processed and read at time. The content of the HistoryData struc-
ture is described in Table 5.46. The data value structure is also used in the Read
Service and data change notifications. The parameters are described more detailed
at the Read Service in Table 5.25.

Table 5.46 HistoryData extensible parameter

Parameters Description
DataValues [] Array of data values containing the result data

Value Raw or processed value from the history database
StatusCode Status of the value. There are special historical

access status codes and info bits defined providing
history specific information

SourceTimestamp Source timestamp for the value

ServerTimestamp Server timestamp for the value

1795.9 Access History of Data and Events

5.9.1.2 Reading Processed Data

The HistoryRead Service is called with the extensible parameter of type Read-
Processed to Read processed data calculated with the specified aggregate based on
the raw data in the history database. It reads the processed Values, status and time-
stamps for one or more Variables in the specified time domain. The extensible
parameter is described in Table 5.47 and is used in the HistoryReadDetails parameter
of the HistoryRead Service. The server must use start time, end time, and the resample
interval to generate a sequence of time intervals and then calculate an aggregate
for each interval. The aggregates are defined in [UA Part 13] and described in
Table 5.48.

Table 5.47 ReadProcessed extensible parameter

Parameters Description
StartTime Begin of the time period to read
EndTime End of the time period to read
ResampleInterval Time interval in milliseconds that is used to calculate

one aggregated value from the raw values in the his-
tory database. The time domain is divided into sub-
intervals with the length of the ResampleInterval
beginning with the start time
If the ResampleInterval is 0, one aggregated value is
calculated for the time domain

AggregateType The NodeId of the aggregate used for the calculation
of the values. The OPC UA defined aggregates are
described in Table 5.48

All aggregates in the following table without an additional comment return a
timestamp of the start of the interval. If the aggregate returns another timestamp,
the specific behavior is described for the aggregate.

Table 5.48 Aggregates used for HistoryRead and monitoring of aggregated values

Aggregate Description
Interpolative Returns an interpolated value for the starting time of the

interval
Data averaging and summation aggregates
Average Returns the average data over the resample interval. It adds

up all values in the interval and divides the sum by the
number of values

TimeAverage Returns the time weighted average data over the resample
interval. A straight line is drawn between each raw value in
the interval. The area under the line is divided by the length
of the interval to yield the average. Interpolated values are
used at the start and at the end of the interval

180 5 Services

(Continued)

Total Returns the sum of the data over the resample interval. It adds
up all values in the interval

Totalize
Average

Returns the totalized Value (time integral) of the data over
the resample interval

Data variation aggregates
Minimum Returns the minimum value in the resample interval
Maximum Returns the maximum value in the resample interval
Minimum
ActualTime

Returns the minimum value in the resample interval and the
timestamp of the minimum value

Maximum
ActualTime

Returns the maximum value in the resample interval and the
timestamp of the maximum value

Range Returns the difference between the minimum and maximum
Value over the sample interval

Counting aggregates
Annotation
Count

Returns the number of annotations in the resample interval.
Annotations are user entered comments in the history database

Count Returns the number of raw values with good status in the
resample interval

Duration
InState0

The duration of the interval the value was in FALSE state.
The value of the aggregate is the time in milliseconds

Duration
InState1

The duration of the interval the value was in TRUE state. The
value of the aggregate is the time in milliseconds

Number
OfTransitions

Returns the number of value changes with good quality in the
resample interval

Time aggregates
Start Returns the first value in the interval and the timestamp of the

first value
End Returns the last value in the interval and the timestamp of the

last value
Delta The difference between the first and the last good value in the

interval. If the last value is less than the first value, the result
will be negative

Data quality aggregates
DurationGood The duration of the interval the value had good quality. The

value of the aggregate is the time in milliseconds
DurationBad The duration of the interval the value had bad quality. The

value of the aggregate is the time in milliseconds
PercentGood Percentage of the interval the value had good quality (0–100).

PercentGood = DurationGood / ResampleInterval * 100
PercentBad Percentage of the interval the value had bad quality (0–100).

PercentGood = DurationGood / ResampleInterval * 100
WorstQuality Returns the worst quality of the values in the interval. The

value of the aggregate is the status code for the worst quality

1815.9 Access History of Data and Events

5.9.1.3 Reading Data at a Series of Timestamps

The HistoryRead Service is called with the extensible parameter of type Read-
AtTime to read data for the specified timestamps. When no value exists for a speci-
fied timestamp, a value is interpolated from the surrounding values to represent
the value at the specified timestamp. It reads the Values, status, and timestamps for
one or more Variables. The extensible parameter is described in Table 5.49 and is
used in the HistoryReadDetails parameter of the HistoryRead Service.

Table 5.49 ReadAtTime extensible parameter

Parameters Description
RequestedTimes [] List of requested timestamps

5.9.1.4 Reading Event History

The HistoryRead Service is called with the extensible parameter of type Read-
Event to read Events for the specified time domain. The filter parameter is used to
determine which historical Events are returned and selects the Event field returned
for an Event. The extensible parameter is described in Table 5.50 and is used in
the HistoryReadDetails parameter of the HistoryRead Service.

Table 5.50 ReadEvent extensible parameter

Parameters Description
NumValuesPerNode The maximum number of Events returned for each

Node. If this maximum is exceeded by the number of
available events in the defined time domain, the server
returns a continuation point. The value zero indicates
that there is no limit set by the client. The server can
also reduce the number of events to return

StartTime Begin of the time period to read
EndTime End of the time period to read
Filter The filter allows reducing the amount of Events

returned from the Read by using the same Event
filter used for monitoring current Events. The filter
is described there in Table 5.40

The extensible parameter type HistoryEvent is used to return the Events for
Read Events. The content of the HistoryEvent structure is described in Table 5.51.

182 5 Services

5.9.2 HistoryUpdate Service

This Service is used to insert, replace, update, or delete historical Values or
Events. Table 5.52 describes the general HistoryUpdate Service parameters. The
extensible parameters for the different types of history update are described in the
following sections.

Table 5.52 General HistoryUpdate service parameters

Request parameters Description
HistoryUpdate
Details []

A list of extensible parameters containing the infor-
mation for the different types of history updates.
This could be insert, replace, update, or delete of
historical Values or Events

Response parameters Description
Results [] List of results for each update detail list entry

StatusCode Status code for the list entry
OperationResults [] Status code for each operation in the list entry

5.9.2.1 Insert, Replace, or Update Data

The HistoryUpdate Service is called with the extensible parameter of type Update-
Data to insert, replace, or update data in the history database. The extensible
parameter is described in Table 5.53 and is used in the HistoryUpdateDetails para-
meter of the HistoryUpdate Service.

Table 5.53 UpdateData extensible parameter

Parameters Description
PerformInsert A flag that indicates if an insert should be performed

if no value is available for the passed timestamp in the
history database

PerformReplace A flag that indicates if a replace should be performed
if a value is available for the passed timestamp in the
history database

NodeId NodeId of the Variable to be updated
DataValues [] A list of values including status codes and timestamps

to update in the history database

Table 5.51 HistoryData extensible parameter

Parameters Description
Events [] Array of Events being delivered
 EventFields [] List of selected Event fields

1835.9 Access History of Data and Events

Table 5.54 Update data flags

Insert Replace Description
True False The passed value will only be written to the history if no

value exists at the specified timestamp
False True The passed value will only be written to the history if a

value exists at the specified timestamp. The existing
value will be replaced

True True The passed value will be inserted if no value exists for
the timestamp but will also replace an existing value at
the given timestamp

5.9.2.2 Insert, Replace, or Update Event

The HistoryUpdate Service is called with the extensible parameter of type Update-
Event to insert, replace, or update, Events in the history database. The extensible
parameter is described in Table 5.55 and is used in the HistoryUpdateDetails para-
meter of the HistoryUpdate Service.

Table 5.55 UpdateEvent extensible parameter

Parameters Description
PerformInsert A flag that indicates if an insert should be performed

if no event is available for the passed timestamp in
the history database

PerformReplace A flag that indicates if a replace should be performed
if an event is available for the passed timestamp in
the history database

NodeId NodeId of the Object to be updated
Filter The filter is used to find the event to update or to

replace or to insert the Event if PerformInsert is set
and the Event was not found. The same Event filter
is used like for monitoring current Events. The filter
is described there in Table 5.40

EventFields [] List of Event fields for the Event to update

One of the two flags to force insert or replace must be set. Table 5.54 describes
the update Event flags usage.

184 5 Services

Table 5.56 Update Event Flags

Insert Replace Description
True False The passed Event will only be written to the history

if no Event exists at the specified timestamp
False True The passed Event will only be written to the history

if an Event exists at the specified timestamp. The
existing Event will be replaced

True True The passed Event will be inserted if no Event exists
for the timestamp but will also replace an existing
Event at the given timestamp

5.9.2.3 Delete Raw or Modified Data

The HistoryUpdate Service is called with the extensible parameter of type Delete-
RawModified to delete raw or modified data for a specified time domain. The
extensible parameter is described in Table 5.57 and is used in the HistoryUpdate-
Details parameter of the HistoryUpdate Service.

For raw the values stored in the history database are deleted. A modified value is
a value that has been replaced by another value at the same timestamp in the history
database. If there are multiple replaced values the server must delete all of them.

Table 5.57 DeleteRawModified extensible parameter

Parameters Description
IsDeleteModified Specifies the type of delete. If the flag is set to false, a delete

raw is performed, if set to true a delete modified is performed
NodeId NodeId of the Variable for which the values are to be deleted
StartTime Begin of the time period to delete
EndTime End of the time period to delete

5.9.2.4 Delete Data at a Series of Timestamps

The HistoryUpdate Service is called with the extensible parameter of type Delete-
AtTime to delete data for the specified timestamps. The extensible parameter is
described in Table 5.58 and is used in the HistoryUpdateDetails parameter of the
HistoryUpdate Service.

One of the two flags to force insert or replace must be set. Table 5.56 describes
the update Event flags usage.

1855.9 Access History of Data and Events

5.9.2.5 Delete Events

The HistoryUpdate Service is called with the extensible parameter of type
DeleteEvent to delete specific events. The extensible parameter is described in
Table 5.59 and is used in the HistoryUpdateDetails parameter of the History-
Update Service.

Table 5.59 DeleteEvent extensible parameter

Parameters Description
NodeId NodeId of the Object for which the events are to be

deleted
EventId [] An array of Event ids to identify which Events are to

be deleted

5.10 Find Information in Complex Address Space

The Browse Service is used to navigate through the Address Space. This mecha-
nism is useful to navigate through known areas and to find information in a small
Address Space but it will be difficult or impossible to find the necessary informa-
tion in a very large or a very dynamic Address Space. Address Spaces of servers
providing access to systems with rich Information Models can have millions of
Nodes. Address Spaces of MES or ERP systems can have very dynamic Address
Spaces representing for example current work orders.

The OPC UA feature used to find information in such Address Spaces is
Query. It implements a different approach than Browse. It allows defining filter
criteria to retrieve a subset of Nodes and Information based on these filters,
whereas Browse defines a starting Node and filters to reduce the list of returned
referenced Nodes. The query mechanism of OPC UA is based on type informa-
tion. The starting point of each query is to specify the type of Objects or Variables
the client is interested in. In the SECLECT-Part (DataToReturn) of a query, the
client specifies what data should be returned relative to instances of the type and
in the WHERE-Part (Filter) the client specifies the filter criteria.

The QueryFirst Service is used to start a Query and QueryNext is used to get
the remaining results if too many results are available. The Service parameters of
QueryFirst are described in Table 5.60.

Table 5.58 DeleteAtTime extensible parameter

Parameters Description
NodeId NodeId of the Variable for which the values are to be

deleted
RequestedTimes [] List of requested timestamps

186 5 Services

Table 5.60 QueryFirst Service parameters

Request parameters Description
View Passing a View allows limiting the Query to a

specific View
NodeTypes [] Array of structures containing the type filter for the

Query
TypeDefinitionNode NodeId of the TypeDefinition VariableType or

ObjectType where instances should be returned
IncludeSubtypes Indicates whether instances of subtypes should be in-

cluded
DataToReturn [] Specifies the Nodes and the Attributes of the

instances to return
RelativePath Brows Path from the instance of the specified type to

the component of the instance

AttributeId Id of the Attribute to return for the selected Node
Filter Content filter used to reduce the returned instance

Nodes and their Attribute values. The content filter is
the same filter that is used in the where clause of the
Event Monitored Items. The filter settings are de-

MaxDataSetToReturn This parameter allows the client to limit the number
of returned results

Response parameters Description
QueryDataSets [] List of result data

NodeId NodeId of the instance Node matching the query
defined in the request

TypeDefinitionNode TypeDefinition NodeId for the returned instance
Node

Values [] List of Values for the selected Attribute
ContinuationPoint A continuation point is returned when the server was

sponse. The limitation can be set by the client in the
request or by the server during Query processing
The continuation point can be passed to QueryNext to
get the remaining results
QueryNext takes the ContinuationPoint as input pa-

5.11 Modify the Address Space

The NodeManagement Services enables an OPC UA client to create and delete
Nodes and References in the Address Space of an OPC UA server. It is expected

1875.11 Modify the Address Space

scribed there in Tables 5.40, 5.41

rameter and returns the same results like QueryFirst

that this feature is mainly used between OPC UA servers and their configuration

not able to deliver all results in the QueryFirst re-

clients. Information Models may define the use of these Services more detailed to
make them useful for generic clients knowing the Information Model.

5.11.1 Adding Nodes

The AddNodes Service is used to add one or more Nodes to the Address Space.
The parameters of the Service are described in Table 5.61.

Table 5.61 AddNodes Service parameters

Request parameters Description
NodesToAdd [] List of Nodes to add to the server Address Space

ParentNodeId NodeId of the Node where the new Node should be
referenced from

ReferenceTypeId NodeId of the Reference type used for the Reference
to create between the parent Node and the new Node

BrowseName Browse name of the new Node
NodeClass Node class of the new Node
NodeAttributes Extensible parameter containing the additional

Attribute values depending on the NodeClass to create

TypeDefinition TypeDefinition NodeId used to define which type of
Object or Variable with its type defined components
should be created. This parameter is not set if the
NodeClass is not Object or Variable

Response parameters Description
Results [] List of results for each add operation

StatusCode
AddedNodeId NodeId of the newly created Node

5.11.2 Creating References Between Nodes

The AddReferences Service is used to create one or more References between Nodes
in the Address Space. The parameters of the Service are described in Table 5.62.

Table 5.62 AddReferences Service parameters

Request parameters Description
ReferencesToAdd [] List of References to create

SourceNodeId NodeId of the source Node of the new Reference
ReferenceTypeId NodeId of the Reference type used for the Reference

to create between the source and the target Node

TargetNodeId NodeId of the target Node of the new Reference
Response parameters Description
Results []

188 5 Services

Result code for the add operation

List of result codes for each add operation

5.11.3 Removing Nodes

The DeleteNodes Service is used to remove one or more Nodes from the Address
Space. The parameters of the Service are described in Table 5.63.

Table 5.63 DeleteNodes Service parameters

Request parameters Description
NodesToDelete [] List of Nodes to remove from the server Address

Space
NodeId NodeId of the Node to delete
DeleteTarget
Reference

A flag that indicates if the server should also delete
the Reference to the target Node

Response parameters Description
Results []

5.11.4 Delete References Between Nodes

The DeleteReferences Service is used to remove one or more References in the
Address Space. The parameters of the Service are described in Table 5.64.

Table 5.64 DeleteReferences Service parameters

Request parameters Description
ReferencesToDelete []

SourceNodeId NodeId of the source Node of the Reference to delete
ReferenceTypeId NodeId of the Reference type used for the Reference

to delete between the source and the target Node

TargetNodeId NodeId of the target Node of the Reference to delete
Response parameters Description
Results []

5.12 Summary

5.12.1 Key Messages

There are two types of OPC UA Services. One type is used to create a communi-
cation context like the Secure Channel, Session, Subscription, and MonitoredItem
Service Sets. The other type is used to exchange information like Browse to get
information about the structure of the Address Space, Read, Write, and Publish to
access data and Call to execute Methods.

1895.12 Summary

List of References to delete from the server Address Space

List of result codes for each delete operation

List of result codes for each delete operation

Compared to Classic OPC the number of Services7 is reduced to a small set
based on the design goal to provide only one generic Service for a task and on the
design goal to provide information by modeling the information and not by pro-
viding a special access method for the type of information.

The Services are defined in an abstract way enabling the implementation of the

ments to achieve the requirements for platform-independence, scalability, and
high performance but also for Internet access and the capability to cross firewalls.

All Services can be called synchronous and asynchronous since the base mecha-
nism to exchange the messages is asynchronous and the calls to the client API can

used by the client after short network interruptions but the negotiated timeouts are
allowing the server to clear resources after the timeout expires. Together with the

(see Sect. 9.3) a reliable communication between distributed systems is ensured.

5.12.2 Where to Find More Information?

The abstract OPC UA Services are defined in [UA Part 4]; the technology map-

Additional implementation specific information is provided by the documenta-
tion of the different UA Stack implementations and OPC UA SDKs.

5.12.3 What’s Next?

After explaining the abstract Services to access the OPC UA information provided
by a server, Chap. 6 describes the different technology mappings of the Services
to the different types of message serialization, message security, and message
transport and the different available implementations of these mappings.

Other related aspects are the Security concepts described in Chap. 7, the Appli-
cation Architecture explained in Chap. 8 and the System Architecture described
in Chap. 9.

7Comparable to interface methods in COM.

190 5 Services

be made synchronous in the UA Stack. Individual timeouts per Service call can

ping is defined in [UA Part 6].

be configured. A communication context like a Session or a Subscription can still be

Service transport with different technologies and different development environ-

Publish mechanisms to ensure no data gets lost and the built-in redundancy features

6 Technology Mapping

6.1 Overview

When considering developing applications it soon comes to the question which

apply a matured technology and in other cases innovation is more important.
However, when developing a standard, the technology question is not easy to
answer if you intend to satisfy everyone in the community. For some people per-
formance and reliability are more important than security, for others this is vice-
versa. Another issue that has to be considered for answering the technology question
is what happens when a technology retires? Technologies are provided and main-
tained for certain platforms like operating systems. When new versions of such
platforms are provided then sometimes older technologies are replaced by newer
ones. The backward compatibility is thereby not always given!

In order to be open for future technologies and to provide certain interoperabi-
lity between OPC UA products the working group decided to define services (see
Chap. 5) and concepts in an abstract manner and to specify a technological map-

exchanging data between OPC UA applications: data encoding, securing the
communication, and transporting the data. This is illustrated in Fig. 6.1. OPC UA
applications in general can be separated into several functional layers. There are
layers for the application logic, for accessing other components (i.e., interfaces)
and there are several layers responsible for encoding, security, and transport which

rated from the real application since they can be reused by many other applica-
tions. Reference [UA Part 6] defines for each of the stack’s layer two technologies
that can be used for implementation. However, technology evolves and additional
technology mappings might be added in the future. In order to develop an OPC
UA compliant product (see Chap. 12) at least one of the specified technologies for
each layer has to be implemented.1

In the following subsections each specified technology is briefly introduced.

1Note that the OPC Foundation provides deliverables already implementing all the technologies
specified in [UA Part 6]; see Sect. 6.5 for some more information.

technology to use for the implementation. There are often many different techno-
logy options from which one has to be selected. In some cases it is preferable to

DOI: 10.1007/978-3-540-68899-0_6,

can be composed to a so-called stack. Stacks are mostly generic components sepa-

191W. Mahnke et al., OPC Unified Architecture,

ping for implementation. The specified mappings address three tasks necessary for

© Springer-Verlag Berlin Heidelberg 2009

Fig. 6.1 Mappings

6.2 Data Encodings

Data encoding is the serialization of the Service messages including its input and
output parameter to a network format OPC UA currently specifies two encodings:
OPC UA Binary and XML. Both encodings are introduced in the following. How-
ever, there are some aspects common for both encoding types.

For both, OPC UA Binary and for XML, the network representations of a set of
primitive types (e.g., Boolean, Byte, and Float) are specified in order to compose
structures and more complex types. This specific set of primitive types is called
Built-In DataTypes and their encoding is defined in [UA Part 6].

A further aspect that is common for all encoding types is the ExtensionObject.
This is a special type container for any complex data independent of the encoding.
Beside the encoded data, the ExtensionObject contains also an identifier which
indicates what data it contains and how it is encoded. There are two use cases for
this special container. One use case is to provide type information for the decoding
since the encoded data may not contain meta information about the structure of the
data like in the binary encoding. It provides the necessary meta information in all
places in the encoded data where different types can be used. The second use case
is the transport of proprietary encoded data where the encoding is only known by
the application layer.

A Variant, which is also used in both encodings, is a data type that can be used
to hold a set of different other types. In OPC UA, a Variant can represent each of
the defined Built-In DataTypes mentioned above including an ExtensionObject.

6.2.1 OPC UA Binary

Performance and overhead on the wire is often a critical parameter for industrial
systems such as for applications embedded in a controller. Therefore the OPC UA

192 6 Technology Mapping

working group defined a data format – OPC UA Binary – providing fast encoding
and decoding of data by only having a small size and efficient format of encoded
data on the wire.

zation and deserialization of the Service parameters to a binary stream is the most

More complex data types are composed by combining a set of primitives. The
translation to its binary format is performed by sequentially translating the con-
tained primitives.

6.2.2 XML

Sometimes it is desirable to exchange data in a format that can be easily consumed
by different applications, platforms as well as by humans. In such scenarios, XML
documents often play an important role since the structure is standardized. This
allows every application or platform having an XML parser to interpret such docu-
ments. Based on this fact many applications at operations level (such as MES) use
XML to exchange data with systems at corporate level (e.g., ERP systems). Since
it is expected that OPC UA applications will run at both levels, an XML support
has to be provided.

specifications [W3C04a] and [W3C04b]. In some cases, restrictions or special
usages have to be applied. However, these are not described in this book but they

when applying XML encoding. The upper line represents the XML schema that
defines the XML instance at the bottom.

The basic concept of OPC UA Binary Encoding is that a specified set of primi-

“OPCUA” is encoded according to OPC UA Binary. Thereby a sequence of UTF-8
representation of Built-In DataType is given in Fig. 6.2. In this figure, the String
efficient way for data exchange between different systems. An example for a binary

tive data types (Built-In DataTypes) are translated into a binary representation by

characters is used beginning with the length of the String (in the present example 5

using well-defined rules by sequentially writing it to a binary stream. The seriali-

characters). Note that there is no null terminator contained. Null Strings are indicated
by encoding the value “–1” as length.

ExtensionObjects.
The abstract Service messages defined in [UA Part 4] are encoded by using

1936.2 Data Encodings

are specified in [UA Part 6]. Figure 6.3 illustrates how a String is represented

Most of the Built-In DataTypes are encoded according to the common XML

Fig. 6.2 String example of OPC UA Binary Encoding

More complex types are composed by nested XML elements composed with
primitives. A LocalizedText is a simple example of structure containing primitive
types and is depicted in Fig. 6.4.

Messages are represented the same way a structure is encoded and are therefore

6.3 Security Protocols

There are two security protocols defined for OPC UA in order to map the
abstract services defined in [UA Part 4]: WS-SecureConversation and UA-
SecureConversation. Both are based on a certificate-based connection establishment
as described in Sect. 7.5.2.

6.3.1 WS-SecureConversation

WS-SecureConversation defined at [OASIS07] is an extension specification to
WS-Security specified at [OASIS04] which defines concepts and technologies for
securing data exchanged via Web Services. These and other related standards are
developed and published by OASIS2 a nonprofit organization driving open stan-
dards in the field of information technology. WS-SecureConversation is used in

2Organization for the Advancement of Structured Information Standards.

194 6 Technology Mapping

Fig. 6.3 Primitive example of XML Encoding

Fig. 6.4 Structure example of XML Encoding

also defined by a “xs:complexType”.

conjunction with WS-SecurityPolicy [OASIS07a] defining the security algorithms
and WS-Trust [OASIS07b] negotiating shared secrets for the Secure Channel
that has to be established between OPC UA applications (see Sect. 7.5.2). WS-

3

pyramid.

and a Session (see Sect. 7.5.2.1). The abstract OpenSecureChannel request and

SecurityTokenResponse (RSTR) messages of WS-SecureConversation. These

ther messages (including the Session establishment) in a symmetric manner (which
is better performing than securing messages with Public and Private Keys). In
WS-SecureConversation this secret key is called DerivedKeyToken.

Tables 6.1 and 6.2 show in more detail how to map OpenSecureChannel request
and response to the WS-SecureConversation equivalents.

Table 6.1 Mapping of OpenSecureChannel request to RequestSecurityToken

OpenSecureChannel request RequestSecurityToken
clientCertificate BinarySecurityToken
requestType (open/renew) RequestType
secureChannelId SecurityTokenReference
securityMode
securityPolicyUri

SignatureAlgorithm
EncryptionAlgorithm
KeySize

clientNonce Entropy
requestedLifetime Lifetime

Table 6.2 Mapping of OpenSecureChannel response to RequestSecurityTokenResponse

OpenSecureChannel response RequestSecurityTokenResponse
securityToken RequestedSecurityToken
revisedLifetime Lifetime
serverNonce Entropy

3http://msdn.microsoft.com/en-us/netframework/aa663324.aspx.

1956.3 Security Protocols

SecurityPolicy is also used as a basis for SecurityPolicies and SecurityProfiles used
by OPC UA which are introduced in Sect. 7.5.4. When it comes to encrypting and

WS-SecureConversation is optimized for securing XML data since it applies

OPC UA applications running at operations or corporate level of the automation

The connection establishment in OPC UA requires creating a Secure Channel

signing data then XML Encryption [W3C02] and XML Signature [W3C08] are

response are mapped to the concrete RequestSecurityToken (RST) and Request-

applied. These standards have been chosen since they are approved and already

XML Encryption and Signature which makes it a good approach for developing

implemented in several products and platforms such as Microsoft’s Windows

messages are used to agree upon a shared key which is used for securing all fur-

Communication Foundation.

Why does the OPC UA working group define its own new security protocol?
This is a question which we have been asked a lot of times. First of all, UA-
SecureConversation is not a new security protocol. It is rather a combination
of approved techniques and mechanisms of the standards TLS4 and WS-
SecureConversation. There are several reasons for heading this approach which
are discussed in the following.

WS-SecureConversation is a protocol tailored for communication scenarios in
which XML documents are exchanged for example via SOAP/HTTP. However,
other scenarios have also to be considered in which performance and overhead are
quite important such as applications running on controllers. In such cases, some-
thing fast and efficient is needed and since XML comes up with a large overhead
on the wire WS-SecureConversation is therefore rarely an option.

One idea that came up in the working group was to use TLS for mapping the
abstract connection establishment Services since this is widely accepted and used
in a diverse range of applications. But after several investigations it turned out that
TLS off-the-shelf cannot be used for OPC UA applications because either the
specification or the TLS implementations do not meet certain requirement of
OPC UA.

TLS implementations do not support the latest security protocols which is quite
obvious since these algorithms may have been developed when the products were
already on the market. One problem is that updates are not always provided for the
specific platform but only for the next release. Another problem is that updates are
not always possible since it is not that easy to extend the implemented applica-
tions. This could lead to interoperability problems considering an environment
with OPC UA applications running on different platforms.

Another problem comes up with the Session handling. Many TLS implementa-
tions (such as Microsoft’s SSPI5) hide the context information of established SSL
sessions since they are transparently created to the upper layers. Since OPC UA
requires binding Sessions to Secure Channels, this is a problem. This means in
addition to that the application above does not have the full control over the SSL
session representing the OPC UA Secure Channel and therefore does not know
when new sessions are created. Network interruptions causing the creation of a
new SSL session would be an interesting event of that an application would like to
know about.

A further issue regarding SSL sessions is the lifetime. In many TLS implemen-
tations the maximum lifetime of a SSL session can be configured. After that
lifetime the session ends and new one has to be created. However, the TLS speci-
fication suggests maximum of 24 h causing that most implementations use an even
much shorter period. However, in industrial environments this can be far too short.

4Transport Layer Security; defined at [DR06].
5MS Security Support Provider Interface.

196 6 Technology Mapping

6.3.2 UA-SecureConversation

Whenever the Secure Channel (in this case the SSL session) is renewed, it has to
be bound to an OPC UA Session and during this phase no application-specific
data (for example production requests) can be exchanged between clients and
servers. This could lead to some problems when production process last longer
than 24 h.

One use case of OPC UA is to run several servers on a machine all sharing
the same IP address and port. A special addressing mechanism at transport level
allows such a scenario. But TLS 1.1 only supports one certificate per IP address
and port which does not allow end-to-end security. This means the above des-
cribed scenario cannot be secured with TLS 1.1.

Finally, it has to be said that although current TLS implementations and stan-
dard does not meet the requirements of OPC UA this does not mean that future
versions of TLS addressing all those problems cannot be used. Since OPC UA is
open for future technologies additional mappings can be defined.

UA-SecureConversation does not directly map the abstract Services but uses
the encoded Service messages as the payload and adds additional security-related
information in front of and behind this payload. The message chunk structure is
shown in Fig. 6.5.

Fig. 6.5 Message chunk according to UA-SecureConversation

This header is followed either by the Asymmetric Security Header or by the
Symmetric Security Header. The first variant is only used for OpenSecureChannel

secured with Public and Private Keys (see Sect. 7.5.2.1).This header contains the
applied Security Policy identifying the algorithms used for securing the message,

thumbprint identifying the certificate used for encrypting the message. The second
variant is applied for all other messages beside the OpenSecureChannel message.
In this case the header only contains a TokenId identifying the set of symmetric
keys used to sign and encrypt messages.

1976.3 Security Protocols

request.

the certificate of the sender in order to verify the signature of the message, and a

The Message Header contains information identifying the type of the message,

requests and responses since OpenSecureChannel is the only Service messages

for example whether it is an OpenSecureChannel request or a CreateSession

The Sequence Header contains a number identifying a chunk. This is used
when the payload (i.e., the Encoded Service Message) does not fit in a single chunk
and therefore the message has to split up into multiple chunks.

Directly after the Encoded Service Message the Security Footer is placed. It
contains among others the Signature of the message used to verify whether the
signed data has been changed after it is sent and whether the message really comes
from the entity (i.e., installed application instance) represented by the certificate in

6.4 Transport Protocols

UA TCP and SOAP/HTTP are the two transport protocols defined by the OPC UA
standard. These protocols are used for establishing a connection between an OPC
UA client and server at network level. On top of the transport protocol a Secure

6.4.1 UA TCP

A fast and simple network communication can be achieved by applying UA TCP
for the transport layer. There are different requirements leading to the design deci-
sion to define a small protocol on top of TCP: First, the necessity of negotiating

to share one IP-Address and port. Finally, it should be possible to react on and
recover from errors occurring at transport level.

The general structure of an UA TCP message chunk consists of a Message

The Message Header contains information about the type and the length of the
message. Note, that when combining UA-SecureConversation with UA TCP the
Message Headers are intentionally the same which slightly reduces the overhead

Fig. 6.6 Message chunk according to UA TCP

198 6 Technology Mapping

level. Second, different endpoints of OPC UA servers should have the possibility

the Security Header. This signature is verified with the Public Key of the

buffer sizes for sending and receiving data that can be configured at application

sender certificate when an OpenSecureChannel message is exchanged and for

Header and a Message Body which are depicted in Fig. 6.6.

all other messages the negotiated symmetric keys identified by the TokenId
are used.

Channel and an OPC UA Session are created.

on the wire when applying message security and allows the implementation of the
Transport Layer to easily distinguish between Transport Layer messages and mes-
sages that have to be forwarded to the Security Layer (e.g., OpenSecureChannel
messages).

The Message Body either contains the encoded and secured Service messages

There are three UA TCP messages types defined which are briefly introduced
in the following.

A Hello message is sent by the OPC UA client to the server in order to estab-
lish a socket connection to a specific endpoint provided by the server. It thereby
also requests certain buffer sizes for sending and receiving data from the server as
well as maximum chunk and total message lengths.

As response to the Hello message, the server sends an Acknowledge message
confirming or revising the requested buffer sizes as well as chunk and message
lengths. An agreement on these numbers is important from reliability and from the
security perspective. Clients and servers thereby know what to expect from each
other and can resist certain attacks like buffer overflows or Denial-of-Service.

Finally, the third message type is the Error message providing error informa-
tion to the other application. Such messages are sent around if connection prob-
lems occur, for example, if a message cannot be processed since the size is too
long or the server is overloaded.

As indicated above, UA TCP defines also a specific error recovery mechanism
enabling OPC UA Sessions to survive network interruptions. When a client loses
the socket connection then a new socket is created and assigned to the existing Secure
Channel which has to be first reauthenticated by the server. Pending requests of
the client and responses of the server are buffered until a new socket is available.
However, if the error recovery fails (after trying to reconnect a certain number of
times) an error message is sent around which enables the Application Layer to react
on that.

6.4.2 SOAP/HTTP

SOAP/HTTP stands for SOAP over HTTP and is a widely accepted communication
scheme in Web Service environments because it is simple and firewall-friendly.
Since the standard ports for the Web protocol HTTP is used for transportation, no
additional port has to be opened in the firewall. This means that OPC UA applica-
tions can securely communicate with each other via Internet in the same manner
as Web browsers talk to Web servers.

SOAP in general is a network protocol for exchanging data between systems
and calling remote procedures. It thereby relies on several other standards for
example XML for data representation and HTTP or TCP for data transportation.

messages used for establishing a socket connection or exchanging connection error
that are forwarded to the upper layer or contains UA TCP-specific connection

information.

1996.4 Transport Protocols

Note that for OPC UA only HTTP is specified in the technological mapping. In
principle a SOAP message is structured in a header and in a body which is reflected
in Fig. 6.7. The headers contain addressing and routing information whereas the
body encloses the payload that has to be transported. OPC UA does not define
specific headers but uses headers specified in WS-Addressing defined at [W3C04c].
The encoded and secured Service message is then enclosed by the Body element
of a SOAP message. Although the SOAP message is an XML-based data structure
it is still capable of transporting both an XML encoded Service message as a child
of the Body element and an UA Binary encoded message using Base64 encoding
rules. Common structures and exchange patterns for SOAP messages used for
OPC UA purposes are defined in [W3C07a] and [W3C07b].

Fig. 6.7 Structure of a SOAP message

As mentioned above HTTP is used for transporting the SOAP messages. This is
done by transmitting the OPC UA Service requests embedded in SOAP requests in
the body of HTTP POST requests and the OPC UA Service responses the same
way in HTTP POST responses. HTTPS which uses TLS for securing the exchanged
HTTP data can also be used. However, when already applying one of the above
introduced Secure Channels this is an unnecessary overhead. Furthermore, TLS is
not meeting all the requirements of OPC UA. But in some scenarios in where not
all OPC UA requirements are needed it can make sense to disable UA security and
use HTTP over TLS instead.

6.5 Available Mapping Implementations

Implementing a protocol stack for OPC UA is admittedly not an easy task and
requires a lot of time. But it is not expected that everyone develops its own stack.
An OPC UA stack is a generic component that can be used for a diverse range of
applications and therefore many vendors can use the same stack and build their
applications on top of it. To ensure interoperability on the stack layer and in order
to verify the defined mappings the OPC Foundation decided to develop stacks
implementing the specified mappings.

Currently there are two stacks available: one implemented in C# and another
one in ANSI C which are both part of the UA SDK provided by the OPC Foundation.
The C# stack implements all mappings described above. However, the ANSI C

200 6 Technology Mapping

stack currently provides UA Binary, UA-SecureConversation, and UA TCP as
mapping implementations. A JAVA stack implementation was under development
during the time this book was written.

In addition, it is possible generating your own stack for SOAP/HTTP using the
WSDL provided by the OPC Foundation.

6.6 Summary

6.6.1 Key Messages

OPC UA is open to future technologies since it defines abstract concepts and
services which are then mapped to different concrete technologies. This allows
adding additional mappings to technologies coming up in the future.

A set of various mappings are already provided for the Transport Layer, the
Security Layer, and for the Encoding Layer representing the protocol stack of an
OPC UA application. A technological mapping of interfaces or applications using
the stack is not in the scope of the OPC UA standard.

For the Encoding Layer there are two mappings defined: UA Binary and XML.
UA Binary is a fast and efficient encoding tailored for applications running at the
Control Level or below (e.g., on the controller) of the automation pyramid whereas
the XML provides a flexible and interoperable encoding for applications running
at Operations Level or above (e.g., MES, ERP connectivity).

OPC UA defines also two Security Layer mappings: WS-SecureConversation
and UA-SecureConversation. WS-SecureConversation is a security protocol speci-
fied by OASIS in order to secure XML-based messages exchanged via Web
Services. For example MS Windows Communication Foundation is implementing
this standard. UA-SecureConversation is not a new protocol but combination of
approved techniques and mechanisms of WS-SecureConversation and TLS. This
adaptation has to be done, since the actual TLS standard as well as current imple-
mentations do not completely meet the requirements of OPC UA. However, this
does not mean that future versions of TLS will not be a possible Security Layer
mapping of OPC UA.

At the lowest layer – the Transport Layer – OPC UA specifies two transport
mechanisms which are namely UA TCP and SOAP/HTTP. UA TCP is a simple
protocol on top of TCP providing special mechanisms required by OPC UA such
as a special error recovery allowing the OPC UA Sessions to survive from network
interruptions. The widely accepted standards SOAP/HTTP are used to provide a
firewall-friendly mechanism for OPC UA applications in order to communicate
over the Internet with Web Services.

Since implementing all these layers is a lot of work and in order to help appli-
cation developers developing OPC UA applications the OPC Foundation provides
a set of OPC UA standard deliverables already implementing all the defined

2016.6 Summary

mappings. The standard deliverables are offered in the OPC UA SDK of the OPC
Foundation which is freely available for members of the OPC Foundation.

6.6.2 Where to Find More Information?

All defined mappings are specified in [UA Part 6], whereas the abstract OPC UA

6.6.3 What’s Next?

Chapter 7 is about how OPC UA applications can be secured. Thereby the security

OPC UA standard but necessary for running OPC UA applications such as Public
Key Infrastructures.

202 6 Technology Mapping

Services are defined in [UA Part 4]. More information about XML schemas as a
possible Data Encoding for OPC UA can be found at [W3C04a] and [W3C04b].

concepts of OPC UA are presented and also concepts that are not specified by the

fications to be supported in order to implement SOAP/HTTP can be found at
The specification of WS-SecureConversation is provided at [OASIS07]. The speci-

[W3C07a] and [W3C07b].

7 Security

7.1 Why is Security so Important?

The topic “security” gained a lot in importance in the automation domain in the
past years although it is still very controversially discussed.

In the IT world, this topic has already been very important for a long time
caused by many publications and articles about security incidents of hackers that
tried to intrude into systems of banks or credit card organizations. IT-administrators
feared that the same could happen to their system and CEOs feared that the cus-

invest more money in security measures to resist those attackers. Soon people

affected. Excellent examples for that can be found in the field of industrial auto-
mation. Today’s production processes of manufacturing companies are mostly based
on IT systems. Production requests are initiated by Enterprise Resource Planning
(ERP) systems, the execution of the process is managed by Manufacturing Execu-
tion Systems (MES), special HMIs used to for supervisory of the process, and the
documentation of results, quality, and resource consumption are highly dependent
on IT systems. And most of these systems do not act in an isolated environment
anymore but have interconnections with systems from other areas within a plant,

There are companies that have sites all around the world that are interconnected

only a financial damage. Attacks on a chemical plant for example could also harm
the environment and humans as well, which makes it to an attractive target for
sabotage and terroristic activities.

But how much security is necessary? This is the controversially discussed aspect
of security. Some may state that security is not needed at all because their automa-
tion solution acts in an isolated environment, some others would like to secure any
part of the system. A realistic answer to this question is that the appropriate level
of security depends on many different factors like the concrete target environment,
the asset to be protected, and also restrictions by regulation bodies. This means

There are approved methods and tools available which can be used to simplify this
investigation. One of the most important methods is a systematic security assess-
ment which is described in the Sect. 7.4. Once the necessary level of security is
identified a security model can be developed in order to integrate security into the
system in a proper way. Section 7.5 describes the abstract security model for OPC
UA applications integrating measures identified in a security assessment for OPC
UA environments described in Sect. 7.4.2. Besides the abstract model, also concrete

DOI: 10.1007/978-3-540-68899-0_7,
203W. Mahnke et al., OPC Unified Architecture,

that it has somehow to be investigated how much security a system really needs.

© Springer-Verlag Berlin Heidelberg 2009

over the Internet. A security incident in such organizations could cause more than

tomers would not trust the company anymore. Therefore companies decided to

also any organization that is somehow dependent on distributed IT systems was

other sites of an organization or even from other organizations (e.g., supply chain).

realized that not only banks and credit card organizations were affected but

technologies used for the implementation are important to the security of a system.
The OPC UA Security implementations are based on certificates managed by
Public Key Infrastructures (PKIs). Therefore, Sects. 7.6 and 7.7 point out how
these technologies are used for securing OPC UA applications. Finally, Sect. 7.8
gives a summary of security in the context of OPC UA.

7.2 Organizational Perspective of Security

Most people think about technical measures like firewalls when they first hear the
term security and do not realize that it has also an organizational nature which is
quite important to think about and to address in operational environments. How-
ever, OPC UA does not specify anything in that area since there are lots of other
standards and guidelines mainly dealing with security from the management per-
spective. Therefore, this chapter only mentions some important aspects and refers
to some sources that discuss that topic in more detail.

Organizational security is about how humans deal with security instead of how
computers and applications deal with security (which is discussed in Sect. 7.3).
Obviously humans do not behave and work like computers since the way they
work and act is influenced by feelings, motivation, background, and other social
factors. An application can be forced to behave in a special way but this would not
work in all cases with humans. For example, if data is encrypted with a certain
tool then you can be pretty sure that this tool will not show the plain text to any-
body that does not know the correct password (assuming that the tool behaves
correctly). But can you be sure that if you tell an employee a password that he will
keep it for himself? Or that he will not write it on a piece of paper and place it dir-
ectly next to the computer as a reminder?

There are a lot of different organizational measures that can be introduced in
order to address this and similar problems. At this point only two aspects will be
briefly discussed: awareness and responsibilities.

Many people are often not aware of the potential threats at their workplace and
the impacts on the organization they work for. Often they do not realize when
something is going wrong. Opening an email attachment from an unknown sender
is quite risky. There are attachments containing malicious code that can interrupt
running production processes when it is executed. Some may argue that in the
automation network no emails are allowed and that it is isolated from the office
network. But in reality this isolation often does not exist anymore. Enterprise
application such as ERP systems from the office network are tightly integrated in
the production process. Such incidents can be avoided if an employee knows
about the risks and the threats at his workplace and knows about proper measures
learned in special trainings. Another problem comes up with the occurrence of
anomalies in a system. Let us assume an operator of a production system realizes
that the CPU load of his workstation is unusually high but after half an hour it
returns to its usual load again. The most often reaction is that he is doing nothing

204 7 Security

although this could mean that a malicious application is spying on the process and
sending the recorded data to a person outside the company. The operator ignores
the incident because he does not know what it is and also does not know what to
do. A good measure to address this is to define clear responsibilities and duties for
such incidents. The operator should know that he has to contact the responsible
security team (which can be represented by the system administrator in smaller
environments) of the company. The security team should inform the production
manager, investigate and identify the problem, and solve the problem.

These are just two typical scenarios the organizational security is dealing with.
A broader and more detailed view on organizational security problems and mea-
sures can be found in [ISA99].

7.3 Technical Perspective of Security

Besides the organizational perspective of security there is the more common tech-
nical perspective which more people are aware of. Technical security is about how
systems and their infrastructures (e.g., software, computers, devices, and network)
can be protected with technical measures. Security measures can thereby be intro-
duced in different phases of a system’s lifecycle. There are also approaches defining
security measures for each phase of the development lifecycle like the Security
Development Lifecycle (SDL) [LH05] defined by Microsoft. This is a good approach
for assuring products are already secure before they are deployed at the customer’s
site. But such an overall lifecycle model is neither in the scope of the book nor in
the scope of the OPC UA standard. This book focuses on the requirements analysis
and design of secure OPC UA applications.

The first security-related task has to be done when collecting requirements for
the system to be developed. Thereby security goals have to be defined (as a part of
the requirements specification) addressing rules and regulations dictated by com-
panies or regulatory bodies like the Food and Drug Administration (FDA).1
In the design phase, there are two tasks that have to be processed regarding secu-
rity: protecting the application to be developed and protecting its environment.
The challenge for both tasks is to find the appropriate level of security since it has
impacts on the characteristics of system such as performance and flexibility.
Therefore, a tradeoff has to be made between those factors which are commonly
investigated in an assessment. The common steps to be performed in such an
assessment are described in Sect. 7.4.1. The results of such assessments are lists of
security measures that have to be considered in the system design and imple-
mented in the product.

1The US Food and Drug Administration (FDA) define requirements for companies developing
applications for the consumer industry in the United States.

2057.3 Technical Perspective of Security

The measures for the first task – protecting the environment of an OPC UA system –
very much depend on the concrete environment. If security measures for the network
infrastructure are introduced, then these measures have to be integrated into an
existing network infrastructure and have thereby also to be conformant with rules
and policies of the site. Therefore, it is hard to suggest concrete security measures
on that level but generic concepts can be provided. Such a generic concept is the
Defense-in-Depth strategy in which multiple layers of defense in networks are
defined. For example, different network segments can be protected by firewalls of
different vendors which makes it harder for hackers to intrude into the core of the
system. A more detailed view on environment protection is provided in [ISA99].

For the second task – protecting the application – the OPC UA working group
identified measures as results of a security assessment that are either suggested as
good practices in [UA Part 2] or considered in the normative parts of the OPC UA
standard. These measures are described in the Sect. 7.5 and 7.6.

7.4 Determining the Appropriate Level of Security

7.4.1 Security Assessments

As indicated in the previous sections, the appropriate level of security for a system
can be identified with the help of a security assessment.

An assessment, in general, is a process with defined goals and steps that have
to be accomplished by a defined group of persons. Each step instructs activities
and results that have to be achieved in order to proceed to the next step. A security
assessment has the goal to identify a useful set of security measures to protect
assets2 of an environment or a system. Standardized security assessments are already

domain some bigger companies just start to apply standardized assessments such
as defined in [ISA99] for automation systems. There are lots of different standards
for security assessments that vary in the amount of steps, the kind of activities, or
the granularity of security measures but they all have the same basic procedure as
described in the following sections.

7.4.1.1 Defining Security Goals

First of all security goals have to be defined. Security goals describe what of
an asset has to be protected. In principle, there are three common security goals:

2An asset can be nearly anything that has to be protected (e.g., information, communication,
hardware, and software).

206 7 Security

processed for a long time in the “Office-IT-World”. However, in the automation

confidentiality, availability, and integrity. Although these terms are quite well-known
varying valid definitions can be found in literature [AL02]. However, it is impor-
tant that everybody that participates in the assessment has the same understanding
of these three basic goals. This can be assured if an understandable and accepted
definition is written down and distributed among the participants. But obviously
three goals are not sufficient to describe what of an asset should be protected. There-
fore, further security goals have to be derived from these basic ones, for example
auditability or nonrepudiation. In addition, a context in which the derived goals
are used has to be defined, for example the auditability of the user authentication
and authorization. Higher level security goals are often dictated by common secu-
rity policies of companies or rules by regulatory bodies.

At the end of this step a list of security goals for a specific asset has to be cre-
ated to proceed to the next step.

Common Security Policies vs. OPC UA Security Policies

The term Security Policy is used in different contexts within this book. A
security policy in general is a document written or at least approved by CIO
of a company defining how a company deals with different security-related
topics.
In OPC UA a Security Policy is a collection of cryptographic algorithms
used for securing the connection between OPC UA clients and servers. Sec-
tion 7.5.4 provides a more detailed description on that.

7.4.1.2 Identifying Relevant Threats

In the second step, the assessment team looks for threats that harm the previously

attacks. But threats can also be of nontechnical nature. In such a case, they are
more focusing on manipulating or tricking humans. For example, a hacker could
personate himself as a service engineer pretending to repair something in a plant
but intends to spy on the system. In many cases it is even a mixture of both. The

Three good information sources for identifying potential threats are: vulnerabi-
lity databases, experience of security experts, and former security issues of previous
or similar products.

Vulnerability databases are provided via Web sites by special organizations that
collect reports of exposures of security flaws and publish them in order to inform the
community about these problems. There is the possibility to search threats by
keywords which simplifies the process of getting vulnerabilities that are relevant

2077.4 Determining the Appropriate Level of Security

are based on a technical system like virus or a hacker that uses a computer for his

tries to infect the plant network with a trojan that eavesdrop the network traffic.

defined security goals. Threats can be of technical nature which means that they

mentioned service engineer does not only want to get access to the system but also

for a specific target environment. The two famous examples for such vulnerability
databases are CVE3 and CERT.4

The involvement of security experts in principle is quite efficient since they
have a good knowledge and a long experience with a broad range of security attacks
and holes. Therefore, they can quickly identify the most important threats by ana-
lyzing the specific target environment and suggest countermeasures as well. But
there are also some concerns with common “Office-IT” security experts since they
often do not have enough domain knowledge and they may judge threats based on
“Office-IT” requirements instead of considering the special requirements for
automation systems. Particularly because of this circumstance some consulting
companies specialized themselves on securing critical environments used in nuclear
power plants and factories.

It is also worth looking at problems and security issues of previous versions of
the same product or similar products since they could also be relevant for the cur-
rent one. These issues should be captured in a kind of bug tracking database5 or
documented in a bug report document or at least in the heads of some end-users or
system-integrators that can be interviewed.

As a result of this step, a list of threats has to be created whereby each of them
harms at least one of the defined security goals defined in the first step.

7.4.1.3 Determining Effective Countermeasures

The process of searching countermeasures against specific threats can be very
time consuming and therefore it is very helpful to have proper sources. Section
7.4.1.2 mentions some sources for finding threats (vulnerability databases, secu-
rity consultancy, and experience) and these sources are also interesting for finding
counter measures. The vulnerabilities databases for example often give hints and
information about advisories, solutions and bug fixes for identified threats.

 3

4

5Bugzilla (http://www.bugzilla.org/) for example is useful open source tool that can be used.

208 7 Security

CVE Web site, http://cve.mitre.org/cve/
CERT Web site, http://www.cert.org/advisories/

In the final step of the assessment, countermeasures have to be determined
against the threats that were identified in the second step. As described previously,
threats can be either of technical or of nontechnical nature – and this is also true
for countermeasures. A threat can be mitigated by a technical solution such as an
identity management system allowing or denying access to a server room by
automatically validating ID-Cards or by a nontechnical solution by security
personnel checking employee’s ID-Cards. It is also important when processing
this assessment phase to realize that there are countermeasures addressing more
than one threat and sometimes only several countermeasures together are able to
mitigate a threat.

At the end a list of countermeasures has to be generated in a way that for each
relevant threat at least one countermeasure is identified. If there is more than one
countermeasure for one threat, then a decision has to be made based on defined
requirements. Thereby kind and priority of requirements can vary from company
to company but most common ones are:

• Effectiveness
• Implementation efforts
• Maintenance
• Usability

nition of the appropriate level of security for the investigated target environment
and has to be implemented in the product.

7.4.2 The OPC UA Security Assessment

Section 7.4.1 describes what security assessments are and how they are processed
for automation solutions in general. Such a security assessment has been processed

tured in [UA Part 2] which is an informative part of the OPC UA specification.

used within this part of the specification and also in other parts. Particularly for
the security goals there are various interpretations even among security experts
and therefore it is important to commit to one definition that is used throughout
the different parts of the OPC UA specification.

A further security assessment on OPC UA [Pet08] has been done by Digital

7.5 The OPC UA Security Model

7.5.1 Security Architecture

7.5.1.1 Environment

OPC UA applications will run in varying environments with different security

how OPC UA applications can be deployed. In this example, OPC UA is applied

2097.5 The OPC UA Security Model

• Compliance.

This part gives also a common understanding of important security terms that are

for OPC UA applications by the OPC UA working group and the results are cap-

The resulting list of countermeasures after the decision finally represents the defi-

requirements, threats, and security policies. Figure 7.1 shows an example of

Bond, a company specializing on securing critical infrastructures.

at different levels of the automation pyramid which is reflected by the different
network segments indicated in the example below.

At the plant floor level an OPC UA server can run in the controllers providing
data from field devices to OPC UA clients. Another OPC UA server can be used
for gathering data from controllers which is handled by a field engineer working
with an OPC UA engineering client. Furthermore an OPC UA server could even
run in the controller providing data changes to clients (e.g., HMIs).

On top of the plant floor at operations level an OPC UA application is acting as
a client and a server at the same time. It could be the client collecting data from
the server running at the lower level and performs special calculations, generates
alarms, historizes data, or performs operations whereby the results are presented to
other OPC UA clients. A good example for that are applications monitoring the
state of the production process.

At the very top level which is represented by the corporate network an OPC
UA client integrated in an ERP system could obtain information about the work-
ing hours of used devices in the plant floor and if necessary automatically create a
maintenance request.

In addition to that the corporate network layer could allow remote access via
Internet to OPC UA servers in order to perform service or maintenance tasks.

Fig. 7.1 OPC UA environment

210 7 Security

and for different purposes within the same environment. The security require-
ments for these applications may also differ in various ways. The tradeoff between
security and performance is a good example. At the very top level security might

At the very bottom level the requirements could be completely different: perform-
ance could be more important than security when data has to be acquired in very
fast and efficient way in order to control a production process.

Therefore, OPC UA has to provide a flexible security model that allows OPC
UA applications to be run at different levels in the automation pyramid and at
same time meeting the security requirements for each environment. This model is
described in the following sections.

7.5.1.2 Architecture

The OPC UA security architecture is described in [UA Part 2] and defines a layered
approach in which each layer has specific responsibilities regarding security. The
security architecture is depicted in Fig. 7.2.

Fig. 7.2 OPC UA security architecture

information, settings, instructions, and real-time related data from devices between
a client and a server in a Session. A Session is used for authenticating and authori-
zing users working with the client (Sect. 7.5.3.4) as well as for authenticating and
authorizing certain products (Sect. 7.5.3.3). The mechanisms for both authorization
and authentication mechanisms are addressed by the OPC UA Session Services
specified in [UA Part 4] and described in Chap. 5.

An OPC UA Session runs on top of a Secure Channel which is in the responsi-
bility of the communication layer. The Secure Channel secures data exchanged in
a session in several ways: first of all it maintains the integrity by applying digital

The application layer at the very top of the figure is used for transmitting plant

2117.5 The OPC UA Security Model

The example scenario above shows that OPC UA can be used at various places

be more important than performance since this network is connected to the Internet.

signatures and confidentiality by encrypting sensitive information of the transmitted
messages. Furthermore OPC UA introduces the concept of application authentication
and authorization which allows applications to identify other applications. This
concept is based on the usage of special X.509 certificates in conjunction with the
OPC UA Secure Channel Services and is described in sects. 7.5.2 and 7.6.2. The
Secure Channel Services are also specified in [UA Part 4].

Both application and communication layer rely on a special infrastructure for
managing certificates that are used for securing the application. On the one hand a
technical infrastructure is needed for example in order to create such certificates
and on the other hand an organizational infrastructure is needed for verifying to
whom such certificates are provided. The OPC UA standard does not specify how
such an infrastructure looks like since there are many different concepts that all

cribes some general concepts and use cases as well as some hints for applying them
in the industrial automation domain.

At the very bottom the transport layer is responsible for transmitting and recei-
ving the secured data through a socket connection. Here mechanisms for error
recovery have to be applied in order to maintain the availability of the system
which can be threatened by special attacks such as Denial-of-Service.6

environment in which OPC UA applications are deployed. Therefore, the architec-
ture and the specified Services of OPC UA are described in an abstract way and
different technological mappings are specified in [UA Part 6]. An overview over the
different mapping possibilities is given in Chap. 6.

7.5.2 Securing the Communication Channel

7.5.2.1 Connection Establishment

The connection establishment between an OPC UA client and an OPC UA server
includes four steps that are described in the following.

In the first step, an OPC UA client informs itself about the different configura-
tion options of how a connection to the server can be established. If the applica-
tion is preconfigured and already knows how to connect to the server then this step
can be skipped. If the OPC UA client is not preconfigured, it sends an unsecured
GetEndpoints request to the Discovery Endpoint of the server in order to obtain the
descriptions of the existing Session Endpoints including the security configuration

 6A Denial-of-Service attack prevents authorized access of a resource or a function of a system. A

typical example for such an attack is overloading a server by sending a huge amount of messages
in a very short period of time which is called as message flooding.

212 7 Security

The technologies used for the different layers are also dependent on the concrete

depend on the concrete environments and requirements. Therefore Sect. 7.7 des-

which contains for example the supported Security Policies (Sect. 7.5.4), the Security
Modes, User Token Policies and the server’s Application Instance Certificate

mation is retrieved by further discovery mechanisms like those described in Chap. 5
and 9 and is specified in [UA Part 12]. As soon as the client receives the response
with the desired information, it selects a Session Endpoint with a special security

of the server. This is done by requesting the validity status from its associated Vali-
dation Authority (VA) which can be for example a local crypto component (e.g.,
OpenSSL or Microsoft crypto library) or a central service that is consumed for
that purpose.

If the certificate is considered as trustworthy, then as the second step an Open-

rity Mode is sent to the selected Session Endpoint of the server. The Security Mode

is selected, then the OpenSecureChannel message will not be secured. When
“Sign” is chosen then the message is signed with the associated Private Key of the
Application Instance Certificate of the OPC UA client. Signing messages allows
detecting whether a received message has been manipulated by an untrusted third
party. If “SignAndEncrypt” is used, then the message is additionally encrypted with
the Public Key of the server’s Application Instance Certificate. Encrypting mes-
sages prevents or at least makes it very difficult for untrusted third parties to read
the content of messages exchanged between two applications. The Security Policy
defines thereby which algorithm to choose for signing and encrypting the message.

Application Instance Certificate by requesting its VA. The certificate is provided

certificate is trustworthy by the server, then the message has to be interpreted
according to the Security Policy and the Security Mode. This means the message
is decrypted with the associated Private Key of the server’s Application Instance
Certificate and the signature of the message is verified with the Public Key of the
client’s Application Instance Certificate. The server sends back the response to
this request which is similarly secured. Therefore, the same checks on the message
and the server certificate are performed on the client side. The establishment of the
Secure Channel is mainly used for exchanging special secret information between
clients and servers. This secret is used for deriving Symmetric Keys used for
encrypting and signing all further messages instead of using the Public Key
Cryptography operations with Asymmetric Keys which are more CPU-intensive.

Symmetric Key.
If these keys are derived on both client- and server-side then the Secure Channel

is established. However, such a Secure Channel has also a finite lifetime. After
this lifetime has expired a renewal of this channel has to be initiated. Thereby the
same steps have to be processed again in order to derive new Symmetric Keys.

2137.5 The OPC UA Security Model

Figure 7.3 illustrates how these secrets are exchanged and used for deriving a

in an unencrypted part of the message and can thereby be read by the server. If the

(Sect. 7.6.2.1). This Discovery Endpoint is either well-known or the location infor-

configuration that it can handle and validates the Application Instance Certificate

has thereby three possible states: “None”, “Sign”, and “SignAndEncrypt”. If “None”

Once the secured message is received by the server it first validates the client’s

SecureChannel request secured in accordance to the Security Policy and the Secu-

Fig. 7.3 Creating Symmetric Keys

Secure Channel. But this renewal process is transparent to the Session that is cre-
ated on top of a Secure Channel. This means that the Session is not affected and
remains the same (Fig. 7.4).

Fig. 7.4 Creating an OPC UA Secure Channel

214 7 Security

This is an additional security measure in order to resist long-term attacks on the

Channel. Therefore, a CreateSession request is sent to the server. This message is
secured according to the Security Mode and Security Policy agreed upon for the
connection. However, as indicated previously the derived Symmetric Keys are
used instead of the Public and Private Keys of the client and the server. In the res-

the client in order to prove its functional capabilities and to prove with challenge–
response-test the possession of the certificate used for creating the underlying
Secure Channel. Therefore, a nonce is sent with the request which has to be signed
with the server’s private key. As soon as the client receives and interprets the res-

the server passed the challenge–response-test by verifying the signed nonce. If the
certificates are trusted by the client, the server provides the needed capabilities

and last step.
Before the created Session can be used by the client and the server it has to be

activated. This is done by sending an ActivateSession request to the server includ-
ing the credentials of the current user together with the Software Certificates of
the client. One reason for separating the Session establishment in CreateSession
and ActivateSession is that it has to be ensured that user credentials are sent to the
same server that was used to establish the Secure Channel. This is verified in the
CreateSession Service with several checks described above. The ActivateSession

Fig. 7.5 Establishing an OPC UA Session

Service is mainly for providing the user credentials. Once the request is received

2157.5 The OPC UA Security Model

The third step is to create a Session on top of the previously established Secure

and proved that it possesses the correct certificate then it proceeds to the fourth

ponse to this request the server provides its Software Certificates (Sect. 7.6.2.2) to

ponse it validates the server’s Software Certificates. Furthermore it verifies whether

by the server it validates the Software Certificates of the client and in addition it
validates the user credentials. However, the user credentials can be of different
types which imply also different validation mechanisms. The user credentials
could be represented by an X.509 certificate which means that it is validated by a
Validation Authority like it is done with the Application Instance and Software
Certificates. In many other cases, the user credentials are provided in the form of a
username and password. The validation of this type of credentials very much
depends on the concrete application. In the simplest case it is a simple lookup in a
user database. After all validation have succeeded a connection between the client
and the server is fully established and process data in the server can be accessed
by the client (Fig. 7.5).

Symmetric Keys vs. Asymmetric Keys

When using Symmetric Keys for encrypting and signing data then the same
keys are used for decrypting and verifying the signature of the data. This
means that in the client–server scenario both parties have identical keys for
certain cryptographic operations. This kind of securing data is very fast and
efficient. However, there is a fundamental key distribution problem: How
can a secret key be provided to the communication partner in a secure way?
There is always the risk that it gets lost, stolen, or is illegitimately handed to
other parties.
That problem can be solved by using the Public Key Cryptography with
asymmetric keys. The basic concept thereby is that each entity has two keys:
a Public and a Private Key. The Public Key can be used for encrypting data
and can therefore be provided to any party intending to exchange secret
data. The data encrypted with the Public Key can only be decrypted with the
associated Private Key which is kept secret by the owner and never handed
out. In addition, the Private Key allows creating Digital Signatures that can
only be verified with the associated Public Key. So other parties can verify
whether data has been changed during transmit and that these data really
comes from the owner of a certain Public Key.
The disadvantage of using Public Key Cryptography is the bad performance.
Therefore these two concepts are often combined in one protocol (e.g.,
Transport Layer Security (TLS) and OPC UA). During the connection estab-
lishment the Asymmetric Keys are used for agreeing upon a Symmetric Key
for securing the further exchanged data which is a good tradeoff between
performance and security.

7.5.2.2 Impersonation

A typical use case in the automation domain is log-over of user sessions or in
other words user impersonation (see Fig. 7.6). In such a scenario a user “A” with
specific permissions is connected with his client to a server. Another user “B”

216 7 Security

would like to overtake the session of user “A” in order to perform special tasks. A
practical example is when an operator supervising a production process hands
over a shift in plant to another operator. Thereby a log-over procedure has to be
performed in which both operators type in their password in the monitoring appli-
cation (we assume that this application is an OPC UA client) in order to correctly

Fig. 7.6 Operator log-over

example above the credentials of the user “B”) is sent to the OPC UA server which
is shown in Fig. 7.7. The user credentials are validated by an authentication ser-

Fig. 7.7 Impersonating a user

local session management the owner of the session and returns a response to the client.

sion is already running (Secure Channel and Session is created and activated) a fur-

vice which could be for example a directory service using LDAP. If the user is

ther ActivateSession Request message with the credentials of the new user (in the

authenticated and authorized to overtake the session then the server changes in its

OPC UA addresses this use case with the ActivateSession Service. Once a Ses-

2177.5 The OPC UA Security Model

User „A“

Supervisory Client
(OPC UA Client)

Supervisory Server
(OPC UA Server)

Password „A“

Password „B“

Perform Logover ActivateSession

User „A“

Logover

User „B“

User „B“

ClientUI OpcUaClient
DiscoveryEndpoint SessionEndpoint

Activate Session Response

Activate Session Request

Validate Client Software Certificate

Validation Results

AuthenticationServiceValidationAuthority

Validation User Identify

Validation Results

OpcUaServer

Logover

Logover Result

hand over the shift of user “A” to user “B”.

7.5.2.3 Connection Termination

The whole connection is terminated by exchanging the appropriate closure service
messages CloseSession and CloseSecureChannel whose usage is shown in Fig. 7.8.
Both closure message types are secured with symmetric keys. However, OPC UA
specifies that the CloseSecureChannel messages only have to be signed since no
sensitive data is transmitted.

Fig. 7.8 Terminating an OPC UA connection

Do I have to implement that all on my own?

No, note that the connection establishment and termination steps will in
most cases be encapsulated by a third-party SDKs offering a “connect” and
“disconnect” methods in their APIs processing all the described steps in order
to hide complexity from the application developer. The OPC Foundation for
example also offers different stacks and a SDK implementing all the func-
tionality necessary for securing the communication channel. This approach

similar complexity for the connection establishment and most applications
use third party libraries.

7.5.3 Authentication and Authorization

7.5.3.1 General Definitions

Before talking about how authentication and authorization is done in OPC UA
these terms have first to be defined for the present context. In general, they are
often considered as the same. However, there are fundamental differences.

218 7 Security

OpcUaClient
DiscoveryEndpoint SessionEndpoint

CloseSession Request

CloseSession Response

CloseSecureChannel Request

CloseSecureChannel Response

OpcUaServer

is quite similar to how HTTPs is handled by application vendors. It has a

Authentication is the process of verifying a claim made by an entity (e.g., person,
computer, and certificate). For example a person claims to be operator “A” of a
system. The system is verifying that by checking the user name and password pro-
vided during the log-in process. If the user is found in the user database and the
provided password is correct then the person is identified and therefore authenti-
cated. In another example a certificate (Sect. 7.6) sent to an entity “A” (e.g., a person
or an application) contains the claim that the embedded public key belongs to another
entity “B”. Authentication in this case could be done by verifying whether entity
“A” has the private key associated to the embedded public key. A typical mecha-
nism for verifying that is a so-called challenge–response-test. Entity “B” sends

with its private key and sent it back in a response entity “A” can verify the signature
of the data with the public key of the provided certificate and confirm the claim.

Authorization is the process of verifying whether an authenticated entity has
the permission to perform a special task. For example, user “A” is authenticated
since he provided the correct user name and password. But it has still to be veri-
fied whether he is allowed to access certain data. Typically he is not allowed to
increase his salary in a financial system of an organization.

7.5.3.2 Application Authentication and Authorization

Application authentication and authorization means that in the present context an

Fig. 7.9 Application authentication and authorization

2197.5 The OPC UA Security Model

OPC UA server can verify that an Application Instance Certificate belongs to a

entity “A” data to be signed as the challenge. Once entity “B” has signed the data

certain OPC UA client and can therefore allow the client to establish a Secure
Channel and vice-versa. A mutual challenge–response-test is inherently performed
in the OPC UA communication protocol when establishing a Secure Channel with
the SecurityMode “Sign” or “SignAndEncrpyt” (see Sect. 7.5.2.1) between the

is performed. On the one hand the client proves the possession of the private key
associated with its Application Instance Certificate by signing the OpenSecure-
Channel request and the server can verify the signed request with the public key
of the client’s certificate. On the other hand the server signs the response to the
OpenSecureChannel request with its private key so that the client can verify whether
the certificate received from the server is evidently the server’s certificate.

7.5.3.3 Product Authentication and Authorization

Products or specific versions of products can also be authenticated and authorized

version of a product gets certified by a Certification Authority (CA) of a test lab it
obtains Software Certificates (see Sect. 7.6.2.2) containing the test results in terms
of tested Profiles (see Sect. 7.5.4).

Software Certificates are exchanged during the session establishment: in the
CreateSession response the server provides its certificates to the client and in the
ActivateSession request the clients provides its certificates to the server. Both
the client and the server validate the Software Certificates and decide based on the
supported Profiles, the product or the product version whether they want to com-
municate with the other or not. For example if a specific version of an OPC UA
server does not support a certain Service and a client needs that to fulfill its task it
could immediately close the session and connect to another server.

7.5.3.4 User Authentication and Authorization

User authentication and authorization means that an OPC UA server can verify the
user intending to access data of the server is really the user he claims to be. There-
fore the user provides its credentials to the server as a proof of its identity. OPC
UA support different types of user credentials which are listed in Table 7.1.

Table 7.1 IdentityToken types

Symbolic ID Description
Anonymous No user information is available
UserName A user identified by user name and password
X509v3 A user identified by an X509v3 Certificate
WSS A user identified by a WS-SecurityToken. (e.g. SAML,

Kerberos-Ticket)

220 7 Security

client and the server. Figure 7.9 shows how the application authentication process

by applications since they have also special certificates associated. When a certain

Fig. 7.10 User authentication and authorization – general

Fig. 7.11 User authentication and authorization with X.509 certificates

2217.5 The OPC UA Security Model

establishment. Here the ActivateSession Service is used for transferring user cre-
dentials to the server. However, depending on the transferred credential type, the
server performs different tasks in order to verify the identity of the user. The com-
mon case is shown in Fig. 7.10. In this scenario the user identity and the associated
permissions are verified by an authentication service accessing for example the
ActiveDirectory of a domain or any other kind of identity management system.

The other case is when the credentials are provided in the form of an X.509v3
certificate indicated in Fig. 7.11. An additional authentication service is not neces-

ciated with the OPC UA server. Permissions of a user could also be a part of the
certificate itself (e.g. defined in a V3 extensions) and be verified by the OPC UA
server. Examples of how VAs look like and how they are used is given in Sect. 7.7.

7.5.4 Security Policies and Profiles

OPC UA products are certified against specific Profiles defined in [UA Part 7].
Profiles in general contain functionality that an application has to support in order
to be compliant (see Chap. 12 for more details). Some of the Profiles define secu-
rity functions such as encryption algorithms. However, the fact that these func-
tions are implemented in the application does not imply that all functions are also
used. For example, a set of different encryption algorithms can be supported by an
OPC UA application but obviously only one can be used for a single connection.

The choice of which security function is used for a connection is done by agreeing
upon a specific Security Policy between client and server in advance. It is identi-
fied by a well-defined URI and contains unique names of security algorithms
for different purposes such as signing and encrypting. For example http://
opcfoundation.org/UA/SecurityPolicy#Basic128Rsa15 is a security policy defining
the AES algorithm with 128 Bits keys for encrypting and signing messages sym-
metrically and the RSA1.5 algorithm for asymmetric operations. Two OPC UA
applications can only communicate with each other if they have at least one Security
Policy in common. However, applications can be configured to not accept certain
Security Policies although they support it (from the implementation point of view).

7.6 Certificates

7.6.1 What is a Certificate?

Before talking about how to manage certificates it has to be made clear what in the
certificates are in the context of OPC UA are.

222 7 Security

The user authentication and authorization process is performed during the session

sary since the user certificate can be validated with the Validation Authority asso-

A certificate in general is an official document affirming some fact. In OPC
UA we are talking about so-called digital certificates. These are electronic docu-
ments containing different information affirmed by a trusted third party. In princi-
ple, certificates are used for distributing public keys of a public/private key pair
used for Public Key Cryptography among entities that are using them for different
purposes, for example for encrypting data. Public Key Cryptography is quite
complicated and a big topic which is not described very detailed in this book. A
detailed description is provided in [SF03] and [AL02]. Two main goals are fol-
lowed with digital certificates: the first is to bind special information and a public
key to a specific owner that the receiver of certificate can identify the owner. And
the second goal is to ensure the integrity of the public key and the associated data
in order to detect manipulations of the certificate by third-parties. When discuss-
ing the concepts of a digital certificate it is important to recognize that there are
different types and formats like X.509v3 certificates, Simple Public Key Infra-
structure (SPKI) certificates, Pretty Good Privacy (PGP) certificates and Attribute
certificates. OPC UA focuses on the usage of X.509v3 certificates which is the
most common type.

Table 7.2 Content of a X.509 certificate

Field Description
Version Describes the version of the certificate which can be 1, 2, or 3

For OPC UA purposes this should always be 3
Serial Number Must be positive integer identifying a certificate issued by a par-

ticular CA and must therefore be unique in his scope
Signature Algorithm Contains the identifier of the signature algorithm used by the CA

for signing this certificate
Issuer Identifies the CA who issued and signed the certificate. The

identifier of the CA is represented by a distinguished name (DN)
Valid From The date when the validation period of the certificate begins
Valid To The date when the validation period of the certificate ends
Subject The identifier of the entity that owns the certificate represented

with a distinguished name (DN). A V3 extension may also pro-
vide an alternative name (subjectAlternativeName) for this en-
tity which may provide addition information or is simply more
readable for humans

Public Key Contains the identifier for the type of the public key of the sub-
ject as well as the key itself

<Extensions> Extensions are only available when using V3 of X.509 certifi-
cates. Standardized extensions are for example Key Usage, Cer-
tificate Policies, Subject Alternative Name, and CRL Distribu-
tion Point

Signature Contains the digital signature created by the issuer in order to
sign the certificate

2237.6 Certificates

X.509v3 is a standard format specified in [HPF+02]. Table 7.2 lists and describes
the common content of such a certificate. The main advantage of X.509v3 is that it
is extendable which means that additional fields can be added in a well-defined
way. Common product-specific extensions like “Subject Alternative Name” or
“Enhanced Key Usage” provide additional or more precise information about the
embedded public key. Even OPC UA makes use of this concept and defines an
addition extension for its Software Certificates which are explained in Sect. 7.6.2.2.

Certificates can be further classified in self-signed and signed by trusted Certi-
fication Authority. When the private key associated to the public key of the new
certificate is used to sign the certificate (i.e., to generate the signature) then this is
called a self-signed certificate. This means the entity generating the certificate is
its own Certification Authority (see left side in Fig. 7.12). However, when another
entity uses its private key to sign the certificate then it is trusted by a Certification
Authority (see right side in Fig. 7.12).

The lifecycle of certificates is managed by a Public Key Infrastructure which is
described in Sect. 7.7.

Fig. 7.12 Self-signed vs. signed by a trusted CA

7.6.2 OPC UA Certificates

OPC UA applications use three kinds of X.509 certificates for the connection
establishment (see Sect. 7.5.2.1). The different certificate types are described in
the following sections.

7.6.2.1 OPC UA Application Instance Certificates

Each installation of an OPC UA product requires an X.509v3 certificate named as
Application Instance Certificate. Table 7.3 shows the content of an Application

224 7 Security

Instance Certificate specified in [UA Part 6] whereby the structure is compliant to
[HPF+02]. This certificate identifies a running instance of an OPC UA application

for the concrete environment.

Field Description
Version Shall be “V3”
Serial Number The serial number assigned by the issuer
Signature Algorithm The algorithm used to sign the Certificate
Issuer The distinguished name of the Certificate used to create the signature

The issuer field is completely described in [HPF+02]
Valid From The date when the validation period of the certificate begins
Valid To The date when the validation period of the certificate ends
Subject The distinguished name of the application instance

The Common Name attribute shall be specified and should be the
productName or a suitable equivalent. The Organization Name
attribute shall be the name of the Organization that executes the
application instance. This organization is usually not the vendor
of the application
Other attributes may be specified
The subject field is completely described in [HPF+02]

Public Key The public key associated with the Certificate
SubjectAltName
(Ext)

The alternate names for the application instance
Shall include a uniformResourceIdentifier which is equal to the
applicationUri
Servers shall specify a dNSName or IPAddress which identifies the
machine where the application instance runs. Additional dNSNames
may be specified if the machine has multiple names. The IPAddress
should not be specified if the Server has dNSName
The subjectAltName field is completely described in [HPF+02]

Key Usage (Ext) Specifies how the certificate key may be used
Shall include digitalSignature, nonRepudiation, keyEncipherment,
and dataEncipherment
Other key uses are allowed

Extended Key
Usage (Ext)

Specifies additional key uses for the Certificate
Shall specify serverAuth and/or clientAuth
Other key uses are allowed

Signature The signature created by the Issuer

2257.6 Certificates

on a host and is obtained from either a trusted private or public CA responsible

Table 7.3 Fields of an Application Instance Certificate

7.6.2.2 OPC UA Software Certificates

Another type of X.509v3 certificate used for OPC UA is the Software Certificate
which is also compliant to [HPF+02] and specified in [UA Part 6]. Instead of a
running instance this certificate identifies a specific version of an OPC UA pro-
duct. It has an additional v3 extension field containing the tested and passed OPC
UA Profiles defined in [UA Part 7] for this product. By exchanging this informa-
tion during the connection establishment both applications know whether they can
communicate with each other in a proper way and which Services they support.
This certificate can be obtained by accomplishing the OPC UA certification pro-
cess7 of accredited test laboratory.8 Table 7.4 lists the fields of OPC UA Software
Certificates.

Table 7.4 Software Certificates

Field Description
Version Shall be “V3”
Serial Number The serial number assigned by the issuer
Signature Algorithm The algorithm used to sign the Certificate
Issuer The distinguished name of the Certificate used to create the

signature
The issuer field is completely described in [HPF+02]

Valid From The date when the validation period of the certificate begins
Valid To The date when the validation period of the certificate ends
Subject The distinguished name of the product

The Common Name attribute shall be the same as the product-
Name in the SoftwareCertificate and the Organization Name
attribute shall the vendorName in the SoftwareCertificate
Other attributes may be specified
The subject field is completely described in [HPF+02]

Public Key The public key associated with the Certificate
SubjectAltName (Ext) The alternate names for the product

shall include a “uniformResourceIdentifier” which is equal to
the productUri specified in the SoftwareCertificate
The subjectAltName field is completely described in [HPF+02]

Key Usage (Ext) Specifies how the certificate key may be used
Shall include digitalSignature, nonRepudiation, keyEncipher-
ment, and dataEncipherment
Other key uses are allowed

Extended Key Usage Specifies additional key uses for the Certificate

7OPC Certification Process Web site, http://www.opcfoundation.org/Certification.aspx.
8The first accredited OPC Certification Test Lab is operated by ascolab.

226 7 Security

(Continued)

(Ext) May specify “codeSigning”
Other key usages are not allowed

softwareCertificate The XML encoded form of the SoftwareCertificate stored as
UTF8 text
Reference [UA Part 6] describes how to encode a Software-
Certificate in XML
The ASN.1 Object Identifier (OID) for this extension is:
1.2.840.113556.1.8000.2264.1.6.1

Signature The signature created by the Issuer

7.6.2.3 OPC User Certificates

The third type of certificate is the user certificate identifying the current user
intending to access the data of the server during the connection establishment (see
Sect. 7.5.2.1). However, user certificates are only one possible credential type
supported by OPC UA (see Sect. 7.5.3.4 for other types) and therefore not a req-
uirement for applying OPC UA. The content of the fields should be compliant to
[HPF+02] in order to be fully interoperable with other OPC UA products.

7.7 Public Key Infrastructure for OPC UA

7.7.1 What is a PKI?

A Public Key Infrastructure is used for managing Digital Certificates as described
in Sect. 7.6. It provides thereby the technical and organizational basis for accom-
plishing different tasks with certificates. From an abstract point of view a PKI
involves several entities with specific roles and duties such as the Registration
Authority (RA), the Certification Authority (CA), Validation Authority (VA), and

and in which PKI use cases they are involved in.
An End-Entity (EE) is the user of a certificate and is represented for example

by a person, a computer, or an application. For a better understanding EEs in the
context of this book are considered to be OPC UA products, installed instances of

A Registration Authority (RA) which can also be an application or a person or
both is the direct contact for the EEs regarding questions on certificates. Certifica-
tion, certificate renewal, and revocation requests are first processed by a RA of a
PKI. Thereby he has to identify the requesting EE and verify the provided infor-

further processing.

2277.7 Public Key Infrastructure for OPC UA

End-Entities (EE). Figure 7.13 shows how these entities are related to each other

mation. After that the RA forwards the requests to the Certification Authority for

OPC UA products, or users of OPC UA applications.

Fig. 7.13 Entities of a Public Key Infrastructure

The Certification Authority (CA) is the entity (which is mostly a person using

like the Validation Authority when certificates are revoked. The RA and CA are
often combined together since they have a very strong relation to each other.

The different approaches for implementing the use cases are described in
Sect. 7.7.3.

7.7.2 Trust Models

This section describes trust models in general and the different model types. How-
ever, it is important to define in advance what trust in the present context means.
Adams and Lloyd [AL02] provides the following definition: “trust between two

when the client can assume that the CA will establish and maintain an accurate
binding of meta-information and the Public Key. Furthermore an OPC UA client
trusts an OPC UA server if the client is convinced that a Public Key contained in
the server’s certificate really belongs to the OPC UA server. So trust between enti-
ties can be established by trusting in the associated certificates. This can be done if
the administrator decides that the certificate of the OPC UA server should be
trusted and stores it in a database of the OPC UA client containing all the trusted
certificates. The OPC UA client now knows that a communication with that cer-

described scenario which is commonly known as a Direct Trust Model.

228 7 Security

tain server can be established since it is trustworthy. Figure 7.14 illustrates the

entities in general means that one entity behaves exactly the way another entity

Request/
Revoke/Renew

Certificate

Request/
Revoke/Renew

Certificate

Provide
Certificate

Certification
Authority

Registration
Authority

End-Entity A End-Entity X

Validation
Authority

Update
Revocation
Information

Validate
Certificate

Distribute
Certificate

Provide
Certificate

special software, but fully automated and rule-based CAs are also possible) that

order to verify whether they can trust the certificates or not.

issues, renews, and revokes certificates. In addition to that, it informs other entities

The VA is responsible for validating certificates that are provided by EEs in

expects”. This means for the present context that an OPC UA client trusts a CA

Fig. 7.14 Establishing Direct Trust

Fig. 7.15 Establishing Hierarchical Trust

the CA’s certificate is stored in the client’s database. The client trusts the server’s

scenario represents a Hierarchical Trust Model.
Trust models show the different trust relationships between entities and pro-

vide better understanding and reasoning about the security of the applying system.
Therefore, they are used for planning and designing PKIs. The structure of such

2297.7 Public Key Infrastructure for OPC UA

the server certificate is signed by a trusted CA. Instead of the server’s certificate
There is also another basic model of how trust can be established. In that model

certificate since it trusts the CA’s certificate which can be seen in Fig. 7.15. This

Certificate
CA

Certificate
OPU UA
Server

Certificate
OPU UA
Server

Public

Public

Signature

Signature

Public

Signature

CA CA Private Key

OPC UA Server
OPC UA Client

Trusted Certificates

Administrator

Trusts

Is signed by

models varies depending on the requirements of the concrete scenario. Two basic
models are briefly introduced in the following.

7.7.2.2 Strict CA Hierarchy

The most common form of a trust model is the strict hierarchy of CAs. This model
(see Fig. 7.16) is depicted as an inverted tree with special CA as the root. This CA

domain trust this root CA. The root CA could for example be responsible for issu-
ing certificates for a whole organization. For larger organizations that are organ-
ized in different units it makes sense to have multiple CAs for example one for
each unit. In such a case, the root CA is directly trusted by a defined number of
sub-CAs and the sub-CAs are directly trusted by the EEs they are responsible for.
Such a hierarchy is established by the following steps:

1. A root CA is established and a so-called self-signed root certificate for the CA
is created and distributed among all other entities in this trust domain.

2. A defined number of sub-CAs are established and for each a certificate is
issued by the root CA and is distributed among all EEs a particular CA is res-
ponsible for.

3. For each EE (that is, a person, a computer, or an application) a certificate is
created by a responsible sub-CA. A certificate of an EE is distributed among
other EEs that it intends to communicate with.

Fig. 7.16 Hierarchical Trust Model

7.7.2.3 User-Centric Trust Model

In a user-centric trust model each user (that is person, computer, or application) is
totally responsible for deciding who to trust. Such a decision is made based on dif-
ferent factors such as personal contact, rules or experience. The model of the trust
domain results in a full-meshed network of entities with trust relationships (see
Fig. 7.17). In principle, there are two approaches leading to such a trust model: by
applying Direct Trust and exchanging self-signed certificates or by a Web-of-Trust.

230 7 Security

is the so-called root CA and acts as a “trust anchor”. All other entities in this trust

A typical application applying that approach is Pretty Good Privacy (PGP)9 which
builds up a Web-of-trust in which each entity certifies the public key of another
entity.

Fig. 7.17 User-Centric Trust Model

7.7.3 Certificate Lifecycle Management

In the sections before, we described how a PKI is established and which roles it
involves. We also pointed out that PKIs are used for managing certificates which
includes use cases like requesting, creating, installing, distributing, revoking,
renewing, and validating certificates. This means that certificates are not static
objects that are created once and used until a system retires. In other words, cer-
tificates have a specific lifecycle that is managed by a PKI. Furthermore, there are
different approaches of handling the lifecycle phases. Therefore, in the following
sections we will describe and discuss the most important approaches for each phase.

7.7.3.1 Request and Create Certificate

The creation of certificates signed by trusted CAs involves in principle four steps:
The first step is to create a Public/Private Key pair. Three important parameters

are critical for the security of the keys: the key strength, the algorithm, and the entropy
source. Longer keys are more secure but require more time when using them for

9PGP is a signing and encrypting application used for securing e-mail communication.

7.7 Public Key Infrastructure for OPC UA 231

example for encrypting data. The most often used Asymmetric Key algorithm is
RSA which is part of the Public Key Cryptography Standards (PKCS). Another
issue is the location where the keys are generated. The keys can be generated
locally by the requestor, the RA with a secret from the requestor, the CA initiated
by the RA with a secret from the requestor or by a trusted third-party. For machines
or devices with smaller CPU power delegating the generation process is a good
alternative. For generating such keys there are several tools available such as
OpenSSL and the Certificate Creation tool (“Makecert”) from Microsoft.10

In the second step, the identity of the certificate requestor is established and
verified. This is done by exchanging registration information between requestor
and RA. How this information looks like depends very much on the application
scenario but at least some information about the requestor for example the name
and an email address is provided that the RA is able to prove its identity. When the
requestor itself has to create the key pair then the public key is often sent together
with the information about the owner in a certificate request to the RA. Examples
of how such requests are composed and transferred to the RA are the Certificate
Management Protocol and Certificate Request Message Format described in
[AFK+05], [MAS+99], [PKCS#7], and [PKCS#10].

Once the identity of the requestor is verified, the RA initiates the certificate
creation process by the Certificate Authority and provides him with the necessary
data. Thereby the public key, the information about the requestor, and sometimes
also some additional proprietary information is signed with the private key of the
CA. The signature together with the other information represents the signed cer-
tificate that is now trusted by the CA and handed to the certificate requestor.

However, there is also the possibility of generating self-signed certificates. These
certificates are not signed by other trusted CAs but with the private key associated
with it. Thereby no central CA or RA is needed since the roles are maintained by
the entity created the self-signed certificate. It is expected that there will be OPC
UA-based products generating such certificates during the setup routine in order to
provide a secure out-of-the-box installation. If necessary, this certificate can be
replaced by another one signed by a trusted CA.

7.7.3.2 Install Certificate

Once the requestor receives the signed certificate from the CA the certificate has
to be installed and the associated application has to be configured for using it. Cer-
tificates reside in a certificate repository (e.g., certificate store) in which own
certificates as well as certificates from third-parties or root certificate are stored.
Since it only contains the public key of the key pair putting all these certificates
together in one store is not critical to the security of the whole system. In addition
to that, the associated application has to know which certificate it should use for

10This tool is provided with the .NET Framework 2.0 and higher.

232 7 Security

cryptographic operations. Therefore, the location in the store of the desired certificate

of the target application or also on a central server which is accessed by the target
application.

Besides the certificate containing the public key also the private key has to be
installed to a special location. However, this location must only be accessible by
the owner of the private key and the access must therefore be secured. However,

application as well.

7.7.3.3 Distribute Certificate

After the certificate and the private key are installed and the owning target appli-
cation is configured there must also be the possibility for other applications to
retrieve the certificate for performing different cryptographic operations. Basically
there are three ways for disseminating a certificate: out-of-band distributions, pub-
lic repositories, and in-band distributions.

The out-of-band mechanism is for example the manual transportation and in-
stallation of certificates by individual users. Thereby a certificate is conveyed via
disk or some other storage mediums to each target device, imported into the local
repository and the application is configured accordingly. Another example is send-
ing the certificates via email and installing it manually like it is done with Pretty
Good Privacy (PGP).11 One problem with such out-of-band mechanisms is that
they do not scale very well. The manual transportation and installation of certifi-
cates on hundreds or thousands devices might take a long time until the whole
system is ready to operate. Another problem is that such an approach is quite
unreliable. It is not assured that certificates that are manually distributed or via
email are not revoked or compromised. On the other hand it is also not ensured
that every device receives or imports the certificate into the local repository. So
this approach might be a quick and easy approach for small environment but comes
up with several problems when applying it to bigger environments.

The second dissemination mechanism is publishing certificates in a central
repository. The idea behind that concept is to post certificates in a trusted, widely
known, publicly available, and easily accessible location. Whenever a special cer-
tificate is needed by an application or a device then this repository is consumed.
Typical examples for such repositories are LDAP servers, Web servers, or corpo-
rate databases. The advantage of this concept is that the effort for distributing and
installing of certificates can be reduced since they are automatically downloaded
from the repository by the application when they are needed. In addition, this is
also a reliable source for certificates since such repository are mostly controlled

11PGP Web site, http://www.pgp.com/.

7.7 Public Key Infrastructure for OPC UA 233

these locations are mostly on the same machine as the target application or stored
on external devices like Smartcards. These locations must be known by the target

has to be configured. Repositories for certificates can be located on the same machine

and updated by the CA of the trust domain. One disadvantage of this approach is
that it introduces another security risk regarding availability. A Denial-of-Service
attack run against the repository can block the whole system. Another issue is that
the communication overhead in the network is increased since the devices have to
communicate with the repository in addition to its normal application-specific
communication. In such cases a repository could also be bottleneck when lots of
devices try to access the repository all at once.

And finally, the third approach is the in-band distribution which uses the appli-
cation-specific communication protocol for exchanging certificates. This is the
case with Secure/Multipurpose Internet Mail Extensions (S/MIME), TLS, or OPC
UA. The advantage when using such an approach is that no additional channel or
protocol has to be provided in order to get the necessary certificates. Channels and
protocols that are used anyway can be used for the transportation and installation.
This does not necessarily mean that this replaces other approaches like the reposi-
tory. The use of in-band mechanisms can also supplement a repository when for
example different certificates (like the OPC UA Software, User or Application
Instance Certificates) are used by the system. One type can be retrieved from the
repository; the other one can be provided by the application-specific protocol.

7.7.3.4 Validate Certificate

Whenever an application intends to use certificate from another party it has first to
validate the certificate. Validation in this context means the process of determining
whether a given certificate can be trusted and therefore be used in a given context.
A definition of trust and a description of the common trust models are given in
Sect. 7.7.2.

The validation process is commonly done with Certificate Path Processing
which includes two steps: the path construction and the path validation.

The EE tries to construct the certification path (also called the certification
chain) of the certificate in order to aggregate all the certificates for validation step
afterwards. Therefore, the CA certificates indicated in the received certificates are
searched in the accessible repositories. If not all certificates can be retrieved, then
the trustworthiness of the received certificate cannot be fully validated and thus the
certificate should not be trusted. However, there are some scenarios in which the
user is asked in such a case whether the certificate should be trusted or not. A typical
example of such scenarios is a Web browser trying to validate SSL certificates
obtained from Web servers.

Once the certificate path is constructed the EE needs verify whether it is valid.
If for each certificate in the certification path the following checks succeed, then
the certificate can be considered as trustworthy:

• The signature of the certificate can be properly verified
• The certificate is within the specified validation period which is defined in the

certificate itself

234 7 Security

• The certificate has not been revoked (see Sect. 7.7.3.5 for details)
• The operation that is performed with the certificate is in accordance with the

In some special scenarios, there might be some additional checks that have to
be passed but the above mentioned are the common ones that are applied in most
applications. The order in which these checks are performed is also dependent on
the concrete scenario. Some applications are running the less time-consuming ope-
rations before the more intensive ones to have a faster response time when a cer-
tificate check fails.

7.7.3.5 Revoke Certificate and Update Revocation Information

A certificate can be marked as revoked if a further usage has to be prohibited.
Reasons for prohibiting the usage depend on many factors. Typical examples are:

• A certificate was renewed or updated before the expiration date is reached
• It is suspected that the certificate or the associated private key is compromised
• The certificate is not needed since for example the using application is not run-

ning anymore

Thereby the owner of the certificate or the RA acting on behalf of the owner or an
authorized administrator contacts the CA requesting him to revoke a special cer-
tificate. This can be done via out-of-band mechanisms like physical presence or
telephone or via special communication protocols such as CMP. Once the CA
receives the revocation request he marks the certificate as revoked in his reposi-
tory and informs the VA. The VA provides offline- or online-validation services
for end-entities in order to verify whether a specific certificate is revoked.

In the following, one approach for both offline and online certificate validation
is introduced. There are a lot of other variations of these concepts that can be
applied and are described in detail [AL02].

Offline Approach

An offline validation is based on publish-subscribe-mechanisms with Certificate
Revocation Lists (CRLs). A CRL is a data structure that contains a list of revoked
certificates and is signed by the publishing CA. The exact structure and fields of a
CRL is defined in [HPF+02]. End-entities like applications or users download
these lists typically by using standard protocol like LDAP, FTP, or HTTP from
well-known locations. The exact content, the size, and the way how a CRL is pro-
cessed can vary dependent on the requirements of the concrete target environment.

7.7 Public Key Infrastructure for OPC UA 235

defined purpose, usage, policy, or other rules.

• The owner of the certificate has left the company.

Fig. 7.18 Complete Certificate Revocation List (CRL)

The simplest approach is always to provide a complete CRL containing revocation
information of all revoked certificates in a trust domain like it is shown in Fig. 7.18.
However, in some domain the size of the content of the CRL can get large by time
and always downloading the full list could lead to unacceptable performance deg-
radation regarding network resources. Another performance bottleneck can be the
lifetime of a CRL. Each CRL has like any other certificate a specified time dura-
tion in which it is considered as valid and therefore trusted. Specifying a short
duration implies an increase of the number of downloads of CRLs whereas a long
duration leads to a higher risk of accepting a revoked certificate. Therefore, there
are a number of concepts that can be applied in order to make a tradeoff between
performance and security.

Online Approach

Besides the offline approach of certificate revocation there is also an approach
using online mechanisms for retrieving revocation information about certificates.
The online approach differ from the offline way in many aspects but the most impor-

that the user or the application has to have access to services allowing validating

The OCSP is an online protocol specified by the PKIX group12

shows an example scenario of OCSP. Thereby the request contains information
about the certificates that have to be validated like distinguished name of the issuers,
hashes of the public keys, and the serial numbers of the certificates. A so-called
OCSP responder receives and processes the request. The mentioned responder

12The PKIX working group was established in 1995 in order to develop Internet standards for
PKIs based on X.509. More information about the working group can be found on their Web site
(http://www.ietf.org/html.charters/pkix-charter.html).

236 7 Security

Certificate

Certificate
<Name>

Public

CRL Dist. Point

CRL Meta-data

Signature Signature

Cert. Rev. Info # 1
Cert. Rev. Info # 2
Cert. Rev. Info # 3

Certificate
Revocation List

...

certificates which is provided by a relying third-party. One major standardized

 of the IETF and

a status of a certificate has to be validated. In the present context, online means

is documented in [MAM+99]. OCSP is a simple request–response protocol that offers

tant is that the EE (i.e., OPC UA user or application) needs to be online whenever

an EE to validate whether a number of certificates are revoked or not. Figure. 7.19

online mechanism is the Online Certificate Status Protocol (OCSP).

checks for each certificate indicated in the request whether it is revoked by querying
local data sources such as CRLs, revocation databases, or by consuming another
OCSP responder. Once the states of all certificates are ascertained a response is
sent back to the EE containing the revocation states of the requested certificates.

In order to help the EE to discover the appropriate OCSP responders, a special
field of the certificate that has to be validated can be used which is indicated in
Fig. 7.19. Typically URLs to the responders and a short description are provided.
However, it is important that at least the responses returned by the OCSP responder
are digitally signed in order to resist alteration during transit of the messages. This
means that the certificate of the OCSP responder has to be obtained and trusted by
the EE. But signing messages in general leads to a performance impact that has to
be considered when using the protocol. In addition to that, the protocol only pro-
vides information about the revocation status which does not necessarily mean that
the certificate is valid and can be trusted. Validation periods and proper context
have to be validated with other mechanisms.

Fig. 7.19 OCSP example

7.7.3.6 Renew and Update Certificate

Certificates are created for a specific lifetime also called as validity period. When
this lifetime expires then the certificate is considered as invalid since the corre-
spondence of the data in the certificate with the contained public key cannot be
ensured anymore. This means a new certificate has to be created at the latest when
this lifetime has expired otherwise since the old one is not accepted by other par-
ties anymore. Normally a new certificate is created some time before the old one
expires in order to avoid service outages of the applications. In such a case, there
are two possibilities to obtain a new certificate: renewing or updating an expired
certificate.

7.7 Public Key Infrastructure for OPC UA 237

Certificate

Certificate2Validate

Public

Signature

Request

Response

Cert Status

OCSP
Responder

OCSP
Responder

CRLs

Legacy
Databases

...

Cert Info

End-Entity

Authority
information Access

Renewing an expired certificate means that the key pair is reused for the new
certificate and the associated meta-data like subject name or key usage has not
changed. Furthermore the strength of the key still meets the requirements of the
environment. Similar to creating a new certificate the owner of the expired certifi-
cate requests a new certificate from the RA and provides the existing public key
together with the same meta-data and receives a renewed certificate.

Updating an expired certificate means that a new key pair is created since the
associated meta-data has changed or the strength of the key does not meet the req-
uirements of the target environment anymore. Updating a certificate is very much
like creating a new certificate in many cases since the meta-data will still be the
same as in the expired certificate. A typical example of a case when a certificate
has to be renewed is when the associated private key got lost.

7.7.3.7 Key Recovery

Sometimes it is necessary to use a private key associated to an expired certificate
in order to decrypt data that has been encrypted with the expired public key. In
such a case it is important to have key recovery mechanisms allowing to access
old keys. The keys can be stored in a local key history of the EE and it can also be
stored in central key archive of a trusted third-party. The local key history is dir-
ectly coupled to the EE and provides a fast and easy access to old keys. The idea
behind the key archive is to provide a central service for a number of EEs offering
key recovery mechanisms which can be coupled with audit trails to satisfy the
needs of regulatory bodies. The CMP specified in [AFK+05] for example con-
siders key recovery as a protocol service that can be consumed by the EE.

7.7.4 Available PKI Frameworks

This section shows some commercial and noncommercial PKI products and
briefly describes some typical examples of how these products can be deployed
and used for OPC UA applications.

7.7.4.1 OpenSSL PKI

In the first example, OpenSSL [OSSL] is used for implementing a PKI. OpenSSL
is an open source toolkit that implements Transport Layer Security (TLS) specified
at [DR06] as well as a general purpose cryptographic library. OpenSSL is not intended
as a full-featured PKI product for large environments but it provides the necessary
functionality for smaller environments to be used as a PKI management tool.
Figure 7.20 shows an example of how such a PKI can look like. An administrator
acts as the RA and CA for representing the primary interface for all certificate-related

238 7 Security

Fig. 7.20 OpenSSL PKI example

issues. He creates, revokes, and deploys certificates manually with the OpenSSL
tool installed on his computer. The OpenSSL tool uses a special directory structure
for storing issued certificates, CRLs as well as the Administrator’s Private Key.
From security perspective it is important to protect these directories in a way that
it can only be accessed by the administrator. The VA is represented by the OpenSSL
cryptographic library and the OpenSSL PKI directory structure and therefore the
OpenSSL toolkit has to be installed on every computer in the trust domain. In order
to enable an automated validation of certificates the cryptographic library has to
be integrated into the OPC UA application that has to be secured.

7.7.4.2 MS Windows Server 2003 PKI

Another example is the PKI [MS03] provided by Microsoft which is tightly inte-
grated in the operating system Windows Server 2003. An example of a deployment
scenario in which the MS Windows 2003 Server PKI is used is depicted in
Fig. 7.21. The MS Certification Authority Server represents the CA that issues
and revokes certificates of the PKI. The RA which registers and validates identi-
ties is partly represented by a MS ISS Web-server and by the ActiveDirectory.
The pages presented by this Web-server are used for providing identity informa-
tion which is verified by a Web-application using the ActiveDirectory which is the
other part of the RA. The ActiveDirectory is used to validate users and computers
submitting a certificate request. The VA used for validating received certificates is
represented by a local database (namely the Windows Certificate Store) storing
certificates and revocation information used for validating certificates and the
Cryptographic Service Provider of the Windows Crypto Library integrated in OPC
UA applications.

7.7 Public Key Infrastructure for OPC UA 239

Fig. 7.21 MS Windows 2003 PKI example

7.7.4.3 OpenXPKI

OpenXPKI [OXPKI] is an open source PKI provided by the OpenXPKI Founda-
tion and is running under Apache-style license. The software is implemented in
Perl and available for Debian, FreeBSD, and Suse Linux. Depending on its con-
figuration the OpenXPKI software will act as a CA, RA, or EE. This means that
on each node in the network the same software is installed and configured for its

mentioned PKI is used. The OpenXPKI Server represents both RA and CA and
uses MySQL database for storing certificates and revocation information as well

cle, DB2, or Postgresql. An Apache Web-server represents the other part of the
RA which provides Web pages allowing submitting certificate requests. Identity
information is forwarded to the OpenXPKI Server which either uses internal

or Unix Pluggable Authentication Modules (PAM).13 In this scenario, the VA is
represented by the MySQL databases in conjunction with OpenSSL as the crypto-
graphic toolkit used to validate the certificates. Based on the modular design of
OpenXPKI also other cryptographic libraries can be used.

13PAM is a flexible mechanism for authenticating users in Unix environments.

240 7 Security

special role. Figure 7.22 shows an example deployment scenario in which the

as Private Keys. However, also other third-party databases can be used like Ora-

mechanisms such as a central user database or uses external mechanisms like LDAP

Fig. 7.22 Linux OpenXPKI example

7.7.4.4

Managed PKI Services.14 This kind of PKI product differs from the others des-
cribed before in a very fundamental aspect: the infrastructure is managed by a
third party and is therefore a “blackbox” for users, computers, and applications which

14The Web site of VeriSign providing more information about their Managed PKI Service can be
found at [VMPKI].

7.7 Public Key Infrastructure for OPC UA 241

 VeriSign Managed PKI Services

The fourth example of a PKI product described in this document is the VeriSign

is shown in Fig. 7.23. They only need to consume special services from VeriSign

Fig. 7.23 VeriSign managed PKI example

can be offered either by Web pages or by special API for programmatic access.
However, parts of the validation of certification are still done locally. Only the
validation of the revocation status of a received certificate is offered as validation

tificates have to be done locally.

7.7.5 PKI for Industrial Applications

7.7.5.1 Special Requirements for Industrial Environments

Today PKIs are widely used for Web applications to ensure a secure communica-
tion through unsecure environments such as the Internet. But there are very few
cases in which PKIs have been used for industrial applications because they have
partly different requirements. In the following, the specialties and the main issues
are explained and hints for possible solutions are pointed out.

7.7.5.2 Certificate Expiration

Each certificate has a specified period of time in which it is considered as valid. If
certificates are outside that period then the validation should fail. Schneier and
Ferguson [SF03] suggests for example that the validation period of an EE certifi-
cate should some value between several months and several years. Public root cer-
tificates such as “VeriSign Trust Network” certificate are valid for more than
20 years. However, the long-lived certificates should have strong keys. With weak
keys there is always the risk that due to rising computing power this key can be
compromised. When looking at the industrial environment then we realize that
once an application for controlling a production process is installed in the field it
often runs for 25 years without significant changes. Furthermore particular indus-
tries underlie specific regulatory that force them to run audits for each change in
the system which costs a lot of money. This leads to the question: What is the
appropriate validation period for a certificate used by an industrial application?

The main risk of long validation periods for certificates are long-running attacks
such as computing the private key based on the public key with factorizing. Attacks
on RSA keys with the length of 1,039 bits have already been successful. However,
such an attack requires a large computer infrastructure in order to succeed in a
proper time frame. With off-the-shelf computers like an Intel Pentium D with
3 GHz it would take 95 years [Con07] to break a key with 1,039 bits! Therefore,
one possible solution to the problems discussed earlier in this section is using cer-
tificates with strong keys (e.g., 2,048 bits or higher) together with a longer lifetime
(e.g., 5–7 years) in order to reduce the number changes in the system. Some time

242 7 Security

service by VeriSign. Other checks like validating against a local list of trusted cer-

via the Internet in order to create, renew, revoke, and validate certificates. These

before the existing certificate expires (e.g., 2–3 months) the administrator could be
informed by a global OPC UA alarm generated by an OPC UA server. Thereby
OPC UA clients subscribe for those special alarms published by an OPC UA
server which is shown in Fig. 7.24. If for example the Application Instance Cer-
tificate of “OPC UA Client A” expires in 2 months the server generates a global
alarm. Both the “Engineering Workplace” and the “Administration Workplace”
receive the notification that the certificate will expire soon. The Administrator
should now create and install the new certificate before the expiration date is
reached.

Fig. 7.24 Certificate alarms

Lifetime of Certificate 1

Lifetime of Certificate 2

Lifetime of Certificate 3

T1 T2 T3 T4 T5

...

T6 T7

Time interval for replacing old
certificates with new ones!

First Certificate is installed!

Fig. 7.25 Managing certificate renewal

For doing that he can choose a proper point of time (e.g., when the plant is in
maintenance mode or no production process is running) for installing the certificate
and revoke the old one. As long as the old certificate is still in use, the administrator

7.7 Public Key Infrastructure for OPC UA 243

should be regularly reminded. Once the old certificate is replaced by the new one
the alarm can be acknowledged. This procedure has to be repeated whenever a
certificate is about to expire. This is illustrated in Fig. 7.25. In such a case a cer-
tificate has only to be renewed 4–5 times during the lifetime of a plant of 25 years
(of course only if no certificate has been revoked meanwhile).

One could argue that using strong keys for signing, encrypting as well as for
decrypting and signature verification extremely slows down the system’s perform-
ance. However, in OPC UA certificates are only used during the connection estab-
lishment phase and during the secure channel renewal phase and not for the normal
communication like reading or writing process data. During the connection estab-
lishment and the Secure Channel renewing symmetric encryption and signing keys
are negotiated and thus the fast and efficient symmetric encrypting and signing
operations are used instead of the slower Public Key Cryptography. The lifetime
of the Secure Channel can also be configured adequately in order to avoid a fre-
quent usage of asymmetric keys.

7.7.5.3 Long-Running Connections

A further issue of industrial applications that has to be addressed is how long-
running connections are handled. In Sect. 7.7.5.2 it was mentioned that industrial
applications are running without significant changes for 25 years, whereas most
e-commerce Web applications have maximum connection duration below 24 h.
This does not mean that a single network connection is established for the whole
lifetime of the industrial application but there are in fact connections opened up
for a long period of time. An operator workplace supervising a special area of a
power plant for example can be connected to a server for 10 years without termi-
nation. But what should be done if in-between a certificate gets invalid due to
revocation or expiration?

As mentioned previously certificates are only used during connection establish-
ment phase and the secure channel renewal phase. When a certificate gets invalid
after connection has been established, then this does not directly affect the existing
connection since the negotiated symmetric keys are used for encrypting and sign-
ing messages. However, the next time the Secure Channel has to be renewed the
problem will occur. A certificate gets invalid because of two reasons: first because
its validation period expired and second because it was revoked. If certificate life-
times are managed strictly according to the concept described in Sect. 7.7.5.2 then
certificate expiration should normally not occur. However, if it still occurs due to
any strange reasons or a certificate gets revoked then another approach has to be
processed. Such cases should in general be treated as an error since both cases
threat the system’s security in terms of integrity and confidentiality. However, for
some applications availability is more important then the other security goals like
for the supervisory of a nuclear power plant and therefore fallback solutions are
needed.

244 7 Security

One possible solution is to use two Application Instance Certificates, one with
a short lifetime and another one with long lifetime acts as a kind of default certifi-
cate. Whenever the establishment of a Secure Channel fails due to certificate vali-

shows how the lifetimes of these certificates are related to each other. As men-
tioned above the expiration of a certificate should be an exception and normally
new certificate should be installed before the old one expires in order to prevent
such situations.

Fig. 7.26 Default Certificate

Fig. 7.27 Certificate expiration fallback solution

7.7 Public Key Infrastructure for OPC UA 245

dation the default certificate is used until a new certificate is available. Figure 7.26

7.7.5.4 Devices Without an Internal Clock

As mentioned in earlier sections, validating certificates include the verification of
the validation period. This process requires computer to have a clock in order to
compare the dates and times. Obviously every common office PC has such an inter-
nal clock. But that is not true for every device or controller. How should the vali-
dation period be checked in such devices?

In such a case, the verification of the validity period of a certificate can also be

cation running for example on a PC and offering a service for validating certifi-
cates similar like OCSP described in Sect. 7.7.3.5. A real option for solving the
problem is the Server-based Certificate Validation Protocol (SCVP) [FHM+07]
defined by the PKIX group of the IETF which allows relying parties to off-load
the certificate validation process to a trusted third-party. However, instead of only
validating the validity period other checks are performed as well. Thereby a secure
connection to the SCVP server is established. The controller then provides the cer-
tificate in a request message and receives in a response message the results whether
the certificate has expired or not. However, this mechanism requires establishing
trust relationship between the controller and Validation Authority. Since the con-
troller cannot check the validity period of the VA’s certificate this trust must be
established in another way. A possible solution to this problem is to establish two
trust domains like it is shown in Fig. 7.28. On the one hand there is the normal
application trust domain in which OPC UA client and server are communicating
with each other. On the other hand there is a special validation trust domain in
which the OPC UA server is running on the controller and the Validation Author-
ity belongs to. This VA can also represent a CA issuing special “validation certifi-
cates”. In order to trust the VA an administrator can install this special certificate
on the controller and configures OPC UA the application to directly trust the VA.
The validity period of the VA’s certificate does not need to be checked. The veri-
fication of the validity periods of all other certificates is then done by consuming
that special validation service offered by the VA.

Fig. 7.28 Outsourcing certificate validation

246 7 Security

“outsourced”. Thereby the Validation Authority of the controller is another appli-

7.7.5.5 Validation Costs Time

If you find an interesting article in a Web shop and decide to buy it, would you
wait 5–10 s until the Web server hosting the Web shop has validated your certifi-
cate? In most cases you would, since 5–10 s are not a very long time in order get a
purchase confirmation. However, 5–10 s can be a very long time for industrial
applications! Sometimes this is even far too long. Especially for applications in
chemical or pharmaceutical industries waiting too long could lead to manufactur-
ing poor products that cannot be sold. The question that has to be answered here
is: How can the validation time of certificates be reduced?

In principle there are three parameters affecting the performance of certificate
validation that can be influenced: the way how certificate revocation is checked,
the length of the certification path of a certificate, and the extensions to be checked
of a certificate. These parameters are discussed in the following.

For the first parameter, the way of checking certificate revocation, it is not easy
to determine in general whether the offline or the online approach is faster since it
depends on many factors. The offline approach uses CRLs for checking the revo-
cation status. These are files containing the serial number of the revoked certifi-
cate and are stored locally on the device. This seems to be faster than checking the
status with an online service. However, it must be considered that different CRLs
can also be obtained from several locations and can get very large by time. Further-
more such a CRL must also be validated since it is signed by a certain publisher
and a new CRL must be downloaded according to the “next update” date specified
in the CRL. When using the online approach the performance of the validation
depends on the communication protocol as well as on the service provider pro-
cessing the validation. In a scenario in which the service provider resides in the
same network segment or even on the same node the performance might be accept-
able. However, there are also other scenarios in which the validation service has to
be accessed over the Internet which is in the most cases not an option. This means
the offline approach with a simple CRL might result in a better performance than
using the online approach. But when CRL information has to be downloaded from
multiple locations frequently you should think of introducing a central validation
service in order to reduce the communication overhead.

The length of the certification path is represented by the number of CAs in the
trust hierarchy up to the root CA of the trust domain. The validation of a certifi-
cate includes performing the same checks on each certificate in the trust hierarchy
up to the root which has a significant impact on the performance of the system. In
order to reduce the validation time it is desirable to restrict the number of interme-
diate CAs in an organization. The minimum validation time can be achieved by
using self-signed certificates for each device since thereby only one certificate has
to be validated. However, this may lead to a higher overhead when deploying and
distributing certificates since every device has to have the certificate of every
device it intends to communicate with in advance. In the most cases one common
CA should be a proper tradeoff between performance and ease-of-use for indus-
trial environments.

7.7 Public Key Infrastructure for OPC UA 247

Finally, for X.509v3 certificates there are special extensions that can be checked
during validation. Typical examples are KeyUsage, AlternativeNames for Issuer
and Subject, or other policy definitions. In many cases these checks are optional
and do not take too much time. Nevertheless the number of extensions that have to
be checked should be restricted to minimum.

7.7.5.6 Certificate- and Key-Management for Controllers

OPC UA applications are intended to be run on controllers, but how do controllers
manage certificates and keys when they have limited resources? Where are they
stored? How are they loaded into the controllers?

In principle three types of artifacts have to be handled by controllers in order to
be integrated in a PKI: trusted certificates, private keys, and CRLs if an offline
validation approach is used. One approach is to store all artifacts on a memory
card such as a CompactFlash which is supported by many controllers to extend
their memory. There are even memory cards with password protection support like
CompactFlash 4.0 so that the private key can be stored on it without being afraid
that it can be used or manipulated by third-parties. But there is still the risk that

certificates and CRLs on the memory card and load the private key and the associ-
ated certificate directly into the controller by using a secured protocol (like sFTP
or proprietary protocols) supported by the controller. This has the advantage
compared to the first approach that common memory cards can be used and the
private key cannot be stolen that easy.

7.7.5.7 Self-Managed PKI vs. Managed by Third-Party

7.7.4 shows different PKI examples including both self-managed PKIs and PKIs
managed by a third-party. A self-managed PKI is under complete control of the
organization also using the services. In the other scenario, a third-party provides
the PKI services and the infrastructure which can be used by customers. A typical
example for that scenario using VeriSign as the relying third-party is given in Sect.
7.7.4.4. Whereas both scenarios work quite well with organizations offering pro-
ducts in a Web shop such a decision can have crucial impacts for organization
within industrial automation. What happens, for example, if the company offering
PKI services and infrastructures goes bankrupt? Is it really so easy to move from
one vendor to another if thousands of certificates are in use and already deployed?

In the following, the different advantages and disadvantages of both the self-
managed and third-party managed PKI are discussed.

248 7 Security

Finally, a last important topic is by whom the PKI should be managed. Section

the memory card could get lost or stolen. Another approach is to store the trusted

One advantage of self-managing a PKI is that the applying organization has the
full control. If for example a certificate has expired and a new one is needed quickly,
then the organization does not need to wait until a third-party verifies a certificate
request. The same is true when intending to revoke a certificate which includes
updating revocation information. Normally processing a revocation request and
publishing revocation information is faster compared to “outsourcing” this task.
Another advantage is that the organization has more flexibility. It is not dependent
on the functionality and on the service the third-party provides. If for example the
organization desires to change the way how certificates are validated against revo-
cation from an offline approach (e.g., CRLs) to an online approach (e.g., OCSP)
then it may be limited by the third-party since it only offers the offline version.
Furthermore by self-managing a PKI an organization can adapt the PKI to its spe-
cific needs. Especially in the field of industrial automation this is an important
aspect to consider. The applying organization knows its environments, the special
requirements of their applications and of their domain whereas most third parties
offering PKI services only consider common needs, requirement, and have limited
domain knowledge (since they provide a generic product for range of different
domains and industries). And a final advantage for self-managing PKIs is the
independency. By signing a contract with a PKI provider an organization has also
to be aware about risks and one major risk is thereby the PKI provider could go
bankrupt. In such a case, no services are available anymore and applications of the
organization may run into security problems. Obviously this will not happen that
often and if it happens then the organization will be warned in advance. How-
ever, this will not always be the case and moving applications from one PKI pro-
vider to another is not a simple and cheap approach. All the certificates distributed
have to be replaced by certificates issued by the new CA which can take while.

But there are also some disadvantages when self-managing PKIs which are
mainly cost-related. First of all a proper technical infrastructure has to be estab-
lished including software and hardware. Depending on the desired size and neces-
sary complexity of the PKI the amount of infrastructure costs vary. In some cases
existing workstations and servers can be used to host the PKI in other cases dis-
tributed trust domains have to be managed by sub-CAs which requires several
servers which should deployed redundantly. Once the PKI is deployed and running
it has to be maintained which means for example that software has to be updated
or hardware has to be replaced. Besides the technical aspects there are also organ-
izational issues that have to be addressed. One big topic here is the personnel that
have to deal with the PKI which should in an ideal world be the administrator, not
the end-user. However, even administrators have to be trained and introduced into the
different PKI processes, policies, and applications. But training is not enough, the
defined processes and policies have also to be followed accordingly. Another dis-
advantage that comes up compared to outsourcing PKI management is that many
organizations do not have much experience in dealing with larger PKIs which either
costs time for gaining experience or costs money for hiring experts in this area.

7.7 Public Key Infrastructure for OPC UA 249

Finally, it can be concluded that the question whether managing a PKI on his
own or outsourcing it to a third-party depends on many factors such as the size and
the complexity of the PKI and costs. Simple and small PKI can be easily managed
by most organizations without much effort, however, as soon as the several trust
domains with different sub-CAs faces critical infrastructures some experts should
at least be involved in the planning and deployment of the PKI.

7.7.5.8 PKI Example Scenario for OPC UA

with this topic. Let us assume that we are acting as application vendors and want
to develop a PKI concept for our OPC UA client and server.

cations will run do not necessarily have an existing infrastructure for managing
certificates. Therefore we decide that our applications should be able establishing
trust without the need of a central Certification Authority. This can be achieved
by applying a Direct Trust Model as described in Sect. 7.7.2 and is illustrated in
Fig. 7.29. This model can be realized by using self-signed certificates for each
application instance which is trusted by any other entity in our trust domain.

infrastructure includes applications and libraries for creating, deploying and vali-
dating certificates as described in Sect. 7.7.3. A proper selection is not always

Sect. 7.7.4. Since in our present example we consider only a small environment
OpenSSL PKI is chosen for implementation. It contains powerful cryptographic
libraries for creating and validating certificates as well as for storing certificates.

Thereby certificates are managed by three special directories with defined

access restrictions. One of the directories organizes the trusted certificates as well

250 7 Security

ments of different sizes and complexities. Some of them are briefly introduced in

Figure 7.30 shows how OpenSSL can be used for that purpose.

First of all we have to think about which trust model (Sect. 7.7.2) our applications

After describing and discussing the abstract concepts of how certificates are to be

should support. We assume that the target environments in which these appli-

managed we will give a simple and concrete example helping you getting started

Fig. 7.29 Example of a simple PKI trust model

Now we have to think about how such a trust model can be implemented. Thereby

easy since there are lots of different PKI products available for managing environ-

the technical and organizational infrastructure has to be established. The technical

as the certificates belonging to the owning application, another contains Certificate
Revocation Lists (CRLs) and finally there is also a directory for Private Keys. All
these entities are stored in a DER encoded format and are loaded by the applications
with the OpenSSL library whenever they are needed (e.g., when encrypting or signing
messages). But when and how are these entities actually created and deployed?
Since certificates identify installed application instances they should be created
when installing the application. Functions for creating certificates and the associ-
ated Private Keys are provided by the OpenSSL library which can be integrated in
the application installer of both client and server. An installer could create self-
signed certificates and Private Keys for the applications and automatically store
them in the correct folders. In our scenario, OPC UA applications can only com-
municate with each other in a secure way when they directly trust each other. This
means that if an application intends to communicate with another applications
then each application has to store the certificate of the other application in its cer-
tificates folder. In our example, this can be done by an administrator manually
installing them or by using special deployment tools (e.g., sFTP). In fact this
shows also that an organizational infrastructure is needed for managing certifi-
cates. The main task besides installing and deploying certificates (which can also
be automated) is maintaining the technical infrastructure. This includes renewing
certificates and revoking certificates (i.e., putting a certificate that should not be
trusted anymore in the CRL). Note that CRLs in the present example are used in
the context of a certain OPC UA application. This means that each application has
its own CRL since it acts as both Certification Authority and End-Entity. There is
no common CRL provided by a central CA for all entities in the trust domain.

Once all certificate-related information on both sides is available in the store a
secure communication between OPC UA client and server can be established.

7.7 Public Key Infrastructure for OPC UA 251

Fig. 7.30 Example of a PKI deployment model

7.8 Summary

7.8.1 Key Messages

In today’s industrial automation systems security is getting more important since
control networks are not that isolated anymore and security incidents in such envi-
ronments can have enormous financial and environmental impacts.

It is important to realize that security has a technical and an organizational notion.
The most sophisticated security system with the strongest password encryption
algorithm is useless if the password is written on a piece of paper lying on the
desk of the administrator. Humans have to understand how important security is
and how to deal with the topic. However, OPC UA is focusing on the technical
perspective since it was not the goal of OPC UA addressing the organizational
aspects since there are already detailed standards for that such as [ISA99].

It is not always clear how much security is necessary for certain environments.
Furthermore, the level of security differs for each environment since they all have
their special threats and requirements. This means that the proper level of security
has to be investigated. An effective method for doing this is a security assessment
which has a process-oriented approach. In order to determine proper security
measures for OPC UA applications, the working group processed such an assessment
and documented the results as a part of the specification.

OPC UA defines generic security architecture with different layers, each of
them with certain responsibilities regarding security. Each layer can thereby be
implemented by using different technologies specified in the mapping part of the
OPC UA specification.

The communication between OPC UA clients and servers is secured by estab-
lishing sessions on top of secure channels with special OPC UA Services. The
connection establishment is based on Public Key Cryptography with certificates.
Certificates identify persons, computers, or applications and are used for establish-
ing trust between two entities.

Certificates are managed by a PKI which represents the technical and organiza-
tional infrastructure for requesting, creating, distributing, validating, and revoking
certificates. There are a number of existing PKI products available in market which
vary in functionality and scalability. However, there are special requirements of
industrial environments for PKIs that have to be addressed.

7.8.2 Where to Find More Information?

Security-related information about OPC UA is distributed over several parts of the
OPC UA specifications. The common security model of OPC UA as well as the secu-
rity assessment processed for OPC UA applications can be found in [UA Part 2]. The
abstract definitions for security-related Services used for connection establishment

252 7 Security

and termination as well as for impersonation can be found in [UA Part 4]. Further
discovery mechanisms are described in [UA Part 12]. [UA Part 6] defines the differ-
ent technology mappings for the security layer of OPC UA applications. And finally
[UA Part 7] describes the existing security profiles containing algorithms that
should be supported by the applications which are used for deriving security policies.

In addition to OPC UA, a good source for addressing organizational aspect of
security is [ISA99]. And finally a deep introduction into PKIs is given in [AL02].

7.8.3 What’s Next?

The following chapter is about a generic application architecture for OPC UA.
Thereby the different layers consisting of a stack, an SDK, and an application are
described and the responsibilities are pointed out. Furthermore the OPC Founda-
tion’s standard deliverables for OPC UA are introduced.

2537.8 Summary

8 Application Architecture

8.1 Introduction

This chapter describes an abstract architecture for OPC UA applications with
different layers having defined responsibilities regarding OPC UA functionality.
Afterward the deliverables of the OPC Foundation and their features are listed and
it is pointed out how these are reflected in the abstract architecture.

8.2 Architectural Overview

When you intend to develop an application based on OPC UA you first have to
think about what it should do by specifying the requirements and the functionality.
Having that in mind you normally start designing the architecture of your applica-
tion. Thereby certain design goals (e.g., portability, performance, or security) have
to be agreed upon before first architectural concepts are developed. In this chapter,
we will take a look at OPC UA from the design perspective and introduce a poten-
tial application scenario. We expect that this scenario will be applied by many
application vendors. The main design goal thereby is the reuse of components and
artifacts.

In this scenario, we assume that we have to develop an OPC UA client and a
server. Both client and server will have application logic covering functionality
tailored to concrete use cases. For example, the server has to access special data
sources (e.g., data bases, devices, or other applications) or the client has to be integ-

application logic covering common functionality like managing connections, cre-
ating and processing OPC UA messages as well as securing them. Since we defined
reuse as our main design goal it would make sense to separate use-case-specific
and common functionality when designing the architecture. The common part can

tions and processing Service messages and lower level functions like encoding,
securing, and transmitting messages. The part providing the higher level functions
can be considered as a Software Development Kit (SDK) and the part with the
lower level functions can be represented by a protocol stack. The client and server
applications are layered on top of the SDK. Based on these blocks we come to a
very high level architecture shown in Fig. 8.1.

The above-described software layers are named as Application, SDK, and
Stack and are described in more details in the following sections.

255
DOI: 10.1007/978-3-540-68899-0_8,

be further divided into two parts: the higher level functions like managing connec-

W. Mahnke et al., OPC Unified Architecture,

rated into another application (e.g., in a MES application). But they will also have

© Springer-Verlag Berlin Heidelberg 2009

Fig. 8.1 Architectural overview

8.3 Stack

As mentioned in Sect. 8.2, the Stack is a common part covering lower level func-
tionality. In this section, we want to structure the Stack further into different parts
leading to a more detailed architectural view like the one shown in Fig. 8.2.

Fig. 8.2 Stack overview

8.3.1 Interfaces

First of all, the layers above need somehow to access the Stack in order to send
and receive messages. Both client and server can use the same stack since it pro-
vides a lot of functionality that can be used for both sides such as encoding and
securing messages. However, there are also functions specific to each side. For

8 Application Architecture256

example the client is only sending requests and processing responses, whereas the
server processes requests and sends responses. Therefore an access layer (i.e.,
interface) is needed for both the client- and the server-side (Client and Server API
in the figure). They could, for example, offer methods for configuring the Stack,
for managing the connection establishment, for sending OPC UA Service mes-
sages, and for notifying the layers above when messages are received.

The encoding and the decoding of messages are processed in the Encoding Layer.
Once data structures representing Service messages are provided from the API
layer they are serialized according to the special rules defined by OPC UA and
passed to the layer beneath for further processing. Service messages received from
the Security Layer are deserialized and passed as arguments of callback functions
registered by the upper layer.

8.3.3 Security Layer

Encoded Service messages passed by the Encoding Layer to the Security Layer
are then secured. Secured in this context means that depending on the configura-

encrypted or only signed. In scenarios in which applications are running in iso-
lated environments there must also be the possibility to disable message security
by configuration. In addition, special security headers and footers are appended
providing information for the receiver on how to decrypt the message and how to
verify the signature of the message. The Security Layer of the receiver has to
check the security headers and footers of incoming messages to know how they
were secured. Depending on that messages are first decrypted and afterward the
signature of the message is verified or only the signature is verified or none of
these activities are done (in the case the message was not secured).

8.3.4 Transport Layer

The Transport Layer is responsible for transmitting and receiving messages as
well as for dealing with errors at Network Layer. Before transmitting messages
special transport headers are appended containing special information for example
about the type and the length of the message. The Transport Layer of the receiver
verifies whether it is well-formed meaning whether the type can be identified or
whether the message is not too long1 before forwarding it to the Security Layer.

1In UA TCP, the maximum message lengths are negotiated and verified at Transport Level.

2578.3 Stack

8.3.2 Encoding Layer

tion of the Secure Channel (Sect. 7.5.2.1) outgoing messages are signed and

8.3.5 Platform Layer

The reuse factor of the Stack can be increased by adding an additional layer to this
model – the Platform Layer. The basic idea thereby is that all other layers of the
Stack are developed in platform-neutral manner. Only the Platform Layer contains
as name indicates platform-specific code like the integration of special libraries
for managing sockets, threads, or cryptographic operations (e.g., encrypting and
signing messages). This means that only the Platform Layer has to be changed in
order to port the Stack to another platform, the other parts of the code can be reused.

8.4 Software Development Toolkit

On top of the Stack, the SDK Layer is located covering the higher level function-
ality. This layer can be in general composed of three parts which are illustrated in
Fig. 8.3.

Fig. 8.3 SDK overview

8.4.1 UA-Specific Functionality

The UA-specific part represents the implementation of the concepts and the Services
specified in OPC UA. Note, that all the different aspects (like Sessions, Events, or
Nodes) depicted in Fig. 8.3 have to be addressed by both the client and the server.

8 Application Architecture258

However, the semantic of these aspects for client and server is different (e.g., Client
creates a Session request and server processes the client’s Session request).

One important aspect is the management of OPC UA Sessions. As we learned
the connection establishment of OPC UA includes creating a Secure Channel,
establishing a Session, and activating the Session. The SecureChannel Services
should be implemented in the Stack Layer to reduce the complexity in the SDK.
Therefore, the Secure Channels should also be managed in that layer. The Session
Services (i.e., CreateSession, ActivateSession, and CloseSession) are implemented
in the present model in the SDK Layer. However, managing OPC UA Sessions
does not only mean processing the Service requests and responses. There has also
to be special logic behind like associating Sessions with the Secure Channel that
secures the exchanged messages for that context. In addition, Sessions are run on
behalf of users that have to be authenticated and authorized. Furthermore there are
special Session parameters that have to be taken care of like the lifetime of the
session or used locales. Such tasks are handled by a management class which can
be called as a Session Manager.

Another important aspect is working with Nodes. Nodes are very essential to
OPC UA and are used for organizing Address Spaces as well as for providing
attribute values. Address Spaces in OPC UA reside on the server-side allowing
clients to access and manipulate them via the NodeManagement and Attribute Service
Sets. This means that on the server-side there has to be entities managing the
Nodes (e.g., Node Manager) of the Address Space (i.e., Nodes and References)
and the manipulation of the values contained in the Nodes (e.g., I/O Manager).
Other concepts and Services like Subscriptions, Events, and History can be
approached in a similar way.

OPC UA defines certain diagnostics information for Services and exposes it in
the Address Space. It contains for example information about how often Services
have been called. Managing this information is also a task for the SDK Layer
since is also manages the Services of which the upper layer may not be aware of.

8.4.2 Common Functionality

The second part of the SDK Layer covers more general functionality that has to be
implemented by clients and servers.

OPC UA exchanges certificates in order to establish secure connections. Before
using them it has to be verified whether a received certificate can be trusted or not.
OPC UA specifies what part of a certificate has to be validated to be trusted, how-
ever, it does not state how it has to be validated. Therefore common functionality
has to be provided allowing the applications to validate certificates and accessing
their associated certificate stores. An alternative to implementing that function-
ality in the SDK is using the Stack for that purpose. Since the Stack is a common
component that should be used for large range of applications it is assumed
that all applications use the same way of validating certificates. In heterogeneous

2598.4 Software Development Toolkit

environments, it sometimes can make more sense to implement that in SDK or even
in the Application Layer when different sources for gathering certificates or
certificate-related information (e.g., certificate revocation lists, private keys, or
validation rules) have to be consumed.

Other important topics that belong to the common part are application configu-
ration and logging.

8.4.3 Interfaces

The last part of the SDK discussed in this context represents the interfaces to the
Application Layer. Client interfaces are needed for sending requests to the server
and for receiving responses from it (i.e., callback interfaces). On the server side
some interfaces for initializing and configuring the SDK should be provided as
well as for integrating underlying systems acting as data providers.

8.5 Application

The Application Layer includes in principle two kinds of applications: clients and
servers. The way how the architectures of these applications look like differs very
much depending on the concrete scenario.

8.5.1 Client

One example for an OPC UA client application is a generic browser used for
exploring and manipulating the Address Space provided by a server. The main
tasks of the client is visualizing data provided by the SDK Layer and translating
user interactions into calls to the SDK’s API. The design of such an application
from the functionality point of view can be quite simple which is shown in Fig. 8.4.

User Interface

Client SDK

Stack

Configuration Use Case specific functions

Fig. 8.4 Example of a high-level client architecture

8 Application Architecture260

8.5.2 Server

In principle there are two kinds of server applications: one managing the whole
address space in the main memory and another one accessing underlying systems
for gathering Address Space information.

In the first case, the Address Space is stored in a special data source (e.g., data-
base or XML file) and completely loaded into the main memory when the server
starts up. This provides a fast access to information contained in the Address
Space requested by clients.

In the second case, an OPC UA server facades an underlying system like a
device, controller or DCS. In the last case, typically several sources are accessed,
like a configuration database and several controllers. It is expected that many sys-
tem vendors will first head such an approach in order to smoothly migrate existing
applications to OPC UA. The main responsibilities of this layer are reading and
writing data from the underlying system. A SDK could for example provide spe-
cial callback interfaces for exchanging data in a simple way to reduce the
complexity of the server implementation on top of the SDK. An example of
that architecture is given in Fig. 8.5.

Use case specific functions

Underlying System

Server SDK

Stack

Fig. 8.5 Example of a high-level server architecture

8.6 Deliverables Provided by the OPC Foundation

The OPC Foundation provides a set of deliverables that can make your life easier
when developing OPC UA applications. Some of the deliverables follow the archi-
tecture described in Sect. 8.5. All of them are available in the so-called UA SDK.
It contains thereby various Stacks, libraries, and sample applications.

2618.6 Deliverables Provided by the OPC Foundation

8.6.1 Stacks

Both an ANSI-C-based and a C#-based Stack is provided with the UA SDK.
A Java-based Stack was under development at the time when this book was writ-
ten. It is recommended to use the UA stacks provided by the OPC Foundation in
order to ensure interoperability between applications implemented in different
development environments.

The ANSI-C Stack is implemented according to the architecture depicted in

Conversation for the Security Layer, and UA TCP for the Transport. For securing
messages and validating certificates, the OpenSSL crypto library is applied and
integrated in the platform-specific part of the Stack.

Alternatively there is also a .NET Stack written in C# which does not have a
Platform Layer. Therefore the architecture is different to the one shown above. For
the Encoding Layer it supports UA Binary and XML, UA-SecureConversation and
WS-SecureConversation as Security Layer protocols, and the transport protocols
UA TCP and SOAP/HTTP. However, only the following combinations of the pro-
tocols (also named as Stack profiles or mappings schemes; see Chap. 6 for more
details) can be used:

• HTTP/SOAP, WS-SecureConversation, UA Binary
• HTTP/SOAP, WS-SecureConversation, XML
• HTTP/SOAP, WS-SecureConversation, UA Binary, and XML

8.6.2 SDKs

There are two C#-based libraries contained in the UA SDK: a client library and a
server library. These libraries can be considered as the SDK Layer described ear-
lier. Both are providing the base functionality for handling the UA protocol and
for processing common tasks regarding logging, security, and configuration. The
server library provides special interfaces that can be used to integrate underlying
systems for example in order to read or write certain values. The client library
implements a NodeCache for buffering Nodes and References. In addition to the
client and server libraries, the SDK also provides a C#-based discovery server
used by clients for identifying running endpoints of the server they can connect to.

C++-based UA SDKs for clients and servers were developed by a group of
early adopter companies and are available as commercial libraries from Unified
Automation. They are using the ANSI-C stack and are providing platform layers
for different operating systems. Similar to the .NET UA SDK, the C++ SDKs are
implementing common UA functionality to reduce the development effort for UA
applications and are defining interfaces to integrate the application-specific infor-
mation with the SDK.

8 Application Architecture262

• UA TCP, UA-SecureConversation, UA Binary.

Fig. 8.2. It supports UA Binary encoding for the Encoding Layer, UA-Secure-

8.6.3 Applications

The OPC Foundation’s UA SDK provides both a sample client and server application
written in C#. The client application is a generic OPC UA browser offering the
base OPC UA functionality like browsing the Address Space, reading and writing
Node attributes, subscribing for data changes and Events, and also more sophisti-
cated concepts like calling Methods or using Views. Therefore, it is a powerful tool
for learning and exploring the concepts of OPC UA. The server uses an in-memory
Address Space including standard Nodes as well as an example describing a boiler
and its components.

8.7 Summary

8.7.1 Key Messages

This chapter describes how the architecture of an OPC UA application typically
looks like. The main design goal is thereby the reuse of artifacts (e.g., code and
components). Therefore the following layers with certain responsibilities are
defined: Application Layer, SDK Layer, and Stack Layer.

The Stack is responsible for the lower level functions like encoding and decod-
ing messages, securing messages, as well as sending and receiving messages. In
addition to that, it has a Platform Layer containing only platform-specific code
whereas the other layers are written in platform neutral manner. This facilitates the
portability of the Stack to other platforms.

The SDK contains higher level functionality covering UA-specific functions
and common functions. The UA-specific part implements the OPC UA concepts
and Services whereas the common part deals for example with configurations and
logging. Additionally the server-side of the SDK provides interfaces in order to
integrate other systems used as data providers.

The Application Layer covers the use-case-specific part of the functionality.
Clients could, for example, process data received from the SDK in a special way
in order expose it to the user. Servers could access underlying systems in order to
expose its information via OPC UA to clients.

The OPC Foundation offers a set of OPC UA standard deliverables that system
vendors can reuse. Some of the components already implement similar architec-
ture as described in this chapter.

8.7.2 Where to Find More Information?

More information about the OPC UA standard deliverables can be found on the
OPC Foundation Web site (http://www.opcfoundation.org/). More information

2638.7 Summary

about the C++ SDKs can be found at the Unified Automation Web site (http://
www.unified-automation.com). Finally, the Web site of the OPC programmers’
connection (http://www.opcconnect.com/) provides a section with SDKs that can a
useful source when intending to implement OPC UA applications.

8.7.3 What’s Next?

In Chap. 8 – System Architecture – different variants of OPC UA client–server
concepts are introduced like chained or aggregating server. In addition, some related
concepts regarding redundancy, discovery, and auditing are introduced.

264 8 Application Architecture

9 System Architecture

9.1 System Environment

We mentioned several times in this book that OPC UA is designed in a generic
manner and can therefore be applied in a diverse range of applications running at
various locations within an organization’s network. Figure 9.1 shows an example
of an environment in which OPC UA is used in various ways. In this scenario,
OPC UA servers are running on controllers of the Control Network, on Batch sys-
tems in the Operations Network, and are applied for MES application as a part of
the production planning. Furthermore, an ERP system uses an OPC UA client as
an interface for consuming services in the Corporate Network. In addition, there
are not only different applications involved but also different platforms. The control-
lers require real-time operating systems, the Batch systems as well as the MES
might be Windows-based and the ERP system might be deployed on UNIX plat-
forms. Besides the possibility to run OPC UA on different platforms, it can also be
used for applying different architectural concepts at system level. In our example,
several architectural concepts can be identified such as redundancy (Batch serv-
ers), server-chaining (MES and Batch), or server aggregation (Batch and OPC UA
servers running on the controllers).

other concepts at system level.

9.2 Basic Architecture Patterns

patterns are either used for structuring systems and applications or used for solving

Server, Server-to-Server Communication, and Aggregating Servers, are described
that can be applied in different OPC UA-specific scenarios.

9.2.1 Client-Server

265
DOI: 10.1007/978-3-540-68899-0_9,
W. Mahnke et al., OPC Unified Architecture,

The following sections describe how OPC UA can be used to apply these and

© Springer-Verlag Berlin Heidelberg 2009

This section introduces different architectural patterns for OPC UA systems. Such

certain design problems. In the following, four basic patterns, Client–Server, Chained

The first pattern–the Client–Server pattern – is the most common one and represents
the basic OPC UA communication pattern (Fig. 9.2). There are two roles defined
in this scenario: a server offering a service and a client consuming that service to
fulfill certain tasks. The communication between them is defined by a contract they
both agree upon. This means for the present context that an OPC UA client sends
a well-formed request message to an OPC UA server, which answers to the
request with an appropriate response message.

<<OPC UA Server>>
Controller 1

<<OPC UA Server>>
Controller 2

<<OPC UA Server>>
Controller 3

<<OPC UA Client>>
Active Batch

<<OPC UA Server>>
Active Batch

<<OPC UA Client>>
ERP

<<OPC UA Client>>
MES

<<OPC UA Server>>
MES

<<OPC UA Server>>
Controller 4

Control Network

Operations Network

Corporate Network

<<OPC UA Client>>
Backup Batch

<<OPC UA Server>>
Backup Batch

<<ERP Server>>
ERP

<<OPC UA Client>>
Engineering

Fig. 9.1 Example for an OPC UA system environment

Fig. 9.2 Client–Server pattern

9.2.2 Chained Server

In the Chained-Server pattern depicted in Fig. 9.3 three entities are involved: a com-
mon OPC UA client (OPC UA Client 1), an OPC UA server (OPC UA Server 1) with
an embedded client (OPC UA Client 2), and a common OPC UA server (OPC UA
Server 2). The OPC UA Client 1 exchanges messages with OPC UA Server 1 and
the embedded OPC UA Client 2 communicates with OPC UA Server 2.

is useful. One possible scenario could be to use the chaining server as a gateway.
If, for example, OPC UA Client 1 only supports HTTP(s) as transport protocol and
the server it intends to talk with resides in a network segment in which a firewall
restricts the access to TCP combined with a special port, then a chaining server
could act as a gateway in-between. Thereby, it translates HTTP(s) requests com-
ing from the client to TCP and responses in TCP to HTTP(s) since it acts as client

266 9 System Architecture

There are several use cases and scenarios in which the application of such a pattern

to OPC UA Server 2 and as a server to OPC UA Client 1.

Fig. 9.3 Chained Server pattern

9.2.3 Server-to-Server Communication

that are only consumed by clients. But how can servers communicate with each

Fig. 9.4 Server-to-Server pattern

since we know from the basic Client–Server pattern that a server provides services

other? This can be achieved by embedding a client into a server. This concept is quite

2679.2 Basic Architecture Patterns

OPC UA ServerOPC UA Server

OPC UA
Client

REQUEST

RESPONSE

RESPONSE

REQUEST

OPC UA
Client

OPC UA Client

R
E

S
P

O
N

S
E

R
E

Q
U

E
S

T

R
E

S
P

O
N

S
E

R
E

Q
U

E
S

T

The term Server-to-Server communication sounds somewhat contradictory,

similar to the Chained-Servers pattern introduced in the Sect. 9.2.2, with the exception
that both servers have embedded clients, which enables both sides to initiate the
communication (i.e., both sides can send request messages). This scenario is illu-
strated in Fig. 9.4. Note that although this concept is named Server-to-Server com-
munication, this does not mean that only servers can communicate with each other.
Of course, non-embedded OPC UA clients can talk with the servers as well.

But why should servers communicate with each other? One very typical use
case is server redundancy. To provide the same data to clients in a failover case,
redundant servers have to replicate their data especially when both servers are
running and in operational mode (e.g., hot-failover concept described in Sect. 9.3).

9.2.4 Aggregating Server

Finally, the last of the four patterns described in this chapter is the concept of Ag-
gregating Servers. This pattern is also similar to the Chaining-Server concept. In
Fig. 9.5, an example for that concept is given. The common OPC UA Client talks
with OPC UA Server 1 containing an embedded OPC UA Client. This embedded
client accesses data provided by multiple other OPC UA servers. The data ret-
rieved from these servers is prepared or processed in a special way by the inter-
mediate server before a response is sent back to the common client.

OPC UA Server 1

OPC UA Client

OPC UA Client

R
E

S
P

O
N

S
E

R
E

Q
U

E
S

T

R
E

S
P

O
N

S
E

R
E

Q
U

E
S

T

OPC UA
Server 2

OPC UA
Server 3

OPC UA
Server 4

R
E

S
P

O
N

S
E

R
E

Q
U

E
S

T

R
E

S
P

O
N

S
E

R
E

Q
U

E
S

T

Fig. 9.5 Aggregating Server pattern

268 9 System Architecture

Such a pattern can, for example, be applied in the field of MES. In such a scenario,
the common OPC UA client can be used for executing and supervising production
requests. A production request contains among others information about the type
and the quantity of the product that has to be manufactured. OPC UA Server 1
processes the request and distributes subtasks to the underlying servers. Each of
the aggregated servers is thereby responsible for a defined part of the production
process. Once they have completed their tasks, they return the results to OPC UA
Server 1, which composes a response for the common client. Before sending the
response to the common client, the data obtained from the aggregated servers can
be prepared in a special way for the client. For example, the overall status of the
request or some statistical data like number of occurred errors can be returned.

The main difference between an aggregating server and a chaining server is
that the chaining server just passes the data of the underlying server(s), while an
aggregating server typically concentrates the information of the underlying server(s).

9.3 Redundancy

Redundancy in general is the existence of multiple critical components of a system
in order to increase the reliability. If an error occurs in one of the components, then
another one is used instead.

In OPC UA, redundancy is based on the existence of duplicate client or server
applications and can be achieved by using special data structures and services of
OPC UA. In the following, we distinguish between client and server redundancy.

9.3.1 Client Redundancy

Client redundancy is needed in environments in which, for example, a continuous
supervisory of a production process is needed. Another example is when an OPC
UA server aggregates data from underlying servers to perform special calculations

TransferSubscriptions Service in combination with monitoring client information
residing in the server’s Address Space.

have an active OPC UA client with running data subscriptions and a backup client.
This backup client monitors the session information of the active client in the
server address space in the same way any other data is monitored in OPC UA.
Once the active client fails and the status of the session changes in the address
space, the backup client uses the service TransferSubscriptions to get all running
subscriptions from the active client. Subscriptions can survive sessions since their
lifetime is independent from the session lifetime. The server must thereby buffer
data to be sent to the client during this failover process to avoid loosing data. This

2699.3 Redundancy

Figure 9.6 illustrates an example of how this can work. Let us assume that we

(Sect. 9.2.4). OPC UA supports these types of redundancy by applying the

mechanism requires the backup client to have knowledge about the SessionId for
monitoring the session and in addition the SubscriptionId for transferring the sub-
scriptions of the active client. However, there is no standard way specified by
OPC UA for exchanging this information between those clients.

S
es

si
on

 1

S
es

si
on

 2

S
es

si
on

 1

S
es

si
on

 2

Fig. 9.6 Example of client redundancy

9.3.2 Server Redundancy

Server redundancy can be further differentiated in transparent server redundancy
and nontransparent server redundancy.

9.3.2.1 Transparent Server Redundancy

In the first approach, server redundancy is handled transparently to the client. This
means that in a failover case the client does not realize that an error occurred and

Fig. 9.7 Transparent server redundancy

270 9 System Architecture

OPC UA Server
(active)

OPC UA Client

OPC UA Server
(backup)

S
es

si
on

 A

Mirrored OPC UA Server
(active)

OPC UA Client

OPC UA Server
(backup)

S
es

si
on

 A

Mirrored

Session A Session A

it does not need to do anything to continue performing its tasks. However, the
server has the full responsibility to ensure that the client can access its required
data. This means that the redundant servers have to be mirrored. They have to

of how this can look like in the context of OPC UA. If the active server is not
available anymore, further requests are redirected to the identical backup server.

server, the information that they are accessing a redundant server can be found in
the Address Space. To achieve requirements from FDA,1 the server also exposes
an Id that uniquely identifies the server in the redundant set of servers.

9.3.2.2 Nontransparent Server Redundancy

In contrast to the above described transparent server redundancy concept, the
nontransparent server redundancy requires some actions of the client to continue
its work in the case when the server fails. For this type of redundancy, OPC UA
specifies several failover modes defining for each case the role of the backup ser-
ver. Depending on the selected failover mode at the client side, different actions to
support redundancy have to be performed. Table 9.1 describes each mode and the
roles of the backup server as well as the required actions for the client side.

9.3.2.3 Nontransparent Server Redundancy Approaches

and transfer the subscription data of the previous session to the new session. For
doing that, OPC UA proposes two approaches: by duplicating subscriptions or by
using the TransferSubscriptions Service. Both ways are described later. Since this
mechanism can be reused by any type of OPC UA client, it makes sense to encap-
sulate this functionality into a separated component (Failover Proxy).

residing on the client side. In this case, it acts as proxy and creates a connection on
both active and backup server. Furthermore, all subscriptions created on the active
server are created on the backup as well while sampling or reporting is only enabled
on the active one. Other service requests such as Read or Write are only forwarded.
If, in a failover case, the active server is not accessible, then the proxy component
enables sampling or reporting on the backup server.

1 The U.S. Food and Drug Administration (FDA) define requirements for companies developing
applications for the consumer industry in the United States

2719.3 Redundancy

have exactly the same data and session information. Figure 9.7 shows an example

Although clients do not have to do anything special accessing a redundant

The first approach (Fig. 9.8) requires only actions of the Failover Proxy

To perform the failover, the client has to create a new session to a backup server

Table 9.1 Failover modes and client side actions

The second approach requires actions of the Failover Proxy component on the
client side and additional actions on the server side. The proxy on the client side
only creates subscriptions on the active server. The active server mirrors all created
subscriptions to the backup server. Once the active server fails, the proxy creates a
new session on the backup server and uses the TransferSubscriptions Service for
getting the subscriptions of the previous session. This is exemplified in Fig. 9.9.

272 9 System Architecture

Failover mode Role of the backup server Client side actions
Cold Backup server is running but not

active. Once the active server fails
the backup is activated.

On initial connection:

1. Nothing to do

 At Failover:

1. Connect to backup server

2. Create subscriptions and add moni-
tored items

3. Activate sampling on the subscrip-
tions

4. Activate reporting of notifications

Warm Backup server is running and active
but it cannot connect to actual data
points. This is applied in scenarios in
which the number of connections to
the underlying devices is limited.
Therefore, the backup server only
connects to the device in the case
of a failover.

On initial connection:

1. Connect to both active and backup

2. Create subscriptions and add moni-
tored items (enable subscription on
active server and disable on backup
server)

At Failover:

1. Activate sampling on the subscrip-
tions

2. Activate reporting of notifications

Hot Backup server is like the active
server full operational and can be
used for accessing data. When the
active server breaks, then the backup
server is running with a higher load
since all clients previously connected
to the active server move to the
backup server.

On initial connection:

1. Connect to both active and backup

2. Create subscriptions and add moni-
tored items

3. Activate sampling on the subscrip-
tions

At Failover:

1. Activate reporting of notifications

Fig. 9.8 Nontransparent server redundancy – approach 1

Fig. 9.9 Nontransparent server redundancy –approach 2

9.4 Discovery

9.4.1 Why Discovery?

In large OPC UA environments, there might be scenarios in which many OPC UA
servers with different endpoints are provided. Each endpoint can have different
configurations regarding communication, encoding, or security as well. In addition,
the servers can run at different locations (e.g., network segments or sites). The

2739.4 Discovery

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

Subscription:
sampling/reporting

Subscription:
disabled

Subscription:
sampling/reporting

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

OPC UA Server
(active)

OPC UA Client

Failover Proxy

OPC UA Server
(backup)

Sync

Process or Machine Boundary

Transfer
Data

Subscription 1
over Session 1

Data
Subscription 1
over Session 1

Data
Subscription 1
over Session 2

problem for a client here is to find the server it intends to communicate with and
which has an endpoint that the client is able to connect to. This is why OPC UA
clients have to discover servers and inform themselves about the existing configu-
ration options of the endpoints before they can connect to a server. Note that cli-
ents do not have to perform the discovery process each time they intend to connect
to a server. Typically, the information gathered during the discovery process is
stored and reused for further connection establishment requests.

OPC UA specifies a set of abstract services for performing the discovery proc-
ess as well as different design concepts. Section 9.4.2 describes the entities in-
volved in discovery, and Sect. 9.4.3 shows how the services are used for performing
the different discovery approaches.

9.4.2 Discovery Entities

For performing discovery, special entities are specified in [UA Part 12], each of
them covering a special discovery boundary. The Discovery services are defined
in [UA Part 4]. The entities are briefly introduced in the following and are the
basis for understanding the discovery processes in OPC UA.

9.4.2.1 Session Endpoint

A Session Endpoint is always associated to an OPC UA server. Only this type of
endpoints can be used for creating Secure Channels and Sessions to access data
provided by the server.

9.4.2.2 Discovery Endpoint

Endpoints providing information about other endpoints are called Discovery End-
points. This type of endpoint is either created by an OPC UA server providing
data to clients or created by a Local or Global Discovery Server.

9.4.2.3 Local Discovery Server

If a discovery server resides on the same machine as the OPC UA servers of which
it provides the Discovery Endpoints, then it is named as the Local Discovery Server.
Multiple servers running on a single machine can share the same Local Discovery
Server.

274 9 System Architecture

9.4.2.4 Global Discovery Server

This discovery server maintains information about existing servers in a network
and is accessible at a well-known address such as an URL or simply an IP address
together with a port. More precisely, it provides the available Discovery Endpoints
to which clients can connect to in order to get information about the Session End-
points.

9.4.3 Discovery Process

Before clients can start the discovery process the installed servers (i.e. the end-
points) have to be registered in the discovery servers by using the RegisterServer
Services defined in [UA Part 4]. Thereby a description and the discovery URL has
to be provided.

The discovery process itself is performed by exchanging discovery messages
among the above defined entities. There are a number of ways of how this process
can be performed. The basic approaches are described in the following.

9.4.3.1 Simple Discovery

In the case that a client already has the address of the OPC UA server (e.g., by
configuration), it only sends a GetEndpoints request to the server to get the des-
criptions of the available Session Endpoints. Once the client received the response
from the Discovery Endpoints, it selects an appropriate Session Endpoint and
establishes a connection to the selected endpoint starting with an OpenSecure-
Channel request. This is illustrated in Fig. 9.10.

Fig. 9.10 Simple discovery

2759.4 Discovery

9.4.3.2 Normal Discovery

There will also be scenarios in which multiple OPC UA servers are running on a
single machine. In such a case, the client asks the Local Discovery Server for the
existing servers by sending a FindServers request. The address at which a client
can access the Local Discovery Server is either well-known2 or preconfigured in
the client by the administrator. If the desired server is listed in the ServerDescrip-
tions returned by the Local Discovery Server, the client extracts the DiscoveryURL
and connects to the Discovery Endpoint of the server and proceeds like described
in the Simple Discovery case. In Fig. 9.11, it is shown how Normal Discovery is
performed.

Fig. 9.11 Normal discovery

9.4.3.3 Hierarchical Discovery

If OPC UA servers are widely distributed at several locations within the network,
it might be hard for a client to identify the desired server or even the machine it is
running on. In such a case, a Global Discovery Server should be introduced pro-
viding information about these servers within the network. Thereby the client
sends a FindServers request to a well-known (or preconfigured) Global Discovery
Server and obtains the descriptions of the existing machines offering a Local Dis-
covery Servers or OPC UA servers. If the returned list contains the desired OPC
UA server, then the client proceeds as described in the Simple Discovery case,

 2Port 4840.

276 9 System Architecture

otherwise it selects an appropriate Local Discovery Server running on a certain
machine (e.g., the description may give hints that facilitates the decision which
one to select) and proceeds like in the Normal Discovery described earlier. The
complete message exchange for hierarchical discovery is depicted in Fig. 9.12.

Fig. 9.12 Hierarchical discovery

9.5 Auditing

9.5.1 Overview

Auditing in the context of OPC UA means the tracking of activities of OPC UA
applications, including normal and abnormal behaviors. It ensures thereby the
traceability of the system for several purposes. One example is debugging applica-
tions on errors by extracting information from audit logs. Another example is

3

tory bodies.
Auditing can be accomplished by one of the following approaches or by applying

both of them:

 3Forensic in the context of security means gathering information that help to identify the reason

why a certain security incident occurred (e.g., a hacker that intruded into a system). A typical
activity is thereby exploring different log files to detect strange behaviors or anomalies.

tries (e.g., consumer industries), it is even a hard requirement defined by regula-
forensic activities after a security incident occurred. And in some special indus-

9.5 Auditing 277

OPC UA Client

OPC UA Server

Global Discovery Server

FindServers request

FindServer response

FindServer response

GetEndpoints request

GetEndpoints response

FindServers request

ServerDescriptions

ServerDescriptions

EndpointDescriptions

OpenSecureChannel request

Local Discovery Server DiscoveryEndpoint SessionEndpoint

• OPC UA applications generate audit events and store the audit information in
logfiles or databases.

• OPC UA applications generate audit events and publish the audit event to
which clients can subscribe. Thereby, clients can store audit information to spe-
cial locations.

the second one.

9.5.2 Audit Logs

Audit logs in OPC UA store information about certain events that occurred in an

an AuditActivateSessionEvent is generated by the server, which causes the crea-

by the client in the request header of the message. If a client does not specify an

Fig. 9.13 Example of how audit logs can be used

9.5.3 Audit Events

Audit events are different kinds of events occurring in a system for which a sys-
tem should generate an audit log entry. OPC UA specifies a wide range of differ-
ent audit event types that can be used directly or for subtyping a more specialized
type. Clients can subscribe for audit events in the same way they subscribe for
other events. An example is given in Fig. 9.14. In this example, during a Secure

278 9 System Architecture

In the following, Sect. 9.5.2 describes the first approach and Sect. 9.5.3 describes

tion of an audit log entry. The EntryID for the ActivateSession request is provided

application. Each entry in an audit log has an identifier – the EntryID. An example

EntryID in his request, the server uses an alternative identifier for the log entry.

of how audit logs can be used is illustrated in Fig. 9.13. In this scenario, UserA is

Note that also the client can create audit logs to track internal actions such as

logging in to the OPC UA server by using the ActivateSession Service. Therefore,

sending requests.

Channel establishment it turns out that a certificate has expired. Therefore, an
AuditCertificateExpiredEvent is created. Since the Admin workstation has also an
OPC UA client, which subscribes for audit events of this type, it gets notified by
the server. Now the administrator knows that certain clients identified with the
EntryID need new certificates.

Fig. 9.14 Example of how audit events can be used

9.5.4 Service Auditing

For each of the Service Sets defined in [UA Part 4] certain event types for auditing
are defined and also how to deal with the events. For example, for the Secure-
Channel Service Set the following special Event Types should be used:

• AuditOpenSecureChannelEventType for OpenSecureChannel Service

covery Service Set, no special EventTypes are defined. In this case, the base type
AuditEventType can be used or a custom subtype if it.

A specific Profile is defining whether a server supports auditing by generating
audit events.

9.5.5 Use Cases

This section describes how to handle audit logs and how they look like in certain

additional ones can be defined. These EventTypes are used in both cases, when a

• AuditCloseSecureChannelEventType for CloseSecureChannel Service

service call fails and succeeds. For some services like for the services of the Dis-

9.5 Auditing 279

• Subtypes of AuditCertificateEventType for certificate errors.

If the granularity of the types is not sufficient, they can easily be subtyped and

system architectures (Sect. 9.2).

9.5.5.1 Client and Server Auditing

The first scenario describes the common client–server architecture shown in
Fig. 9.15. When a client sends a request message to the server, then the client creates

it also creates an audit log entry, but with its own special EntryID “SB” and con-
taining the client’s name and EntryID.

Fig. 9.15 Client–Server auditing

9.5.5.2 Aggregating Server

When considering a scenario in which an aggregated server is used as illustrated
in Fig. 9.16. The first step is similar to the normal client–server approach des-
cribed earlier. In the second step, the aggregating server sends a request to OPC
UA Server C. When this server receives the message, it creates an audit log entry
with the EntryID “SC” and the ClientName is thereby the name of the aggregating

Fig. 9.16 Aggregating server auditing

9.5.5.3 Aggregation through a nonauditing server

The last use case considered in this section describes auditing in a scenario in
which an aggregating server is used that does not support auditing. However, the

280 9 System Architecture

an audit log entry with the EntryID “CA”. When the server receives the message,

server “B” its EntryID “SB”.

creates an audit log when it sends a request to the OPC UA Server B, which does
not create an audit event but includes the EntryID in the request message it sends
to Server C. When Server C receives the request from B, it creates an audit log
entry with ClientName of “B” and the EntryID “CA” belonging to client A.

Fig. 9.17 Aggregation through a nonauditing server

9.6 Summary

9.6.1 Key Messages

Applications based on OPC UA can be run at different levels in an automation
network and is therefore applied for a diverse range of scenarios. However, there
is a number of generic architectural patterns representing typical use cases or solv-
ing certain design problems. One problem domain in which some of the patterns
can be applied is redundancy. OPC UA provides information about dealing with
both client- and server-redundancy. On the server side, it is distinguished between
transparent and nontransparent redundancy. Another important topic regarding the
system architecture is discovery. Before an OPC UA client connects to a server, it
first has to get information about how it can establish the connection. There are
different possible configurations regarding communications protocols, encoding,
and security. OPC UA specifies different ways of how discovery can be per-
formed. When considering installing OPC UA applications in a concrete environment,
it has to be taken care of how to configure and deploy those applications regarding
discovery. Auditing is important also required for a number of reasons like for
detecting errors or for accountability requirements defined by regulatory bodies.
Therefore, OPC UA specifies how auditing is done with services and events.

9.6.2 Where to Find More Information?

The different concepts regarding redundancy in OPC UA are defined in [UA Part 4]
as well as how services and events are audited. Some more general information

9.6 Summary 281

server it connects to does. Figure 9.17 depicts such a case. OPC UA Client A

about auditing can also be found in [UA Part 2]. Special EventTypes for audit
events are provided in [UA Part 3] and [UA Part 5]. There are two sources des-
cribing the discovery mechanisms of OPC UA: [UA Part 4] defines common ser-
vices whereas [UA Part 12] comes up with different concepts of how the discovery
process can be performed.

9.6.3 What’s Next?

The next chapter describes how Classic OPC can be mapped to OPC UA. Thereby,
it is shown how the different entities (i.e., objects and types) used in OPC Data
Access, Alarms & Events, and Historical Access can be exposed in an OPC UA
Address Space and also how they can be accessed.

282 9 System Architecture

10.1 Overview

is implemented in more than 15,000 products and used in a huge installed base.
This makes the mapping of COM based OPC interfaces to OPC UA an important
task, allowing the installed base to profit from the advantages of OPC UA and to
provide OPC vendors an easy migration strategy.

OPC UA keeps the successful concepts of Classic OPC. This was an important

information.

late the different standards from and to OPC UA. A proxy allows Classic OPC cli-
ents to access UA server and a wrapper allows UA clients to access Classic OPC
servers. But the mapping is also important for the migration of existing OPC
products to OPC UA. It enables existing OPC information to be exposed with
OPC UA to use the advantages of the reliable and secure communication features
of OPC UA without the need to support new features. They can be added over
time in an iterative development and improvement process.

Based on the experience from several projects to integrate OPC UA in existing
OPC products, it is much more efficient and from a product point of view less
error-prone to integrate OPC UA directly into an existing product, since the OPC
DA interface hides normally information that is useful to implement OPC UA.

installed base into OPC UA communication and to add OPC UA support to legacy
products, which are not longer updated.

This chapter provides mapping tables between Classic OPC terms and con-
structs and OPC UA. It does not explain the Classic OPC terms. The OPC UA
terms are explained in the Chaps. 2 and 5 of this book. Therefore, this chapter
requires knowledge about Classic OPC terms to understand the mapping.

10.2 OPC Data Access 2.05A and 3.0

Most of the OPC UA facets needed to implement the complete OPC Data Access
functionality are contained in the base specifications of OPC UA. Only some
process automation specific VariableTypes are defined in [UA Part 8].

10 Mapping of COM OPC to OPC UA

283
DOI: 10.1007/978-3-540-68899-0_10, © Springer-Verlag Berlin Heidelberg 2009
W. Mahnke et al., OPC Unified Architecture,

standards. Classic OPC can be mapped to OPC UA without loosing information.
design goal of OPC UA. It allows the mapping between OPC UA and existing

The Classic OPC standard, especially the OPC DA interface, is very successful. It

The use of wrappers and proxies should be limited to the integration of the

Mapping from OPC UA to Classic OPC is possible but may lead to loss of

The mapping is the base for proxies and wrappers (see chap. 11) used to trans-

necessary to replace an OPC Data Access server.

10.2.1 Address Space

Only a very small set of the OPC UA modeling capabilities is used to expose an

Object, Data Variables, Organizes, and HasComponent References. Table 10.1
describes the complete mapping more detailed.

Table 10.1 Mapping address space OPC DA to UA

OPC DA OPC UA
Nodes in the Address Space

Branches are used to structure the
hierarchical Address Space

Branches can be represented with Folder
Objects. The hierarchy is spanned with
Organizes References. The root in OPC
DA is the Objects Folder in OPC UA

OPC Items are used to represent
data in the Address Space. They
are the leafs of Branches

Data Variables are used to represent OPC
Items. The Data Variables are structured
using Folder Objects and HasComponent
References

Variable Types
OPC Item with no EUType VariableType is BaseDataVariableType
OPC Item with EUType Analog VariableType is AnalogItemType
OPC Item with EUType
Enumerated

VariableType is TwoStateDiscreteType or
MultiStateDiscreteType

Properties and Attributes
ItemID
A string uniquely identifying an
item in the server Address Space

NodeId
Numeric, string, GUID, or opaque identi-
fier including a namespace used to
uniquely identify a Node in the server
Address Space. The ItemID can be
mapped to the string identifier

Property Item Canonical Data
Type

Attributes DataType, ValueRank, and
ArrayDimensions

Properties Item Value, Item Qual-
ity, and Item Timestamp

Attribute Value containing the Value,
status, and timestamps. The DA
timestamp is mapped to the UA server
timestamp

Property Item Access Rights Attributes AccessLevel and User
AccessLevel

284 10 Mapping of COM OPC to OPC UA

(Continued)

The standard server profile described in Chap. 12 contains the OPC UA features

OPC Data Access Address Space with OPC UA. The main components are Folder

Property Server Scan Rate Attribute MinimumSamplingInterval
Property EU Units Property EngineeringUnits
Property Item Description Attribute Description
Properties High EU and Low EU Property EURange
Properties High Instrument Range
and Low Instrument Range

Property InstrumentRange

10.2.2 Access Information

The context created for the communication, the methods for creating the context,
and the methods to access information have different names, but they can easily be
mapped from OPC DA to OPC UA. Table 10.2 lists the mapping necessary to
provide the same level of access to OPC DA information in OPC UA.

Table 10.2 Mapping information access from OPC DA to UA

OPC DA OPC UA
Context

COM Object OPCServer OPC UA Session
COM Object OPCGroup OPC UA Subscription
OPCItem in a Group Data Monitored Item in a Subscrip-

tion
Creating Context

CoInitializeEx
CoInitializeSecurity
CoCreateInstanceEx creates OPCServer

OpenSecureChannel
CreateSession
ActivateSession

AddGroup
IOPCGroupStateMgt::SetState
RemoveGroup

CreateSubscription
ModifySubscription
DeleteSubscriptions

AddItems
RemoveItems

CreateMonitoredItems
DeleteMonitoredItems

Accessing Information
ChangeBrowsePosition
BrowseOPCItemIDs
GetItemID
QueryAvailableProperties

Browse

IOPCItemIO::Read
IOPCSyncIO::Read
IOPCSyncIO2::ReadMaxAge
IOPCAsyncIO2::Read
IOPCAsyncIO3::ReadMaxAge
IOPCItemProperties::GetItemProperties

Read

28510.2 OPC Data Access 2.05A and 3.0

(Continued)

IOPCItemIO::WriteVQT
IOPCSyncIO::Write
IOPCSyncIO2::WriteVQT
IOPCAsyncIO2::Write
IOPCAsyncIO3::WriteVQT

Write

OnDataChange Publish
GetStatus
ShutdownEvent

Read or monitoring of ServerState
and ServerStatus Variables

10.2.3 OPC XML-DA 1.01

OPC XML-DA was already reduced to the core functionality necessary for Data
Access; therefore, it is even easier to map OPC XML-DA to OPC UA. OPC XML-
DA uses the same Address Space concept like COM-based OPC DA. Therefore, the
mapping described in Table 10.1 applies. Table 10.3 describes the mapping of the
information access part of OPC XML-DA to OPC UA.

Table 10.3 Mapping information access from OPC XML-DA to UA

OPC XML-DA OPC UA
Browse Browse
Read
GetProperties

Read

Write Write
Subscribe
SubscriptionPolledRefresh
SubscriptionCancel

CreateSubscription
Publish
DeleteSubscriptions

GetStatus Read or monitoring of ServerState
Variable

The mapping of OPC Alarm & Events to OPC UA is not as straightforward as the
mapping of OPC DA. OPC A&E provided already an Information Model for
Events and Process Alarms. But the model is very static and limited compared to
the generic and extensible model provided by OPC UA. This makes the mapping
more complex than for DA.

The simple and tracking Events defined in OPC A&E can be implemented with
OPC UA by just using the base specifications of OPC UA, since monitoring
Events and defining EventTypes is already defined there. For the mapping of condition

286 10 Mapping of COM OPC to OPC UA

10.3 OPC Alarm and Events 1.1

Events, the OPC UA Alarms & Conditions Information Model [UA Part 9] is
needed. This Information Model is described in Sect. 4.9.

10.3.1 Address Space

There are three main groups of mappings that need to be addressed. The first
group is the Areas and Event sources used to structure sources for Events in a hier-
archy. The second group is the Event type used to classify the Events and the third
group is the conditions used to represent process alarms. Table 10.4 describes the
mapping more detailed.

Table 10.4 Mapping address space OPC A&E to UA

OPC A&E OPC UA
Nodes in the Address Space

Areas are used to structure the hier-
archical Address Space

Areas can be represented with Folder
Objects. The hierarchy is spanned with
HasNotifier References. The root in
OPC A&E should be the Server Object
in OPC UA

Sources are the event sources in the
Address Space

Sources could be represented by Object
or by Variables depending on the type

with the HasEventSource Reference
from the Folder Objects

Event Types
Simple Event BaseEventType
Tracking Event AuditEventType
Condition Event AlarmConditionType
EventCategories define a list of
server specific Event Types for each
base Event Type

Mapped to a derived Event Type of
BaseEventType, AuditEventType, or
AlarmConditionType

Event Fields
dwEventType / dwEventCategory EventType
szSource SourceName
ftTime Time
szMessage Message
dwSeverity Severity

Conditions
Enabled state Condition State Machine
Active state Alarm Active State Machine
Acked state Acknowledge State Machine

28710.3 OPC Alarm and Events 1.1

of Source. The Sources are referenced

As mentioned earlier in this chapter, the mapping of the Address Space informa-
tion is not straightforward. But also the access to the information is different and
more generic in OPC UA.

One difference is that OPC A&E provides only one filter per Subscription, and

and Event Monitored Items. Another difference is the selection of Event Fields

the base Event Type1 and additional attributes can be requested and the filter is
limited to a small and fixed list of filter criteria. In OPC UA, there is no default
Event field that is delivered to the client. The client is able to select only the fields
he is interested in. The filter criteria in OPC UA are much more flexible by allow-
ing filtering on all Event fields. Figure 10.1 shows the main differences between
OPC A&E and OPC UA.

Fig. 10.1 Communication context in OPC A&E and OPC UA

Table 10.5 contains more details for the mapping of information access bet-
ween OPC A&E and OPC UA.

1Simple, Tracking of Condition Event.

in OPC UA, the Subscription can have a list of MonitoredItems, each of them defin-

and the possible filters. In OPC A&E, the provided Event attributes are defined by

ing an Event filter and it can also contain a mix of data change Monitored Items

288

10.3.2 Access Information

10 Mapping of COM OPC to OPC UA

Table 10.5 Mapping information access from OPC A&E to UA

OPC A&E OPC UA
Context

COM Object OPCEventServer OPC UA Session
COM Object OPCEventSubscription OPC UA Subscription

Event Monitored Item
Creating Context

CoInitializeEx
CoInitializeSecurity
CoCreateInstanceEx creates Server

OpenSecureChannel
CreateSession
ActivateSession

CreateEventSubscription
SetFilter

CreateSubscription
CreateMonitoredItems

Accessing Information
ChangeBrowsePosition
BrowseOPCAreas
QueryEventCategories
QueryConditionNames
QuerySubConditionNames
QuerySourceConditions
QueryEventAttributes

Browse
Read

GetConditionState Read
EnableConditionByArea
EnableConditionBySource
DisableConditionByArea
DisableConditionBySource

Methods on Condition State Ma-
chines called with the Call Service

OnEvent Publish
GetStatus
ShutdownRequest

Read or monitoring of ServerState
and ServerStatus Variables

The OPC UA Historical Access functionality is defined in [UA Part 11], and the
Aggregates to retrieve calculated Values from the raw Values in the history data-
base are defined in [UA Part 13]. This book provides Historical Access specific
information in Sects. 4.6 and 5.9.

The main difference between OPC Historical Data Access and the History Access
functionality in OPC UA is the additional support of Event History not included in
Classic OPC.

289

10.4 OPC Historical Data Access

10.4 OPC Historical Data Access

Only a very small set of the OPC UA modeling capabilities is used to expose an
OPC Historical Data Access Address Space with OPC UA. The main components
are Folder Object, Data Variables, Organizes, and HasComponent References.
Table 10.6 describes the mapping more detailed.

Table 10.6 Mapping address space OPC HDA to UA

OPC HDA OPC UA
Nodes in the Address Space

Branches are used to structure the
hierarchical Address Space

Branches can be represented with
Folder Objects. The hierarchy is
spanned with Organizes References.
The root in OPC HDA is mapped to the
Objects Folder in OPC UA

OPC Items are used to represent data
in the Address Space. They are the
leafs of Branches

Data Variables with the HistoryRead
flag set in the AccessLevel are used to
represent OPC Items. The Data Variables
are references with the HasComponent
Reference from the Folder Objects

HDA Item Attributes mapped to UA Attributes and Properties
OPCHDA_ITEMID
A string uniquely identifying a item
in the server Address Space

NodeId
Numeric, string, GUID or opaque
identifier including a namespace used
to uniquely identify a Node in the
server Address Space

OPCHDA_DATA_TYPE Attributes DataType, ValueRank and
ArrayDimensions

OPCHDA_ARCHIVING Attribute Archiving
OPCHDA_DESCRIPTION Attribute Description
OPCHDA_ENG_UNITS Property EngineeringUnits
OPCHDA_STEPPED and Attributes
which affect how the data is
historized

Historical configuration object.

10.4.2 Access Information

The context created for the communication, the methods for creating the context,
and the methods to access information have different names but they can easily be
mapped from OPC HDA to OPC UA. Table 10.7 lists the mapping necessary to
provide the same level of access to OPC HDA information in OPC UA.

290 10 Mapping of COM OPC to OPC UA

10.4.1 Address Space

Table 10.7 Mapping information access from OPC HDA to UA

OPC HDA OPC UA
Context

COM Object OPCHDAServer OPC UA Session
COM Object OPCHDABrowser OPC UA Session

Creating Context
CoInitializeEx
CoInitializeSecurity

OpenSecureChannel
CreateSession
ActivateSession

GetItemHandles
ReleaseItemHandles

RegisterNodes
UnregisterNodes

ChangeBrowsePosition
GetEnum
GetItemID

Browse

GetItemAttributes Read
IOPCHDA_SyncRead::ReadRaw
IOPCHDA_AsyncRead::ReadRaw
IOPCHDA_SyncRead::ReadModified
IOPCHDA_AsyncRead::ReadModified

HistoryRead with read detail
ReadRawModified

IOPCHDA_SyncRead::ReadProcessed
IOPCHDA_AsyncRead::ReadProcessed

HistoryRead with read detail
ReadProcessed

IOPCHDA_SyncRead::ReadAtTime
IOPCHDA_AsyncRead::ReadAtTime

HistoryRead with read detail
ReadAtTime

IOPCHDA_SyncUpdate::Insert, Replace
and InsertReplace
IOPCHDA_AsyncUpdate::Insert, Replace
and InsertReplace

HistoryUpdate with update detail
UpdateData

IOPCHDA_SyncUpdate::DeleteRaw
IOPCHDA_AsyncUpdate::DeleteRaw

HistoryUpdate with update detail
DeleteRawModified

IOPCHDA_SyncUpdate::DeleteAtTime
IOPCHDA_AsyncUpdate::DeleteAtTime

HistoryUpdate with update detail
DeleteAtTime

IOPCHDA_AsyncRead:: AdviseRaw
IOPCHDA_AsyncRead::AdviseProcessed

Subscription with Data or Aggre-
gate Monitored Item

GetAggregates Browse and Read starting from
Object HistoryAggregates

QueryCapabilities Browse and Read HistoryServer-
Capabilities Object.

GetHistorianStatus Read or monitoring of ServerState
and ServerStatus Variables

10.4 OPC Historical Data Access 291

CoCreateInstanceEx creates OPCHDAServer

Accessing Information

10.5.1 Key Messages

Most of the Classic OPC features can be mapped straightforward to OPC UA,
since OPC UA adopted a lot of the concepts and similar functionality has just dif-
ferent names in OPC UA. The main reason for different names is the much wider
approach of OPC UA, where defined terms need to cover more functionality than
in Classic OPC. For example, an OPCGroup in OPC DA and an OPCEventSub-
scription in OPC A&E and a Subscription in OPC XML-DA became a Subscrip-
tion in OPC UA covering both DA and A&E.

Just by looking through the mapping tables, it can be seen that OPC UA is
much more generic than Classic OPC. A long list of different interface methods
used to access information in Classic OPC is replaced with a few generic OPC UA
Services. Different concepts to represent information in the Address Space are
replaced with one generic and extensible instance and type model in OPC UA.

10.5.2 Where to Find More Information?

The mapping tables in this chapter just give a hint how to map different terms,
concepts, and features from Classic OPC to OPC UA. They are a starting point to
find the details in the different OPC specifications for Classic OPC and OPC UA.
These specifications are the main source for additional information to implement
the mappings. SDK documentations and the documentations for the wrappers and
proxies provided by the OPC Foundation may give additional hints.

10.5.3 What’s Next?

The mapping from Classic OPC to OPC UA described in this chapter is used in
the implementation of wrapper and proxy components or for the integration of OPC
UA into existing OPC products. These migration strategies are described in the
next chapter.

10.5 Summary

292 10 Mapping of COM OPC to OPC UA

11 Migration

11.1 Overview

OPC UA provides migration strategies for different requirements and levels of

different Classic OPC interfaces to OPC UA and vice-versa. This level is appro-
priate for integrating the installed base of OPC products and legacy products into

For OPC product vendors, the other levels of migration are more important.
The second level uses the mappings described in the previous chapter to expose
the same features as in the existing products with OPC UA. This does not require
any changes on internal interfaces to access information of a system exposed with
Classic OPC today. The advantage over the use of wrappers is a higher perform-
ance, fewer limitations, and less maintenance efforts by avoiding an additional
wrapper software layer. From a product point of view,1 this is not much more
effort than using the integration of the wrappers. This level allows OPC products
already to profit from all enhancements regarding the reliable and secure commu-
nication between distributed systems.

In an iterative development and improvement process, it is easy to add addi-
tional features supported by OPC UA. A good example is the support of the new
feature Methods. For adding this feature to an OPC UA Data Access server, it is
only necessary to support the Method NodeClass with the Properties to describe
the input and output arguments of a Method and the Call Service to enable a client
to call the provided Methods. Since OPC UA is flexible and extensible, more and
more features can be added over time.

11.2 Wrappers: Access COM Server from UA Client

OPC UA Wrappers are used to allow OPC UA clients to access Classic OPC servers.
Such a wrapper component is an OPC client for one of the Classic OPC standards
accessing a server and at the same time the wrapper is an OPC UA server allowing
UA clients to talk to the wrapped server.

Figure 11.1 shows the components of a UA wrapper providing access to an
OPC Data Access server for UA clients.

1The development effort is only a small part of the product costs. Testing, documentation, and
long-term support needs to be provided also for the wrappers.

OPC UA adoption. The first level does not require changes in existing products.

OPC UA communication networks. This migration strategy is explained more

Wrappers and proxies provided by the OPC Foundation are able to translate the

detailed in the next sections.

293
DOI: 10.1007/978-3-540-68899-0_11, © Springer-Verlag Berlin Heidelberg 2009
W. Mahnke et al., OPC Unified Architecture,

Fig. 11.1 UA wrapper providing access to OPC DA servers

UA clients to access the data from any server providing an OPC Data Access
compliant interface. A Session created by a UA client results in the creation of an

in the wrapper uses the mapping described in Sect. 10.2.1 and the browse and
property access interfaces defined for OPC DA.

Figure 11.2 shows the components of a UA wrapper providing access to an
OPC Alarm & Events server for UA clients.

Fig. 11.2 UA wrapper providing access to OPC A&E servers

UA clients to receive Events from any server providing an OPC Alarm & Events
compliant interface. A Session created by a UA client results in the creation of an
OPCEventServer object in the OPC A&E server and a Monitored Item created in
 a Subscription is mapped to an OPCEventSubscription. The View Service Set

The UA DA wrapper implements a UA server exposing UA Endpoints, allowing

OPCServer object in the OPC DA server and a Subscription with Monitored Items

294 11 Migration

The UA A&E wrapper implements a UA server exposing UA Endpoints, allowing

is mapped to an OPCGroup with OPCItems. The View Service Set implemented

implemented in the wrapper uses the mapping described in Sect. 10.3.1 and the
browse and event type access methods defined for OPC A&E.

11.3 Proxies: Access UA Server from COM Client

OPC UA Proxies are used to allow Classic OPC clients to access OPC UA servers.
Such a proxy component is an OPC UA client accessing a UA server and at the
same time the proxy is a Classic OPC server exposing a COM interface, allowing

Figure 11.3 shows the components of a proxy providing access to an OPC
UA server for OPC DA clients. The proxy implements the mapping described in
Sect. 10.2.1.

Fig. 11.3 DA COM proxy providing access to OPC UA server

server for OPC A&E clients. The proxy implements the mapping described in
Sect. 10.3.1.

Fig. 11.4 A&E COM proxy providing access to OPC UA server

Figure 11.4 shows the components of a proxy providing access to an OPC UA

clients using one of the Classic OPC standards to access OPC UA servers.

29511.3 Proxies: Access UA Server from COM Client

The Wrappers and Proxies are used to integrate OPC UA applications with existing

ance overheads and adds additional configuration and maintenance effort.
SDKs and UA Stacks for different programming languages and development

environments make the native integration of OPC UA into a product a manageable

this first step are the integration of existing OPC features like DA, HAD, and
A&E into one address space and the use of the reliable, secure, and easy to con-
figure communication features of OPC UA. This first step overcomes the limita-
tions of DCOM in a distributed environment.

systems.
New OPC UA features like the support of methods, structured data types, and

ing engineering tools should be enhanced to support features like remote access,
internet access, user authentication, and security mechanisms. The OPC UA
mechanisms for application and product authentication can be used to limit the
configuration access to certain applications. The use of enhanced features between
the products from one vendor like the use for engineering purposes does not
require the support of these features by other vendors, but can help to reduce the
design and development efforts when features supported by OPC UA are needed
in a product.

Domain-specific Information Models will make use of the new features and
capabilities of OPC UA. This enhances the usability and interoperability of OPC
UA applications by defining guidelines and constraints for special use cases.
Therefore, the implementation of these Information Models is the next step for
OPC UA products to use the enhanced OPC UA features for information exchange
between systems from different vendors.

11.5 Summary

11.5.1 Key Messages

Applications only using the OPC UA protocol cannot exchange information directly
with applications only using the Classic OPC protocols even if they provide similar
data and are using similar concepts to describe and exchange the data.

task. Existing OPC functionality can be exposed with OPC UA in a first iteration

ducts and existing installations, since the additional software layer creates perform-

step. This allows using Classic OPC and OPC UA in parallel. The advantages of

applications based on Classic OPC. Their use should be restricted to legacy pro-

Systems based on non-Microsoft platforms can integrate OPC UA directly

the availability of a type system can be used in a second iteration. One use case is

into their systems without the need of additional gateways running on Windows

the configuration of products through OPC UA. This can be an option when exist-

11 Migration

11.4 Native Development

296

The mapping between such applications is provided by wrapper and proxy
components developed by the OPC Foundation. These components can be used to
integrate OPC UA applications into existing OPC installations or to use legacy
OPC products in OPC UA communication environments.

The wrappers and proxies are not adding any new OPC UA features. They are
only translating the Classic OPC functionality to OPC UA. These components are
implementing the mapping described in Chap.10 but they can be used together
with any OPC compliant product to translate OPC UA to Classic OPC and vice-
versa. The main used case for these components is the integration with the

This covers the important design goal of OPC UA to allow easy migration from
Classic OPC to OPC UA to protect investments in OPC and to use the large installed
OPC base for OPC UA.

Another aspect is the reuse of successful OPC concepts and the integration of
all existing OPC standards in one generic model. This allows existing OPC pro-

These products can provide or use OPC UA and Classic OPC in parallel in one
product without loosing already provided functionality. New OPC UA features
can be added over time.

The wrapper and proxy components can be downloaded from the OPC Foundation
web site.

The next chapter introduces Profiles. They are used to declare what features an
OPC UA product ensures to support. Applications exchange these profiles to
know what they can expect from the application they want to exchange data with.

11.5.3 What’s Next?

11.5.2 Where to Find More Information?

11.5 Summary 297

ducts to migrate to OPC UA by following the mappings described in Chap. 10.

installed base and legacy OPC products.

12 Profiles

12.1 Motivation

OPC UA combines the functionality of OPC DA, OPC HDA, and OPC A&E, and
introduces additional features like historical Events and Methods. Not every OPC
UA application will support all the functionality of OPC UA. For example, a server
running on an embedded device may not provide any historical information or may
even not be able to support subscriptions. Some servers are able to track changes in
their Address Space, others not. The same is true for clients. For example, some cli-
ents will only deal with current data, others will only subscribe to Events. To handle
OPC UA applications with different functionalities, OPC UA introduces Profiles.

Profiles define the functionality of an OPC UA application. A Profile can be
used by vendors for marketing (“my product supports these features”) and as deci-
sion support for customers (“I need a product supporting these features”). To verify
that an application really supports a Profile there are test cases defined for the fea-
tures of a Profile. Independent testing authorities will test the applications and create
signed Software Certificates for the application. Those Certificates contain infor-
mation about the supported Profiles.

Profiles are not only used as human-readable announcement, but information
about the supported Profiles is also exchanged between OPC UA applications. This
allows applications to reject connections when their counterpart does not support
required Profiles. It also illustrates the features supported by an application and
allows other applications to only use those features and not try to use features that
are not supported.

In the following section we will introduce the different building-blocks for Profiles
and explain the different kinds of Profiles. Afterwards we will look at client- and
server-related Profiles as well as transport- and security-related Profiles. Finally we
will describe the certification process of how you can get signed Software Certificates.

12.2 Profiles, Conformance Units, and Test Cases

An OPC UA application can support several Profiles and each Profile can contain
other Profiles. There are different categories of Profiles: server-related, client-
related, security-related, or transport-related. A Profile is typically composed of
several Conformance Units. A Conformance Unit is a testable unit. An example of
a Conformance Unit is the Call Service. Each Conformance Unit has Test Cases.
Test Cases for the Call Service are, for example, calling one Method in a Service
invocation or calling several Methods. The Profiles and Conformance Units are
defined in [UA Part 7], whereas the Test Cases are defined in the separated test

299
DOI: 10.1007/978-3-540-68899-0_12,
W. Mahnke et al., OPC Unified Architecture,

© Springer-Verlag Berlin Heidelberg 2009

from Profiles to Conformance Units and Test Cases are summarized in Figure 12.1.
specifications [OPCTL Part 8], and [OPCTL Part 9] . The relations from Profiles to

Profile A

Profile B

Conformance
Unit A

Conformance
Unit B

Conformance
Unit C

Conformance
Unit D

A Profile typically
references serveral
Conformance Units

TestCase
A3

TestCase
A2

TestCase
A1

TestCase
B3

TestCase
B2

TestCase
B1

Same Conformance
Unit can be referenced
by several Profiles

Profile CProfiles can
contain
Profiles

Fig. 12.1 Profiles, Conformance Units, and Test Cases

12.3 Profiles for Server Applications

There are two kinds of server-related Profiles: facets and full-featured. Full-featured
Profiles define a set of Conformance Units that are expected to be supported by a
large amount of applications. A UA server needs to support at least one full-featured
Profile. Facets define certain facets of the server like supporting event subscriptions.
Full-featured Profiles already contain some facets, but additional facets can be
added to a server, extending the functionality supplied by the server.

Fig. 12.2 Server-related profiles

300 12 Profiles

In Figure 12.2, the list of facets and full-featured server-related Profiles is
shown. As an example, the Embedded UA Server is expanded. You can see that it
contains facets and another full-featured Profile. It does not only reference server-
related Profiles but also transport- and security-related Profiles. Please be aware
that the list of Profiles can always be extended and Fig. 12.2 contains only facets
regarding Part 1–8 of the specification. There will be additional Profiles, for example,
for Historical Access.

12.4 Profiles for Client Applications

Unlike server-related Profiles, client-related Profiles define only facets of a client.
It is not expected that there will be a large set of clients supporting the same group
of facets and therefore there is no need for full-featured client-related profiles.
Clients will pick and choose the facets they are supporting.

12.5 Transport Profiles

The transport-related Profiles define the supported communication protocols of an
OPC UA application. Thus they define only a facet. Currently there are five Profiles,
one for each reasonable combination of security protocol, transport protocol and
encoding, and one combining two encodings. This is summarized in Fig. 12.3.

It is expected that servers will support as many of the transport-related Profiles
as possible to allow for as great a range of interoperability. Clients would support
all transports that they could reasonably expect in their domain, for example, an
ERP system may never expect anything but SOAP-HTTP and thus would only
support SOAP-HTTP transports.

SOAP / HTTP UA TCP Transport Protocol

Security Protocol

SOAP-HTTP WS-SC UA XML-UA Binary

WS-SecureConversation UA-SecureConversation

UA XML UA Binary

UA-TCP UA-SC UA Binary

Encoding

SOAP-HTTP UA-SC UA BinarySOAP-HTTP WS-SC UA BinarySOAP-HTTP WS-SC UA XML

Name of Protocol

Fig. 12.3 Transport-related profiles

30112.5 Transport Profiles

12.6 Security Profiles

The security-related Profiles define the security algorithms and key length used to
sign and encrypt messages and whether certificates are validated. Security-related
Profiles always only define a facet. Currently there are three security-related Pro-
files defined: Basic128Rsa15, Basic256, and None. Since encryption algorithms
get compromised over time due to increasing computing power, it is expected that
additional security-related Profiles will be defined over time either increasing the
required key length or exchanging the security algorithms.

12.7 Certification Process

The OPC Foundation will serve as authority signing Software Certificates that
contain certain Profiles. To get your Software Certificate signed, you have two
choices. In Fig. 12.4, the process regarding server products is shown. First you
have to run the Compliance Test Tool testing your server. Then you can either go
to an Interoperability Workshop to receive a self-tested compliance logo (which
you can use for marketing) and the signed Software Certificate. Or you can use an
independent test-lab testing your server product. In that case you get the golden
certified compliance logo and the signed Software Certificate.

Fig. 12.4 Certification process for servers

For client products the process is similar, but there is no automated Compliance
Test Tool at the beginning you can test your client against. The client test tool
requires manual interaction and requires therefore an independent person to verify
the testing.

The certification process is not established while writing this book. However,
some independent test labs have already been announced and certification of OPC
UA products will be available soon after the release of first products.

The certification process only reflects Profiles provided by the OPC Foundation.
It is possible for other organizations, for example, those defining domain-specific
Information Models, to define their own Profiles. These Profiles can reference

302 12 Profiles

Conformance Units and Profiles of the OPC Foundation. It is also allowed creating
additional Conformance Units. Those domain-specific Profiles are not tested by
the OPC Foundation and the certification of Software Certificates referencing
those Profiles must be managed by the organizations defining the Profiles.

12.8 Summary

12.8.1 Key Messages

Profiles are the mechanism for scaling OPC UA applications. There are full-
featured server-related Profiles defining low-end device servers, embedded servers,
and standard servers. Additional full-featured servers may be defined as in the

choose which client-related Profiles it supports. Transport- and security-related

on client and server applications.
The certification process provides trust that an application claiming to support a

Profile is tested and true supported the claimed Profile. The Profile mechanism of
OPC UA is open, that is, other organizations may define additional Profiles for
their domains and can set up their own certification environment.

12.8.2 Where to Find More Information?

12.8.3 What’s Next?

In the next chapter we will finally take a look at the performance of OPC UA.
There you will see how the chosen transport and security settings will affect the
performance, but especially how the chosen encoding can slow down or boost
your performance.

30312.8 Summary

Profiles define the supported transport and security mechanisms and can be applied

future. For client applications only facets are defined, that is, each client will

defined in [OPCTL Part 8], and [OPCTL Part 9].. However, to get an overview
over the available Profiles, we suggest using the Profiles web page of the OPC

Profiles and Conformance Units are defined in [UA Part 7]. The Test Cases are

Foundation (http://www.opcfoundation.org/UAProfiles), where you can browse
the Profiles and see the dependencies to other Profiles and the Conformance
Units.

13 Performance

13.1 Overview

One of the requirements for OPC UA was to maintain or even enhance the
performance of Classic OPC. Performance in this context does not only mean
speed of communication, it also means less load and resource requirements on the
target system. It was an important lesson learned with the adoption of OPC XML-
DA in embedded systems where processing XML messages was a problem for
those not optimized for string handling.

OPC UA must scale from small embedded systems up to enterprise systems
with different requirements regarding speed and type of transferred data. In embed-
ded systems, where smaller pieces of data must be transferred in short time inter-
vals, the performance and minimal system load is the most important requirement.
In enterprise systems, where structured data must be processed in a transaction- and
event-based manner, the efficient handling of structured data is more important
than the absolute speed of data transfer. OPC UA uses different transport tech-
nologies to cover all these requirements and to ensure the scalability of OPC UA.1
For embedded systems and UA products used in an automation environment, the
preferred transport mechanism will be the optimized UA TCP protocol with binary
encoding. For enterprise systems, the preferred mechanism may be Web Services
using binary or XML encoding.

There are more performance relevant aspects than only the different transport
and encoding mechanisms implemented by the UA Stacks. The application layer,
the integration of the application with the UA Stacks, and the way how the appli-
cation layer can access the provided data has much more impact to the perform-
ance than the UA Stacks. If the data source is in a device connected via a serial
link to a PC running the OPC UA server, the performance bottleneck will be
always the serial connection and not the OPC UA communication.

For these reasons it is impossible to provide general performance numbers for
OPC UA products. This chapter provides numbers for the UA Stack layer perform-
ance compared with COM and with the different possible transport and encoding
mechanisms. These numbers give a hint for the best possible performance. Very
efficient UA applications having direct access to the data may reach these numbers
but typical UA applications, for example, a UA server talking to a device will
cause overheads in the communication, which can be much higher than the num-
bers provided in this chapter. In this case the numbers give a hint about the expected
load created by the OPC UA part of the application.

 1There are also other requirements for having two protocol versions like communication through

firewalls and internet access.

305
DOI: 10.1007/978-3-540-68899-0_13,
W. Mahnke et al., OPC Unified Architecture,

© Springer-Verlag Berlin Heidelberg 2009

13.2 Performance Numbers

The environment used to measure the absolute numbers to compare OPC UA with
OPC Data Access was based on two Pentium 4 PCs with 2.4 GHz and a 100 MBit
network. The performance measurement covers the roundtrips necessary for a
typical Read method call depending on the number of Variables included in the
bulk operation. The method called for OPC DA was IOPCSyncIO::Read, and for
OPC UA the Read service was called using numeric NodeIds from registered
Variable Nodes. The measurement was executed with special server applications
without application logic just creating return parameters with valid values. Figure 13.1
shows the applications used to measure the performance numbers.

Fig. 13.1 Application setup used for measurement

All applications in the measurements used to compare COM with OPC UA are
C++ based applications. The data type used in the Read methods was a four byte
integer value.

The methods were called in a loop for different configurations.

• OPC DA using
o remote communication with DCOM
o

• OPC UA with UA TCP and binary encoding
o remote communication without security
o remote communication using the security profile

Basic128RSA15 with security mode sign&encrypt
o

306 13 Performance

local COM communication.

local communication without security.

for remote UA communication without security.
Table 13.1 shows the absolute numbers for a Read roundtrip in milliseconds

Table 13.1 Call time in milliseconds for read using remote communication

Number of variables
in one read call

UA without
security

1 0.28 ms
10 0.35 ms
100 0.93 ms
1000 5.26 ms

Figure 13.2 shows the factor comparing the remote OPC DA Read using DCOM
and the remote OPC UA Read with and without security. The baseline is the numbers
for the OPC UA Read without security.

Fig. 13.2 Factor comparing UA with DCOM

cient than the DCOM communication where the factor of performance improve-
ment over DCOM is between 1.1 for small messages and factor 1.6 for Read calls
with 1,000 Variables. When adding the high level of security provided by OPC
UA, which was not available for DCOM, the OPC UA communication is still pro-
viding the same performance like Classic OPC.

Figure 13.3 shows the factor comparing the local OPC DA Read using COM
and the local OPC UA Read without security.

Fig. 13.3 Factor comparing UA with COM

30713.2 Performance Numbers

The remote numbers are indicating that the OPC UA communication is more effi-

Classic OPC is a little bit faster than the OPC UA communication, where the dif-
ference is a factor of 2.3 for small messages and a factor of 1.4 for a Read with
1,000 Variables. The OPC UA stack at the moment does not have any optimiza-
tion for the local communication using the same mechanisms like for the remote
communication. Improvements for the local use case can reduce the difference in
the future. Measurements with instrumented UA Stacks are indicating that the
overhead for the TCP communication can be minimized by using a local data
exchange mechanism like named pipes for small messages. For larger messages
most of the time is used by the serializers used to encode and decode the Service
calls. This time can be reduced by eliminating the serialization between applica-
tions using the same UA Stack.

Figure 13.4 shows the factor between the UA TCP protocol using binary
encoding as base compared with SOAP/HTTP using binary encoding and SOAP/
HTTP using XML encoding. All protocols are using the security profile Basic
128RSA15 with security mode sign&encrypt. The measurement is based on the
.NET UA Stack.

Fig. 13.4 Factor comparing UA TCP with SOAP

protocol with binary encoding instead of the UA TCP protocol. This allows to
communicate through firewalls using internet protocols but to maintain the effi-
ciency of the UA binary encoding.

There is a much bigger overhead when using SOAP/HTTP protocol with XML
encoding instead of the UA TCP protocol. It is 1.8 times slower for small mes-
sages and 18 times slower for large messages.

308 13 Performance

The local measurement indicates that the local COM communication used with

 The numbers indicate that there is only a small overhead for using SOAP/HTTP

13.3 Summary

13.3.1 Key Messages

OPC UA maintains the performance of Classic OPC with the optimized UA protocol
but adds security and reliability for communication between distributed systems.
By integrating OPC UA directly into embedded system, an additional communica-
tion layer can be removed and the performance and flexibility can be improved.

Like for Classic OPC, the performance of OPC UA products does normally
depend more on the efficiency of the application and the internal performance of the
system accessing the data provided by the system than on the OPC communication.

The Web Service base UA communication has impact on the performance. Espe-
cially, the XML-encoded Web Services create much more overhead but they provide
flexibility in use cases where performance is not the most important requirement.

13.3.2 Where to Find More Information?

Concrete performance numbers of OPC UA products may be available in the
documentation of those products.

On the OPC Foundation web site, you can find presentations of developer con-
ferences containing additional performance measurements, including the comparison
of different data types.

13.3.3 What’s Next?

In the next chapter – the last one of this book – we will summarize OPC UA and
discuss the complexity of OPC UA, pointing out that it is simple in most cases and
explain why some parts must have some complexity. We also provide an outlook
of what we expect to happen in the near future regarding OPC UA.

30913.3 Summary

14 Conclusion and Outlook

14.1 OPC UA in a Nutshell

OPC Unified Architecture (OPC UA) is the new standard for data communication
in process automation and beyond, provided by the OPC Foundation. It is expected
that OPC UA will replace the very successful Microsoft-DCOM-based specifica-
tions of the OPC Foundation (DA, HDA, and A&E) over the next few years as
OPC UA unifies all the functions provided by those specifications. Because of its
platform-independence and use of state-of-the-art Web service technology (see
Chap. 6) it is expected that OPC UA will be applied in an even wider range of indus-
tries and applications, compared to Classic OPC. It can be deployed on devices,
DCS, MES and ERP systems. The small set of easy-to-use services (see Chap. 5)
allows accessing the unified address space in a reliable and secure manner (see
Chap. 7). By using binary encoding on the wire OPC UA is a high-performance
solution, significantly faster than XML data exchange (see Chap. 13).

OPC UA not only addresses data communication but also information model-
ing (see Chap. 2). With its rich address space model, it allows high-value metadata
exposure and thus provides significantly more information than before. For this
purpose, OPC UA uses object-oriented concepts and allows a full-meshed network
of nodes related by multiple types of references. There is a high interest in these
capabilities in many domains and there are already projects to standardize infor-
mation models based on OPC UA. Examples of such activities are FDI where a
common field device description is targeted and common activities with PLCopen
(Industrial Control), MIMOSA (Maintenance Information – ERP and above), and
S95 (Production Information – MES) (see Chap. 4).

With its profiles (see Chap. 12) OPC UA scales well from small servers to highly
sophisticated systems. Small servers only providing simple functionality are able
to run on limited hardware, exposing only a small set of simple data. Highly
sophisticated servers are able to expose a large amount of complex information

Nevertheless, some people are complaining that “Everything is so complicated”
in OPC UA. Therefore, in the next section we will take a look at this objection
against OPC UA. Finally, there is an outlook examining how OPC UA may be
applied in the market and what is missing in it, to improve it even further.

14.2 Is OPC UA Complicated?

Over the last couple of years we had several discussions about OPC UA with people
from different domains, backgrounds and, of course, different companies. Most of

311
DOI: 10.1007/978-3-540-68899-0_14,
W. Mahnke et al., OPC Unified Architecture,

© Springer-Verlag Berlin Heidelberg 2009

and to support complex functionality like querying the address space (see Chap. 9).

them were excited about the power and possibilities that OPC UA offers. However,
there were a few people complaining about the complexity of OPC UA. A quick
and simple answer is that OPC UA is very simple for users of base functionality.
For users of advanced features, it is not complex but as simple and generic as pos-
sible, and still very powerful. Of course this answer does not really help to con-
vince people. Thus, in the following sections, we explain the features involved in
several different places in OPC UA, why it is designed in the way it is, and what
this means for people actually using OPC UA. The management summary is given
in Sect. 14.2.6.

14.2.1 Are OPC UA Services Difficult to Handle?

Looking at the OPC UA Services, you can see that actually the number of Ser-
vices is very small. OPC UA has only 37 Services, of which three Services deal
with discovery and six with connection handling. That leaves 28 Services to actu-
ally access OPC UA data. Let us compare that with the old and very successful
OPC DA specification. This specification deals only with current data, not events,
history or a rich information model and thus deals only with a subset of function-
ality provided by the OPC UA specification. Nevertheless, the old OPC DA speci-
fication had nearly 70 methods.1 That shows that the OPC UA Service framework
is designed for simplicity. The intention was not to provide two Services offering
the same functionality in a different manner.2 Thus OPC UA does not offer several
Services with browsing functionality but one Browse Service that allows the setting
of filters on References, NodeClasses, etc. and specifying what information should
be returned, such as the name or the type of information of the referenced node.

OPC UA Services are designed in a service-oriented manner, always providing
bulk operations. For example the Call Service does not call a single method but
allows calling a set of methods with one Service call. That design principle reduces
the number of roundtrips for a set of operations and is a common feature in service-
oriented architecture. It is also used in object-oriented APIs like the OPC DA
specification and a reasonable compromise between simplicity and performance.

There are three concepts in the OPC UA Service framework that can be consid-
ered to be complex: First of all the query capabilities of OPC UA, second the pub-
lish mechanism of OPC UA, and third the connection establishment.

1The OPC DA specification does not use a pure object-oriented design but supports bulk opera-
tions instead of simple methods and thus the numbers are comparable.
2There are some minor exceptions from that rule. For example, the Read service and the sub-
scription mechanisms both provide access to actual data. However, the use cases are very differ-
ent and thus the simple Read only reading a value once and the subscription requiring some setup
first and then getting changes of the value are both supported.

312 14 Conclusion and Outlook

In the first case the complexity is inherent to the provided functionality. Complex
queries are complex in SQL [ISO08a] or OQL [CBB+00] as well. Queries are an
optional feature in OPC UA and many servers will not support it and it does not
even make sense to support it in many scenarios where the amount of data in the
server is small and browsing the address space is the best way to deal with the
data. However, there will be OPC UA servers having a huge address space with
millions of nodes and in that scenario the querying capabilities become a require-
ment to efficiently find data in the server. But a complex problem cannot be
solved without any complexity.

The second complex concept of OPC UA is the publish mechanism. The pub-
lish mechanism allows the logical callback to asynchronously send notification
messages to a client containing data changes or event data without establishing a
real backward channel from the server to the client. The main reason for designing
the publish mechanism in that way was that OPC UA potentially runs in a Web
Service environment, connecting clients and servers over the Internet or intranet,
having firewalls between them. In that environment, it is easy to “talk” from a client
to a server but often impossible to “talk” from the server to the client (that would
require the server to be a client and more important the client to become a server).
Introduced as a second method to do callbacks, the OPC UA working group found
that the publish mechanism is always as good as a real callback mechanism, con-
sidering the additional requirement of sending keep-alive messages and sequence
numbers to have a reliable communication in an unreliable environment. Thus the
callback approach was discarded and only the publish mechanism is part of the
OPC UA specification as it provides the same functionality as a real callback. In
addition, the callback mechanism would highly increase the complexity regarding
security mechanisms, as another secure connection has to be established from the
OPC UA server to the client. Here again the simplicity of the OPC UA Service
framework can be seen: only one method is available for one purpose. However, it
requires some time to truly understand the publish mechanism. The good news is
that only a very small number of people really have to understand the mechanism.
Most people will use a server or client SDK that deals with the mechanism and
provides real callbacks internally.

The third complex concept in OPC UA is connection establishment. This step
requires establishing a secure channel. On top of the secure channel a session has to
be created. The secure channel provides security on the transport level, which means
that messages can be encrypted and signed.3 OPC UA uses WS-SecureConversation
as part of the WS-* standard [OASIS07] for its secure channel when SOAP mes-
sages are exchanged in the Web Service world and adapts this specification to
UA-SecureConversation when the high performance UA TCP is used. Details of
the technologies used for secure channels are given in Chap. 7, including why no

3Security has to be implemented in certified OPC UA products (see Chaps. 7 and 12). Whether
security is enabled in a concrete installation depends on the configuration based on the security
requirements of the installation.

31314.2 Is OPC UA Complicated?

standard protocols like TLS/SSL can be used, based on requirements for OPC UA,
such as having long-running connections, etc. On top of such a secure channel,
multiple sessions can be created, decoupling the secure communication from the
session management on the application level. The described steps are very com-
mon and a good security design in various ways. Therefore they are necessary for
ensuring a secure and reliable communication between clients and servers. The
good news is that again only a few people really have to deal with it, as an OPC
UA SDK will provide a connect method that hides the handshaking to establish a
connection.

To summarize the discussion:

1. The OPC UA Service framework (measured by the number of Services) is very
simple.

2. OPC UA Services are designed for bulk operations to avoid roundtrips. This
increases the complexity of the Services but greatly improves the performance.
Also, Classic OPC has been designed in a similar way for most methods. Han-
dling of bulk operations is commonly used and thus it is not “too complex to be
used.”

3. OPC UA queries are complex; however this is part of the addressed problem.
OPC UA queries are an optional feature, useful only for large address spaces.

4. The publish mechanism of OPC UA is required in environments where the
OPC UA client cannot act as a server (firewall). Using only this mechanism
reduces the complexity of OPC UA (compared to adding a real callback, espe-
cially if security is considered). OPC UA SDKs will hide the mechanism and
provide real callbacks anyway.

5. The connection establishment in OPC UA uses proven security mechanisms
and adapts them to the needs of OPC UA. Thus some messages have to be
exchanged, but this complexity will be hidden by an OPC UA SDK offering
only a connect method.

Thus OPC UA Services are not complex but very simple with regard to the pro-
vided functionality and the addressed non-functional requirements such as security
and reliability. Using an SDK will further hide the complexity in the Services, for
example, by hiding the connection establishment and the publish mechanism.

14.2.2 Is Information Modeling a Pain?

OPC UA does not only standardize the data communication but also provides a
meta model allowing standardized information models built on top of it. The old
OPC DA specification provided a very simple but limited way to expose data
items in a hierarchy. OPC UA supports the same simple approach to build a hier-
archy of data variables but it also allows exposing rich models.

There are other specifications like DSSP [MS07] or DPWS [MS06] that only
standardize the data exchange without specifying a model. They may define a

314 14 Conclusion and Outlook

fixed or extendable set of operations that a server provides and a client can call.
The client can ask for the metadata of the operation, i.e., what data the operation
will provide. However, there is no fixed syntax4 and semantic for the data exchanged.
Obviously those specifications look less complicated at first glance as they exclude
the modeling capabilities. But let us take a look at Figs. 14.1 and 14.2 to see the
implications of those different approaches. With a standardized protocol for data
communication, there is interoperability between applications on the communica-
tion level (right side of Fig. 14.1). Here, no point-to-point integration is needed as
in the left side of Fig. 14.1.

Fig. 14.1 Interoperability on protocol level

on a concrete application,5 there is no interoperability on what data are exchanged,
and therefore no interoperability at the model level (left side of Fig. 14.2). Clients
cannot generically interpret the data provided by the server and cannot generically
provide data to the server.

OPC UA offers a solution shown in the right side of Fig. 14.2. It provides the
data in a way that generic OPC UA clients are able to deal with all the data (sub-
scribe to data, browse the address space, etc.). However, OPC UA still allows
servers to define their domain and vendor-specific model, based on the standard-
ized meta model. The Services are all based on the meta model and thus a generic
client can deal with all the data. But not all semantic of the concrete model is dir-
ectly captured in the meta model since it is an extensible model and not a concrete
model tailored to one specific domain.6 However, the meta model provides all
information about the extensions and thus a generic client can easily display all
semantic information, but some of them have to be interpreted by a user. Clients
can be implemented with built-in knowledge of concrete OPC UA Information
Model Standards and thus no additional interpretation by the user is needed.

4Other then XML without an XML-Schema.
5And of course a client also has to send data to the server in a format the server expects.
6The OPC UA meta model is tailored to the broad domain of exchanging real-time related data,
including events and history, but not to a concrete domain like drilling or pulp and paper.

31514.2 Is OPC UA Complicated?

But if no meta model is provided and the structure of the exchanged data depends

Fig. 14.2 Interoperability on model level

Let us take a quick look at the implications for client and server developers,
whether a meta model is provided or not. Obviously, having a common model
makes life much easier for client developers as they can implement their clients
with knowledge of one model supported by all servers. Otherwise they would
have to deal with several servers providing different data structures. However,
leaving the data structures undefined seems like a great opportunity for server
developers. They have complete freedom to do whatever they want to do. But they
also have all the work to do. It took the OPC UA working group several years to
develop the meta model that is able to access and change real-time related data,
alarms and events, and the history of both. Of course a specific server does not
have to provide a generic meta model as OPC UA has to do, but there is still a lot
of work to do and many pitfalls to avoid. And after creating their own model they
have to document it, so that clients are able to get access to the data and users
understand at least a basic semantic so they are able to deal with the provided data
and the ways to access them. Looking at all those tasks, mapping the data to a
well-defined meta model and enriching the server to a concrete model using the
extension mechanisms does not seem so complicated anymore.

After explaining the need for a meta model in OPC UA there is still the ques-
tion of its complexity. The Classic OPC specifications, for example, only provided
one7 concrete and very simple model. The reason for having the more powerful
and more complex model in OPC UA is that it allows exposing much more
semantic and thus much more information. Since OPC UA does not target one
concrete domain, it allows defining information models for concrete models tailored
to specific domains. Therefore we have typed objects and references, etc. To

7Actually one per specification.

316 14 Conclusion and Outlook

expose more information in a usable way more concepts have to be introduced
and this increases the complexity. However, the complexity is found in the infor-
mation provided additionally. If no additional information needs to be provided,
the OPC UA model becomes very simple. For example, the OPC DA wrapper of
the OPC Foundation wraps any OPC DA server. Since the OPC DA server does
not provide complex information, the OPC UA model of the wrapper is very sim-
ple (see Chap. 10). It contains only one hierarchy with OPC UA Folder Objects
for the OPC DA Branches and OPC UA Variables for the OPC DA Items. OPC
DA properties are provided as OPC UA Properties. No detailed type information
(all Objects are of the same type), no additional ReferenceTypes, no ModelChan-
geEvents tracking changes on the model, no other fancy stuff is to be found. It is
optional to use those features and it does not make sense to use them in many
cases. However, if you need to provide more information, it is very useful to have
those concepts in place so you can use them appropriately. As it is the choice of
the server to use features regarding the modeling, it is the choice of the client to
decide what features it wants to use. Programming against types is a very powerful
feature and very helpful when creating process graphics or other user interfaces
specific for certain OPC UA types. However, a simple client providing only
browsing capabilities will never use this feature.

Information modeling can be done very easily, keeping everything very simple.
Then little effort is required and using some very basic OPC UA modeling con-
cepts keeps everything very simple. The OPC DA wrapper is a good example of
that approach. But if more information must be provided OPC UA is equipped
with the necessary concepts to allow it. The complexity is based on the informa-
tion to be modeled, not in OPC UA itself.

14.2.3 Transport Protocols and Encodings: Why So Many?

OPC UA defines an abstract set of Services that is mapped to different technolo-
gies. Currently there are two protocol mappings and two encodings supported. The
reason for having abstract Services is that, if a new technology for data communi-
cation enters the stage, OPC UA can be adapted to that technology just by defining
another mapping. But why does OPC UA support two protocols and two encod-
ings from the beginning? The reason is that OPC UA will be applied in different
application domains with different requirements. Supporting HTTP and UA TCP
(see Chap. 6) allow it to run Internet applications crossing firewalls with HTTP as
well as running optimized applications with limited resources via the UA TCP
protocol, which is optimized for the wire (no overhead) and the needed resources
(no HTTP stack needed). But the main optimization on the wire is not UA TCP
versus HTTP but exchanging binary encoded data versus XML encoded data.
Unlike other protocols, OPC UA does not require the data to be first converted to
XML and then binary encoded; the data is directly binary encoded and is thus very
efficient. However, there are applications that do not need high performance but

31714.2 Is OPC UA Complicated?

data provided in a generic way (which nowadays means in XML) to be able to
handle them easily. Those applications are typically placed not on the bottom, but
the top of the automation pyramid. Therefore OPC UA supports XML encoding as
well. Figure 14.3 summarizes the use of different protocol options in a simplified
form.

Fig. 14.3 Simplified view of OPC UA transport protocols and encodings

will discuss how this affects people dealing with OPC UA. The good news is that
anybody using an OPC UA SDK or even only an OPC UA stack provided by the
OPC Foundation could not care less about that. The OPC UA Services stay the
same and thus the server or client implementation stays the same, no matter what
the stack uses to communicate with another stack (see Chap. 8 for details). Only
those people developing stacks or using generic toolkits, for example, to generate
clients talking to Web Services (e.g., by a WSDL) are affected by supporting dif-
ferent protocols and encodings. It is the job of stack developers, so we will not
argue about that. Generic toolkit users bound to a technology like Web Services
are bound to the technology provided by the toolkit. But those users choose to use
that generic toolkit (which is of course reasonable in some scenarios) and there-
fore they are intentionally bound to that technology. This leads to potential inter-
operability problems between OPC UA servers and OPC UA clients supporting
different technologies. But here again OPC UA profiles are a good mechanism to

318 14 Conclusion and Outlook

After understanding why OPC UA supports different technology mappings, we

avoid that and new technologies are not provided so often that one must fear an
explosion on OPC UA technology mappings.

14.2.4 Implementation Issues

A few people have complained about the lack of comfort of OPC UA SDKs. This
is of course something we cannot answer in general but it depends on the used
SDK. As a general statement, people have to be aware that OPC UA is a new
specification and thus people are dealing more with developing initial products
than with providing a perfect SDK. The comfort of OPC UA SDKs will increase
in future.8 However, the SDKs we are aware of already support the developer
quite well by implementing all the housekeeping functions of the OPC UA Service
framework.

Let us take a look at server-side development. You do not have to deal with
subscriptions; you only have to provide the data that are to be published. You do
not have to deal with queue management, republishing, or packing of data. There
is infrastructure to manage OPC UA nodes in the server. Thus you only have to
configure the Address Space of your server. This can be done by an XML con-
figuration where most of the code is generated.

On the client-side, you get real callbacks, you can connect by one call, etc. So
there is already a lot of comfort in the SDKs we are aware of. However, there is
still room for improvements, e.g., fancy wizards, graphical modeling tools, etc.

14.2.5 Migration of Existing Code

For somebody with Classic OPC servers and clients it might seem like a large
amount of work migrating to OPC UA. Since the OPC Foundation provides wrap-
pers for the Classic OPC servers as well as proxies for the Classic OPC clients,
this is obviously not true if you do not want to change your existing code. You
simply deploy the provided proxies or wrappers with your existing product and
you are ready for OPC UA. However, let us take a quick look at what you need to
do for native OPC UA support in existing products. As OPC DA is the most popu-
lar Classic OPC specification, we will examine what to do in that case.

In the case of an OPC DA client, it is easy to replace the existing code for read-
ing, writing, and adding groups and items to receive data changes with similar
concepts from UA, such as subscriptions and monitored items. UA client SDKs
will provide data change callbacks on top of a subscription hiding the publish

 8This is a general statement true for all SDKs in all domains. The comfort and quality of an SDK
always increases from very early versions (1.0 or even less) to higher and more stable versions.

31914.2 Is OPC UA Complicated?

mechanism. The biggest change is the handling of NodeIds instead of pure string
based ItemIDs in old OPC DA. For the configuration part the browsing and pro-
perty access methods from OPC DA can be replaced with the UA Browse Service
calls. This is all the functionality most OPC DA clients use today.

In the case of an OPC DA server, there are only a few Services that need to be
implemented like Read, Write, Browse, and the delivery of data changes to a UA
SDK. All other Services are implemented by a UA SDK or are not needed for sup-
porting DA functionality. Providing the required data model is also very simple as
exposing a pure DA address space with no type system uses only a small number
of predefined types of OPC UA.

As the OPC UA design is generic and extensible, it is easy to choose an itera-
tive development approach to add UA features over time to a product, starting
with a pure DA implementation. For example, to add OPC UA Method support, a
product must implement one more UA Service and one more NodeClass to expose
the Methods in the Address Space.

Let us assume you plan to migrate your products to a higher-level program-
ming language like JAVA or .NET. Using Classic OPC requires you to deal with
the interop from COM to the modern programming language. This can become a
real problem when you deal with multiple threads, the life-cycle of COM objects,
etc. [Ge03]. Instead you can directly target OPC UA as communication interface.
Here, your product can use UA SDKs and stacks natively developed for those
programming languages. Thus, the new code is separated from any COM-based
code. To connect to Classic OPC products, you can use the wrappers and proxies
provided by the OPC Foundation. This is exemplified in Fig. 14.4, where a C++-
based OPC DA client is migrated to .NET and uses OPC UA as the new commu-
nication infrastructure.

Fig. 14.4 Migrating Classic OPC applications to modern programming languages using OPC UA

move a Classic OPC environment to OPC UA in different levels. The lowest level
is to use the proxies and wrappers; the next level is to expose the same level of
information you expose today with UA and the next level is to add additional UA
features like Methods or a type system over time. If you want to migrate your code

320 14 Conclusion and Outlook

 To summarize this section, OPC UA gives you a reasonable migration strategy to

to a modern programming language, using OPC UA provides you a solution that
does not require you to deal with all the COM interop problems and allows sepa-
rating your new code from COM.

14.2.6 Management Summary

OPC UA is just as complex as it has to be, to fulfill the requirements of a secure
and reliable communication, able to run in different environments including dif-
ferent networks separated by firewalls. The binary encoding provides high per-
formance data exchange. Unlike other protocols OPC UA defines a meta model
and thus not only provides interoperability regarding the protocol but also regard-
ing the exchanged data. By defining an extensible base model with all the infor-
mation necessary to know what data have to be exchanged but still allowing
refinements and extensions to the model OPC UA is a well-suited compromise for
a specification applied in various domains. Information model standards based on
OPC UA define a more specific model tailored to the domain that is extended by
vendor specific information. Generic OPC UA clients can easily access all this
information. OPC UA profiles allow servers to be scaled from small servers with
limited functionality able to run on limited resources to highly sophisticated serv-
ers providing a large amount of complex data with the full power of OPC UA.

14.3 Outlook

A first release of Part 1–5, 8, 10, and 11 of the OPC UA specification has been
released from July 2006 to January 2007. Those specifications did not contain the
release of technology mapping and therefore could not be applied in products.

32114.3 Outlook

While writing this section the technical advisory counsel of the OPC Founda-
tion has already voted and agreed to release updated versions of Part 1–8 of the
specification. Those specifications include the technology mapping and so we finally
have a specification that can be used to build products. However, some last com-
ments still need to be integrated into the final documents. The final release has not
been done will we write this last section, but we expect that the specification is
released when you can read the book beginning of 2009.

Even more important than having a released specification is that all building
blocks provided by the OPC Foundation, namely the stack, are available and
working. The early adopters of OPC UA have first products ready and already
released when you can read this book.

We have experienced such a big interest in OPC UA that we expect a wide
adoption even in areas where Classic OPC is not used today. OPC UA can be applied
on devices, controllers, DCS up to MES and ERP systems and thus has a brighter
scope then Classic OPC. This does not imply that OPC UA will replace all prod-

by the OPC Foundation are a good strategy dealing with those legacy products
that will run probably for the next decade or longer. In the first step of adoption
we expect that existing OPC products will be migrated to OPC UA supporting
both Classic OPC and UA. The second area of early adoption will be on embed-
ded and non Microsoft systems where OPC is needed but can not be used today.
Both groups of products will mainly profit from the platform independent and
reliable communication features.

A big opportunity provided by OPC UA is defining standard Information Mod-
els using OPC UA. Here, the access to domain-specific information is standardized
and the secure, reliable, interoperable and platform-independent communication
mechanism of OPC UA can be used. In Sect. 4.10, some of currently ongoing
activities are listed. We expect that other initiatives will follow as soon as OPC
UA is applied in the marked.

Finally let us take a look at OPC UA from the technical perspective. Is every
feature that should be integrated into OPC UA built into it? We had a list of
improvements for the version released in 2006, for example bulk browse opera-
tions. But they are already integrated in the updated version. Some of the features
we can see for the future are standardized rules for cardinality restrictions and the
support for transactions. Both can easily be built on top of OPC UA by defining
standardized ModellingRules or standardized Methods creating a transaction con-
text. Thus neither the Service definitions must be changed or extended nor must
the stack implementation be adapted to include those features. This shows again
flexibility of OPC UA. We hope this book helped you understanding OPC UA and
you are now ready to apply OPC UA in your environment.

322 14 Conclusion and Outlook

ucts supporting Classic OPC in the near future. The wrappers and proxies provided

[AFK+05] C. Adams, S. Farrell, T. Kause, T. Mononen: Internet X.509 Public Key Infrastructure

Certificate Management Protocol, RFC 4210, 2005
[Al01] H. Alvestrand: Tags for the Identification of Languages, RFC 3066, 2001
[AL02] C. Adams, S. Lloyd: Understanding PKI, Second Edition, Addison-Wesley, 2002, ISBN

0-672-32391-5
[CBB+00] R.G.G. Cattell, D.K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,

O. Schadow, T. Stanienda, F. Velez: The Object Data Management Standard: ODMG 3.0,
Morgan Kaufmann, 2000, ISBN 1-55860-647-5

[Con07] S. Contini, Factorization Records, 2007, http://www.crypto-world.com/announcements/
m1039.txt

[DR06] T. Dierks, E. Rescorla: The Transport Layer Security (TLS) Protocol Version 1.2. RFC
4346, 2006

[ECT06] EDDL Cooperation Team: Tutorial for EDDL Phase 2 UA Information Model, 2006

2008
[FHM+07] T. Freeman, R. Housley, A. Malpani, D. Cooper, W. Polk: Server-based Certificate

Validation Protocol (SCVP), RFC 5055, 2007

2003, http://radio.weblogs.com/0105852/stories/2002/12/21/comInteropNotFundamentally-
FlawedButHard.html

[HPF+02] R. Housley, W. Polk, W. Ford, D. Solo: Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile, RFC 3280, 2002

2006, ISBN 3-77852-904-8
[ISA88] ANSI/ISA–88.01–1995 Batch Control Part 1 Models and Terminology, 1995, ISBN:

1-55617-562-0
[ISA95] ANSI/ISA–95.00.01–2000 Enterprise-Control System Integration Part I: Models and

Terminology, 2000, ISBN: 1-55617-727-5
[ISA99] ANSI/ISA–99.00.01–2007 Security for Industrial Automation and Control Systems:

Concepts, Terminology and Models, 2007
[ISO08a] ISO/IEC 9075-2: 2008: Information technology – Database languages – SQL – Part 2:

Foundation (SQL/Foundation), 2008
[ISO08b] ISO/IEC 9075-11: 2008: Information technology – Database languages – SQL – Part

11: Information and Definition Schemas (SQL/Schemata), 2008
[LH05] S. Lipner, M. Howard: The Trustworthy Computing Security Development Lifecycle,

2005, http://msdn.microsoft.com/en-us/library/ms995349.aspx
[MAM+99] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams: Internet Public Key

Infrastructure Online Certificate Status Protocol – OCSP, RFC 2560, 1999
[MAS+99] M. Myers, C. Adams, D. Solo, D. Kemp: Internet X.509 Certificate Request Message

Format, RFC 2511, 1999
[MS03] Public Key Infrastructure for Windows Server 2003, https://www.microsoft.com/

windowsserver2003/technologies/pki/default.mspx
[MS06] Microsoft: Devices Profile for Web Services (DPWS), February 2006, http://

schemas.xmlsoap.org/ws/2006/02/devprof
[MS07] Microsoft: Decentralized Software Services Protocol – DSSP/1.0, July 2007, http://

www.microsoft.com/robotics
[OASIS04] OASIS: WS-Security 1.0, OASIS Standard, March 2004, http://docs.oasis-open.org/

wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[Ge03] S. Gentile: COM Interop Not Fundamentally Flawed But Hard, Sam Gentile's Weblog,

15 Literature

[IL06] F. Iwanitz, J. Lange: OPC: Fundamentals, Implementation, and Application, Hüthig,

[FDT08] FDT Group: OPC UA Information Model Specification for FDT, Version draft 0.11,

323

[OASIS07] OASIS: WS-SecureConversation 1.3, OASIS Standard, March 2007, http://
docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html

[OASIS07a] OASIS: WS-SecurityPolicy 1.2, OASIS Standard, July 2007, http://docs.oasis-open.org/
ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html

ws-sx/ws-trust/200512/ws-trust-1.3-os.html
[OMG08] Object Management Group: UML Resource Page, 2008, http://www.uml.org/
[OSSL] OpenSSL project, 2008, http://www.openssl.org/
[OXPKI] OpenXPKI Foundation, OpenXPKI Framework, 2008, http://www.openxpki.org/

http://rsa.com/rsalabs/node.asp?id=2129

http://rsa.com/rsalabs/node.asp?id=2132

Foundation, http://www.opcfoundation.org/UA/Part10
[UA Part 11] OPC UA Specification: Part 11 – Historical Access, Version 1.00, January 2007,

OPC Foundation, http://www.opcfoundation.org/UA/Part11

July 2008, OPC Foundation

[UA Part 13] OPC UA Specification: Part 13 – Aggregates, Release Candidate Version 1.0, July
2008, OPC Foundation, http://www.opcfoundation.org/UA/Part13

324 15 Literature

[Pet08] D. Peterson: OPC UA Security Assessment, 2008, http://www.digitalbond.com/index.php/

[PKCS#10] RSA Labs, PKCS #10: Certification Request Syntax Standard, 2000,

2008/08/14/opc-ua-assessment-series-part-1/

[OPCTL Part 8] OPC Foundation: Test Lab Part 8: UA Server, Draft 0.92

[OASIS07b] OASIS: WS-Trust 1.3, OASIS Standard, March 2007, http://docs.oasis-open.org/

[OPCTL Part 9] OPC Foundation: Test Lab Part 9: UA Client, Draft 0.1

[UA Analyzer] OPC UA Specification: Part XIII: Analyzer Devices, Draft Version 0.30.00,

[PKCS#7] RSA Labs, PKCS #7: Cryptographic Message Syntax Standard, 1993,

December 2008, OPC Foundation

1.01.19, January 2009, OPC Foundation, http://www.opcfoundation.org/UA/Part3

2008, OPC Foundation, http://www.opcfoundation.org/UA/Part1

2009, OPC Foundation, http://www.opcfoundation.org/UA/Part4

[UA Part 1] OPC UA Specification: Part 1 – Concepts, Release Candidate Version 1.01.04, August

[SF03] B. Schneier, N. Ferguson: Practical Cryptography, Wiley, 2003, ISBN 0-471-22357-3

1.01.21, January 2009, OPC Foundation, http://www.opcfoundation.org/UA/Part5

October 2008, OPC Foundation, http://www.opcfoundation.org/UA/Part2

2008, OPC Foundation, http://www.opcfoundation.org/UA/Part6

[UA Part 9] OPC UA Specification: Part 9 – Alarms and Conditions, DRAFT Version 0.93q,

[UA Part 6] OPC UA Specification: Part 6 – Concepts, Release Candidate Version 1.00.10, October

[UA Part 3] OPC UA Specification: Part 3 – Address Space Model, Release Candidate Version

2009, OPC Foundation, http://www.opcfoundation.org/UA/Part7

[UA Part 11Draft] OPC UA Specification: Part 11 – Historical Access, DRAFT Version 1.01,

[UA Part 7] OPC UA Specification: Part 7 – Profiles, Release Candidate Version 1.00.04, January

[UA Part 2] OPC UA Specification: Part 2 – Security Model, Release Candidate Version 1.01.53,

August 2009, OPC Foundation, http://www.opcfoundation.org/UA/Part8

[UA Part 4] OPC UA Specification: Part 4 – Services, Release Candidate Version 1.01.36, January

[UA Part 8] OPC UA Specification: Part 8 – Data Access, Release Candidate Version 1.01.12,

[UA Part 5] OPC UA Specification: Part 5 – Information Model, Release Candidate Version

2007, OPC Foundation, http://www.opcfoundation.org/UA/Part12

[UA Part 10] OPC UA Specification: Part 10 – Programs, Version 1.00, January 2007, OPC

[UA Part 12] OPC UA Specification: Part 12 – Discovery, DRAFT Version 1.00.03, November

November 2007, OPC Foundation, http://www.opcfoundation.org/UA/Part9

[UA Devices] Devices, DRAFT Version 0.75, December 2008, OPC Foundation

enterprise-authentication/managed-pki/index.html
[W3C02] W3C: XML Encryption Syntax and Processing, W3C Recommendation, December

2002, http://www.w3.org/TR/xmlenc-core/
[W3C04a] W3C: XML Schema Part 1: Structures, Second Edition, W3C Recommendation,

October 2004, http://www.w3.org/TR/xmlschema-1/
[W3C04b] W3C: XML Schema Part 2: Datatypes, Second Edition, W3C Recommendation,

October 2004, http://www.w3.org/TR/xmlschema-2/
[W3C04c] W3C: Web Services Addressing (WS-Addressing), W3C Recommendation, August

2004, http://www.w3.org/Submission/ws-addressing/
[W3C07a] W3C: SOAP Version 1.2 Part 1: Messaging Framework, Second Edition, W3C

Recommendation, April 2007, http://www.w3.org/TR/soap12-part1/
[W3C07b] W3C: SOAP Version 1.2 Part 2: Messaging Framework, Second Edition, W3C

Recommendation, April 2007, http://www.w3.org/TR/soap12-part2/
[W3C08] W3C: XML Signature Syntax and Processing, Second Edition, W3C Recommenda-

tion, June 2008, http://www.w3.org/TR/xmldsig-core/

325Literature

[VMPKI] Verisign: Managed PKI Service, 2008, http://www.verisign.com/authentication/

Appendix A: Graphical Notation

Motivation and Relation to UML

OPC UA defines a graphical notation for an OPC UA Address Space [UA Part 3].
It defines graphical symbols for all NodeClasses and how References of different
types can be visualized. It is used to show you a view on the Address Space by
browsing it and reading current values. Thus it does not consider historical data or
events that are not visible in the Address Space. This notation is already used in
several parts of the specification and we use it in this book as well.

desirable. Most people who want to define an Information Model need that possi-
bility. This is needed independent of whether they define a standard Information
Model, a vendor-specific or even product- or server-specific one. By standardizing
the visualization, people can easily exchange their diagrams and understand each
other without the need to translate different notations.

various phases of software development called UML [OMG08]. An obvious ques-

a new one? For those not familiar with UML, you can skip the rest of this section
and take the simple answer that in the end the OPC UA notation is actually stereo-
typed UML. For those familiar with UML, we go a little bit more into details.

Actually the OPC UA specification has already an informative Appendix defin-
ing the OPC UA meta model in UML [UA Part 3]. Since instances are part of the
model like the base ReferenceTypes, the UML model has to deal with instances
and classes. Looking at this model you can also see some difficulties. For example,
there is a UML-Class called ObjectType. Thus, OPC UA ObjectTypes become
instances of that UML-Class. But OPC UA also deals with Objects. They are
instances of the UML-Class Object but of course also instances of the Object-
Types. UML is not perfectly designed to support these different levels with its
base concepts. But UML allows defining stereotypes for special instances. This
concept is already used in the UML model defined by the OPC UA specification.
But UML also allows defining specific graphical representations for stereotyped
model elements. Although this was not done in the UML model defined in the
OPC UA specification, the graphical notation defined by the OPC UA specifica-
tion is in the end nothing but stereotyped UML using specific graphical elements
for the different NodeClasses of OPC UA.

Thus, in the end it should be very simple for everybody familiar with UML to
understand the OPC UA notation. The only thing to consider is that all Nodes you
see in the diagrams would be mapped to instances in UML, thus you are only look-
ing at UML object diagrams. The OPC UA NodeClasses would be mapped to
UML-Classes.

tion is why not to use this notation so that nobody familiar with UML has to learn

It is obvious that having a graphical notation to visualize OPC UA data is

However, there is already a very popular standard notation broadly used in

327

Notation

The graphical notation defined by OPC UA gives you a view on an OPC UA
Address Space. The granularity of details can vary, and you can, for example,
visualize the Attributes of a Node, but you do not have to. You can also combine
this by only exposing some Attributes of a Node that are important for the dia-
gram. The same is true for References of a Node; you can expose a few and do not
expose other.

Each NodeClass has its own graphical element as shown in Table A.1. The Dis-
playName of the Node is shown as text inside the Node. NodeClasses representing
types always have a shadow beneath it; otherwise they have the same graphical
representation as there instances (only applicable for Objects and variables since
DataType instances and ReferenceType instances are not represented as Nodes).

and concrete types do not use italic. In the OPC UA specification, all types use

seems more suitable for us.
References between Nodes are represented by lines between them. Arrows expose

the direction. There are some special forms for specific base ReferenceTypes, as

Appendix A: Graphical Notation 328

Table A.1 Notation of NodeClasses

NodeClass Graphical Representation Comment
Object

Can contain the TypeDefini-

“Object1::Type1”
ObjectType Abstract types use italic,

Variable

Can contain the TypeDefini-

“Variable1::Type1”
VariableType Abstract types use italic,

DataType Abstract types use italic,

ReferenceType Abstract types use italic,

Method

–

View

–

Unlike defined by OPC UA, we use italic font style to expose that a type is abstract,

exposed in Table A.2. All other ReferenceTypes must put in the ReferenceType

italic, independent if they are abstract or not. The UML way of dealing with this

tion separated by “::”, e.g.,

tion separated by “::”, e.g.,

ObjectType

VariableType

DataType

ReferenceType

concrete types not

concrete types not

concrete types not

concrete types not

name on the line and use the notation of a symmetric, asymmetric, or hierarchical
ReferenceType exposed in Table A.2.1 Please note that the HasSubtype Reference
points with the arrow in the inverse direction to point from the subtype to the
supertype like in all other graphical notations known to the authors.

The Attributes of a Node can be put inside the graphical element representing
the Node. This is exemplified using an Object in Fig. A.1, but it can be applied on
any NodeClass. As shown in Fig. A.1, you can either provide all Attributes (A) or
only some Attributes (B). Since this makes it ambiguous for optional Attributes
whether they are provided, you can make this explicit by striking that Attribute
out, as shown in (C).

Fig. A.1 Attributes included in Node

There are some built-in DataTypes having internally a structure that are often
used in OPC UA diagrams like LocalizedText (e.g., in the DisplayName) or
QualifiedName (in the BrowseName). For those it is not needed to provide the whole

1 Please be aware that each Reference connects two concrete Nodes, thus you do not have any
cardinality restrictions or role names on them like you would have in UML class diagrams. We
are on the level of UML object diagrams where you do not have those things either.

 Notation 329

Table A.2 Notation of References based on ReferenceTypes

ReferenceType Graphical Representation
Any symmetric ReferenceType

Any asymmetric ReferenceType

Any hierarchical ReferenceType

HasComponent
HasProperty
HasTypeDefinition
HasSubtype
HasEventSource

information. For the LocalizedText and the QualifiedName, it is enough to provide
the string-part as done in all diagrams of this book. However, the LocaleId respec-
tively the NamespaceIndex can be exposed by prefixing them, separated by a “:”.

To avoid a large amount of Nodes in a diagram, it is allowed to handle Proper-
ties similar to Attributes exposing them inside the Node. This is shown in Fig. A.2.
Of course, this is a limited representation and here you cannot reference the Pro-
perties since they are not shown as Nodes.

Fig. A.2 Properties and Attributes included in Node

Example

We will take a look at a small example to point out the different possibilities using
the graphical notation of OPC UA. In Fig. A.3, you can see the Device1 Object hav-
ing a DataVariable and two Properties. In addition, the reference to its TypeDefi-
nition is shown.

Fig. A.3 Example of a Device Object exposing References

In Fig. A.4, the same information is provided (except for the data types of the
Properties). Here, the Properties are included in the Node as well as the TypeDefi-
nition name and thus only the Data Variable is exposed as additional Node.
Please be aware that this simplified notation has some drawbacks. For example,

Appendix A: Graphical Notation 330

PVDevice1
Attributes
DisplayName = „Device1“
BrowseName = (0, Device)
NodeId = (3, „121“)
NodeClass = Object
Description = „Example Device“
WriteMask = 0
UserWriteMask = 0
EventNotifier = False

Attributes
Value = 12
DataType = Int16
ValueRank = Scalar

DeviceType

VendorName

Attributes
Value = „ABB“
DataType = LocalizedText
ValueRank = Scalar

VendorId

Attributes
Value = 0
DataType = Int32
ValueRank = Scalar

the DisplayName of the ObjectType does not have to be unique. In Fig. A.3, you
could expose the NodeId of the TypeDefinition Node as well (which must be
unique), this is not possible in Fig. A.4.

PV

Device1::DeviceType
Attributes
BrowseName = (0, Device)
NodeId = (3, „121“)
Description = „Example Device“
WriteMask = 0
UserWriteMask = 0
EventNotifier = False
Properties
VendorName = ABB
VendorId = 0

Attributes
Value = 12
DataType = Int16
ValueRank = Scalar

Fig. A.4 Example of a Device Object including TypeDefinition and Properties

 Example 331

Appendix B: NodeClasses and Attributes

333

Appendix B: NodeClasses and Attributes 334

Table B.1 List of Attributes

Attribute ID Description
NodeId 1 The server unique identifier for the node
NodeClass 2 The base type of the node
BrowseName 3 A nonlocalized, human readable name for the node
DisplayName 4 A localized, human readable name for the node
Description 5 A localized description for the node
WriteMask 6 Indicates which attributes are writeable
UserWriteMask 7 Indicates which attributes are writeable by the cur-

rent user
IsAbstract 8 Indicates that a type node may not be instantiated
Symmetric 9 Indicates that forward and inverse references have

the same meaning
InverseName 10 The browse name for an inverse reference
ContainsNoLoops 11 Indicates that following forward references within a

view will not cause a loop
EventNotifier 12 Indicates that the node can be used to subscribe to

events
Value 13 The value of a variable
DataType 14 The node id of the data type for the variable value
ValueRank 15 The number of dimensions in the value
ArrayDimensions 16 The length for each dimension of an array value
AccessLevel 17 How a variable value may be accessed
UserAccessLevel 18 How a variable value may be accessed after taking

the user’s access rights into account
MinimumSam-
plingInterval

19 Specifies (in milliseconds) how fast the server can
reasonably sample the value for changes

Historizing 20 Specifies whether the server is actively collecting
historical data for the variable

Executable 21 Whether the method can be called
UserExecutable 22 Whether the method can be called by the current user

Appendix C: Base Information Model Reference

Fig. C.1 ReferenceType Hierarchy

Fig. C.2 DataType Hierarchy

References

HierarchicalReferences NonHierarchicalReferences

HasEventSource

HasNotifier

HasChildOrganizes

AggregatesHasSubtype

HasProperty HasComponent

HasOrderedComponent

HasModellingRule

HasTypeDefinition

HasEncoding

HasModelParent

GeneratesEvent

HasDescription

BaseDataType

Boolean

ByteString

DateTime

DataValue

Diagnostic
Info

Enumeration

Expanded
NodeId

Guid

Localized
Text

NodeId

NumberQualifiedName

String

Structure

XmlElement

Integer UIntegerDouble Float

SByte UInt16 UInt32 UInt64ByteInt16 Int64Int32

LocaleId
Numeric
Range

UtcTime

Image

Image
BMP

Image
GIF

Image
JPG

Image
PNG

335

Appendix C: Base Information Model Reference

Fig. C.3 EventType Hierarchy

336

AuditEventType

AuditNodeManagement
EventType

AuditUpdate
EventType

AuditAddNodes
EventType

AuditSecurity
EventType

AuditSession
EventType

AuditChannel
EventType

AuditAddReferences
EventType

AuditDeleteNodes
EventType

AuditOpenSecure
ChannelEventType

AuditDelete
ReferencesEventType

AuditActivateSession
EventType

AuditCreateSession
EventType

BaseEventType

SystemEventType
SemanticChange

EventType
BaseModelChange

EventType

GeneralModel
ChangeEventType

DeviceFailure
EventType

AuditUpdateMethod
EventType

AuditHistory
UpdateEventType

AuditWrite
UpdateEventType

AuditCancel
EventType

AuditCertificateData
MismatchEventType

AuditCertificate
InvalidEventType

AuditCertificate
ExpiredEventType

AuditCertificate
MismatchEventType

AuditCertificate
UntrustedEventType

AuditCertificate
RevokedEventType

AuditCertificate
EventType

AuditUrlMismatch
EventType

Index

A

AccessLevel, 32
ActivateSession, 137
AddNodes, 188
AddReferences, 188
Address Space, 22, 81, 82, 83

Historical Address Space, 79
Services, 139

ADI, 120
Aggregates, 28, 50, 180
Aggregating Server, 97, 98, 264, 268,

280
Alarm & Events, 5
Alarms and Conditions, 119
AllowNulls, 113
Application Instance Certificate, 213,

224
ArrayDimensions, 32, 40
Attribute, 22
Audit Log, 137, 277, 278, 280, 281
Authentication, 133, 207, 219, 220, 240,

296
Authorization, 207, 219, 220

B

Browse, 140
BrowseName, 23
BrowseNext, 141
Built-in DataType, 63

C

Call, 176
Cancel, 138
Certificate, 197, 213, 222, 227, 229,

231
Certificate Store, 232, 239, 259
Certification, 302
Client-Server, 3, 13, 216, 265, 267, 280
CloseSecureChannel, 135
CloseSession, 138
Conformance Unit, 299
ContainsNoLoops, 74

CreateMonitoredItems, 168
CreateSession, 136
CreateSubscription, 164
CRL, 235, 237, 247, 249

D

Data Access, 4
Data Variable, 58
DataType, 61, 100, 150

Attribute, 32, 40
DataTypeVersion, 114
DaylightSavingTime, 113
DeleteMonitoredItems, 169
DeleteNodes, 189
DeleteReferences, 189
DeleteSubscription, 165
Description, 23
DictionaryFragment, 114
Direct Trust Model, 228, 250
Discovery, 131, 273
Discovery Endpoint, 212, 274, 275
DisplayName, 23

E

EntryID, 127, 278, 280
Enumeration DataType, 63
EnumStrings, 114
Error Handling, 128
Event, 31, 74, 151, 158, 173

Audit, 278
Historical, 78, 177

EventNotifier, 31, 32, 74, 75, 117
Attribute, 74

EventType, 74, 93, 112, 151
Executable, 34
ExpandedNodeId, 69
Extensible Parameter, 129

F

FDI, 121
Filter Operators, 174
FindServers, 132

337

338 Index

G

GeneratesEvent, 77
GetEndpoints, 133

H

HasChild, 28
HasComponent, 28, 59, 87, 148
HasDescription, 151
HasEncoding, 150
HasEventSource, 76, 146
HasModellingRule, 49
HasModelParent, 60
HasNotifier, 75
HasOrderedComponent, 24
HasProperty, 59, 87
HasSubtype, 28
HasTypeDefinition, 26, 37, 154
Hierarchical Trust Model, 229
Historical Data Access, 6
Historizing, 33
HistoryRead, 177
HistoryUpdate, 183

I

Icon, 113
Information Model, 19, 81, 82, 107

Standard, 107
InputArguments, 34, 114
InstanceDeclaration, 45
InverseName, 25
IsAbstract, 25, 37, 40, 62

K

Keep Alive, 162

L

Local Discovery Server, 131, 274, 276
LocalizedText, 70

M

Method, 30, 34, 36, 45, 103, 118, 148,

176
Migration, 15, 283, 293
MinimumSampling-Interval, 33
ModelChangeEvent, 79

ModellingRule, 45, 48, 49, 103
Constaints, 52
ExposesItsArray, 52
Mandatory, 49
Optional, 49

ModelParent, 60
ModifyMonitoredItems, 169
ModifySubscription, 165

Monitored Item, 158, 167
Monitoring Mode, 159, 167

N

NamespaceArray, 68, 69
NamespaceIndex, 68
NamingRule, 48, 49, 50, 51, 113
Node, 22, 23, 24, 79, 188, 189
NodeClass, 22, 23
NodeId, 22, 23, 45, 111

DataType, 68
RegisterNodes, 143

NodeVersion, 79, 113

O

Object, 30, 95
ObjectType, 36, 37, 96

Complex, 42
Simple, 37

OCSP, 236, 246, 249
OpenSecureChannel, 135
OutputArguments, 34, 114

P

Performance, 305
PKI, 227, 238, 242
Private Key, 195, 197, 213, 216, 224,

233, 238
Profile, 299
Program, 118
ProgramType, 119
Property, 58, 102
Proxy, 295
Proxy Object, 104
Public Key, 216, 219, 225, 226, 228,

242
Publish, 160, 162

Monitor Aggregated Data, 175
Monitor Data Changes, 171
Monitor Events, 173

 Index 339

Q

QualifiedName, 70
Query, 186
QueryFirst, 186
QueryNext, 186
Queue Size, 159, 167

R

Read, 155
ReadAtTime, 182
ReadEvent, 182
ReadProcessed, 180
ReadRawModified, 178
Reference, 22, 23, 24, 29, 79, 95, 104,

188, 189
ReferenceType, 25, 26, 29, 92, 95

Standard ReferenceTypes, 112
RegisterNodes, 143
RegisterServer, 134
Republish, 163
Request, 127
Response, 127

S

Sampling Interval, 159, 167
SDK, 14, 258
Secure Channel, 130, 135
Security Policy, 197, 207, 213, 222
ServerArray, 69, 114
Service, 125
Session, 130, 136
Session Endpoint, 212, 274, 275
SetMonitoringMode, 170
SetPublishingMode, 166
SetTriggering, 170
Simple DataType, 63
Software Certificate, 215, 220, 226, 299,

302
Software Layers, 13, 255
Specifications, 11
Stack, 14, 191, 256

State Machine Information Model, 117,
153

Structured DataType, 64, 150
Subscription, 130, 158, 164
Subtyping, 54
Symmetric, 25

T

Test Case, 299
Timeout Handling, 127
TimeZone, 113
TransferSubscriptions, 166
TranslateBrowsePathsToNodeIds, 142

U

UnregisterNodes, 145
User Certificate, 222, 227
UserAccessLevel, 33
UserExecutable, 34
UserWriteMask, 23

V

Value, 32, 40
ValueRank, 32, 40
Variable, 30, 32, 100
VariableType, 36, 96

Complex, 48
Simple, 39

View, 71, 95
ViewVersion, 113

W

Wrapper, 293
Write, 157
WriteMask, 23

X

X.509, 224
XML-DA, 7

	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	fulltext_10.pdf
	fulltext_11.pdf
	fulltext_12.pdf
	fulltext_13.pdf
	fulltext_14.pdf
	fulltext_15.pdf
	back-matter.pdf

