CoFounder and COO, Aspect Security

OWASP which is now EY

The Open Web Application Security Project

CKAYAHO C WWW.SHAREWOOD.BIZ - MPUCOEQNHANCA!

About the OWASP Top 10
9 OWASP

The Open Web Application Security Project

OWASP Top Ten (2017 Edition)
) OWASP

F' The Open Web Application Security Project

What Didn’t Change
9 OWASP

The Open Web Application Security Project

OWASP:Top 10 Risk Rating

R Methodology

NOWASCP

Threat Attack Security Security Technical Business
| Agents Vectors Weaknesses Controls Impacts Impacts

Cg:atg:' ‘ Weakness Prevalence \ Weakness Detectability Technical Impact

2 Average Common Moderate

1

Average

Difficult Uncommon Difficult Minor

3 2 3 3

B,

Injection Example 266 " 3

v

8.00 weighted risk rating

What's Changed?
9 OWASP

The Open Web Application Security Project

The Open Web Application Security Project

Mapping from 2013
to 2017 Top 10

OWASP Top 10 - 2013
A1 - Injection
A2 - Broken Authentication and Session Management
A3 - Cross-Site Scripting (XSS)
A4 - Insecure Direct Object References [Merged+A7] o
A5 = Security Misconfiguration

A6 - Sensitive Data Exposure

b
e

L
A7 - Missing Function Level Access Contr [Merged+A4] |)

A8 - Cross-Site Request Forgery (CSRF)
A9 - Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards

>

OWASP Top 10 - 2017
A1:2017-Injection
A2:2017-Broken Authentication
A3:2017-Sensitive Data Exposure
A4:2017-XML External Entities (XXE) [NEW]
A5:2017-Broken Access Control [Merged]
A6:2017-Security Misconfiguration
A7:2017-Cross-Site Scripting (XSS)
A8:2017-Insecure Deserialization [NEW, Community]
A9:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

2017-A1 - Injection
OWASP

The Open Web Application Security Project

Application Layer

Network Layer

request

N1/

The Onen Weh Annlication Secniritv Proiect

Accounts

SQL ;,Injéction - lllustrated

DB Table
")
N

Account: ® OR1=1—
sku: |

A

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the
user

A1l - Avoiding Injection Flaws
OWASP

The Open Web Application Security Project

2017-A2 - Broken
Authentication
OWASP

The Open Web Application Security Project

Broken Authentication

lllustrated

The Open Web Application Security Project

@ User sends credentials

www.boi.com?JSESSIONID=9FA1DB9EA...

Site uses URL rewriting @
, (i.e., put session in URL)

<]
O
b B
(]
£
£
Q
Q
(7]

Transactions
Communication

+—
&
b3
&
O
2
3
)
(=
X

5o vt ASPET] 0

’_ﬁ

@ User clicks on a link to http://www.hacker.com in
a forum

Hacker checks referrer logs on www.hacker.com
and finds user’s JSESSIONID

@ Hacker uses JSESSIONID and
takes over victim’s account

http://www.hacker.com/
http://www.hacker.com/

A2 - Avoiding Broken
Authentication
9 OWASP

The Open Web Application Security Project

2017-A3 = Sensitive Data Exposure
9 OWASP

The Open Web Application Security Project

Insecure Cryptograhic

/\ Storage lllustrated
OWASP

¥ The Open Web Application Security Project

Victim enters credit card
number in form

E-Commerce

Custom Code

steals 4 million credit
card numbers

Error handler logs CC
details because merchant

gateway is 7navai|able
t Logs are accessible to all @

members of IT staff for
debugging purposes

o
. rt; @ Malicious insider

@)

Avoiding Ihsecure

Cryptographic Storage

OWASP

The Open Web Application Security Project

* Verify your architecture
— Identify all sensitive data
— Identify all the places that data is stored
— Ensure threat model accounts for possible attacks
— Use encryption to counter the threats, don’t just ‘encrypt’ the data

* Protect with appropriate mechanisms
— File encryption, database encryption, data element encryption
— https://www.owasp.org/index.php/Password Storage Cheat Sheet

* Use the mechanisms correctly
— Use standard strong algorithms
— Generate, distribute, and protect keys properly
— Be prepared for key change

* Verify the implementation
— A standard strong algorithm is used, and it’s the proper algorithm for this situation
— All keys, certificates, and passwords are properly stored and protected
— Safe key distribution and an effective plan for key change are in place

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Insufficient Transport'Layer

Protection lllustrated

7% OWASP

The Open Web Application Security Project

v
hib

Business Partners

External Victim

Custom Code Backend Systems
g

At
@ Employees

Internal attacker
steals credentials and
and data off data from internal

network network
External Attacker Internal Attacker

External attacker
steals credentials

Av0|d|ng Insufficient Transport

Layer Protection

OWASP

The Open Web Application Security Project

* Protect with appropriate mechanisms
— Use TLS on all connections with sensitive data
— Use HSTS (HTTP Strict Transport Security)
— Use key pinning
— Individually encrypt messages before transmission
* E.g., XML-Encryption
— Sign messages before transmission

* E.g., XML-Signature

* Use the mechanisms correctly
— Use standard strong algorithms (disable old SSL algorithms)
— Manage keys/certificates properly
— Verify SSL certificates before using them

— Use proven mechanisms when sufficient
* E.g., SSL vs. XML-Encryption

* https://www.owasp.org/index.php/Transport_Layer Protection_Cheat Sheet
* https://www.owasp.org/index.php/HTTP_Strict Transport Security Cheat Sheet

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

2017-A4 = XML eXternal Entity

~ (XXE) Attack
OWASP

The Open Web Application Security Project

XXE Attack Examples

7% OWASP

The Open Web Application Security Project

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!'DOCTYPE meh [<!'ENTITY xxeFun SYSTEM "file:///etc/passwd">]>>

<someStuff>
<isHere> If This XML document is
Hi! &xxeFun; * received from an external
</isHere> provider,
</someStuff> * evaluated, then

* returned to the user
The contents of /etc/passwd are
returned to the attacker

<?xml version="1.0"7?>
<!DOCTYPE kaboom [

<!ENTITY a "aaaaaaaaaaaaaaaaaa...">]>
<kaboom>&a; &a;; &a; &a; &a;&a;&a; &a;&a; .. .</kaboom>

What happens this time?

XXE Defense Examples

OWASP

The Open Web Application Security Project

Defense 1: Disable Entity inclusion. The XML Validator will throw a Fatal Exception if such an entity is included.

Xerces Example:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance() ;

dbf . setNamespaceAware (true) ;

try {

dbf.setFeature ("http://apache.org/xml/features/disallow-doctype-decl", true);
// Use DBF here to parse XML (safely)

} catch (ParserConfigurationException e) { //handle error }

Defense 2: If entities need to be allowed, disable expansion of external entities.

Xerces Example:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlInstance() ;

dbf . setNamespaceAware (true) ;

try {

dbf.setFeature ("http://xml.org/sax/features/external-general-entities", false);
dbf.setFeature ("http://xml.org/sax/features/external-parameter-entities", false) ;
// Use DBF here

} catch (ParserConfigurationException e) { //handle error }

,\ A4 - Avoiding XXE
OWASP

The Open Web Application Security Project

2017-A5 - Broken Atcess

/\ ' Control
OWASP

The Open Web Application Security Project

Missing Function Level'Access
Control lllustrated

The Open Web Application Security Project

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer

: Eile Edit View Favorites Tools Help

Qs 0 186 P grrwnm @[3+ 8 i * Attacker notices the URL

. : indicates his role
wecome Teodons @ Bkl & &

What can our Income and Expenses from Sep 26, 2004 1o Jan 16, 2005 Checking6534
Cash Maximizer Total Costs |

account do Recurring Costs
far you? Varishle Costs
Fined Costs

. s * He modifies it to another

¥ F2000 34000 FNO000 FI000 10000 §12.000 $14000 FI6000 HIE000 F20000 F22,000 $24000

3 directory (role)

M 0 Date Descrption Category Amsunt
CurrartBalance $3577.98 How 22, 2004 [8terast Paymane Tetgrage bas ‘_i

:ili_:t::;uu tsu&;i'; How 23, 2004 ATH Withdrawal, myBank, San Rafual, CA Cath $1o000| /a d m i n/getACCO u nts , 0 r'

Mow 19, 2004 ATM Withdrawal myBank, San Francisce, CA Cash HE-IJ.O':IE

/user/getAccounts

Currant Balance $2.518.08

Aygilsble Bilinca $2200.00

Hav 16, 2004 SBC Phone Bill Payment €3 Phane $34.23 |

Nov 16, 2004 myBink Credit Card 8l Paymant Cradit Card §2.05397 | /m an age r/getAccou ntS

Trans for Fands How 15, 2004 ATH Withdrawal myBank, San Rafael, CA Cash §100.00

Hiw 15, 2004 myBank Payml Bayroll §4.372.79
Mow 10, 2004 ATH Withdrawal, myBank, San Franciscs, CA Cash 100,00
Your Bills Mow &, 2004 ATH Withdrawsl myBank, S48 Francizes, CA Cath £100.00
How 3, 2004 tyBank Cradet Card Bill Paymant Cradit Card $10.00

Mow 1, 2004 Werking Araats Bill Paymant @ Phene Hagr e Atta C ke r Vi eWS m O re

Pay Rill Wow 1, 2004 Prudential Insurance Bill Paymant 0 Insurance $435.00

$9999,99 due in next:

Haw 1, 2004 Chase Manhaman Morcgage Corp Bill Payraant €I Mergage $2,184.42

accounts than just their

ruee e anndmeBank Bagral Bawmll £4.330.94 |

Mk Cash Flow: 6435.20 OW n
. Y @ nternet

OWASP

The Open Web Application Security Project

Insecure Direct Object

| Online Banking | Account Summary | Checking - Micresoft Internet Explorer

: File Edit View Favorites Tools Help

@prack -)

] @] 0 O search ¢ Faverites €9

References lllustrated

* Attacker notices his acct

welcome Teodons @ (B k]

What can our
Cash Maximizer
account do

for you?

ekt b

Tour Avcounts

Checking-6514]
Currant Balinca $3877.98
Ausilsbla Balince $3568.99
Checking 6515 k]
$2.518.08
$2200.00

Current Balance

Aviilible Balance

Teanifir Fands w

Dpen Meve Accsunt

Your Bills

$9999,99 due in newts

Pay Bills

Income and Expenses from Sep 26, 2004 1o Jan 16, 2005

Tatal Costs |
Recurring Costs i
Varishle Costs
Fined Costs |
Total Duposits

¥ 52000 34000

Date Description

How 23, 2004 [etirass Pagmane

How 22, 2004 ATH Withdrawsl, myBank, San Rafual, CA
Mo 19, 2004 ATM Withdrawal, myBank, San Franciscs, 04
Mo i6, 2004 SBC Phona Bill Payment

Mo 16, 2004 myBank Credit Card Bill Payment

Haow 15, 2004 ATM Withdrawal, myBank, San Rafael, CA
How 15, 2004 myBank Payrol

Now 10, 2004 ATH Withdraval, myBack, S48 Francizes, CA
Mow 4, 2004 ATH Withdrawsl, smyBank, San Francizes, CA
How 3, 2004 fgBank Cradit Cand Bill Paymant

How 1, 2004 Werking Azaets Bill Paymant

Moy 1, 2004 Prudential Insurance Bill Payemant

Moy 1, 2004 Chase Manhatan Mortgage Corp Bill Payrent
Qee 79, 2004 ATH Withdraval myBank, £an Francisce, G

e ng anndmgbank Bawl

Checking6534

$000 $10000 §12,000 14000 $16000 §12000 §20.000 $22000 $24000

Categary Amsunt

Tenarest $25)]
=

Cagh Ii:-EI.IJ:II
Cash $100.00|
3 Phone #?-I.EJi
12.9:3.5'.'!
Cash §10000
Payrall $4,370,79
Cash §100.00
Cazh §100.00
Cradit Card $1000
3 Phans $1357
B Insurance $43500

Credit Card

€ Mortgage $2,184.42
Cash $100.00
Bawrall £4.338.94

Mt Cash Flow: 6435.20

\gﬂ @ Internet

parameter is 6065
?acct=6065

* He modifies it to a nearby
number

?acct=6066

e Attacker views the victim’s
account information

Av0|d|ng Broken Access
Control

The Open Web Application Security Project

For a function, a site needs to do at least these things
— Restrict access to authenticated users (if not public)
— Enforce any user or role based permissions (if private)

For data, a site needs to verify
— User has required role to see that data, or
— User has been granted access (i.e., is data owner, is in associated group, etc.)
— User has the TYPE of access being used (Read, Write, Delete, etc.)

Verify your architecture
— Use a simple, positive model at every layer
— Be sure you actually have a mechanism at every layer

Verify the implementation
— Forget automated analysis approaches

— Verify each URL (plus any parameters) referencing a function or data is protected by
* An external filter, like Java EE web.xml or a commercial product

Py ® o n n » ® .« - = e a ® m . m ° [. e e e e o b

2017-A6 - Securi

/\ Misconfiguration
OWASP

The Open Web Application Security Project

Security Misconfiguration
lllustrated

The Open Web Application Security Project

(%
c
(]
=]
O
=
>
L
%]
]
[aa]

Accounts
Finance
Transactions
Communication
E-Commerce

Custom Code

App Configuration

Development
Framework

App Server

QA Servers
Web Server

N

Hardened OS
w B Test Servers

Insider

Source Control

Avoiding Security

Misconfiguration

7% OWASP

The Open Web Application Security Project

* Verify your system’s configuration management

— Secure configuration “hardening” guideline
* Automation is REALLY USEFUL here

— Must cover entire platform and application
— Analyze security effects of changes

* Can you “dump” the application configuration
— Build reporting into your process
— If you can’t verify it, it isn’t secure

* Verify the implementation
— Scanning finds generic configuration and missing patch problems

2017-A7 -

/\ Cross-Site Scripting (XSS)
OWASP

The Open Web Application Security Project

Cross-Site Scripting lllustrated

The Open Web Application Security Project

Application with
stored XSS

Attacker enters a vulnerability
malicious script into a web
page that stores the data

= ontheserver —

How to Exploit Hidden Fields

Communication
Bus. Functions

@ V|ct|m V|ews page - sees attacker proﬁle

E-Commerce

Transactions

Custom Code

How to Exploit Hidden Fields

Script runs inside victim’s
browser with full access to
the DOM and cookies

&J Local intranet

[P

@ Script silently sends attacker Victim’s session cookie

Avo:iding XSS Flaws

OWASP

% The Open Web Application Security Project

* Recommendations

— Eliminate Flaw
* Don’tinclude user supplied input in the output page

— Defend Against the Flaw
* Use Content Security Policy (CSP)

* Primary Recommendation: Output encode all user supplied input (Use
OWASP’s Java Encoders to output encode)

https://www.owasp.org/index.php/OWASP Java Encoder Project
* Perform ‘white list’ input validation on all user input to be included in
page
* For large chunks of user supplied HTML, use OWASP’s AntiSamy to
sanitize this HTML to make it safe

See: https://www.owasp.org/index.php/AntiSamy
* References

— For how to output encode properly, read the -
https://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheeh A NtiSa my)

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Safe Escaping Schemes in'Various

HTML Execution Contexts

€ Blank Page - Windows Internet Explorer = |] fd ot
@) @) aboutblank * 42| % || Google o - #1: (& <,>,") > &entity; (',/) > &i#xHH;
% | @BiankPage B - B - - YR Qoo | ESAPI: encodeForHTML()
O

HTML Element Content

(e.g., <div> some text to display </div>) #2: All non-alphanumeric < 256 = &#xHH;
ESAPI: encodeForHTMLAttribute()

HTML Attribute Values |

(e.g., <input name='person' type='TEXT'
value="defaultValue'>) #3: All non-alphanumeric < 256 - \xHH

ESAPI: encodeForJavaScript()

JavaScript Data _
(e.g., <script>
someFunction(‘DATA’)</script>)

#4: All non-alphanumeric < 256 > \HH
ESAPI: encodeForCSS()

CSS Property Values

(e.g., .pdiv a:hover {color: red; text-decoration:— |
underline})

#5: All non-alphanumeric < 256 = %HH

URI Attribute Values | i ESAPI: encodeForURL()
(e.g., <a href=" http://site.com?search=DATA")

&b Internet | Protected Mode: On #100% ~

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS (Cross_Site Scripting) Prevention Cheat Sheet
https://www.owasp.org/index.php/DOM based XSS Prevention_Cheat Sheet

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

2017-A8 - Isecure

/\ | Deserialization
OWASP

The Open Web Application Security Project

7% OWASP

Deserialization Examples

The Open Web Application Security Project

CVE-2017-5954 - “serialize-to-js package 0.5.0 for Node.js. Untrusted data
passed into the deserialize() function can be exploited to achieve arbitrary
code execution by passing a JavaScript Object with an Immediately
Invoked Function Expression (IIFE).”

CVE-2017-9424 - “IldeaBlade Breeze Breeze.Server.NET before 1.6.5 allows
remote attackers to execute arbitrary code, related to use of
TypeNameHandling in JSON deserialization.”

CVE-2017-9805 - “REST Plugin in Struts 2.1.2 thru 2.3.33 and 2.5.x before
2.5.13 uses an XStreamHandler with an instance of XStream for
deserialization without any type filtering, which can lead to Remote Code
Execution when deserializing XML payloads.”

CVE-2017-1000034 - “Akka versions <=2.4.16 and 2.5-M1 are vulnerable
to a java deserialization attack in its Remoting component resulting in
remote code execution”

Avoiding Deserialization

,\ " Vulnerabilities
OWASP

The Open Web Application Security Project

2017-A9 - Usin Known

,\ Vulnerable Compenénts
OWASP

The Open Web Application Security Project

What Can You Do

’\ #%0 Avoid This?
OWASP

The Open Web Application Security Project

Automation Example for Java
- Use Maven ‘Versions’Plagin

The Open Web Application Security Project

Output from the Maven Versions Plugin — Automated Analysis of Libraries’ Status
against Central repository

Dependencies

oy com.fasterxml.jackson.core jackson- 2.0.4 compile jar 2.0.5 2.1.0
annotations

Fiy com.fasterxml.jackson.core jackson-core 2.0.4 compile jar 2.0.5 2.1.0

iy com.fasterxml.jackson.core jackson-databind 2.0.4 compile jar 2.0.5 2.1.0

iy com.google.guava guava 11.0 compile jar 11.0.1 12.0-rcl 12.0

ey com.ibm.icu icud 49,1 compile jar 50.1

Fiy com.theoryinpractise halbuilder 1.0.4 compile jar 1.0.5

iy commons-codec commons-codec 1.3 compile jar 1.4

&k commons-logging commons-logging 1.1.1 compile jar

ey joda-time joda-time 2.0 compile jar 2.1

Fiy net.sf.ehcache ehcache-core 2.5.1 compile jar 2.5.2 2.6.0

b org.apache.httpcomponents httpclient 4.1.2 compile jar 4.1.3 4.2

Fiy org.apache.httpcomponents httpclient-cache 4.1.2 compile jar 4.1.3 4.2

iy org.apache.httpcomponents httpcore 4.1.2 compile jar 4.1.3 4.2

Fiy org.jdom jdom 1.1 compile jar 1.1.2 2.0.0

ik org.slf4] slf4-api 1.7.2 provided jar \ /
——/

Most out of Date! Details Developer Needs

This can automatically be run EVERY TIME software is built!!

2017-A10 - Instfficient

/\ -~ Logging & Monitoring
OWASP

The Open Web Application Security Project

Providing Sufficient Loging &

/\ ~ Monitoring
OWASP

The Open Web Application Security Project

Summary: How do‘you

address these problems?

7% OWASP

The Open Web Application Security Project

* Develop Secure Code

— Follow the best practices in OWASP’s Guide to Building Secure Web Applications
* https://www.owasp.org/index.php/Guide
* And the cheat sheets: https://www.owasp.org/index.php/Cheat Sheets

— Use OWASP’s Application Security Verification Standard as a guide to what an
application needs to be secure

* https://www.owasp.org/index.php/ASVS

— Use standard security components that are a fit for your organization
* Use OWASP’s ESAPI to help identify what standard security components you are likely to need
* https://www.owasp.org/index.php/ESAPI

* Review Your Applications
— Have an expert team review your applications

— Review your applications yourselves following OWASP Guidelines

* OWASP Code Review Guide:
https://www.owasp.org/index.php/Code Review Guide

* OWASP Testing Guide:
https://www.owasp.org/index.php/Testing_Guide

https://www.owasp.org/index.php/Guide
https://www.owasp.org/index.php/Cheat_Sheets
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

Thank you
OWASP Top-10 2017

	Slide 1
	About the OWASP Top 10
	OWASP Top Ten (2017 Edition)
	What Didn’t Change
	OWASP Top 10 Risk Rating Methodology
	What’s Changed?
	Mapping from 2013 to 2017 Top 10
	2017-A1 – Injection
	SQL Injection – Illustrated
	A1 – Avoiding Injection Flaws
	2017-A2 – Broken Authentication
	Broken Authentication Illustrated
	A2 – Avoiding Broken Authentication
	2017-A3 – Sensitive Data Exposure
	Insecure Cryptographic Storage Illustrated
	Avoiding Insecure Cryptographic Storage
	Insufficient Transport Layer Protection Illustrated
	Avoiding Insufficient Transport Layer Protection
	2017-A4 – XML eXternal Entity (XXE) Attack
	XXE Attack Examples
	XXE Defense Examples
	A4 – Avoiding XXE
	2017-A5 – Broken Access Control
	Missing Function Level Access Control Illustrated
	Insecure Direct Object References Illustrated
	Avoiding Broken Access Control
	2017-A6 – Security Misconfiguration
	Security Misconfiguration Illustrated
	Avoiding Security Misconfiguration
	2017-A7 – Cross-Site Scripting (XSS)
	Cross-Site Scripting Illustrated
	Avoiding XSS Flaws
	Safe Escaping Schemes in Various HTML Execution Contexts
	2017-A8 – Insecure Deserialization
	Deserialization Examples
	Avoiding Deserialization Vulnerabilities
	2017-A9 – Using Known Vulnerable Components
	What Can You Do to Avoid This?
	Automation Example for Java – Use Maven ‘Versions’ Plugin
	2017-A10 – Insufficient Logging & Monitoring
	Providing Sufficient Logging & Monitoring
	Summary: How do you address these problems?
	Slide 43

